wo 2014/025480 A 1[I N0FV0 00O 0O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/025480 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Filing Date:
8 July 2013 (08.07.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/680,990 8 August 2012 (08.08.2012) US
13/624,657 21 September 2012 (21.09.2012) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: CHEN, Lin; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). DU, Yun; 5775
Morehouse Drive, San Diego, California 92121-1714 (US).
GRUBER, Andrew, Evan; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US).

Agent: ALBIN, Gregory, J.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, MN 55125 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

13 February 2014 (13.02.2014) WIPOIPCT
International Patent Classification:
GO6F 9/38 (2006.01)
International Application Number:
PCT/US2013/049599

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SELECTIVELY ACTIVATING A RESUME CHECK OPERATION IN A MULTI-THREADED PROCESSING SYS-
TEM

EXECUTE INSTRUCTION

120
f

SELECTIVELY ENABLE OR
DISABLE RESUME CHECK
OPERATION FOR INSTRUCTION

122
f

(57) Abstract: This disclosure describes techniques for selectively activating a resume check operation in a single instruction, mul-
tiple data (SIMD) processing system. A processor is described that is configured to selectively enable or disable a resume check op -
eration for a particular instruction based on information included in the instruction that indicates whether a resume check operation
is to be performed for the instruction. A compiler is also described that is configured to generate compiled code which, when ex-
ecuted, causes a resume check operation to be selectively enabled or disabled for particular instructions. The techniques of this dis -
closure may be used to reduce the power consumption of and/or improve the performance of a SIMD system that utilizes a resume

check operation to manage the reactivation of deactivated threads.



WO 2014/025480 PCT/US2013/049599

1

SELECTIVELY ACTIVATING A RESUME CHECK OPERATION IN
A MULTI-THREADED PROCESSING SYSTEM

[0001] This application claims the benefit of U.S. Provisional Application No.
61/680,990, filed August 8, 2012, the entire content of which is incorporated herein by
reference.

TECHNICAL FIELD

[0002] The disclosure relates to multi-threaded processing and, more particularly, to
techniques for managing divergent branch instructions in a multi-threaded processing

System.

BACKGROUND

[0003] A single instruction, multiple data (SIMD) processing system is a type of
parallel computing system that includes multiple processing elements which execute the
same instruction on multiple pieces of data. A SIMD system may be a standalone
computer or a sub-system of a computing system. For example, one or more SIMD
execution units may be used in a graphics processing unit (GPU) to implement a
programmable shading unit that supports programmable shading.

[0004] A SIMD processing system allows multiple threads of execution for a program
to execute synchronously on the multiple processing elements in a parallel manner,
thereby increasing the throughput for programs where the same set of operations needs
to be performed on multiple pieces of data. Because each thread operates on different
data, if a program includes conditional branch instructions, it is possible that the branch
condition may be satisfied for some of the threads executing in the system and not
satisfied for other threads executing in the system. Such an instruction may be referred
to as a divergent branch instruction and results in the SIMD system not being able to

execute all of the threads in a synchronous fashion on the multiple processing elements.

SUMMARY

[0005] This disclosure is directed to techniques for handling divergent branch
instructions, and more particularly, to techniques for managing the reactivation of
threads that may have been deactivated in response to a divergent branch instruction.

More specifically, this disclosure is directed to techniques for selectively activating a



WO 2014/025480 PCT/US2013/049599

2
resume check operation in a single instruction, multiple data (SIMD) processing system.
Such techniques may allow a resume check operation that manages the reactivation of
deactivated threads to be selectively enabled or disabled on an instruction-by-instruction
basis. The techniques of this disclosure may be used to reduce the power consumption
of and/or improve the performance of a SIMD system that utilizes a resume check
operation to manage the reactivation of deactivated threads.
[0006] In one example, this disclosure describes a method that includes executing, with
a processor, an instruction that includes information indicative of whether a resume
check operation is to be performed for the instruction. The method further includes
selectively enabling or disabling, with the processor, the resume check operation for the
instruction based on the information included in the instruction. The resume check
operation is an operation that includes comparing each of a plurality of resume counter
values to a program counter value associated with the instruction. Each of the resume
counter values is associated with a respective one of a plurality of threads executing on
the processor.
[0007] In another example, this disclosure describes a device that includes a processor
configured to execute an instruction that includes information indicative of whether a
resume check operation is to be performed for the instruction. The processor is further
configured to selectively enable or disable the resume check operation for the
instruction based on the information included in the instruction. The resume check
operation is an operation that includes comparing each of a plurality of resume counter
values to a program counter value associated with the instruction. Each of the resume
counter values is associated with a respective one of a plurality of threads executing on
the processor.
[0008] In another example, this disclosure describes an apparatus that includes means
for executing an instruction that includes information indicative of whether a resume
check operation is to be performed for the instruction. The apparatus further includes
means for selectively enabling or disabling the resume check operation for the
instruction based on the information included in the instruction. The resume check
operation is an operation that includes comparing each of a plurality of resume counter
values to a program counter value associated with the instruction. Each of the resume
counter values is associated with a respective one of a plurality of threads executing on

a4 proccssor.



WO 2014/025480 PCT/US2013/049599

3
[0009] In another example, this disclosure describes a computer-readable storage
medium storing instructions that, when executed, cause one or more processors to
execute an instruction that includes information indicative of whether a resume check
operation is to be performed for the instruction. The instructions further cause the one
or more processors to selectively enable or disable the resume check operation for the
instruction based on the information included in the instruction. The resume check
operation is an operation that includes comparing each of a plurality of resume counter
values to a program counter value associated with the instruction. Each of the resume
counter values is associated with a respective one of a plurality of threads executing on
the one or more processors.
[0010] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0011] FIG. 1 is a block diagram illustrating an example processing system that may be
used to implement the selective resume check activation techniques of this disclosure.
[0012] FIG. 2 is a block diagram illustrating a control unit in the example processing
system of FIG. 1 in greater detail according to this disclosure.

[0013] FIG. 3 is a block diagram illustrating an example control flow module that may
be used to implement the selective resume check activation techniques of this
disclosure.

[0014] FIG. 4 is a block diagram illustrating another example control flow module that
may be used to implement the selective resume check activation techniques of this
disclosure.

[0015] FIG. 5 is a state transition table that characterizes exemplary operation of the
control flow module illustrated in FIG. 4 according to this disclosure.

[0016] FIG. 6 is a block diagram illustrating an example computing system that may be
used to implement the selective resume check activation techniques of this disclosure.
[0017] FIG. 7 is a flow diagram illustrating an example technique for selectively

activating a resume check operation according to this disclosure.



WO 2014/025480 PCT/US2013/049599

4
[0018] FIG. 8 is a flow diagram illustrating another example technique for selectively
activating a resume check operation according to this disclosure.
[0019] FIG. 9 is a flow diagram illustrating an example technique for performing a
resume check operation according to this disclosure.
[0020] FIG. 10 is a flow diagram illustrating another example technique for performing
a resume check operation according to this disclosure.
[0021] FIG. 11 is a flow diagram illustrating an example technique for generating
compiled code that selectively activates a resume check operation according to this
disclosure.
[0022] FIG. 12 is a flow diagram illustrating another example technique for generating
compiled code that selectively activates a resume check operation according to this
disclosure.
[0023] FIG. 13 illustrates an example program that may be executed without using the
selective resume check activation techniques of this disclosure.
[0024] FIG. 14 is a table illustrating an example execution sequence for the example
program in FIG. 13 according to this disclosure.
[0025] FIG. 15 illustrates an example program that may be executed using the selective
resume check activation techniques of this disclosure.
[0026] FIG. 16 is a table illustrating an example execution sequence for the example

program in FIG. 15 according to this disclosure.

DETAILED DESCRIPTION

[0027] This disclosure is directed to techniques for selectively activating a resume
check operation in a single instruction, multiple data (SIMD) processing system. In
particular, the techniques of this disclosure may allow a resume check operation that
manages the reactivation of deactivated threads to be selectively enabled or disabled on
an instruction-by-instruction basis. The techniques of this disclosure may be used to
reduce the power consumption of and/or improve the performance of a SIMD system
that utilizes a resume check operation to manage the reactivation of deactivated threads.
[0028] In a SIMD processing system, all threads may be controlled by a single control
flow unit that includes a single program counter. This may allow multiple threads of
execution for a program to execute synchronously on multiple processing elements in a

parallel manner, thereby increasing the throughput for programs where the same set of



WO 2014/025480 PCT/US2013/049599

5
operations needs to be performed on multiple pieces of data. However, because each
thread operates on different data, if an instruction set architecture (ISA) of the SIMD
processing system supports conditional branch instructions, it is possible that the branch
condition may be satisfied for some of the threads executing in the system and not be
satisfied for other threads executing in the system. Such a branch instruction may be
referred to as a divergent branch instruction. If a divergent branch instruction occurs,
the next instruction that is scheduled to be executed for some of the active threads may
be different than the next instruction that is scheduled to be executed for others of the
active threads. This may result in the SIMD processing system not being able to
execute all of the threads in a synchronous, lockstep fashion.
[0029] One approach for dealing with a divergent branch instruction involves
deactivating all of the threads that either satisfied or did not satisfy the branch condition
such that the remaining active threads are all synchronized to execute the same next
instruction. When a thread is deactivated during a given instruction cycle, the thread
does not execute any instructions during the instruction cycle. As such, the remaining
threads may continue to execute in a lockstep fashion. To control the reactivation of
such deactivated threads, a resume counter-based approach may be used that involves
allocating a resume counter for each thread executing in the processing system, setting
the resume counter for each thread being deactivated to a value that is indicative of a
program counter value at which the respective thread should be reactivated, and
automatically performing a resume check operation prior to the execution of every
instruction. One drawback of automatically performing the resume check operation for
every instruction is that the resume check operation may consume a significant amount
of power each time the operation is performed and may contribute significantly to the
time it takes to process an instruction in the SIMD processing system.
[0030] According to this disclosure, techniques are described for allowing a resume
check operation to be selectively enabled or disabled on an instruction-by-instruction
basis. A resume check operation may not necessarily need to be performed for every
instruction in a program for proper execution of the program in the SIMD processing
system. For example, for certain instructions in a program, a compiler may be able to
determine that thread reactivation will not need to occur at such instructions during the
execution of the program. Therefore, by allowing the resume check operation to be

selectively enabled and disabled on an instruction-by-instruction basis according to the



WO 2014/025480 PCT/US2013/049599

6
techniques of this disclosure, the resume check operation may be disabled for such
instructions where it has been determined that no thread reactivation will need to occur.
In this manner, the techniques of this disclosure may be used to reduce the power
consumption of and/or increase the performance of a SIMD processing system in
comparison to a processing system where the resume check operation is automatically
performed for each instruction in the program.
[0031] According to some aspects of this disclosure, a processor is described that is
configured to selectively enable or disable a resume check operation for an instruction
based on information included in the instruction that indicates whether a resume check
is to be performed for the instruction. If the instruction indicates that a resume check
operation is to be performed for the instruction, then the processor may perform a
resume check operation during the instruction cycle that is used for executing the
instruction. Similarly, if the instruction indicates that a resume check operation is not to
be performed for the instruction, then the processor may not perform a resume check
operation during the instruction cycle that is used for executing the instruction.
[0032] The resume check operation may be an operation, for example, that includes
comparing each of a plurality of resume counter values to a program counter value
associated with a currently processed instruction. Each of the resume counter values
may be associated with a respective one of a plurality of threads executing on a
processor. If the resume counter value for a deactivated thread is equal to the current
program counter value, then the thread may be reactivated. Otherwise, if the resume
counter value for the deactivated thread is not equal to the current program counter
value, then the thread may remain deactivated. Any threads that were already active
prior to performing the resume check operation may remain active after performing the
resume check operation.
[0033] According to additional aspects of this disclosure, an instruction set architecture
(ISA) is described that allows a resume check operation to be selectively enabled or
disabled on an instruction-by-instruction basis. For example, an ISA may include one
or more instructions where each of the instructions has an information field that
specifies whether a resume check operation is to be performed when the respective
instruction is executed (e.g., during an instruction cycle associated with the instruction).
In some examples, the information field may be a single bit that is either set or reset

depending on whether a resume check should be performed for the instruction.



WO 2014/025480 PCT/US2013/049599

7
[0034] According to further aspects of this disclosure, a compiler is described that is
configured to generate compiled instructions that include information indicative of
whether a resume check is to be performed for particular compiled instructions. In
some examples, the compiler may select one or more instructions of a program as being
instructions for which a resume check operation is to be performed when the program is
executed. In response to selecting the one or more instructions, the compiler may
generate compiled code for the program such that the compiled code includes the
selected one or more instructions and such that the selected one or more instructions
include information indicating that the resume check operation is to be performed for
the selected one or more instructions.
[0035] As one specific example, the compiler may select an instruction as being an
instruction for which a resume check operation is to be performed if the instruction is a
target instruction of a forward branch instruction, a target instruction of a forward jump
instruction, and if the instruction is a next sequential instruction after a backward branch
instruction. In this specific example, for any other instructions that were not identified
as being a target instruction of a forward branch instruction or a forward jump
instruction or as being a next sequential instruction after a backward branch instruction,
the compiler may determine that a resume check operation does not need to be
performed for such instructions because any threads that are deactivated during the
execution of the program will not need to be reactivated at such instructions. Not
performing a resume check operation for such instructions may reduce the power
consumption of and/or improve the performance of a SIMD system compared to a
system where the resume check operation is performed for every instruction.
[0036] Other techniques for managing divergent threads may include using a stack to
store synchronization tokens and divergence tokens. For example, each time a branch
instruction occurs that allows for divergence, a synchronization token may be pushed
onto a stack indicating the threads that were active when the branch instruction was
originally encountered. If the branch instruction is a divergent branch instruction, then
the system may push a divergence token onto a stack indicating the threads that did not
take the branch and a program counter value corresponding to a next instruction for the
threads that did not take the branch. The system may continue executing the remaining
threads that did take the branch until a flag in the software instructions is encountered

that instructs the system to pop (i.e., pull) the divergence token off of the stack. In



WO 2014/025480 PCT/US2013/049599

8
response to popping the divergence token off of the stack, the system may proceed to
deactivate the threads that did take the branch, and to reactivate and execute the threads
that did not take the branch. The system may continue executing the remaining threads
that did not take the branch until another flag in the software instructions is encountered
that instructs the system to pop the synchronization token off of the stack. In response
to popping the synchronization token off of the stack, the system may proceed to
reactivate the threads such that the thread state is the same as when the divergent branch
instruction was originally encountered.
[0037] One drawback of this approach, however, is that the number of nested divergent
branches that the system can handle is limited based on the size of the stack. A nested
divergent branch may refer to a divergent branch that occurs during the execution of
either the taken path or the not taken path of another divergent branch instruction. That
18, a nested divergent branch is a divergent branch that occurs when one or more threads
have already been deactivated due to a previously occurring divergent branch
instruction and such threads have not yet reactivated.
[0038] In contrast to the stack-based approach for reactivating divergent threads
described above, the resume counter-based approach described in this disclosure may
use a finite set of resume counters, as opposed to a stack, to control the reactivation of
deactivated threads. Therefore, the number of nested divergent branches that such an
approach can handle is conceptually infinite and not limited based on the size of a stack.
Moreover, by allowing the resume check operation to be selectively enabled and
disabled according to the techniques of this disclosure, the power consumption of the
processing system may be reduced and/or the performance of the processing system
may be increased compared to a processing system where the resume check operation is
automatically performed for each instruction in the program.
[0039] FIG. 1 is a block diagram illustrating an example processing system 10 that may
be used to implement the selective resume check activation techniques of this
disclosure. Processing system 10 is configured to execute instructions for a program in
a parallel manner. Processing system 10 includes a control unit 12, processing elements
14A-14D (collectively “processing elements 14”), an instruction store 16, a data store
18, and communication paths 20, 22, 24, 26 A-26D. Communication paths 26A-26D

may be referred to collectively as “communication paths 26.”



WO 2014/025480 PCT/US2013/049599

9
[0040] In some examples, control unit 12 and processing elements 14 may be hardware
components that form a programmable processor or part of a programmable processor.
For example, control unit 12 and processing elements 14 may together form a graphics
processing unit (GPU) or a part of a GPU.
[0041] Processing system 10 may be implemented in a personal computer, a desktop
computer, a laptop computer, a computer workstation, a tablet computing device, a
video game platform or console, a wireless communication device (such as, ¢.g., a so-
called smartphone, a mobile telephone, a cellular telephone, a satellite telephone, and/or
a mobile telephone handset), a landline telephone, an Internet telephone, a handheld
device such as a portable video game device or a personal digital assistant (PDA), a
personal music player, a video player, a display device, a television, a television set-top
box, a server, an intermediate network device, a mainframe computer, any other type of
device that processes and/or displays graphical data, or any type of device that performs
computations.
[0042] In some examples, processing system 10 may be a single-instruction, multiple-
data (SIMD) processing system that is configured to execute a plurality of threads of
execution for a program using processing elements 14. In such a SIMD system,
processing elements 14 may together process a single instruction at a time with respect
to different data items. The program may retire after all of the threads associated with
the program complete execution.
[0043] Control unit 12 is configured to control processing system 10 to execute
instructions for a program stored in instruction store 16. For each of one or more
instructions of the program, control unit 12 may retrieve the instruction from instruction
store 16 via communication path 20, process the instruction, and determine a next
instruction to be processed by processing system 10.
[0044] In some examples, control unit 12 may process the instruction by causing an
operation associated with the instruction to execute on one or more of processing
elements 14. For example, the instruction retrieved by control unit 12 may be an
arithmetic instruction that instructs processing system 10 to perform an arithmetic
operation with respect to data items specified by the instruction, and control unit 12 may
cause one or more of processing elements 14 to perform the arithmetic operation on the
specified data items. In further examples, control unit 12 may process the instruction

without causing an operation to be performed on processing elements 14. For example,



WO 2014/025480 PCT/US2013/049599

10
the instruction may be a jump instruction that does not necessarily require an operation
to be performed by processing elements 14.
[0045] Control unit 12 may cause an operation to be performed on one or more of
processing elements 14 by providing an instruction to processing elements 14, via
communication path 22. The instruction may specify the operation to be performed by
processing elements 14. The instruction provided to processing elements 14 may be the
same as or different than the instruction retrieved from instruction store 16. In some
examples, control unit 12 may cause the operation to be performed on a particular
subset of processing elements 14 by one or both of activating a particular subset of
processing elements 14 upon which the operation should be performed and deactivating
another subset of processing elements 14 upon which the operation should not be
performed.
[0046] Control unit 12 may activate and/or deactivate processing elements 14 by
providing respective activation and/or deactivation signals to each of processing
elements 14 via communication path 22. In some examples, the activation and/or
deactivation signals may be included in the instructions provided by control unit 12 to
processing elements 14 that specify the operations to be performed by processing
clements 14. In further examples, the activation and/or deactivation signals may be
separate from the instructions provided by control unit 12 to processing elements 14.
[0047] Control unit 12 may execute a plurality of threads of execution for a program
using processing elements 14. Each of processing elements 14 may be configured to
process instructions of the program for a respective one of the plurality of threads. For
example, control unit 12 may assign each of the threads of execution to an individual
one of processing elements 14 for processing of the thread. The different threads of
execution for the program may execute the same set of instructions with respect to
different data items in a set of data items. For example, processing element 14A may
execute a first thread of execution for a program stored in instruction store 16 with
respect to a first subset of data items in a plurality of data items, and processing element
14B may execute a second thread of execution for the program stored in instruction
store 16 with respect to a second subset of data items in the plurality of data items. The
first thread of execution may be different than the second thread of execution, and the

first subset of data items may be different than the second subset of data items.



WO 2014/025480 PCT/US2013/049599

11
[0048] In some examples, control unit 12 may activate and deactivate individual threads
in the plurality of threads of execution. When control unit 12 deactivates a thread,
control unit 12 may also deactivate and/or disable the processing element 14A—-14D that
is assigned to execute the thread. Similarly, when control unit 12 activates a thread,
control unit 12 may also activate the processing element 14A—14D that is assigned to
execute the thread. Control unit 12 may activate and deactivate various combinations of
one or more threads to assist in the handling of divergent branch conditions as explained
in further detail later in this disclosure.
[0049] As used herein, an active thread may refer to a thread that is activated and
currently configured to execute instructions of a program. An inactive thread may refer
to a thread that is deactivated and currently configured to not execute instructions of the
program. For a plurality of threads executing in processing system 10 during a given
instruction processing cycle, each of the active threads may be configured to process an
instruction of the program identified by a global program counter register during the
instruction processing cycle with respect to data associated with the respective active
thread. During the same instruction processing cycle, each of the inactive threads may
be configured to not process the instruction of the program. To configure the active
threads to execute the instruction, control unit 12 may, for example, cause processing
clements 14 that are associated with the active threads to be activated during the
instruction processing cycle. Similarly, to configure the inactive threads to not execute
the instruction, control unit 12 may cause processing elements 14 that are assigned to
inactive threads to be deactivated during the instruction processing cycle.
[0050] In some examples, an instruction processing cycle may refer to the time interval
between successive loads of the program counter. For example, an instruction
processing cycle may refer to the time between when the program counter is loaded
with a first value associated with a first instruction and when the program counter is
loaded with a second value associated with a second instruction. The second instruction
may be the instruction that is processed by the system immediately after the first
instruction. The first and second values may be the same or different values, and the
first and second instructions may be the same or different instructions. In some
examples, an instruction processing cycle may refer to the time interval between
successive synchronous loads of the program counter. A synchronous load of the

program counter may, in some examples, refer to a load that is triggered by a clock



WO 2014/025480 PCT/US2013/049599

12
signal. The instruction processing cycle may be alternatively referred to herein as an
instruction cycle or as a processing cycle.
[0051] Sometime prior to the processing of the next instruction, control unit 12 may
determine a next instruction to be processed by processing system 10. The manner in
which control unit 12 determines the next instruction to be processed is different
depending on whether the most recently executed instruction is a sequential instruction
or a control flow instruction. If the most recently executed instruction is a sequential
instruction (i.c., not a control flow instruction), then control unit 12 may determine that
the next instruction to be processed by processing system 10 corresponds to a next
sequential instruction stored in instruction store 16. For example, instruction store 16
may store instructions for a program in an ordered sequence, and the next sequential
instruction may be an instruction that occurs immediately after the most recently
executed instruction in the ordered sequence of instructions.
[0052] If the most recently executed instruction is a control flow instruction, then
control unit 12 may determine the next instruction to be processed by processing system
10 based on information specified in the control flow instruction. For example, the
control flow instruction may be an unconditional control flow instruction (e.g., an
unconditional branch instruction or a jump instruction) in which case control unit 12
may determine that the next instruction to be processed by processing system 10 is a
target instruction identified by the control flow instruction. As another example, the
control flow instruction may be a conditional control flow instruction (e.g., a
conditional branch instruction) in which case control unit 12 may select one of a target
instruction identified by the control flow instruction or a next sequential instruction
stored in instruction store 16 as the next instruction to process from instruction store 16.
[0053] As used herein, a control flow instruction may refer to an instruction that directs
control unit 12 to determine a next instruction to execute based on a technique other
than unconditionally selecting a next sequential instruction. A control flow instruction
may specify a target instruction stored in instruction store 16. For example, a control
flow instruction may include a value indicative of a target program counter value that
corresponds to a target instruction stored in instruction store 16. As another example, a
control flow instruction may specify a target instruction by directing control unit 12 to
pop a return address off a stack storage structure. The return address may correspond to

a target instruction stored in instruction store 16. The target instruction may, in some



WO 2014/025480 PCT/US2013/049599

13
examples, be different than the next sequential instruction stored in instruction store 16.
High-level program code may include control flow statements such as, e.g., if, switch,
do, for, while, continue, break, and goto statements. A compiler may translate the high-
level control flow statements into low-level, e.g., machine-level, control flow
instructions.
[0054] An instruction that is not a control flow instruction may be referred to herein as
a sequential instruction. A sequential instruction may refer to an instruction where
control unit 12 necessarily selects a next sequential instruction as being the next
instruction to execute. A sequential instruction may, in some examples, not include
information that identifies a target instruction.
[0055] For control flow instructions, the information that identifies the target instruction
may be a value indicative of a target instruction stored in instruction store 16. In some
examples, the value indicative of the target instruction may be a value indicative of an
instruction address corresponding to the target instruction stored in instruction store 16.
The value indicative of the instruction address may, in some cases, be the address of the
target instruction stored in instruction store 16. In additional cases, the value indicative
of the instruction address may be a value used to calculate the address of the target
instruction. In further examples, the value indicative of the instruction address may be a
value indicative of a target program counter value that corresponds to the target
instruction. The value indicative of the target program counter value may, in some
cases, be the target program counter value that corresponds to the target instruction. In
additional cases, the value indicative of the target program counter value may be a value
used to calculate the target program counter value. The target program counter value
that corresponds to the target instruction may, in some examples, be equal to the address
of the target instruction stored in instruction store 16.
[0056] A control flow instruction may be a forward control flow instruction or a
backward control flow instruction. The property of whether the control flow instruction
is forward or backward may be referred to as the direction of the control flow
instruction. A forward control flow instruction may be a control flow instruction where
the target instruction occurs after the control flow instruction in the ordered sequence of
instructions stored in instruction store 16. A backward control flow instruction may be a
control flow instruction where the target instruction occurs prior to the next sequential

instruction in the ordered sequence of instructions stored in instruction store 16. The



WO 2014/025480 PCT/US2013/049599

14
next sequential instruction may occur immediately after the control flow instruction in
the ordered sequence of instructions.
[0057] A control flow instruction may be a conditional control flow instruction or an
unconditional control flow instruction. A conditional control flow instruction includes
information that specifies a condition for jumping to the target instruction associated
with the control flow instruction. When processing a conditional control flow
instruction, if control unit 12 determines that the condition is satisfied, then control unit
12 may determine that the next instruction to be processed is the target instruction. On
the other hand, if control unit 12 determines that the condition is not satisfied, then
control unit 12 may determine that the next instruction to be processed is the next
sequential instruction stored in instruction store 16. An unconditional control flow
instruction does not include information that specifies a condition for jumping to the
target instruction associated with the control flow instruction. When processing an
unconditional control flow instruction, control unit 12 may unconditionally determine
that the next instruction to process is the target instruction identified by the control flow
instruction. In other words, the determination in such a case is not conditioned upon
any condition specified in the unconditional control flow instruction itself.
[0058] An example of a conditional control flow instruction includes a conditional
branch instruction. The use of the generic term branch instruction in this disclosure
typically refers to a conditional branch instruction unless the branch instruction is
otherwise designated as an unconditional branch instruction. Examples of
unconditional control flow instructions include jump instructions.
[0059] A conditional branch instruction may include conditions that are specified with
respect to one or more data item values. For example, one type of condition may be a
comparison condition that compares a first data item value to a second data item value
for each active thread executing in processing system 10. Comparing the data item
values may include, e.g., determining whether the first data item value is greater than,
less than, not greater than, not less than, equal to, or not equal to the second data item
value. Another type of condition may be a zero check condition that determines
whether a data item value for each active thread executing in processing system 10 is
equal to or not equal to zero.
[0060] Because each of processing elements 14 operates on different data items, the

result of evaluating the condition may be different for each active thread executing in



WO 2014/025480 PCT/US2013/049599

15
processing system 10. If either all of the active threads executing in processing system
10 satisfy the branch condition or all of the active threads executing in processing
system 10 do not satisfy the branch condition, then a uniform branching condition
occurs and the branching divergence for the branch instruction is said to be uniform.
On the other hand, if at least one of the active threads executing in processing system 10
satisfies the branch condition and at least one of the active threads executing in
processing system 10 does not satisfy the branch condition, then a divergent branching
condition occurs and the branching divergence for the branch instruction is said to be
divergent.
[0061] The threads executing in processing system 10 may execute the same instruction
in a lockstep fashion. In other words, each of processing elements 14 may together
execute the same instruction for all active threads during a processing cycle. However,
when a divergent branch condition occurs, the threads that satisfied that branch
condition may be scheduled to execute next instructions that are different than the next
instructions scheduled to be executed by the threads that did not satisfy the branch
condition. This may hinder the threads in processing system 10 from executing a single
instruction in a lockstep fashion.
[0062] To deal with a divergent branch instruction, control unit 12 may, in some
examples, deactivate one subset of the threads that either satisfied or did not satisfy the
branch condition such that the remaining active threads are all synchronized to execute
the same next instruction. To control the reactivation of the deactivated threads, control
unit 12 may use a resume counter-based approach that involves allocating a resume
counter for each thread executing in the processing system, setting the resume counter
for each thread being deactivated to a value that is indicative of a program counter value
at which the respective thread is scheduled to be reactivated, and performing a resume
check operation at various check points in the program to reactivate the threads.
[0063] During a given instruction cycle, the resume check operation may activate any
deactivated threads that are scheduled to be reactivated at the current program counter
value for the given instruction cycle. The resume check operation may determine
whether one or more threads are scheduled to be reactivated at the current program
counter value based on one or more resume counter values associated with the one or
more threads. For example, the resume check operation may compare each of a

plurality of resume counter values to a current program counter value, and for each of



WO 2014/025480 PCT/US2013/049599

16
the plurality of resume counter values, activate a thread corresponding to the respective
resume counter value if the respective resume counter value is equal to the current
program counter value.
[0064] Each of the resume counter values may be associated with a respective one of a
plurality of threads executing on processing system 10, and may be indicative of a
program counter value at which the thread is scheduled to be activated if the thread is
inactive. In some examples, cach of the resume counter values is equal to a default
value if the thread corresponding to the respective resume counter value is active. The
default value may correspond to a value greater than the address range of the program.
For example, the default value may be a maximum register value (i.c., a value thatis a
largest value that can be represented in a resume counter storage slot or a resume
counter register).
[0065] According to this disclosure, control unit 12 may be configured to selectively
enable and disable the performance of a resume check operation on an instruction-by-
instruction basis. For example, control unit 12 may be configured to execute an
instruction that includes information indicative of whether a resume check operation is
to be performed for the instruction by control unit 12, and to selectively enable or
disable the resume check operation for the instruction based on the information included
in the instruction. The resume check operation may be an operation that includes
comparing each of a plurality of resume counter values to a program counter value
associated with the instruction, and for each of the plurality of resume counter values,
activating a respective one of the plurality of threads associated with the respective
resume counter value if the respective resume counter value is equal to the program
counter value.
[0066] To sclectively enable or disable the resume check operation, control unit 12
may, in some examples, be configured to execute an instruction during an instruction
cycle, determine whether information included in the instruction indicates that the
resume check operation is to be performed for the instruction, enable the resume check
operation for the instruction cycle in response to determining that the information
included in the instruction indicates that the resume check operation is to be performed
for the instruction, and disable the resume check operation for the instruction cycle in
response to determining that the information included in the instruction indicates that

the resume check operation is not to be performed for the instruction.



WO 2014/025480 PCT/US2013/049599

17
[0067] In some examples, the information indicative of whether a resume check
operation is to be performed for the instruction may include an information field in the
instruction. In some cases, the information field may be a one-bit flag that is indicative
of whether a resume check operation is to be performed for the instruction. In further
examples, the information indicative of whether a resume check operation is to be
performed for the instruction may include an operational code (e.g., op-code). For
example, a subset of the operational codes may specify operations for which a resume
check operation is to be performed, and another subset of the operational codes may
specify operations for which a resume check operation is not to be performed.
[0068] In further examples, the instruction may specify a main operation to be
performed by processing system 10 in addition to whether a resume check operation is
to be performed. In such examples, the resume check operation may be performed prior
to performing the main operation. In this way, the main operation may be performed for
any threads that are reactivated as part of the resume check operation. In some cases,
the resume check operation and the main operation may be performed as part of the
same instruction cycle.
[0069] The resume check operation may involve, in some examples, the performance of
multiple comparison operations, which may consume a significant amount of power
cach time the operation is performed and may contribute significantly to the time it
takes to process an instruction in processing system 10. By allowing the resume check
operation to be selectively enabled and disabled according to the techniques of this
disclosure, the resume check operation may be disabled for such instructions where it
has been determined that no thread reactivation will need to occur. Consequently, the
number of resume check operations may be reduced compared to that which would take
place in a system that performs a resume check operation for every instruction. In this
manner, the techniques of this disclosure may be used to reduce the power consumption
of and/or increase the performance of a processing system in comparison to processing
systems where a resume check operation is automatically performed for each instruction
in the program.
[0070] To ensure that proper control flow is maintained when using the above-described
resume counter-based approach for thread reactivation, control unit 12 may use a “least-
valued address first” thread processing order. In general, the “least-valued address first”

thread processing order may refer to a processing order where threads that are scheduled



WO 2014/025480 PCT/US2013/049599

18
to process instructions at lower-valued addresses are executed prior to threads that are
scheduled to process instructions at higher-valued addresses. Such a processing order
may prevent the control flow from jumping over any resume points for inactive threads
without first reactivating such threads. In other words, such a processing order may
ensure that all threads will be active and will have completed processing by the time the
last program statement has finished execution.
[0071] The “least-valued address first” thread processing order may differentiate which
threads are deactivated in response to a divergent branch instruction based on the
direction (i.e., forward or backward) of the branch instruction. For example, for a
divergent backward branch instruction, control unit 12 may deactivate threads for which
the branching condition is not satisfied, set the resume counter value for each thread
being deactivated to a value associated with a next sequential instruction that occurs
after the branch instruction, load the program counter with a value associated with a
target instruction specified by the branch instruction, and proceed to execute those
threads for which the branching condition is satisfied. For a divergent forward branch
instruction, control unit 12 may deactivate threads for which the branching condition is
satisfied, set the resume counter value for each thread being deactivated to a value
associated with a target instruction specified by the branch instruction, load the program
counter with a value associated with a next sequential instruction that occurs after the
branch instruction, and proceed to execute those threads for which the branching
condition is not satisfied. Deactivating threads in this manner ensures that divergent
threads that are scheduled to process instructions at lower-valued addresses execute
prior to threads that are scheduled to process instructions at higher-valued addresses
(i.e., a “least-valued address first” thread processing order).
[0072] Control unit 12 is communicatively coupled to instruction store 16 via
communication path 20, to processing elements 14 via communication path 22, and to
data store 18 via communication path 24. Control unit 12 may use communication path
20 to send read instructions to instruction store 16. A read instruction may specify an
instruction address in instruction store 16 from which an instruction should be retrieved.
Control unit 12 may receive one or more program instructions from instruction store 16
in response to sending the read instruction. Control unit 12 may use communication
path 22 to provide instructions to processing elements 14, and in some examples, to

receive data (e.g., the result of a comparison instruction for evaluating a branch



WO 2014/025480 PCT/US2013/049599

19
condition) from processing elements 14. In some examples, control unit 12 may use
communication path 24 to retrieve data item values directly from data store 18 (e.g., to
evaluate a branch condition). Although FIG. 1 illustrates processing system 10 as
including communication path 24, in other examples, processing system 10 may not
include communication path 24.
[0073] Each of processing elements 14 may be configured to perform operations to
assist processing system 10 in processing instructions for the program stored in
instruction store 16. In some examples, each of processing elements 14 may be
configured to perform the same set of operations. For example, each of processing
elements 14 may implement the same instruction set architecture (ISA). In additional
examples, each of processing elements 14 may be an arithmetic logic unit (ALU). In
further examples, processing system 10 may be a vector processor (e.g., a GPU vector
processor), and each of processing elements 14 may be a processing element within the
vector processor. In additional examples, processing system 10 may be a SIMD
execution unit, and each of processing elements 14 may be a SIMD processing element
within the SIMD execution unit.
[0074] The operations performed by processing elements 14 may include arithmetic
operations, logic operations, comparison operations, etc. Arithmetic operations may
include operations such as, e.g., an addition operation, a subtraction operation, a
multiplication operation, a division operation, etc. The arithmetic operations may also
include, e.g., integer arithmetic operations and/or floating-point arithmetic operations.
The logic operations may include operations, such as, e.g., a bit-wise AND operation, a
bit-wise OR operation, a bit-wise XOR operation, etc. The comparison operations may
include operations, such as, e.g., a greater than operation, a less than operation, an equal
to zero operation, a not equal to zero operation, etc. The greater than and less than
operations may determine whether a first data item is greater than or less than a second
data item. The equal to zero and not equal to zero operations may determine whether a
data item is equal to zero or not equal to zero. The operands used for the operations
may be stored in registers contained in data store 18.
[0075] Each of processing elements 14 may be configured to perform an operation in
response to receiving an instruction from control unit 12 via communication path 22. In
some examples, each of processing elements 14 may be configured to be activated

and/or deactivated independently of the other processing elements 14. In such



WO 2014/025480 PCT/US2013/049599

20
examples, each of processing elements 14 may perform an operation specified by an
instruction in response to receiving the instruction from control unit 12 when the
respective processing element 14A—-14D is activated, and not perform the operation in
response to receiving the instruction from control unit 12 when the respective
processing element 14A—14D is deactivated (i.c., not activated).
[0076] Each of processing elements 14A—14D may be communicatively coupled to data
store 18 via a respective communication path 26A-26D. Processing elements 14 may
be configured to retrieve data from data store 18 and store data to data store 18 via
communication paths 26. The data retrieved from data store 18 may, in some examples,
be operands for the operations performed by processing elements 14. The data stored to
data store 18 may, in some examples, be the results of operations performed by
processing elements 14.
[0077] Instruction store 16 is configured to store a program for execution by processing
system 10. The program may be stored as an ordered sequence of instructions. In some
examples, each instruction may be addressed by a unique instruction address. In such
examples, instruction addresses for later instructions in the sequence of instructions are
greater than instruction addresses for earlier instructions in the sequence of instructions.
In such examples, the program counter values associated with later instructions in the
sequence of instructions may, in some examples, be greater than the program counter
values associated with earlier instructions in the sequence of instructions. The program
instructions, in some examples, may be machine-level instructions. That is, in such
examples, the instructions may be in a format that corresponds to the ISA of processing
system 10. Instruction store 16 may be configured to receive a read instruction from
control unit 12 via communication path 20, and in response to receiving the read
instruction, provide an instruction corresponding to the instruction address specified in
the read instruction to control unit 12 via communication path 20. The read instruction
may specify an instruction address from which an instruction should be retrieved in
instruction store 16.
[0078] Instruction store 16 may be any type of memory, cache or combination thereof.
When instruction store 16 is a cache, instruction store 16 may cache a program that is
stored in a program memory external to processing system 10. Although instruction
store 16 is illustrated as being within processing system 10, in other examples,

instruction store 16 may be external to processing system 10.



WO 2014/025480 PCT/US2013/049599

21
[0079] Data store 18 is configured to store data items used by processing clements 14.
In some examples, data store 18 may comprise a plurality of registers, each of the
registers being configured to store a respective data item within a plurality of data items
operated on by processing system 10. Data store 18 may be coupled to one or more
communication paths (not shown) that are configured to transfer data between the
registers of data store 18 and a memory or cache (not shown).
[0080] Although FIG. 1 illustrates a single data store 18 for storing data used by
processing elements 14, in other examples, processing system 10 may include separate,
dedicated data stores for each of processing clements 14. FIG. 1 illustrates a processing
system 10 having four processing elements 14 for exemplary purposes. In other
examples, processing system 10 may have the same or a different number of processing
elements 14 in the same or a different configuration.
[0081] FIG. 2 is a block diagram illustrating the control unit 12 in the example
processing system 10 of FIG. 1 in greater detail according to this disclosure. Control
unit 12 includes a program counter 28, a fetch module 30, a decode module 32 and a
control flow module 34. Control flow module 34 may be alternatively referred to herein
as a control flow unit.
[0082] Program counter 28 is configured to store a program counter value. In some
examples, program counter 28 may be a hardware register, such as, ¢.g., a program
counter register. The program counter value may be indicative of an instruction stored
in instruction store 16. The program counter value may, in some cases, be equal to the
instruction address of the instruction stored in instruction store 16. In additional cases,
the program counter value may be used to compute the instruction address of the
instruction stored in instruction store 16. For example, the program counter value may
be added to an offset value to generate the instruction address. Program counter 28 may
be referred to herein as a “global program counter” or a “global program counter
register” because program counter 28 may be used as a single program counter for all of
processing elements 14.
[0083] Fetch module 30 is configured to fetch (e.g., retrieve) an instruction from
instruction store 16 based on the program counter value stored in program counter 28.
For example, fetch module 30 may fetch an instruction from an instruction address
identified by the program counter value stored in program counter 28. Fetch module 30

may provide the fetched instruction to decode module 32 for further processing.



WO 2014/025480 PCT/US2013/049599

22
[0084] Decode module 32 is configured to decode the instruction received from fetch
module 30. Decoding the instruction may involve determining whether the instruction
1S a type of instruction that can be processed by processing elements 14. If the
instruction is a type of instruction that can be processed by processing elements 14, then
decode module 32 may cause the instruction to execute on one or more of processing
elements 14. In some examples, decode module 32 may cause the instruction to execute
on all of processing elements 14. In other examples, decode module 32 may cause the
instruction to execute on less than all of processing elements 14. Causing the
instruction to execute on one or more of processing elements 14 may, in some cases,
include issuing the instruction to one or more of processing elements 14 for execution.
For example, decode module 32 may issue a sequential instruction to all processing
clements 14 that correspond to active threads for processing. If the instruction is not the
type of instruction that can be processed by processing elements 14, then control unit 12
may process the instruction without issuing the instruction to any of processing
elements 14 for processing. For example, the instruction may be a control flow
instruction of the type that does not require processing by processing elements 14, in
which case control unit 12 may process the instruction without issuing the instruction to
any of processing elements 14.
[0085] In either case, decode module 32 may forward control information to control
flow module 34 for further processing. In some examples, the control information may
be the instruction itself. In further examples, the control information may include, ¢.g.,
information indicative of whether the instruction is a control flow instruction or a
sequential instruction; if the instruction is a control flow instruction, information
indicative of whether the instruction is a branch instruction or a jump instruction; if the
instruction is a branch or jump instruction, information indicative of whether the branch
or jump instruction is a forward or backward branch or jump instruction; and if the
instruction is a branch instruction, information specifying the branch condition.
[0086] Instructions that are of a type that can be processed by processing elements 14
may include arithmetic instructions and logic instructions. An arithmetic instruction
may refer to an instruction that instructs processing elements 14 to perform an
arithmetic operation, and a logic instruction may refer to an instruction that instructs
processing elements 14 to perform a logic operation. In some examples, a control flow

instruction may be an instruction of the type that can be processed by processing



WO 2014/025480 PCT/US2013/049599

23
elements 14 (e.g., the control flow instruction may include a branch condition that is
evaluated by processing elements 14). Instructions that are not of a type that can be
processed by processing elements 14 may include control flow instructions where the
branch condition is evaluated by control unit 12 and/or control flow instructions that do
not have a branch condition.
[0087] Control flow module 34 may determine a program counter value associated with
a next instruction to be processed by control unit 12, and load the program counter value
into program counter 28. If the previously fetched instruction is a sequential
instruction, then control flow module 34 may select a program counter value that is
indicative of a next sequential instruction to load into program counter 28. If the
previously fetched instruction is a branch or jump instruction, then control flow module
34 may, in some examples, select one of a target program counter value associated with
a target instruction identified by the control flow instruction or a program counter value
indicative of a next sequential instruction to load into program counter 28.
[0088] In some examples, control flow module 34 may utilize a minimum resume
counter (MINRC) to select a new program counter value to load into program counter
28. The MINRC value may be indicative of a smallest resume counter value from a set
of resume counter values. In some cases, the set of resume counter values may include
the resume counters values for all threads that are executing in the system. In additional
cases, the set of resume counter values may include resume counter values for all
threads that were active when execution of the currently-executing processing module
was initiated. The currently-executing processing module may be, for example, a main
program module or a subroutine program module. In examples where a MINRC is
used, control flow module 34 may select one of a target program counter value
associated with a target instruction specified by the control flow instruction, a program
counter value indicative of a next sequential instruction, or a MINRC value to load into
program counter 28 for executing the next instruction cycle.
[0089] In some examples, control flow module 34 may support the execution of call and
return instructions. If the previously fetched instruction is a call instruction, then
control flow module 34 may select a target program counter value indicative of the
target instruction specified by the call instruction to load into program counter 28. If the

previously fetched instruction is a return instruction, then control flow module 34 may



WO 2014/025480 PCT/US2013/049599

24
select a program counter value indicative of a return address that is popped from a
subroutine call stack to load into program counter 28.
[0090] Control flow module 34 may store a resume counter value for each thread
executing in processing system 10. For example, the number of resume counter values
stored in control flow module 34 may be equal to the number of processing elements 14
contained in processing system 10. For each resume counter value, if the thread
corresponding to the respective resume counter value is inactive, then the resume
counter value may be indicative of a program counter value at which the inactive thread
should be activated or reactivated. In other words, the resume counter value may be
indicative of a program counter value that corresponds to an instruction at which the
inactive thread is scheduled to be reactivated. Otherwise, if the thread corresponding to
the respective resume counter value is active, then the resume counter value may be, in
some examples, set to a default value (e.g., a maximum register value or a value that is a
largest value that can be represented in a storage slot or register for the resume counter).
[0091] Control flow module 34 may store an active flag for each thread executing in
processing system 10. For example, the number of active flags stored in control flow
module 34 may be equal to the number of processing elements 14 contained in
processing system 10. Each active flag may indicate whether or not the thread
associated with the active flag is active or inactive. Control flow module 34 may set
and reset the active flags to activate and deactivate individual threads and individual
ones of processing elements 14 corresponding to the threads. For example, control flow
module 34 may set an active flag to indicate that the thread associated with the active
flag is active, and reset the active flag to indicate that the thread associated with the
active flag is inactive. In some examples, each of the active flags may be a single bit.
[0092] Control flow module 34 may, in some examples, store a program state. For
example, a first program state may indicate that all threads are active, a second program
state may indicate that at least on thread is active and at least one thread is inactive and
a third program state may indicate that all threads are inactive. The program state may
be used in such examples, to select a program counter value to load into program
counter 28.
[0093] Control flow module 34 may be configured, in some examples, to activate and

deactivate one or more of processing elements 14 via communication path 22. In



WO 2014/025480 PCT/US2013/049599

25
additional examples, control flow module 34 may instruct decode module 32 to activate
and deactivate particular processing elements 14.
[0094] Control flow module 34 may be configured to perform a resume check
operation. The resume check operation may determine which threads are scheduled to
be reactivated during the current instruction cycle, and reactivate such threads. For
example, the resume check operation may involve, for each of a plurality or resume
counter values, comparing the resume counter value to the program counter value stored
in program counter 28 for the current instruction cycle, and reactivating a thread
corresponding to the resume counter value if the resume counter value equals the
program counter value.
[0095] According to this disclosure, control flow module 34 may be configured to
selectively enable or disable a resume check operation for a particular instruction cycle
based on information included in the instruction that is processed during the instruction
cycle. The information included in the instruction may specify whether a resume check
operation is to be performed for an instruction cycle during which the instruction is
executed. For example, each instruction cycle may be associated with a current
program counter value stored in program counter 28. During each instruction cycle,
control flow module 34 may determine if an instruction corresponding to the current
program counter value for the respective instruction cycle indicates that a resume check
operation is to be performed for the instruction. If the instruction indicates that a
resume check operation is to be performed for the instruction, then control flow module
34 may enable the resume check operation for the current instruction cycle in order to
cause the resume check operation to be performed for the current instruction cycle.
Similarly, if the instruction indicates that a resume check operation is not to be
performed for the instruction, then control flow module 34 may disable the resume
check operation for the current instruction cycle in order to cause the resume check
operation to be performed for the current instruction cycle.
[0096] In some examples, processing system 10 of FIGS. 1 and 2 may be included in a
graphics processing unit (GPU). In such examples, processing system 10 may be used
to implement a shader unit contained within the GPU, such as, ¢.g., a vertex shader unit,
a pixel shader unit, a fragment shader unit, a geometry shader unit, a unified shader unit,

etc. In such examples, processing system 10 may be configured to execute shader



WO 2014/025480 PCT/US2013/049599

26
programs, such as, e.g., vertex shader programs, fragment shader programs, geometry
shader programs, etc.
[0097] FIG. 3 is a block diagram illustrating an example control flow module 34 that
may be used to implement the selective resume check activation techniques of this
disclosure. Control flow module 34 includes a branch condition evaluator 40, a next
instruction generator 42, active flag registers 44, resume counter registers 46, a thread
state manager 48, a thread deactivator 50, a resume check module 52, and a resume
check activation module 54.
[0098] Branch condition evaluator 40 is configured to evaluate the branch condition
specified by a conditional branch instruction for each active thread executing in
processing system 10. Branch condition evaluator 40 may receive information
indicative of whether the currently processed instruction is a branch instruction from
decode module 32, and if the currently processed instruction is a branch instruction,
branch condition evaluator 40 may also receive from decode module 32 information
indicative of a branch condition for the currently processed branch instruction. In some
examples, one or both of the information indicative of whether the currently processed
instruction is a branch instruction and the information indicative of a branch condition
may be a representation of the instruction itself. In further examples, one or both of
these information components may be a signal that is generated by decode module 32.
[0099] Branch condition evaluator 40 may evaluate the same branch condition for each
of the active threads of a program using thread-specific data. In some examples, branch
condition evaluator 40 may obtain any data needed for evaluating the branch condition
for each thread, and internally evaluate the branch condition for each thread to generate
a branch condition evaluation result for each thread. In further examples, branch
condition evaluator 40 may direct each processing element 14 that corresponds to an
active thread to obtain the data needed for evaluating the branch condition for the
respective thread, to evaluate the branch condition, and to provide a branch condition
evaluation result for the respective thread to branch condition evaluator 40. In either
case, branch condition evaluator 40 may determine, for each active thread, whether the
branching condition is satisfied for the respective thread.
[0100] In some examples, branch condition evaluator 40 may determine whether the
branching divergence for the branch instruction is uniform or divergent. For example,

branch condition evaluator 40 may determine whether all active threads satisfied the



WO 2014/025480 PCT/US2013/049599

27
branch condition and whether all active threads did not satisfy the branch condition. If
all active threads either satisfied or did not satisfy the branch condition, then branch
condition evaluator 40 may determine that the branching divergence for the branch
instruction is uniform. If some active threads satisfied the branch condition and some
active threads did not satisfy the branch condition, then branch condition evaluator 40
may determine that the branching divergence for the branch instruction is divergent. In
examples where the branching divergence is uniform, branch condition evaluator 40
may determine whether the branching condition is uniformly satisfied or uniformly not
satisfied.
[0101] Branch condition evaluator 40 may provide branch condition status information
to thread deactivator 50 of thread state manager 48. The branch condition status
information may indicate, for each active thread executing in processing system 10,
whether the respective thread satisfied the branch condition or did not satisfy the branch
condition (i.e., the branch condition evaluation result for the thread). Thread state
manager 48 may use the branch condition status information to determine whether to
activate and/or deactivate particular threads in response to executing the branch
instruction.
[0102] Branch condition evaluator 40 may provide branching divergence information to
next instruction generator 42. The branching divergence information may include
information indicative of whether the branching divergence for the branch instruction is
uniform or divergent. If the branching divergence for the branch instruction is uniform,
then the branching divergence information may also include information indicative of
whether the branch condition is uniformly satisfied or uniformly not satisfied. In some
examples, the branching divergence information may take the form of branch condition
status information for each of the active threads. In other examples, the branching
divergence information may not necessarily include branch condition status information
for the individual threads.
[0103] Next instruction generator 42 is configured to generate a program counter value
corresponding to a next instruction to be executed during the next processing cycle
based on information indicative of the type of instruction currently being executed,
information indicative of the branching divergence of the instruction currently being
executed if the instruction is a branch instruction, and information indicative of a target

instruction specified by the instruction currently being executed if any. Next instruction



WO 2014/025480 PCT/US2013/049599

28
generator 42 may cause the program counter value generated by next instruction
generator 42 to be loaded into program counter 28 when execution of the next
instruction cycle in initiated.
[0104] The information indicative of the type of instruction currently being executed
may be received from decode module 32 and include, ¢.g., information indicative of
whether the instruction is a sequential instruction or a control flow instruction. If the
instruction is a control flow instruction, the information indicative of the type of
instruction may include, e.g., information indicative of whether the instruction is a
branch instruction or a jump instruction. If the instruction is a branch or jump
instruction, the information indicative of the type of instruction may include, e.g.,
information indicative of whether the instruction is a forward branch or jump instruction
or whether the instruction is a backward branch or jump instruction.
[0105] The information indicative of the branching divergence of the instruction may be
received from branch condition evaluator 40 and include, ¢.g., information indicative of
whether the branching divergence is uniform or divergent. If the branching divergence
is uniform, the information indicative of the branching divergence of the instruction
may include, e.g., information indicative of whether the branch condition is uniformly
satisfied or uniformly not satisfied.
[0106] The information indicative of the target instruction may be received from decode
module 32 and include, e.g., a target program counter value or an offset value that is
indicative of a target program counter value. The offset value may be, for example, a
value that is added to the program counter to generate the target program counter value.
The information indicative of the target instruction may be used to determine a program
counter for the next instruction to be executed when the current instruction specifies a
target instruction. These instructions may include, for example, conditional branch
instructions and jump instructions.
[0107] For sequential instructions, next instruction generator 42 may select a program
counter value that corresponds to a next sequential instruction as the program counter
value to load into program counter 28. The next sequential instruction may refer to an
instruction that occurs immediately after the instruction currently being executed in an
ordered sequence of instructions for the program stored in instruction store 16.
[0108] For a backward jump instruction, next instruction generator 42 may select a

target program counter value indicative of the target instruction specified by the



WO 2014/025480 PCT/US2013/049599

29
backward jump instruction as the program counter value to load into program counter
28. For a forward jump instruction, next instruction generator 42 may, in some
examples, select a program counter value that corresponds to a next sequential
instruction as the program counter value to load into program counter 28. In response to
processing the forward jump instruction, control flow module 34 may, in some example,
deactivate all of the threads, and sequentially increment the program counter value until
the first of a resume counter value for an inactive thread is reached or the target program
counter value for the jump instruction is reached. In this way, a “least-valued address
first” processing order for the threads is maintained.
[0109] In further examples, for a forward jump instruction, rather than sequentially
cycling through a plurality of program counter values to maintain the “least-valued
address first” processing order, control flow module 34 may select a program counter
value to load into program counter 28 based on a MINRC value stored in a MINRC
register (not shown). For example, next instruction generator 42 may, in such examples,
determine whether the target program counter value is less than or equal to the MINRC
value. If the target program counter value is less than or equal to the MINRC value,
then next instruction generator 42 may select the target program counter value as the
program counter value to load into program counter 28. On the other hand, if the target
program counter value is not less than or equal to the MINRC value, then next
instruction generator 42 may select the MINRC value as the program counter value to
load into program counter 28. In this way, a “least-valued address first” processing
order for the threads is maintained.
[0110] For a backward branch instruction, next instruction generator 42 may determine
whether the branch condition for the backward branch instruction is uniformly not
satisfied. If the branch condition for the backward branch instruction is uniformly not
satisfied, then next instruction generator 42 may select a program counter value that
corresponds to a next sequential instruction as the program counter value to load into
program counter 28. On the other hand, if the branch condition for the backward branch
instruction is uniformly satisfied or divergent, then next instruction generator 42 may
select a target program counter value indicative of the target instruction specified by the

backward branch instruction as the program counter value to load into program counter

28.



WO 2014/025480 PCT/US2013/049599

30
[0111] For forward branch instructions, next instruction generator 42 may determine
whether the branch condition for the forward branch instruction is uniformly not
satisfied or divergent. If the branch condition for the forward branch instruction is
uniformly not satisfied or divergent, then next instruction generator 42 may select a
program counter value that corresponds to a next sequential instruction as the program
counter value to load into program counter 28. If the branch condition for the forward
branch instruction is uniformly satisfied, then next instruction generator 42 may, in
some examples, select a program counter value that corresponds to a next sequential
instruction as the program counter value to load into program counter 28. In response to
processing a forward branch instruction where the branch condition is uniformly
satisfied, control flow module 34 may, in some examples, deactivate all of the threads,
and sequentially increment the program counter value until the first of a resume counter
value for an inactive thread is reached or the target program counter value for the branch
instruction is reached. In this way, a “least-valued address first” processing order for
the threads is maintained.
[0112] In further examples, for a forward branch instruction that is uniformly satisfied,
control flow module 34 may select a program counter value to load into program
counter 28 based on a MINRC value stored in a MINRC register (not shown). For
example, next instruction generator 42 may, in such examples, determine whether the
target program counter value is less than or equal to the MINRC value. If the target
program counter value is less than or equal to the MINRC value, then next instruction
generator 42 may select the target program counter value as the program counter value
to load into program counter 28. On the other hand, if the target program counter value
is not less than or equal to the MINRC value, then next instruction generator 42 may
select the MINRC value as the program counter value to load into program counter 28.
In this way, a “least-valued address first” processing order for the threads is maintained.
[0113] Active flag registers 44 store a plurality of active flags for the threads executing
in processing system 10. Each of the active flags may correspond to a respective one of
the threads executing in processing system 10, and may be indicative whether the thread
is active (i.e., activated) or inactive (i.c., deactivated). In some examples, each of the
active flags may be a single bit and active flag registers 44 may be one or more registers

configured to store bits corresponding to all of the active flags. For example, each bit



WO 2014/025480 PCT/US2013/049599

31
position in one or more registers may correspond to an active flag. Active flag registers
44 are communicatively coupled to thread state manager 48.
[0114] Resume counter registers 46 store a plurality of resume counter values for the
threads executing in processing system 10. Each of the resume counter values may
correspond to a respective one of the threads executing in processing system 10 and
may be indicative of a program counter value at which the respective thread is
scheduled to be reactivated if the respective thread is inactive. If the thread is active,
the resume counter value is set to a default value, which in some cases may be a value
that is greater than the range of valid program counter values used to execute programs.
For example, if the thread is active, the resume counter may be set to a value that is a
maximum value (i.e., a value that is the largest value that can be represented in a storage
slot or register for the resume counter). Because the resume counter value for a
corresponding thread is set to a default value when the thread is active, each resume
counter value may also be indicative of whether a thread corresponding to the respective
resume counter is active or inactive. Each of the resume counter values may be
initialized to the default value when processing system 10 begins executing a program.
[0115] In some examples, resume counter registers 46 may include a plurality of
registers configured to store a plurality of resume counter values. For example, each
register may be a resume counter register that is configured to store a resume counter
value for a respective one of the plurality of threads executing in processing system 10.
Resume counter registers 46 are communicatively coupled to thread state manager 48.
[0116] Thread state manager 48 is configured to manage the state of the threads
executing in processing system 10. For example, thread state manager 48 may activate
and deactivate threads executing in processing system 10, and update active flags 44
and resume counter registers 46 as appropriate. Thread state manager 48 may include a
thread deactivator 50 and a resume check module 52.
[0117] Thread deactivator 50 is configured to deactivate one or more threads in
response to processing system 10 executing a branch instruction with a divergent branch
condition. For example, thread deactivator 50 may receive information indicative of
whether a divergent branch condition has taken place from branch condition evaluator
40, information indicative of whether the branch instruction is a forward branch
instruction or a backward branch instruction from either branch condition evaluator 40

or decode module 32, and information indicative of which threads satisfied the branch



WO 2014/025480 PCT/US2013/049599

32
condition and which threads did not satisfy the branch condition. Thread deactivator 50
may determine whether the divergent branch instruction is a forward branch instruction
or a backward branch instruction. If the divergent branch instruction is a forward
branch instruction, then thread deactivator 50 may deactivate each active thread that
satisfied the branch condition. If the divergent branch instruction is a backward branch
instruction, then thread deactivator 50 may deactivate each active thread that did not
satisfy the branch condition.
[0118] For each thread being deactivated, thread deactivator 50 may set a resume
counter value stored in resume counter registers 46 that corresponds to the respective
thread to a value indicative of a program counter value at which the respective thread
should be reactivated. When deactivating a thread in response to a divergent forward
branch instruction, thread deactivator 50 may set the resume counter value for the thread
to a value indicative of a target program counter value specified by the forward branch
instruction. When deactivating a thread in response to a divergent backward branch
instruction, thread deactivator 50 may set the resume counter value for the thread to a
value indicative of a program counter value that corresponds to a next sequential
instruction.
[0119] In some examples, to deactivate a particular thread, thread deactivator 50 may
deactivate a respective one of processing elements 14 that corresponds to the particular
thread. In additional examples, to deactivate a particular thread, thread deactivator 50
may send a signal to a portion of data store 16 that corresponds to the particular thread
indicating that data store 16 should not store any computational results that correspond
to the particular thread. When deactivating threads, thread deactivator 50 may, in some
examples, set an active flag (within active flag registers 44) that corresponds to the
thread to be deactivated to a value that indicates that the thread has been deactivated.
[0120] Resume check module 52 may be configured to perform a resume check
operation to determine whether any deactivated threads are scheduled to be reactivated
at the current program counter value for the current instruction cycle. In some
examples, to perform the resume check operation, resume check module 52 may
compare cach of a plurality of resume counter values to a program counter value
associated with a currently processed instruction (i.c., the program counter value that is
currently loaded into program counter 28), and determine whether each of the resume

counter values is equal to the current program counter value stored in program counter



WO 2014/025480 PCT/US2013/049599

33
28. If a resume counter value for a particular thread equals the current program counter
value, then resume check module 52 may reactivate the thread. Otherwise, if the
resume counter value for a particular thread does not equal the current program counter
value, then resume check module 52 may maintain the deactivated status of the thread.
[0121] For each thread being reactivated, resume check module 52 may set a resume
counter value corresponding to the respective thread to a default value that indicates that
the thread is active. For example, the default value may be a largest value that can be
represented for the resume counter value in one of resume counter registers 46.
[0122] In some examples, to reactivate a particular thread, resume check module 52
may activate a respective one of processing elements 14 that corresponds to the
particular thread. In further examples, to reactivate a particular thread, resume check
module 52 may send a signal to a portion of data store 16 that corresponds to the
particular thread indicating that data store 16 should store computational results that
correspond to the particular thread. When reactivating threads, resume check module
52 may, in some examples, set an active flag corresponding to the thread to a value that
indicates that the thread has been activated.
[0123] In some examples, resume check module 52 may be selectively enabled or
disabled based on configuration information provided by resume check activation
module 54. For a given instruction cycle, if resume check module 52 is enabled for the
instruction cycle, resume check module 52 may perform a resume check operation
during the instruction cycle. Similarly, if resume check module 52 is disabled for the
instruction cycle, resume check module 52 may not perform a resume check operation
during the instruction cycle.
[0124] During instruction cycles where resume check module 52 is enabled to perform
the resume check operation, resume check module 52 may initiate the resume check
operation in response to loading a program counter value into program counter 28. In
some examples, during a given instruction cycle, a resume check operation may be
performed prior to a main operation if the resume check operation is performed. The
main operation may be the operation that is specified in the instruction processed during
the instruction cycle (e.g., an arithmetic operation, a logic operation, a control flow
operation, etc.).
[0125] The instruction cycle may, in some examples, be of sufficient length to allow

processing elements 14 to perform computational operations for any threads that have



WO 2014/025480 PCT/US2013/049599

34
been reactivated as part of the resume check operation after the resume check operation
has been completed. In further examples, execution of the instruction corresponding to
the program counter value stored in program counter 28 may be delayed until after the
resume check operation is complete and any threads that are scheduled to be reactivated
for the instruction are activated. In such examples, after the resume check operation is
complete, resume check module 52 may cause processing elements 14 to begin
performing any computational operations associated with the current instruction.
[0126] Resume check activation module 54 is configured to selectively activate (i.e.,
enable or disable) resume check module 52 for a given instruction cycle based on
information included in an instruction to be executed during the instruction cycle. The
information included in the instruction may be indicative of whether a resume check
operation is to be performed for the instruction. Resume check activation module 54
may determine if the information included in the instruction indicates that a resume
check operation is to be performed for the instruction. If the information included in the
instruction indicates that a resume check operation is to be performed for the
instruction, then resume check activation module 54 may enable resume check module
52 for the instruction cycle during which the instruction is executed by control flow
module 34. Enabling resume check module 52 for an instruction cycle may cause
resume check module 52 to perform the resume check operation during the instruction
cycle. If the information included in the instruction indicates that the resume check
operation is not to be performed for the instruction, then resume check activation
module 54 may disable resume check module 52 for the instruction cycle during which
the instruction is executed by control flow module 34. Disabling resume check module
52 for an instruction cycle may cause resume check module 52 to not perform the
resume check operation during the instruction cycle. In this manner, resume check
activation module 54 may selectively enable or disable the performance of a resume
check operation for an instruction based on information included in the instruction.
[0127] FIG. 4 is a block diagram illustrating an example control flow module 34 that
may be used to implement the selective resume check activation techniques of this
disclosure. In some examples, the example control flow module 34 illustrated in FIG. 4
may be used to implement the control flow modules 34 described above with respect to
FIGS. 2 and 3 and/or part of the control unit 12 described above with respect to FIG. 1.

Control flow module 34 includes thread registers 60, active flags 62A—62D (collectively



WO 2014/025480 PCT/US2013/049599

35
“active flags 62”°), resume counters 64A—64D (collectively “resume counters 647), a
resume check module 66, a resume check activation module 68, a branch condition
evaluator 70, an event information generator 72, a program state register 74, a state
transition block 76, a thread deactivator 78 and a next instruction block 80.
[0128] In examples where control flow module 34 illustrated in FIG. 4 is used to
implement control flow module 34 shown in FIG. 3, active flags 62 shown in FIG. 4
may correspond to active flag registers 44 shown in FIG. 3, resume counters 64 shown
in FIG. 4 may correspond to resume counter registers 46 shown in FIG. 3, branch
condition evaluator 70 shown in FIG. 4 may correspond to branch condition evaluator
40 shown in FIG. 3, resume check module 66 shown in FIG. 4 may correspond to
resume check module 52 shown in FIG. 3, and resume check activation module 68
shown in FIG. 4 may correspond to resume check activation module 54 shown in FIG. 3.
Accordingly, in the interest of brevity and to avoid redundancy, the construction and
operation of these shared components is not described in further detail.
[0129] Further, in examples where control flow module 34 illustrated in FIG. 4 is used
to implement control flow module 34 shown in FIG. 3, event information generator 72,
program state register 74, state transition block 76 and next instruction block 80 may be
configured to implement the functionality of next instruction generator 42 shown in FIG.
3. Similarly, event information generator 72, program state register 74, state transition
block 76, and thread deactivator 78 may be configured to implement the functionality of
thread deactivator 50 shown in FIG. 3.
[0130] Thread registers 60 are configured to store the thread state for each of the
threads executing in processing system 10. As shown in FIG. 4, thread registers 60
include active flags 62 and resume counters 64. Each of active flags 62 stores an active
flag indicative of whether a thread corresponding to the respective active flag 62A—62D
is active. Each of resume counters 64 stores a resume counter value for a respective
thread. In some examples, each thread may be assigned to a respective one of
processing elements 14. In such examples, each of active flags 62 and resume counters
64 may correspond to a respective one of processing elements 14. For example, active
flag 62A and resume counter 64A may each correspond to processing element 14A
illustrated in FIG. 1, and active flag 62B and resume counter 64B may each correspond
to processing clement 14B illustrated in FIG. 1. Although the example control flow

module 34 illustrated in FIG. 4 illustrates a system having four active flags 62 and four



WO 2014/025480 PCT/US2013/049599

36
resume counters 64, in other examples, control flow module 34 may have the same or
different numbers of active flags 62 and resume counters 64.
[0131] Resume check module 66 is configured to perform a resume check operation
during instruction cycles for which resume check module 66 is enabled by resume check
activation module 68. When enabled, resume check module 66 may perform a resume
check operation in response to program counter 28 being loaded with a new program
counter value. In some examples, resume check module 66 may perform the resume
check operation in accordance with the resume check techniques illustrated in FIGS. 9
and 10. To perform the resume check operation, resume check module 66 may receive
the current program counter value from program counter 28, the current thread
activation status from active flags 62, and the current resume counter values from
resume counters 64. Resume check module 66 may modify active flags 62 and resume
counters 64 as part of the resume check operation. In addition, resume check module 66
may update program state register 74 based on the outcome of the resume check
operation. When not enabled for an instruction cycle, resume check module 66 may
refrain from performing a resume check operation during the instruction cycle.
[0132] Resume check activation module 68 may be configured to selectively enable and
disable resume check module 66 based on information included in an instruction to be
processed during the current instruction cycle. The information included in the
instruction may be indicative of whether the resume check operation is to be performed
for the instruction to be processed during the current instruction cycle.
[0133] When resume check module 66 is enabled, after completing the resume check
operation, resume check module 66 may send a signal to one or both of fetch module 30
and decode module 32 indicating that the resume check operation has completed. When
fetch module 30 receives the signal that the resume check operation has completed,
fetch module 30 may forward the fetched instruction to decode module 32 for further
processing. In response to receiving the instruction, decode module 32 may check
active flags 62 and update the active and inactive status of processing elements 14 based
the current state of active flags 62, which may have been modified by the resume check
operation. If the instruction is of a type that is issuable to processing elements 14,
decode module 32 may issue the instruction to processing elements 14 in conjunction
with or after updating the active and inactive status of processing elements 14.

Although the example control flow module 34 illustrates resume check module 66 as



WO 2014/025480 PCT/US2013/049599

37
signaling fetch module 30 upon completion of the resume check operation, in other
examples, resume check module 66 may send the signal indicating that the resume
check has completed to decode module 32. In such examples, when decode module 32
receives the signal, decode module 32 may check active flags 62 and update the active
and inactive status of processing elements 14 based the current state of active flags 62.
[0134] When decode module 32 decodes instruction, if decode module 32 determines
that the instruction is a branch instruction (i.c., a conditional branch instruction), then
decode module 32 may send a signal to branch condition evaluator 70 indicating that the
current instruction is a conditional branch instruction and provide information indicative
of the branch condition to branch condition evaluator 70 for further processing. In some
examples, if decode module 32 determines that the instruction is not a branch
instruction (e.g., a jump instruction or a sequential instruction), then decode module 32
may send a signal to branch condition evaluator 70 indicating that the current instruction
1S not a conditional branch instruction.
[0135] Decode module 32 provides control information to event information generator
72 for further processing. In some examples, the control information may be the
instruction itself. In further examples, the control information may include information,
such as, ¢.g., information indicative of whether the instruction is a control flow
instruction or a sequential instruction; if the instruction is a control flow instruction,
information indicative of whether the instruction is a branch instruction or a jump
instruction; and if the instruction is a branch or jump instruction, information indicative
of whether the branch or jump instruction is a forward or backward branch or jump
instruction; and if the instruction is a branch instruction, information specifying the
branch condition.
[0136] If the currently processed instruction is a conditional branch instruction, branch
condition evaluator 70 may evaluate the branch condition for each active thread. In
some examples, branch condition evaluator 70 may receive the result of a comparison
operation or a zero check operation from processing elements 14 via communication
path 22. In further examples, branch condition evaluator 70 may access one or more
registers in data store 18, via communication path 24, and perform a comparison
operation or a zero check operation. In any case, branch condition evaluator 70 may
determine whether the branch condition is satisfied or not satisfied for each active

thread. In some examples, branch condition evaluator 70 may forward information



WO 2014/025480 PCT/US2013/049599

38
indicative of whether the branch condition is satisfied or not satisfied for each active
thread to event information generator 72. In additional examples, branch condition
evaluator 70 may determine whether the branching divergence for the current
instruction is uniform or divergent and forward information indicative of whether the
branching divergence is uniform or divergent to event information generator 72. In
further examples, if the branching divergence is uniform for the branch instruction,
branch condition evaluator 70 may determine whether the branch condition is uniformly
satisfied or uniformly not satisfied, and forward information indicative of whether the
branch condition is uniformly satisfied or uniformly not satisfied to event information
generator 72.
[0137] Event information generator 72 receives control information from decode
module 32 and, if the currently processed instruction is a branch instruction, branch
condition information from branch condition evaluator 70. In some examples, event
information generator 72 may also receive branching divergence information from
branch condition evaluator 70 if the currently processed instruction is a branch
instruction. If event information generator 72 does not receive branching divergence
information from branch condition evaluator 70, then event information generator 72
may determine whether the branching divergence for the current instruction is uniform
or divergent. Event information generator 72 generates events based on the received
information, and provides the events to state transition block 76, thread deactivator 78
and next instruction block 80.

[0138] In some examples, event information generator 72 may generate the following

events:
Jb: Jump backward instruction
Jf: Jump forward instruction

BbuT: Branch backward instruction, all threads are uniform, condition is true
BbuF: Branch backward instruction, all threads are uniform, condition is false
BfuT:  Branch forward instruction, all threads are uniform, condition is true
BfuF:  Branch forward instruction, all threads are uniform, condition is false
Bbd: Branch backward instruction, threads are divergent

Bfd: Branch forward instruction, threads are divergent

S: Sequential instruction



WO 2014/025480 PCT/US2013/049599

39

According to the above-identified events, an instruction may be a sequential instruction
(S), a jump instruction (J), or a branch instruction (B). For jump or branch instructions,
the jump or branch direction may be either backward (b) or forward (f). For branch
instructions, the branching divergence may be either uniform (u) or divergent (d). For
branch instructions, the branching condition may be either true (T) or false (F). A true
branch condition may correspond to a satisfied branch condition, and a false branch
condition may correspond to an unsatisfied branch condition.

[0139] Program state register 74 may store a program state for the program executing in
processing system 10. In some examples, program state register 74 may store the

following three states:

State 0: All threads are active.
State 1: At least one thread is active and at least one thread is inactive.

State 2: All threads are inactive.

In some examples, processing system 10 may be configured such that the initial state
and final state of a program are each state 0.

[0140] State transition block 76 may receive an event from event information generator
72 and a current program state from program state register 74, generate a new program
state based on the received event and the current program state, and store the new
program state in program state register 74. State transition block 76 may generate the
new program state in accordance with the state transition table described in further
detail with respect to FIG. 5.

[0141] Thread deactivator 78 may receive an event from event information generator 72
and a current program state from program state register 74, determine whether to
deactivate one or more threads based on the event and the current program state, and
deactivate one or more threads in response to certain combinations of events and current
program states. When deactivating threads, thread deactivator 78 may update active
flags 62 and resume counters 64 for the threads being deactivated. Thread deactivator
78 may deactivate threads in accordance with the state transition table described in

further detail with respect to FIG. 5.



WO 2014/025480 PCT/US2013/049599

40
[0142] Next instruction block 80 may receive an event from event information
generator 72 and a current program state from program state register 74, determine a
new program counter value to load into program counter 28, and load the new program
counter value into program counter 28. The new program counter value may be
indicative of a next instruction to be processed by control unit 12. Next instruction
block 80 may determine the new program counter value in accordance with the state
transition table described in further detail with respect to FIG. 5.
[0143] As discussed above, resume check module 66 may update program state register
74 based on the outcome of the resume check operation. This update may be performed
by resume check module 66 in an asynchronous manner. For example, if the program
state was State 1 prior to performing the resume check operation, and all inactive
threads are reactivated, program state register 74 may change program state register 74
to State 0 in an asynchronous fashion to reflect that all threads are activated. It should
be noted that state transition block 76 generates the new program state based on the
current program state that is available after any updating by resume check module 66.
Similarly, thread deactivator 78 determines whether to deactivate one or more threads
based on the current program state that is available after any updating by resume check
module 66, and next instruction block 80 determines a new program counter value
based on the current program state that is available after any updating by resume check
module 66. As such, although the program state may change between two different
states during a single processing cycle due to a resume check, the final state for the
processing cycle, i.c., the state that occurs after the resume check is complete, is used as
the current program state for processing by ecach of state transition block 76, thread
deactivator 78 and next instruction block 80.
[0144] FIG. 5 is a state transition table that characterizes exemplary operation of the
control flow module 34 illustrated in FIG. 4 according to this disclosure. The state
transition table in FIG. 5 includes an “OLD STATE” column, which represents the
current program state, and a “NEW STATE” column, which represents either a new
program state for a next processing cycle or a program state that occurs after an
asynchronous transition due to a resume check operation. The state transition table also
includes an “EVENT” column, which includes the events generated by event
information generator 72. The indicator “n/a” in the “EVENT” column signifies that

the state transition and action occur due to a resume check operation and that the event



WO 2014/025480 PCT/US2013/049599

41
is irrelevant for such a transition. The state transition table also includes an “ACTION”
column that indicates what action takes place in response to a particular combination of
a current program state and an event. The action labeled “Resume” in the “ACTION”
column signifies that an asynchronous state transition occurs due to a resume check
operation.
[0145] As shown in FIG. 5, state transition block 76 sclects State 0 as the new state to
load into program state register 74 in response to the current state being State 0 and
receiving an S event, a Jf event, a Jb event, a BfuT event, a BfuF event, a BbuT event, or
a BbuF event. State transition block 76 selects State 1 as the new state to load into
program state register 74 in response to the current state being State 0 and receiving a
Bbd event or a Bfd event. State transition block 76 also selects State 1 as the new state
to load into program state register 74 in response to the current state being State 1 and
receiving an § event, a Jb event, a BbuF event, a BbuT event, a BfuF event, a Bbd event
or a Bfd event. State transition block 76 selects State 2 as the new state to load into
program state register 74 in response to the current state being State 1 and receiving a Jf'
event or a BfuT event. State transition block 76 also selects State 2 as the new state to
load into program state register 74 in response to the current state being State 2 and
receiving any event. In response to reactivating one or more threads as part of a resume
check operation, state transition block 76 may transition into State 0 or State 1 in an
asynchronous manner.
[0146] As also shown in FIG. 5, thread deactivator 78 may determine to deactivate one
or more threads in response to the current state being either State 0 or State 1 and
receiving a Bbd event or a Bfd event. The Bbd event and Bfd events may be referred to
as divergence events resulting from the evaluation of a branch condition for a branch
instruction. Thread deactivator 78 may determine to deactivate all active threads that do
not satisfy the branch condition (i.c., a false condition) in response to receiving a Bbd
event, and to deactivate all active threads that satisfy the branch condition (i.e., a true
condition) in response to receiving a Bfd event. Thread deactivator 78 may determine to
deactivate all active threads in response to the current state being State 1 and receiving a
Jf event or a BfuT event.
[0147] As shown in FIG. 5, next instruction block 80 may select one of a program
counter value indicative of the next sequential instruction (i.e., “PC + 1”) or a program

counter value indicative of a target instruction (i.c., a target program counter value) to



WO 2014/025480 PCT/US2013/049599

42
load into program counter 28 in response to various combinations of current program
state and events. For example, next instruction block 80 may select a program counter
value indicative of the next sequential instruction (i.c., “PC + 1”) to load into program
counter 28 in response to the current state being State 0 and receiving an S event, a BfuF
event, a BbuF event, or a Bfd event. Next instruction block 80 may also select a
program counter value indicative of the next sequential instruction (i.e., “PC + 1”) to
load into program counter 28 in response to the current state being State 1 and receiving
an S event, a BbuF event, a BfuF event, a Bfd event, a Jf event, or a BfuT event. Next
instruction block 80 may also select a program counter value indicative of the next
sequential instruction (i.e., “PC + 1”) to load into program counter 28 in response to the
current state being State 2 and receiving any event. Next instruction block 80 may
select a program counter value indicative of a target instruction (i.c., a target program
counter value) to load into program counter 28 in response to the current state being
State 0 and receiving a Jf event, a Jb event, a BfuT event, a BbuT event, or a Bbd event.
Next instruction block 80 may also select a program counter value indicative of a target
instruction (i.c., a target program counter value) to load into program counter 28 in
response to the current state being State 1 and receiving a Jb event, a BbuT event, or a
Bbd event.
[0148] FIG. 6 is a block diagram illustrating an example computing system 100 that
may be used to implement the selective resume check activation techniques of this
disclosure. Computing system 100 includes processors 102, 104, a memory 106, and a
bus 108. Processors 102, processor 104, and memory 106 may be communicatively
coupled to each other via bus 108. Bus 108 may be any of a variety of bus structures or
other communication structures, such as, ¢.g., a third generation bus (e.g., a
HyperTransport bus or an InfiniBand bus), a second generation bus (e.g., an Advanced
Graphics Port bus, a Peripheral Component Interconnect (PCI) Express bus, or an
Advanced eXentisible Interface (AXI) bus) or another type of bus or device
interconnect. It should be noted that the specific configuration of buses and
communication interfaces between the different components shown in FIG. 6 is merely
exemplary, and other configurations of computing devices and/or computing systems
with the same or different components may be used to implement the techniques of this

disclosure.



WO 2014/025480 PCT/US2013/049599

43
[0149] Processors 102 and 104 may each correspond to one or more processors. The
ong or more processors may be any type of general-purpose processor or special-
purpose processor. In some examples, processor 102 may be an application processor,
host processor and/or central processing unit (CPU). In further examples, processor 104
may be a graphics processing unit (GPU). In such examples, the GPU may be
configured to accelerate the processing of graphics operations and/or to perform
general-purpose computing tasks (e.g., a general-purpose computing on graphics
processing unit (GPGPU) task) at the direction of processor 102. Processor 102 is
configured to execute a compiler module 110. Processor 104 may include processing
system 10, which may correspond to the processing system 10 described in FIG. 1 of
this disclosure. Although processors 102 and 104 are illustrated in FIG. 6 as being
different processors, in other examples, processors 102 and 104 may be the same
processor.
[0150] Memory 106 may be configured to store program modules and/or instructions
that are accessible for execution by processors 102, 104 and/or to store data for use by
the programs executing on processors 102 and 104. Memory 106 may be formed from
one or more volatile or non-volatile memories or storage devices, such as, for example,
random access memory (RAM), static RAM (SRAM), dynamic RAM (DRAM), read-
only memory (ROM), erasable programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), Flash memory, a magnetic data media or an optical
storage media. Memory 106 includes compiler code 112, source code 114 and compiled
code 116.
[0151] Compiler module 110 may be configured to compile source code 114 to generate
compiled code 116 based on a compilation technique that is included in compiler code
112. In other words, compiler module 110 may be a runtime execution instance of
compiler code 112 that is executing on processor 102.
[0152] Source code 114 may correspond to a program to be executed by processor 104
and/or processing system 10. Compiled code 116 may be a compiled version of source
code 114. In some examples, the compiled version may be object code, byte code,
and/or machine-language code that is capable of being executed by processor 104
and/or processing system 10.
[0153] According to this disclosure, compiler module 110 may be configured to

generate compiled code 116 such that compiled code 116 includes one or more



WO 2014/025480 PCT/US2013/049599

44
instructions that each include information indicative of whether a resume check
operation is to be performed for the respective instruction when executed by a processor
that executes compiled code 116 (e.g., processor 104 and/or processing system 10). In
some examples, the information included in the instruction may be an information field,
such as, ¢.g., a one-bit flag that instructs a processor that executes the instruction of
whether to perform a resume check operation for the instruction. In additional
examples, the information included in the instruction may take on other forms, such as,
particular operational code (i.e., opcode) parameters, combinations of bits, etc.
[0154] In some examples, compiler module 110 may be configured to selectively cause
a resume check operation to be performed during the execution of compiled code 116
for particular instructions on an instruction-by-instruction basis. For example, compiler
module 110 may select one or more instructions as being instructions for which a
resume check operation is to be performed when a program specified by source code
114 is executed, and generate compiled code 116 for the program such that the compiled
code includes the selected one or more instructions and such that the selected one or
more instructions include information indicating that the resume check operation is to
be performed for the selected one or more instructions. As another example, compiled
code 116 may select one or more instructions as being instructions for which a resume
check operation is not to be performed when a program specified by source code 114 is
executed, and generate compiled code 116 for the program such that the compiled code
includes the selected one or more instructions and such that the selected one or more
instructions include information indicating that the resume check operation is not to be
performed for the selected one or more instructions
[0155] In further examples, compiler module 110 may be configured to select an
instruction as being an instruction for which a resume check operation is to be
performed when a program is executed if the instruction is a candidate next instruction
to be executed by one or more threads that are deactivated in response to executing at
least one of a branch instruction or a jump instruction. A candidate next instruction may
refer to an instruction where such deactivated threads would be scheduled to be
reactivated in response to executing the branch instruction or the jump instruction. For
example, for a forward branch instruction and a forward jump instruction, the candidate
next instruction may be a target instruction of the forward jump instruction or the

forward branch instruction. As another example, for a backward branch instruction the



WO 2014/025480 PCT/US2013/049599

45
candidate next instruction may be a next sequential instruction after the backward
branch instruction.
[0156] A branch instruction may refer to a control flow instruction that specifies a next
instruction to be executed for each of one or more threads based on whether a branch
condition is satisfied for the respective thread. The branch instruction may include a
field that specifies a target instruction and a field that specifies a branch condition for
branching to the target instruction. For each of the threads executing the branch
instruction, if a respective thread satisfies the branch condition, then the branch
instruction may specify the target instruction as a next instruction to be executed by the
respective thread. On the other hand, if the respective thread does not satisfy the branch
condition, then the branch instruction may specify the next sequential instruction as a
next instruction to be executed by the respective thread. The next sequential instruction
may occur immediately after the branch instruction in the ordered sequence of
instructions.
[0157] A forward branch instruction may refer to a branch instruction where the target
instruction specified in the branch instruction occurs after the branch instruction in an
ordered sequence of instructions that forms a program that includes the branch
instruction. A backward branch instruction may refer to a branch instruction where the
target instruction specified in the branch instruction occurs prior to a next sequential
instruction in an ordered sequence of instructions that forms a program that includes the
branch instruction.
[0158] A jump instruction may refer to a control flow instruction that unconditionally
specifies a next instruction to be executed for each of one or more threads. The jump
instruction may include an information field that specifies a target instruction and, in
some examples, may not include a field that specifies a condition for jumping to the
target instruction. The jump instruction may unconditionally specify the target
instruction as the next instruction to be executed by each of the threads that executes the
jump instruction.
[0159] Similar to the forward and backward branch instructions, a forward jump
instruction may refer to a jump instruction where the target instruction specified in the
jump instruction occurs after the jump instruction in an ordered sequence of instructions
that forms a program that includes the jump instruction. A backward jump instruction

may refer to a jump instruction where the target instruction specified in the jump



WO 2014/025480 PCT/US2013/049599

46
instruction occurs prior to a next sequential instruction in an ordered sequence of
instructions that forms a program that includes the jump instruction. The next
sequential instruction may occur immediately after the jump instruction in the ordered
sequence of instructions.
[0160] As discussed above, to ensure that proper control flow is maintained in a
processing system that uses a resume counter-based approach for thread reactivation,
processing system 10 may use a “least-valued address first” thread processing order. In
general, the “least-valued address first” thread processing order may refer to a
processing order where threads that are scheduled to process instructions at lower-
valued addresses are executed prior to threads that are scheduled to process instructions
at higher-valued addresses. The “least-valued address first” thread processing order
may differentiate which threads are deactivated in response to a divergent branch
instruction based on the direction (i.e., forward or backward) of the branch instruction.
[0161] For example, for a divergent backward branch instruction, processing system 10
may deactivate threads for which the branching condition is not satisfied, set the resume
counter value for each thread being deactivated to a value associated with a next
sequential instruction that occurs after the branch instruction, load the program counter
with a value associated with a target instruction specified by the branch instruction, and
proceed to execute those threads for which the branching condition is satisfied. For a
divergent forward branch instruction, processing system 10 may deactivate threads for
which the branching condition is satisfied, set the resume counter value for each thread
being deactivated to a value associated with a target instruction specified by the branch
instruction, load the program counter with a value associated with a next sequential
instruction that occurs after the branch instruction, and proceed to execute those threads
for which the branching condition is not satisfied. Deactivating threads in this manner
ensures that divergent threads that are scheduled to process instructions at lower-valued
addresses execute prior to threads that are scheduled to process instructions at higher-
valued addresses (i.c., a “least-valued address first” thread processing order).
[0162] In cases where one or more threads have already been deactivated and the
remaining active threads execute either a forward jump instruction or a uniformly
satisfied forward branch instruction (i.e., a forward branch instruction where the
branching condition is uniformly satisfied for all active threads), one approach to

handling the control flow may be to always jump to the target instruction specified in



WO 2014/025480 PCT/US2013/049599

47
the forward jump or forward branch instruction because all active threads will remain
active. Such an approach, however, does not guarantee a “least-valued address first”
thread processing order. In particular, one or more inactive threads may, in some cases,
have resume counter values that are between the current program counter value of the
jump or branch instruction and the target program counter value (i.c., the program
counter value associated with the target instruction specified in the branch or jump
instruction). If the control flow were to jump over such inactive threads, it is possible
that such threads would not be reactivated prior to finishing execution of the program.
[0163] To avoid such a situation, whenever a forward jump instruction or a uniformly
satisfied forward branch instruction is executed, processing system 10 may be
configured to deactivate all threads and sequentially increment the program counter
value until the first of a resume counter value for an inactive thread is reached or the
target program counter value for the jump or branch instruction is reached. In this way,
a “least-valued address first” processing order for the threads is maintained.
[0164] In some examples, compiler module 110 may be configured to determine
whether a resume check operation may need to be performed during the execution of a
program for one or more instructions of the program in a processing system that utilizes
a “least-valued address first” thread processing order as described above. In such
examples, compiler module 110 may be configured to enable the resume check
operation for instructions where it is determined that a resume check operation may
need to be performed during the execution of the program, and to disable the resume
check operation for instructions where it is determined that no threads will need to be
reactivated during the execution of the program.
[0165] As one specific example, for divergent forward branch instructions, compiler
module 110 may determine that, because all threads that satisfy the branch condition
will be deactivated, a resume check operation should be performed for any instruction
that is a target instruction of a forward branch instruction. For divergent backward
branch instructions, compiler module 110 may determine that, because all threads that
do not satisfy the branch condition will be deactivated, a resume check operation should
be performed for any instruction that occurs immediately after a backward branch
instruction (i.e., a next sequential instruction after the backward branch instruction).
For forward jump instructions, compiler module 110 may determine that, because all

threads may be deactivated to cycle through the program counter values until the first of



WO 2014/025480 PCT/US2013/049599

48
a resume counter value for an inactive thread is reached or the target program counter
value for the jump instruction is reached, a resume check operation should be performed
for any instruction that is a target instruction of a forward jump instruction.
[0166] In this example, for any other instructions that were not identified as being a
target instruction of a forward branch instruction or a forward jump instruction or as
being a next sequential instruction after a backward branch instruction, compiler module
110 may determine that a resume check operation does not need to be performed for
such instructions because any threads that are deactivated during the execution of the
program will not need to be reactivated at such instructions. Not performing a resume
check operation for such instructions may reduce the power consumption of and/or
improve the performance of a SIMD processing system compared to a processing
system where the resume check operation is performed for every instruction.
[0167] For instructions where it is determined that a resume check operation may need
to be performed during the execution of the program, compiler module 110 may place
information in the compiled instructions to indicate that a resume check operation is to
be performed for the instructions. Similarly, for instructions where it is determined that
a resume check operation need not be performed during the execution of the program,
compiler module 110 may place information in the instructions to indicate that a resume
check operation is not to be performed for the instructions.
[0168] FIGS. 7-10 are flow diagrams illustrating example instruction processing
techniques for selectively activating and/or performing a resume check operation
according to this disclosure. The example techniques shown in FIGS. 7-10 may be
implemented, in some examples, in control flow module 34 of any of FIGS. 2—4 and/or
within processing system 10 of any of FIGS. 1-4 and 6. For ease of explanation, the
techniques will be described with respect to control flow module 34 shown in FIG. 2,
but it should be understood that the techniques may be performed in other systems with
the same or different components in the same or a different configuration.
[0169] FIG. 7 is a flow diagram illustrating an example technique for selectively
activating a resume check operation according to this disclosure. Control flow module
34 executes an instruction that includes information indicative of whether a resume
check operation is to be performed for the instruction (120). Control flow module 34
selectively enables or disables the resume check operation for the instruction based on

the information included in the instruction (122).



WO 2014/025480 PCT/US2013/049599

49
[0170] The resume check operation may be an operation that includes comparing each
of a plurality of resume counter values to a program counter value associated with the
instruction. The resume check operation may further include, for each of the plurality
of resume counter values, activating a respective one of the plurality of threads
associated with the respective resume counter value if the respective resume counter
value is equal to the program counter value. Each of the resume counter values may be
associated with a respective one of a plurality of threads executing on a processor (e.g.,
processing system 10).
[0171] FIG. 8 is a flow diagram illustrating another example technique for selectively
activating a resume check operation according to this disclosure. Control flow module
34 executes an instruction during an instruction cycle (124). Control flow module 34
determines whether the information included in the instruction indicates that the resume
check operation is to be performed for the instruction (126). Control flow module 34
enables the resume check operation for the instruction cycle in response to determining
that the information included in the instruction indicates that the resume check operation
is to be performed for the instruction (128). For example, control flow module 34 may
cause the resume check operation to be performed during the instruction cycle. Control
flow module 34 disables the resume check operation for the instruction cycle in
response to determining that the information included in the instruction indicates that
the resume check operation is not to be performed for the instruction (130). For
example, control flow module 34 may cause the resume check operation to not be
performed during the instruction cycle.
[0172] FIG. 9 is a flow diagram illustrating an example technique for performing a
resume check operation according to this disclosure. Control flow module 34 compares
cach of a plurality of resume counter values to a program counter value associated with
the instruction (132). Each of the resume counter values may be associated with a
respective one of a plurality of threads executing on the processor. The program
counter value may be a program counter value associated with the current instruction
processing cycle. For each of the plurality of resume counter values, control flow
module 34 activates a respective one of the plurality of threads associated with the
respective resume counter value if the respective resume counter value is equal to the

program counter value (134).



WO 2014/025480 PCT/US2013/049599

50
[0173] FIG. 10 is a flow diagram illustrating another example technique for performing
a resume check operation according to this disclosure. Control flow module 34 selects
an inactive thread (136). Control flow module 34 determines whether the resume
counter value for the inactive thread is equal to the program counter value (138). If
control flow module 34 determines that the resume counter value for the inactive thread
is equal to the program counter value, then control flow module 34 sets the active flag
associated with the thread to a value of true to indicate that the corresponding thread is
now active (140), sets the resume counter associated with the thread to a maximum
value (142), and proceeds to decision box 144. The maximum value, in some examples,
may be a value that is the largest value that can be represented in the storage slot or
register for the resume counter.
[0174] On the other hand, if control flow module 34 determines that the resume counter
value for the inactive thread is not equal to the program counter value, then control flow
module 34 proceeds to decision box 144 without setting the active flag for the thread
and without setting the resume counter for the thread. In either case, control flow
module 34 determines whether there are any more inactive threads to process (144). If
control flow module 34 determines that there are more inactive threads to process, then
control flow module 34 returns to process box 136 to process another inactive thread.
Otherwise, if control flow module 34 determines that there are not any more inactive
threads to process, then control flow module 34 ends the resume check operation.
Although FIG. 10 illustrates an example resume check operation that processes and
reactivates threads sequentially, in other examples, the threads may be processed and
reactivated either partially or fully in parallel.
[0175] FIGS. 11 and 12 are flow diagrams illustrating example instruction processing
techniques for generating compiled code that selectively activates a resume check
operation according to this disclosure. The compiled code may include one or more
instructions that each specify whether a resume check operation is to be performed for
the respective instruction. For ease of explanation, the techniques will be described
with respect to processor 102 (e.g., compiler module 110) of computing system 100
shown in FIG. 6, but it should be understood that the techniques may be performed by
other components in the same or a different computing system.
[0176] FIG. 11 is a flow diagram illustrating an example technique for generating

compiled code that selectively enables and disables a resume check operation according



WO 2014/025480 PCT/US2013/049599

51
to this disclosure. Processor 102 selects one or more instructions of a program as being
instructions for which a resume check operation is to be performed when the program is
executed (146). Processor 102 generates compiled code for the program based on the
selected one or more instructions (148). For example, processor 102 may generate
compiled code for the program such that the compiled code includes the selected one or
more instructions and such that the selected one or more instructions include
information indicating that the resume check operation is to be performed for the
selected one or more instructions.
[0177] In some examples, processor 102 may select an instruction as being an
instruction for which a resume check operation is to be performed when the program is
executed if the instruction is a candidate next instruction to be executed by one or more
deactivated threads after at least one of a branch instruction or a jump instruction. In
further examples, processor 102 may select an instruction as being an instruction for
which a resume check operation is to be performed when the program is executed if the
instruction is a target instruction of at least one of a forward branch instruction and a
forward jump instruction. In additional examples, processor 102 may select an
instruction as being an instruction for which a resume check operation is to be
performed when the program is executed if the instruction is a next sequential
instruction after a backward branch instruction.
[0178] In addition to or in lieu of selecting one or more instructions of a program as
being instructions for which a resume check operation is to be performed when the
program is executed, processor 102 may select one or more instructions as being
instructions for which a resume check operation is not to be performed when a program
is executed, and generate compiled code for the program such that the compiled code
includes the selected one or more instructions and such that the selected one or more
instructions include information indicating that the resume check operation is not to be
performed for the selected one or more instructions.
[0179] FIG. 12 is a flow diagram illustrating another example technique for generating
compiled code that selectively enables and disables a resume check operation according
to this disclosure. Processor 102 generates preliminary compiled code for a program
based on source code for the program (150). In some examples, the preliminary

compiled code may be similar to the final compiled code to be generated by processor



WO 2014/025480 PCT/US2013/049599

52
102 except that the instructions in the preliminary compiled code do not indicate
whether a resume check operation is to be performed for such instructions.
[0180] Processor 102 determines which instructions in the preliminary compiled code
are control flow instructions (152). The control flow instructions may include, for
example, jump instructions and conditional branch instructions. Processor 102 selects a
control flow instruction for processing (154). Processor 102 determines if the selected
control flow instruction is an instruction that is capable of causing processing system 10
to deactivate one or more threads in response to processing the instruction (156). In
some examples, the set of instructions that are capable of causing processing system 10
to deactivate one or more threads in response to processing the instruction include a
forward branch instruction, a backward branch instruction, and a forward jump
instruction. In further examples, in addition to the instructions already described above,
the set of instructions that are capable of causing processing system 10 to deactivate one
or more threads in response to processing the instruction may also include a backward
jump instruction.
[0181] If the selected control flow instruction is an instruction that is capable of causing
processing system 10 to deactivate one or more threads in response to processing the
instruction, then processor 102 may select the candidate next instruction as an
instruction for which a resume check operation is to be performed (158). The candidate
next instruction may refer to an instruction where the threads that are deactivated in
response to processing the current control flow instruction would be scheduled to be
reactivated. For example, if the instruction is a forward jump instruction or a forward
branch instruction, then the candidate next instruction may be the target instruction
specified in the forward jump instruction or the forward branch instruction. As another
example, if the instruction is a backward branch instruction, then the candidate next
instruction may be the next sequential instruction after the backward branch instruction
(i.e., the instruction that occurs immediately after the backward branch instruction). In
examples where a backward jump instruction constitutes an instruction that is capable of
causing processing system 10 to deactivate one or more threads in response to
processing the instruction, then the candidate next instruction for the backward jump
instruction may be the next sequential instruction after the backward branch instruction
(i.e., the instruction that occurs immediately after the backward jump instruction). After

selecting the candidate next instruction as an instruction for which a resume check



WO 2014/025480 PCT/US2013/049599

53
operation is to be performed, processor 102 may log the selection for use when
generating the compiled code and proceed to decision box 160.
[0182] Returning to decision box 156, if the selected control flow instruction is an
instruction that is not capable of causing processing system 10 to deactivate one or more
threads in response to processing the instruction, then processor 102 may proceed to
decision box 158 without selecting any instructions for the control flow instruction as
being instructions for which a resume check operation is to be performed. In either
case, processor 102 determines whether there are any more control flow instructions to
process (160). If processor 102 determines that there are more control flow instructions
to process, then processor 102 returns to process box 154 to process another control
flow instruction. Otherwise, if processor 102 determines that there are not any more
control flow instructions to process, then processor 102 proceeds to generate compiled
code based on the instructions selected as being instructions for which a resume check is
to be performed (162).
[0183] For example, for each of the instructions that were selected to be an instruction
for which a resume check is to be performed, processor 102 may place information in
the compiled instruction that indicates that a resume check operation is to be performed
by a processor that executes the program and during an instruction cycle when the
instruction is executed. For any instructions that were not selected to be an instruction
for which a resume check is to be performed, processor 102 may place information in
the compiled instruction that indicates that a resume check operation is not to be
performed by the processor that executes the program and during an instruction cycle
when the instruction is executed.
[0184] FIG. 13 illustrates an example program that may be executed without using the
selective resume check activation techniques of this disclosure. As shown in FIG. 13,
the numbers in the left-hand column represent instruction identification (ID) numbers.
The instruction ID number for each instruction may, in some examples, correspond to a
program counter value and/or an address associated with the instruction. The middle
column represents the instruction that is associated with the instruction ID in the left-
hand column. The right-hand column provides explanations of the instructions.
[0185] The instructions that have designations beginning with “alu” represent
sequential (i.e., non-control flow) ALU instructions. The numbers following the “alu”

designation merely designate that the ALU instructions may be different instructions.



WO 2014/025480 PCT/US2013/049599

54
The instructions that are designated as “branch” instructions constitute conditional
branch instructions with a target instruction (e.g., a target instruction ID) specified after
the “branch” designation. Similarly, the instructions that are designated as “jump”
instructions constitute jump instructions (i.c., an unconditional branch instruction) with
a target instruction (e.g., a target instruction ID) specified after the “jump” designation.
[0186] As shown in FIG. 13, instruction 2 is a forward branch instruction that specifies
instruction 5 as a target instruction. Instruction 4 is a forward jump instruction that
specifies instruction 7 as a target instruction. Instruction 8 is a backward branch
instruction that specifies instruction 1 as a target instruction.
[0187] FIG. 14 is a table illustrating an example execution sequence for the example
program in FIG. 13. The execution sequence is shown with respect to two different
threads (i.c., Thread 0 and Thread 1) executing in a processing system. The processing
system may be similar to processing system 10 shown in FIG. 1 except that the system
may have two processing elements 14 instead of four (or equivalently, two of the
processing elements 14 may be permanently deactivated for the duration of the
program). In addition, the processing system in this example automatically performs a
resume check operation during every instruction cycle prior to executing the instruction.
Thread 0 and Thread 1 may each be assigned to execute on a respective one of
processing clements 14. Both threads may execute the instructions of the program in
lockstep. That is, during a given instruction cycle, each thread, if active, may execute
the same instruction of the program with respect to different data.
[0188] Each of the rows in FIG. 14 constitutes a single instruction processing cycle
starting with the earliest instruction processing cycle on the top of the table. The
“Instruction ID” column indicates the instruction that is executed and/or processed
during a given instruction processing cycle. The “Thread 0” column indicates whether
Thread 0 is active for a given instruction processing cycle, and the “Thread 1” column
indicates whether Thread 1 is active for a given instruction processing cycle. An “X”
designation in either of the “Thread 0 or “Thread 17 columns indicates that the
respective thread is active for a given instruction processing cycle. An “O” designation
in either of the “Thread 0” or “Thread 17 columns indicates that the respective thread is
inactive for a given instruction processing cycle.
[0189] As shown in FIG. 14, both of the threads (i.c., Thread 0 and Thread 1) are

initially active, and remain active while processing instructions 0 and 1, which are



WO 2014/025480 PCT/US2013/049599

55
sequential instructions. When processing instruction 2, which is a forward branch
instruction, Thread 1 satisfies the branch condition and Thread 0 does not satisfy the
branch condition. Therefore, according to the “least-valued address first” thread
processing order, control unit 12 deactivates Thread 1 and sets the resume counter for
Thread 1 to a value of 5 (i.e., the address of the target instruction) to indicate that
Thread 1 is scheduled to be reactivated at instruction 5. Control unit 12 proceeds to
process instructions 3 and 4 with respect to active Thread 0.
[0190] At instruction 4, which is a forward jump instruction, control unit 12 deactivates
all threads that are active. In particular, control unit 12 deactivates Thread 0 and sets the
resume counter for Thread 0 to a value of 7 (i.c., the address of the target instruction) to
indicate that Thread 0 is scheduled to be reactivated at instruction 7. Control unit 12
proceeds to sequentially increment the program counter value until the first of a resume
counter value for an inactive thread is reached or the target program counter value for
the jump instruction is reached.
[0191] As discussed above, a resume check operation is performed prior to processing
the instruction during every instruction in this example. At instructions 3 and 4, the
resume counter value for Thread 1 (i.e., “5”) did not equal the program counter values
for the instructions (i.e., “3” and “4,” respectively). Therefore, Thread 1 remained
deactivated while processing these instructions. However, at instruction 5, the resume
counter value for Thread 1 (i.e., “5”) does equal the program counter value for
instruction 5. Therefore, control unit 12 reactivates Thread 1 prior to executing
instruction 5. As part of the reactivation process, control unit 12 may set the resume
counter for Thread 1 to a default value (e.g., a maximum register value). Meanwhile,
Thread 0 remains inactive because the resume counter value for Thread 0 is equal to 7.
[0192] Control unit 12 proceeds to process instructions 5 and 6 with respect to active
Thread 1. At instruction 7, Thread 0 is reactivated as part of the resume check operation
because the resume counter value for Thread 0 (i.e., “7”) equals the program counter
value for instruction 7. Control unit 12 proceeds to process instruction 7 with respect to
both threads.
[0193] At instruction 8, which is a backward branch instruction, Thread 0 satisfies the
branch condition, and Thread 1 does not satisfy the branch condition. Therefore,
according to the “least-valued address first” thread processing order, control unit 12

deactivates Thread 1 and sets the resume counter for Thread 1 to a value of 9 (i.c., the



WO 2014/025480 PCT/US2013/049599

56
next sequential instruction after the backward branch instruction) to indicate that Thread
1 should be reactivated at instruction 9. Control unit 12 proceeds to process instructions
1-4 with respect to active Thread 0. At instruction 2, Thread 0 does not satisfy the
branch condition, and therefore control flow proceeds to instruction 3.
[0194] At instruction 4, which is a forward jump instruction, control unit 12 deactivates
all threads that are active. In particular, control unit 12 deactivates Thread 0 and sets the
resume counter for Thread 0 a value of 7 (i.e., the address of the target instruction) to
indicate that Thread 0 should be reactivated at instruction 7. Control unit 12 proceeds to
sequentially increment the program counter value until the first of a resume counter
value for an inactive thread is reached or the target program counter value for the jump
instruction is reached.
[0195] Instructions 5 and 6 are processed, but are dormant instructions cycles because
no threads are activated. At instruction 7, Thread 0 is reactivated as part of the resume
check operation because the resume counter value for Thread 0 (i.e., “7”) equals the
program counter value for instruction 7. Control unit 12 proceeds to process
instructions 7 and 8 with respect to active Thread 0.
[0196] At instruction 9, Thread 1 is reactivated as part of the resume check operation
because the resume counter value for Thread 0 (i.c., “9”) equals the program counter
value for instruction 9. Control unit 12 proceeds to process instruction 9 with respect to
both threads, which is the end of the program.
[0197] As discussed above, Thread 0 is deactivated two times after executing
instruction 4 and, on each occasion, is reactivated prior to executing instruction 7.
Thread 1 is deactivated after executing instructions 2 and 8 and is reactivated prior to
executing instructions 5 and 9. The threads are deactivated due to either divergent
branching or due to forward jump instructions. Because control unit 12 performs a
resume check prior to executing every instruction, in this example, control unit 12
performs 18 different resume check operations even though threads were reactivated
during only four of the instruction cycles.
[0198] FIG. 15 illustrates an example program that may be executed using the selective
resume check activation techniques of this disclosure. The example program is similar
to the example program shown in FIG. 13 except that asterisks (i.c., “*””) are included in

certain program instructions that indicate that a resume check operation is to be



WO 2014/025480 PCT/US2013/049599

57
performed for such instructions. An instruction that does not include an asterisk
indicates that a resume check is not to be performed for such an instruction.
[0199] As shown in FIG. 15 a compiler may select instructions 5, 7 and 9 as being
instructions for which a resume check operation is to be performed. Instruction 5 was
selected as an instruction for which a resume check operation is to be performed
because the instruction is a target instruction of a forward branch instruction (i.c.,
instruction 2). Instruction 7 was selected as an instruction for which a resume check
operation is to be performed because the instruction is a target instruction of a forward
jump instruction (i.e., instruction 4). Instruction 9 was selected as an instruction for
which a resume check operation is to be performed because the instruction is a next
sequential instruction after a backward branch instruction (i.e., instruction 8).
[0200] FIG. 16 is a table illustrating an example execution sequence for the example
program in FIG. 15 according to this disclosure. The example execution sequence is
FIG. 16 is similar to that which was described above with respect to FIG. 14 except that
a resume check operation is not performed during every instruction cycle. Instead, a
resume check operation is performed only for the instruction cycles where an instruction
is marked with an asterisk in FIG. 15 (i.c., instructions 5, 7 and 9).
[0201] As shown in FIG. 16, the number of resume check operations performed during
the example execution sequence of FIG. 16 is 5. Therefore, by selectively activating
resume check operations according to the techniques of this disclosure, the number of
resume check operations performed in this example was reduced from 18 operations
performed during 18 different instruction cycles (which occurred in FIG. 14) to 5
operations performed during 5 instruction cycles. A resume check operation may
involve, in some examples, the performance of many comparison operations, which
may consume a significant amount of power each time the operation is performed and
may contribute significantly to the time it takes to process an instruction. Therefore, by
reducing the number of resume check operations that need to be performed by a
processing system according to the selective resume check activation techniques of this
disclosure, the power consumption of a processing system may be reduced and/or the
performance of the processing system may be increased compared to processing
systems where a resume check operation is automatically performed for each instruction

of a program.



WO 2014/025480 PCT/US2013/049599

58
[0202] Moreover, because the resume check operation was disabled for instructions at
which it was determined that no threads would need to be reactivated during the
execution of the program, the selective disablement of the resume check operation did
not compromise the integrity of the thread reactivation in the processing system or
increase the number of processing cycles needed to execute the program. In this
manner, the techniques of this disclosure may, in some examples, be used to reduce the
power consumption of and/or increase the performance of a processing system without
adversely affecting the integrity of the thread reactivation process and without
increasing the number of processing cycles needed to execute the program.
[0203] The techniques described in this disclosure may be implemented, at least in part,
in hardware, software, firmware or any combination therecof. For example, various
aspects of the described techniques may be implemented within one or more processors,
including one or more microprocessors, digital signal processors (DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logic circuitry, as well as any combinations of
such components. The term “processor” or “processing circuitry” may generally refer
to any of the foregoing logic circuitry, alone or in combination with other logic circuitry,
or any other equivalent circuitry such as discrete hardware that performs processing.
[0204] Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and functions
described in this disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as discrete but interoperable
logic devices. Depiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily imply that such modules
or units must be realized by separate hardware or software components. Rather,
functionality associated with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or integrated within common
or separate hardware or software components.
[0205] The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readable medium, such as a computer-readable storage medium
that stores instructions. Instructions embedded or encoded in a computer-readable
medium may cause one or more processors to perform the techniques described herein,

¢.g., when the instructions are executed by the one or more processors. Computer



WO 2014/025480 PCT/US2013/049599

59
readable storage media may include random access memory (RAM), read only memory
(ROM), programmable read only memory (PROM), erasable programmable read only
memory (EPROM), electronically erasable programmable read only memory
(EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage media that is tangible.
[0206] Computer-readable media may include computer-readable storage media, which
corresponds to a tangible storage medium, such as those listed above. Computer-
readable media may also comprise communication media including any medium that
facilitates transfer of a computer program from one place to another, e.g., according to a
communication protocol. In this manner, the phrase “computer-readable media”
generally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (2) a non-tangible computer-readable communication medium such
as a transitory signal or carrier wave.
[0207] Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.



WO 2014/025480 PCT/US2013/049599

60
WHAT IS CLAIMED IS:

1. A method comprising:

executing, with a processor, an instruction that includes information indicative
of whether a resume check operation is to be performed for the instruction; and

selectively enabling or disabling, with the processor, the resume check operation
for the instruction based on the information included in the instruction, the resume
check operation being an operation that comprises comparing each of a plurality of
resume counter values to a program counter value associated with the instruction, each
of the resume counter values being associated with a respective one of a plurality of

threads executing on the processor.

2. The method of claim 1,
wherein executing the instruction comprises executing the instruction during an
instruction cycle, and
wherein selectively enabling or disabling the resume check operation comprises:
determining whether the information included in the instruction indicates
that the resume check operation is to be performed for the instruction;
enabling the resume check operation for the instruction cycle in response
to determining that the information included in the instruction indicates that the
resume check operation is to be performed for the instruction; and
disabling the resume check operation for the instruction cycle in response
to determining that the information included in the instruction indicates that the

resume check operation is not to be performed for the instruction.

3. The method of claim 1, wherein the resume check operation further comprises,
for each of the plurality of resume counter values, activating a respective one of the
plurality of threads associated with the respective resume counter value if the respective

resume counter value is equal to the program counter value.



WO 2014/025480 PCT/US2013/049599

61

4. The method of claim 1, wherein the processor is a first processor, the method
further comprising;:

selecting, with a second processor, one or more instructions of a program as
being instructions for which a resume check operation is to be performed when the
program is executed; and

generating, with the second processor, compiled code for the program such that
the compiled code includes the selected one or more instructions and such that the
selected one or more instructions include information indicating that the resume check

operation is to be performed for the selected one or more instructions.

5. The method of claim 4, wherein selecting the one or more instructions
comprises:

selecting an instruction as being an instruction for which a resume check
operation is to be performed when the program is executed if the instruction is a
candidate next instruction to be executed by one or more threads that are deactivated in

response to executing at least one of a branch instruction or a jump instruction.

6. The method of claim 4, wherein selecting the one or more instructions
comprises:

selecting an instruction as being an instruction for which a resume check
operation is to be performed when the program is executed if the instruction is a target
instruction of at least one of a forward branch instruction and a forward jump

instruction.

7. The method of claim 4, wherein selecting the one or more instructions
comprises:

selecting an instruction as being an instruction for which a resume check
operation is to be performed when the program is executed if the instruction is a next

sequential instruction after a backward branch instruction.

8. The method of claim 4, wherein the first processor is different than the second

Proccessor.



WO 2014/025480 PCT/US2013/049599

62
9. The method of claim 1, wherein each of the resume counter values is indicative
of a program counter value at which a thread corresponding to the respective resume

counter value is scheduled to be activated if the thread is inactive.

10.  The method of claim 9, wherein each of the resume counter values is equal to a
default value if the thread corresponding to the respective resume counter value is

active.

11. The method of claim 1, wherein the processor comprises one or more registers,

and wherein the processor stores the resume counter values in the one or more registers.

12.  The method of claim 1, wherein the instruction specifies a main operation to be

performed in addition to indicating whether to perform the resume check operation.

13.  The method of claim 12, wherein when the resume check operation is
performed, the resume check operation is performed prior to performing the main

operation.

14, The method of claim 1, wherein the information indicative of whether to

perform the resume check operation for the instruction comprises a one-bit flag.



WO 2014/025480 PCT/US2013/049599

63
15. The method of claim 1, further comprising:
wherein executing the instruction comprises executing, with the processor, the
instruction during an instruction cycle, and
wherein selectively enabling or disabling the resume check operation comprises:
determining, with the processor, whether the information included in the
instruction indicates that the resume check operation is to be performed for the
instruction;
performing, with the processor, the resume check operation in response
to determining that the information included in the instruction indicates that the
resume check operation is to be performed for the instruction; and
not performing, with the processor, the resume check operation in
response to determining that the information included in the instruction indicates

that the resume check operation is not to be performed for the instruction.

16. The method of claim 15, wherein performing, with the processor, the resume
check operation comprises:

comparing each of the plurality of resume counter values to a program counter
value associated with the instruction; and

for each of the plurality of resume counter values, activating a respective one of
the plurality of threads associated with the respective resume counter value if the

respective resume counter value is equal to the program counter value.

17. A device comprising:

a processor configured to execute an instruction that includes information
indicative of whether a resume check operation is to be performed for the instruction,
and to selectively enable or disable the resume check operation for the instruction based
on the information included in the instruction, the resume check operation being an
operation that comprises comparing each of a plurality of resume counter values to a
program counter value associated with the instruction, each of the resume counter
values being associated with a respective one of a plurality of threads executing on the

Proccessor.



WO 2014/025480 PCT/US2013/049599

64
18.  The device of claim 17, wherein the processor is further configured to execute
the instruction during an instruction cycle, to determine whether the information
included in the instruction indicates that the resume check operation is to be performed
for the instruction, to enable the resume check operation for the instruction cycle in
response to determining that the information included in the instruction indicates that
the resume check operation is to be performed for the instruction, and to disable the
resume check operation for the instruction cycle in response to determining that the
information included in the instruction indicates that the resume check operation is not

to be performed for the instruction.

19.  The device of claim 17, wherein the resume check operation further comprises,
for each of the plurality of resume counter values, activating a respective one of the
plurality of threads associated with the respective resume counter value if the respective

resume counter value is equal to the program counter value.

20.  The device of claim 17, wherein the processor is a first processor, the device
further comprising;:

a second processor configured to select one or more instructions of a program as
being instructions for which a resume check operation is to be performed when the
program is executed, and to generate compiled code for the program such that the
compiled code includes the selected one or more instructions and such that the selected
one or more instructions include information indicating that the resume check operation

is to be performed for the selected one or more instructions.

21.  The device of claim 20, wherein the second processor is further configured to
select an instruction as being an instruction for which a resume check operation is to be
performed when the program is executed if the instruction is a candidate next instruction
to be executed by one or more deactivated threads after at least one of a branch

instruction or a jump instruction.



WO 2014/025480 PCT/US2013/049599

65
22.  The device of claim 20, wherein the second processor is further configured to
select an instruction as being an instruction for which a resume check operation is to be
performed when the program is executed if the instruction is a target instruction of at

least one of a forward branch instruction and a forward jump instruction.

23.  The device of claim 20, wherein the second processor is further configured to
select an instruction as being an instruction for which a resume check operation is to be
performed when the program is executed if the instruction is a next sequential

instruction after a backward branch instruction.

24.  The device of claim 20, wherein the first processor is different than the second
processor.
25. The device of claim 17, wherein each of the resume counter values is indicative

of a program counter value at which a thread corresponding to the respective resume

counter value should be activated if the thread is inactive.

26.  The device of claim 25, wherein each of the resume counter values is equal to a
default value if the thread corresponding to the respective resume counter value is

active.

27.  The device of claim 17, wherein the processor comprises one or more registers,

and wherein the processor stores the resume counter values in the one or more registers.

28.  The device of claim 17, wherein the instruction specifies a main operation to be

performed in addition to indicating whether to perform the resume check operation.

29.  The device of claim 28, wherein when the resume check operation is performed,

the resume check operation is performed prior to performing the main operation.

30. The device of claim 17, wherein the information indicative of whether to

perform the resume check operation for the instruction comprises a one-bit flag.



WO 2014/025480 PCT/US2013/049599

66
31.  The device of claim 17, wherein the processor is further configured to execute
the instruction during an instruction cycle, to determine whether the information
included in the instruction indicates that the resume check operation is to be performed
for the instruction, to perform the resume check operation during the instruction cycle in
response to determining that the information included in the instruction indicates that
the resume check operation is to be performed for the instruction, and to not perform the
resume check operation during the instruction cycle in response to determining that the
information included in the instruction indicates that the resume check operation is not

to be performed for the instruction.

32.  The device of claim 31, wherein the processor is further configured to compare
cach of the plurality of resume counter values to a program counter value associated
with the instruction, and for each of the plurality of resume counter values, to activate a
respective one of the plurality of threads associated with the respective resume counter

value if the respective resume counter value is equal to the program counter value.

33.  The device of claim 17, wherein the device comprises a wireless communication
device.

34.  The device of claim 17, wherein the device comprises a mobile phone handset.
35.  An apparatus comprising:

means for executing an instruction that includes information indicative of
whether a resume check operation is to be performed for the instruction; and

means for selectively enabling or disabling the resume check operation for the
instruction based on the information included in the instruction, the resume check
operation being an operation that comprises comparing each of a plurality of resume
counter values to a program counter value associated with the instruction, each of the
resume counter values being associated with a respective one of a plurality of threads

executing on a processor.



WO 2014/025480 PCT/US2013/049599

67
36.  The apparatus of claim 35,
wherein the means for executing the instruction comprises means for executing
the instruction during an instruction cycle, and
wherein the means for selectively enabling or disabling the resume check
operation comprises:
means for determining whether the information included in the
instruction indicates that the resume check operation is to be performed for the
instruction;
means for enabling the resume check operation for the instruction cycle
in response to determining that the information included in the instruction
indicates that the resume check operation is to be performed for the instruction;
and
means for disabling the resume check operation for the instruction cycle
in response to determining that the information included in the instruction
indicates that the resume check operation is not to be performed for the

instruction.

37.  The apparatus of claim 35, further comprising:

means for selecting one or more instructions of a program as being instructions
for which a resume check operation is to be performed when the program is executed;
and

means for generating compiled code for the program such that the compiled
code includes the selected one or more instructions and such that the selected one or
more instructions include information indicating that the resume check operation is to

be performed for the selected one or more instructions.

38. The apparatus of claim 37, wherein the means for selecting the one or more
instructions comprises:

means for selecting an instruction as being an instruction for which a resume
check operation is to be performed when the program is executed if the instruction is a
candidate next instruction to be executed by one or more threads that are deactivated in

response to executing at least one of a branch instruction or a jump instruction.



WO 2014/025480 PCT/US2013/049599

68
39.  The apparatus of claim 35, wherein each of the resume counter values is
indicative of a program counter value at which a thread corresponding to the respective
resume counter value is scheduled to be activated if the thread is inactive, and equal to a
default value if the thread corresponding to the respective resume counter value is

active.

40.  The apparatus of claim 35, wherein the instruction specifies a main operation to
be performed in addition to indicating whether to perform the resume check operation,
and wherein when the resume check operation is performed, the resume check operation

is performed prior to performing the main operation.

41.  The apparatus of claim 35, further comprising:
wherein the means for executing the instruction comprises means for executing
the instruction during an instruction cycle, and
wherein the means for selectively enabling or disabling the resume check
operation comprises:
means for determining whether the information included in the
instruction indicates that the resume check operation is to be performed for the
instruction;
means for performing the resume check operation in response to
determining that the information included in the instruction indicates that the
resume check operation is to be performed for the instruction; and
means for not performing the resume check operation in response to
determining that the information included in the instruction indicates that the

resume check operation is not to be performed for the instruction.

42.  The apparatus of claim 41, wherein the means for performing the resume check
operation comprises:

means for comparing each of the plurality of resume counter values to a program
counter value associated with the instruction; and

means for activating, for each of the plurality of resume counter values, a
respective one of the plurality of threads associated with the respective resume counter

value if the respective resume counter value is equal to the program counter value.



WO 2014/025480 PCT/US2013/049599

69

43. A computer-readable storage medium storing instructions that, when executed,
cause one or more processors to:

execute an instruction that includes information indicative of whether a resume
check operation is to be performed for the instruction; and

selectively enable or disable the resume check operation for the instruction based
on the information included in the instruction, the resume check operation being an
operation that comprises comparing each of a plurality of resume counter values to a
program counter value associated with the instruction, each of the resume counter
values being associated with a respective one of a plurality of threads executing on the

onc or more proccssors.

44.  The computer-readable storage medium of claim 43,
wherein the instructions that, when executed, cause one or more processors to
execute the instruction comprise instructions that, when executed, cause one or more
processors to execute the instruction during an instruction cycle, and
wherein the instructions that, when executed, cause one or more processors to
selectively enable or disable the resume check operation comprise instructions that,
when executed, cause one or more processors to:
determine whether the information included in the instruction indicates
that the resume check operation is to be performed for the instruction;
enable the resume check operation for the instruction cycle in response to
determining that the information included in the instruction indicates that the
resume check operation is to be performed for the instruction; and
disable the resume check operation for the instruction cycle in response
to determining that the information included in the instruction indicates that the

resume check operation is not to be performed for the instruction.



WO 2014/025480 PCT/US2013/049599

70

45.  The computer-readable storage medium of claim 43, further comprising
instructions that, when executed, cause one or more processors to:

select one or more instructions of a program as being instructions for which a
resume check operation is to be performed when the program is executed; and

generate compiled code for the program such that the compiled code includes
the selected one or more instructions and such that the selected one or more instructions
include information indicating that the resume check operation is to be performed for

the selected one or more instructions.

46.  The computer-readable storage medium of claim 45, wherein the instructions
that, when executed, cause one or more processors to select the one or more instructions
comprise instructions that, when executed, cause one or more processors to:

select an instruction as being an instruction for which a resume check operation
is to be performed when the program is executed if the instruction is a candidate next
instruction to be executed by one or more threads that are deactivated in response to

executing at least one of a branch instruction or a jump instruction.

47. The computer-readable storage medium of claim 43, wherein each of the resume
counter values is indicative of a program counter value at which a thread corresponding
to the respective resume counter value is scheduled to be activated if the thread is
inactive, and equal to a default value if the thread corresponding to the respective

resume counter value is active.



WO 2014/025480 PCT/US2013/049599

71
48. The computer-readable storage medium of claim 43, wherein the instruction
specifies a main operation to be performed in addition to indicating whether to perform
the resume check operation, and wherein when the resume check operation is
performed, the resume check operation is performed prior to performing the main

operation.

49.  The computer-readable storage medium of claim 43, further comprising:
wherein the instructions that, when executed, cause one or more processors to
execute the instruction comprise instructions that, when executed, cause one or more
processors to execute the instruction during an instruction cycle, and
wherein the instructions that, when executed, cause one or more processors to
selectively enable or disable the resume check operation comprise instructions that,
when executed, cause one or more processors to:
determine whether the information included in the instruction indicates
that the resume check operation is to be performed for the instruction;
perform the resume check operation in response to determining that the
information included in the instruction indicates that the resume check operation
is to be performed for the instruction; and
not perform the resume check operation in response to determining that
the information included in the instruction indicates that the resume check

operation is not to be performed for the instruction.

50.  The computer-readable storage medium of claim 49, wherein the instructions
that, when executed, cause one or more processors to perform the resume check
operation comprise instructions that, when executed, cause one or more processors to:
compare each of the plurality of resume counter values to a program counter
value associated with the instruction; and
for each of the plurality of resume counter values, activate a respective one of
the plurality of threads associated with the respective resume counter value if the

respective resume counter value is equal to the program counter value.



PCT/US2013/049599

WO 2014/025480

1/14

8l
FHO1S
viva

I "Old

aose

ari
ILNEIERE

ONISS3O0¥d

9&@ g9¢ @

ol
ILNEIERE

ONISS3O0dd

aril
IN3IW3T3
ONISS3O0¥d

\£:14

ﬁw.ﬂ

vyl
ILNEIERE

ONISS3O0¥d

91
FHO1S
NOILON™LSNI

114

N\

V (43

L1INN TOYLINOD

X

0l




PCT/US2013/049599

WO 2014/025480

2/14

8t
FHO01S vivd

VS Rs

i
SIN3INW313
ONISS3O0dd

91
FHO1S
NOILON™LSNI

114

N7

NNH

43

0%

ITNAON [«— 3ITNAON
34093a HO134

!

i

N7

ﬁNH

ve

:14

JTNAON e YILNNOD
MO14 WYY90dd

TO™ULNOD

(43
L1INN TOHULNOD

¢ '9Old



PCT/US2013/049599

WO 2014/025480

3/14

€ Old

—

_.
|
|
oF — — [ —
24 v _ 8¢
ww__m_m_mzwq_mm.,_um S¥3LSI93Y HOLVHINIO ——— ¥3INNOD
9Vv14 IAILOV NOILONYLSNI LX3N ! NVIO0Ud
anns3y _
A |
|
|
|
|
PR S ——
|
- — |
m.:wmo_\,_ 05 m_oh%h._<>m_ | 43 0¢
UOLVAILOVAQ [« —+— 31NAONW ——— 31NAONW
AOTHO AvIyHL NOLLIONOD ! 300923d HOL134d
FNNSTY HONV¥g _
) “
i |
UIOVNVIN JLVLIS AVIUHL |
Vs “
31NAONW !
NOILVAILOV |
MO3HO INNSTY _ a
€ | ol
| OIS
|

FT1NAOIN MOT4 TO0¥LNOD

NOILON™LSNI




WO 2014/025480

CONTROL FLOW MODULE

PCT/US2013/049599

|
|
34 |
NEXT
INSTRUCTION |
BLOCK | |
80 |
f |
THREAD |
DEAC'I;I;IATOR L SROGRAM :
— STATE
I REGISTER |
L |
THREAD REGISTERS |
60 |
I
ACTIVE RC STATE |
62A 64A TRANSITION |
BLOCK |
ACTIVE RC 76 |
62B 64B = |
ACTIVE RC :
62C 64C |
ACTIVE RC EVENT :
62D 64D INFORMATION |
GENERATOR |
j '
A I
RESUME RESUME |
CHECK CHECK |
MODULE <> ACTIVATION |e— BRANCH |
66 MODULE CONDITION I
0o 68 EVALUATOR
I
I
[ ,
PROGRAM FETCH DECODE
—>»] COUNTER |¢«—>» MODULE — MODULE 22/24
28 30

FIG. 4

ﬁ,zo

32
i



PCT/US2013/049599

WO 2014/025480

5/14

JUSAD
T+2d Auy | z 21815 | Z =1e1s
9AI10E 3W023( SPealy) SAIIeUl SWOS "'SWNSaY e/u | T o1els | g 91e1s
9AI10E SW023( SPeaJy} SAIldeUl ||V "SWNsSaY e/u | 0 91e1S | 7 91e1s
"9AI10BUI SWO0I3q SpeaJyl dAIe ||V "T+Dd | 1hid
"9AI10_UI SWO0I3q SPeaJyl dAIe ||V "T+Dd I | zoes | T o1e1s
"9AI10E SWO023( SPeaJy] SAI10BUl SWOS "'SWNSaY e/u
"9AI10BUI SWO0I3q UOIHPUOD 3NJY YHM SPealyl SAINDY "T+)d pig
"SAI10BUI W OI3q UOIHPUOD 35| YIM SpeaUyl SAINY '1934e1 01 Ydoueug pag
T+2d inig
Ajwiogiun 1934e1 01 youesg | 1nqg
1+2d | d4h9gg
1981e3 01 dwng ar
T+2d S| T91es | T91es
SAI10E 3W023( SpeaJy} SAIldeUl ||V "SWNsSaY e/u | 0 91e1S | T 21e1s
"9AI10BUI SWO0I3q UOIHPUOD 3NJ3 YHM SPealyl SAIDY "T+)d pig
"9AI10BUI SWO0I3] UOIHPUOD 3S|.) YHIM SpeaUyl SAINY '1934e1 01 ydoueug pag | T 21e1S | 0 21e1s
1+2d | d4h9gg
Ajwiogiun 1934e1 01 youeug | 1nqg
T+2d inig
Ajwiojiun 1934e1 01 Yyoueug 1nig
1981e3 01 dwng ar
1981e3 01 dwng i
T+2d S| 0918S | 0 =1.s
1v1S | 3J1VIS
NOILDV | IN3JAT M3N aio

G "Old



WO 2014/025480 PCT/US2013/049599

6/14
100 \
PROCESSOR PROCESSOR
102 104
COMPILER MODULE PROCESSING SYSTEM
110 10

PR

2
N

MEMORY
106

COMPILER CODE
112

SOURCE CODE
114

COMPILED CODE
116

FIG. 6



WO 2014/025480 PCT/US2013/049599
7/14

f 120
EXECUTE INSTRUCTION

SELECTIVELY ENABLE OR 122
DISABLE RESUME CHECK I
OPERATION FOR INSTRUCTION

FIG. 7



WO 2014/025480 PCT/US2013/049599
8/14

f 124
EXECUTE INSTRUCTION

ENABLE RESUME CHECK | 128
OPERATION

PERFORM
RESUME CHECK?

DISABLE RESUME CHECK | f 130
OPERATION

FIG. 8



WO 2014/025480

FIG.9

9/14

BEGIN RESUME
CHECK

PCT/US2013/049599

COMPARE RESUME COUNTER
VALUES TO PROGRAM
COUNTER VALUE

132
f

Y

ACTIVATE CORRESPONDING
THREAD IF RESUME COUNTER
VALUE EQUALS PROGRAM
COUNTER VALUE

134
f

END RESUME
CHECK




WO 2014/025480 PCT/US2013/049599
10/14

BEGIN RESUME
CHECK

SELECT I 136
——> INACTIVE
THREAD

ACTIVE FLAG = |f 140
TRUE

YES

MORE
INACTIVE
JHREADS?,

END RESUME
CHECK

142
RC = MAX J

FIG. 10



WO 2014/025480 PCT/US2013/049599
11/14

SELECT ONE OR MORE 146
INSTRUCTIONS FOR PERFORMING I
RESUME CHECK OPERATION

GENERATE COMPILED CODE 148
BASED ON SELECTED f
INSTRUCTIONS

FIG. 11



WO 2014/025480 PCT/US2013/049599
12/14

GENERATE PRELIMINARY | 1%0
COMPILED CODE

'

DETERMINE CONTROL FLow |f 152
INSTRUCTIONS

'

154
SELECT CONTROL FLOW f
INSTRUCTION

DEACTIVATE NO

THREADS?

SELECT CANDIDATE NEXT f 158
INSTRUCTION FOR
PERFORMING RESUME CHECK

YES

MORE
INSTRUCTIONS?

f 162
GENERATE COMPILED CODE

FIG. 12



WO 2014/025480 PCT/US2013/049599

13/14
T T T T T T T T oo oo !
: 0 alul; // ALU instruction :
(1 aluz; // ALU instruction |
: 2 branch #5; // Forward branch to instruction #5 :
I 3 alu3; // ALU instruction :
: 4 jump #7; // Forward jump to instruction #7 |
15 alu4; // ALU instruction :
: 6 alub; // ALU instruction |
|7 alu6; // ALU instruction :
: 8 branch #1; // Backward branch to instruction #1 |
: 9 alu7; // ALU instruction :
e e e e e e e . . o o o o o —— —— — — — — — —— — — — — — — — — — I

Instruction ID | Thread O | Thread1 | Comment
0 X X
1 X X
2 X X Divergent forward branching
3 X 0 Thread 1 becomes inactive
4 X 0
5 0 X Thread 1 is resumed to be active
6 0 X
7 X X Thread 0 is resumed to be active
8 X X Divergent backward branching
1 X 0 Thread 1 becomes inactive
2 X 0
3 X 0
4 X 0
5 0 0
6 0 0
7 X 0 Thread 0 is resumed to be active
8 X 0
9 X X Thread 1 is resumed to be active

Execution sequence of two threads (X = active, O= inactive)

FIG. 14



WO 2014/025480

PCT/US2013/049599
14/ 14
________________________________ |
0 alul; // ALU instruction :
1 aluz; // ALU instruction |
2 branch #5; // Forward branch to instruction #5 :
3 alu3; // ALU instruction :
4 jump #7; // Forward jump to instruction #7 |
5 *alud; // ALU instruction :
6 alub; // ALU instruction |
7 *alu6; // ALU instruction :
8 branch #1; // Backward branch to instruction #1 |
9 *alu7; // ALU instruction :
_______________________________ |

Instruction ID | Thread 0 | Thread1l | Comment

0 X X

1 X X

2 X X

3 X )

4 X )

5 0 X Resume check point since instruction #5 is forward
branch target

6 O X

7 X X Resume check point since instruction #7 is forward
jump target

8 X X

1 X O

2 X O

3 X O

4 X O

5 0 0 Resume check point since instruction #5 is forward
branch target

6 ) )

7 X 0 Resume check point since instruction #7 is forward
jump target

8 X )

9 X X Resume check point since instruction #9 is
immediately after a backward branch

Execution sequence of two threads (X = active, O= inactive)

FIG. 16




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/049599

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A Sylvain Collange:
reconvergence at low cost",

XP055038110,
Retrieved from the Internet:

[retrieved on 2012-09-13]
see Section 3

"Stack-Tess SIMT
12 September 2011 (2011-09-12),

URL:http://hal.archives-ouvertes.fr/docs/0
0/62/26/54/PDF/collange_sympa2011 en.pdf

1,17,35,
43

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 December 2013

Date of mailing of the international search report

07/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/049599

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Gregory Diamos et al.: "SIMD
Re-Convergence At Thread Frontiers",
Proceedings of the 44th Annual IEEE/ACM
International Symposium on
Microarchitecture, MICRO '11,

3 December 2011 (2011-12-03), 7 December
2011 (2011-12-07), pages 477-488,
XP055056138,

DOI: 10.1145/2155620.2155676

Retrieved from the Internet:
URL:http://d1.acm.org/citation.cfm?doid=21
55620.2155676

[retrieved on 2013-03-12]

see Section 2.2

see Section 5.1

US 4 435 758 A (LORIE RAYMOND A [US] ET
AL) 6 March 1984 (1984-03-06)

the whole document

JIAYUAN MENG ET AL: "Dynamic warp
subdivision for integrated branch and
memory divergence tolerance",

ACM SIGARCH COMPUTER ARCHITECTURE NEWS,
vol. 38, 8 July 2010 (2010-07-08), page
235, XP055092509,

ISSN: 0163-5964, DOI:
10.1145/1815961.1815992

see section 4.5

NICOLAS BRUNIE ET AL: "Simultaneous
branch and warp interweaving for sustained
GPU performance",

COMPUTER ARCHITECTURE (ISCA), 2012 39TH
ANNUAL INTERNATIONAL SYMPOSIUM ON, IEEE,
9 June 2012 (2012-06-09), pages 49-60,
XP032200021,

DOI: 10.1109/ISCA.2012.6237005

ISBN: 978-1-4673-0475-7

the whole document

1,17,35,
43

1,17,35,
43

1,17,35,
43

1,17,35,
43

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3




INTERNATIONAL SEARCH REPORT

International application No

Flow in GPU Applications",

Proceedings of the First International
Workshop on Characterizing Applications
for Heterogeneous Exascale Systems,
CACHES'11, June 4th, 2011, Tucson,
Arizona,

4 June 2011 (2011-06-04), pages 1-8,
XP055056141,

Retrieved from the Internet:
URL:http://www.istc-cc.cmu.edu/publication
s/papers/2012/unstructured-control-flow.pd
f

[retrieved on 2013-03-12]
Section 2.3

PCT/US2013/049599
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Haicheng Wu ET AL: "“Characterization and 1,17,35,
Transformation of Unstructured Control 43

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3




INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/049599
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 4435758 A 06-03-1984  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)



	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report
	Page 89 - wo-search-report
	Page 90 - wo-search-report

