PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 5: WO 92/19957 (11) International Publication Number: **A2** G01N 21/76 (43) International Publication Date: 12 November 1992 (12.11.92) (21) International Application Number: PCT/US92/03568 (74) Agents: VANDENBURGH, Lynn; Wegner, Cantor, Mueller & Player, 1233 20th Street, N.W., Suite 300, Wash-(22) International Filing Date: 4 May 1992 (04.05.92) ington, DC 20036 (US) et al. (30) Priority data: (81) Designated States: AT (European patent), AU, BE (Euro-694,282 3 May 1991 (03.05.91) US pean patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (71) Applicant: UNIVERSITY OF MARYLAND AT BALTI-(European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European pa-MORE [US/US]; 520 West Lombard Street, Second Floor, Baltimore, MD 21201-1627 (US). tent), SE (European patent). (72) Inventors: LAKOWICZ, Joseph, R.; 9142 Emerson's Reach, Columbia, MD 20142 (US). SZMACINSKI, **Published** Henry; 3203 Southern Avenue, Baltimore, MD 21214 Without international search report and to be republished (US). upon receipt of that report.

(54) Title: METHOD FOR OPTICALLY MEASURING CHEMICAL ANALYTES

(57) Abstract

A system and method in which a photoluminescent ligand is added to a sample to be analyzed in the form of a photoluminescent probe having intrinsic analyte-induced lifetime changes. The method preferably employs phase-modulation fluorometry to measure the lifetime changes. Specific probes are disclosed for measuring various analytes, particularly ionic solutes, including H^+ , Ca^{2+} and K^+ .

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	Finland	ML.	Mali
		FR	France	MN	Mongolia
AU	Australia			MR	Mauritania
BB	Barbados	GA	Gabon		
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
СН	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
СМ	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

METHOD FOR OPTICALLY MEASURING CHEMICAL ANALYTES

FIELD OF THE INVENTION

The present invention is directed to a method for optically measuring chemical analytes and, more particularly, to a method in which a luminescent ligand is added to the sample to be analyzed in the form of a photoluminescent probe having intrinsic analyte-induced lifetime changes.

BACKGROUND OF THE INVENTION

Measurement of certain analytes in blood, such as pH and carbon dioxide, is an important aspect of the clinical care of patients. Previously, such measurements have been made using gas chromatography and other chemical methods. These methods are disadvantageous in that it is necessary to ship the blood sample to a clinical laboratory for analysis, which often results in a delay of an hour or more. Moreover, since the blood gases change rapidly, the shipping time may cause the results to be invalid. Furthermore, these known methods cannot be used for continuous invivo monitoring of blood.

It is known to optically measure certain analytes by using fluorescence intensity measurements. Although fluorescence intensity measurements are desirable in their simplicity, such measurements suffer from source fluctuations due to noise, drift and the like, and are subject to fluorophore bleaching, probe washout and background fluorescence. Further, if the media is turbid or colored, the intensity measurements will be greatly affected.

Moreover, since intensity is a linear product of numerous factors, such as the amount of fluorophore in each state, the excitation intensity, the excitation and emission bandpass, the wavelength sensitivity of the detector, and the like, a complex set of calibration curves must be used to accommodate these factors.

30 SUMMARY OF THE INVENTION

The present invention overcomes the above difficulties by providing a method in which a luminescent ligand is added to the sample to be analyzed in the form of a photoluminescent probe having intrinsic analyte-induced lifetime changes. The lifetime

measurements are advantageous over intensity measurements because they can be performed in optically dense samples or turbid media and are independent of and/or insensitive to photobleaching, probe wash-out or optical loss. The lifetime changes are measured using known time-resolved or phase-modulation fluorometry methods.

In accordance with the method of the invention, the probe can be either fluorescent, wherein the emission is from an excited singlet state to a ground state and the rate of return to the ground state occurs rapidly (on the order of 10 ns), or phosphorescent, wherein the emission is from an excited triplet state to a singlet state and the rate of return to the ground state is relatively slow (on the order of msec to sec).

The step of adding a luminescent ligand (i.e., probe) to the sample to be analyzed requires matching a particular probe to a particular analyte, so that at least a portion of the sample will be non-covalently bound to the probe so that both bound and unbound species of the probe will exist. Thus, the invention differs from prior lifetime measurement methods which rely on a collisional quenching mechanism for measuring analytes. See, for example, U.S. Patent No. 4,810,655 to Khalil et al.; and Great Britain Patent No. 2,132,348 to Demas et al.

By definition, in collisional quenching, the probe does not bind to the analyte as required by the present invention. Instead, collisional quenching requires collisional contact between the fluorophore (probe) and the quencher (analyte). For collisional quenching to occur, the quencher must diffuse to interact with the fluorophore while the latter is in the excited state. Thus, the excited fluorophore returns to the ground state without emission of a photon.

In contrast, the present invention may have an "enhancement" of the luminescence. When the fluorescent ligand binds to the analyte, there may be an increase or decrease in intensity. It is also to be emphasized that the method of the present invention is not a Forster energy transfer mechanism, and thus is different from the method disclosed in European Patent Application 397,641 to Wolfbeis.

The method is useful for sensing the pH and carbon dioxide concentration in blood and other bodily fluids. To this end,

particular probes have proven to be particularly suitable including seminaphthofluoresceins, seminaphthorhodafluors and resorufins, including those sold by MOLECULAR PROBES of Eugene, Oregon, under the tradenames SNAFL-1, Carboxy SNAFL-1, Carboxy SNAFL-2, BCECF Acid, Carboxy SNARF-1, Carboxy SNARF-2, Carboxy SNARF-6 and Carboxy SNARF-X, and resorufin derivatives such as the sodium salt and the acetate.

The method of the invention is useful in either in vitro or in vivo applications, including, for example, blood gas catheters, including optical fibers, and other bedside monitors, and non-invasive blood gas measurements. Also, the invention may be used for pH and carbon dioxide sensors for fermentors and incubators.

The method of the invention is not limited to the sensing of pH, but may also be used to sense a wide variety of other ionic 15 solutes. For example, the calcium ion concentration of a sample may be determined by the method of the present invention. Sensing the calcium ion concentration of a sample is particularly useful for flow cytometry and fluorescent lifetime imaging applications. Such applications are generally disclosed in U. S. Application 20 Serial No. 07/595,343, entitled Method and Apparatus for Performing Phase Fluorescence Lifetime Measurements in Flow Cytometry, filed October 10, 1990, and U. S. Application Serial No. 07/645,525, entitled Method and Apparatus for Multi-Dimensional Fluorescence Lifetime Imaging, filed January 24, 1991, the contents 25 of which are incorporated herein by reference. Of course, the method of the invention is generally applicable to flow cytometry and fluorescent lifetime imaging, and such applications are in no way limited to just calcium ion sensing.

Certain tetraacetic acid derivatives such as that sold by Molecular Probes under the tradename Quin-2 are particularly useful calcium ion probes, although it is contemplated that other probes, such as those sold under the tradenames Fura-2, Indo-1, Rhod-2 and Fluo-3 may also prove suitable. Also, the calcium ion indicators sold by Molecular Probes under the trade-names Calcium Green, 35 Calcium Orange and Calcium Crimson may be used.

Further, the method of the invention may be used to measure potassium ion concentration. Certain potassium ion indicators including that sold by Molecular Probes under the name PBFI may be

useful as potassium ion probes in the method of the invention.

It is to be noted that, although these various pH, calcium ion and potassium ion indicators are known commercially, these indicators generally heretofore have not been used for quantifying their corresponding analytes by photoluminescence lifetime measurements. Most recently, the probes Fura-2 and Quin-2 have been used to make fluorescent lifetime measurements in the presence and absence of calcium ions. See, respectively, S. M. Keating, "Nanosecond Fluorescence Microscopy of Single Cells", report of proceedings mailed May 3, 1990; and Miyoshi et al, "A New Method of Determining Intracellular Free Ca²⁺ Concentration Using Quin2-Fluorescence", Photochemistry and Photobiology, Vol. 53, No 3, pp. 415-418 (1991).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a phase/modulation versus pH graph for one of the probes, snafl-1, used in a preferred embodiment of the invention;

Figure 2 is a phase/modulation versus pH graph for another of the probes, carboxy snafl-1, used in another preferred embodiment of the invention;

20 Figure 3 is a phase/modulation versus pH graph for another of the probes, carboxy snafl-2, used in another preferred embodiment of the invention;

Figure 4 is a phase/modulation versus pH graph for another of the probes, BCECF acid, used in another preferred embodiment of the invention;

Figure 5 is a phase/modulation versus pH graph for another of the probes, carboxy snarf-1, used in another preferred embodiment of the invention;

Figure 6 is a phase/modulation versus pH graph for another 30 of the probes, carboxy snarf-2, used in another preferred embodiment of the invention;

Figure 7 is a phase/modulation versus pH graph for another of the probes, carboxy snarf-6, used in another preferred embodiment of the invention;

Figure 8 is a phase/modulation versus pH graph for another of the probes, carboxy snarf-X, used in another preferred embodiment of the invention;

Figure 9A is a phase versus pH graph for another of the probes, resorufin sodium salt, used in another preferred embodiment of the invention;

Figure 9B is a modulation versus pH graph for the probe shown 5 in Figure 9A;

Figure 10 is a phase/modulation versus pH graph for another of the probes, resorufin acetate, used in another preferred embodiment of the invention;

Figure 11 is a phase/modulation versus calcium ion 10 concentration graph for another of the probes, Quin-2, used in another preferred embodiment of the invention;

Figure 12 is a phase/modulation versus frequency graph for the probe in Figure 5;

Figure 13A is a phase versus concentration graph for carbon dioxide for the probe, carboxy SNARF-6, used in another preferred embodiment of the invention:

Figure 13B is a modulation versus concentration graph corresponding to the graph shown in Figure 13A;

Figure 14 is a phase versus concentration graph for potassium 20 ion concentrations for another or the probes, PBFI, used in another preferred embodiment;

Figure 15 is a schematic diagram showing an embodiment of the preferred instrumentation for use in the present invention;

Figure 16 is another phase/modulation versus pH graph for the 25 probe shown in Figure 3; and

Figure 17 is another modulation versus pH graph for the probe shown in Figure 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The method in accordance with a preferred embodiment of the invention determines and quantifies chemical analytes by changes in photoluminescence lifetimes. The method of the invention includes adding a luminescent ligand to the sample containing the analyte to be analyzed in the form of a photoluminescent probe. The probe can be either fluorescent or phosphorescent.

It is to be understood that this step requires matching a particular probe to a particular analyte, so that at least a portion of the analyte will become non-covalently bound to the

probe so that both bound and unbound (i.e., free) species of the probe will then exist within the sample. The probe is chosen to have intrinsic analyte-induced lifetime changes, i.e., when the probe is bound to an analyte, the naturally occurring fluorescent or phosphorescent lifetime changes. It is to be understood that throughout this application the term "lifetime" refers to the photoluminescent lifetime defined as the inverse of the decay rate of the probe. These changes in lifetime can be measured to determine the concentration of the analyte, as will become more apparent from the discussion below.

In the context of the present invention, the term "sample" refers to compounds, surfaces, solutions, emulsions, suspensions, mixtures, cell cultures, fermentation cultures, cells, tissues, secretions and/or derivatives or extracts thereof, as well as supercritical fluids. Samples, as defined above, which can be used in the method of the present invention for sensing analytes based on fluorescence lifetimes also include samples that can be clear or turbid. Such samples to be measured according to the present invention require only that the fluorophore used be contacted with the sample such that the analyte to be sensed influences the lifetime of the fluorophore such that the lifetime varies with the presence or amount of the analyte.

Such samples can also include, e.g., animal tissues, such as blood, lymph, cerebrospinal fluid, bone marrow, gastrointestinal contents, and portions, cells or internal and external secretions of skin, heart, lung and respiratory system, liver, spleen, kidney, pancreas, gall bladder, gastrointestinal tract, smooth, skeletal or cardiac muscle, circulatory system, reproductive organs, auditory system, the autonomic and central nervous system, and extracts or cell cultures thereof. Such samples can be measured using methods of the present invention in vitro, in vivo and in situ.

Such samples can also include environmental samples such as earth, air or water samples, as well as industrial or commercial samples as compounds, surfaces, aqueous chemical solutions, emulsions, suspensions or mixtures.

Additionally, samples that can be used in the method of the present invention include cell culture and fermentation media used for growth of prokaryotic or eukaryotic cells and/or tissues, such

as bacteria, yeast, mammalian cells, plant cells and insect cells.

The term "analyte" in the context of the present invention refers to elements, ions, compounds, or salts, dissociation products, polymers, aggregates or derivatives thereof. Examples

products, polymers, aggregates or derivatives thereof. Examples of analytes that can be measured in the method of the present invention include, e.g., H⁺, Ca²⁺, K⁺ or other compounds containing these ionic solutes, including salts, derivatives, polymers, dissociation products, or aggregates thereof.

The method of the invention further includes exciting the 10 tagged sample with radiation from any suitable radiation source, such as a laser, an light emitting diode or the like. sources suitable for use in the methods of the present invention, also include noble gas light sources such as helium, neon, argon, krypton, xenon, and radon, and combinations, thereof. 15 sources can include gas lamps or lasers which provide uniform light that has been filtered, polarized, or provided as a laser source, such as a coherent wave (CW) laser or a pulsed laser. impurities can be added to the above described noble gas light sources to provide suitable light sources for use in the present 20 invention with varying wavelengths such as emission and excitation Such impurities include Group II metals, such as zinc, cadmium, mercury, strontium, selenium and ruthenium. A green helium-neon laser is particularly preferred in the present invention because it is inexpensive and reliable.

25 In a preferred embodiment, the intensity of the excitation radiation is modulated at a particular modulation frequency and lifetime determined using known phase-modulation, frequency-domain, techniques. Alternatively, a pulsed radiation source may be used and the lifetime of the sample determined using 30 known time-resolved methods. Both phase-modulation and timeresolved fluorometry methods are well known in the prior art, see Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, 1983, Chapter 3. However, current instrumentation renders the phase-modulation method more expedient. For the 35 conciseness, only the phase-modulation method will be discussed further herein, but it is understood that these same principles generally apply to time-resolved measurements.

When the sample is excited with radiation whose intensity is

modulated, for example, in a sinusoidal manner, the time lag between absorption and emission causes the emission to be delayed in phase and demodulated relative to the excitation radiation. discussed above, when a luminescent ligand is added to the sample, 5 at least a portion of the analyte will bind with the ligand, i.e., probe, so that both bound and unbound species of the probe will now exist within the sample. The probe is chosen so that there will be a significant difference in the luminescent lifetime between the bound and unbound species. The phase shift ϕ and the corresponding 10 demodulation factor m can be measured and used to calculate the photoluminescent lifetime based on well known formulae. It is desirable to select the modulation Lakowicz, <u>supra</u>. frequency in a range that coincides with the frequency at which the differences between the measured phase angles and the demodulations 15 of the bound and unbound ligand are maximal.

Thus, according to the method of the invention, the emission radiation is detected, the phase shift φ (in degrees) and the demodulation factor m (as a percentage change) are measured, and the apparent photoluminescent lifetime may be calculated therefrom.

20 An absolute value of difference in phase angle between the bound and free forms of the ligand of the order of 30-60 degrees at some preselected frequency, and a difference in modulation factor on the order of 30-87%, are preferred, which is shown in the examples below. These ranges of phase angles and modulation factors are preferred because they offer the greatest precision and dynamic range.

frequency-dependent of the absolute values The demodulations are determined by the and photoluminescent lifetimes of the free and bound ligand. In 30 addition, if the excitation and emission spectra are not congruent, the effects depicted in Figure 16 can occur, whereby at particular wavelengths of excitation or emission one form or the other of the probe is preferentially excited or its emission preferentially In such cases, the apparent analyte concentration (for the apparent pKa) varies with excitation or emission 35 pH, This is advantageous, in that the method of the present invention allows the range of concentrations that can be accurately measured with a single probe to be easily varied by selection of the appropriate excitation and/or emission wavelengths.

One preferred embodiment of the instrumentation for use with the method of the invention is schematically shown in Figure 15.

5 It is to be understood, however, that any suitable instrumentation can be used, including, for example, those disclosed in U. S. Patent No. 4,937,457 to Mitchell, and those disclosed in Lakowicz, "A Review of Photon-Counting and Phase-Modulation Measurements of Fluorescence Decay Kinetics", Applications of Fluorescence in the Biomedical Sciences, pp. 29-67 (1986), the contents of which are incorporated herein by reference.

As shown in Figure 15, radiation source 10, in this case a helium-neon laser having an emission of 543 nm, emits excitation beam 12 which is modulated by acoustooptic modulator 14 at a 15 frequency fl to create sinusoidally-modulated excitation beam 16. It is to be understood that modulator 14 need not be an acoustooptic modulator, but that any suitable modulator may be used, such as an electrooptic modulator. Moreover, the modulation need not be sinusoidal, but of any desired shape. Also, the 20 modulator need not be external, but instead the light source may be intrinsically modulated.

Sinusoidally-modulated excitation beam 16 irradiates sample S, which contains the analyte to be measured and the appropriate probe, with both bound and unbound species of the probe being contained within the sample. The irradiated sample emits emitted beam 18 which is detected at photomultiplier tube 20. Emitted beam 18 is amplitude modulated at the same frequency as the excitation but it is phase shifted and demodulated with respect to the excitation. It may be desirable to filter emitted beam 20 with optical filter F in order to change the effective sensitivity range of the detector, as explained above. Typically, filter F is a 2-73 Corning filter, but any desired filter may be used, such as a Corning 3-67 filter.

Cross-correlation circuit 22 includes first frequency 35 synthesizer 24 which generates frequency f1, equal to one-half of a modulation frequency fM to drive acoustooptic modulator 14, and the PMT dynode chain. Cross-correlation circuit 22 also includes second frequency synthesizer 26 which generates a frequency f2

equal to the modulation frequency fM plus a cross-correlation frequency *f to drive photomultiplier tube 20. First frequency synthesizer 24 is coupled to frequency doubler 28, which directs a signal having a frequency equal to the modulation frequency fM to mixer 30. Second frequency synthesizer 26 also directs a signal having frequency f2 equal to the modulation frequency fM plus the cross-correlation frequency *f to mixer 30. Mixer 30 produces an output signal having a frequency equal to *f, the difference between fM and f2.

Mixer 30 and photomultiplier tube 20 are each connected to phase meter/digital voltmeter 32. Phase meter/digital voltmeter 32 compares the output signal having a frequency f received from mixer 30 and the signal having a frequency f(shifted) received from photomultiplier tube 20 to calculate the phase shift f, and the demodulation factor m which is stored in computer 34.

A. Measuring pH and Carbon Dioxide Concentration

As discussed above, a particular probe is selected to have intrinsic photoluminescent lifetime changes induced by the particular analyte to be measured. To measure pH, for example, suitable probes include certain seminaphthorhodafluors, seminaphthofluoresceins (including BCECF acid) and resorufins. Specific example structures include:

SEMINAPHTHORNODAFLUORS

O COOCH

CEIDOXY SNAKF-X

SUBSTITUTE SHEET

SEMINAPHTHOFLUORESCEINS

BCECF acid

RESORUFINS

Resorufin sodium sait

Resorusin acetate

These probes are available under the above-given tradenames from Molecular Probes, Inc., Eugene, Oregon, and are commercially sold as wavelength-shift pH indicators for intensity measurements. The seminaphthorhodafluors and seminaphthofluoresceins are disclosed in U. S. Patent No. 4,945,171, the contents of which is incorporated herein by reference.

All of the following examples were taken in 80mM Tris at 25 degrees C.

Example 1

A sample containing the pH indicator Snafl-1 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 MHz. A Corning 2-73 filter was used to filter the emission beam. As shown in Figure 1, at pH 7.24, the measured phase shift with respect to the modulated excitation was 48.0 degrees, and the modulation of the emission was 66.8% of the modulation of the excitation. In Figure 1, the phase is depicted as relative to its value at pH = 9.5 of 44.0 degrees with respect to the excitation. Similarly, the modulation is depicted relative to its value at pH = 5.0 of 47.0%.

20 Example 2

A sample containing the pH indicator Carboxy Snafl-1 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 MHz. A Corning 2-73 filter was used to filter the emission beam.

25 As shown in Figure 2, at pH 7.02, the measured phase shift with respect to the modulated excitation was 46.1 degrees, and the modulation of the emission was 61.0% of the modulation of the excitation. In Figure 2, the phase is depicted as relative to its value at pH = 9.5 of 43.0 degrees with respect to the excitation.

30 Similarly, the modulation is depicted relative to its value at pH = 4.3 of 36.0%.

Example 3

A sample containing the pH indicator Carboxy Snafl-2 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135

MHz. Initially, a Corning 2-73 filter was used to filter the emission beam. As shown in Figure 3, at pH 7.10, the measured phase shift with respect to the modulated excitation was 43.6 degrees, and the modulation of the emission was 57.8% of the modulation of the excitation.

As shown in Figure 17, further experimentation was conducted at various emission wavelengths. At pH = 7.10, the modulations with respect to the modulated excitations were 26.7% at 560 nm, 31.3% at 580 nm, 43.6% at 600 nm, 59.3% at 620 nm, 64.6% at 640 nm, 10 and 65.9% at 660 nm.

As shown in Figure 16, it is apparent that at pH = 7.0, for an excitation wavelength of 543 nm, the modulation is 43.6% with respect to the modulated excitation, whereas for an excitation wavelength of 560 nm, the modulation is 28.0%. Similarly, the phase angle at an excitation wavelength of 543 nm, is 51.0 degrees and at 560 nm, is 82.0 degrees.

As is apparent from Figures 3, 16 and 17, the probe carboxy SNAFL-2 can be used in the method of the present invention to accurately measure pH in the range of 5 to 9, i.e., over a 20 concentration range of 4 decades.

Example 4

A sample containing the pH indicator BCECF acid was irradiated using a helium-cadmium laser having an excitation wavelength of 500 nm modulated at a modulation frequency of 65.0 MHz. As shown in Figure 4, at pH 7.13, the measured phase shift with respect to the modulated excitation was 51.6 degrees, and the modulation of the emission was 62.7% of the modulation of the excitation. In Figure 4, the phase is depicted as relative to its value at pH = 4.2 of 49.0 degrees with respect to the excitation. Similarly, the modulation is depicted relative to its value at pH = 9.5 of 52.0%.

At an excitation wavelength of 540 nm and a pH of 7.13, the measured phase shift was 58.7 degrees and the modulation was 51.4%. Again, the phase is depicted as relative to its value at pH = 4.2 of 50.0 degrees with respect to the excitation, and the modulation is depicted relative to its value at pH = 9.5 of 47.0%.

Example 5

A sample containing the pH indicator Carboxy Snarf-1 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 5 MHz. A Corning 2-73 filter was used to filter the emission beam. As shown in Figure 5, at pH 6.91, the measured phase shift with respect to the modulated excitation was 36.5 degrees, and the modulation of the emission was 70.0% of the modulation of the excitation. The phase is depicted as relative to low pH and the modulation as relative to high pH.

As can be seen from Figure 12, the difference in phase angles observed for this probe in the bound and unbound forms is maximal in the range of about 135 MHz; thus a modulation frequency in this range is preferred because it provides optimum precision and dynamic range.

Example 6

A sample containing the pH indicator Carboxy Snarf-2 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 20 MHz. Initially, a Corning 2-73 filter was used to filter the emission beam. As shown in Figure 6, at pH 7.0, the measured phase shift with respect to the modulated excitation was 27.0 degrees, and the modulation of the emission was 65.0% of the modulation of the excitation. In Figure 6, the phase is depicted as relative to its value at pH = 4.9 of 10.0 degrees with respect to the excitation. Similarly, the modulation is depicted relative to its value at pH = 9.2 of 58.0%.

Example 7

A sample containing the pH indicator Carboxy Snarf-6 was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 MHz. Initially, a Corning 2-73 filter was used to filter the emission beam. As shown in Figure 7, at pH 6.92, the measured phase shift with respect to the modulated excitation was 59.8 degrees, and the modulation of the emission was 34.6% of the modulation of the excitation. The phase is depicted relative to

its high pH value of 41.7 degrees, and the modulation is depicted relative to its low pH value of 25.3%.

Example 8

A sample containing the pH indicator Carboxy Snarf-X was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 MHz. A Corning 2-73 filter was used to filter the emission beam. As shown in Figure 8, at pH 6.88, the measured phase shift with respect to the modulated excitation was 54.0 degrees, and the modulation of the emission was 53.6% of the modulation of the excitation. In Figure 8, the phase is depicted as relative to its value at pH = 4.8 of 51.0 degrees with respect to the excitation. Similarly, the modulation is depicted relative to its value at pH = 9.5 of 42.0%.

15 Example 9

A sample containing the pH indicator Resorufin Sodium Salt was irradiated using a helium-cadmium laser having an excitation wavelength of 442 nm modulated at a modulation frequency of 135 Initially, a Corning 3-67 filter was used to filter the 20 emission beam. As shown in Figures 9A and 9B, at pH = 6.1, the measured phase shift with respect to the modulated excitation was 58.1 degrees, and the modulation of the emission was 41.1% of the modulation of the excitation. At an emission wavelength of 560 nm, the measured phase shift with respect to the modulated 25 excitation was 41.1 degrees, and the modulation of the emission was 45.3% of the modulation of the excitation. At an excitation wavelength of 543 nm and a pH of 3.5, the measured phase shift with respect to the modulated excitation was 29.8 degrees, and the modulation of the emission was 62.6% of the modulation of the 30 excitation. At an excitation wavelength of 566 nm and a pH of 2.67, the measured phase shift with respect to the modulated excitation was 39.5 degrees, and the modulation of the emission was 55.0% of the modulation of the excitation.

Example 10

35 A sample containing the pH indicator Resorufin Acetate was

irradiated using a helium-cadmium laser having an excitation wavelength of 442 nm modulated at a modulation frequency of 135 MHz. Initially, a Corning 3-67 filter was used to filter the emission beam. As shown in Figure 10, at pH 5.52, the measured phase shift with respect to the modulated excitation was 41.0 degrees, and the modulation of the emission was 50.4% of the modulation of the excitation. In Figure 10, the phase is depicted as relative to its value at pH = 3.1 of 16.4 degrees with respect to the excitation. Similarly, the modulation is depicted relative to its value at pH = 7.5 of 38.1%.

Example 11

A sample containing the indicator carboxy SNARF-6 in hydrogel was irradiated using a green helium-neon laser having an excitation wavelength of 543 nm modulated at a modulation frequency of 135 MHz. A Corning 2-73 filter was used to filter the emission. As shown in Figures 13A and 13B, at 4% carbon dioxide (expressed as a percentage of total gas molecules overlaying the sample, with the balance being nitrogen), the measured phase shift with respect to the modulated excitation was 71.1 degrees, and the modulation of the emission was 27.5% of the modulation of the excitation.

* * * *

All of the probes in Examples 1-11 are excitable with a 543 nm green helium-neon laser, except for BCECF acid. The use of a green helium-neon laser is particularly advantageous in the clinical setting because the laser is inexpensive and reliable.

These probes also exhibit acceptable phase and modulation changes. The response for BCECF acid is the smallest, and the response for resorufin sodium salt is the largest. As discussed above, phase shifts on the order of 30-60 degrees are preferred.

30 Accordingly, of the above pH probes, carboxy snafl-2 and carboxy snarf-6 exhibit the particularly useful phase and modulation changes.

The results are dependent on the excitation and emission wavelengths, since these variables cause either the bound or

unbound form of the probe to be emphasized, as explained above. For pH measurements, this allows the range of pH sensitivity to be selected depending on the choice of excitation wavelength or emission wavelength.

Some of the above probes are more dependent on these variables than others. For example, of the seminaphthofluoresceins, carboxy-snafl-2 appears to be the best at allowing measurements of various pH ranges by changing the excitation and emission wavelengths. Of the seminaphthorhodafluors, carboxy snarf-6 appears to be the best in this respect. Although both of the resorufins show large changes in phase and modulation, resorufin sodium salt appears to allow greater range of pH sensitivity than resorufin acetate.

The method of the invention is particularly useful in a clinical setting for measuring blood gases quickly and effectively.

15 For example, the pH of a blood sample can be measured and certain blood gases, such as carbon dioxide concentration, can be determined therefrom. This method of determining the pH and carbon dioxide concentration of a blood sample can be used in vitro or in vivo including, for example, blood gas catheters and other bedside patient monitors, and non-invasive blood gas measurements.

B. Measuring Calcium Ion Concentration

The method of the invention may also be used to measure the calcium ion concentration of a sample. To measure calcium ion concentration, certain tetraacetic acids, particularly Quin-2 (2-25 [(2-amino-5-methylphenoxy) methyl]-6-methoxy-8-amino-quinoline-N,N,N',N'-tetraacetic acid, tetrapotassium salt) having the following structure has proven particularly useful:

QUIN-2

The short lifetime component shown in Figure 11 corresponds to the probe bound to the calcium ions, and the long lifetime component 30 corresponds to the free probe.

Example 12

A sample containing the calcium ion indicator Quin-2 in a buffered solution of 130 mM KCl desolved in 10 mM MOPS and 1 mM EDTA at a pH of 7.06 was irradiated using a laser having an excitation wavelength of 293 nm modulated at a frequency of 49.53 MHz. The emission wavelength was 500 nm. As shown in Figure 11, at a calcium ion concentration of 26 nM, the measured phase shift with respect to the modulated excitation was 45.1 degrees, and the modulation of the emission was 40.0% of the modulation of the excitation. At a calcium ion concentration of 26 nM and an excitation wavelength of 346 nm, the measured phase shift with respect to the modulated excitation was 32.0 degrees, and the modulation of the emission was 54.2% of the modulation of the excitation.

* * * * *

As can be seen from the above, as was found in Examples 111, the results in Example 12 are dependent on the excitation and
emission wavelengths, since these variables cause either the bound
or unbound form of the probe to be emphasized, as explained above.
20 For calcium ion concentration measurements, this allows the range
of calcium ion concentration sensitivity to be selected depending
on the choice of excitation wavelength and/or emission wavelength.

It is also contemplated that the probes known under the tradenames Fura-2, Indo-1, Rhod-2, Fluo-3, Calcium Green, Calcium 25 Orange and Calcium Crimson may be suitable for making calcium ion concentration measurements using the method of the present invention.

Sensing the calcium ion concentration of a sample is particularly useful for flow cytometry and fluorescent lifetime 30 imaging applications.

C. Measuring Potassium Ion Concentration

The method of the invention may also be used to measure the potassium ion concentration of a sample. To measure potassium ion

concentration, the probe known as PBFI, having the following structure, has been found to be particularly useful:

Example 13

A sample containing the potassium ion indicator PBFI was 5 irradiated using a laser having an excitation wavelength of 355 $\ensuremath{\text{nm}}$

modulated at a frequency of 975.3 MHz. As shown in Figure 14, at a potassium ion concentration of 200 mM, the measured phase shift with respect to the modulated excitation was 57.5 degrees. In Figure 14, the phase is depicted as relative to its value at a potassium ion concentration of 0 mM of 48.1 degrees with respect to the excitation. At a modulation frequency of 193.6 MHz and a calcium ion concentration of 200 mM, the measured phase shift with respect to the modulated excitation was 31.2 degrees. The phase is depicted as relative to its value at a potassium ion concentration of 0 mM of 26.3 degrees with respect to the excitation.

* * * *

The above is for illustrative purposes only. Modifications can be made within the scope of the invention as defined by the appended claims.

We claim:

1. A method of optically measuring analytes, said method comprising the steps of:

adding a photoluminescent ligand probe to a sample to be analyzed, said probe having intrinsic analyte-induced lifetime changes;

exciting the sample with radiation;

detecting the resulting emission beam; and

calculating the apparent luminescence lifetime to determine the analyte concentration of the sample.

- 2. A method as in claim 1, wherein the analyte is hydronium ions.
- 3. A method as in claim 2, further comprising the step of calculating carbon dioxide concentration from the hydronium ion concentration.
- 4. A method as in claim 3, wherein the carbon dioxide concentration is calculated through the bicarbonate couple to pH.
- 5. A method as in claim 1, wherein said probe is a phosphorescent probe.
- 6. A method as in claim 1, wherein said probe is a fluorescent probe.
- 7. A method as in claim 1, wherein the sample is human blood or a fraction thereof.
- 8. A method as in claim 2, wherein said probe is selected from the group consisting of seminaphthorhodafluors, seminaphthofluoresceins and resorufins.
- 9. A method as in claim 7, wherein said probe is selected from the group consisting of seminaphthorhodafluors, seminaphthofluoresceins and resorufins.

10. A method as in claim 2, wherein said probe is selected from the group consisting of the following formulae:

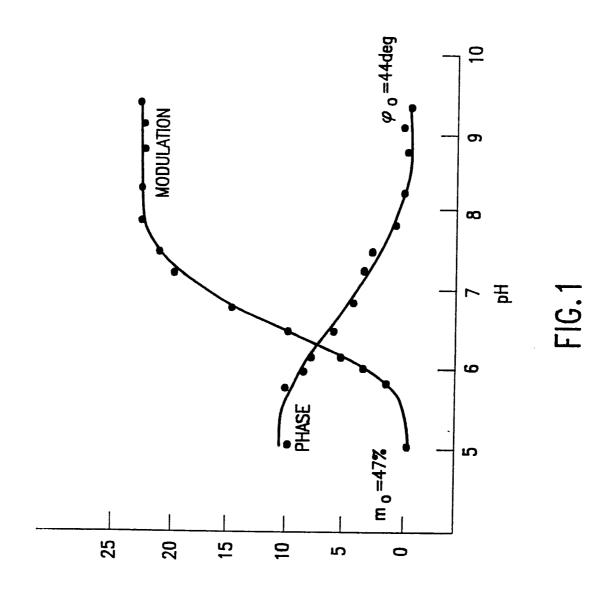
<u>SEMINAPHTHOFLUORESCEINS</u>

RESORUFINS

SEMINAPHTHORHODAFLUORS

Carbony SNAKE-X

- 11. A method as in claim 1, wherein said method is used for the continuous in-vivo monitoring of blood gases.
- 12. A method as in claim 1, wherein the lifetime is calculated using phase-modulation fluorometry.
- 13. A method as in claim 1, further comprising the step of changing the apparent concentration sensitivity range of the probe by changing the wavelength of the modulated excitation and/or the wavelength of the emission.
- 14. A method as in claim 1, wherein the analyte is ionic calcium.
- 15. A method as in claim 14, wherein said probe has the following formulae:


QUIN-2

- 16. A method as in claim 1, wherein the method is used for flow cytometry.
- 17. A method as in claim 1, wherein the method is used for fluorescent lifetime imaging.
- 18. A method as in claim 14, wherein the excitation wavelength is 293 nm.
- 19. A method as in claim 14, wherein the excitation wavelength is 346 nm.

- 20. A method as in claim 14, wherein the excitation wavelength is 357 nm.
- 21. A method as in claim 14, wherein a Corning 3-72 filter is used to filter the emission beam.
- 22. A method as in claim 1, wherein the analyte is ionic potassium.
- 23. A method as in claim 22, wherein the probe has the following formula:

- 24. A method as in claim 22, wherein the excitation wavelength is 355 nm.
- 25. A method as in claim 1, wherein the lifetime is calculated using time-resolved fluorometry.
- 26. A method as in claim 1, wherein the sample is excited using a green helium-neon laser.

- 27. A method as in claim 1, wherein the sample is excited using a laser diode.
- 28. A method as in claim 27, wherein the laser diode is intrinsicly modulated.

RELATIVE PHASE ANGLE (DEGREES)
OR MODULATION (%)

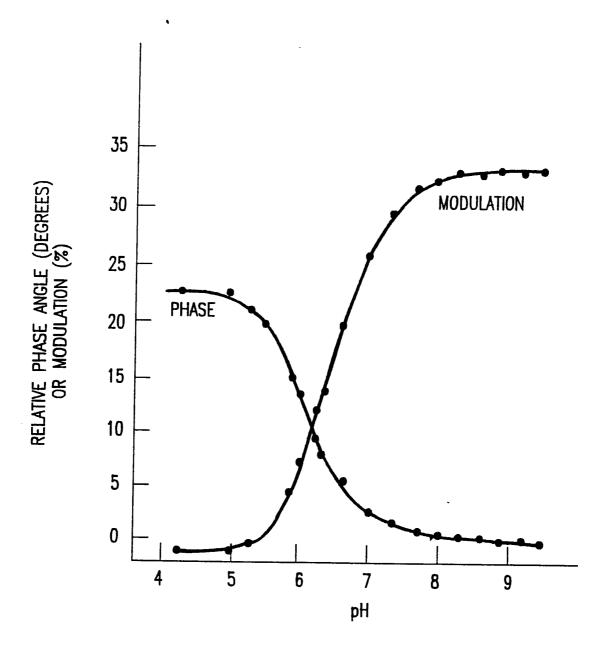


FIG.2

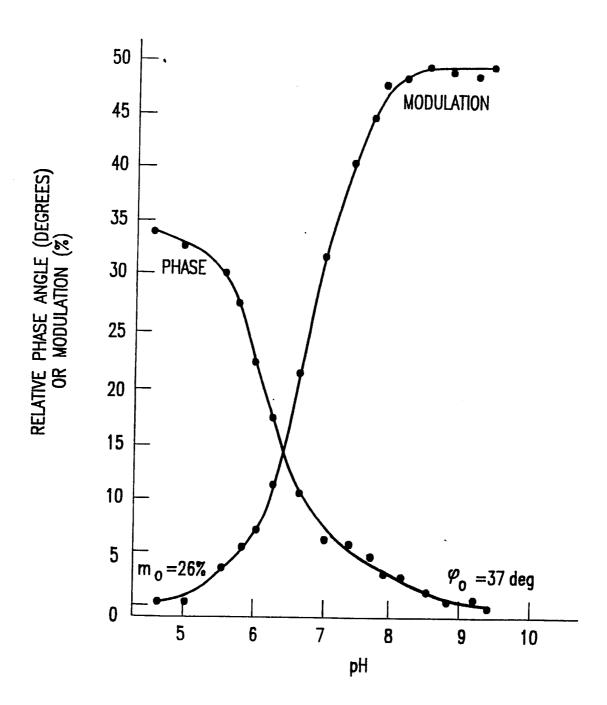
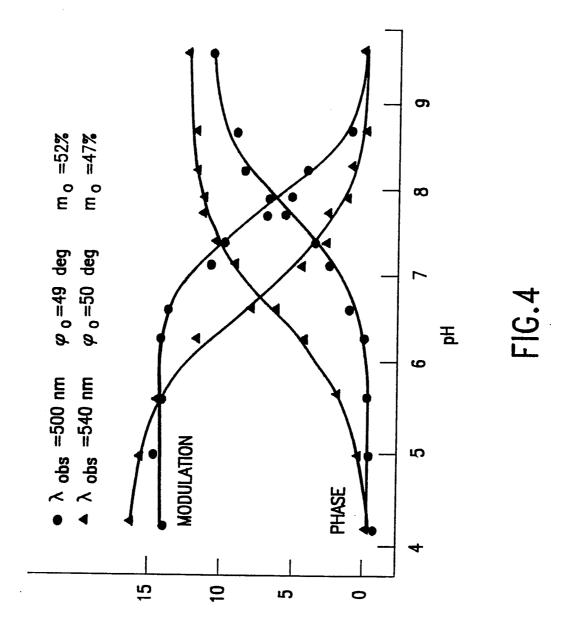



FIG.3

RELATIVE PHASE ANGLE (DEGREES) OR MODULATION (%)

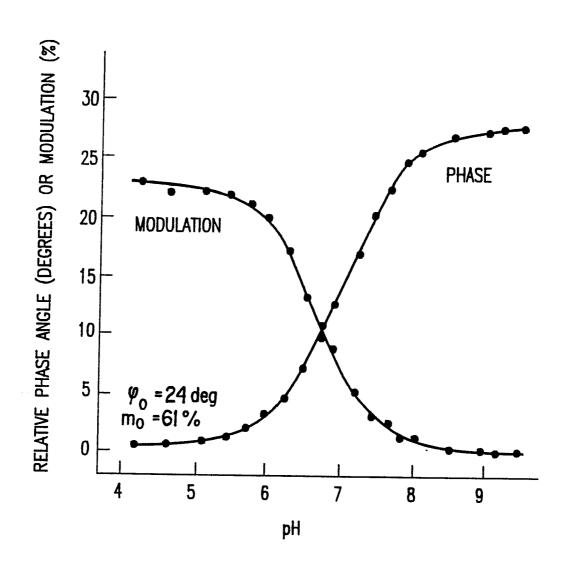


FIG.5

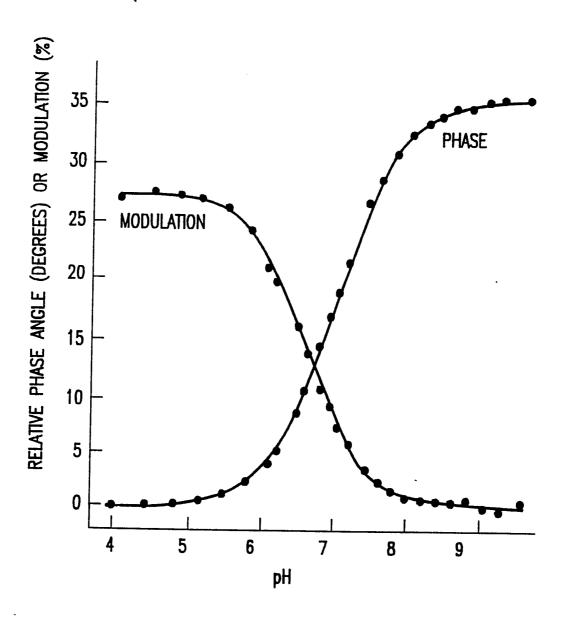


FIG.6

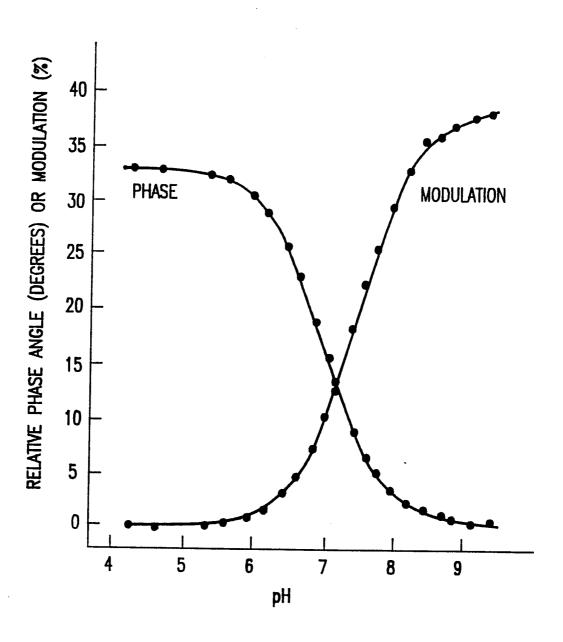
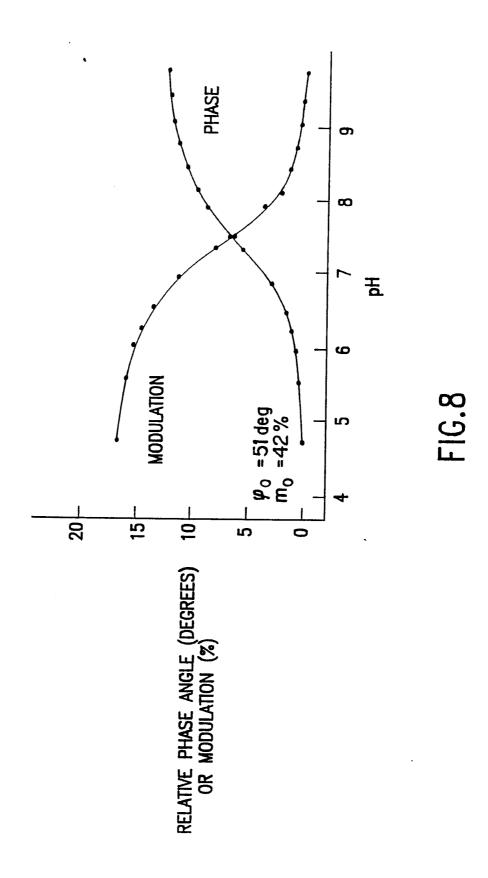



FIG.7

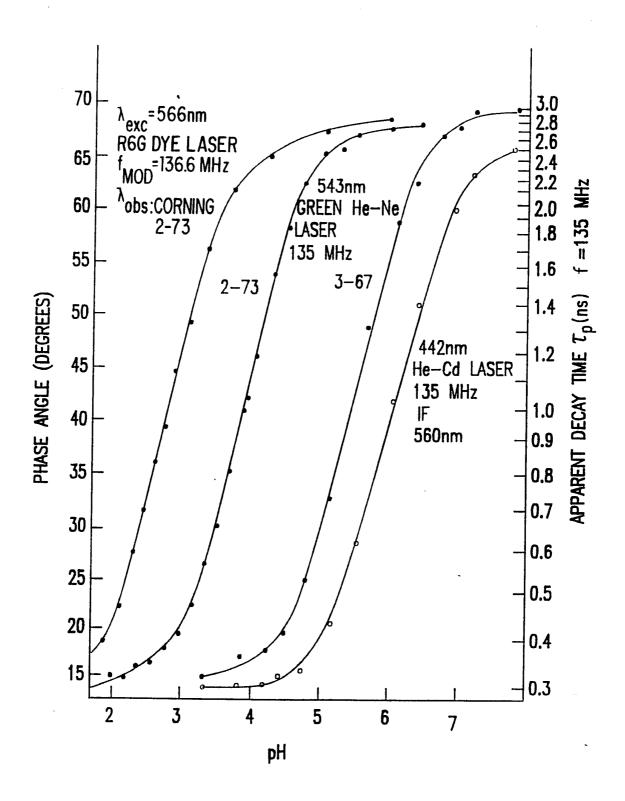


FIG.9A

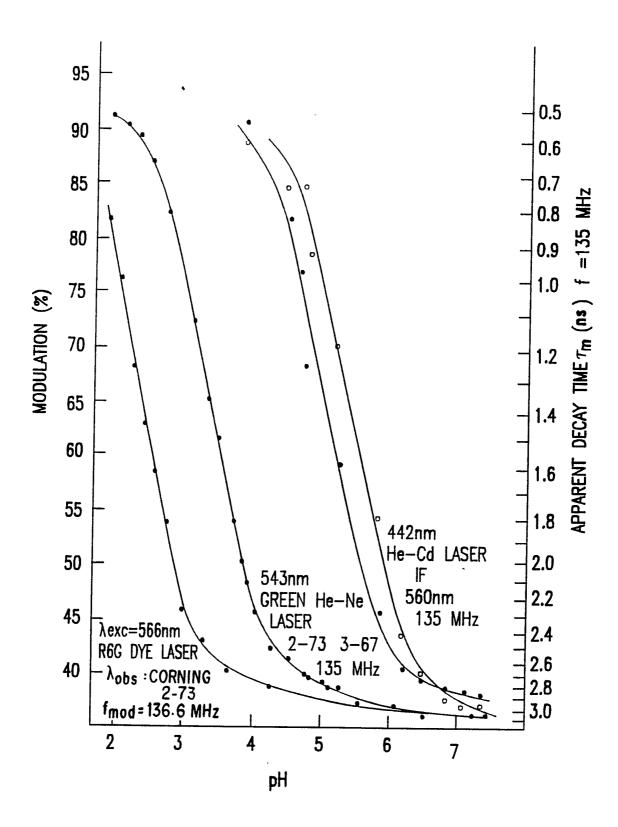


FIG.9B

11/18

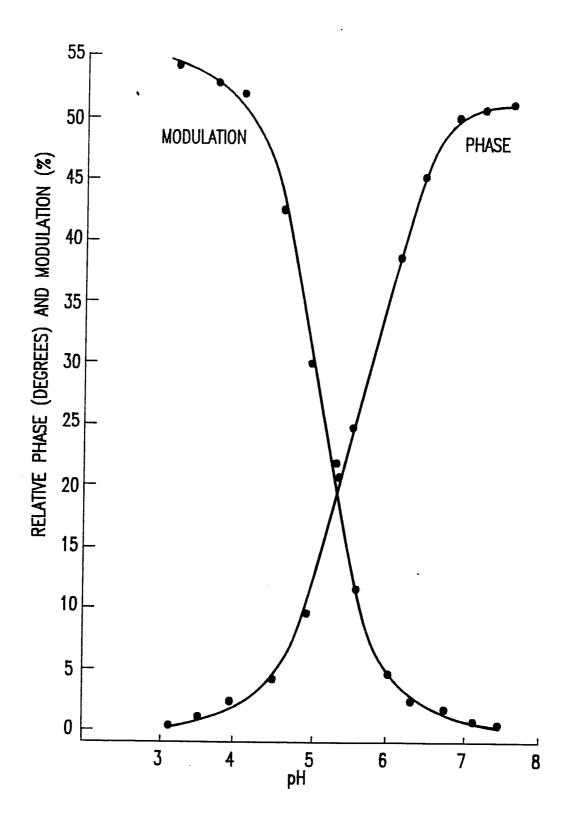
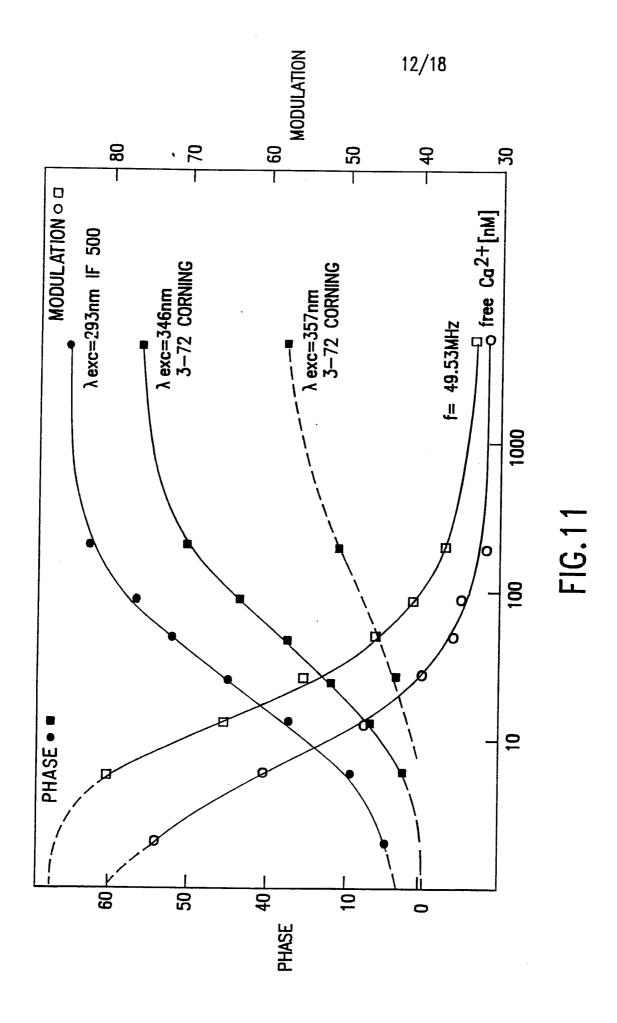
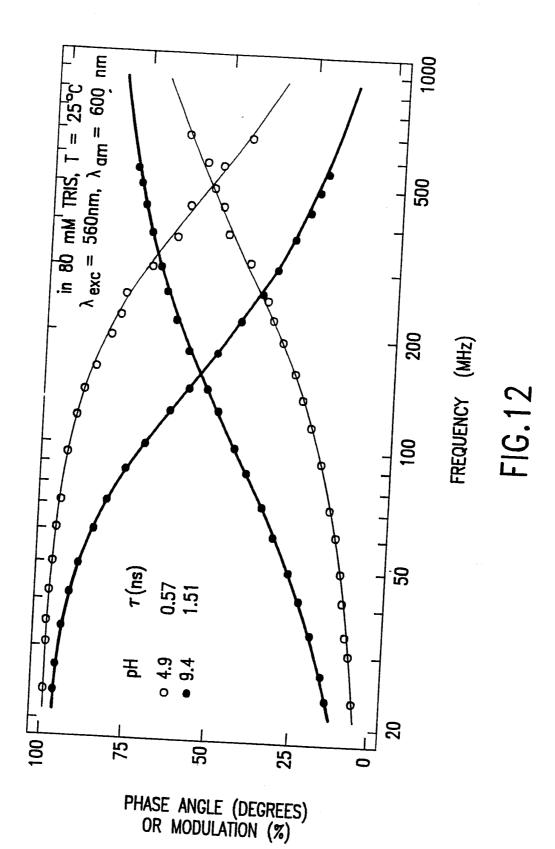




FIG.10

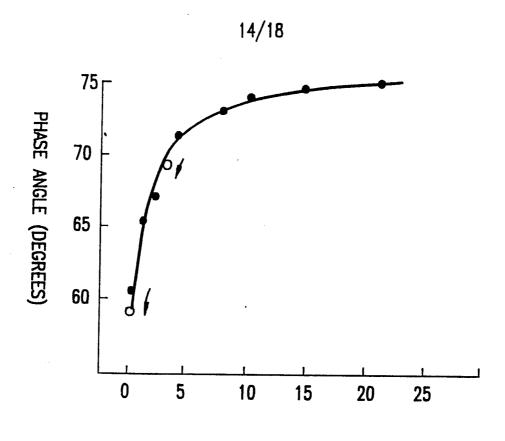


FIG.13A

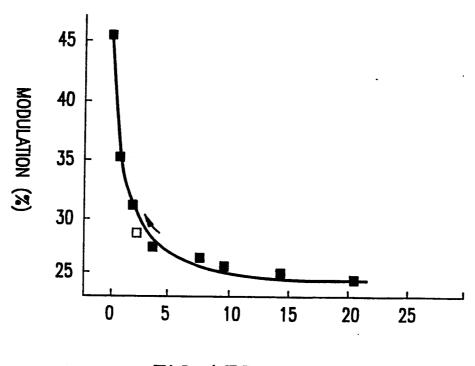
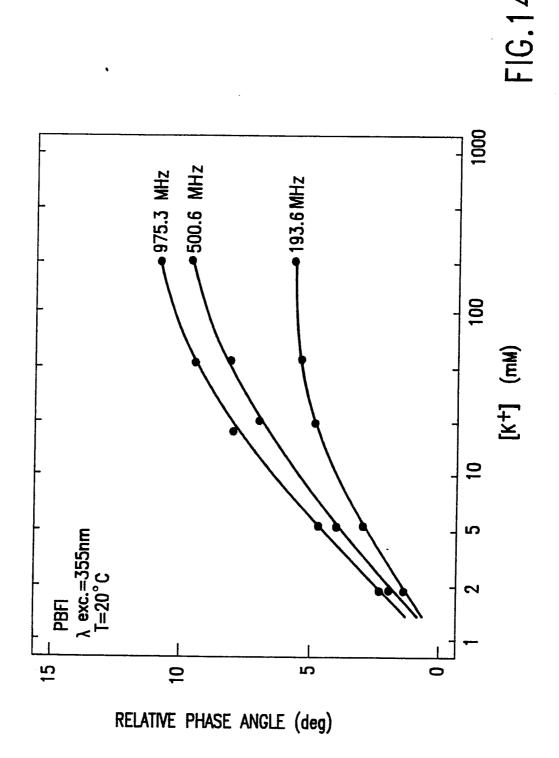
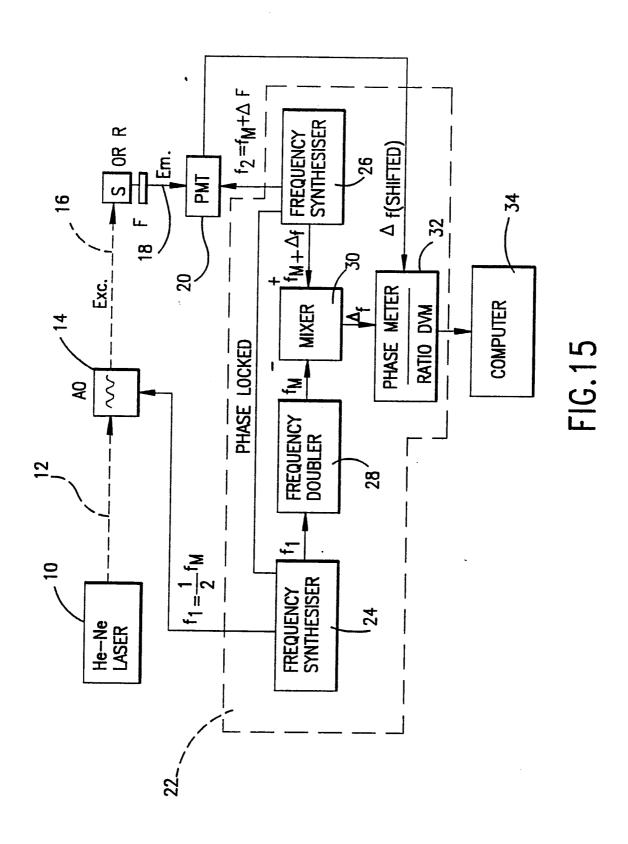




FIG.13B

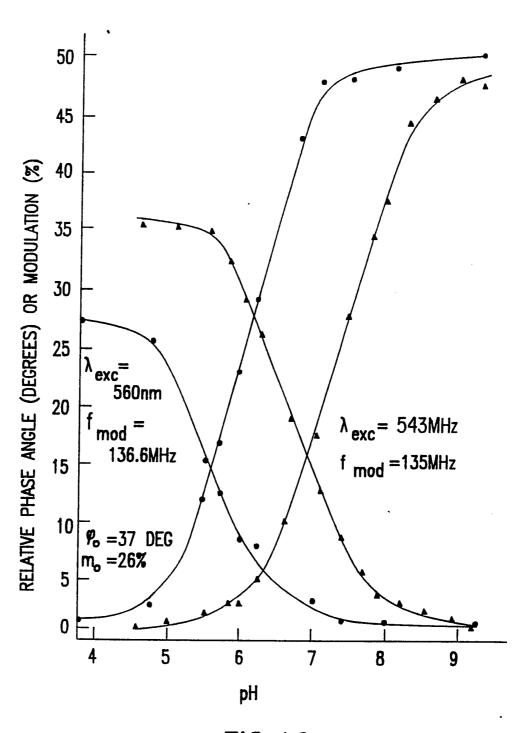


FIG. 16

18/18

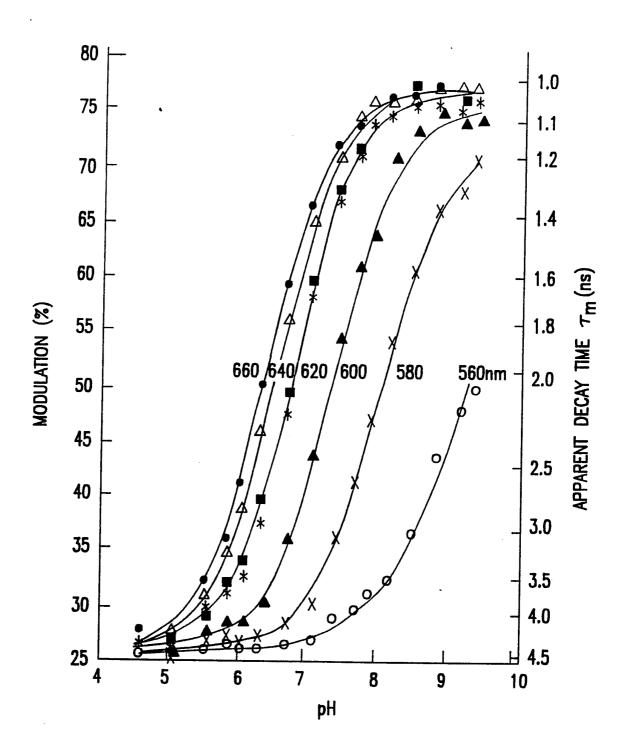


FIG.17