(54) 实用新型名称
输入装置和键盘

(57) 摘要
本申请涉及输入装置和键盘。一些实施方式包括输入装置，该输入装置包括处理器、具有布置在其中的多个键的键盘以及由处理器控制并且布置在键盘下方的运动传感器。多个键包括控制器键、一个或更多个输入键，其中，当控制器键被激活时，运动传感器可生成与物体沿一个或更多个输入键的顶部表面的移动相对应的信号，其中，该信号可以用于控制显示器上的光标。一个或更多个输入键中的每个输入键在被激活时生成输入功能，并且可以包括字母数字输入、方向键输入或功能键输入中的一者或多者。在一些情况下，控制器键可以是 shift 键、control 键、windows 键、command 键、alt 键、专用控制器键或用户指定的键中的一者或多者。
1. 一种输入装置，包括：
 处理器；
 多个键，所述多个键包括：
 控制器键；以及
 一个或更多个输入键，
 其中，所述一个或更多个输入键在被激活时使得生成第一输出；以及
 其中，所述一个或更多个输入键在与所述控制器键组合而被激活时使得生成第二输出；以及
 运动传感器，所述运动传感器由所述处理器控制并且布置在所述一个或更多个输入键的顶部表面的下方，
 其中，当所述控制器键被激活时，所述运动传感器生成与物体沿所述一个或更多个输入键的顶部表面的移动相对应的信号。

2. 根据权利要求1所述的输入装置，其中，所述第一输出对应于字母数字输出、方向输出或功能输出。

3. 根据权利要求1所述的输入装置，其中，所述控制器键是shift键、control键、windows键、command键、alt键或用于所述输入装置的默认辅助键中的一者。

4. 根据权利要求1所述的输入装置，其中，所述信号控制显示器上的光标。

5. 根据权利要求1所述的输入装置，其中，所述运动传感器是电容式传感器。

6. 根据权利要求1所述的输入装置，其中，所述运动传感器是配置在所述一个或更多个输入键的下方的连续的层。

7. 根据权利要求1所述的输入装置，其中，所述多个键中的任一键能够被用户指定为所述控制器键。

8. 一种键盘，包括：
 多个键，所述多个键布置在所述键盘中，所述多个键包括：
 控制键；以及
 一个或更多个输入键，其中，所述控制键和所述一个或更多个输入键配置成能够下压；以及
 运动敏感键框架，所述运动敏感键框架响应于所述方面产生运动信号；
 a) 所述控制键被下压；以及
 b) 检测到物体沿所述一个或更多个输入键的横向移动，其中，所述运动信号对应于所述物体的横向移动。

9. 根据权利要求8所述的键盘，其中，所述键盘框架布置在所述一个或更多个键的至少一部分的下方。

10. 根据权利要求8所述的键盘，其中，所述控制键是shift键、control键、windows键、command键、alt键或用于输入装置的默认辅助键中的一者。

11. 根据权利要求8所述的键盘，其中，所述运动信号能够被操作以控制显示器上的光标或生成与所述物体沿所述一个或更多个输入键的横向移动相对应的触摸手势。

12. 根据权利要求8所述的键盘，其中，所述键盘框架包括电容式传感器。

13. 根据权利要求8所述的键盘，其中，所述键盘框架为邻近于所述多个键中的每个键配
置的连续的单个层。
输入装置和键盘

技术领域

[0001] 本实用新型的实施方式总体上涉及计算机系统中使用的外围装置。具体地说，本文中描述了具有集成的触摸和运动敏感技术的外围装置。

背景技术

[0002] 常规的接口装置，比如鼠标和键盘，是无处不在的并且在现代计算系统中仍然是主要的人机接口装置（HID）。通常，键盘提供了多个二进制输入（即开/关）。热键和宏指令通过按下两个或更多个键的预定组合允许用户执行多级功能，比如剪切和粘贴，可提高生产力和效率。然而，虽然有这些改进，但是常规的键盘和鼠标仍然仅提供有限的输入选择，并且效率方面的提高仍然被这些限制很大程度上约束。

[0003] 随着总体上触摸板、触摸屏以及触摸敏感技术的发展，人机接口装置通过允许用户使用更多样的输入选择来执行命令变得更直观。例如，一些触摸板可检测许多不同类型的输入，包括单击（tap）、双击（swipe）、拖动（pinch）、扩展（reverse pinch），以及许多其他。触摸敏感输入装置提供了更直观的输入选项以帮助用户创造更强大的且多样的输入命令。

[0004] 尽管触摸敏感装置可提供优点和另外的选择，但是由于通常在现代计算装置中存在的杂乱的外围设备降低了所提高的效率。例如，许多台式电脑包括键盘、鼠标、触摸敏感装置（显示器、独立单元等）或其他输入装置。用户在输入装置之间的切换消耗的时间可抵消单独提供的每个外围设备的固有效率。因此，尽管近来使用触摸敏感技术改进了外围设备，但是还需要进一步提高整体效率和设计者。

实用新型内容

[0005] 本实用新型的实施方式总体上涉及在计算机系统中使用的外围设备。具体地说，本文中描述了具有集成的触摸和运动敏感技术的外围设备。

[0006] 本实用新型的一些实施方案包括具有多个键的键盘和布置在多个键下方的触摸敏感元件。触摸或运动敏感元件可检测触摸物体（例如手指）沿多个键的表面的横向移动。因此，运动传感器“内置”或“嵌入”在键盘的键内，使得光标移动、手势检测以及其他触摸或运动传感器操作可在其本身上实施而不需要用户将她的手从键盘移动，以实现方便且高效的触摸板解决方案。为了防止无意的手势或光标移动（例如，当用户移动他的手或做出非故意的移动时），控制器键可用于确定什么时候执行触摸或运动检测功能，或什么时候执行或处理其对应的信号。在一些实施方案中，控制器键可以是标准字母QWERTY式键盘上的“shift”键。操作时，用户可用左手手指按压shift键并且在键上方移动其右手以启动显示器上的光标移动，执行触摸手势等。替代性地，用户可用左手指按压shift键并且下压输入键中的一个输入键（即，竖向移动而没有横向移动）来简单地执行标准“shift”操作。在一些实施方案中，其可包括从小写字母至大写字母（例如，h至H）的改变，或在数字键与符号（例如5至%）之间的切换。如由本领域的普通技术人员在得益于本公开内容的情况下应理
解的，存在可以应用于这些概念的多种变型和排列。以下图示并且描述了这些无数的可能性中的一些。

[0007] 在一些实施方案中，可以使用不同类型传感器：比如电容式传感器、具有智能算法处理（例如立体视觉、投影式样等）的相机，嵌入飞行时间技术的相机，测量磁场的传感器（例如霍尔传感器或磁体传感器）等。来自那些传感器的输出可提供物体具有时间标记的（例如在笛卡尔坐标系中的）X、Y、Z位置。在某些情况下，物体移动可以通过为PC提供解码作用的手势引擎来解释。如果所述物体是手，那么也可以报告用于触发事件的手指的数目。因此，在某些实施方案中可适用多指手势。

[0008] 根据某些实施方案，输入装置包括处理器，多个键以及由处理器控制的运动传感器，该运动传感器设置在一个或更多个输入键的顶部表面下方。多个键包括控制器键和一个或更多个输入键。当控制器键被激活时，运动传感器产生与物体沿一个或更多个输入键的顶部表面的移动对应的信号。在一些实施方案中，一个或更多个输入键中的每个输入键在被激活时产生输入功能，其中，输入功能包括字母数字输入、方向键输入或功能键输入中的一者或更多者。控制器键可包括shift键、control键、windows键、command键、alt键或用于输入装置的默认辅助键(modifier key)中的一者。在某些情况下，控制器键可以是可由用户指定的。在一些实施方案中，输入装置可包括键框架，其中，多个键设置在键框架中。其他实施方案可以不包括键框架。

[0009] 由运动传感器产生的信号可控制系统上的光标。在一些实施方案中，由运动传感器产生的信号可在一个或更多个输入键的表面上检测用户手指或手滑。在另一实施方案中，运动传感器以“3D模式”工作并且可操作地检测“空中手势”，或产生给在键框架上方、键框架附近或接近键框架的手指位置或手位置的原始数据。运动传感器可为电容式传感器，飞行时间传感器，电阻式传感器，具有立体视觉的相机，相机投影式样技术，比如霍尔传感器或磁体传感器等的测量磁场的传感器等。在某些情况下，运动传感器在一个或更多个输入键下方配置的连续的层。

[0010] 根据一些实施方案，一种用于控制输入装置的方法，该输入装置具有键盘和运动传感器，该键盘具有控制器键和多个输入键，该运动传感器由处理器控制。该方法包括：由处理器接收指示控制器键被激活的控制信号，并且响应于由处理器接收指示多个输入键中的输入键被激活的输入信号，由处理器产生与指定给输入键的输入功能相对应的输入信号。响应于由处理器接收来自运动传感器的指示在多个输入键中的一个或更多个输入键上方检测到横移移动的传感器信号，该方法包括由处理器产生与在多个输入键中的一个或更多个输入键上方的横移相对应的运动信号。当多个键中的一个或更多个键上方的移动大于预定阈值时，运动传感器可产生指示横移移动的传感器信号。阈值设定用来区别手或手指的不期望被解释为移动的无意的移动或微移动。本领域的普通技术人员应理解所述阈值的包含和确定。

[0011] 在一些实施方案中，该方法包括基于在多个输入键中的一个或更多个键上方检测到的横移移动控制显示器上的光标以及基于运动信号确定手势输出的一者或更多者。控制器键可以是shift键，control键，windows键，command键，alt键或用于输入装置的默认辅助键中的一者。在某些情况下，输入装置上的多个键中的任意键可以被用户指定为控制器键。运动传感器可以是电容式传感器，电阻式传感器，飞行时间传感器，具有立体视觉的相机、
相机投影视样技术，比如霍尔传感器或磁体传感器之类的测量磁场的传感器等，或包括其组合。

[0012] 在另一实施方式，键盘包括设置在键盘中的多个键，以及运动敏感键框架。多个键可能包括control键和一个或更多个输入键。其中，control键可与一个或更多个输入键配置成形可下压的。运动敏感键框架可响应于control键被下压而产生运动信号，并且检测物体沿一个或更多个输入键的横向移动。运动信号可以与物体的横向移动相对应。键框架可以设置在一个或更多个输入键的至少一部分的下方。control键可以是shift键、control键、windows键、command键、alt键或用于输入装置的默认辅助键中的一者。在一些实施方案中，运动信号是可操作的以控制显示器上的光标或以产生与物体沿一个或更多个输入键的横向移动相对应的触摸手势。键框架可以是电容式传感器、电阻式传感器、飞行时间传感器、具有立体视觉的相机、相机投影视样技术，比如霍尔传感器或磁体传感器之类的测量磁场的传感器等，或其组合。在某些情况下，键框架可以是配置邻近于每个键中的每个键配置的连续的单一的层。

附图说明

[0013] 图1是根据本实用新型的某些实施方式的计算机系统的简图示意图。
[0014] 图2是根据本实用新型的某些实施方式的配置用于操作运动和手势检测系统的系统的简图示意图。
[0015] 图3是根据本实用新型的某些实施方式描绘了用户在键盘上录入字母数字输入的简化图。
[0016] 图4示出了根据本实用新型的某些实施方式的用户在键盘上输入运动传感器输入的简化图。
[0017] 图5描绘了根据本实用新型的某些实施方式示出了在输入装置上运动检测方法的方面的简化流程图。
[0018] 图6示出了根据本实用新型的某些实施方式的具有多个输入键和触摸或运动敏感元件的输入装置的简化图。
[0019] 图7示出了根据本实用新型的某些实施方式的具有多个输入键和触摸或运动敏感元件的输入装置的简化图。
[0020] 图8示出了根据本实用新型的某些实施方式的具有多个输入键和触摸或运动敏感元件的输入装置的简化图。
[0021] 图9示出了根据本实用新型的某些实施方式的具有多个输入键、3D运动传感器和控制装置的输入装置的简化图。
[0022] 图10示出了根据本实用新型的某些实施方式的具有多个输入键、布置在监视器面上的3D运动传感器和控制装置的输入装置的简化图。
[0023] 图11描绘了根据本实用新型的某些实施方式示出了在输入装置上三维运动检测的方法的方面的简化流程图。
[0024] 图12描绘了根据本实用新型的限定某些实施方式的触摸/运动检测系统的方面的方法的简化流程图。
[0025] 图13描绘了根据本实用新型的某些实施方式示出了用于实施触摸/运动检测的双
具体实施方案

【0026】本实施新型的实施方案总体上涉及计算机系统中使用的外围设备，更具体地，本文中描述了具有集成的触摸和运动敏感技术的外接装置。

【0027】本实施新型的一些实施方案包括具有多个键的键盘以及设置在多个键下方的触摸敏感元件。触摸或运动敏感元件可检测触摸物体（例如手指）沿多个键的表面的横向移动。因此，触摸板“内置”或“嵌入”在键盘的键下，使得光标移动、手势检测以及其他触摸或运动传感器操作可以在键其本身上实施而不需要用户将她的手从键盘移动，从而获得方便且高效的解决方案来替换及改进需要额外空间和电子基础架构的传统触摸板实施方案。

【0028】为了防止无意的手势或光标移动（例如，当用户移动他的手或做出非故意的移动时），控制器键可用于确定什么时候执行触摸或运动检测功能，或什么时候执行或处理其对应的信号。在这一实施方案中，控制器键可以是标准字母QWERTY式键盘上的“shift”键。操作时，用户可用左手按住shift键并且在键上方移动其右手以启动显示器上的光标移动，执行触摸手势等。替代性地，用户可用左手按住shift键并且下压输入键中的一个输入键（即，竖向移动而没有横向移动）而不需要执行“shift”操作。在这些实施方案中，其可包括从小写字母至大写字母（例如，h至H）的改变，或在数字键与符号（例如5至％）之间的切换。如本领域的普通技术人员通过本公开内容的益处将了解到的是这些概念可以存在许多变型和排列。以下示例并且还描述了这些数数的可能性中的一些。

【0029】在某些实施方案中，“空中”运动传感器或摄像机可用于检测移动并且识别3D空间中的手势。例如，用户可以通过改变鼠标之类的输入装置上的辅助按键启动手势检测。运动传感器可以包括在键盘、监视器上或在容置传感器的任何适合的位置上。替代性地，相机可以设置在任何适合的位置来解释（interpret）手势并且执行对应的命令。在一些实施方案中，当辅助按键按压时，相机可追踪眼睛移动以收集关于用户的焦点的信息并且启动对应的命令，以下示例并且进一步描述了使用该技术的无数可能性中的一些。

【0030】常规应用以及系统级设计

【0031】下列示例旨在为读者提供对本文中提出的新颖新型构思的整体了解，并且决定不被解释为限制其应用的范围。例如，下列实施方案包括用于计算机系统的键盘、鼠标、或输入装置的类似变型。应指出的是，本文中提出的作为具有横向移动检测的键盘的实用新型构思只应用于任何类型的分组、呈现（presentation）等的任何多个键（或单独键）类似地，包括鼠标（例如具有辅助键）的实施方案不仅限于计算机鼠标。例如，辅助键适用于任何适合的输入装置，包括轨迹球、操纵杆、触摸板、移动电话、遥控器或本领域的普通技术人员可能了解的任何其他适合的输入装置。

【0032】图1是根据本实用新型的某些实施方案的计算机系统100的简化示意图。计算机系统100包括计算机110、监视器120、键盘130和控制装置140。键盘130可以配置为控制计算机110的用户输入周围装置。键盘130可配置成以单独地或以其任意组合方式来实施本文中描述的实用新型构思中的任意者。例如，键盘130可包括检测用户的手沿输入键的表面的移动的触摸或运动检测功能（例如在多个键下方）。键盘130可包括检测用户的手势并且将其解释为输入信号的空中检测功能。此外，键盘130还可以装有（populated with）一个或更多个
摄像机用于在以下进一步描述的眼睛追踪功能。各种移动传感器、空中3-D传感器和/或摄像机可以设置在优选地并且最佳地执行本文中所描述的新功能的任何适合的位置。例如，传感器可以设置在键盘130、监视器120、计算机110或其任意组合中的任何其他适合的位置上。控制装置140可包括“辅助键”以切换或启用空中手势感测或视频跟随，如以下进一步讨论。

[0033] 计算机110可包括机器可读介质（未示出），该机器可读介质配置成储存机器码，比如鼠标驱动软件、键盘驱动软件等，其中，机器码可以被计算机110的处理器（未示出）执行以通过鼠标和键盘影响计算机的控制。应指出的是，输入装置140可以是鼠标、输入装置、用户接口装置、控制装置等。

[0034] 图2是根据本实用新型的某些实施方式的配置成操作本文中描述的运动及手势检测系统的系统200的简化图。系统200包括一个或更多个处理器210、电力管理系统220、通信系统230、“空中”感测和视频块240以及运动检测系统250。一些实施方式可以仅使用运动检测系统或空中感测和视频块。每个系统块（例如220至250）可以与处理器210通信。系统200可包括附加系统块，未示出或讨论所说的附加系统块以防止使本文中描述的新颖特征不清楚。一些实施方式可以不包括某些系统块。例如，使用触摸或运动检测（例如在键盘上）的实施方式可以不包括3D感测系统240，或反之亦然。在一些实施方式中，系统200可以结合至图1的键盘130中。

[0035] 在某些实施方式中，处理器210包括一个或更多个微处理器（μC）并且配置成控制操作系统200。替代性地，处理器210可包括一个或更多个微控制器（MCU）、具有支承硬件/固件（例如存储器、可编程I/O等）的数字信号处理器（DSP）等，如本领域的普通技术人员应当了解的。处理器210可配置成单独地或结合其他装置（例如控制装置140、监视器120等）来操作键盘130（或更普遍地输入装置），如在以下进一步描述的。处理器210可以设置在用于本地处理（local processing）的键盘中，位于用于外接过程的远程设备（例如台式计算机）上，或“处理器210”可以是处理器或处理基础架构的组合，如本领域的普通技术人员应当了解的。

[0036] 电力管理系统220可配置用于管理各种系统200的多种子系统（例如块220至250）的电力分配、再充电、电力效率等。根据本实用新型的某些实施方式，通信系统230配置成提供系统200与计算机系统（例如台式计算机、平板电脑、移动装置等）之间的无线通信。通信系统230可以被处理器210控制并且配置成提供与各种各样的无线通信协议，包括但不限于蓝牙、WiFi以及红外线无线系统——其中的任意者射频（RF）通信。在某些情况下，系统200可以可选择地包括用于硬接线通信的器件，包括通用串行总线（USB）或其他适合的通信标准。本实用新型的其他实施方式可以利用不同类型线缆或连接协议标准以实现与外部实体的硬接线通信。

[0037] 感测和视频块240在所述于在输入装置的某些特征上方或附近做出的手的移动、手指移动或手势的“空中”检测的方面。在示例性实施方式中，空中检测基础架构检测键盘上方做出的移动或手势。在某些情况下，激活检测可对应于切换控制器键，如以下进一步讨论。传感器可以设置在键盘中或外接（例如在监视器、台式机、笔记本框架中等）。块240可包括任何适合的运动检测装置包括但不限于电容式传感器、摄像机、飞行时间传感器、电阻式传感器、具有立体视觉的相机、相机投影式样技术、比如霍尔传感器或磁体传感器之类
的测量磁场的传感器等，或其组合。检测方面参照图9至图10在以下讨论。

[0038] 触摸和运动检测块250可控制沿输入装置的表面检测触摸，移动或手势的方面。例如，块250可以控制设置在一组键下方的传感器以检测沿键的表面的横向移动。在一些实施方案中，触摸和运动检测的激活和停用可对应于控制器键的切换。块250可以控制任何数量的触摸传感器、控制器键及其实施方案。例如，一些实施方案可包括设置在多个键下方的触摸传感器。一些实施方式可以使用具有触摸敏感性能的键。其他实施方式可以实现用于触摸或运动检测的多个触摸传感器用于改进准确性，以覆盖多个远程区域（例如键盘和数字键盘）等。以下将结合图3至图6对触摸和/或运动检测进行进一步讨论。

[0039] 系统200可包括不一定在图2中示出或描述的附加系统块和功能。例如，系统200可包括输入/输出（I/O）系统以结合通信块230对输入（例如键盘、按键、音频输入、视频输入等）以及输出进行操作和控制。系统200和其中的每个子系统可通过软件、固件、或硬件中的一个或更多个的方面来实施。如本领域的普通技术人员将了解。此外，如本领域的普通技术人员得益于本公开内容将了解到，系统200的方面，包括其许多子系统及其实施方式，能够以本文中描述的实施方式（例如图3至图11）中的任何实施方式以及以未明确公开的其他实施方式实施。

[0040] 键盘实施方案和触摸/运动检测

[0041] 图3和图4描绘了键盘如何以可靠的、精确的和直观的方式用于产生常规的字母数字输出并且检测沿键盘的表面的触摸和/或移动两者。因此，键其本身既可用作字母数字输入又可基于键盘控制或机（例如control键）的状态作用触摸传感器。在一些实施方案中，运动信号仅在控制机构被激活（例如下压）时产生。使用控制器键来控制何种时候触摸或运动检测被激活的优点是防止不需要的或以其他方式无意的运动信号或严重的（spurious）手势。此外，使用用户已经习惯使用的辅助键功能（例如shift键）的控制器键有助于用户可快速地适应几乎不需要乃至完全不需要学习曲线（learning curve）的直观的界面。用户可以简单地记住按压shift键启用运动检测并且释放shift键禁用运动检测。control键可以是单状态开关使得用户必须按压并保持control键以执行运动检测，暂时性地，control键可以是双状态的从而按压并释放control键启用运动检测，并且再次按压并释放control键禁用运动检测。本领域的普通技术人员在得益于本公开内容的情况下将了解启用和禁用运动检测的其他方法。

[0042] 图3是根据本实用新型的某些实施方式描绘的用户在键盘330上录入字母数字输入的简化图。用户使用她的左手310按压控制器键360同时她的右手320按压键盘330上的输入键340。控制器键360可以是任何适合的键，包括但不限于shift键，control键，windows键，command键，alt键或专用的控制器键，其可以是多个于一个控制器键（例如键盘每侧一个）。控制器键可以是出厂设置或例如通过软件配置由用户定义的。键盘330可以是图1的键盘130，或具有多个输入键的任何适合的输入装置（例如遥控器、计算机鼠标、游戏控制器等）。

[0043] 参照图3，示出了简单的shift键功能的示例。控制器键360可以是“shift”键并且输入键340是字母数字键（即“g”键）。按压控制器键360而同时按压输入键340产生替代功能，比如“全部大写”符号等，类似常规字母数字键盘的操作。

[0044] 图4示出了根据本实用新型的某些实施方式的用户在键盘330上录入运动传感器
输入的简化图。键盘330可包括运动传感器以允许用户高效地提供触摸传感器输入（例如触摸手势、光标控制等）。而不需要从键盘移开（remove）用户的手指。在一些实施方式中，按压控制器键360激活运动传感器，从而使得其产生与在控制器键360被下压时物体（比如手指）的沿键盘的表面的移动相对应的传感器信号。参照图4，用户使用她的左手310压下控制器键360同时她的右手320沿键340的表面朝向键盘330上的键450横向地移动。当控制器键360被激活时通过运动传感器检测到该横向移动。因而，运动传感器产生与手指沿表面的移动相对应的运动信号。该运动信号可用于控制屏幕上的光标，确定手势（例如收缩、滑动、单击等），确定何时用户移动他的手离开键盘、提供指示在键盘的表面上或上方的手指位置和/或手的位置等的原始数据，如由本领域的普通技术人员在得益于本公开内容的情况下应理解的。

[0045]触摸或运动传感器可以设置在键其本身的下方、与键其本身相邻或键其本身上。在示例性实施方式中，触摸传感器是键框架（或与键框架一体）并且设置在键盘330上的多个键中的一个或更多个键的下方。触摸传感器可以是配置成对用户的手指沿键盘330上的一个或更多个键的表面的移动进行检测的电容式传感器。也可以使用其他传感器，包括电阻式传感器、光电传感器、压力传感器、运行时间（TOF）传感器等。TOF传感器、光学传感器和相机可用于检测在用户例如以高精度速度（例如70mm/秒）在键盘上方的细微变化的“3D”触摸能力，其将在以下参照图9和图10进一步讨论。控制器键可包括shift键、control键、windows键、command键、alt键、用于输入装置的默认辅助键（即通常用于修改键功能的默认键），键的组合、热键或专用键（即仅专用于用作控制器键的键）中的一者。在某些情况下，控制器键可以是可由用户指定的。

[0046]图5描绘了根据本实用新型的某些实施方式示出了在输入装置上运动检测的方法500的方面的简化流程图。方法500通过处理逻辑执行，该处理逻辑可包括硬件（例如电路、专用逻辑等）、软件（在通用计算系统或专用机器上运行的）、固件（嵌入式软件）或其任意组合。在一个实施方式中，方法500通过处理器210和键盘130执行。

[0047]参照图5，方法500由接收指示控制器键被激活的控制信号开始。例如，其可以是用户按压且保持控制器键的时候。在一些实施方式中，控制器键可包括shift键、control键、windows键、command键、alt键、用于输入装置的默认辅助键、键的组合、热键或专用键中的一者。在某些情况下，控制器键可以是可由用户指定的。控制器键可以是单稳态开关（按压和保持）、双稳态开关（通过每次按压切换功能）或其他适合的实施方式。在一些实施方式中，控制器键是图3至图4的键360（shift键）。

[0048]步骤520包括接收表示输入键被激活的输入信号。例如，用户可以按压字母键（例如“G”键）来激活。在步骤530，如果输入键被按压且控制器键被按压，或同时按压输入键和control键，那么方法600包括产生与指定给输入键的输入功能相对应的输入信号。在以上示例中，等同于按压shift键和“G”键来产生大写字母“G”（即，输入键的输入功能）。虽然运动检测被通过按压control键激活，但因为检测到没有沿着键盘的表面（或其他触摸或运动敏感区域）的移动因此没有运动信号产生。如果control键在输入键按压的时候未被激活，那么运动检测未激活。

[0049]在步骤540，如果控制器键被按压并且用户移动他的手或手指横向地跨过键，那么处理器接收到来自运动传感器指示横向移动检测的传感器信号。在以上示例中，如果用户
激活控制器键（按压并保持）同时将其手指沿着键的表面（例如图4中所示）移动，那么运动传感器发送与所检测到的运动相应的运动信号。如本领域普通技术人员将了解到的运动信号可包括原始的位置数据、移动数据等。在步骤550，响应于接收控制器键被按压和横向移动被检测到的指示，处理器产生与在输入键上方（即在运动传感器上方）横向移动相应的运动信号。

【0050】应理解的是，图5中所示的具体步骤提供了根据本实用新型的实施方式的输入装置上运动检测的特定方法。根据替代性实施方式也可以执行其他顺序的步骤。例如，在一些实施方式中，用户可激活控制器键并且以与方法500中描述的不同的顺序执行一系列键的按压和移动。例如，用户可按压且保持控制器键同时执行以下全部：(1) 按压“K”键，(2) 将手指沿键的表面横向移动，(3) 按压“T”键，(4) 释放控制器键，(5) 将手指沿键的表面移动，以及(6) 再次按压“T”键。在一些实施方式中，该特定组的输入将产生：大写字母“K”的输入，随后对应于手指沿键的表面的移动的光标移动，然后大写字母“T”的输入，随后小写字母“t”的输入。应指出的是，控制器键的释放禁用了运动检测，从而未检测到在控制器键被按用的或同时手指沿键的移动。

【0051】因此，方法500的某些实施方式可以以不同的顺序、同时或者用于如上所述的特定应用的任何其他顺序执行单独的步骤。此外，图5中所示的单独的步骤可包括可以单独执行的步骤的多个子步骤。此外，根据特定的应用附加的步骤可以增加或移除。本领域的普通技术人员将意识到并且了解该方法的许多变型、修改和替代。

【0052】图6示出了根据本实用新型的某些实施方式具有多个输入键630和触模或运动敏感元件620的输入装置600的简化图。输入装置600可以是键盘（如所示）、小键盘、计算机鼠标、遥控器，或具有一个或更多个按钮、触模或运动敏感元件和控制器键的其他适合的输入装置。图6示出了用户在位置650处用手指610触模键盘。在本实施方式中，触模和运动传感器是键框架620。在一些实施方式中，键框架可以在较小区域、多个区域等的上方运动敏感。本领域的普通技术人员将了解的是具有运动检测能力的键框架可能具有多种构型和排列。返回参照图6，控制器键被按压（未示出）并且运动传感器620（键框架）检测到手指在键盘上方的存在并且产生对应于手指的位置和/或移动的运动信号，如以上进一步描述的。键框架可以设置在键的下方、键的周围、键的上方、键的附近或甚至是键中的每个键的一部分（单独地或作为整体）。

【0053】图7示出了根据本实用新型的某些实施方式具有多个输入键730和触摸或运动敏感元件720的输入装置700的简化图。输入装置700可以是键盘（如所示）、小键盘、计算机鼠标、遥控器，或具有一个或更多个按钮、触模或运动敏感元件和控制器键的其他适合的输入装置。用户在位置750处用手指710触模键盘。在本实施方式中，触模/运动传感器720设置在输入键730上方。在一些实施方式中，运动传感器720可以仅覆盖较小区域、多个区域等。本领域的普通技术人员将了解的是设置在输入键730上方的运动传感器可以具有多种构型和排列。返回参照图7，控制器键被按压（未示出）并且运动传感器720检测到手指在键盘上方的存在并且产生对应于手指的位置和/或移动的运动信号，如以上进一步描述的。

【0054】图8示出了根据本实用新型的某些实施方式具有多个输入键830和触模或运动敏感元件820的输入装置800的简化图。输入装置800可以是键盘（如所示）、小键盘、计算机鼠标、遥控器，或具有一个或更多个按钮、触模或运动敏感元件和控制器键的其他适合的输入
装置。用户用手指810触碰键盘。在本实施方式中，触摸/运动传感器820被包括在每个单独的输入键850上。在一些实施方式中，运动传感器可以仅存在于一些键、全部键等上。本领域的普通技术人员将理解的是设置在单独的输入键上的运动传感器可以具有多种构型和排列。返回参照图8，控制器键被按压（未示出）并且手指（手810）下方的运动传感器820检测到手指的存在并且产生对应于手指的位置和/或移动的运动信号，如以上进一步描述的。示例性实施方式可以使用设置在一个或更多个单独的键的表面上或表面附近电阻式或电容式传感器。

【0055】3D及“空中”手势检测

【0056】在本实用新型的某些实施方式中，3D检测或“空中”检测是可能的。空中检测是指在某些区域中的3D空间中检测手势或移动的能力。在以下示例中，空中检测发生于输入装置的上方而非如以上图3至图8中所述及描述的沿输入装置的表面。

【0057】空中检测可使用许多不同类型的运动检测器，包括但不限于，飞行时间（TOF）传感器、光学传感器、运动捕获技术（例如摄像机）、或其他适合的运动检测实施方案。

【0058】TOF技术可提供CMOS像素阵列结合有源光源的3D成像。紧凑布景连同良好的准确性和帧速率使得TOF相机为本文中描述的用于运动检测概念的优秀的解决方案。3D TOF相机通过用调制光源照射场景并且观察反射光来工作。照明与反射之间的相移被测量并且翻译成距离。照明可以来自固体激光器或LED，通常在较窄范围内（〜850nm）工作。构造成检测相同频谱（spectrum）的成像传感器接收到光并且将光子能量（photonic energy）转换成电流。本领域的普通技术人员得益于本公开内容的益处将理解在应用在本文中描述的实施方式的TOF传感器的操作和实施方案。

【0059】图9和图10示出了使用3D运动检测的输入装置的方面。3D传感器可以放置在任何适合的表面上，包括输入装置（例如图9的键盘900）、远程位置（例如图10的监视器）或3D传感器的组合上。下列实施方式以与图3至图8的实施方式的概念类似的工作，除了所示控制器键（例如图9的输入装置950）和/或运动传感器（例如图10的传感器1020）位于远程设备上。

【0060】图9示出了根据本实用新型的某些实施方式的具有多个输入键930、3D运动传感器920和控制装置950的输入装置900的简化图。控制装置950包括控制器键955。在图9中，控制装置950为计算机鼠标并且控制器键955为设置在其上方的按键。图9描绘了通过用户手910下压control键955，启动通过3D传感器920进行的运动检测。3D运动传感器920检测输入装置900上方3D空间中物体（例如用户手）的移动。3D空间的体积取决于运动传感器920的定位和能力。操作时，用户按压并保持控制器键955同时移动或放置他的手（例如手905）在输入装置900上方。运动传感器920可检测手的位置和移动，并且产生对应于手的位置和/或移动的运动信号，同时控制器键955是被下压的。因为通过3D传感器而非电容式传感器——所述电容式传感器仅可以检测沿输入装置的表面的触碰或移动——可以检测较大体积的区域，使得更多的输入选项是可能的。例如，较大3D体积中的更复杂的手势是可能的。一些非限制性示例包括沿Z轴移动物体（例如手）增大/减小音量，通过手势沿屏幕上/下滚动，沿Z轴放大/缩小，通过水平滑动切换视窗，通过快速竖直滑动关闭应用等等。运动传感器920可以是飞行时间（TOF）传感器、光学传感器、或其他适合的运动检测实施方案，如本领域的普通技术人员将理解的。
图10示出了根据本实用新型的某些实施方式的具有多个输入键、设置在监视器1030上的3D运动传感器1020，以及控制装置1050的输入装置1000的简化图。控制装置1050包括控制键1055。图10与图9类似，除了实际上3D运动检测器位于远程设备上，即位于监视器1030上。即，图10描绘了通过用户手1010下压control键1055，启动通过3D传感器1020进行的运动检测。3D运动传感器1020检测物体（例如用户手1010）在传感器1020附近（例如键盘1000上方）测定体积（volumetric）的空间中3D空间中的移动。应了解的是运动检测器可以根据特定应用设置在任何适合的位置。在一些实施方式中，多传感器可用于改善准确性或提供额外的输入选项（例如更大的检测范围和体积）。

利用控制器键（例如鼠标按键、“shift”按键等）控制空中传感器的一个优点是防止通过配置成检测移动、空中手势等的3D传感器和摄像机可能发生的并且通常普遍的乱真手势。虽然3D传感器可以高精确度地追踪移动，但是一些移动可能是无意的或非有意的。例如，3D运动传感器可以追踪如键入、小的头或身体的移动等，作为故意的手势。当3D运动传感器被激活时允许用户控制会增大检测到的空中移动是用户故意的可能性。

本文中描述的实施方式总体上指的是靠近输入装置放置的用户的手的触摸和运动检测。应了解的是可以存在许多变型和排列并且本领域的普通技术人员得益于本公开内容而理解。例如，放置在眼睛水平的移动传感器可追踪眼睛移动并且产生对应于眼睛移动的运动信号。其对于用户在的虚拟的桌面窗口或图标可以是有用的。用户可通过简单的眼睛移动选择视窗、应用或其桌面的控制方面，在此实施方案中，可以理解仅在当其是故意的时产生眼睛追踪信号是非常重要的。

图11描绘了根据本实用新型的某些实施方式示出了在输入装置上三维运动检测的方法1100的方面的简化流程图。方法1100通过处理逻辑执行，该处理逻辑可以包括硬件（例如电路、专用逻辑等）、软件（在通用计算系统或专用机器上运行的）、固件（嵌入式软件）或其任意组合。在一些实施方式中，方法1100通过处理器210、键盘1000、输入装置1050和监视器1030执行。在某些实施方式中，可以使用2D/运动传感器。

参照图11，方法1100由接收指示控制器键被激活的控制信号开始（步骤1110），例如，其可以是用户按压并保持控制键的状态。在一些实施方式中，控制器键可以包括shift键，control键，windows键，command键，alt键，用于输入装置的默认辅助键，键的组合，热键或专用键中的一者。在某些情况下，控制器键可以是可由用户指定的。控制器键可以是单稳态开关（按压和保持），双稳态开关（通过每次按压切换功能）或其他适合的实施方案。返回参照图10，控制器键1055可以是输入装置1050的左按键。

步骤1020包括接收来自运动传感器指示移动检测的传感器信号。返回参照图9至图10，移动可以包括通过对应的运动传感器可检测的特定测定体积的区域内的任何3D移动。图9中，其将对应于相对于运动传感器920的测定体积的区域。图10中，所检测到的运动将对应于相对于运动传感器1020的测定体积的区域中的移动。基于预估应用可以确定运动传感器的布置。例如，3D运动传感器将很可能放置在键盘上或靠近键盘放置以检测键盘的表面附近的移动。相对地，3D运动检测器可以放置在较高位置来检测头或身体的移动。本领域普通技术人员得益于本公开内容将理解3D运动传感器的最佳的布置、范围、构型等。在以上示例中，如果用户激活控制器键（按压并保持）同时在运动传感器的可检测的范围内移动物体（例如手），那么运动传感器发送对应于所检测到的移动的运动信号。如本领域普通技术
人员应了解的运动信号可包括原始的位置数据、移动数据等。在步骤1130，响应于接收控制器键被按压和检测到移动的指示，处理器产生与所检测到的移动相对应的运动信号。

【0067】应理解的是，图11中所示的具体步骤提供了根据本实用新型的实施方式的输入装置上3D运动检测的具体方法。根据替代性实施方式也可以执行其他顺序的步骤。方法1100的某些实施方式可以以不同的顺序同时或如上所述的具体应用的任何其他顺序执行单个步骤。此外，图11中所示的单独的步骤可包括可以适合于单独的步骤的各种顺序执行的多个子步骤。此外，根据特定的应用可以增加或移除附加的步骤。本领域的普通技术人员将意识到并且了解该方法的许多变型、修改和替代。

【0068】替代性实施方式

【0069】下述实施方式意在示出本文中描述的本实用新型的用途的各种替代和派生，并非意在限制。应了解的是如本领域的普通技术人员将了解的可以存在许多变型、修正和构型。

【0070】在某些实施方式中，触摸或运动敏感区域可以覆盖任何区域——或大或小，并且可以是用户定义的。例如，参照图6的键盘，触摸敏感区域可覆盖整个键盘或其小的子集。在一个实施方式中，触摸敏感区域可局限于单个键(例如，“J”键)和围绕单个键的特定半径或距离。例如，触摸或运动敏感区域可以是围绕中央键的一个或更多个相邻键。触摸敏感区域可以由一个距离(例如围绕中央键3cm)定义。这些示例并非意在限制。

【0071】图12描绘了根据本实用新型的某些实施方式的触摸/移动检测系统的限定方面的方法1200的简化流程图。方法1200可以通过处理逻辑执行。该处理逻辑可包括硬件(例如电路、专用逻辑等)、软件(在通用计算系统或专用机器上运行)、固件(嵌入式软件)或其任意组合。在一些实施方式中，方法1200可以通过处理器210、键盘1000、输入装置1050和/或监视器1030执行。

【0072】参照图12，方法1200通过启动触摸和/或运动检测系统开始(步骤1210)。例如，本文中描述的实施方式的图6的触摸系统、图10的3D运动检测系统。在步骤1220，接收用户输入。用户输入限定了检测系统的触摸/运动检测区域。例如，用户可限定哪个键或哪组的键是触摸/运动敏感的，并且进一步限定围绕该键的触摸或运动敏感的范围(例如，围绕限定的触摸/运动敏感键(多个键)的周围、键的数量、触摸/运动敏感键(多个键)的径向距离等)。在某些实施方式中，用户定义的触摸或运动敏感区域可以覆盖任何适当的区域——或大或小，并且可以是用户定义的。例如，参照图6的键盘，触摸敏感区域可覆盖整个键盘或其小的子设备。在一个实施方式中，触摸敏感区域可局限于单个键(例如，“J”键)和围绕单个键的特定半径或距离。例如，触摸或运动敏感区域可以是围绕中央键的一个或更多个相邻的键。触摸敏感区域可以由一个距离(例如围绕中央键3cm)限定。这些示例并非意在限制。在步骤1230，用户定义的触摸/运动敏感区域被应用于触摸/运动检测系统。

【0072】应理解的是，图12中所示的具体步骤提供了根据本实用新型的实施方式的触摸/移动检测系统的限定方面的具体方法。根据替代性实施方式也可以执行其他顺序的步骤。方法1200的某些实施方式可以以不同的顺序，同时或如上所述的具体应用的任何其他顺序执行单独的步骤。此外，图12中所示的单独的步骤可包括可以适合于单独的步骤的各种顺序执行的多个子步骤。此外，根据特定的应用可以增加或移除附加的步骤。本领域的普通技术人员将意识到并且了解该方法的许多变型、修改和替代。

【0074】在一些实施方案中，触摸敏感参数(例如运动灵敏度)可以是用户可定义的。例如，
用户可限定哪个键或哪组键是触摸/运动敏感的，并且进一步限定围绕该键的触摸或运动敏感的范围（例如，围绕限定触摸/运动敏感键（多个键）间的键的数量，限定触摸/运动敏感键（多个键）的径向距离等）。在一些实施方式中，用户可限定触摸/运动灵敏度的灵敏度。例如，小的移动可以根据定义的灵敏度使光标在平面上移动短的距离或长的距离，外界影响也会影响触摸或运动灵敏度的有效的灵敏度。例如，光标移动可能被显示器（例如监视器、触摸屏等）的分辨率影响。屏幕分辨率为每英寸的点数（DPI）测量。触摸敏感键盘上检测到的移动可以导致在具有低分辨率的显示器与具有高分辨率的显示器上明显较远的光标移动。因此，导致300点的光标移动的移动将根据显示器的分辨率变化。

[0075] 在另一实施方式中，触摸/运动检测的双重同时模式（dual simultaneous modes）是可能的。例如，系统可以使用空中3D检测（例如参照图10）和键盘触摸/运动检测（例如参照图6）来实现双重触控/微调检测方式。在一些实施方式中，空中3D检测系统可用于微调测量并键盘触控敏感系统可用于微调测量。例如，用户可以在辅助系统（例如，基于相机的空中检测系统）上做出空中手势，以在显示器上的整个区域移动光标或指针，并且使用键盘系统微调光标或指针的移动。因此可以将每个系统灵敏度程序化。在一个实施方式中，键盘系统可以使用以上描述的单个键实施方式（例如，具有触觉敏感半径的触摸敏感“广”键）。

[0076] 图13描绘了根据本实用新型的某些实施方式示出了用于实施触摸/移动检测的双重同时模式的方法1300的方面的简化流程图。具体地，方法1300提供了利用3D空中检测系统和基于键盘的触摸/运动检测系统在双模式系统如何使所述两个系统彼此组合使用的示例。方法1300可以通过处理逻辑执行，该处理逻辑可包括硬件（例如电路、专用逻辑等）、软件（在通用计算机系统或专用机器上运行）、固件（嵌入式软件）或其任意组合。在一些实施方式中，方法1300通过处理器210、键盘1000、输入装置1050和监视器1030执行。

[0077] 在步骤1310，双重模式系统接收3D空中检测系统中的输入。3D输入具有较高灵敏度的移动相关联（步骤1320）。在步骤1330，该输入控制显示器上的光标或指针，其中，该输入基于3D输入系统中的移动以及其对应的粗调灵敏度两者。在步骤1340，双重模式系统接收键盘触摸/运动检测系统的输入。键盘输入与具有微调灵敏度的移动相关联（步骤1350）。在步骤1360，该输入控制显示器上的光标或指针，其中，该输入基于键盘系统中的移动和其对应的微调灵敏度两者。

[0078] 应理解的是，图13中所示的具体步骤提供了根据本实用新型的实施方式的用于实施触摸/运动检测双重同时模式的特定方法。根据替代性实施方式也可以执行其他顺序的步骤。方法1300的某些实施方式可以以不同的顺序、同时或者如上所述的特定应用的任何其他顺序执行单独的步骤。此外，图13中所示的单独的步骤包括适于单独的步骤的各类执行的多个子步骤。此外，根据特定的使用可以增加或移除附加的步骤。本领域的普通技术人员将意识到并且了解该方法的许多变型、修改和替代。

[0079] 应指出的是，除非明确地作出相反表示，否则任何列举的“一”、“一个”或“所述”均指在表示“一个或更多个”。

[0080] 以上描述是说明性的并且非限制性的。对于本领域所属技术人员通过回顾本公开内容，本实用新型的许多变型将变得明显。因此，不应当参照以上描述来确定本实用新型的范围，而应当参照待审的权利要求及其全部范围或等同物来确定本实用新型的范围。
应该了解的是以上描述的示例和实施方式仅出于说明性目的并且会向本领域技术人员建议根据本实用新型的各种修改或改变并且这些修改和改变会包括在本申请的精神和范围内以及所附权利要求的范围内。因此，以上描述不应当被理解为对由权利要求限定的本实用新型的范围进行限制。
接收指示控制器键被激活的控制信号

接收指示输入键被激活的输入信号

生成对应于指定给输入键的输入功能的输入信号

接收来自运动传感器的指示横向移动检测的传感器信号

生成对应于输入键上方的横向移动的运动信号

图5
图10

接收指示控制器键盘激活的控制信号

接收来自运动传感器的指示移动检测的传感器信号

生成对应于3D空间中的移动的运动信号

图11
图12

启动触摸/运动感测系统

接收对应于用户定义的触摸/运动敏感区域的输入

将用户定义区域应用于触摸/运动感测系统
接收3D空中运动检测系统中的输入

将粗调灵敏度与3D空中检测系统相关联

基于3D空中系统中的输入
和粗调灵敏度设定控制显示器上的光标

接收键盘触摸/运动检测系统中的输入

将微调灵敏度与键盘触摸/运动检测系统相关联

基于键盘系统中的输入
和微调灵敏度设定控制显示器上的光标

图13