Figure 1

y = 62076x
R² = 0.9968

Absorbance at 880 nm vs. Methylene Blue concentration (mol/l)

(19) World Intellectual Property Organization
International Bureau

(21) International Application Number:
PCT/IB2008/052315

(22) International Filing Date:
11 June 2008 (11.06.2008)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
07110505.0 19 June 2007 (19.06.2007) EP

(51) International Patent Classification:
D04H 1/42 (2006.01)

(54) Title: NON-WOVEN WEBS MADE FROM TREATED FIBRES

(57) Abstract: The invention relates to a non-woven web with superior initial tensile strength. The web constructed from at least one type of fibre that has been modified to increase its specific surface area. The fibre has a specific surface area of at least 55 m²/g. The invention also relates to use of the non-woven web with superior initial tensile strength for the making of a disposable absorbent article. These include, diapers, training pants, incontinence pants, tampons, female hygiene pads and wipes.
— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments
This invention relates to the construction of non-woven webs, formed from at least one type of fibre with high surface area. The resulting webs exhibit superior strength and may be used to make disposable absorbent hygiene articles with superior strength and cleaning performance. The present invention enables the creation of stronger disposable absorbent hygiene articles, such as cleaning articles suitable for all types of cleaning, including for personal (both therapeutic and cosmetic), domestic and industrial purposes, including dry and wet wipes.

BACKGROUND OF THE INVENTION

Non-woven materials span a diverse range of physical properties and are widely used for a variety of diverse products. Some examples of non-woven products are, disposable clothing, geo-textiles, insulation, filters, carpet underlay or backing, pillows cushions and upholstery padding and disposable absorbent hygiene articles such as diapers, training pants, female pads and tampons, both wet and dry wipes as well as adult incontinence products.

Non-woven materials or webs can be manufactured from a wide range of different fibres both man made (synthetic) and natural but the majority are constructed from man made fibres and in particular polypropylene and polyesters (mainly PET).

Non-woven materials can be manufactured via a range of processes, including wet laying and dry laying techniques such as carding, spun-laying, and air-laying followed by a bonding process to add strength. Although not limited to, this is typically achieved via four different general process types, thermal bonding, hydroentanglement, needlefelt (or needlepunch) and chemical or adhesive bonding.

While the market for non-woven materials for articles of clothing and hygienic articles such as diapers, wipes and pads, has been largely dominated by the use of predominantly synthetic fibre webs, non-wovens constructed from entirely natural fibres are not unknown.
Non-wovens manufactured from cellulosic fibres like cotton are known in the art. For example US 5,199,134, which discloses a system and method for producing a bleached cotton, non-woven web.

Natural fibres like cotton are particularly prized because they yield webs that are absorbent and soft compared with the equivalent synthetic webs. Natural fibres such as cotton fibres are also biodegradable. These properties have particularly lead to their use in medical applications such as disposable sheets, blankets, surgical gowns and bandages.

Natural fibres like cotton are also desirable for use in the manufacture of non-woven products, such as in disposable absorbent hygiene articles such as diapers, training pants, female pads and tampons, both wet and dry wipes and adult incontinence products, as they are perceived to be softer and more environmentally friendly by consumers.

It is also desirable, when manufacturing disposable absorbent hygiene articles to utilize hydroentanglement when bonding the fibres in the web. Without being bound by theory, it is believed that hydroentanglement processes yield webs which are softer and have increased drape relative to other known bonding processes, such as thermal-bonding and adhesive bonding.

However hydroentanglement of pure cotton non-wovens is known to result in non-wovens which are mechanically weak and typically have a low resistance to abrasion when wet. Cotton fibres may be blended with synthetic fibres to improve the mechanical properties of the resulting non-wovens. Alternatively binders or resins can be added to improve the durability of the products. US 5,393,304 details using 0.2-1% by weight of a polyamide-amine-epichlorohydrin (PAE) resin on cotton based non-wovens to enable them to be repeatedly laundered without disintegration.

Separately, cotton fibres can be acquired from a number of sources. These sources include, but are not limited to, virgin or fresh cotton fibres and recycled or reclaimed cotton fibres. For example, US 2002/0124366 discloses a system for reconstituting fibres from recycled waste fabric material, including cotton denim waste. The fibres are returned to a substantially virgin
state and can be successfully incorporated into hydroentangled or needlepunched nonwoven products without the need for binders or additives.

SUMMARY OF THE INVENTION

The invention describes the formation of non-woven webs suitable for the production of disposable absorbent articles possessing a superior initial tensile strength. The webs are formed from fibres that have been treated to increase their specific surface area. Webs formed from these fibres demonstrate advantageous properties of increased initial tensile strength when compared with equivalent webs formed from untreated fibres.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a calibration curve of methylene blue concentration against absorbance at 660 nm.

Figure 2 shows the adsorption isotherms of methylene blue on the fibres.

DETAILED DESCRIPTION OF THE INVENTION

All percentages quoted are weight per weight unless otherwise stated.

The term "specific surface area" as used herein is defined as the accessible area of solid surface per unit mass of material. The measurement of the specific surface areas of the cotton fibres in the present invention refers to those calculated have with a "methylene blue" (3,7-bis-dimethylamino-phenothiazin-5-iium ion) adsorption technique outlined in the test section below.

The term "non-woven" as used herein defines webs that have a basis weight of between 10 and 140 grams per square metre (g/m²). They can be constructed from a wide variety of different fibre types including both natural and synthetic and can be made from a single fibre source or a blend of two or more different types of fibres.
The term "treated" as used herein defines fibres that have been altered to adjust their chemical or physical properties, such as their specific surface area. This may be done through a chemical process or a physical or mechanical process.

The term "machine direction" as used herein is the direction of the nonwoven web in which the fibrous structure is manufactured. Generally, fibre laying processes such as carding, spunbonding, melt-blowing, etc., may result in fibre-orientation parallel to the machine direction.

The term "cross direction" as used herein refers to direction that is substantially perpendicular to the machine direction. Generally, fibre laying processes such as carding, spunbonding, melt-blowing, etc., may result in fibre-orientation perpendicular to the cross direction.

This direction property of non-woven webs is carefully distinguished herein because the mechanical properties of fibrous structures differ depending on the direction measured.

The term "tensile strength" as used herein is the maximum amount of force as measured in Newton's that a non-woven or other material can bear without tearing or breaking.

The term "initial tensile strength" as used in the present invention is defined by the following formula:

\[
\text{Initial tensile strength} = \frac{(\text{Force at } 20\% \text{ Strain} - \text{Force at } 2\% \text{ Strain})}{(\text{Length at } 20\% \text{ Strain} - \text{Length at } 2\% \text{ Strain})}
\]

The invention is directed towards the production of a strong non-woven web with high initial tensile strength in the cross direction. This may be achieved by constructing the non-woven web from treated fibres. These fibres may be treated to give them a higher specific surface area than the equivalent untreated fibres.

Non-wovens usually display different mechanical properties in their machine and cross directions. The fibres in a for example carded non-woven are partially orientated lengthways,
parallel to the machine direction. This gives the web significantly higher strength when stressed in this direction.

Perpendicular to the machine direction is the cross direction. Without being bound by theory it is believed that the fibres are not bound to each other as well in the cross direction (versus the machine direction) as they are at least partially in a side to side relationship with each other, giving a poorer overlap. This means that the web is weaker in this direction and therefore it is easier to deform the web in the cross direction than the machine direction.

When assessing the quality of a web used in a disposable absorbent article, consumers generally do not test it to destruction, but may try to get a feel for its properties. A key marker for the perceived quality of the web may be the initial response of the web to gentle tension in the weaker cross direction. Any obvious visual deformation of the web seen when grasping in the hands and applying gentle tension parallel to the cross direction, will cause the impression of a weak and/or inferior product. Therefore increasing the ability to resist deformation in the cross direction at low forces is critical for the perception of the quality in a non-woven web.

The use of fibres with a high specific surface area has been found to give a non-woven web a significantly higher initial tensile strength. Without wishing to be bound by theory it is believe that using high surface area fibres in the non-wovens has two effects that lead to a higher initial tensile strength. Firstly, better bonding characteristics, the fibres more readily overlap and entwine. This is particularly likely in non-woven webs in which the fibres are bonded through hydroentanglement. Secondly the increase in surface area increases the friction between the fibres in the nonwoven material. It is believed that the combination of the two effects means that significantly more energy is required to separate the fibres in the nonwoven and that this gives rise to an increase in the initial tensile strength in the cross direction of the web.

The webs can be constructed by any method known in the art, including dry-laying and wet-laying techniques. The bonding steps that can be used include hydroentanglement, needlepunch, chemical or adhesive bonding and thermal bonding. A non-limiting embodiment of the present invention is a non-woven formed from fibres that are carded and then bonded via hydroentanglement.
Suitable non-woven substrates can be formed from 100% of fibres that have been treated to increase their surface area or blends of such fibres mixed with untreated fibres. The amount of treated fibres in the web can range from 10 - 100%, also from 15 - 80%, also from 25 - 75%, also from 30 - 70% and also from 40 - 60%. The high surface area fibres can be mixed with other of the same type, or another type depending on the desired mechanical and other physical properties such as absorbency, softness etc.

Suitable fibres for the construction of the non-woven webs of the present invention can be any fibres known in the art. The webs can be constructed from a single type or fibre or a blend of two or more fibres. Suitable fibres can be synthetic or naturally derived. A non limiting list of suitable fibre types are, viscose, rayon, polyester, cotton, wood and polypropylene.

In one embodiment, the high specific surface area fibres are cotton fibres.

It is known from the art, *Journal of Cotton Science* 2:164-173 (1998) that fresh cotton fibres have a specific area of up to 53 m2/g.

In the present invention a method has been discovered to increase the specific surface area of treatment to at least 55 m2/g, alternatively at least 60 m2/g, alternatively at least 65 m2/g, alternatively at least 70 m2/g and alternatively a specific surface greater than 75 m2/g.

The chemical treatment detailed in this invention yields fibres with increased specific surface areas irrespective of the starting surface area of the cotton used. Cotton with a specific surface area as low 17 m2/g has been successfully increased to >75 m2/g with this treatment. Table 1 below displays technical properties, including specific surface area, of three samples of cotton.

<table>
<thead>
<tr>
<th>Cotton Type</th>
<th>Adsorbed Methylene Blue [monolayer]</th>
<th>Surface Area [m2/g of cotton]</th>
<th>Mean Fiber Length [mm]</th>
<th>Micronaire</th>
<th>Maturity Ratio</th>
</tr>
</thead>
</table>

Surface area of the fibres calculated from methylene blue adsorption.
The cotton fibres in Sample 1 have been combed and have therefore been subjected to a moderate mechanical treatment before being bleached. The cotton fibres from Sample 2 were put through additional mechanical cleaning and opening/carding steps before being bleached and can be considered to have been mechanically treated. The fibres from samples 1 and 2 were bleached in the same way and without any additional treatment to increase their specific surface area. The treated fibres are fibres from sample 2 that have been further subjected to a chemical treatment step (details of the process are in the methods section) to increase their specific surface area.

From the measurements taken it can be shown that the treated fibres have a specific surface area more than four times that of either the fibres in Sample 1 or Sample 2. The mechanical treatment of the fibres can therefore be shown to have a negligible effect on the specific surface area of the cotton fibres.

The increase in surface area shown in the example above is over 400%. Even starting with the surface area cottons as detailed in *Journal of Cotton Science* 2:164-173 (1998) with their higher natural surface area will have their surface area enhanced by this process by a minimum of 10%, alternatively a minimum of 25%, alternatively a minimum of 50%, alternatively a minimum of 100% and alternatively a minimum of 150%.

Two different non-woven webs were constructed under identical production procedures and conditions with blends of, one viscose and the Sample 1 fibres (from Table 1) and 2), viscose and the treated fibres (from Table 1) for comparison studies. Both webs had a 60 g/m² basis weight and were constructed from a 60/40 mixture of the viscose (60%) and the cotton (40%). The two webs were examined to record their tensile properties and the results are shown in Table 2 below.

<table>
<thead>
<tr>
<th></th>
<th>g/g of cotton</th>
<th>17.82</th>
<th>14</th>
<th>3.6</th>
<th>0.73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0.00480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.00465</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>0.02100</td>
<td>77.94</td>
<td>12.9</td>
<td>4.8</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 1
Comparison of tensile properties of the wipes with different cotton fibres

<table>
<thead>
<tr>
<th></th>
<th>CD T F_{max} [N] (Cross Direction)</th>
<th>MDT F_{max} [N] (Machine Direction)</th>
<th>Initial Tensile Strength [N/m/5 cm] (Cross Direction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-woven (all 60gsm BW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60/40 Viscose/Treated</td>
<td>14.2 (0.3)</td>
<td>32.1 (1.8)</td>
<td>92.2 (9.3)</td>
</tr>
<tr>
<td>60/40 Viscose/Sample 1</td>
<td>16.5 (0.5)</td>
<td>36.0 (2.0)</td>
<td>63.8 (4.8)</td>
</tr>
</tbody>
</table>

The 95% confidence interval values are calculated by the equation below:

\[
\text{Confidence interval} = \text{mean} \pm 1.96 \left(\frac{\text{standard deviation}}{\sqrt{\text{sample size}}} \right)
\]

The non-woven web containing the treated cotton fibres shows approximately a 50% increase in its initial tensile strength in the cross direction when directly compared with an equivalent non-woven web made from the Sample 1 fibres.

Some examples of non-woven products are, disposable clothing, geo-textiles, insulation, filters, carpet underlay or backing, pillows cushions and upholstery padding and disposable absorbent hygiene articles such as diapers, training pants, female pads and tampons, both wet and dry wipes as well as adult incontinence products.

Non-woven webs containing treated fibres with high surface area may be used in the manufacture of any product which incorporates a non-woven web in its construction. Examples of such products include but are not limited to disposable clothing, geo-textiles, insulation, filters, carpet underlay or backing, pillows cushions and upholstery padding and disposable absorbent hygiene articles. Non-woven webs of the present invention are particularly desirable for their use in the construction of disposable absorbent articles, including but not limited to household cleaning articles and personal hygiene non-woven articles.

General non-limiting examples of household cleaning articles consist of wet and dry wipes and wiping clothes, mop heads and dusters.
General non-limiting examples of personal hygiene non-woven articles consist of diapers, both for infants and incontinent adults or children, training pants, female pads or panty liners and dry or wet wipes.

A particular non-limiting example of personal hygiene articles to be made from the non-woven webs of the present invention would be personal or baby care wet wipes. Wet wipes usually consist of sheets of the non-woven webs impregnated with a lotion stored in sealed packages to prevent loss of lotion through evaporation. Typical lotions are predominantly water based and can contain a wide variety of other ingredients. These are usually, surfactants, humectants, emollients, cleansers, anti-microbials, preservatives, perfumes, and softeners.

Without wishing to be bound by theory is believed that cleaning products formed from non-wovens containing high surface area fibres of the present invention will also make more effective cleaning agents, both for personal and household use. The increased area of the fibres provides both an increase in friction and an increased opportunity for dirt particles to become trapped on and bound to the surface structure of the fibres.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

Test methods

Initial tensile strength test

The non-woven webs were tested according the procedure outlined in EDANA 20.2-89. The webs were tested "wet" (impregnated with a lotion) to simulate a typical wet wipe type product. The lotion used was 96% water with the following minor ingredients, Sodium Dihydrogenphosphate monohydrate 0.2%, Disodium EDTA 0.1%, Aloe Barbadensis 0.05%, Xanthan Gum 0.2%, Trilaureth-4 Phosphate 0.4%, Bis-PEG/PPG-16/16 PEG/PPG Dimethicone Caprylic, capric triglyceride 0.1%, Propylenglycol 1.5%, Methylparaben 0.15%, Ethylparaben
0.05%, Propylparaben 0.05%, Phenoxyethanol 0.8% and PEG-40 Hydrogenated Castor Oil 0.4%. Lotion loading was 300% of the dry weight of the web.

The lotion was applied to non-woven webs as follows:
A sheet of dry substrate was weighed and immersed in the requisite amount of cleaning lotion, based on sheet weight and the targeted lotion load. A hand roller was used to evenly distribute the lotion throughout the sheet. The saturated substrate sample was then weighed again to measure the total weight. The saturated sample was then stored in a ZIPLOG bag until they were tested for mechanical properties in order to prevent drying. The steps 1 to 3 were repeated with additional sheets until sufficient substrate samples were treated for the mechanical tests.

Measurement of cotton fibre specific surface area

The specific surface area of the cotton fibres was measured utilising the technique of Kaewprasit et al. (Journal of Cotton Science, 2, pp: 164-173, 1998). The method utilises the adsorption of methylene blue (3,7-bis-dimethylamino-phenothiazin-5-i um ion) in a liquid phase to determine the specific surface area. A known mass of cotton fibres was added to a methylene blue solution of known concentration and brought to equilibrium at 25 °C. The amount of methylene blue adsorbed onto the cotton fibers was calculated from the difference between the methylene blue concentration in the solution before and after adsorption onto the cotton fibers. The methylene blue concentration in the solution was analyzed by measuring the absorbance at 660 nm, i.e. the wavelength corresponding to the maximum absorption peak of methylene blue monomer, with a spectrophotometer. The methylene blue concentration is calculated based on a calibration curve of optical densities against methylene blue concentration obtained by using standard methylene blue solutions of known concentration.

The adsorption profiles for methylene blue on the cotton surface are of the Langmuir type as monolayer coverage can be inferred from the adsorption profile. The quantity of methylene blue adsorbed increases with the concentration of methylene blue until saturation point. Once the surface saturates increasing the methylene blue concentration does not cause additional material to adsorb onto the fibres.
The specific area of the cotton fibres can then be calculated using the Langmuir equation.

\[
\gamma = \frac{KC}{(I + KC)}
\]

Equation 1

Where \(Y \) is the fraction of the cotton surface covered by the adsorbed methylene blue molecules, \(K \) is a constant and \(C \) is the equilibrium methylene blue solution concentration.

For the present study, \(Y = N/N_m \)

Where \(N \) = number of moles of methylene blue adsorbed per gram of cotton and \(N_m \) = the number of moles of methylene blue required for monolayer coverage.

Making the substitution and rearranging gives **Equation 2**.

\[
\frac{C}{N} = \frac{C}{Nm} + \frac{1}{KNm}
\]

Equation 2

A plot of \(C/N \) against \(C \) gives a straight line with a slope equal to \(N_m \) and an intercept equal to \(1/KNm \). Once the number of moles of methylene blue required to provide a monolayer coverage to the cotton fibre has been determined, the specific surface area can be calculated via **Equation 3**.

\[
S_{MB} = \frac{N_g \times a_{MB} \times N \times 10^{-20}}{M}
\]

Equation 3

In **Equation 3**; \(S_{MB} \) is the specific surface area in \(m^2/g \), \(N_g \) is the number of molecules of methylene blue adsorbed at equilibrium in \(g/g \) (\(N_g = N_m \times M \)), \(a_{MB} \) is the occupied surface area of one molecule of methylene blue, 197.2 \(A^2 \), \(N \) is the Avogadro's number, 6.023 \(\times 10^{23} \), and \(M \) is the molecular weight of dehydrated methylene blue, 319.857 g/mol.
This method was chosen because it is simple to carry out and the technique has been widely used for the specific surface area determination of various natural solids, activated carbon, graphite and silica for example.

Experimental procedure for the measurement of the specific surface area of the fibres

10 different molar concentration methylene blue solutions were prepared using hot water to dissolve the dye and then diluted to the required volume with cold water. Then the flasks were placed in the sonic cleaner for 10 minutes and then placed on the magnetic stirrer for 30 minutes to assure complete dissolution of the dye.

1. Each solution with different methylene blue concentration was sampled and its absorbance was measured by spectrophotometer to determine the exact concentration level on the basis of the calibration curve.

2. Cotton samples were first completely opened by a Shirley Analyzer, untangling the fibres and resulting in an open web of fibers

3. The samples of cotton were conditioned at standard conditions (relative humidity of 65 +/- 2 % and temperature of 21 +/- 1 °C) for at least 24 hours.

4. 10 x 1.00 g samples of conditioned cotton were weighed and placed in plastic bags.

5. Each of the 10 different concentrations of methylene blue solution was added to one of the 10 weighed cotton samples. Note: Each of the 10 different molar concentrations of methylene blue was agitated in the sonic cleaner for 10 minutes and then on the magnetic stirrer for 15 minutes before being added to the cotton and/or sampled for concentration.

6. Each sample comprising the cotton and the 50 mL of methylene blue was agitated for 2 minutes.

7. The beaker was covered with parafilm and placed in a 25 °C water bath shaker for 24 hours.
8. After 24 hours, the appropriate dilutions of the shaken solutions were made up and the absorbance of the methylene blue that remains in solution was measured at 660 nm.

The difference in molar concentrations of the samples in step 1 and step 8 gave the molar concentration absorbed by the cotton. From the molar concentration the grams of methylene blue adsorbed per gram of cotton were calculated. A graph of grams of methylene blue/grams cotton fibres against molar concentration of methylene blue then allowed the determination of the molar concentration of the monolayer of methylene blue.

With this data, the specific area of the cotton was calculated using Equation 3.

The calibration curve obtained for methylene blue absorbance at 660 nm against concentration used in the calculations of the surface area is shown in Figure 1.

The adsorption isotherms of the three different cotton types are graphically represented in Figure 2. Type 1 fibres are Sample 1 fibres, Type 2 fibres are Sample 2 fibres and Type 3 fibres are treated fibres. The data points on this graph are an average of three independent experimental replications.

Treatment for procedure for cotton fibres

A sample method to produce high specific surface area fibres for use in the present invention is outlined below.

(1) - 1100 kg of cotton fibres with a specific surface area of 17 m²/g was added to 4000 L of water. 20 kg of caustic (98% NaOH), 5 kg Aktud® PR and 10 kg of Cottoclarin® was added and the mixture was heated to 95 °C and stirred for 15 mins. The mixture was then washed with water and then a 0.75 g/L Foryl® in water solution and then with water again. All the washing steps were carried out at 85°C
(2) - The material was then taken up again in 4000 L of water. 10 kg of caustic (98% NaOH), 5 kg of Aktud® PR and 2 kg of Cottoclarin® was added and the mixture was heated to 90 °C and stirred for 10 mins. The mixture was then washed as carried out in step 1.

(3) - The material was then taken up again in 4000 L of water. 10 kg of caustic (98% NaOH), 5 kg of Aktud® PR and 2 kg of Cottoclarin® was added and the mixture was heated to 90 °C and stirred for 10 mins. The mixture was then washed as carried out in step 1.

(4) - The batch was then neutralised with acetic acid to pH 6.5-7.0. The batch was then further washed with a 4000 L of water containing 15 kg of Foryl® and 7 kg of Securon® DC at 80 °C for 10 mins. The mixture was then washed with water at 80 °C.

(5) - The batch was then taken up in 4000 L of water. 400 kg of sodium hypochlorite and 10 kg of soda was added and the batch was stirred for 40 mins at 55 °C. The batch was then washed with water for 10 mins at 80 °C and a 4000 L solution of water with 10 kg of Securon® 590 at 80 °C for 12 mins.

(6) - The batch was then taken up in 4000 L of water. Then 15 kg of caustic, 5 kg of Cottoclarin®, 5 kg of Securon® DC and 35 kg of hydrogen peroxide (50% H₂O₂) were added and the mixture was stirred first at 95 °C for 5 mins and then at 110 °C for 15 mins.

(7) - The batch was then washed with water at 40 °C, a solution of 10 kg of Securon® 590 in 4000 L of water for 5 mins at 40 °C and finally a solution of 2 kg of Setilon® KNL in 4000 L of water for 5 mins at 40 °C.

The resulting cotton fibres have a specific surface area of >75 m²/g when tested in the methylene blue adsorption method (detailed below).

Cottoclarin®, Securon ® DC, Setilon® KNL and Foryl® are chemicals available from the COGNIS chemical company. Aktud® PR is a redactor agent from Akkim Kimya Sanayi A.S. chemical company.
What is claimed is:

1. A non-woven web with high initial tensile strength, comprising high surface area fibres with a specific surface area of at least 55 m²/g.

2. A non-woven web according to claim 1 where in the fibers have an average length of greater than 5 mm.

3. The non-woven web of any of the previous claims wherein the high surface area fibres are cotton fibres.

4. The non-woven web of any of the previous Claims wherein the high surface area fibres have a specific surface area of at least 65 m²/g.

5. The non-woven web of any of the previous Claims wherein the high surface area fibres have a specific surface area of at least 75 m²/g.

6. The non-woven web of any of the previous Claims wherein the high surface area fibres are present between 10 and 100 % by weight of the non-woven web.

7. The non-woven web of any of the previous Claims wherein the high surface area fibres are present between 15 and 75 % by weight of the non-woven web.

8. The non-woven web of any of the previous Claims wherein the high surface area fibres are present between 40 and 60 % by weight of the non-woven web.

9. A method of manufacture of a non-woven web of any of the preceding claims wherein the high surface area fibres are air laid or carded and then hydro-entangled.

10. The use of a non-woven web of any of the preceding claims to prepare absorbent articles such as diapers, training pants, wet and dry wipes, female hygiene pads and tampons.
Figure 1

\[y = 62976x \]
\[R^2 = 0.9968 \]
Figure 2
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- D04H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 824 364 A (COUSIN LAURENT [FR] ET AL)</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>20 October 1998 (1998-10-20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, lines 35-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, lines 51,52</td>
<td></td>
</tr>
</tbody>
</table>

A	WO 91/05108 A (SCA RESEARCH AB [SE])	1-10
	page 9, lines 15-30	
	claim 3; tables 1,111	

A	EP 1 418 268 A (WEYERHAEUSER CO [US])	1-10
	12 May 2004 (2004-05-12)	
	paragraphs [0008], [0009], [0013]	

A	US 5 199 134 A (RIPLEY WILLIAM G [US])	1-10
	6 April 1993 (1993-04-06)	
	column 3, line 31 - column 4, line 55	

Further documents are listed in the continuation of Box C

See patent family annex

Date of mailings of the international search report

21 October 2008

Date of actual completion of the international search

28/10/2008
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5824364 A</td>
<td>20-10-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69007794 D1</td>
<td>05-05--1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69007794 T2</td>
<td>28-07--1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 493516 T3</td>
<td>18-07--1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0493516 A1</td>
<td>08-07--1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2052277 T3</td>
<td>01-07--1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 235345 A</td>
<td>26-05--1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 500858 C2</td>
<td>19-09--1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5492759 A</td>
<td>20-02--1996</td>
</tr>
<tr>
<td>EP 1418268 A</td>
<td>12-05-2004</td>
<td>BR 0304640 A</td>
<td>31-08--2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1500937 A</td>
<td>02-06--2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004143658 A</td>
<td>20-05--2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20040036670 A</td>
<td>30-04--2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03009775 A</td>
<td>19-04--2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 277681 B</td>
<td>01-04--2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005276968 A1</td>
<td>15-12--2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004081828 A1</td>
<td>29-04--2004</td>
</tr>
<tr>
<td>US 5199134 A</td>
<td>06-04-1993</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)