The invention relates to an approach for introducing one or more desired insertions and/or deletions of known sizes into one or more predefined locations in a nucleic acid (e.g., in a cell or organism genome). They developed techniques to do this either in a sequential fashion or by inserting a discrete DNA fragment of defined size into the genome precisely in a predefined location or carrying out a discrete deletion of a defined size at a precise location. The technique is based on the observation that DNA single-stranded breaks are preferentially repaired through the HDR pathway, and this reduces the chances of indels (e.g., produced by NHEJ) in the present invention and thus is more efficient than prior art techniques. The invention also provides sequential insertion and/or deletions using single- or double-stranded DNA cutting.
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
Methods. Cells & Organisms

The inventors have devised an approach for introducing one or more desired insertions and/or deletions of known sizes into one or more predefined locations in a nucleic acid (e.g., in a cell or organism genome). They developed techniques to do this either in a sequential fashion or by inserting a discrete DNA fragment of defined size into the genome precisely in a predefined location or carrying out a discrete deletion of a defined size at a precise location. The technique is based on the observation that DNA single-stranded breaks are preferentially repaired through the HDR pathway, and this reduces the chances of indels (e.g., produced by NHEJ) in the present invention and thus is more efficient than prior art techniques.

The inventors have also devised new techniques termed sequential endonuclease-mediated homology directed recombination (sEHDR) and sequential Cas-mediated homology directed recombination (sCHDR).

BACKGROUND

Certain bacterial and archaea strains have been shown to contain highly evolved adaptive immune defence systems, CRISPR/Cas systems, which continually undergo reprogramming to direct degradation of complementary sequences present within invading viral or plasmid DNA. Short segments of foreign DNA, called spacers, are incorporated into the genome between CRISPR repeats, and serve as a 'memory' of past exposures. CRISPR spacers are then used to recognize and silence exogenous genetic elements in a manner analogous to RNAi in eukaryotic organisms.

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system including the CRISPR associated (Cas) protein has been reconstituted *in vitro* by a number of research groups allowing for the DNA cleavage of almost any DNA template without the caveat of searching for the right restriction enzyme cutter. The CRISPR/Cas system also offers a blunt end cleavage creating a dsDNA or, using mutated Cas versions, a selective single strand-specific cleavage (see Cong *et al.*, Wang *et al.* & Mali *et al.* cited below).

Through *in vitro* studies using *Streptococcus pyogenes* type II CRISPR/Cas system it has been shown that the only components required for efficient CRISPR/Cas-mediated target DNA or genome modification are a Cas nuclease (e.g., a Cas9 nuclease), CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The wild-type mechanism of CRISPR/Cas-mediated DNA cleavage occurs via several steps. Transcription of the CRISPR array, containing small fragments (20-30 base-pairs) of the encountered (or target) DNA, into pre-crRNA, which undergoes maturation through the hybridisation with tracrRNA via direct repeats of pre-crRNA. The hybridisation of the pre-crRNA and tracrRNA, known as guide RNA (gRNA or sgRNA), associates
with the Cas nuclease forming a ribonucleoprotein complex, which mediates conversion of pre-
crRNA into mature crRNA. Mature crRNA:tracrRNA duplex directs Cas9 to the DNA target
consisting of the protospacer and the requisite protospacer adjacent motif (CRISPR/cas
protospacer-adjacent motif; PAM) via heteroduplex formation between the spacer region of the
crRNA and the protospacer DNA on the host genome. The Cas9 nuclease mediates cleavage
of the target DNA upstream of PAM to create a double-stranded break within the protospacer or a
strand-specific nick using mutated Cas9 nuclease whereby one DNA strand-specific cleavage
motif is mutated (for example, Cas9 nickase contains a D10A substitution) (Cong et al.).

It is worth noting that different strains of Streptococcus have been isolated which use
PAM sequences that are different from that used by Streptococcus pyogenes Cas9. The latter
requires a NGG PAM sequence. CRISPR/Cas systems (for example, the Csy4 endoribonuclease in
Pseudomonas aeruginosa (see Shah et al.) have been described in other prokaryotic species,
which recognise a different PAM sequence (e.g., CCN, TCN, TTC, AWG, CC, NNAGNN, NGG,
NGGNG). It is noteworthy that the Csy4 (also known as Cas6f) has no sequence homology to
Cas9 but the DNA cleavage occurs through a similar mechanism involving the assembly of a Cas-
protein-crRNA complex that facilitates target DNA recognition leading to specific DNA cleavage
(Haurwitz et al.).

In wire-reconstituted type II CRISPR/Cas system has been adapted and applied in a
number of different settings. These include creating selective gene disruption in single or
multiple genes in ES cells and also single or multiple gene disruption using a one-step approach
using zygotes to generate biallelic mutations in mice. The speed, accuracy and the efficiency at
which this system could be applied to genome editing in addition to its multiplexing capability
makes this system vastly superior to its predecessor genome editing technologies namely zinc
finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered
homing meganucleases (Gaj et al. & Perez-Pinera et al.). These have been successfully used in
various eukaryotic hosts but they all suffer from important limitations; notably off-target
mutagenesis leading to nuclease-related toxicity, and also the time and cost of developing such
engineered proteins. The CRISPR/Cas system on the other hand is a superior genome editing
system by which mutations can be introduced with relative ease, simply by designing a single
guided RNA complementary to the protospacer sequence on the target DNA.

The dsDNA break induced by an endonuclease, such as Cas9, is subsequently repaired
through non-homologous end joining mechanism (NHEJ), whereby the subsequent DNA repair at
the breakpoint junction is stitched together with different and unpredictable inserted or deletions
(indels) of varying size. This is highly undesirable when precise nucleic acid or genome editing is
required. However a predefined precise mutation can be generated using homology directed
repair (HDR), e.g., with the inclusion of a donor oligo or donor DNA fragment. This approach with Cas9 nuclease has been shown to generate precise predefined mutations but the efficiency at which this occurs in both alleles is low and mutation is seen in one of the strands of the dsDNA target (Wang et al.).

The CRISPR/Cas system does therefore have some limitations in its current form. While it may be possible to modify a desired sequence in one strand of dsDNA, the sequence in the other strand is often mutated through undesirable NHEJ.

SUMMARY OF THE INVENTION

A first configuration of the present invention provides:-

A method of nucleic acid recombination, the method comprising providing dsDNA comprising first and second strands and

(a) using nucleic acid cleavage to create 5’ and 3’ cut ends in the first strand;
(b) using homologous recombination to insert a nucleotide sequence between the ends, thereby producing a modified first strand; thereby producing DNA wherein the first strand has been modified by said recombination but the second strand has not been modified; and
(c) optionally replicating the modified first strand to produce a progeny dsDNA wherein each strand thereof comprises a copy of the inserted nucleotide sequence; and isolating the progeny dsDNA.

A second configuration of the present invention provides:-

A method of nucleic acid recombination, the method comprising

(a) using nucleic acid cleavage to create 5’ and 3’ cut ends in a single nucleic acid strand;
(b) using homologous recombination to insert a nucleotide sequence between the ends, wherein the insert sequence comprises a regulatory element or encodes all or part of a protein; and
(c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny nucleic acid strand comprising the inserted nucleotide sequence.

A third configuration of the present invention provides:-

A method of nucleic acid recombination, the method comprising
(a) using nucleic acid cleavage to create first and second breaks in a nucleic acid strand, thereby creating 5' and 3' cut ends and a nucleotide sequence between the ends;
(b) using homologous recombination to delete the nucleotide sequence; and
(c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny nucleic acid strand comprising the deletion.

A fourth configuration of the present invention provides:-

A method of nucleic acid recombination, the method comprising providing dsDNA comprising first and second strands and

(a) using Cas endonuclease-mediated nucleic acid cleavage to create a cut end in the first strand 3' of a PAM motif;
(b) using Cas endonuclease-mediated nucleic acid cleavage to create a cut in the second strand at a position which corresponds to a position 3' of the cut end of the strand of part (a), which cut is 3' of the PAM motif;
(c) providing a first gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (a)
(d) providing a second gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (b)

wherein the nucleic acid strands of part (a) and part (b) are repaired to produce a deletion of nucleic acid between the cuts.

In aspects of the configurations of the invention there is provided a method of sequential endonuclease-mediated homology directed recombination (sEHDR) comprising carrying out the method of any preceding configuration a first time and carrying out the method of any preceding configuration a second time. In this way, the invention enables serial nucleic acid modifications, e.g., genome modifications, to be carried out, which may comprise precise sequence deletions, insertions or combinations of these two or more times. For example, it is possible to use this aspect of the invention to "walk along" nucleic acids (e.g., chromosomes in cells) to make relatively large and precise nucleotide sequence deletions or insertions. In an embodiment, one or more Cas endonucleases (e.g., a Cas9 and/or Cys4) is used in a method of sequential Cas-mediated homology directed recombination (sCHDR).

In another aspect, the invention can be described according to the numbered sentences below:

1. A method of nucleic acid recombination, the method comprising providing dsDNA comprising first and second strands and
(a) using nucleic acid cleavage to create 5' and 3' cut ends in the first strand;
(b) using homologous recombination to insert a nucleotide sequence between the
ends, thereby producing a modified first strand; thereby producing DNA wherein the first strand
has been modified by said recombination but the second strand has not been modified; and
(c) optionally replicating the modified first strand to produce a progeny dsDNA
wherein each strand thereof comprises a copy of the inserted nucleotide sequence; and isolating
the progeny dsDNA.

2. A method of nucleic acid recombination, the method comprising
(a) using nucleic acid cleavage to create 5' and 3' cut ends in a single nucleic acid
strand;
(b) using homologous recombination to insert a nucleotide sequence between the
ends, wherein the insert sequence comprises a regulatory element or encodes all or part of a
protein; and
(c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny
nucleic strand comprising the inserted nucleotide sequence.

3. The method of any preceding sentence, wherein the insert sequence replaces an
orthologous or homologous sequence of the strand.

4. The method of any preceding sentence, wherein the insert nucleotide sequence
is at least 10 nucleotides long.

5. The method of any preceding sentence, wherein the insert sequence comprises a
site specific recombination site.

6. A method of nucleic acid recombination, the method comprising
(a) using nucleic acid cleavage to create first and second breaks in a nucleic acid
strand, thereby creating 5' and 3' cut ends and a nucleotide sequence between the ends;
(b) using homologous recombination to delete the nucleotide sequence; and
(c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny
nucleic strand comprising the deletion.

7. The method of sentence 6, wherein the deleted sequence comprises a regulatory
element or encodes all or part of a protein.

8. The method of any preceding sentence, wherein step (c) is performed by
isolating a cell comprising the modified first strand, or by obtaining a non-human vertebrate in
which the method has been performed or a progeny thereof.
9. The method of any preceding sentence, wherein the nucleic acid strand or the first strand is a DNA strand.

10. The method of any preceding sentence wherein the product of the method comprises a nucleic acid strand comprising a PAM motif 3’ of the insertion or deletion.

11. The method of any preceding sentence, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5’ from the 5’ end and a sequence extending 3’ from the 3’ end.

12. The method of sentence 11, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising an insert nucleotide sequence flanked by the first and second homology arms, wherein the insert nucleotide sequence is inserted between the 5’ and 3’ ends.

13. The method of sentence 12, wherein the insert is as recited in any one of sentences 3 to 5 and there is no further sequence between the homology arms.

14. The method of any one of sentences 11 to 13, wherein each homology arm is at least 20 contiguous nucleotides long.

15. The method of any one of sentences 11 to 14, wherein the first and/or second homology arm comprises a PAM motif.

16. The method of any preceding sentence, wherein Cas endonuclease-mediated cleavage is used in step (a); optionally by recognition of a GG or NGG PAM motif.

17. The method of sentence 16, wherein a nickase is used to cut in step (a).

18. The method of any preceding sentence, wherein the method is carried out in a cell, e.g. a eukaryotic cell.

19. The method of sentence 18, wherein the method is carried out in a mammalian cell.

20. The method of sentence 18, wherein the cell is a rodent (e.g., mouse) ES cell or zygote.

21. The method of any preceding sentence, wherein the method is carried out in a non-human mammal, e.g. a mouse or rat or rabbit.
22. The method of any preceding sentence, wherein each cleavage site is flanked by PAM motif (e.g., a NGG or NGGNG sequence, wherein N is any base and G is a guanine).

23. The method of any preceding sentence, wherein the 3' end is flanked 3' by a PAM motif.

24. The method of any preceding sentence, wherein step (a) is carried out by cleavage in one single strand of dsDNA.

25. The method of any preceding sentence, wherein step (a) is carried out by combining in a cell the nucleic acid strand, a Cas endonuclease, a crRNA and a tracrRNA (e.g., provided by one or more gRNAs) for targeting the endonuclease to carry out the cleavage, and optionally an insert sequence for homologous recombination with the nucleic acid strand.

26. The method of any preceding sentence, wherein step (b) is performed by carrying out homologous recombination with an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the second homology arm comprises a PAM sequence such that homologous recombination between the second homology arm and the sequence extending 3' from the 3' end produces a sequence comprising a PAM motif in the product of the method.

27. A method of sequential endonuclease-mediated homology directed recombination (sEHDR) comprising carrying out the method of any preceding sentence (e.g., when according to sentence 1 using a nickase to cut a single strand of dsDNA; or when dependent from sentence 2 or 5 using a nuclease to cut both strands of dsDNA) a first time and a second time, wherein endonuclease-mediated cleavage is used in each step (a); wherein the product of the first time is used for endonuclease-mediated cleavage the second time, whereby either (i) first and second nucleotide sequences are deleted the first time and the second times respectively; (ii) a first nucleotide sequence is deleted the first time and a second nucleotide sequence is inserted the second time; (iii) a first nucleotide sequence is inserted the first time and a second nucleotide sequence is deleted the second time; or (iv) first and second nucleotide sequences are inserted the first and second times respectively; optionally wherein the nucleic acid strand modification the second time is within 20 or less nucleotides of the nucleic acid strand modification the first time.

28. The method of sentence 27, wherein the first time is carried out according to claim 6, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms, wherein sequence between the 5' and 3' ends is deleted by homologous
recombination; and/or the second time is carried out according to sentence 6, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5′ from the 5′ end and a sequence extending 3′ from the 3′ end, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms such that sequence between the 5′ and 3′ ends is deleted by homologous recombination; optionally wherein the second arm comprises a PAM motif such that the product of the second time comprises a PAM motif for use in a subsequent Cas endonuclease-mediated method according to any one of sentences 1 to 26.

29. The method of sentence 27, wherein the first time is carried out according to sentence 1 or 2, wherein the incoming nucleic acid comprises the insert sequence between the first and second homology arms, wherein the insert sequence is inserted between the 5′ and 3′ ends by homologous recombination; and/or the second time is carried out according to sentence 1 or 2, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5′ from the 5′ end and a sequence extending 3′ from the 3′ end, wherein the insert sequence is inserted between the 5′ and 3′ ends by homologous recombination; optionally wherein the second arm comprises a PAM motif such that the product of the second time comprises a PAM motif for use in a subsequent Cas endonuclease-mediated method according to any one of sentences 1 to 26.

30. The method of sentence 27, wherein one of said first and second times is carried out as specified in sentence 28 and the other time is carried out as specified in sentence 29, wherein at least one sequence deletion and at least one sequence insertion is performed.

31. The method of any preceding sentence, wherein step (a) is carried out using Cas endonuclease-mediated cleavage and a gRNA comprising a crRNA and a tracrRNA.

32. The method of sentence 25 or 31, wherein the crRNA has the structure 5′-X-Y-3′, wherein X is an RNA nucleotide sequence (optionally at least 5 nucleotides long) and Y is a crRNA sequence comprising a nucleotide motif that hybridises with a motif comprised by the tracrRNA, wherein X is capable of hybridising with a nucleotide sequence extending 5′ from the desired site of the 5′ cut end.

33. The method of sentence 25, 31 or 32, wherein Y is 5′-NIUUUAN2N3CUA-3′ (SEQ ID NO:3), wherein each of NI-3 is A, U, C or G and/or the tracrRNA comprises the sequence (in 5′ to 3′ orientation) UAGCM1UAAAAM2 (SEQ ID NO:4), wherein M1 is spacer nucleotide sequence and M2 is a nucleotide.
34. A method of producing a cell or a transgenic non-human organism, the method comprising
 (a) carrying out the method of any preceding claim to (i) knock out a target nucleotide sequence in the genome of a first cell and/or (ii) knock in an insert nucleotide sequence into the genome of a first cell, optionally wherein the insert sequence replaces a target sequence in whole or in part at the endogenous location of the target sequence in the genome; wherein the cell or a progeny thereof can develop into a non-human organism or cell; and
 (b) developing the cell or progeny into a non-human organism or a non-human cell.

35. The method of sentence 34, wherein the organism or cell is homozygous for the modification (i) and/or (ii).

36. The method of sentence 34 or 35, wherein the cell is an ES cell, iPS cell, totipotent cell or pluripotent cell.

37. The method of any one of sentences 34 to 36, wherein the cell is a rodent (e.g., a mouse or rat) cell.

38. The method of any one of sentences 34 to 37, wherein the target sequence is an endogenous sequence comprising all or part of a regulatory element or encoding all or part of a protein.

39. The method of any one of sentences 34 to 38, wherein the insert sequence is a synthetic sequence; or comprises a sequence encoding all or part of a protein from a species other than the species from which the first cell is derived; or comprises a regulatory element from said first species.

40. The method of sentence 39, wherein the insert sequence encodes all or part of a human protein or a human protein subunit or domain.

41. A cell or a non-human organism whose genome comprises a modification comprising a non-endogenous nucleotide sequence flanked by endogenous nucleotide sequences, wherein the cell or organism is obtainable by the method of any one of sentences 24 to 40 and wherein the non-endogenous sequence is flanked 3′ by a Cas PAM motif; wherein the cell is not comprised by a human; and one, more or all of (a) to (d) applies
 (a) the genome is homozygous for the modification; or comprises the modification at one allele and is unmodified by Cas-mediated homologous recombination at the other allele;
 (b) the non-endogenous sequence comprises all or part of a regulatory element or encodes all or part of a protein;
 (c) the non-endogenous sequence is at least 20 nucleotides long;
(d) the non-endogenous sequence replaces an orthologous or homologous sequence in the genome.

42. The cell or organism of sentence 41, wherein the non-endogenous sequence is a human sequence.

43. The cell or organism of sentence 41 or 42, wherein the PAM motif comprises a sequence selected from CCN, TCN, TTC, AWG, CC, NNAGNN, NGGNG GG, NGG, WGG, CWT, CTT and GAA.

44. The cell or organism of any one of sentences 41 to 43, wherein there is a PAM motif no more than 10 nucleotides (e.g., 3 nucleotides) 3' of the non-endogenous sequence.

45. The cell or organism of any one of sentences 41 to 44, wherein the PAM motif is recognised by a Streptococcus Cas9.

46. The cell or organism of any one of sentences 41 to 45, which is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody heavy chain variable domains (and optionally no heavy chain variable domains of a non-human vertebrate species).

47. The cell or organism of any one of sentences 41 to 46, which is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody kappa light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species).

48. The cell or organism of any one of sentences 41 to 47, which is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody lambda light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species).

49. The cell or organism of any one of sentences 46 to 48, wherein the non-endogenous sequence encodes a human Fc receptor protein or subunit or domain thereof (e.g., a human FcRn or Fcγ receptor protein, subunit or domain).

50. The cell or organism of any one of sentences 41 to 48, wherein the non-endogenous sequence comprises one or more human antibody gene segments, an antibody variable region or an antibody constant region.
51. The cell or organism of any one of sentences 41 to 50, wherein the insert sequence is a human sequence that replaces or supplements an orthologous non-human sequence.

52. A monoclonal or polyclonal antibody prepared by immunisation of a vertebrate (e.g., mouse or rat) according to any one of sentences 41 to 51 with an antigen.

53. A method of isolating an antibody that binds a predetermined antigen, the method comprising
 (a) providing a vertebrate (optionally a mouse or rat) according to any one of sentences 41 to 51;
 (b) immunising said vertebrate with said antigen;
 (c) removing B lymphocytes from the vertebrate and selecting one or more B lymphocytes expressing antibodies that bind to the antigen;
 (d) optionally immortalising said selected B lymphocytes or progeny thereof, optionally by producing hybridomas therefrom; and
 (e) isolating an antibody (e.g., and IgG-type antibody) expressed by the B lymphocytes.

54. The method of sentence 53, comprising the step of isolating from said B lymphocytes nucleic acid encoding said antibody that binds said antigen; optionally exchanging the heavy chain constant region nucleotide sequence of the antibody with a nucleotide sequence encoding a human or humanised heavy chain constant region and optionally affinity maturing the variable region of said antibody; and optionally inserting said nucleic acid into an expression vector and optionally a host.

55. The method of sentence 53 or 54, further comprising making a mutant or derivative of the antibody produced by the method of claim 53 or 54.

56. The use of an isolated, monoclonal or polyclonal antibody according to sentence 52, or a mutant or derivative antibody thereof that binds said antigen, in the manufacture of a composition for use as a medicament.

57. The use of an isolated, monoclonal or polyclonal antibody according to sentence 52, or a mutant or derivative antibody thereof that binds said antigen for use in medicine.

58. A nucleotide sequence encoding an antibody of sentence 52, optionally wherein the nucleotide sequence is part of a vector.

59. A pharmaceutical composition comprising the antibody or antibodies of sentence 52 and a diluent, excipient or carrier.
60. An ES cell, a eukaryotic cell, a mammalian cell, a non-human animal or a non-human blastocyst comprising an expressible genomically-integrated nucleotide sequence encoding a Cas endonuclease.

61. The cell, animal or blastocyst of sentence 60, wherein the endonuclease sequence is constitutively expressible.

62. The cell, animal or blastocyst of sentence 60, wherein the endonuclease sequence is inducibly expressible.

63. The cell, animal or blastocyst of sentence 60, 61 or 62, wherein the endonuclease sequence is expressible in a tissue-specific or stage-specific manner in the animal or a progeny thereof, or in a non-human animal that is a progeny of the cell or blastocyst.

64. The cell or animal of sentence 63, wherein the cell is a non-human embryo cell or the animal is a non-human embryo, wherein the endonuclease sequence is expressible or expressed in the cell or embryo.

65. The cell of animal sentence 64, wherein the endonuclease is operatively linked to a promoter selected from the group consisting of an embryo-specific promoter (e.g., a Nanog promoter, a Pou5f1 promoter or a SoxB promoter).

66. The cell, animal or blastocyst of any one of sentences 60 to 65, wherein the Cas endonuclease is at a Rosa 26 locus.

67. The cell, animal or blastocyst of any one of sentences 60 to 65, wherein the Cas endonuclease is operably linked to a Rosa 26 promoter.

68. The cell, animal or blastocyst of any one of sentences 60 to 63, wherein the Cas endonuclease sequence is flanked 5' and 3' by transposon elements (e.g., inverted piggyBac terminal elements) or site-specific recombination sites (e.g., loxP and/or a mutant lox, e.g., lox2272 or lox511; or frt).

69. The cell, animal or blastocyst of sentence 68, comprising one or more restriction endonuclease sites between the Cas endonuclease sequence and a transposon element.

70. The cell, animal or blastocyst of any one of sentences 60 to 69 comprising one or more gRNAs.

71. The cell, animal or blastocyst of sentence 68, 69 or 70, wherein the gRNA(s) are flanked 5' and 3' by transposon elements (e.g., inverted piggyBac terminal elements) or site-specific recombination sites (e.g., loxP and/or a mutant lox, e.g., lox2272 or lox511; or frt).
72. Use of the cell, animal or blastocyst of any one of sentences 60 to 71 in a method according to any one of sentences 1 to 51 or 73.

73. A method of nucleic acid recombination, the method comprising providing dsDNA comprising first and second strands and

(a) using Cas endonuclease-mediated nucleic acid cleavage to create a cut end in the first strand 3' of a PAM motif;

(b) using Cas endonuclease-mediated nucleic acid cleavage to create a cut in the second strand at a position which corresponds to a position 3' of the cut end of the strand of part (a), which cut is 3' of the PAM motif;

(c) providing a first gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (a)

(d) providing a second gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (b)

wherein the nucleic acid strands of part (a) and part (b) are repaired to produce a deletion of nucleic acid between the cuts.

74. The method of sentence 6, wherein the deleted sequence comprises a regulatory element or encodes all or part of a protein.

75. The method of sentence 73 or 74, wherein Cas endonuclease-mediated cleavage is used in step (a) or in step (b) is by recognition of a GG or NGG PAM motif.

76. The method of sentence 75, wherein a nickase is used to cut in step (a) and/or in step (b).

77. The method of sentence 73 or 74 wherein a nuclease is used to cut in step (a) and/or in step (b).

78. The method of any one of sentences 74 to 77, wherein the method is carried out in a cell, e.g. a eukaryotic cell.

79. The method of sentence 78, wherein the method is carried out in a mammalian cell.

80. The method of sentence 78, wherein the cell is a rodent (e.g., mouse) ES cell or zygote.

81. The method of any one of sentences 74 to 80, wherein the method is carried out in a non-human mammal, e.g. a mouse or rat or rabbit.
82. The method of any one of sentences 74 to 81, wherein each cleavage site is flanked by PAM motif (e.g., a NGG or NGGNG sequence, wherein N is any base and G is a guanine).

83. Use of a first and second gRNA to target a desired part of the nucleic acid, defining the region to be deleted, in a method according to any one of sentences 74 to 82.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A. Precise DNA Insertion in a Predefined Location (KI): gRNA designed against a predefined location can induce DNA nick using Cas9 DIOA nickase 5' of the PAM sequence (shown as solid black box). Alternatively, gRNA can be used together with Cas9 wild-type nuclease to induce double-stranded DNA breaks 5' of the PAM sequence. The addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology around the breakpoint region containing any form of DNA alterations including addition of endogenous or exogenous DNA can be precisely inserted at the breakpoint junction where the DNA is repaired through HDR.

Figure 1B. Precise DNA Insertion in a Predefined Location (KI): This figure shows a more detailed description of the mechanism described in Figure 1A. sgRNA designed against a predefined location can induce DNA nick using Cas9 DIOA nickase 5' of the PAM sequence (shown as solid black box). Alternatively, sgRNA can be used together with Cas9 wild-type nuclease to induce double-stranded DNA breaks 5' of the PAM sequence. The addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology arms (HA) around the breakpoint region containing any form of DNA alterations including addition of endogenous or exogenous DNA, can be precisely inserted at the breakpoint junction where the DNA is repaired through HDR.

Figure 2A. Precise DNA Deletion (KO): gRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 DIOA nickase in predefined locations containing the desired PAM sequences (shown as solid black box). Alternatively, gRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5' of PAM 1 and 3' of PAM 2 sequence will guide DNA repair in a precise manner via HDR. DNA repair via HDR will reduce the risk of indel formation at the breakpoint junctions and avoid DNA repair through NHEJ and in doing so, it will delete out the region flanked by the PAM sequence and carry out DNA repair in a pre-determined and pre-defined manner.
Figure 2B. Precise DNA Deletion (KO): This figure shows a more detailed description of the mechanism described in Figure 2A. sgRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in pre-defined locations containing the desired PAM sequences (shown as solid black box). Note. The PAMs can be located in opposite DNA strands as suppose to the example depicted in the figure where both PAMs are on the same DNA strand. Alternatively, sgRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5′ of PAM 1 and 3′ of PAM 2 sequence will guide DNA repair in a precise manner via HDR. DNA repair via HDR will reduce the risk of indel formation at the breakpoint junctions and avoid DNA repair through NHEJ and in doing so, it will delete out the region flanked by the PAM sequence and carry out DNA repair in a pre-determined and pre-defined manner.

Figure 3A: Precise DNA Deletion and Insertion (KO → K1): gRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in pre-defined locations containing the desired PAM sequences (shown as solid black box). Alternatively, gRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5′ of PAM 1 and 3′ to PAM 2 with inclusion of additional endogenous or exogenous DNA, will guide DNA repair in a precise manner via HDR with the concomitant deletion of the region flanked by DSB or nick and the insertion of DNA of interest.

Figure 3B: Precise DNA Deletion and Insertion (KO → K1): This figure shows a more detailed description of the mechanism described in Figure 3A. gRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in pre-defined locations containing the desired PAM sequences (shown as solid black box). Alternatively, sgRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5′ of PAM 1 and 3′ to PAM 2 with inclusion of additional endogenous or exogenous DNA (DNA insert), will guide DNA repair in a precise manner via HDR with the concomitant deletion of the region flanked by DSB or nick and the insertion of DNA of interest. Note. Once again, the PAMs can be located in opposite DNA strands as suppose to the example depicted in the figure where both PAMs are on the same DNA strand.

Figure 4A: Recycling PAM For Sequential Genome Editing (Deletions): gRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in pre-defined locations containing the desired PAM sequences (shown as solid black box). Alternatively, gRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest.
Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5’ of PAM 2 and 3’ of PAM 3 will guide DNA repair in a precise manner via HDR and in doing so, it will delete out the region between PAM 2 and PAM3. This deletion will retain PAM 3 and thus acts as a site for carrying out another round of CRISPR/Cas mediated genome editing. Another PAM site (e.g., PAM 1) can be used in conjunction with PAM 3 sequence to carry out another round of deletion as described above. Using this PAM recycling approach, many rounds of deletions can be performed in a stepwise deletion fashion, where PAM 3 is recycled after each round. This approach can be used also for the stepwise addition of endogenous or exogenous DNA.

Figure 4B: Recycling PAM For Sequential Genome Editing (Deletions): This figure shows a more detailed description of the mechanism described in Figure 4B. sgRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in predefined locations containing the desired PAM sequences. Alternatively, sgRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of a donor oligo or a donor DNA fragment (single or double stranded) with homology to region 5’ of PAM 1 (clear PAM box) and 3’ of PAM 2 (black PAM box) will guide DNA repair in a precise manner via HDR and in doing so, it will delete out the region between PAM 1 and PAM 2. PAM sequence together with unique gRNA can be included in the intruding DNA and targeted back into the site of editing. In this, PAM 1 sequence for example can be recycled and thus acts as a site for carrying out another round of CRISPR/Cas mediated genome editing. Another PAM site (e.g., PAM 3, grey PAM box) can be used in conjunction with the recycled PAM 1 sequence to carry out another round of editing (i.e. Insertion) as described above. Using this PAM recycling approach, many rounds of genome editing can be performed in a stepwise fashion, where PAM 1 is recycled after each round. This approach can be used also for the stepwise addition of endogenous or exogenous DNA.

Figure 5A: CRISPR/Cas mediated Lox Insertion to facilitate RMCE: sgRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in predefined locations containing the desired PAM sequences (shown as solid black box). Alternatively, sgRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of two donor oligos or donor DNA fragments (single or double stranded) with homology to regions 5’ and 3’ of each PAM sequence where the donor DNA contains recombinase recognition sequence (RRS) such as loxP and lox5171 will guide DNA repair in a precise manner via HDR with the inclusion of these RRS. The introduced RRS can be used as a landing pad for inserting any DNA of interest with high efficiency and precisely using recombinase mediated cassette exchange (RMCE). The retained PAM 2 site can be recycled for another round of
CRISPR/Cas mediated genome editing for deleting or inserting DNA of interest. Note, the inserted DNA of interest could contain selection marker such as PGK-Puro flanked by PiggyBac LTR to allow for the initial selection and upon successful integration into DNA of interest, the selection marker can be removed conveniently by expressing hyperPbase transposase.

Figure 5B: CRISPR/ Cas mediated Lox insertion to facilitate RMCE: This figure shows a more detailed description of the mechanism described in Figure 5A. sgRNAs targeting flanking region of interest can induce two DNA nicks using Cas9 D10A nickase in predefined locations containing the desired PAM sequences (shown as solid black box). Alternatively, sgRNAs can be used with Cas9 wild-type nuclease to induce two DSB flanking the region of interest. Addition of two donor oligos or donor DNA fragments (single or double stranded) with homology to regions 5' and 3' of each PAM sequences where the donor DNA contains recombinase recognition sequence (RRS) such as loxP and lox5171 will guide DNA repair in a precise manner via HDR with the inclusion of these RRS. Note. The targeting of the lox sites can be done sequentially or as a pool in a single step process. The introduced RRS can be used as a landing pad for inserting any DNA of interest with high efficiency and precisely using recombinase mediated cassette exchange (RMCE). As detailed in Figure 4, the PAM sequence can be recycled for another round of CRISPR/Cas mediated genome editing for deleting or inserting DNA of interest. As an option, the inserted DNA of interest could contain selection marker such as PGK-Puro flanked by PiggyBac LTR to allow for the initial selection and upon successful integration into DNA of interest, the selection marker can be removed conveniently by expressing hyperPbase transposase.

Figure 6A and 6B: Genome modification to produce transposon-excisable Cas9 and gRNA

Figure 6C: Single copy Cas9 Expression: A landing pad initially can be targeted into any locus of choice in mouse ES cells or any other eukaryotic cell line. The landing pad will typically contain PiggyBac 5' and 3' LTR, selection marker such as neo for example floxed and a gene less promoter such as PGK in the general configuration shown. Targeting is done by homologous recombination and clones are selected on G418. The next step will involve RMCE to insert Cas9 linked via a T2A sequence to Puro-delta-tk with the option to insert single or multiple guide RNA using the unique restriction sites (RS). The orientation of the lox sites are positioned in a manner that only once the intruding DNA containing the Cas9 is inserted into the landing pad, the PGK promoter on the landing pad can activate the transcription and thus the expression of the puromycin and via the T2A transcribe and expression Cas9 production. Using this approach a single stable expression of Cas9 can be achieved. Following 4-6 days of selection on puromycin, the entire Cas9 and guide RNA floxed cassette can be excised using PiggyBac transposase
(Pbase) and individual clones can be analysed for genome editing resulting from the introduced
guide RNA. As an option, a stable bank cell line expressing Cas9 can be generated from which
multiple engineered cell lines can be generated. To do this, only Cas9-T2A-Puro-delta-tk will be
inserted and no gRNA at the stage of RMCE. This will produce a general single copy Cas9
expressing cell line where its genome can be edited by transfecting single or multiple gRNA.

Figure 7: Schematic representing the gRNA position with respect to gene X, the
structure of the target ing vector and the oligo pair used for genotyping the resulting
targeted clones.

Figure 8: A gel image showing the genotyping results following Cas9 nuclease
mediated double stranded DNA break and the subsequent DNA targeting. The
genotyping shows PCR product (880 bp) specific for the 5'targeted homology arm using oligo
pair HAP341/HAP334. The left hand gels show genotyping data from 96 ES cell clones
transfected with gRNA, human Cas9 nuclease and either a circular targeting vector (plate 1) or a
linear targeting vector (Plate 2). The right hand side gels shows 96 ES cell clones transfected
with gRNA and either a circular targeting vector (plate 3) or a linear targeting vector (Plate 4)
but with no human Cas9 nuclease. The percentage of the clones correctly targeted is shown for
each transfection.

Figure 9: Schematic showing the position of the gRNAs on a gene to allow for a
define deletion of the region in between the two gRNA. The oligo pair primer 1 and 2 was
used to detect ES clones containing the specific 55 bp deletion.

Figure 10: A 3% agarose gel containing PCR products amplified from 96 ES clones
transfected with gRNA 1 and 2. Primers 1 and 2 was used to amplify around the two gRNA
and any clones containing the define deletion can be seen as a smaller PCR product, which are
highlighted by an asterix.

Figure 11: PCR genotyping by amplifying the 5' (top gel) and 3' (bottom gel)
targeted homology arms within the Rosa26 gene located on chromosome 6. Correctly
targeted clones yielding PCR product for both 5' and 3' junctions are marked with an asterix.

Figure 12: Genotyping for the correct insertion of the Cas9 DNA cassette by PCR
amplifying the 5' (top gel) and 3' (bottom gel) arm of the inserted DNA cassette.

Figure 13: PCR genotyping by amplifying the region around the guide RNA and
assessing the PCR product for the presence of indels. Larger indels can be seen directly
from the gel as they yielded PCR product shorter than the expected WT DNA suggesting
significant deletion. For the positive control, genomic DNA from mouse AB2.1 was used to size the corresponding WT PCR product. The negative control was a no DNA water control.

Figure 14: PCR amplification of the region flanking the guide RNA using DNA extracted from pups following zygote Cas9/guide mRNA injection for analysing indel format ion. Lane 14 shows a gross deletion in that mouse and those lanes marked with an asterix indicate these mice contain smaller indels.

Table 3: Summary of the sequencing data from the 8 mice analysed and the details of the indels detected are shown. The number refers to the frequency of that particular indel identified in the clones analysed and the description of the indels are shown in brackets.

DETAILED DESCRIPTION OF THE INVENTION

The inventors addressed the need for improved nucleic acid modification techniques. An example of a technique for nucleic acid modification is the application of the CRISPR/Cas system. This system has been shown thus far to be the most advanced genome editing system available due, inter alia, to its broad application, the relative speed at which genomes can be edited to create mutations and its ease of use. The inventors, however, believed that this technology can be advanced for even broader applications than are apparent from the state of the art.

The inventors realised that an important aspect to achieve this would be to find a way of improving the fidelity of nucleic acid modifications beyond that contemplated by the CRISPR/Cas methods known in the art.

Additionally, the inventors realised that only modest nucleic acid modifications had been reported to date. It would be desirable to effect relatively large predefined and precise DNA deletions or insertions using the CRISPR/Cas system.

The inventors have devised an approach for introducing one or more desired insertions and/or deletions of known sizes into one or more predefined locations in a nucleic acid (e.g., in a cell or organism genome). They developed techniques to do this either in a sequential fashion or by inserting a discrete DNA fragment of defined size into the genome precisely at a predefined location or carrying out a discrete deletion of a defined size at a precise location. The technique is based on the observation that DNA single-stranded breaks are preferentially repaired through the HDR pathway, and this reduces the chances of indels (e.g., produced by NHFJ) in the present invention and thus is more efficient than prior art techniques.

To this end, the invention provides:-

A method of nucleic acid recombination, the method comprising providing double stranded DNA (dsDNA) comprising first and second strands and
(a) using nucleic acid cleavage to create 5' and 3' cut ends in the first strand; and
(b) using homologous recombination to insert a nucleotide sequence between the ends,
thereby producing a modified first strand; thereby producing DNA wherein the first strand has
been modified by said recombination but the second strand has not been modified.

Optionally, the method further comprises replicating the modified first strand to produce
a progeny dsDNA wherein each strand thereof comprises a copy of the insert nucleotide
sequence. Optionally, the method comprises (c) isolating the progeny dsDNA, e.g., by obtaining
a cell containing said progeny dsDNA. Replication can be effected, for example in a cell. For
example, steps (a) and (b) are carried out in a cell and the cell is replicated, wherein the
machinery of the cell replicates the modified first strand, e.g., to produce a dsDNA progeny in
which each strand comprises the modification.

Optionally, in any configuration, aspect, example or embodiment of the invention, the
modified DNA strand resulting from step (b) is isolated.

Optionally, in any configuration, aspect, example or embodiment of the invention, the
method is carried out in vitro. For example, the method is carried out in a cell or cell population
in vitro.

Alternatively, optionally, in any configuration, aspect, example or embodiment of the
invention, the method is carried out to modify the genome of a virus.

Alternatively, optionally, in any configuration, aspect, example or embodiment of the
invention, the method is carried out in vivo in an organism. In an example, the organism is a
non-human organism. In an example, it is a plant or an animal or an insect or a bacterium or a
yeast. For example, the method is practised on a vertebrate (e.g., a human patient or a non-
human vertebrate (e.g., a bird, e.g., a chicken) or non-human mammal such as a mouse, a rat
or a rabbit).

Optionally, in any configuration, aspect, example or embodiment of the invention, the
method is a method of cosmetic treatment of a human or a non-therapeutic, non-surgical, non-
diagnostic method, e.g., practised on a human or a non-human vertebrate or mammal (e.g., a
mouse or a rat).

The invention also provides:-

A method of nucleic acid recombination, the method comprising

(a) using nucleic acid cleavage to create 5' and 3' cut ends in a single nucleic acid strand;
(b) using homologous recombination to insert a nucleotide sequence between the ends,
wherein the insert sequence comprises a regulatory element or encodes all or part of a protein;
and
(c) Optionally obtaining the nucleic acid strand modified in step (b) or a progeny nucleic acid strand comprising the inserted nucleotide sequence, e.g., by obtaining a cell containing said progeny nucleic acid strand.

In an example the progeny strand is a product of the replication of the strand produced by step (b). The progeny strand is, for example, produced by nucleic acid replication in a cell. For example, steps (a) and (b) are carried out in a cell and the cell is replicated, wherein the machinery of the cell replicates the modified strand produced in step (b), e.g., to produce a dsDNA progeny in which each strand comprises the modification.

In an example, the single nucleic acid strand is a DNA or RNA strand.

In an example, the regulatory element is a promoter or enhancer.

Optionally, in any configuration, aspect, example or embodiment of the invention, the inserted nucleotide sequence is a plant, animal, vertebrate or mammalian sequence, e.g., a human sequence. For example, the sequence encodes a complete protein, polypeptide, peptide, domain or a plurality (e.g. one, two or more) of any one of these. In an example, the inserted sequence confers a resistance property to a cell comprising the modified nucleic acid produced by the method of the invention (e.g., herbicide, viral or bacterial resistance). In an example, the inserted sequence encodes an interleukin, receptor (e.g., a cell surface receptor), growth factor, hormone, antibody (or variable domain or binding site thereof), antagonist, agonist; e.g., a human version of any of these. In an example, the inserted sequence is an exon.

Optionally, in any configuration, aspect, example or embodiment of the invention, the inserted nucleotide sequence replaces an orthologous or homologous sequence of the strand (e.g., the insert is a human sequence that replaces a plant, human or mouse sequence). For example, the method is carried out in a mouse or mouse cell (such as an ES cell) and the insert replaces an orthologous or homologous mouse sequence (e.g., a mouse biological target protein implicated in disease). For example, the method is carried out (e.g., in vitro) in a human cell and the insert replaces an orthologous or homologous human sequence (e.g., a human biological target protein implicated in disease, e.g., a mutated form of a sequence is replaced with a different (e.g., wild-type) human sequence, which may be useful for correcting a gene defect in the cell. In this embodiment, the cell may be a human ES or iPS or totipotent or pluripotent stem cell and may be subsequently introduced into a human patient in a method of gene therapy to treat and/or prevent a medical disease or condition in the patient).

Optionally, in any configuration, aspect, example or embodiment of the invention, the inserted nucleotide sequence is at least 10 nucleotides long, e.g., at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800 or 900 nucleotides, or at least 1, 2, 3, 5, 10, 20, 50 or 100kb long.
Optionally, in any configuration, aspect, example or embodiment of the invention, the insert sequence comprises a site specific recombination site, e.g., a lox, frt or rox site. For example, the site can be a loxP, lox511 or lox2272 site.

The invention also provides:-

A method of nucleic acid recombination, the method comprising

(a) using nucleic acid cleavage to create first and second breaks in a nucleic acid strand, thereby creating 5' and 3' cut ends and a nucleotide sequence between the ends;
(b) using homologous recombination to delete the nucleotide sequence; and
(c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny nucleic acid strand comprising the deletion.

In an example, the progeny strand is a product of the replication of the strand produced by step (b). The progeny strand is, for example, produced by nucleic acid replication in a cell.

For example, steps (a) and (b) are carried out in a cell and the cell is replicated, wherein the machinery of the cell replicates the modified strand produced in step (b), e.g., to produce a dsDNA progeny in which each strand comprises the modification.

In an example, the single nucleic acid strand is a DNA or RNA strand.

In an example, the deleted sequence comprises a regulatory element or encodes all or part of a protein. In an embodiment, the deleted regulatory element is a promoter or enhancer.

Optionally, in any configuration, aspect, example or embodiment of the invention, the deleted nucleotide sequence is a plant, animal, vertebrate or mammalian sequence, e.g., a human sequence. For example, the sequence encodes a complete protein, polypeptide, peptide, domain or a plurality (e.g. one, two or more) of any one of these. In an example, the deleted sequence encodes an interleukin, receptor (e.g., a cell surface receptor), growth factor, hormone, antibody (or variable domain or binding site thereof), antagonist, agonist; e.g., a non-human version of any of these. In an example, the deleted sequence is an exon.

Optionally, in any configuration, aspect, example or embodiment of the invention, the deleted nucleotide sequence is replaced by an orthologous or homologous sequence of a different species or strain (e.g., a human sequence replaces an orthologous or homologous plant, human or mouse sequence). For example, the method is carried out in a mouse or mouse cell and the insert replaces an orthologous or homologous mouse sequence (e.g., a mouse biological target protein implicated in disease). For example, the method is carried out (e.g., in vitro) in a human cell and the insert replaces an orthologous or homologous human sequence (e.g., a human biological target protein implicated in disease, e.g., a mutated form of a
sequence is replaced with a different (e.g., wild-type) human sequence, which may be useful for correcting a gene defect in the cell. In this embodiment, the cell may be a human ES or iPS or totipotent or pluripotent stem cell and may be subsequently introduced into a human patient in a method of gene therapy to treat and/or prevent a medical disease or condition in the patient).

Optionally, in any configuration, aspect, example or embodiment of the invention, the deleted nucleotide sequence is at least 10 nucleotides long, e.g., at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800 or 900 nucleotides, or at least 1, 2, 3, 5, 10, 20, 50 or 100kb long.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (c) is performed by isolating a cell comprising the modified first strand, or by obtaining a non-human vertebrate in which the method has been performed or a progeny thereof.

Optionally, in any configuration, aspect, example or embodiment of the invention, the product of the method comprises a nucleic acid strand comprising a PAM motif 3' of the insertion or deletion. In an example, the PAM motif is within 10, 9, 8, 7 6, 5, 4 or 3 nucleotides of the insertion or deletion. This is useful to enable serial insertions and/or deletions according to the method as explained further below.

Optionally, in any configuration, aspect, example or embodiment of the invention, the product of the method comprises a nucleic acid strand comprising a PAM motif 5' of the insertion or deletion. In an example, the PAM motif is within 10, 9, 8, 7 6, 5, 4 or 3 nucleotides of the insertion or deletion. This is useful to enable serial insertions and/or deletions according to the method as explained further below.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end. The skilled person will be familiar with constructing vectors and DNA molecules for use in homologous recombination, including considerations such as homology arm size and sequence and the inclusion of selection markers between the arms. For example, the incoming nucleic acid comprises first and second homology arms, and the insert sequence and an optional selection marker sequence (e.g., neo nucleotide sequence). The arms may be at least 20, 30, 40, 50, 100 or 150 nucleotides in length, for example. Where deletion is required, the insert is omitted (although an optional selection marker sequence may or may not be included between the arms).

Thus, in an embodiment of the invention, step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising an insert nucleotide
sequence flanked by the first and second homology arms, wherein the insert nucleotide sequence is inserted between the 5' and 3' ends.

In another embodiment of the invention, the insert is between the homology arms and there is no further sequence between the arms.

In an example, each homology arm is at least 20, 30, 40, 50, 100 or 150 nucleotides long.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (a) is carried out using an endonuclease, e.g., a nickase. Nickases cut in a single strand of dsDNA only. For example, the endonuclease is an endonuclease of a CRISPR/Cas system, e.g., a Cas9 or Cys4 endonuclease (e.g., a Cas9 or Cys4 nickase). In an example, the endonuclease recognises a PAM listed in Table 1 below, for example, the endonuclease is a Cas endonuclease that recognises a PAM selected from CCN, TCN, TTC, AWG, CC, NNAGNN, NGGNG, GGG, WGG, CWT, CTT and GAA. In an example, the Cas endonuclease is a Spyogenes endonuclease, e.g., a S pyogenes Cas9 endonuclease. In an example, a S. pyogenes PAM sequence or Streptococcus thermophilus LMD-9 PAM sequence is used.

In an example, the endonuclease is a Group 1 Cas endonuclease. In an example, the endonuclease is a Group 2 Cas endonuclease. In an example, the endonuclease is a Group 3 Cas endonuclease. In an example, the endonuclease is a Group 4 Cas endonuclease. In an example, the endonuclease is a Group 7 Cas endonuclease. In an example, the endonuclease is a Group 10 Cas endonuclease.

In an example, the endonuclease recognises a CRISPR/Cas Group 1 PAM. In an example, the endonuclease recognises a CRISPR/Cas Group 2 PAM. In an example, the endonuclease recognises a CRISPR/Cas Group 3 PAM. In an example, the endonuclease recognises a CRISPR/Cas Group 4 PAM. In an example, the endonuclease recognises a CRISPR/Cas Group 7 PAM. In an example, the endonuclease recognises a CRISPR/Cas Group 10 PAM.

In an example, Cas endonuclease-mediated cleavage is used in step (a); optionally by recognition of a GG or NGG PAM motif.

In an example, the first and/or second homology arm comprises a PAM motif. This is useful to enable serial insertions and/or deletions according to the method as explained further below.

An example of a suitable nickase is Spyogenes Cas9 D10A nickase (see Cong eta/., and the Examples section below).

Optionally, in any configuration, aspect, example or embodiment of the invention, steps (a) and (b) of the method is carried out in a cell, e.g. a bacterial, yeast, eukaryotic cell, plant, animal, mammal, vertebrate, non-human animal, rodent, rat, mouse, rabbit, fish, bird or chicken
cell. For example, the cell is an E <x>/cell or CHO or HEK293 or Picchia or Saccharomyces cell.
In an example, the cell is a human cell in vitro. In one embodiment, the cell is an embryonic stem cell (ES cell, e.g., a human or non-human ES cell, such as a mouse ES cell) or an induced pluripotent stem cell (IPS cell; e.g., a human, rodent, rat or mouse IPS cell) or a pluripotent or totipotent cell. Optionally, the cell is not an embryonic cell, e.g. wherein the cell is not a human embryonic cell. Optionally, the cell is not a pluripotent or totipotent cell. In an example, the method is used to produce a human stem cell for human therapy (e.g., an IPS cell generated from a cell of a patient for reintroduction into the patient after the method of the invention has been performed on the cell), wherein the stem cell comprises a nucleotide sequence or gene sequence inserted by the method of the invention. The features of the examples in this paragraph can be combined.

In an example, the method is carried out in a mammalian cell. For example, the cell is a human cell in vitro or a non-human mammalian cell. For example, a non-human (e.g., rodent, rat or mouse) zygote. For example, a single-cell non-human zygote.

In an example, the method is carried out in a plant or non-human mammal, e.g. a rodent, mouse or rat or rabbit, or a tissue or organ thereof (e.g., in vitro).

In an example, the 3' or each cleavage site is flanked 3' by PAM motif (e.g., a motif disclosed herein, such as NGG or NGGNG sequence, wherein N is any base and G is a guanine). For example, one or more or all cleavage sites are flanked 3' by the sequence 5'-TGGTG-3'. Unlike dsDNA, the PAM is not absolutely required for ssDNA binding and cleavage: A single-stranded oligodeoxynucleotide containing a protospacer with or without a PAM sequence is bound nearly as well as dsDNA and may be used in the invention wherein a single strand of DNA is modified. Moreover, in the presence of Mg2+, Cas9 cuts ssDNA bound to the crRNA using its HNH active site independently of PAM.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (a) is carried out by cleavage in one single strand of dsDNA or in ssDNA.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (a) is carried out by combining in a cell the nucleic acid strand, a Cas endonuclease, a crRNA and a tracrRNA (e.g., provided by one or more gRNAs) for targeting the endonuclease to carry out the cleavage, and optionally an insert sequence for homologous recombination with the nucleic acid strand. Instead of an insert sequence, one can use an incoming sequence containing homology arms but no insert sequence, to effect deletion as described above. In an example, the Cas endonuclease is encoded by a nucleotide sequence that has been introduced into the cell. In an example, the gRNA is encoded by a DNA sequence that has been introduced into the cell.

In an example, the method is carried out in the presence of Mg2+.
Optionally, in any configuration, aspect, example or embodiment of the invention, step (b) is performed by carrying out homologous recombination with an incoming nucleic acid compromising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the second homology arm comprises a PAM sequence such that homologous recombination between the second homology arm and the sequence extending 3' from the 3' end produces a sequence comprising a PAM motif in the product of the method. The PAM can be any PAM sequence disclosed herein, for example. Thus, the method produces a modified nucleic acid strand comprising a PAM that can be used for a subsequent nucleic acid modification according to any configuration, aspect, example or embodiment of the invention, wherein a Cas endonuclease is used to cut the nucleic acid. This is useful, for example, for performing sequential endonuclease-mediated homology directed recombination (sEHDR) according to the invention, more particularly sCHDR described below.

Sequential Endonuclease-Mediated Homology Directed Recombination (sEHDR)

The invention further provides:-

A method of sequential endonuclease-mediated homology directed recombination (sEHDR) comprising carrying out the method of any preceding configuration, aspect, example or embodiment of the invention a first time and a second time, wherein endonuclease-mediated cleavage is used in each step (a); wherein the product of the first time is used for endonuclease-mediated cleavage the second time, whereby either (i) first and second nucleotide sequences are deleted the first time and the second times respectively; (ii) a first nucleotide sequence is deleted the first time and a second nucleotide sequence is inserted the second time; (iii) a first nucleotide sequence is inserted the first time and a second nucleotide sequence is deleted the second time; or (iv) first and second nucleotide sequences are inserted the first and second times respectively; optionally wherein the nucleic acid strand modification the second time is within 20, 10, 5, 4, 3, 2 or 1 or less nucleotides of the nucleic acid strand modification the first time or directly adjacent to the nucleic acid strand modification the first time.

For example, the first and second nucleotide sequences are inserted so that they are contiguous after the insertion the second time. Alternatively, the first and second deletions are such that a contiguous sequence has been deleted after the first and second deletions have been performed.

In an embodiment of sEHDR, the invention uses a Cas endonuclease. Thus, there is provided:-

A method of sequential Cas-mediated homology directed recombination (sCHDR) comprising carrying out the method of any preceding claim a first time and a second time, wherein Cas endonuclease-mediated cleavage is used in each step (a); wherein step (b) of the first time is
carried out performing homologous recombination with an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the second homology arm comprises a PAM sequence such that homologous recombination between the second homology arm and the sequence extending 3' from the 3' end produces a sequence comprising a PAM motif in the product of the method; wherein the PAM motif of the product of the first time is used for Cas endonuclease-mediated cleavage the second time, whereby either (i) first and second nucleotide sequences are deleted the first time and the second times respectively; (ii) a first nucleotide sequence is deleted the first time and a second nucleotide sequence is inserted the second time; (iii) a first nucleotide sequence is inserted the first time and a second nucleotide sequence is deleted the second time; or (iv) first and second nucleotide sequences are inserted the first and second times respectively; optionally wherein the nucleic acid strand modification the second time is within 20, 10, 5, 4, 3, 2 or 1 or less nucleotides of the nucleic acid strand modification the first time or directly adjacent to the nucleic acid strand modification the first time.

For example, the first and second nucleotide sequences are inserted so that they are contiguous after the insertion the second time. Alternatively, the first and second deletions are such that a contiguous sequence has been deleted after the first and second deletions have been performed.

In an embodiment (First Embodiment), the first time is carried out according to the third configuration of the invention, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms, wherein sequence between the 5' and 3' ends is deleted by homologous recombination; and/or the second time is carried out according to the third configuration of the invention, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms such that sequence between the 5' and 3' ends is deleted by homologous recombination; optionally wherein the second arm comprises a PAM motif such that the product of the second time comprises a PAM motif for use in a subsequent Cas endonuclease-mediated method according to any configuration, aspect, example or embodiment of the invention.

In an embodiment (Second Embodiment), the first time is carried out according to the first or second configuration of the invention, wherein the incoming nucleic acid comprises the insert sequence between the first and second homology arms, wherein the insert sequence is inserted between the 5' and 3' ends by homologous recombination; and/or the second time is
carried out according to the first or second configuration of the invention, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5’ from the 5’ end and a sequence extending 3’ from the 3’ end, wherein the insert sequence is inserted between the 5’ and 3’ ends by homologous recombination; optionally wherein the second arm comprises a PAM motif such that the product of the second time comprises a PAM motif for use in a subsequent Cas endonuclease-mediated method according to any configuration, aspect, example or embodiment of the invention.

In an example, one of said first and second times is carried out as specified in the First Embodiment and the other time is carried out as specified in the Second Embodiment, wherein at least one sequence deletion and at least one sequence insertion is performed.

Optionally, in any configuration, aspect, example or embodiment of the invention, step (a) is carried out by Cas endonuclease-mediated cleavage using a Cas endonuclease, one or more crRNAs and a tracrRNA. For example, the method is carried out in a cell and the crRNA and tracrRNA is introduced into the cell as RNA molecules. For example, the method is carried out in a zygote (e.g., a non-human zygote, e.g., a rodent, rat or mouse zygote) and the crRNA and tracrRNA is injected into zygote. In another embodiment, the crRNA and tracrRNA are encoded by DNA within a cell or organism and are transcribed inside the cell (e.g., an ES cell, e.g., a non-human ES cell, e.g., a rodent, rat or mouse ES cell) or organism to produce the crRNA and tracrRNA. The organism is, for example, a non-human animal or plant or bacterium or yeast or insect. In an embodiment, the tracrRNA is in this way encoded by DNA but one or more crRNAs are introduced as RNA nucleic acid into the cell or organism to effect the method of the invention.

Additionally or alternatively to these examples, the endonuclease may be introduced as a protein or a vector encoding the endonuclease may be introduced into the cell or organism to effect the method of the invention. In another example, the endonuclease is encoded by DNA that is genomically integrated into the cell or organism and is transcribed and translated inside the cell or organism.

In an example, the method of the invention is carried out in an ES cell (e.g., a non-human ES cell, e.g., a rodent, rat or mouse ES cell) that has been pre-engineered to comprise an expressible genomically-integrated Cas endonuclease sequence (or a vector carrying this has been include in the cell). It would be possible to introduce (or encode) a tracrRNA. By introducing a crRNA with a guiding oligo sequence to target the desired area of the cell genome, one can then carry out modifications in the cell genome as per the invention. In an example, a gRNA as described herein is introduced into the ES cell. The genomically-integrated expressible
Cas endonuclease sequence can, for example, be constitutively expressed or inducibly expressible. Alternatively or additionally, the sequence may be expressible in a tissue-specific manner in a progeny organism (e.g., a rodent) developed using the ES cell.

The initial ES cell comprising a genomically-integrated expressible Cas endonuclease sequence can be used, via standard techniques, to produce a progeny non-human animal that contains the expressible Cas endonuclease sequence. Thus, the invention provides:-

A non-human animal (e.g., a vertebrate, mammal, fish or bird), animal cell, insect, insect cell, plant or plant cell comprising a genomically-integrated expressible Cas endonuclease nucleotide sequence and optionally a tracrRNA and/or a nucleotide sequence encoding a tracrRNA. The Cas endonuclease is, for example, Cas9 or Cys4. In an example, the animal, insect or plant genome comprises a chromosomal DNA sequence flanked by site-specific recombination sites and/or transposon elements (e.g., piggyBac transposon repeat elements), wherein the sequence encodes the endonuclease and optionally one or more gRNAs. As described in the Examples below, recombinase-mediated cassette exchange (RMCE) can be used to insert such a sequence. The transposon elements can be used to excise the sequence from the genome once the endonuclease has been used to perform recombination. The RMCE and/or transposon-mediated excision can be performed in a cell (e.g., an ES cell) that later is used to derive a progeny animal or plant comprising the desired genomic modification.

The invention also provides an ES cell derived or derivable from such an animal, wherein the ES cell comprises a genomically-integrated expressible Cas endonuclease nucleotide sequence. In an example, the ES cell is a rodent, e.g., a mouse or rat ES cell, or is a rabbit, dog, pig, cat, cow, non-human primate, fish, amphibian or bird ES cell.

The invention also provides a method of isolating an ES cell, the method comprising deriving an ES cell from an animal (e.g., a non-human animal, e.g., a rodent, e.g., a rat or a mouse), wherein the animal comprises a genomically-integrated expressible Cas endonuclease nucleotide sequence, as described herein.

In any of these aspects, instead of an ES cell, the cell may be an iPS cell or a totipotent or pluripotent cell. Thus, an iPS or stem cell can be derived from (e.g., a somatic cell of) a human, engineered in vitro to comprise a genomically-integrated expressible Cas endonuclease nucleotide sequence and optionally one or more DNA sequences encoding a tracrRNA or gRNA. The invention, thus, also relates to such a method and to a human iPS or stem cell comprising a genomically-integrated expressible Cas endonuclease nucleotide sequence and optionally one or more DNA sequences encoding a tracrRNA or gRNA. This cell can be used in a method of the invention to carry out genome modification (e.g., to correct a genetic defect, e.g., by replacement of defective sequence with a desired sequence, optionally with subsequent transposon-mediated excision of the endonuclease-encoding sequence). After optional excision
of the Cas endonuclease sequence, the iPS cell or stem cell can be introduced into the donor human (or a different human, e.g., a genetic relative thereof) to carry out genetic therapy or prophylaxis. In the alternative, a totipotent or pluripotent human cell is used and then subsequently developed into human tissue or an organ or part thereof. This is useful for providing material for human therapy or prophylaxis or for producing assay materials (e.g., for implantation into model non-human animals) or for use in in vitro testing (e.g., of drugs).

In an example, the method uses a single guided RNA (gRNA or sgRNA) comprising a crRNA and a tracrRNA. The crRNA comprises an oligonucleotide sequence ("X" in the structure 5'-X-Y-3' mentioned below) that is chosen to target a desired part of the nucleic acid or genome to be modified. The skilled person will be able readily to select appropriate oligo sequence(s).

In an example, the sequence is from 3 to 100 nucleotides long, e.g., from 3 to 50, 40, 30, 25, 20, 15 or 10 nucleotides long, e.g., from or 5, 10, 15 or 20 to 100 nucleotides long, e.g., from 5, 10, 15 or 20 to 50 nucleotides long.

For example, the gRNA is a single nucleic acid comprising both the crRNA and the tracrRNA. An example of a gRNA comprises the sequence 5'-[oligo]-[UUUAGAGCUA (SN1UUUAN2N3GCUA)]-[LINKER]-[UAGCAAGUAAA (SEQ ID NO:2)]-3', wherein the LINKER comprises a plurality (e.g., 4 or more, e.g., 4, 5 or 6) nucleotides (e.g., 5'-GAAA-3')

For example, the crRNA has the structure 5'-X-Y-3', wherein X is an RNA nucleotide sequence (optionally, at least 5 nucleotides long) and Y is a crRNA sequence comprising a nucleotide motif that hybridises with a motif comprised by the tracrRNA, wherein X is capable of hybridising with a nucleotide sequence 5' of the desired site of the 5' cut end, e.g., extending 5' from the desired site of the 5' cut.

In an example, Y is 5'-UUUUUUAN3GCUA-3' (SEQ ID NO:3), wherein each of N-3 is a A, U, C or G and/or the tracrRNA comprises the sequence (in 5' to 3' orientation) UAGCM1UUAAAAM2 (SEQ ID NO:4), wherein MI is spacer nucleotide sequence and M2 is a nucleotide; e.g., N1-G, N2=G and N3=A. The spacer sequence is, e.g., 5, 4, 3, 2 or 1 RNA nucleotides in length (e.g., AAG in 5' to 3' orientation). M2 is, for example, an A, U, C or G (e.g., M2 is a G). In an embodiment, a chimaeric gRNA is used which comprises a sequence 5'-X-Y-Z-3', wherein X and Y are as defined above and Z is a tracrRNA comprising the sequence (in 5' to 3' orientation) UAGCM1UUAAAAM2 (SEQ ID NO:4), wherein MI is spacer nucleotide sequence and M2 is a nucleotide. In an example, Z comprises the sequence 5'-UACGCAAUAAAA-3'(SEQ ID NO:2), e.g., Z is 5'-UAGCAAGUAAAAUAGGCUCGCG-3'(SEQ ID NO:5). In an example, the gRNA has the sequence:

5'-GUUUUAGAGCUAGAMCMGUAAAMUMGCUAGCGCUAUCMCUUGAAAAAGUGGCA CCGAGUCGGUCG-3' (SEQ ID NO:6)
When it is desired to use the present invention to insert an exogenous sequence into the nucleic acid to be modified, the exogenous sequence can be provided on linear or circular nucleic acid (e.g., DNA). Typically, the exogenous sequence is flanked by homology arms that can undergo homologous recombination with sequences 5' and 3' respectively of the site where the exogenous sequence is to be inserted. The skilled person is familiar with choosing homology arms for homologous recombination.

The invention can be used in a method of producing a transgenic organism, e.g., any organism recited herein. For example, the organism can be a non-human organism used as an assay model to test a pharmaceutical drug or to express an exogenous protein or a part thereof (e.g., a human protein target knocked-in into a non-human animal assay organism). In another example, the invention has been used to knock-out an endogenous sequence (e.g., a target protein) in an organism, such as a non-human organism. This can be useful to assess the effect (phenotype) of the knock-out and thus to assess potential drug targets or proteins implicated in disease. In one example, the organism is a non-human animal (e.g., a vertebrate, mammal, bird, fish, rodent, mouse, rat or rabbit) in which a human target protein has been knocked-in using the invention. Optionally, the invention has been used to knock out an orthologous or homologous endogenous target of the organism (e.g., an endogenous target sequence has been replaced at the endogenous position by an orthologous or homologous human target sequence).

In this way, an assay model can be produced for testing pharmaceutical drugs that act via the human target.

In an embodiment, the organism is a non-human vertebrate that expresses human antibody variable regions whose genome comprises a replacement of an endogenous target with an orthologous or homologous human sequence. In an example, the method of the invention is used to produce an Antibody-Generating Vertebrate or Assay Vertebrate as disclosed in WO2013061078, the disclosure of which, and specifically including the disclosure of such Vertebrates, their composition, manufacture and use, is included specifically herein by reference as though herein reproduced in its entirety and for providing basis for claims herein.

In an example, an exogenous regulatory element is knocked-in using the method. For example, it is knocked-in to replace an endogenous regulatory element.

In one aspect, the invention provides a method of producing a cell or a transgenic non-human organism (e.g., any non-human organism recited herein), the method comprising:

(a) carrying out the method of any in any configuration, aspect, example or embodiment of the invention to (i) knock out a target nucleotide sequence in the genome of a first cell and/or (ii) knock in an insert nucleotide sequence into the genome of a first cell, optionally wherein the
insert sequence replaces a target sequence in whole or in part at the endogenous location of the
target sequence in the genome; wherein the cell or a progeny thereof can develop into a non-
human organism or cell; and
(b) developing the cell or progeny into a non-human organism or a non-human cell.

In an example, the organism or cell is homozygous for the modification (i) and/or (ii).
In an example, the cell is an ES cell (such as a mouse ES cell), iPS cell, totipotent cell or
pluripotent cell. In an example, the cell is a non-human vertebrate cell or a human cell in vitro.
In an example, the cell is a plant, yeast, insect or bacterial cell.

In an example, the cell or organism is a rodent (e.g., a mouse or rat) cell or a rabbit,
bird, fish, chicken, non-human primate, monkey, pig, dog, Camelid, shark, sheep, cow or cat
cell.

In an example, the target sequence is an endogenous sequence comprising all or part of
a regulatory element or encoding all or part of a protein.
In an example, the insert sequence is a synthetic sequence; or comprises a sequence
encoding all or part of a protein from a species other than the species from which the first cell is
derived; or comprises a regulatory element from said first species. This is useful to combine
genes with new regulatory elements.
In an example, the insert sequence encodes all or part of a human protein or a human
protein subunit or domain. For example, the insert sequence encodes a cell membrane protein,
secreted protein, intracellular protein, cytokine, receptor protein (e.g., Fc receptor protein, such
as FcRn or a Fcγ receptor protein), protein of the human immune system or domain thereof
(e.g., an Ig protein or domain, such as an antibody or TCR protein or domain, or a MHC protein),
a hormone or growth factor.

The invention also provides:-

A cell (e.g., an isolated or purified cell, e.g., a cell in vitro, or any cell disclosed herein) or a non-
human organism (e.g., any organism disclosed herein, such as a mouse) whose genome
comprises a modification comprising a non-endogenous nucleotide sequence flanked by
endogenous nucleotide sequences, wherein the cell or organism is obtainable by the method of
any configuration, aspect, example or embodiment of the invention, and wherein the non-
endogenous sequence is flanked 3' and/or 5' by (e.g., within 20, 10, 5, 4, 3, 2 or 1 or less
nucleotides of, or directly adjacent to) a Cas PAM motif; wherein the cell is not comprised by a
human; and one, more or all of (a) to (d) applies (for example, (a); (b); (c); (d); (a) and (b); (a)
and (c); (a) and (d); (b) and (c); (b) and (d); (c) and (d); (a), (b) and (c); (a), (b) and (d); (a),
(c) and (d); (b), (c) and (d) or all of (a), (b), (c) and (d)).
(a) the genome is homozygous for the modification; or comprises the modification at one allele and is unmodified by Cas-mediated homologous recombination at the other allele;
(b) the non-endogenous sequence comprises all or part of a regulatory element or encodes all or part of a protein;
(c) the non-endogenous sequence is at least 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800 or 900 nucleotides, or at least 1, 2, 3, 5, 10, 20, 50 or 100kb long;
(d) the non-endogenous sequence replaces an orthologous or homologous sequence in the genome.

The cell can be a human cell, or included in human tissue but not part of a human being. For example, the cell is a human cell in vitro.

In an example, the non-endogenous sequence is a human sequence.

In an example, the PAM motif is any PAM disclosed herein or comprises a sequence selected from CCN, TCN, TTC, AWG, CC, NNAGNN, NGGNG GG, NGG, WGG, CWT, CTT and GAA.

For example, the motif is a Cas9 PAM motif. For example, the PAM is NGG. In another example, the PAM is GG.

In an example, there is a PAM motif no more than 10 nucleotides (e.g., 3 nucleotides) 3' and/or 5' of the non-endogenous sequence.

In an example, the PAM motif is recognised by a Streptococcus Cas9.

In an example, the cell or organism is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody heavy chain variable domains (and optionally no heavy chain variable domains of a non-human vertebrate species). For example, the organism is an Antibody-Generating Vertebrate or Assay Vertebrate disclosed in WO2013061078.

In an example, the cell or organism is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody kappa light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species).

In an example, the cell or organism is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody lambda light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species).

In an example, the non-endogenous sequence encodes a human Fc receptor protein or subunit or domain thereof (e.g., a human FcRn or FcY receptor protein, subunit or domain).

In an example, the non-endogenous sequence comprises one or more human antibody gene segments, an antibody variable region or an antibody constant region.

In an example, the insert sequence is a human sequence that replaces or supplements an orthologous non-human sequence.
The invention also provides:-

A monoclonal or polyclonal antibody prepared by immunisation of a vertebrate (e.g., mouse or rat) of the invention (or produced by a method of the invention) with an antigen.

The invention also provides:-

A method of isolating an antibody that binds a predetermined antigen, the method comprising:

(a) providing a vertebrate (optionally a mouse or rat) of the invention (or produced by a method of the invention);

(b) immunising said vertebrate with said antigen;

(c) removing B lymphocytes from the vertebrate and selecting one or more B lymphocytes expressing antibodies that bind to the antigen;

(d) optionally immortalising said selected B lymphocytes or progeny thereof, optionally by producing hybridomas therefrom; and

(e) isolating an antibody (e.g., an IgG-type antibody) expressed by the B lymphocytes.

In an example, the method comprises the step of isolating from said B lymphocytes nucleic acid encoding said antibody that binds said antigen; optionally exchanging the heavy chain constant region nucleotide sequence of the antibody with a nucleotide sequence encoding a human or humanised heavy chain constant region and optionally affinity maturing the variable region of said antibody; and optionally inserting said nucleic acid into an expression vector and optionally a host.

In an example, the method comprises making a mutant or derivative of the antibody produced by the method.

The invention provides the use of an isolated, monoclonal or polyclonal antibody described herein, or a mutant or derivative antibody thereof that binds said antigen, in the manufacture of a composition for use as a medicament.

The invention provides the use of an isolated, monoclonal or polyclonal antibody described herein, or a mutant or derivative antibody thereof that binds said antigen for use in medicine.

The invention provides a method of treating a patient in need thereof (e.g., a human patient), comprising administering a therapeutically effective amount of an isolated, monoclonal or polyclonal antibody described herein, or a mutant or derivative antibody thereof which binds an antigen.

The invention provides a nucleotide sequence encoding an antibody described herein, optionally wherein the nucleotide sequence is part of a vector. The invention also provides a host cell comprising said nucleotide sequence.
The invention provides a pharmaceutical composition comprising the antibody or antibodies described herein and a diluent, excipient or carrier.

The invention provides an ES cell, a non-human animal or a non-human blastocyst comprising an expressible genomically-integrated nucleotide sequence encoding a Cas endonuclease (e.g., a Cas9 or Cys4) and optionally an expressible genomically-integrated nucleotide sequence encoding a tracrRNA or a gRNA. For example, the ES cell is any ES cell type described herein.

In an example of the cell, animal or blastocyst, the endonuclease sequence is constitutively expressible.

In an example of the cell, animal or blastocyst, the endonuclease sequence is inducibly expressible.

In an example of the cell, animal or blastocyst, the endonuclease sequence is expressible in a tissue-specific manner in the animal or a progeny thereof, or in a non-human animal that is a progeny of the cell or blastocyst.

In an example, the cell, animal or blastocyst comprises one or more gRNAs or an expressible nucleotide sequence encoding a gRNA or a plurality of expressible nucleotide sequences each encoding a different gRNA.

The invention provides the use of the cell, animal or blastocyst in a method according to any configuration, aspect, embodiment or example of the invention.

An aspect provides an antibody produced by the method of the invention, optionally for use in medicine, e.g., for treating and/or preventing (such as in a method of treating and/or preventing) a medical condition or disease in a patient, e.g., a human.

An aspect provides a nucleotide sequence encoding the antibody of the invention, optionally wherein the nucleotide sequence is part of a vector. Suitable vectors will be readily apparent to the skilled person, e.g., a conventional antibody expression vector comprising the nucleotide sequence together in operable linkage with one or more expression control elements.

An aspect provides a pharmaceutical composition comprising the antibody of the invention and a diluent, excipient or carrier, optionally wherein the composition is contained in an intravenous (IV) container (e.g., and IV bag) or a container connected to an IV syringe.

An aspect provides the use of the antibody of the invention in the manufacture of a medicament for the treatment and/or prophylaxis of a disease or condition in a patient, e.g., a human.

In a further aspect, the invention relates to humanised antibodies and antibody chains produced according to the present invention, both in chimaeric and fully humanised form, and use of said antibodies in medicine. The invention also relates to a pharmaceutical composition comprising such an antibody and a pharmaceutically acceptable carrier or other excipient.
Antibody chains containing human sequences, such as chimaeric human-non human antibody chains, are considered humanised herein by virtue of the presence of the human protein coding regions region. Fully human antibodies may be produced starting from DNA encoding a chimaeric antibody chain of the invention using standard techniques.

Methods for the generation of both monoclonal and polyclonal antibodies are well known in the art, and the present invention relates to both polyclonal and monoclonal antibodies of chimaeric or fully humanised antibodies produced in response to antigen challenge in non-human vertebrates of the present invention.

In a yet further aspect, chimaeric antibodies or antibody chains generated in the present invention may be manipulated, suitably at the DNA level, to generate molecules with antibody-like properties or structure, such as a human variable region from a heavy or light chain absent a constant region, for example a domain antibody; or a human variable region with any constant region from either heavy or light chain from the same or different species; or a human variable region with a non-naturally occurring constant region; or human variable region together with any other fusion partner. The invention relates to all such chimaeric antibody derivatives derived from chimaeric antibodies identified according to the present invention.

In a further aspect, the invention relates to use of animals of the present invention in the analysis of the likely effects of drugs and vaccines in the context of a quasi-human antibody repertoire.

The invention also relates to a method for identification or validation of a drug or vaccine, the method comprising delivering the vaccine or drug to a mammal of the invention and monitoring one or more of: the immune response, the safety profile; the effect on disease.

The invention also relates to a kit comprising an antibody or antibody derivative as disclosed herein and either instructions for use of such antibody or a suitable laboratory reagent, such as a buffer, antibody detection reagent.

It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine study, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims. All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. The use of the word "a" or "an" when used in conjunction with the term "comprising"
in the claims and/or the specification may mean "one," but it is also consistent with the meaning of "one or more," "at least one," and "one or more than one." The use of the term "or" in the claims is used to mean "and/or" unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and "and/or." Throughout this application, the term "about" is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.

As used in this specification and claim(s), the words "comprising" (and any form of comprising, such as "comprise" and "comprises"), "having" (and any form of having, such as "have" and "has"), "including" (and any form of including, such as "includes" and "include") or "containing" (and any form of containing, such as "contains" and "contain") are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.

The term "or combinations thereof as used herein refers to all permutations and combinations of the listed items preceding the term. For example, "A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.

Any part of this disclosure may be read in combination with any other part of the disclosure, unless otherwise apparent from the context.

All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

References

The present invention is described in more detail in the following non-limiting exemplification.

EXAMPLES

Example 1: Precise DNA Modification

(a) Use of Nickase for HDR

It has been reported that the Cas9 nuclease can be converted into a nickase through the substitution of an aspartate to alanine (DIOA) in the RuvCl domain of SpCas9 (Cong et al.). It is noteworthy that DNA single-stranded breaks are preferentially repaired through the HDR pathway. The Cas9 DIOA nickase, when in a complex with mature crRNA:tracrRNA, can specifically induce DNA nicking at a precise location. With this in mind, we propose extending the application of the CRISPR/Cas system by creating a nick in a given location in a genome using Cas9 DIOA nickase and then exploiting the HDR pathway for inserting a single-stranded DNA fragment (endogenous or exogenous) which will contain DNA homology (typically for
recombineering, 50 bp is enough for efficient recombination) flanking the nicked DNA junction to bring in and insert a given DNA in a precision location; similar size homology will be used with the present example (Figure 1A). Guide RNA (gRNA) will be design individually per target protospacer sequence or incorporated into a single CRISPR array encoding for 2 or more spacer sequences allowing multiplex genome editing from a single CRISPR array.

(b) Example of Precise DNA Deletion

To demonstrate precise deletion using Cas9 in association with gRNA and no targeting vector or donor DNA, we designed two gRNA within a gene, which were 55 bp apart. The two gRNA were on opposite DNA strands as shown in Figure 9.

Mouse ES cells were transfected with human Cas9 nuclease and the two gRNAs. The transfection procedure was carried out as detailed above but the resulting clones were not selected. The transfected ES clones were genotyped using oligos pair spanning the two gRNA (Primer 1 & 2) to detect specific 55 bp deletion (Figure 10).

Most of the clones did not show the specific 55 bp deletion, however, clones were clearly identified which contained the defined deletion. Out of the 384 clones analysed, approximately 4% of the clones were found to contain the specific 55 bp deletion. Note: Not all the genotyping data is shown. The clones containing the specific 55 bp deletion were further analysed by sequencing the PCR products as a final confirmation (data not shown). Furthermore, where we saw the specific deletion, we observed both alleles to contain the specific deletion. These data confirmed that when two gRNAs are used, a precise and specific deletion can be made without the requirement for a targeting vector. However we can assume the efficiency of the define deletion can be greatly enhance using the two gRNA combination together with a targeting vector or a donor DNA fragment containing homology arms flanking the intended deletion region.

(c) Alternative methodology for deletion of DNA

In a separate setting, two gRNA or a single CRISPR array encoding multiple spacer sequence can be designed flanking a gene or a region of interest and with the association of Cas9 D10A nickase, two separate single-stranded breaks can be induced. This, in association with a single-stranded DNA fragment containing DNA homology to the 5’ breakpoint junction of the first DNA nick, and DNA homology to the 3’ breakpoint junction of the second nick, the region in between the two single stranded DNA nick can be precisely deleted (Figure 2A).

(d) Alternative methodology for replacement of DNA
In another setting, two separate gRNA or a multiplex single CRISPR array can be designed flanking a gene or a region of interest and with the association of Cas9 D10A nickase two separate single-stranded breaks can be induced. In this case the intruding single stranded DNA fragment (or double stranded DNA) can contain DNA sequence from either endogenous or exogenous source containing sequence for a known gene, regulatory element promoter etc. This single-stranded DNA fragment (or double stranded DNA) can be brought together to replace the DNA region of interest flanked by DNA nick by arming it with DNA homology from the 5′ region of the first nick and 3′ region from the second nick (Figure 3A). Due to the high efficiency of the CRISPR/Cas system to cleave DNA, the above proposed strategy will not require introduction of any selection marker, thus creating exact seamless genome editing in a precise and defined manner. As an option, a selection marker can be included flanked by PiggyBac LTRs to allow for the direct selection of correctly modified clones. Once the correct clones have been identified, the selection marker can be removed conveniently through the expression of hyperactive piggyBac transposase (Yusa K., Zhou L., Li M.A., Bradley A., Craig N.L.: A hyperactive piggyBac transposase for mammalian applications., Proc. Natl. Acad. Sci. USA, 2011, 108(4): 1531-1536). Furthermore, the above approaches can be applied to ES cells, mammalian cells, yeast cells, bacterial cells, plant cells as well as directly performing in zygotes to expedite the process of homozygous genome engineering in record time. It would be also possible to multiplex this system to generate multiple simultaneous DNA insertions (KI), deletions (KO) and the sequential deletion and insertion (KO → KI).

(e) Example of DNA Deletion and Insertion in a predefined location (KO → KI)

To demonstrate a desired DNA region can be manipulated using Cas9, a single guide RNA (gRNA) was selected at a desired region (Exon 1 of gene X) Figure 7. A targeting vector was also constructed, which contained approximately 300 bp homology arms (5′ and 3′ HA) flanking the gRNA. The homology arms will hybridise exactly in the defined region and thus delete a 50 bp region, which is intended for deletion. The targeting vector also allows for the insertion of any DNA sequence of interest. In this proof of concept experiment, we included an approximate 1.6 kb PGK-puromycin cassette. The guide RNA (0.5 ug) together with the targeting vector (1 ug) and Cas9 nuclease vector (1 ug) was transfected into ES cells and 96 clones were picked after selection on puromycin using the protocol described above. Note. As a test for targeting efficiency, we compared linear verses circular targeting vector. Also as a negative control, we did the same experiment using no Cas9 vector to compare targeting efficiency via homologous recombination with and without Cas9 expression.

All the selected clones were puromycin resistant and the 96 clones picked from each of the four transfections were genotyped using the oligo pair HAP341/HAP334. Correctly targeted clones yielded an 880 bp PCR product. The resulting genotyping data is shown in Figure 8.
From the genotyping data of this experiment, it can be seen that Cas9 mediated double stranded DNA break greatly improves homologous recombination efficiency of the targeting vector as 62% and 49% of the clones using circular or linear targeting vector respectively were correctly targeted verse only a single targeted clone using circular targeting vector when no Cas9 was used. Also it can be seen from this data that the circular targeting vector yielded slightly better targeting efficiency than when linear vector was used but a general conclusion cannot be drawn from this single experiment but to say, both circular and linear targeting vector yielded greatly improved targeting efficiency when associated with Cas9 and a specific guide RNA. This experiment also demonstrated that using Cas9 to create a define DNA breakage can be used to delete out a defined DNA region and subsequently insert any DNA fragment of interest.

Example 2: Recycling PAM for Sequential Insertions or Deletions

In certain settings it may be useful to edit a genome by chromosome walking. Using any of the three examples outlined above, it could be possible to carry out sequential genome editing in a stepwise fashion whereby the PAM sequence used in a previous round of CRISPR/Cas mediated genome editing, can be re-used to carry out multiple rounds of genome editing such as deletions, insertions or the simultaneous deletion and insertion. An example of sequential deletion whereby the PAM sequence from the previous genome editing step is recycled is shown in Figure 4A. Using the PAM recycling approach, it is possible to carry out sequential insertions as well as sequential simultaneous deletion and insertion.

The PAM sequence us recycled through reintroducing it via homologous recombination and as part of the homology arm. The PAM sequence can be optionally accompanied by a unique guide-RNA sequence creating a novel site within the host genome for further round of genome editing.

Example 3: Rapid Insertion of Lox Sites Using CRISPR/Cas System

Targeting efficiency using conventional homologous recombination methods in ES cells is low. In a different setting, the CRISPR/Cas system can be used to rapidly and efficiently introduce lox sites or other recombinase recognition sequence such as Frt in a defined location to act as a landing pad for genome editing using recombinase mediated cassette exchange (RMCE) (Qiao 1, Oumard A., Wegloehner W., Bode J.: Novel tag-and-exchange (RMCE) strategies generate master cell clones with predictable and stable transgene expression properties., J. Mo. Biol., 2009, 390(4): 579-594; and Oumard A., Qiao 1, Jostock T., Li 1, Bode J.: Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology., Cytotechnology, 2006, 50(1-3):93-108). Once the lox sites are introduced into the genome, inversion, deletion or cassette exchange to delete and introduce DNA fragment varying in size at this site can be efficiently conducted via expression of
Cre recombinase. An example of CRISPR/Cas mediated lox insertion followed by RMCE is shown in Figure 5A. The RMCE step can be used to invert the region flanked by lox site or to delete this region as well as to simultaneously delete and insert DNA of interest in this region. Furthermore, the RMCE step can be adapted for carrying out multiple sequential rounds of RMCE (sRMCE).

Example 4A:
Reference is made to Figure 6A. A piggyBac transposon harbouring a PGK promoter-driven loxP/mutant lox-flanked Tn5 gene is targeted into an ES cell genome by standard homologous recombination. The targeted clones can be selected by G418. This provides a landing pad for the following recombinase-mediated cassette exchange (RMCE). Such an ES clone can be used as a parental cells for any modification further. A cassette containing the loxP/mutant lox-flanked promoterless PuroTK-12K-Cas9 and U6 polymerase III promoter-driven guide RNA (gRNA) genes are inserted into the landing pad through transient expression. The gRNA genes can be one or more than one which target to the same gene or different genes. The inserted clones can be selected with puromycin and confirmed by junction PCRs. During the selection, the expression of Cas9 and gRNAs from the inserted cassette results in more efficient gene targeting or modification than transient expression of the Cas9 and gRNA can achieve. Following 4-6 day selection, the whole modified cassette is excised by the transient expression of piggyBac transposase (PBase). The final ES cell clones would not contain any Cas9 or gRNA sequence. The clones with homozygous modified genes would be confirmed by PCR and sequence.

The main feature of this invention is to control the Cas9 and gRNA expression in certain time to be sufficient to generate efficient targeting rates.

Example 4B: Single Copy Cas9 expression

As detailed in example 6, to demonstrate the single and stable expression of Cas9 from within the chromosome of a cell, we targeted a landing pad vector into Rosa26 allele on chromosome 6. DNA homology arms were used to target the landing pad vector in between exons 2 and 3 of Rosa26. The landing pad vector was targeted into ES cells using procedure described above. The transfected ES clones were selected on G418 and genotyped for correct targeting (Figure 11) by PCR amplifying the 5' and 3' homology arm junctions.

Targeting of the landing pad yielded many targeted ES clones. A selection of the targeted clones were used to insert a DNA cassette containing Cas9 nuclease linked to Puro-delta-tk via a T2A sequence into the targeted landing pad via RMCE, which involved the expression of Cre recombinase. The corresponding loxP and lo2272 sites within both the landing pad and the incoming vector ensured correct orientation of insertion. Since the landing pad contained a geneless PGK promoter, correct insertion of the incoming vector DNA containing
Cas9, activated expression of puromycin and thus clones were positively selected on puromycin. Non-specific targeting of this DNA cassette will not yield puromycin resistant clones due to the absence of a promoter driving the transcription of the promoterless puromycin gene in the inserted DNA cassette. The initial Cas9 vector inserted into the landing pad did not contain any guide RNA sequence. The puromycin resistant ES clones were genotyped by PCR for the correct insertion of Cas9 (Figure 12).

As expected owing to the positive selection, most of the clones genotyped for insertion of the Cas9 vector were correctly targeted via RMCE based on the PCR genotyping results. Two of the correct clones (KHK1.6 Z2-24-27 and KHK1.10Z2-25-4 referred to as positive Z clones) which now contain the single copy Cas9 integrated into the Rosa26 gene as a single copy were used to test whether the Cas9 expression was sufficient enough to induce Cas9 mediated genome editing. Into the two positive Z clones, guide RNA against a gene referred to as gene Y was transfected using procedure described above. Following transfection and expansion of the resulting ES clones, 36 individual clones were isolated from each transfection and analysed initially by PCR using oligo flanking the guide RNA (Figure 13).

Most of the clones yielded a PCR product of size equivalent to the positive control PCR where DNA from mouse AB2.1 ES cells was used. However, it can be seen clearly that some clones yielded a PCR product distinctively smaller than that of the positive control suggesting these clones contain a significant deletion via indel. To verify this and to check whether the rest of the PCR products though similar in size to the positive control did not contain indels, all the PCR products were purified using Qiagen gel extraction kit and analysed by sequencing. The sequencing data confirmed significant deletion for those PCR products that yielded shorter products than the positive control. It also highlighted, some of the other clones with similar PCR product size to the positive control to contain indels, which included various combinations of insertion and deletion (Sequencing data not shown). Out of the clones analysed, 18% of them contained an indel. These data clearly demonstrated that a single copy expression of Cas9 can be used to carry out genome editing and these clones can now be used as a Cas9 host cells for carrying out a multitude of genome editing. These ES clones are now being used to generate transgenic mouse lines whereby we can carry out a one-step genome editing by injecting only guide mRNA directly into zygotes without the requirement for transcribing Cas9 mRNA to simplify the one-step genome editing protocol.

Example 5(A) : Methodology

A: Reconstructing CRI SPR/ Cas Vector System (Nuclease)

The CRISPR/Cas genome editing system has been reconstructed in vitro and exemplified in mouse embryonic stem cells using vector pX330 containing humanised S. pyogenes(hSpCas9)
The CRISPR/Cas system can be reconstructed as described in Cong et al. using synthetic DNA strings and DNA assembly. In the present example, the entire DNA assembly would constitute a 6006 bp fragment containing 45 bp homology to pBluescript KS+ vector 5’ to the EcoRV cutting site, Human U6 promoter, two BssI restriction sites for cloning into the spacer sequence which fuses to a chimeric guided RNA sequence, chicken beta-actin promoter with 3’ FLAG, nuclear localisation signal (NLS) followed by hSpCas9 sequence and another NLS, bGH polyA, inverted terminal repeat sequence and finally another 45 bp homology to pBlueScript KS+. This 6006 bp stretch of DNA will be synthetized as 7 individual DNA fragments where each fragment will have a 45 bp overlap to the adjacent DNA fragment to allow DNA assembly. The DNA sequence of these fragments is shown below in the order of assembly.

Fragment 1 (1340 bp)

GGTACGGCCCCCCCTCGAGTCGACGGTATCGATMGCTTGATGAGGGCCTATTTCCCATGATTCCT
TCATATTGCATATACGATACMGGCTGTTAGAGAGATMTTGGMTTMTTTGACTGTAMCAC^TATTAGTACAAAATACGTGACGTAGAAAGTAATAA

Fragment 2 (852 bp)

ATGGACTATAAGGACCACGAGTGGCCCCAAAGAAGAAGCGGAAGGTCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAGCATCG
GCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAGCTGAGCMGAGGTMGGGTTMGGGATGGTTGGTC
AGCACCTGCCTGAAATCAL

Fragment 3 (213 bp)

AGCACCTGCCTGAAATCAL
MTTCMGGTGCTGGGCMCACCGACCGGCACAGCATCMGMGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGC

Fragment 3 (920 bp)

GGCGAGMGMGMTGGCCrGTTCGGAMCCTGATTGCCCrGAGCCrGGGCCrGACCCCCAACrTCAAG

Fragment 4 (920 bp)

CGAGCTGACCAMGTGAMTACGTGACCGAGGGMTGAGAMGCCCGCCTTCCTGAGCGGCGAGCAGAA

SEQ ID NO: 8

SEQ ID NO: 9
Fragment 5 (920 bp)

ACTACCTGCAGMTGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACCTACG
ATGTTGACCATATCGTGCCTCAGAGCTTTCTGMGGACGACTCCATCGACAACAAGGTGCTGACCAGAA
GCGACAGATCGCTGCCCCGCTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAA
CAGCCGCGAGAGMTMGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACA
CCCGTGGAAMCAACCCAGCTGCAGMCGAGMGCTGTACCTGTACTACTCTGCAAGATGGGCAGAGGATAT
(SEQ ID NO: 10)

Fragment 6 (789 bp)

AGCAMGAGTCATATCCTGCCCMGAGMCAGCGATMGCTGACCGCCAGAGMGGACTGGGACCCT
MGMTACGGCGTCCTCGACAGCCCCACCGGCTGCTGCGGCAAMGTGAAAAAGGAGGCAGTGCCTCG
AGCTGTTTGTGGGCAATGATACCGCAGGAAATCGGCAAGGCTACCGCCAAGTAC
(SEQ ID NO: 11)
Fragment 7 (535 bp)
GGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAMGAAAMGTMGMTTCCTAGAGCrCGCrGATCAGCCrCGACrGTGCCrTCrAGTTGCCAGCCATCTGTTTTGCCCTCCCTCCCCCT^CTTTCTCMTAAMTGAGGAMTTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCT^GTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAGAATAGCAGGCATGCTGGGGAGCGGCCGCAGGCCCCTAGTGATGGAGTTGGCCACTCCCTCTGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTATCGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCC

To reconstruct the CRISPR/Cas system described in Cong et al the above DNA fragments in addition to EcoRV linearised pBlueScript KS+ vector will be assembled using Gibson Assembly kit (NEB Cat No. E5510S). As an alternative approach, the 6006 bp fragment can be assembled by assembly PCR by mixing molar ratio of the individual DNA fragments together and using the DNA mixture as PCR template. The assembled PCR product can then be cloned directly into pBlueScript vector or a standard cloning vector system such as a TOPO TA cloning kit (Invitrogen).

B: Reconstructing CRISPR/Cas Vector System (D10A Nickase)

The D10A nickase version of the CRISPR/Cas system can be conveniently reconstructed by assembling the above fragments where fragment 2 is replaced with fragment 2A which contains the D10A substitution (See sequence below).

Fragment 2A (852 bp)
ATGGACTATAAGGACCACGACGGAGACTACAAGGATCATGATATTGATTACAAAGACGATGACGATAAGA

ACAGCGGCGAAACAGCCGAGCCACCCGGCTGAAGAGAAGGACAGGAGGATAACCATACACCAGCACGGAAGA
ACCCGATCTGCATACGGCATGATCGCAAGATCGGGTCTGGAAAGAGGATGGCACAGATCCTTCCACA
GACTGGMAGTCTCTCTGGAAGGATGGGATAAGGACAGACGACGGACGCCACCCCATCTCTGGCAAACATCG
TGAGCAAGGTGGCCTACCATACAGGAAAGTACCCACCATCCATACCACCTGAGAAAGAATCGCTGGAGACAGCA
CCGACMGCGACCTGCGGTCTGATCTATCGGCCTGCGGCCACATGATGAACTGAAATCGGGGGCCTCTCC
TGATCGAGGGCGACCTGGAACCCCGACAAACAGCGAGCTGGGAAAGGACAGCTGGTCTTTGACATCTGCCAC
ACCGAGCTGGCGTGAGGAGAAGCCCATACAGGCAAGGCAGGCAGGCGATGTGCTGACAGCCTCCGCTGAGC
GACGTAGCMAGCAGACGGCTTGAGAAAATCTGATCGCCGCCGCCAGTCGCGCGGGCAGAACAAAGAATGTCGGCTG
TCGGAAACCTGATTGCCCTGAGC (SEQ ID NO: 14)
The substituted aspartate to alanine is highlighted in bold and underlined.

C: Target (Spacer) Sequence Cloning

The target spacer sequence can be cloned into the above CRISPR/Cas vector system via the Bbsl restriction sites located upstream of the chimeric guided RNA sequence. The spacer sequence can be ordered as oligo pairs and annealed together with overhangs as shown below to allow direct cloning into Bbsl linearised CRISPR/Cas vector using standard molecular biology protocols.

Sequence of an example oligo pair with spacer sequence:

5' - CACCGNNNNNNNNNNNNNNNNNNNNN - 3' (SEQ ID NO: 15)

3' - NNNNNNNNNNNNNNNNNNNNNGAAA - 5' (SEQ ID NO: 16)

The 4 bp overhang sequence underlined is required to be included in the spacer oligos to facilitate cloning into the Bbsl restriction site in the CRISPR/Cas vector. Using this approach, any spacer sequence can be conveniently cloned into the CRISPR/Cas vector.

D: Reconstructing CRISPR/Cas System for One-step Generation of Transgenic Animals

In order to reconstruct a CRISPR/Cas system for one-step generation of transgenic animal as described in Wang et al. (Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R.: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering., *Cell*, 2013, 153(4):910-918) where direct embryo injection is used, the above detailed CRISPR/Cas vector system needs to be modified to incorporate a T7 polymerase promoter to the Cas9 coding sequence. In addition, the gRNA needs to be removed and synthesised separately by annealing oligos or produced synthetically (See below for an example T7-spacer sequence fused to chimeric guided RNA sequence - T7-gRNA). Note, ideally the spacer sequence will be designed in a unique region of a given chromosome to minimise off-target effect and also the respective protospacer genomic sequence needs to have a PAM at the 3'-end.

Example T7-gRNA Sequence

TTAAATACGACTCACTATAGGGNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAATAGCAAGTT
AAMTMGGGCTAGTCCGTTATCMTTTGAARAGGCAACCAGTCCGTGGLTTTTT

The underlined 20 bp of N's depicts the spacer sequence for a given target DNA.

To reconstruct the one-step CRISPR/Cas system, the above detailed DNA fragments (Fragments 2, 3, 4, 5, 6 & 7) can be assembled together where fragment 1A (containing 45 bp
homology to pBlueScript KS+ vector 5' to the EcoRV restriction site, human U6 promoter, BbsI restriction sites, chimeric guided RNA sequence and chicken β-actin promoter) is replaced with fragment 1, which only contains 45 bp homology to pBlueScript KS+ vector and the DNA sequence for T7 polymerase promoter with 45 bp homology to fragment 2. This will create the nuclease version of the CRISPR/Cas system for one-step generation of transgenic animals. To create the nickase version, fragment 2 can be replaced with fragment 2A as detailed above and then fragments 1, 2A, 3, 4, 5, 6 and 7 can be assembled together either by Gibson assembly or by assembly PCR.

Fragment 1 (111 bp)

<table>
<thead>
<tr>
<th>GGTACC</th>
<th>GGGCCCCCTCGAGGTACGTTGCTTAAGCTTGATAATACGACTCATAAGGAGAAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGACTATAAGGACCACGAGACTACATAAGGATCATGATA</td>
<td>(SEQ ID NO: 18)</td>
</tr>
</tbody>
</table>

E: Preparation of Oligo/ DNA fragments for HDR-mediated repair

DNA oligos ranging from 15 bp and upwards in excess of >125 bp will be synthetised through Sigma Custom Oligo synthesis Service. The oligos can contain any sequence such as a defined mutation, introduced restriction sites or a sequence of interest including recombination recognition sequence such as loxP or derivatives thereof, Frt and derivatives thereof or PiggyBac LTR or any other transposon elements or regulatory elements including enhancers, promoter sequence, reporter gene, selection markers and tags. The oligo design will incorporate DNA homology to the region where Cas9 mediates double-stranded DNA break or DNA nick. The size of the homology will range from a few base pairs (2-5 bp) to upwards and in excess of 80 bp. Larger DNA fragments (>100 bp ranging up to several kilobases) will be prepared either synthetically (GeneArt) or by PCR. The DNA fragment will be synthetised either with or without flanked NLS or only with a single NLS and either with or without a promoter (e.g, T7 polymerase promoter). The DNA can be prepared as a single stranded DNA fragment using either the capture biotinylated target DNA sequence method (Invitrogen: Dynabeads M-270 Streptavidin) or any other standard and established single stranded DNA preparation methodology. The single stranded DNA can be prepared for microinjection by IVT as described above and the mRNA co-injected with Cas9 mRNA and gRNA. The DNA fragment can also be co-injected as a double stranded DNA fragment. The DNA fragment will be flanked by DNA homology to the site where Cas9 mediates double-stranded DNA break or DNA nick. The DNA homology can range from a few base pairs (2-5 bp) and up to or in excess of several kilobases. The DNA fragment can be used to introduce any endogenous or exogenous DNA.
HDR-mediated repair can also be done in ES cells following CRISPR/Cas-mediated DNA cleavage. The above mentioned donor oligo or DNA fragment can be co-transfected into ES cells along with the CRISPR/Cas expression vector.

F: Production of Cas9 mRNA and gRNA

Vector containing the T7 polymerase promoter with the coding region of humanised Cas9 will be PCR amplified using oligos Cas9-F and Cas9-R. The T7-Cas9 PCR product can be gel extracted and the DNA purified using Qiagen gel extraction kit. The purified T7-Cas9 DNA will be used for in vitro transcription (IVT) using mMESSAGE mMACHINE T7 Ultra Kit (Life Technologies Cat No. AM1345). The vector containing the T7-gRNA can be PCR amplified using oligos gRNA-F and gRNA-R and once again the PCR products gel purified. IVT of the T7-gRNA will be carried out using MEGAlightscript T7 Kit (Life Technologies Cat No. AM1354) and the gRNA purified using MEGAgold Kit (Life Technologies Cat No. AM1908) and eluted in RNase-free water.

Cas9-F: TTAATACGACTCAGTG(A)GG (SEQ ID NO:19)

Cas9-R: GCGAGCTCTAGGAATTCTTAC (SEQ ID NO:20)

gRNA-F: TTAATACGACTCAGTG(A)GG (SEQ ID NO:21)

gRNA-R: AAAAAAGACCGACTCGTGG (SEQ ID NO:22)

Example 5B: One step generation of Transgenic animals

A: ES Cell Transfection Procedure

Mouse embryonic stem cells AB2.1 and derivatives of this line will be used for transfecting the mammalian codon optimised Cas9 and sgRNA from a single expression vector or from separate vectors if desired. AB2.1 ES cells will be cultured on a PSNL76/7/4 MEF feeder layer in M-15: Knockout DMEM (Gibco, no pyruvate, high glucose, 15% FBS, lxGPS, lxBME) with standard ES cell culturing techniques. Transfection of CRISPR/Cas expression vector along with the optional addition of a donor oligo or DNA fragment will be done by electroporation using the Amaxa 4D-Nucleofector® Protocol (Lonza). A plasmid expressing PGK-Puro will also be optionally co-transfected to promote transfection efficiency.

In one method, after transfection ES cells will be plated back onto feeder plates and Puromycin (2pg/ml) will be added 72 hours post transfection for 7 days after which colonies will be picked and genotyped by PCR. Positive colonies will be further cultured and expanded on feeder layer and selection markers where necessary will be excised using a PiggyBac transposon system. This will be done by electroporation of ES cells with a plasmid containing HyPbase using the Amaza 4D-Nucleofector® Protocol (Lonza). The ES cell will be plated back onto feeder plates. ES cells will be passaged 2-3 days post transfection and after a further 2-3 days the ES...
cells will be plated out at different cell densities (1:10, 1:20, 1:100 and 1:300) and FIAU (2pg/ml) selection will be added 24 hours after replating. Colonies will be picked and analysed by PCR genotyping after 7-10 days on selection media. Positive clones will be further cultured and expanded on feeder layer and sent for zygote (blastocyst) microinjection.

In an alternative method, 8 hours prior to transfection ES cells are seeded at a density of 0.5x10^6 cells using antibiotic free M-15 Knockout DMEM (Gibco, no pyruvate, high glucose, 15% FBS, lX-Glutamine, lxBME) onto 6w feeder plates. Transient transfection is performed using Lipofectamine® LTX Reagent with PLUS™ Reagent (Invitrogen™) by standard protocol. After incubation time transfection reagents are transferred to feeder plates (cultured in antibiotic free media), media (M-15) will not be changed on these plates for at least 24 hours post transfection. 48 hours post transfection ES cells are trypsinized into a single cell suspension and a cell count is carried out and cells are plated out at different cell densities ranging for 100-5000 cells per 10cm feeder plate. 24 hours after replating Puro selection at 2pg/ml (Puromycin dihydrochloride from Streptomyces alboniger powder, P8833 Sigma) is applied to the cells for 4 days, after which cells are cultured again in M-15. Colonies are picked 10-13 days post transfection.

Method 5C: Microinjection of Mouse Zygotes - Method 1

Materials and Reagents:

- M2 (Sigma M7167)
- Embryo Max KSOM (Speciality media MR-020P-F)
- Hyaluronidase (Sigma H4272)
- Mineral Oil (Sigma, M-8410)

Possible Donor Strains:

- S3F/S3F;KF3/KF3
- S3F/S3F;K4/K4
- S7F/S7F
- K5F/K5F

Preparation of Zygotes and Microinjection:

The protocol is as described in: A.Nagy *et al.* Manipulating the Mouse Embryo 3rd Edition, Chapter 7, Protocols 7-1, 7-6, 7-10, 7-11. Cold Spring Harbor Laboratory Press.

In brief:

1. Zygotes are harvested from E0.5dpc (day post-coitum) superovulated female mice.
2. The zygotes are incubated in hyaluronidase to disperse cumulus cells.

3. Zygotes are collected and transferred to several drops of M2 medium to rinse off the hyaluronidase solution and debris. Zygotes are placed into KSOM Media and incubated at 37°C, 5% CO₂ until required.

4. Zygote quality is assessed and zygotes with normal morphology are selected for injection, these are placed in KSOM media and incubated at 37°C, 5% CO₂ until required.

Microinjection set up:

Injection procedures are performed on a Nikon Eclipse Ti inverted microscope with Eppendorf micromanipulators and an Eppendorf femtojet injection system. A slide is prepared by adding a large drop ~200 microlitres of M2 into the centre.

Microinjection:

Place an appropriate number of zygotes onto the slide. Examine the zygotes and select only those with normal morphology (2 distinct pronuclei are visible). Whilst holding a zygote with a male pronucleus closest to the injection pipette, carefully push the injection pipette through the zona pellucida into the pronucleus, apply injection pressure, the pronucleus should visibly swell, remove the injection pipette quickly. The injected zygote can be placed down while the rest are injected.

At the end of the injection session all viable injected zygotes should be placed into prepared dishes containing drops of KSOM and incubated until ready to surgically implant. They are incubated for 2-3 hours before surgically implanting into pseudo pregnant females. Pups will be born 21 days later.

Method 5C: Microinjection of Mouse Zygotes - Method 2

Materials And Reagents

- PMSG
- hCG
- M2 (Sigma M7167)
- Embryo Max KSOM (Specialty media MR-020P-F)
- Mineral Oil (Sigma, M-8410)
- Hyluronidase (Sigma H 4272)
- 35mm Falcon Petri dishes (Fisher 08-757-100A)
- Sharp scissors
- Sharp watchmakers forceps

Preparation of Oocytes:

1. Day 0: Give PMSG (5 I.U.) to the females by I. P. injection.
2. Day 2: Give hCG (5 I.U.) to the females 48 Hours later by I. P. injection. Mate the females to stud males.

3. Day 3: Check plugs, sacrifice plugged female mice by CO2 asphyxiation or cervical dislocation at 0.5dpc at 8.00 am.

4. Dissect open the abdomen, locate the ovary and fat pad, dissect out the oviduct leaving the ovary and fat, trimming the uterine horn to ~1cm, place into a 35mm Petri dish containing M2 at room temp.

5. Place one ovary at a time into a dish containing hyaluronidase solution in M2 (~0.3mg/ml) at room temp. View through a stereoscope at 20x or 40x magnification.

6. Use one pair of forceps to grasp the oviduct and hold it on the bottom of the dish. Use the second pair of forceps or a 26g needle to tear the oviduct close to where the zygotes are located (the ampulla), releasing the clutch of cumulus cells.

7. The zygotes should be left in the hyaluronidase for a few minutes only, after which time the zygotes may become damaged. If necessary pipette them up and down a few times to help the release of the zygotes from the cumulus cells.

8. Use a mouth pipette to pick up the zygotes and transfer them to a fresh dish of M2, then transfer through several drops of M2 to rinse off the hyaluronidase, cumulus cells and debris. Sort through the zygotes removing any obviously bad ones (fragmented, misshapen, not fertilized), and place the good ones (two polar bodies should be visible and any with polar bodies) into equilibrated drops of KSOM+ AA at 37\(^\circ\)C and 5% CO\(_2\). Keep incubated until needed. Place about 50 eggs per drop.

Pronuclear Microinjection

1. **Microinjection set up:** Injection procedures are performed on a Nikon Eclipse Ti inverted microscope with Eppendorf micromanipulators. Prepare a 60mm petri dish to place injected zygotes into. Pipette four (~ six 40\(\mu\)l drops of KSOM+AA, cover with oil and place in a 5% CO\(_2\) incubator to equilibrate. Prepare a cavity slide by making a large (~200 \(\mu\)l) drop of M2 media onto the center of the well, add a small drop of medium on the left side of the slide, for the holding pipette.

2. **Microinjection:** Ensure that the pressurized injector has been switched on and is ready to use. Place an appropriate number of zygotes onto the slide, do not add more zygotes than can be injected within 20-30mins. Place the holding pipette into the drop of M2 on the left of the slide; it will fill using capillary action, once filled to about the shoulder attach to the manipulator. Carefully examine the zygotes, making sure that two pronuclei are visible and morphology is good, discard any that appear abnormal. To test if the injection needle is open, place the tip near to but not touching a zygote in the same focal
plane. Apply pressure using the pressurized system, if the zygote moves the needle is open, if it doesn't the needle is closed. In this case apply pressure using the "clear' feature, if the tip is still not open manually break the tip. Carefully "knock" the tip on the holding pipette and repeat the above test, make sure the tip does not become too large, if this happens replace the needle and start again. Place the tip of the holding pipette next to a zygote and suck it onto the end of the pipette by applying negative pressure. Focus the microscope to locate the pronuclei, the zygote should be positioned in such a way that allows injection into the zygote without hitting the pronuclei, preferably with a gap between the zona pellucida and the oolema. Bring the tip of the injection needle into the same focal plane as the zona pellucida. Bring the injection pipette to the same y-axis position as the zona pellucida, adjust the height of the needle so the tip appears completely sharp, without changing the focus. This ensures the needle will target the zygote exactly. Push the injection pipette through the zona pellucida, through the cytoplasm towards the back of the zygote. The needle will create a "bubble" through the oolema, this needs to be broken, you will see it snap back at which point remove the needle quickly, you will see the cytoplasm moving to indicate RNA is flowing from the needle. Cytoplasmic granules flowing out of the oocytes after removal of the injection pipette is a clear sign that the zygote will soon lyse. In this case, or if nuclear/cytoplasmic components are sticking to the injection pipette, the oocytes should be discarded after injection. If the zygote appears to be intact and successfully injected, sort this into a good group. Pick a new zygote for injection. The same injection pipette can be used as long as it continues to inject successfully. Switch to a new injection pipette if (a) you cannot see any cytoplasmic distortion (b) zygotes are lysing one after the other; (c) the tip of the pipette becomes visibly "dirty" or nuclear contents stick to the pipette. Once all the zygotes have been injected, remove them and place them into the equilibrated KSOM +AA and place them into the incubator at 37°C overnight. Only transfer those zygotes that have survived injection, and cultured to the 2 cell stage. Leave any lysed ones, and zygotes that have not developed.

3. Count the total number injected and record the numbers transferred per recipient

Results

To demonstrate the efficient of the one-step generation of transgenic mice, we used our T7-Cas9 nuclease vector to generate mRNA via in vitro transcription detailed above. mRNA from the guide RNA was also produced using in vitro transcription described above. Before injecting the mRNA mixture into the cytoplasm, oocytes were prepared from female mice using the protocol detailed above. An mRNA mixture containing 100ng/ul Cas9 nuclease mRNA and
50 ng/µl guide mRNA was injected by microinjection into the cytoplasm as detailed above. The microinjection is done at the single-cell stage. Zygotes that survived the injection were cultured to 2 cell stage, which were then transferred to recipient mice.

In total, 107 zygotes were injected from which 49 survived and went to 2 cell stage. These were then transferred to two recipient female mice. This resulted in 19 pups from 2 litters. Litter 1 yielded 3 males and 6 females. Litter 2 yielded 4 males and 6 females. The pups were ear clipped 3 weeks after birth and DNA was extracted. PCR was carried out using oligos flanking the gRNA to detect possible indels (Figure 14).

PCR amplifying around the guide RNA and separating out the PCR products on an agarose gel highlighted at least one mouse contained a large indel in the form of a deletion, whereas other mice appeared to have smaller indels judging by the sharpness of the PCR product on the gel. As an initial crude analysis, all the PCR products were sent for sequencing and those marked with an asterix (7 mice in total, Figure 14) yielded mix sequences around the gRNA further confirming they contain indels. To confirm this, the PCR products from these 7 mice together with the PCR product from another mouse which did not yield a mix sequence (PCR product from lane 19, Figure 14) were individually cloned into a general cloning vector. From each individual cloning, 28 clones were picked and analysed by sequencing. The sequencing confirmed all 7 mice contain indels and the mice that did not contain any mix sequence contained no indels. The sequencing data is summarised in Table 3.

The sequencing data confirmed all of the mice analysed contained indels. It also suggests that using our zygote injection protocol detailed above and our method for preparing mRNA for Cas9 and guide RNA, Cas9 works efficiently at an early stage and until the point where cells starts to divide beyond the 2 cell stage judging by the fact that in all of the mice analysed, no more than 3 types of indels were identified. Out of the 7 mice containing indels, 3 of them had no detectable WT sequence. The female mouse (KMKY6.1j) that did not show mix sequence from the initial sequencing analysis indeed did not contain any indels so it validates our initial sequencing analysis of the PCR products.

The male mouse (KMKY5.1c) that showed no WT sequence was used as a mating partner for the two female mice (KMKY5.1e & KMKY6.1e) that showed no WT sequence too. The resulting pups from the two matings yielded 14 pups in total from the first litter. Following similar sequencing analysis whereby PCR products amplified from the region around the guide RNA were cloned individual and several clones were then analysed for the presence of indels. For each mouse, 24 clones were analysed by sequencing. The sequencing data from all 14 pups confirmed only two indel sequences reflecting the two alleles arising from the parental male and female mouse. This data unequivocally demonstrates that our one-step genome editing protocol works very efficiently at an early stage and not beyond the 2 cell stage thus avoiding complex
mosaic indel formation. Using our established protocol, we can carry out define deletions directly in zygotes or carry out define deletion followed by insertion to expedite the process of generating transgenic mice to homozygosity in record time.

Example 6:

5 **Single Copy Cas9 Expression in ES Cells**

Reference is made to figure 6B.

1. A landing pad consisting of a PiggyBac transposon element with the following features will be targeted into mouse ES cells (e.g., 129-derived ES cells, such as AB2.1 ES cells; Baylor College of Medicine, Texas, USA) and selected for on G418. The PiggyBac transposon element will contain neomycin resistance gene flanked by loxP and lox2272. It will also have a geneless PGK promoter. In this example, the landing pad will be targeted into the intragenic region of Rosa26 gene located on chromosome 6, but it could be targeted elsewhere. Targeting this landing pad in the Rosa26 gene will provide a universal ES cell line for precisely inserting any desired DNA fragment including DNA fragments containing Cas9, mutant Cas9 or any other gene of interest via RMCE with high efficiency. Targeting Rosa26 is beneficial since the targeted construct will be inserted as a single copy (unlike random integration elsewhere) and is unlikely to produce an unwanted phenotypic effect.

Note. This landing pad can be inserted into any gene in any chromosome or indeed in any eukaryotic or mammalian cell line, e.g., a human, insect, plant, yeast, mouse, rat, rabbit, rodent, pig, dog, cat, fish, chicken or bird cell line, followed by generation of the respective transgenic organism expressing Cas9.

Rosa 26 Locus

Ubiquitous expression of transgene in mouse embryonic stem cell can be achieved by gene targeting to the ROSA26 locus (also known as: gene trap ROSA 26 or Gt(ROSA)26) by homologous recombination (Ref. (a) and (b) below). The genomic coordinates for mouse C57BL/6J Rosa26 gene based on Ensemble release 73 - September 2013 is: Chromosome 6: 113,067,428 - 113,077,333; reverse strand.

The Rosa26 locus can also be used to as a recipient location to knock-in a transgene. In our example we have use the Rosa26 locus to knock-in the landing pad vector by targeting through homologous recombination into the intronic region located between exons 2 and 3 of mouse strain 129-derived embryonic stem cells using approx. 3.1 kb homology arms. The homology arms were retrieved by recombineering from a BAC Clone generated from mouse strain 129. The sequence of the Rosa26 homology arms used for targeting is given below.

Sequence of Rosa26 5' homology arm
MTCATAGTTGTACATCTTGGTTCTGTC^ TCACTTTGGTTTTAGGTTAAAGTGTTTTGTTGT CATGAGGA
TGGMTTTMTAGTTGGAATATGCTACACGTATA
AMCCTTTAAAMTCTACAGTTCATTCCAGTTACTMTTCA^ AAGCCACTGACTATGGTG
CCMTGTGGATTCTCTCAMGGMMGTTGCTTGTGCGCCCTTTATTTCTMTGAM CATCACACTGA
AMTCTMCGCTGAGMGMCCAGACCTTCTACTAMMTCTTCCTCA^ SCTCAAACAGGATTACTCTT
TAGGAGGCACrGTTMGGMCrGATMGMTGAGGTTGTCrTATATACTAGTAC
GAGGAAAMTCGACTCMrGGAAGAAAGAAAACAGAACAACCAGCTAGGCAGGAATAACAGGGCrCCCAAGTCAG
TGAGGAGGGGATGCriciaCGAGAAACAGAACAACCAGCTAGGCAGGAATAACAGGGCrCCCAAGTCAG
TGATTTAATCACAADGAGGTAC (SEQ ID NO: 23)

Sequence of Rosa26 3' homology arm
CITGGTTACITGTTCTCCrGAGTMGCAGTACAGTGTACATTTTCATTTAMGATA CATTAGCT
CCCTCrACCCCTMGMACrGACAGGACACITTTGGGTTGGGAGGGGCTTTGGAATAATACGCrTCCTAC
ACTAAAGAAGAAAATTTTTTTTTATAGGCTTTGTTGCTCACACTACATCAGTGGACTAC
TTATATMAGTCACACMGCMGACCTTCTGCTGTTAGGTTGATATTTATTT^ AAGGCGATGATAA
ACCTACACTCTTGGAGTGGTCAAGCAGTGTAACCTGTACTGTAAGT
TACTTTCTGCTATTTTTCTCCAMCMGGCTTGTATATTTATTTATTTGTTATAGGACTAA
TTAAATAGTTGTCTTACTTTTTTCTCACCAGACCCATACATTAAAGCCCGAACACTAGTACAGG
ACGAGCTGGTGATGCACAGGTACAGGATAGGAGGTCAACGCTAGGCATAC
ACMGCMCGTATAGGCTCTGTCAGCATAAAGGCGACGTCCTACTAAAGCCCTACTCTTCTCTCTCTGAGTAC
ACCAGTCTCAMACMCCTTAAMAMCMCTTTAAM^ CTTCCCCACTTTAATCTGTAGGGTGTTGAGGAAATGTT
ACGACAAATAACCTCTTGTTTTTTTATAAGTAGGACTCTTGCTTGCTAACATTC
ATMCTCAGTTCTAGGGGATCTCCATTCAACATTTGAGGGAACGMTATATGTTGTGTA
CAMCAGGAGGAGTGAATTTATACCTCTTGTTGATAAAAAGGTTCTTCTCTGGTGAGTACAGGTAAG
CAGTACAGCTGTGCTCTGTCCTGGTCTACAGACACAGGGCTTATTTCCCAGGGGCMGGTGGAAGGATAGG
CAATTTTCTTCTGGATCCATCTTAAAMCMGGCTTGCTTTTATCTATTTGAAAGAAAATAGGTA
GITTCTCTACGAGAMGMCAMCTTTAGGTTGMCAGTCATCTTTTTTACAGGGCGACAGCTACATT
CTATGCCCMTGGMGACTGTGTTAGTCTCAGAGTTAGATGCATTATGTAGTTTTTGCTTAGA
AAGTGCTTCTCAGGCTCACMGTGGAATAGGACCATGTATGTTACGAGTGGAATGAAATGATAGTGGCATG
TTTTCTCACTGACGAGCATCACTAMGGGTGCTAGTATTTATTTAAAMGMTCC TTTCT
ACCTTTTTTCCAAATGGCATACTGTGTAATATAATACCCACAGACAGCTCTACTGTCAGGGAGGGTTGACGAT
ATCCACTGAAACGACTCAATGGGCAAAACCAAGGTTTTCTTCTGATGACAAAGGTGAAATGATATTTCA
ATATTTTTTCCMCGTMTAGTGCTAGCMAATGTTGCTACTGACGCTAGCTGCAG
CTTGATTCCTAGGGACATGTTGACMGAGGACACTTCATCTCAGTTGAGCTTCCMTCrTCTACCC
TCACTGTCACACCACAM TAM TAOM TAAAM CATTc GCAGTCyGM TTTcAM GTTGTGTTTCTAA AMGAMTGTAAAAATGAACATAGGAAGAATAATGTCATAACGAAATACAGGTTTAAATGGTTAA ACTGTTTTTACMGAGTATGGTTMGAACTACGAGGAAAM TTAGCTTACATGTAAAAAGTGTCTA AMGGCCAGAGMTGACCCGCTGCAGGTTGAGTGGCCTMGACCAGACAAMGGTTTGGATTCAAC GMMGMAOAACCCMCrCrC ACTAGTTATTCrCrGACITCCCAACCAGACAGCrCCATGGCArCrCr CAGGCCCCACACATATACAGATAMCAGAMCCTMTCACCACGCITCACGMGCAAAAGCAATTTGGA GGAAATTACMCAGCCATGGCrACTMTAGAGATMCrGGTAGTTTAAMGTATTGTGGMTGACnTCATG L'TtI'TTtCAACTCATATTGTTCTAAATAAATTAATTTGGA'TTTTCAAGGCGGGTTTCATCTGTGTACCGT CCTGCTCTGCCCATTCTGATAGCAGCAGGCTGGCTGTCTCAGATCACCTCTGCCTGCGM TGG CAGGACGTGTCCTTTCATACATMCAMCCCTATACATMCAAAMCCTATACCACT^T AACCCTTTTGG GAAMGCAAAAMMTGMCAAAAMGGAGAMTMCAATCCMTAMGTAGTGAMGTGAGTTAAAA TTAACAAATAATTTTTGAGTAGTATTGACTTCTCATACTTTAGTGATATAGGATACCAC AMGCACGTGGGGGTGTTMTCMTGCAATGCTAGGGGAGAGAGACTGAAAAGATGCAATGCAATCA TACGTTAMCTTACCTTTMTGCTGG^T TAGCTCAATAGAGATGAGATTTGTGTGCTGCTG TTCACTGCGGATGGTTATTGTTGCCACCCAATATGGTAACAGTGAGACCTACGATACGCCTATGAGA CAGGAATGTGGTTTMCATGCMGCAGAGAMGGAGAAGTCATATGGGCCTCCTAGTAAACATG GCMCTCCCTGCACTTTCTTCTTGGACAGTMGTGTTCCCTTCTGTGCTGCTACTGAACCTTACCAC TAGAMGTGCGTCCCTTCATCACCATAGCAGTCGTCAGGCGACTTTGTCACACCTCCTG TTTGCTGACTTAG (SEQ ID NO:24)

Reference:

2. A recombinase mediated cassette exchange (RMCE)-enabled vector containing a promoterless puromycin-delta-tk with in-frame fusion of T2A at the C-terminus following by either Cas9 or mutant Cas9 nucleotide sequence and a series of unique restriction sites flanked by loxP and lox2272 will allow for the direct targeting of this vector into the landing pad by Cre-mediated RMCE. As is known, T2A allows ribosomal skipping during translation. The insertion of the coding sequence of T2A between two genes results in two products (one gene, one transcript but two proteins expressed, in this case the Cas9 and selection marker).

ES clones containing the correctly inserted DNA fragment can be directly selected on
puromycin. This approach also advantageously ensures single copy expression of Cas9 as suppose to a random integration or transient expression approach. Insertion of the RMCE enabled vector into the desired locus containing the landing pad can be selected directly as the PGK promoter in the landing pad will drive the transcription of the promoterless Puro-Delta-Tk and Cas9. Since the Puro-delta-Tk is in the same transcriptional unit as Cas9, ES clones selected on puromycin will ensure expression of Cas9.

3. The above strategy allows for three separate approaches to express the sgRNA designed for disrupting (mutation through indel formation, deletion or deletion followed by insertion) gene of interest.
 a. The above ES cell line containing Cas9 can be used for generating transgenic mice with either constitutively expressed Cas9 or modified for inducible Cas9 expression or indeed tissue specific Cas9 expression for example expression of Cas9 at an embryo stage using Nanog-, Pou5fl- or SoxB promoter-specific Cas9 expression. Such derived mouse line expressing Cas9 can be used for genome editing in a streamline fashion whereby in vitro transcribed sgRNA can be easily injected into embryos obtained from such transgenic mice. This will enhance the efficiency of generating mouse lines with the desired homozygous genotype and thus will dramatically reduce the number of animals required.
 b. sgRNA can be transfected directly into the ES cells expressing Cas9 and thus avoids the requirement for cloning into the RMCE enabled vector single or multiple sgRNA. This approach will allow multiple sgRNA to be inserted into the ES cells simultaneously very rapidly.
 c. Multiple sgRNA can be cloned directly into the multiple cloning site of the RMCE enabled vector (ie, using a plurality of different restriction endonuclease sites) to allow single copy expression of the guide-RNA. This approach may be useful for limiting off-target effects particularly relevant for those genes with high sequence homology within the genome.

4. ES cells expressing Cas9 and sgRNA can be selected for directly on medium containing puromycin. Selection on puromycin for 4-6 days will allow for the desired location to be mutated or disrupted and the advantage of manipulating ES cells is that individual clones can be analysed by PCR followed by sequencing for the desired mutation. Only correctly mutated ES cell clones can be processed further whereby inserted DNA element introduced through insertion of the landing pad and the subsequent insertion of the RMCE vector can be completely removed leaving the ES cell devoid of any alteration other than the intended mutation induced by the action of Cas9 and the sgRNA. This can be done through transiently expressing PBase transposon followed by selection on FIAU. Removal of the constitutively
expressed Cas9 with only the minimal length of time required to induce mutation in the presence of sgRNA will reduce or eliminate the possibility of Cas9 inducing unwanted mutations.

5. ES Clones containing the desired mutation can be injected into blastocyst to generate transgenic mice.

Table 1: PAM conservation in repeats and leaders for various CRISPR types
(reproduced from Short motif sequences determine the targets of the prokaryotic CRISPR defence system F. J. M. Mojica, C. Diez-Villasenor, J. Garcia-Martinez, C. Almendros Microbiology(2009), 155, 733-740)
<table>
<thead>
<tr>
<th>Genomes</th>
<th>PAM</th>
<th>CRISPR Consensus</th>
<th>Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mth</td>
<td>NGG</td>
<td>ATTTCAATCCCATTTGCTGATTTTAAC</td>
<td>AGGCGCGATT ATGCCAATT</td>
</tr>
<tr>
<td>Lmo</td>
<td>UGG</td>
<td>ATTTACATTTCAAAAATAGTATGTTAAAAC</td>
<td>CCACCTAACCT CCGCTCTATT</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco</td>
<td>CWT</td>
<td>CGTTTACTCCCCGCTGGCGGGGAAAC</td>
<td>CTCTAACATA CTCTAACGTA</td>
</tr>
<tr>
<td>Pae</td>
<td>CTT</td>
<td>CGTTTCATCCCCACRCMYGTGGGGAACAC</td>
<td>ACTTACCCTTA CTTTACCCTTA</td>
</tr>
<tr>
<td>Group 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spy</td>
<td>GAA</td>
<td>ATTTCAATCCACTACCCATGAGGCTAGACC</td>
<td>TGCGGCAAAT</td>
</tr>
<tr>
<td>Xan</td>
<td>GAA</td>
<td>GTTTCAATCCACGCGCCGGTGAAGCGGCAC</td>
<td>CCCCCCTTGA GGCGGAGCCA</td>
</tr>
<tr>
<td>Group 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>She</td>
<td>GG</td>
<td>TTCTCAAGCGCTGTGCGCCGTTGAAAC</td>
<td>AATAGCTTAT TGAGAATAAAA</td>
</tr>
<tr>
<td>Pae</td>
<td>GG</td>
<td>TTCTCTAGCTGGCTATACGGGACAGGAAAC</td>
<td>TACCTGCAGAA TAGACAAAA</td>
</tr>
<tr>
<td>Ype</td>
<td>GG</td>
<td>TTCTCAAGCTGGCTGGCGCAGTGAAAC</td>
<td>GTAAGATAAT</td>
</tr>
<tr>
<td>Group 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sso</td>
<td>NGG</td>
<td>CTTTCATATTCTAAGAGATTTAC</td>
<td>TGAGGGTTTA</td>
</tr>
<tr>
<td>Mse</td>
<td>NGG</td>
<td>CTTTCAACTCTATAGAGATTTAC</td>
<td>TGATAACTTTT TGAAACCTTTT TGACACTCTTT</td>
</tr>
<tr>
<td>Group 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str</td>
<td>NGG</td>
<td>GTTTTAAGCTATGCTTTTGGATGCGCCAAAAC</td>
<td>CTCGATAGACT CTCGTAAGAA</td>
</tr>
<tr>
<td>Lis</td>
<td>NGG</td>
<td>GTTTTAGAGCTAGTGTATTGGATGCTACAAAAC</td>
<td>CTGCGAGAAT CTGCGAGAAT</td>
</tr>
</tbody>
</table>

* Genomes are abbreviated according to the denominations of the species or genera carrying the corresponding CRISPR arrays: Mth, M. thermautotrophicus; Lmo, L. monocytogenes; Eco, E. coli; Pae, P. aeruginosa; Spy, S. pyogenes; Xan, Xanthomonas spp.; She, Shewanella spp.; Ype, Y. pestis; Sso, S. solfataricus; Mse, M. sedula; Str, Streptococcus spp.; Lis, Listeria spp.
† Sequences matching the PAM are underlined.
†† Representative CRISPR array proximal Leader sequences. Nucleotides matching the PAM are underlined.
SEQ ID NOs for the sequences in Table 1 are set out in the table below.

<table>
<thead>
<tr>
<th>Geno</th>
<th>PA M</th>
<th>CRISPR Consens'</th>
<th>SEQ ID NO.</th>
<th>Leaders*</th>
<th>SEQ ID NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grou P 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mth</td>
<td>NG</td>
<td>ATTTCAATCCCATTTTGGTCTGA TTITAAC</td>
<td>25</td>
<td>AGGGCGGAT T ATGGCCAAT T</td>
<td>38 39</td>
</tr>
<tr>
<td>Lmo</td>
<td>WG</td>
<td>ATTTACATTCAHAATAAGTARY TAAAC</td>
<td>26</td>
<td>CCACTAACT T CCGCTCTAT T</td>
<td>40 41</td>
</tr>
<tr>
<td>Grou P 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco</td>
<td>CW</td>
<td>CCGTTTTATCCCCGCTGGCGGCGGG GAACWC</td>
<td>27</td>
<td>TCTAAACAT A TCTAAAAAT A</td>
<td>42 43</td>
</tr>
<tr>
<td>Pae</td>
<td>CT</td>
<td>CGGTTCATCCCCARCMYGTGGG GAACAC</td>
<td>28</td>
<td>ACTTACCCT A CCTTACCCT A</td>
<td>44 45</td>
</tr>
<tr>
<td>Grou P 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spy</td>
<td>GA</td>
<td>ATTTCAATCCACTCACCATGAA GGGTGAGAC</td>
<td>29</td>
<td>TCGGCCCAA A TCGGCCCAA A</td>
<td>46</td>
</tr>
<tr>
<td>Xan</td>
<td>GA</td>
<td>GTTTCAATCCACGCGCCGTGAG GRCGCGAC</td>
<td>30</td>
<td>CCCCCCTTA G GCCGCCACG A</td>
<td>47 48</td>
</tr>
<tr>
<td>Grou P 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>She</td>
<td>GG</td>
<td>TTTCTAAGCGCGCTGTGCGGCGG TGAAC</td>
<td>31</td>
<td>AATAGCTTA T TGTAGAATA A</td>
<td>49 50</td>
</tr>
<tr>
<td>Pae</td>
<td>GG</td>
<td>TTTCTAGCTGCCTATACGCGCAG TGAAC</td>
<td>32</td>
<td>TAGCTCCGA A TAGCAGCAAA A</td>
<td>51 52</td>
</tr>
<tr>
<td>Ype</td>
<td>GG</td>
<td>TTTCTAAGCTGCGCGTGCGGCGG TGAAC</td>
<td>33</td>
<td>GTAAGATAA T GTAAGATAA T</td>
<td>53</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>CTTTCAATTTCTATAAGAGATTAT</td>
<td>34</td>
<td>TGAGGGTTT A TGAGGGTTT A</td>
<td>54</td>
</tr>
<tr>
<td>Group</td>
<td>Str</td>
<td>NG</td>
<td>G</td>
<td>CTTTCAACTCTATAGGAGATTAA</td>
<td>TGATACCTT</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>G</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>ATGCTAMCAAAAC</td>
<td>CTCGCAAA</td>
</tr>
</tbody>
</table>

Table 2: CRISPR-Associated Endonucleases

[Gene ID numbers refer to genes in the NCBI Gene Database as at September 2013; all sequence information relating to the gene IDs below is incorporated herein by reference for possible use in the present invention]

1. **Plav_0099**
 CRISPR-associated endonuclease Csnl family protein [Parvibaculum lavamentivorans DS-1]
 Other Aliases: Plav_0099
 Genomic context: Chromosome
 Annotation: NC_009719.1 (105795..108908, complement)
 ID: 5454634
 SEQ ID NO: 62

2. **FTN_0757**
 membrane protein [Francisella novicida U112]
 Other Aliases: FTN_0757
 Genomic context: Chromosome
 Annotation: NC_008601.1 (810052..814941)
 ID: 4548251
 SEQ ID NO: 63

3. **Cj 1523c**
 CRISPR-associated protein [Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819]
Other Aliases: Cjl523c
Genomic context: Chromosome
Annotation: NC_002163.1 (1456880..1459834, complement)
ID: 905809

5. mcrA
restriction endonuclease [Bifidobacterium longum DJO10A]
Other Aliases: BLD_1902
Genomic context: Chromosome
Annotation: NC_010816.1 (2257993..2261556)
ID: 6362834
SEQ ID NO: 65

5. MGA_0519
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum str. R(low)]
Other Aliases: MGA_0519
Genomic context: Chromosome
Annotation: NC_004829.2 (919248..923060)
ID: 1089911
SEQ ID NO: 66

6. Emin_0243
CRISPR-associated endonuclease Csnl family protein [Elusimicrobium minutum Peil91]
Other Aliases: Emin_0243
Genomic context: Chromosome
Annotation: NC_010644.1 (261119..264706)
ID: 6263045
SEQ ID NO: 67

7. FTW_1427
CRISPR-associated large protein [Francisella tularensis subsp. tularensis WY96-3418]
Other Aliases: FTW_1427
Genomic context: Chromosome
Annotation: NC_009257.1 (1332426..1335803, complement)
8. SMA_1 444
5 CRISPR-associated protein, Csnl family [Streptococcus macedonicus ACA-DC 198]
OtherAliases: SMA_1444
Annotation: NC_016749.1 (1418337..1421729, complement)
ID: 11601419
SEQ ID NO: 69

9. SSUST3_1 318
5 CRISPR-associated protein, Csnl family [Streptococcus suis ST3]
OtherAliases: SSUST3_1318
Genomic context: Chromosome
Annotation: NC_015433.1 (1323872..1327240, complement)
ID: 10491484
SEQ ID NO: 70

10. cas5
20 CRISPR-associated protein, Csnl family [Streptococcus gallolyticus UCN34]
OtherAliases: GALLO_1439
Genomic context: Chromosome
Annotation: NC_013798.1 (1511433..1514825, complement)
ID: 8776949
SEQ ID NO: 71

11. GALLO_1 446
30 CRISPR-associated protein [Streptococcus gallolyticus UCN34]
OtherAliases: GALLO_1446
Genomic context: Chromosome
Annotation: NC_013798.1 (1518984..1523110, complement)
ID: 8776185
SEQ ID NO: 72

12. csn1
35 CRISPR-associated endonuclease Csnl [Bifidobacterium dentium Bdl]
OtherAliases: BDP_1254
Genomic context: Chromosome
Annotation: NC_013714.1 (1400576.. 1403992, complement)
ID: 8692053
SEQ ID NO: 73

13. NMO_0348
putative CRISPR-associated protein [Neisseria meningitidis alphaH]
Other Aliases: NMO_0348
Genomic context: Chromosome
Annotation: NC_013016.1 (369547.372795, complement)
ID: 8221228
SEQ ID NO: 74

14. csnl
CRISPR-Associated Protein Csnl [Streptococcus equi subsp. zooepidemicus MGCS10565]
Other Aliases: Sez_1330
Genomic context: Chromosome
Annotation: NC_011134.1 (1369339.. 1373385, complement)
ID: 6762114
SEQ ID NO: 75

15. csnl
CRISPR-associated endonuclease Csnl family protein [Streptococcus gordonii str. Challis substr. CHI]
Other Aliases: SGO_1381
Genomic context: Chromosome
Annotation: NC_009785.1 (1426750.. 1430160, complement)
ID: 5599802
SEQ ID NO: 76

16. M28_Spy0748
cytoplasmic protein [Streptococcus pyogenes MGAS6180]
Other Aliases: M28_Spy0748
Genomic context: Chromosome
Annotation: NC_007296.1 (771231. .775337)
ID: 3573516
SEQ ID NO: 77
17. SGGBAA2069_c1 4690
CRISPR-associated protein [Streptococcus gallolyticus subsp. gallolyticus ATCC BAA-2069]
Other Aliases: SGGBAA2069_c14690
Genomic context: Chromosome
Annotation: NC_015215.1 (1520905..1525017, complement)
ID: 10295470
SEQ ID NO: 78

18. SAR116_2544
CRISPR-associated protein, Csnl family [Candidatus Puniceispirillum marinum IMCC1322]
Other Aliases: SAR116_2544
Genomic context: Chromosome
Annotation: NC_014010.1 (2748992..2752099)
ID: 8962895
SEQ ID NO: 79

19. TDE0327
CRISPR-associated Cas5e [Treponema denticola ATCC 35405]
Other Aliases: TDE0327
Genomic context: Chromosome
Annotation: NC_002967.9 (361021..365208)
ID: 2741543
SEQ ID NO: 80

20. csnl
CRISPR-associated protein [Streptococcus pasteurianus ATCC 43144]
Other Aliases: SGPB_1342
Genomic context: Chromosome
Annotation: NC_015600.1 (1400035..1403427, complement)
ID: 10753339
SEQ ID NO: 81

21. cas9
CRISPR-associated protein [Corynebacterium ulcerans BR-AD22]
Other Aliases: CULC22_00031
22. MGAS2096_Spy0843
putative cytoplasmic protein [Streptococcus pyogenes MGAS2096]
Other Aliases: MGAS2096_Spy0843
Genomic context: Chromosome
Annotation: NC_015683.1 (30419..33112, complement)
ID: 10842578
SEQ ID NO: 82

23. MGAS9429_Spy0885
cytoplasmic protein [Streptococcus pyogenes MGAS9429]
Other Aliases: MGAS9429_Spy0885
Genomic context: Chromosome
Annotation: NC_008023.1 (813084..817190)
ID: 4066021
SEQ ID NO: 83

24. AZL_009000
CRISPR-associated protein, Csnl family [Azospirillum sp. B510]
Other Aliases: AZL_009000
Genomic context: Chromosome
Annotation: NC_008021.1 (852508..856614)
ID: 4061575
SEQ ID NO: 84

25. EUBREC_1713
contains RuvC-like nuclease and HNH-nuclease domains [Eubacterium rectale ATCC 33656]
Other Aliases: EUBREC_1713
Other Designations: CRISPR-system related protein
Genomic context: Chromosome
Annotation: NC_013854.1 (1019522..1023028, complement)
ID: 8789261
SEQ ID NO: 85

30. EUBREC_1713
contains RuvC-like nuclease and HNH-nuclease domains [Eubacterium rectale ATCC 33656]
Other Aliases: EUBREC_1713
Other Designations: CRISPR-system related protein
Genomic context: Chromosome
Annotation: NC_012781.1 (1591112..1594456)
ID: 7963668
SEQ ID NO: 86
26. **Alide2_0194**
CRISPR-associated protein, Csnl family [Alicycliphilus denitrificans K601]
Other Aliases: Alide2_0194
Genomic context: Chromosome
Annotation: NC_015422.1 (218107..221196)
ID: 10481210
SEQ ID NO: 87

27. **Alide_0205**
crispr-associated protein, csnl family [Alicycliphilus denitrificans BC]
Other Aliases: Alide_0205
Genomic context: Chromosome
Annotation: NC_014910.1 (228371..231460)
ID: 10102228
SEQ ID NO: 88

28. **STER_1477**
CRISPR-system-like protein [Streptococcus thermophilus LMD-9]
Other Aliases: STER_1477
Genomic context: Chromosome
Annotation: NC_008532.1 (1379975..1384141, complement)
ID: 4437923
SEQ ID NO: 89

29. **STER_0709**
CRISPR-system-like protein [Streptococcus thermophilus LMD-9]
Other Aliases: STER_0709
Genomic context: Chromosome
Annotation: NC_008532.1 (643235..646600)
ID: 4437391
SEQ ID NO: 90

30. **cas9**
CRISPR-associated protein [Corynebacterium diphtheriae 241]
Other Aliases: CD241_2102
Genomic context: Chromosome
5 31. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae 241]
Other Aliases: CD241_0034
Genomic context: Chromosome
Annotation: NC_016782.1 (2245769.-2248399)
ID: 11674395
SEQ ID NO: 91

10 32. Corgl_1 738
CRISPR-associated protein, Csnl family [Coriobacterium glomerans PW2]
Other Aliases: Corgl_1738
Genomic context: Chromosome
Annotation: NC_015389.1 (2036091..2040245)
ID: 10439994
SEQ ID NO: 92

15 33. Fluta_3 147
CRISPR-associated protein, Csnl family [Fluviicola taffensis DSM 16823]
Other Aliases: Fluta_3147
Genomic context: Chromosome
Annotation: NC_015321.1 (3610221..3614597, complement)
ID: 10398516
SEQ ID NO: 93

20 34. Acav_0267
CRISPR-associated protein, Csnl family [Acidovorax avenae subsp. avenae ATCC 19860]
Other Aliases: Acav_0267
Genomic context: Chromosome
Annotation: NC_015138.1 (295839.-298976)
ID: 10305168
SEQ ID NO: 95

25 35. NAL2 12_2952
CRISPR-associated protein, Csnl family [Nitrosomonas sp. AL212]
Other Aliases: NAL212_2952
Genomic context: Chromosome
Annotation : NC_015222.1 (2941806..2944940, complement)
ID: 10299493
SEQ ID NO: 96

36. SpiBuddy_2181
CRISPR-associated protein, Csnl family [Sphaerochaeta globosa str. Buddy]
Other Aliases: SpiBuddy_2181
Genomic context: Chromosome
Annotation : NC_015152.1 (2367952..2371491, complement)
ID: 10292274
SEQ ID NO: 97

37. Tmz1_t_24_11
HNH endonuclease [Thauera sp. MZ1T]
Other Aliases: Tmzlt_241 1
Genomic context: Plasmid pThaOl
Annotation : NC_011667.1 (75253..76200, complement)
ID: 7094333
SEQ ID NO: 98

38. Gdia_0342
Csnl family CRISPR-associated protein [Gluconacetobacter diazotrophicus PAI 5]
Other Aliases: Gdia_0342
Genomic context: Chromosome
Annotation : NC_011365.1 (382737.385748)
ID: 6973736
SEQ ID NO: 99

39. JJD26997_1_875
CRISPR-associated Cas5e family protein [Campylobacter jejuni subsp. doylei 269.97]
Other Aliases: JJD26997_1_875
Genomic context: Chromosome
Annotation : NC_009707.1 (1656109..1659063, complement)
ID: 5389688
SEQ ID NO: 100
40. Asuc_0376
CRISPR-associated endonuclease Csnl family protein [Actinobacillus succinogenes 130Z]
Other Aliases: Asuc_0376
Genomic context: Chromosome
Annotation: NC_009655.1 (431928..435116)
ID: 5348478
SEQ ID NO: 101

41. Veis_1230
CRISPR-associated endonuclease Csnl family protein [Verminephrobacter eiseniae EFOI-2]
Other Aliases: Veis_1230
Genomic context: Chromosome
Annotation: NC_008786.1 (1365979..1369185)
ID: 4695198
SEQ ID NO: 102

42. MGAS10270_Spy0886
putative cytoplasmic protein [Streptococcus pyogenes MGAS10270]
Other Aliases: MGAS10270_Spy0886
Genomic context: Chromosome
Annotation: NC_008022.1 (844446..848552)
ID: 4063984
SEQ ID NO: 103

43. gbs0911
hypothetical protein [Streptococcus agalactiae NEM316]
Other Aliases: gbs0911
Genomic context: Chromosome
Annotation: NC_004368.1 (945801..949946)
ID: 1029893
SEQ ID NO: 104

44. NMA0631
hypothetical protein [Neisseria meningitidis Z2491]
Other Aliases: NMA0631
Genomic context: Chromosome
Annotation: NC_003116.1 (610868..614116, complement)
ID: 906626
SEQ ID NO: 105

45. Ccan_14650
hypothetical protein [Capnocytophaga canimorsus Cc5]
OtherAliases: Ccan_14650
Genomic context: Chromosome
Annotation: NC_015846.1 (1579873..1584165, complement)
ID: 10980451
SEQ ID NO: 106

46. Ipp0160
hypothetical protein [Legionella pneumophilia str. Paris]
OtherAliases: Ipp0160
Genomic context: Chromosome
Annotation: NC_006368.1 (183831..187949)
ID: 3118625
SEQ ID NO: 107

47. Cbei_2080
hypothetical protein [Clostridium beijerinckii NCIMB 8052]
OtherAliases: Cbei_2080
Genomic context: Chromosome
Annotation: NC_006908.1 (45652..49362, complement)
ID: 2807677
SEQ ID NO: 109
49. MGF_5203
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum str. F]
Other Aliases: MGF_5203
Genomic context: Chromosome
Annotation: NC_017503.1 (888602..892411)
ID: 12397088
SEQ ID NO: 110

50. MGAH_0519
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum str. R(high)]
Other Aliases: MGAH_0519
Genomic context: Chromosome
Annotation: NC_017502.1 (918476..922288)
ID: 12395725
SEQ ID NO: 111

51. Smon_1063
CRISPR-associated protein, Csnl family [Streptobacillus moniliformis DSM 12112]
Other Aliases: Smon_1063
Genomic context: Chromosome
Annotation: NC_013515.1 (1159048..1162827, complement)
ID: 8600791
SEQ ID NO: 112

52. Spy49_0823
hypothetical protein [Streptococcus pyogenes NZ131]
Other Aliases: Spy49_0823
Genomic context: Chromosome
Annotation: NC_011375.1 (821210..825316)
ID: 6985827
SEQ ID NO: 113

53. C8J_1425
hypothetical protein [Campylobacter jejuni subsp. jejuni 81116]
Other Aliases: C8J_1425
Genomic context: Chromosome
Annotation: NC_009839.1 (1442672..1445626, complement)
54. **FTF0584**

hypothetical protein [Francisella tularensis subsp. tularensis FSC198]

Other Aliases: FTF0584

Genomic context: Chromosome

Annotation: NC_008245.1 (601115..604486)

ID: 4200457

55. **FTT_0584**

hypothetical protein [Francisella tularensis subsp. tularensis SCHU S4]

Other Aliases: FTT_0584

Genomic context: Chromosome

Annotation: NC_006570.2 (601162..604533)

ID: 3191177

56. **csnl**

CRISPR-associated protein [Streptococcus dysgalactiae subsp. equisimilis RE378]

Other Aliases: GGS_1116

Annotation: NC_018712.1 (1169559..1173674, complement)

ID: 13799322

57. **SMUGS5_06270**

CRISPR-associated protein csnl [Streptococcus mutans GS-5]

Other Aliases: SMUGS5_06270

Genomic context: Chromosome

Annotation: NC_018089.1 (1320641..1324678, complement)

ID: 13299050

58. **Y1U_C1412**

Csnl [Streptococcus thermophilus MN-ZLW-002]

Other Aliases: Y1U_C1412
59. **Y1U_C0633**
CRISPR-system-like protein [Streptococcus thermophilus MN-ZLW-002]
Other Aliases: Y1U_C0633
Genomic context: Chromosome
Annotation: NC_017927.1 (1376653..1380819, complement)
ID: 12977193
SEQ ID NO: 119

60. **SALIVA_0715**
CRISPR-associated endonuclease, Csn1 family [Streptococcus salivarius JIM8777]
Other Aliases: SALIVA_0715
Annotation: NC_017595.1 (708034..711417)
ID: 12910728
SEQ ID NO: 121

61. **csnl**
CRISPR-associated protein csnl [Streptococcus mutans U23]
Other Aliases: SMUU23_0701
Annotation: NC_017768.1 (751695..755732)
ID: 12898085
SEQ ID NO: 122

62. **RIA_1455**
CRISPR-associated protein, SAG0894 [Riemerella anatipestifer RA-GD]
Other Aliases: RIA_1455
Genomic context: Chromosome
Annotation: NC_017569.1 (1443996..1448198)
ID: 12613647
SEQ ID NO: 123

63. **STND_0658**
CRISPR-associated endonuclease, Csnl family [Streptococcus thermophilus ND03]
Other Aliases: STND_0658
Genomic context: Chromosome
Annotation: NC_017563.1 (633621..636986)
ID: 12590813
SEQ ID NO: 124

64. RA0C_1 034
putative BCR [Riemerella anatipestifer ATCC 11845 = DSM 15868]
Other Aliases: RA0C_1034
Genomic context: Chromosome
Annotation: NC_017045.1 (1023494..1026931, complement)
ID: 11996006
SEQ ID NO: 125

65. Sinf_1 255
CRISPR-associated protein, SAG0894 family [Streptococcus infantarius subsp. infantarius CJ18]
Other Aliases: Sinf_1255
Genomic context: Chromosome
Annotation: NC_016826.1 (1276484..1280611, complement)
ID: 11877786
SEQ ID NO: 126

66. Nitsa_1 472
CRISPR-associated protein, csnl family [Nitratifractor salsuginis DSM 16511]
Other Aliases: Nitsa_1472
Genomic context: Chromosome
Annotation: NC_014935.1 (1477331..1480729)
ID: 10148263
SEQ ID NO: 127

67. NLA_1 7660
hypothetical protein [Neisseria lactamica 020-06]
Other Aliases: NLA_17660
Genomic context: Chromosome
Annotation: NC_014752.1 (1890078..1893326)
ID: 10006697
SEQ ID NO: 128
68. SmuNN2025_0694
hypothetical protein [Streptococcus mutans NN2025]
Other Aliases: SmuNN2025_0694
Genomic context: Chromosome
Annotation: NC_013928.1 (737258..741295)
ID: 8834629
SEQ ID NO: 129

69. SDEG_1231
hypothetical protein [Streptococcus dysgalactiae subsp. equisimilis GGS_124]
Other Aliases: SDEG_1231
Chromosome: 1
Annotation: Chromosome 1NC_012891.1 (1176755..1180870, complement)
ID: 8111553
SEQ ID NO: 130

70. NMCC_0397
hypothetical protein [Neisseria meningitidis 053442]
Other Aliases: NMCC_0397
Genomic context: Chromosome
Annotation: NC_010120.1 (402733..405981, complement)
ID: 5796426
SEQ ID NO: 131

71. SAK_1017
hypothetical protein [Streptococcus agalactiae A909]
Other Aliases: SAK_1
Genomic context: Chromosome
Annotation: NC_007432.1 (980303..984415)
ID: 3686185
SEQ ID NO: 132

72. M5005_Spy_0769
hypothetical protein [Streptococcus pyogenes MGAS5005]
Other Aliases: M5005_Spy_0769
Genomic context: Chromosome
Annotation: NC_007297.1 (773340..777446)
ID: 3572134
SEQ ID NO: 133

73. **MS53_0582**

hypothetical protein [Mycoplasma synoviae 53]
Other Aliases: MS53_0582
Genomic context: Chromosome
Annotation: NC_007294.1 (684155..688099)
ID: 3564051
SEQ ID NO: 134

74. **DIP0036**

hypothetical protein [Corynebacterium diphtheriae NCTC 13129]
Other Aliases: DIP0036
Genomic context: Chromosome
Annotation: NC_002935.2 (34478.37732)
ID: 2650188
SEQ ID NO: 135

75. **WS1613**

hypothetical protein [Wolinella succinogenes DSM 1740]
Other Aliases: WS1613
Genomic context: Chromosome
Annotation: NC_005090.1 (1525628..1529857)
ID: 2553552
SEQ ID NO: 136

76. **PM1127**

hypothetical protein [Pasteurella multocida subsp. multocida str. Pm70]
Other Aliases: PM1127
Genomic context: Chromosome
Annotation: NC_002663.1 (1324015..1327185, complement)
ID: 1244474
SEQ ID NO: 137

77. **SPs1 176**
hypothesis protein [Streptococcus pyogenes SSI-1]
Other Aliases: SPsll76
Genomic context: Chromosome
Annotation: NC_004606.1 (1149610..1153716, complement)
ID: 1065374
SEQ ID NO: 138

78. SMU_1 405c
hypothesis protein [Streptococcus mutans UA159]
Other Aliases: SMU_1405c, SMU.1405C
Genomic context: Chromosome
Annotation: NC_004350.2 (1330942..1334979, complement)
ID: 1028661
SEQ ID NO: 139

79. lin2744
hypothetical protein [Listeria innocua Clipl262]
Other Aliases: lin2744
Genomic context: Chromosome
Annotation: NC_003212.1 (2770707..2774711, complement)
ID: 1131597
SEQ ID NO: 140

80. csnl B
CRISPR-associated protein [Streptococcus gallolyticus subsp. gallolyticus ATCC 43143]
Other Aliases: SGGB_1441
Annotation: NC_017576.1 (1489111..1493226, complement)
ID: 12630646
SEQ ID NO: 141

81. csnl A
CRISPR-associated protein [Streptococcus gallolyticus subsp. gallolyticus ATCC 43143]
Other Aliases: SGGB_1431
Annotation: NC_017576.1 (1480439..1483804, complement)
ID: 12630636
SEQ ID NO: 142
82. **cas9**
CRISPR-associated protein [Corynebacterium ulcerans 809]
OtherAliases: CULC809_00033
Genomic context: Chromosome
Annotation: NC_017317.1 (30370..33063, complement)
ID: 12286148
SEQ ID NO: 143

83. **GDI_2123**
hypothetical protein [Gluconacetobacter diazotrophicus PAI 5]
OtherAliases: GDI_2123
Genomic context: Chromosome
Annotation: NC_010125.1 (2177083..2180235)
ID: 5792482
SEQ ID NO: 144

84. **Nham_4054**
hypothetical protein [Nitrobacter hamburgensis X14]
OtherAliases: Nham_4054
Genomic context: Plasmid 1
Annotation: NC_007959.1 (13284..16784, complement)
ID: 4025380
SEQ ID NO: 145

85. **str0657**
hypothetical protein [Streptococcus thermophilus CNRZ1066]
OtherAliases: str0657
Genomic context: Chromosome
Annotation: NC_006449.1 (619189..622575)
ID: 3165636
SEQ ID NO: 146

86. **stu0657**
hypothetical protein [Streptococcus thermophilus LMG 18311]
OtherAliases: stu0657
Genomic context: Chromosome
Annotation : NC_006448.1 (624007..627375)
ID: 3165000
SEQ ID NO: 147

87. SpyM3_0677
hypothetical protein [Streptococcus pyogenes MGAS315]
Other Aliases: SpyM3_0677
Genomic context: Chromosome
Annotation : NC_004070.1 (743040..747146)
ID: 1008991
SEQ ID NO: 148

88. HFMG06CAA_5227
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum CA06_2006.052-5-2P]
Other Aliases: HFMG06CAA_5227
Genomic context: Chromosome
Annotation : NC_018412.1 (895338..899147)
ID: 13464859
SEQ ID NO: 149

89. HFMG01WIA_5025
Other Aliases: HFMG01WIA_5025
Genomic context: Chromosome
Annotation : NC_018410.1 (857648..861457)
ID: 13463863
SEQ ID NO: 150

90. HFMG01NYA_5169
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum NY01_2001.047-5-IP]
Other Aliases: HFMG01NYA_5169
Genomic context: Chromosome
Annotation : NC_018409.1 (883511..887185)
ID: 13462600
SEQ ID NO: 151

91. HFMG96NC SEQ ID NO: 127
A_5295
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum NC96_1596-4-2P]
Other Aliases: HFMG96NCA_5295
Genomic context: Chromosome
Annotation: NC_018408.1 (904664..908473)
ID: 13462279
SEQ ID NO: 152

92. HFMG95 NCA_5107
Csnl family CRISPR-associated protein [Mycoplasma gallisepticum NC95_13295-2-2P]
Other Aliases: HFMG95NCA_5107
Genomic context: Chromosome
Annotation: NC_018407.1 (871783..875592)
ID: 13461469
SEQ ID NO: 153

93. MGAS1 0750_Spy092 1
hypothetical protein [Streptococcus pyogenes MGAS10750]
Other Aliases: MGAS10750_Spy0921
Genomic context: Chromosome
Annotation: NC_008024.1 (875719..879834)
ID: 4066656
SEQ ID NO: 154

94. XAC3262
hypothetical protein [Xanthomonas axonopodis pv. citri str. 306]
Other Aliases: XAC3262
Genomic context: Chromosome
Annotation: NC_003919.1 (3842310..3842765)
ID: 1157333
SEQ ID NO: 155

95. SSUST1 _1305
CRISPR-system-like protein [Streptococcus suis ST1]
Other Aliases: SSUST1_1305
Genomic context: Chromosome
Annotation: NC_017950.1 (1293105..1297250, complement)
96. SSUD9_1467
CRISPR-associated protein, Csnl family [Streptococcus suis D9]
Other Aliases: SSUD9_1467
Genomic context: Chromosome
Annotation: NC_017620.1 (1456318..1459686, complement)
ID: 12718289

97. BBta_3952
hypothetical protein [Bradyrhizobium sp. BTAi]
Other Aliases: BBta_3952
Genomic context: Chromosome
Annotation: NC_009485.1 (4149455..4152649, complement)
ID: 5151538

98. CIY_03670
CRISPR-associated protein, Csnl family [Butyrivibrio fibrisolvens 16/4]
Other Aliases: CIY_03670
Annotation: NC_021031.1 (309663..311960, complement)
ID: 15213189

99. A11Q_912
CRISPR-associated protein, Csnl family [Bdellovibrio exovorus JSS]
Other Aliases: A11Q_912
Genomic context: Chromosome
Annotation: NC_020813.1 (904781..907864, complement)
ID: 14861475

100. MCYN0850
Csnl family CRISPR-associated protein [Mycoplasma cynos C142]
Other Aliases: MCYN_0850
101. SaSA20_0769
CRISPR-associated protein [Streptococcus agalactiae SA20-06]
Other Aliases: SaSA20_0769
Genomic context: Chromosome
Annotation: NC_019048.1 (803597..807709)
ID: 13908026
SEQ ID NO: 162

102. csnl
CRISPR-associated protein, Csnl family [Streptococcus pyogenes A20]
Other Aliases: A20_0810
Genomic context: Chromosome
Annotation: NC_018936.1 (772038..776144)
ID: 13864445
SEQ ID NO: 163

103. P700755_00029
CRISPR-associated protein Cas9/Csnl, subtype II [Psychroflexus torquis ATCC 700755]
Other Aliases: P700755_000291
Genomic context: Chromosome
Annotation: NC_018721.1 (312899..317428)
ID: 13804571
SEQ ID NO: 164

104. A911_07335
CRISPR-associated protein [Campylobacter jejuni subsp. jejuni PT14]
Other Aliases: A911_07335
Genomic context: Chromosome
Annotation: NC_018709.2 (1450217..1453180, complement)
ID: 13791138
SEQ ID NO: 165

105. ASU2_02495
CRISPR-associated endonuclease Csnl family protein [Actinobacillus suis H91-0380]
Other Aliases: ASU2_02495
Genomic context: Chromosome
Annotation: NC_018690.1 (552318.. 555482)
ID: 13751600
SEQ ID NO: 166

106. csnl
CRISPR-associated protein [Listeria monocytogenes SLCC2540]
Other Aliases: LMOSLCC2540_2635
Annotation: NC_018586.1 (2700744.. 2704748, complement)
ID: 13647248
SEQ ID NO: 167

107. csnl
CRISPR-associated protein [Listeria monocytogenes SLCC5850]
Other Aliases: LMOSLCC5850_2605
Annotation: NC_018592.1 (2646023.. 2650027, complement)
ID: 13626042
SEQ ID NO: 168

108. csnl
CRISPR-associated protein [Listeria monocytogenes serotype 7 str. SLCC2482]
Other Aliases: LMOSLCC2482_2606
Annotation: NC_018591.1 (2665393..2669397, complement)
ID: 13605045
SEQ ID NO: 169

109. csnl
CRISPR-associated protein [Listeria monocytogenes SLCC2755]
Other Aliases: LMOSLCC2755_2607
Annotation: NC_018587.1 (2694850.. 2698854, complement)
ID: 13599053
SEQ ID NO: 170

110. BN148_1 523c
CRISPR-associated protein [Campylobacter jejuni subsp. jejuni NCTC 11168-BN148]
Other Aliases: BN148_1523c
Annotation: NC_018521.1 (1456880..1459834, complement)
ID: 13530688
SEQ ID NO: 171

111. Belba_320 1
CRISPR-associated protein Cas9/Csnl, subtype II/NMEMI [Belliella baltica DSM 15883]
Other Aliases: Belba_3201
Genomic context: Chromosome
Annotation: NC_018010.1 (3445311..3449369, complement)
ID: 13056967
SEQ ID NO: 172

112. FN3523_1 121
membrane protein [Francisella cf. novicida 3523]
Other Aliases: FN3523_1121
Genomic context: Chromosome
Annotation: NC_017449.1 (1129528..1134468, complement)
ID: 12924881
SEQ ID NO: 173

113. cas9
CRISPR-associated protein Cas9/Csnl, subtype II/NMEMI [Prevotella intermedia 17]
Other Aliases: PIN17_A0201
Chromosome: II
Annotation: Chromosome IINC_01 7861.1 (240722..244864)
ID: 12849954
SEQ ID NO: 174

114. csn1
CRISPR-associated protein, Csnl family [Streptococcus thermophilus JIM 8232]
Other Aliases: STH8232_0853
Annotation: NC_017581.1 (706443..709808)
ID: 12637306
SEQ ID NO: 175

115. LMOG_0 1918
CRISPR-associated protein [Listeria monocytogenes J0161]
Other Aliases: LMOG_01918
Genomic context: Chromosome
Annotation: NC_017545.1 (2735374.-2739378, complement)
ID: 12557915
SEQ ID NO: 176

116. LMRG_021 38
CRISPR-associated protein [Listeria monocytogenes 10403S]
Other Aliases: LMRG_02138
Genomic context: Chromosome
Annotation: NC_017544.1 (2641981..2645985, complement)
ID: 12554876
SEQ ID NO: 177

117. CJSA_1 443
Putative CRISPR-associated protein [Campylobacter jejuni subsp. jejuni IA3902]
Other Aliases: CJSA_1443
Genomic context: Chromosome
Annotation: NC_017279.1 (1454273..1457227, complement)
ID: 12250720
SEQ ID NO: 178

118. csnl
CRISPR-associated protein Csnl [Streptococcus pyogenes MGAS1882]
Other Aliases: MGAS1882_0792
Genomic context: Chromosome
Annotation: NC_017053.1 (775696..779799)
ID: 12014080
SEQ ID NO: 179

119. csnl
CRISPR-associated protein Csnl [Streptococcus pyogenes MGAS15252]
Other Aliases: MGAS15252_0796
Genomic context: Chromosome
Annotation: NC_017040.1 (778271..782374)
ID: 11991096
120. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae HC02]
Other Aliases: CDHC02_0036
Genomic context: Chromosome
Annotation: NC_016802.1 (37125..40379)
ID: 11739116
SEQ ID NO: 181

121. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae C7 (beta)]
Other Aliases: CDC7B_0035
Genomic context: Chromosome
Annotation: NC_016801.1 (36309..39563)
ID: 11737358
SEQ ID NO: 182

122. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae BH8]
Other Aliases: CDBH8_0038
Genomic context: Chromosome
Annotation: NC_016800.1 (37261..40515)
ID: 11735325
SEQ ID NO: 183

123. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae 31A]
Other Aliases: CD31A_0036
Genomic context: Chromosome
Annotation: NC_016799.1 (34597..37851)
ID: 11731168
SEQ ID NO: 184

124. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae VA01]
Other Aliases: CDVA01_0033
Genomic context: Chromosome
Annotation: NC_016790.1 (34795..38049)
ID: 11717708
SEQ ID NO: 185

125. cas3
CRISPR-associated endonuclease [Corynebacterium diphtheriae HCOI]
OtherAliases: CDHC01_0034
Genomic context: Chromosome
Annotation: NC_016786.1 (35060..38314)
ID: 11708318
SEQ ID NO: 186

126. cas9
CRISPR-associated protein [Corynebacterium diphtheriae HCOI]
Other Aliases: CDHC01_2103
Genomic context: Chromosome
Annotation: NC_016786.1 (2246368..2248998)
ID: 11708126
SEQ ID NO: 187

127. PARA_18570
hypothetical protein [Haemophilus parainfluenzae T3T1]
Other Aliases: PARA_18570
Genomic context: Chromosome
Annotation: NC_015964.1 (1913335..1916493)
ID: 11115627
SEQ ID NO: 188

128. HDN1_F_34120
hypothetical protein [gamma proteobacterium HdNI]
Other Aliases: HDN1F_34120
Genomic context: Chromosome
Annotation: NC_014366.1 (4143336..4146413, complement)
ID: 9702142
SEQ ID NO: 189
129. **SPy_1046**
hypothetical protein [Streptococcus pyogenes Ml GAS]
Other Aliases: SPy_1046
Genomic context: Chromosome
Annotation: NC_002737.1 (854757..858863)
ID: 901176
SEQ ID NO: 190

130. **GBS222_0765**
Hypothetical protein [Streptococcus agalactiae]
Other Aliases: GBS222_0765
Annotation: NC_021195.1 (810875..814987)
ID: 15484689
SEQ ID NO: 191

131. **NE061598_03330**
hypothetical protein [Francisella tularensis subsp. tularensis NE061598]
Other Aliases: NE061598_03330
Genomic context: Chromosome
Annotation: NC_017453.1 (601219..604590)
ID: 12437259
SEQ ID NO: 192

132. **NMV_1993**
hypothetical protein [Neisseria meningitidis 8013]
Other Aliases: NMV_1993
Annotation: NC_017501.1 (1917073..1920321)
ID: 12393700
SEQ ID NO: 193

133. **cnsnl**
hypothetical protein [Campylobacter jejuni subsp. jejuni Ml]
Other Aliases: CJM1_1467
Genomic context: Chromosome
Annotation: NC_017280.1 (1433667..1436252, complement)
ID: 12249021
SEQ ID NO: 194
134. **FTU_0629**

hypothetical protein [Francisella tularensis subsp. tularensis TIGB03]

Other Aliases: FTU_0629

Genomic context: Chromosome

Annotation: NC_016933.1 (677092.. 680463)

ID: 11890131

SEQ ID NO: 195

135. **NMAA_0315**

hypothetical protein [Neisseria meningitidis WUE 2594]

Other Aliases: NMAA_0315

Annotation: NC_017512.1 (377010.. 380258, complement)

ID: 12407849

SEQ ID NO: 196

136. **WS1 445**

hypothetical protein [Wolinella succinogenes DSM 1740]

Other Aliases: WS1445

Genomic context: Chromosome

Annotation: NC_005090.1 (1388202.. 1391381, complement)

ID: 2554690

SEQ ID NO: 197

137. **THITE_2123823**

hypothetical protein [Thielavia terrestris NRRL 8126]

Other Aliases: THITE_2123823

Chromosome: 6

Annotation: Chromosome 6NC_016462.1 (1725696.. 1725928)

ID: 11523019

SEQ ID NO: 198

138. **XAC29_1 6635**

hypothetical protein [Xanthomonas axonopodis Xac29-1]

Other Aliases: XAC29_16635

Genomic context: Chromosome

Annotation: NC_020800.1 (3849847.. 3850302)
139. M1GAS476_0830
hypothetical protein [Streptococcus pyogenes Ml 476]
Other Aliases: M1GAS476_0830
Chromosome: 1
Annotation: NC_020540.1 (792119..796225)
ID: 14819166

140. Piso0_000203
PisoO_000203[Millerozyma farinosa CBS 7064]
Other Aliases: GNLVRS01_PISO0A04202g
Other Designations: hypothetical protein
Chromosome: A
Annotation: NC_020226.1 (343553.343774, complement)
ID: 14528449

141. G148_0828
hypothetical protein [Riemerella anatipestifer RA-CH-2]
Other Aliases: G148_0828
Genomic context: Chromosome
Annotation: NC_020125.1 (865673.-869875)
ID: 14447195

142. csnl
hypothetical protein [Streptococcus dysgalactiae subsp. equisimilis AC-2713]
Other Aliases: SDSE_1207
Annotation: NC_019042.1 (1134173..1138288, complement)
ID: 13901498

143. A964_0899
hypothetical protein [Streptococcus agalactiae GD201008-001]
Other Aliases: A964_0899
Genomic context: Chromosome
Annotation: NC_018646.1 (935164..939276)
ID: 13681619
SEQ ID NO: 204

144. FNX1_0762
hypothetical protein [Francisella cf. novicida FxI]
Other Aliases: FNX1_0762
Genomic context: Chromosome
Annotation: NC_017450.1 (781484..786373)
ID: 12435564
SEQ ID NO: 205

145. FTV_0545
hypothetical protein [Francisella tularensis subsp. tularensis TI0902]
Other Aliases: FTV_0545
Genomic context: Chromosome
Annotation: NC_016937.1 (601185..604556)
ID: 11880693
SEQ ID NO: 206

146. FTL_1327
hypothetical protein [Francisella tularensis subsp. holarctica LVS]
Other Aliases: FTL_1327
Genomic context: Chromosome
Annotation: NC_007880.1 (1262508..1263689, complement)
ID: 3952607
SEQ ID NO: 207

147. FTL_1326
hypothetical protein [Francisella tularensis subsp. holarctica LVS]
Other Aliases: FTL_1326
Genomic context: Chromosome
Annotation: NC_007880.1 (1261927..1262403, complement)
ID: 3952606
Claims:

1. A method of nucleic acid recombination, the method comprising
 (a) using Cas endonuclease-mediated nucleic acid cleavage to create first and second
 breaks in a nucleic acid strand, thereby creating 5' and 3' cut ends and a nucleotide
 sequence between the ends;
 (b) using homologous recombination to delete the nucleotide sequence; and
 (c) optionally obtaining the nucleic acid strand modified in step (b) or a progeny nucleic
 acid strand comprising the deletion.

2. The method of claim 1, wherein the deleted sequence comprises a regulatory element or
 encodes all or part of a protein.

3. The method of claim 2, wherein the deleted sequence comprises a protein subunit or
 domain.

4. The method of any one of claims 1 to 3, wherein the deletion of step (b) is at least 20
 nucleotides long.

5. The method of claim 1, further comprising a step of inserting a nucleotide sequence between
 the cut ends in (a).

6. The method of claim 5, wherein the insert nucleotide sequence comprises a PAM motif.

7. The method of claim 5 or claim 6, wherein the insert sequence is at least 10 nucleotides
 long.

8. The method of any one of claims 5 to 7, wherein recombinase recognition sequences are
 used to insert the nucleotide sequence, e.g. loxP and/or a mutant lox, e.g., lox2272 or
 lox511; or frt.

9. The method of any one of claims 5 to 7, wherein homologous recombination is used to insert
 the insert nucleotide sequence.

10. The method of any one of claims 5 to 9, wherein the method is carried out in a cell and the
 insert sequence replaces an orthologous or homologous sequence in the cell.
11. The method of any preceding claim, wherein step (c) is performed by isolating a cell comprising the modified first strand, or by obtaining a non-human vertebrate in which the method has been performed or a progeny thereof.

12. The method of any preceding claim, wherein the nucleic acid strand or the first strand is a DNA strand.

13. The method of any preceding claim wherein the product of the method comprises a nucleic acid strand comprising a PAM motif 3' of the insertion or deletion.

14. The method of claim 13, wherein the PAM motif is no more than 10 nucleotides 3' of the deletion.

15. The method of any preceding claim, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end.

16. The method of claim 15, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising an insert nucleotide sequence flanked by the first and second homology arms, wherein the insert nucleotide sequence is inserted between the 5' and 3' ends.

17. The method of claim 15 or claim 16, wherein each homology arm is at least 20 contiguous nucleotides long.

18. The method of any one of claims 15 to 17, wherein the first and/or second homology arm comprises a recombinase recognition sequence, such as a PAM motif.

19. The method of any preceding claim, wherein Cas endonuclease-mediated cleavage is used in step (a) and is carried out by recognition of a GG or NGG PAM motif.

20. The method of claim 19, wherein a nickase is used to cut in step (a), and optionally, wherein the nickase is a Cas nickase.

21. The method of any preceding claim, wherein the method is carried out in a cell, e.g. a eukaryotic cell.
22. The method of claim 21, wherein the method is carried out in a mammalian cell, e.g. rodent or mouse cell, e.g. a rodent (e.g., mouse) ES cell or zygote.

23. The method of any preceding claim, wherein the method is carried out in a non-human mammal, e.g. a mouse or rat or rabbit.

24. The method of any preceding claim, wherein each cleavage site is flanked by PAM motif (e.g., a NGG or NGGNG sequence, wherein N is any base and G is a guanine).

25. The method of any preceding claim, wherein the 3' end is flanked 3' by a PAM motif.

26. The method of any preceding claim, wherein step (a) is carried out by cleavage in one single strand of dsDNA.

27. The method of any preceding claim, wherein step (a) is carried out by combining in a cell the nucleic acid strand, a Cas endonuclease, a crRNA and a tracrRNA (e.g., provided by one or more gRNAs) for targeting the endonuclease to carry out the cleavage, and optionally an insert sequence for homologous recombination with the nucleic acid strand.

28. The method of any preceding claim, wherein step (b) is performed by carrying out homologous recombination with an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the second homology arm comprises a PAM sequence such that homologous recombination between the second homology arm and the sequence extending 3' from the 3' end produces a sequence comprising a PAM motif in the product of the method.

29. A method of sequential endonuclease-mediated homology directed recombination (sEHDR) comprising carrying out the method of any preceding claim a first time and a second time, wherein the product of the first time is used for endonuclease-mediated cleavage the second time, whereby either (i) first and second nucleotide sequences are deleted the first time and the second times respectively; (ii) a first nucleotide sequence is deleted the first time and a second nucleotide sequence is inserted the second time; (iii) a first nucleotide sequence is inserted the first time and a second nucleotide sequence is deleted the second time; or (iv) first and second nucleotide sequences are inserted the first and second times respectively; optionally wherein the nucleic acid strand modification the second time is within 20 or less nucleotides of the nucleic acid strand modification the first time.
30. The method of claim 29, wherein the first time is carried out according to claim 1, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms, wherein sequence between the 5' and 3' ends is deleted by homologous recombination; and/or the second time is carried out according to claim 1, wherein step (b) is performed by carrying out homologous recombination between an incoming nucleic acid comprising first and second homology arms, wherein the homology arms are substantially homologous respectively to a sequence extending 5' from the 5' end and a sequence extending 3' from the 3' end, wherein the incoming nucleic acid comprises no sequence between the first and second homology arms such that sequence between the 5' and 3' ends is deleted by homologous recombination; optionally wherein the second arm comprises a PAM motif such that the product of the second time comprises a PAM motif for use in a subsequent Cas endonuclease-mediated method according to any one of claims 1 to 28.

31. The method of any preceding claim, wherein step (a) is carried out using Cas endonuclease-mediated cleavage and a gRNA comprising a crRNA and a tracrRNA.

32. The method of claim 27 or 31, wherein the crRNA has the structure 5'-X-Y-3', wherein X is an RNA nucleotide sequence (optionally at least 5 nucleotides long) and Y is an RNA sequence comprising a nucleotide motif that hybridises with a motif comprised by the tracrRNA, wherein X is capable of hybridising with a nucleotide sequence extending 5' from the desired site of the 5' cut end.

33. The method of claim 27, 31 or 32, wherein Y is 5'-NiUUUAN2N2GCUA-3', wherein each of Ni3 is A, U, C or G and/or the tracrRNA comprises the sequence (in 5' to 3' orientation) UAGCM1UUAAAAM2, wherein M1 is spacer nucleotide sequence and M2 is a nucleotide.

34. A method of nucleic acid recombination, the method comprising providing dsDNA comprising first and second strands and

(a) using Cas endonuclease-mediated nucleic acid cleavage to create a cut end in the first strand 3' of a PAM motif;

(b) using Cas endonuclease-mediated nucleic acid cleavage to create a cut in the second strand at a position which corresponds to a position 3' of the cut end of the strand of part (a), which cut is 3' of the PAM motif;

(c) providing a first gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (a)
(d) providing a second gRNA which hybridises with a sequence 5′ to the PAM motif in the strand of part (b)
wherein the nucleic acid strands of part (a) and part (b) are repaired to produce a deletion of nucleic acid between the cuts.

35. A method of producing a cell or a transgenic non-human organism, the method comprising:
(a) carrying out the method of any preceding claim to (i) knock out a target nucleotide sequence in the genome of a first cell and/or (ii) knock in an insert nucleotide sequence into the genome of a first cell, optionally wherein the insert sequence replaces a target sequence in whole or in part at the endogenous location of the target sequence in the genome;
wherein the cell or a progeny thereof can develop into a non-human organism or cell; and
(b) developing the cell or progeny into a non-human organism or a non-human cell.

36. The method of claim 35, wherein the organism or cell is homozygous for the modification (i) and/or (ii).

37. The method of claim 35 or 36, wherein the cell is an ES cell, iPS cell, totipotent cell or pluripotent cell, optionally a rodent (e.g., a mouse or rat) cell.

38. The method of any one of claims 35 to 37, wherein the target sequence is an endogenous sequence comprising all or part of a regulatory element or encoding all or part of a protein.

39. The method of any one of claims 35 to 38, wherein the insert sequence is a synthetic sequence; or comprises a sequence encoding all or part of a protein from a species other than the species from which the first cell is derived; or comprises a regulatory element from said first species.

40. The method of claim 39, wherein the insert sequence encodes all or part of a human protein or a human protein subunit or domain.

41. A cell or a non-human organism whose genome comprises a modification comprising a non-endogenous nucleotide sequence flanked by endogenous nucleotide sequences, wherein the cell or organism is obtainable by the method of any one of claims 26 to 40 and wherein the non-endogenous sequence is flanked 3′ by a Cas PAM motif; wherein the cell is not comprised by a human; and one, more or all of (a) to (d) applies
(a) the genome is homozygous for the modification; or comprises the modification at one allele and is unmodified by Cas-mediated homologous recombination at the other allele;
(b) the non-endogenous sequence comprises all or part of a regulatory element or encodes all or part of a protein;
(c) the non-endogenous sequence is at least 20 nucleotides long;
(d) the non-endogenous sequence replaces an orthologous or homologous sequence in the genome.

42. The cell or organism of claim 41, wherein the non-endogenous sequence is a human sequence.

43. The cell or organism of claim 41 or 42, wherein the PAM motif comprises a sequence selected from CCN, TCN, TTC, AWG, CC, NNAGNN, NGGNG GG, NGG, WGG, CWT, CTT and GAA.

44. The cell or organism of any one of claims 41 to 43, wherein there is a PAM motif no more than 10 nucleotides (e.g., 3 nucleotides) 3' of the non-endogenous sequence.

45. The cell or organism of any one of claims 41 to 44, wherein the PAM motif is recognised by a Streptococcus Cas9.

46. The cell or organism of any one of claims 41 to 45, which is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody heavy chain variable domains (and optionally no heavy chain variable domains of a non-human vertebrate species).

47. The cell or organism of any one of claims 41 to 46, which is a non-human vertebrate cell or a non-human vertebrate that expresses one or more human antibody kappa light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species) or that expresses one or more human antibody lambda light chain variable domains (and optionally no kappa light chain variable domains of a non-human vertebrate species).

48. The cell or organism of any claim 46 or claim 47, wherein the non-endogenous sequence encodes a human Fc receptor protein or subunit or domain thereof (e.g., a human FcRn or FcY receptor protein, subunit or domain).
49. The cell or organism of any one of claims 41 to 48, wherein the non-endogenous sequence comprises one or more human antibody gene segments, an antibody variable region or an antibody constant region.

50. The cell or organism of any one of claims 41 to 49, wherein the insert sequence is a human sequence that replaces or supplements an orthologous non-human sequence.

51. A monoclonal or polyclonal antibody prepared by immunisation of a vertebrate (e.g., mouse or rat) according to any one of claims 41 to 50 with an antigen.

52. A method of isolating an antibody that binds a predetermined antigen, the method comprising
 (a) providing a vertebrate (optionally a mouse or rat) according to any one of claims 41 to 51;
 (b) immunising said vertebrate with said antigen;
 (c) removing B lymphocytes from the vertebrate and selecting one or more B lymphocytes expressing antibodies that bind to the antigen;
 (d) optionally immortalising said selected B lymphocytes or progeny thereof, optionally by producing hybridomas therefrom; and
 (e) isolating an antibody (e.g., and IgG-type antibody) expressed by the B lymphocytes.

53. The method of claim 52, comprising the step of isolating from said B lymphocytes nucleic acid encoding said antibody that binds said antigen; optionally exchanging the heavy chain constant region nucleotide sequence of the antibody with a nucleotide sequence encoding a human or humanised heavy chain constant region and optionally affinity maturing the variable region of said antibody; and optionally inserting said nucleic acid into an expression vector and optionally a host.

54. The method of claim 52 or 53, further comprising making a mutant or derivative of the antibody produced by the method of claim 52 or 53.

55. The use of an isolated, monoclonal or polyclonal antibody according to claim 51, or a mutant or derivative antibody thereof that binds said antigen, in the manufacture of a composition for use as a medicament.

56. The use of an isolated, monoclonal or polyclonal antibody according to claim 51, or a mutant or derivative antibody thereof that binds said antigen for use in medicine.
57. A nucleotide sequence encoding an antibody of claim 51, optionally wherein the nucleotide sequence is part of a vector.

58. A pharmaceutical composition comprising the antibody or antibodies of claim 51 and a diluent, excipient or carrier.

59. An ES cell, a eukaryotic cell, a mammalian cell, a non-human animal or a non-human blastocyst comprising an expressible genomically-integrated nucleotide sequence encoding a Cas endonuclease.

60. The cell, animal or blastocyst of claim 59, wherein the endonuclease sequence is constitutively expressible.

61. The cell, animal or blastocyst of claim 59, wherein the endonuclease sequence is inducibly expressible.

62. The cell, animal or blastocyst of claim 59, 60 or 61, wherein the endonuclease sequence is expressible in a tissue-specific or stage-specific manner in the animal or a progeny thereof, or in a non-human animal that is a progeny of the cell or blastocyst.

63. The cell or animal of claim 62, wherein the cell is a non-human embryo cell or the animal is a non-human embryo, wherein the endonuclease sequence is expressible or expressed in the cell or embryo.

64. The cell of animal claim 63, wherein the endonuclease is operatively linked to a promoter selected from the group consisting of an embryo-specific promoter (e.g., a Nanog promoter, a Pou5f1 promoter or a SoxB promoter).

65. The cell, animal or blastocyst of any one of claims 61 to 64, wherein the Cas endonuclease is at a Rosa 26 locus, and is optionally operably linked to a Rosa 26 promoter.

66. The cell, animal or blastocyst of any one of claims 59 to 62, wherein the Cas endonuclease sequence is flanked 5' and 3' by transposon elements (e.g., inverted piggyBac terminal elements) or site-specific recombination sites (e.g., loxP and/or a mutant lox, e.g., lox2272 or lox511; or frt).
67. The cell, animal or blastocyst of claim 66, comprising one or more restriction endonuclease sites between the Cas endonuclease sequence and a transposon element.

68. The cell, animal or blastocyst of any one of claims 59 to 67 comprising one or more gRNAs.

69. The cell, animal or blastocyst of claim 66, 67 or 68, wherein the gRNA(s) are flanked 5' and 3' by transposon elements (e.g., inverted piggyBac terminal elements) or site-specific recombination sites (e.g., loxP and/or a mutant lox, e.g., lox2272 or lox511; or frt).

70. Use of the cell, animal or blastocyst of any one of claims 59 to 69 in a method according to any one of claims 1 to 50.
Figure 1: Precise DNA Insertion in a Predefined Location (KI)

Figure 1B:
Figure 2: Precise DNA Deletion (KO)

Figure 2B:
Figure 3: Precise DNA Deletion and Insertion (KO → KI)

Figure 3B:
Figure 4A:

sgRNAs + Cas9 D10A Nickase

Donor Oligo/DNA fragment
Figure 4B:
Figure 5: CRISPR/Cas mediated Lox Insertion to facilitate RMCE

Figure 5B:
Figure 6A:

Homologous recombination:

\[\text{PB 5'} \rightarrow \text{PB 3'} \]

RMCE:

\[\begin{align*}
&\text{Cre} \downarrow \text{Puro} \\
&\text{PB 5'} \rightarrow \text{PB 3'} \\
&\text{gRNA3 U6 gRNA2 U6 gRNA1 U6 PuroΔtk-T2A-Cas9} \\
&\text{PBase} \rightarrow \text{FIAU} \\
&\text{Genotyping} \\
\end{align*} \]

Figure 6B:

Targeting into Intron of Rosa26

\[\begin{align*}
&\text{PB 5'} \rightarrow \text{PB 3'} \\
&\text{Target into Rodent ES Cell} \\
&\text{gRNA3 U6 gRNA2 U6 gRNA1 U6 PuroΔtk-T2A-Cas9} \\
&\text{Cre} \downarrow \text{Puro} \\
&\text{PB 5'} \rightarrow \text{PB 3'} \\
&\text{Single or multiple sgRNA} \rightarrow \text{Cas9} \rightarrow \text{PuroΔtk} \rightarrow \text{PBase} \rightarrow \text{FIAU} \\
&\text{Genotyping & Produce Mouse} \\
\end{align*} \]
Figure 6C:

Homologous Recombination:

G418

Cre Puro 4-6 day selection

Excision:

PBase FIAU 4-6 day selection with replating

Genotyping

Figure 7:

gRNA

Targeting Vector

50 bp

5'-HA 3'-HA

PGK-Puro

880 bp 1379 bp
<table>
<thead>
<tr>
<th>Mouse ID</th>
<th>WT</th>
<th>Indel 1</th>
<th>Indel 2</th>
<th>Indel 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMKY5.1b (Male): PCR 2</td>
<td>6</td>
<td>13 (13 bp Del)</td>
<td>7 (20 bp Del)</td>
<td></td>
</tr>
<tr>
<td>KMKY5.1c (Male): PCR 3</td>
<td></td>
<td>9 (1 bp Insertion)</td>
<td>7 (17 bp Del)</td>
<td>7 (13 bp Del)</td>
</tr>
<tr>
<td>KMKY5.1e (Female): PCR 5</td>
<td></td>
<td>13 (1 bp Insertion)</td>
<td>6 (20 bp Del)</td>
<td>8 (25 bp Del)</td>
</tr>
<tr>
<td>KMKY5.1h (Female): PCR 8</td>
<td>7</td>
<td>17 (12 bp Del)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMKY6.1a (Male): PCR 10</td>
<td>9</td>
<td>5 (12 bp Del)</td>
<td>5 (13 bp Del)</td>
<td>7 (20 bp Del)</td>
</tr>
<tr>
<td>KMKY6.1e (Female): PCR 14</td>
<td>11</td>
<td>3 (13 bp Del)</td>
<td>24 (212 bp Del)</td>
<td></td>
</tr>
<tr>
<td>KMKY6.1h (Female): PCR 17</td>
<td></td>
<td>2 (5 bp Deletion)</td>
<td>10 (13 bp Del)</td>
<td></td>
</tr>
<tr>
<td>KMKY6.1j (Female): PCR 19</td>
<td></td>
<td>All WT Sequence as Expected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No.
PCT/GB2014/052837

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C12N5/10</th>
<th>C12N15/10</th>
<th>C12N15/85</th>
<th>C12N15/90</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason as specified
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "A" document member of the same patent family

Date of the actual completion of the international search

21 November 2014

Date of mailing of the international search report

27/02/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Westphal - Daniël, K
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>& PATRICK D HSU ET AL: "Supplementary Information: DNA targeting specificity of RNA-guide Cas9 nuclease, Supplementary Methods", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, UNITED STATES, vol. 31, no. 9, 1 September 2013 (2013-09-01), pages 1-26, XP002718605, ISSN: 1546-1696, DOI: 10.1038/nbt.2647 [retrieved on 2013-07-21]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>W00ng Y Huang et al: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NATURE BIOTECHNOLOGY, vol. 31, no. 3, 29 January 2013 (2013-01-29), pages 227-229, XP055086625, ISSN: 1087-0156, DOI: 10.1038/nbt.2501</td>
<td>1-40,70</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 I-40(completely) ; 70(partly)

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
A method of nucleic acid recombinant, the method comprising (a) using Cas endonuclease-mediated nucleic acid cleavage to create first and second breaks in a nucleic acid strand, thereby creating 5' and 3' cut ends and a nucleotide sequence between the ends; (b) using homologous recombinant natio on to del ete the nucleotide sequence. A method of sequential endonuclease-mediated homology directed recombinant on comprising carryi ng out said method of nucleic acid recombinant on a first time and a second time.

A method of nucleic acid recombinant on, the method comprising providing dsDNA comprising first and second strand and (a) using Cas endonuclease-mediated nucleic acid cleavage to create a cut end in the first strand 3' of a PAM motif; (b) using Cas endonuclease-mediated nucleic acid cleavage to create a cut in the second strand at a position 3' of the cut end of the strand of part (a), which cut is 3' of the PAM motif; (c) providing a first gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (a); (d) providing a second gRNA which hybridises with a sequence 5' to the PAM motif in the strand of part (b) wherein the nucleic acid strands of part (a) and part (b) are repaired to produce a deletional of nucleic acid between the cuts.

A method of producing a cell or a transgenic non-human organism, the method comprising carrying out any of said methods to knock out a target nucleotide sequence in the genome of a first cell and/or knock in and insert nucleotide sequence into the genome of a first cell.

Use of a cell, animal or blastocyst comprising an expressible genome cal y-internal nucleotide sequence encoding a Cas endonuclease integrated in any of said methods.

2. claims: 41-50

A cell or a non-human organism whose genome comprises a modification on comprising a non-endogenous nucleotide sequence flanked by endogenous nucleotide sequences, wherein the non-endogenous sequence is flanked 3' by a Cas PAM motif; wherein the cell is not comprised by a human; and one, more or all of (a) to (d) applies (a) the genome is homozygous for the modification on or comprises the modification on at one allele and is unmodified by Cas-mediated homologous recombinant on at the other allele; (b) the non-endogenous sequence comprises all or part of a protein; (c) the non-endogenous sequence is at least 20 nucleotides long; (d) the non-endogenous sequence replaces an orthologous or homologous sequence in the genome.
3. Claims: 51-58

A monoclonal or polyclonal anti body prepared by immuni sati on of a vertebrate with an anti gen.

A method of isol ati ng an anti body that binds a predetermi ned anti gen.

The use of said isolated, monoclonal or polyclonal anti body or a mutant or deri vati ve thereof that binds said anti gen in the manufacture of a composition for use as a medi cament.

The use of said isolated, monoclonal or polyclonal anti body or a mutant or deri vati ve thereof that binds said anti gen for use in medi cine.

A nucl eoti de sequence encodi ng said anti body.

A pharmaaceutical compositi on comprisi ng said anti body and a di luent, excipi ent or carri er.

4. Claims: 59-69 (completely) ; 70(partially)

An ES cell, a eukaryoti c cell, a mammal i an cell, a non-human animal or a non-human blastocyst comprisi ng an expressi ble genomi caly-i ntegrated nucl eoti de sequence encodi ng a Cas endonucl ease.

Use of said cell, animal or blastocyst in a method of nucl eic aci d recombi nat i on comprisi ng Cas endonucl ease-medi ated nucl eic aci d c leavage.
