
(19) United States
US 2002O152413A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0152413 A1
Waters et al. (43) Pub. Date: Oct. 17, 2002

(54) PREFIX SEARCH CIRCUITRY AND
METHOD

(76) Inventors: Gregory M. Waters, Groton, MA (US);
Larry R. Dennison, Norwood, MA
(US); Philip P. Carvey, Bedford, MA
(US); William J. Dally, Stanford, CA
(US); William F. Mann, Sudbury, MA
(US)

Correspondence Address:
HAMILTON, BROOK, SMITH & REYNOLDS,
P.C.
530 VIRGINA ROAD
P.O. BOX 91.33
CONCORD, MA 01742-9133 (US)

(21) Appl. No.: 10/167,689

(22) Filed: Jun. 11, 2002

Related U.S. Application Data

(63) Continuation of application No. 09/140,030, filed on
Aug. 26, 1998, now Pat. No. 6,430,527, which is a
continuation-in-part of application No. 09/104,314,
filed on Jun. 25, 1998.

ab
ad

bae

bba
bbc
bbc.c
bc
bca

bc.c
bc.ca

Ca

caab

caad
caaf
cab
cad
CC

C

(60) Provisional application No. 60/084,434, filed on May
6, 1998.

Publication Classification

(51) Int. CI.' H04L 1/22; G06F 7/00; HO2H 3/05
(52) U.S. Cl. ... 714/1; 707/1

(57) ABSTRACT

Prefix Searches for directing internet data packets are per
formed in a prefix Search integrated circuit. The integrated
circuit includes an array of Search engines, each of which
accesses a prefix Search tree data Structure to process a prefix
Search. An SDRAM is dedicated to each Search engine, and
SDRAMs share address and control pins to plural search
engines on the IC chip. Internal nodes of the tree data
structure are duplicated across banks of the SDRAMs to
increase bandwidth, and leaf nodes are Stored across the
SDRAM banks to reduce storage requirements. Within each
Search engine, data Stored in a data register from an SDRAM
is compared to a prefix Search key Stored in a key register.
Based on that comparison, an address is calculated to access
further tree structure data from the SDRAM. Packet descrip
tors containing Search keys are forwarded to the Search
engines from an input queue and the Search results are
forwarded to an output queue, the same packet order being
maintained in the two queues.

Patent Application Publication Oct. 17, 2002 Sheet 1 of 13 US 2002/0152413 A1

ab
ad

bae

bba
bbc
bbc.c
bc.
bca

bcc
bcca

Ca

caab

caad
caaf
cab
Cad
CC

Ce

FG.
LIST OF PREFXES

Patent Application Publication Oct. 17, 2002. Sheet 2 of 13 US 2002/0152413 A1

51 a bic

s2Nb a ssNobel sa No cle
(dd. () (c) d.

55e 56 ac 57 Nac 58 No bid

FG. 2
(Prior Art)

TRE STRUCTURE

Patent Application Publication Oct. 17, 2002 Sheet 3 of 13 US 2002/0152413 A1

a0

ad
al
bO

b1
c0
ca0
caab
caad
caaf
cab -
cad
cal
CC

CC

c1

FG. 3
(Prior Art)

LIST OF PREFIXES

Patent Application Publication Oct. 17, 2002 Sheet 4 of 13 US 2002/0152413 A1

2
33

result e.
enclosing e

child ptr | Ow
r C d

O n d n d

f
b)

6

high bCe
r(bbo)

35

bbcO r (bbC)
bbCC r(bbCC)

bbC 3.

bCO r (bo) 7

() bCO r (bcd)
bCCO d

bCCO r (boCO)

33

E:
r(bC)
r (b)

b - 4 N 8
co r (C)

()
r(COOd)

FIG. 4A

Patent Application Publication Oct. 17, 2002 Sheet 5 of 13 US 2002/0152413 A1

FG. 4B

US 2002/0152413 A1 Oct. 17, 2002 Sheet 6 of 13 Patent Application Publication

ÇO]

GO !

| Oulu 9 | U |

OO!

Patent Application Publication Oct. 17, 2002 Sheet 7 of 13 US 2002/0152413 A1

root 20 21
pointer

subtree with
2O-bit
prefixes

partitioning
keys

Subtree with
28-bit

28-bit prefixes
portitioning

keys

internos
1 || 1 | x

e.
2-bit

portitioning
KeyS

subtree
with
12-bit
prefixes

US 2002/0152413 A1 Oct. 17, 2002 Sheet 8 of 13 Patent Application Publication

O2

Patent Application Publication Oct. 17, 2002 Sheet 9 of 13 US 2002/0152413 A1

is
to S S
S. 6 S

ESS 66) 3) SS
N O SOS & ES 3.3s

f 1CO sfSy (t a $3S
NY SOS

C lou SRS N

On ku)S s (3) SS
c R. SSS 25 SSS CN

SI SS E S

E S
a SS 3 SS
N 53 S
g SSS
a 3 (3) SS
s (3 S
to S
s SSS
EE (SS
e SS
o
a
-
to SS
to 3

to
es
- 6

9 a 9 s: S.
O O S. S. S. S. c. 75 5 (-) C) (S 9 C 6 S o n Ya - N - O
- A- 5 t t

t t o o C C g

Patent Application Publication Oct. 17, 2002 Sheet 10 of 13 US 2002/0152413 A1

Middle Key

Child Pointer

Closer match Offset
Number of high keys
Number of low keys

LOW Closer motCh
High closer match

COb OW

mid

high

Patent Application Publication Oct. 17, 2002 Sheet 11 of 13 US 2002/0152413 A1

2O 23O

search mid and
high keys to find
gregtest jSO that prefix (key) = k (j)

SeOrch low Keys to
find greatest so

thOt - -

key) = kJ prefix(

Return
N. result (j)

Return
N. result closer

low close
= True2

high closer
= True?

Return
Nenclosing

FIG. 3

Patent Application Publication Oct. 17, 2002 Sheet 12 of 13 US 2002/0152413 A1

N -

O 2 4. 6 8 O 2 14 6 8 2O

NOde Size

FIG. 4

Patent Application Publication Oct. 17, 2002 Sheet 13 of 13 US 2002/0152413 A1

ROOf From To
Pointer Dispatcher Dispotcher

Result
Register

34

3.

US 2002/0152413 A1

PREFX SEARCH CIRCUITRY AND METHOD

RELATED APPLICATIONS

0001. This application is a is a continuation of U.S.
application Ser. No. 09/140,030, filed Aug. 26, 1998, which
is a continuation-in-part of U.S. application Ser. No. 09/104,
314, filed Jun. 25, 1998, which claims benefit of Provisional
Application No. 60/084,434, filed May 6, 1998, the entire
teachings of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002 A prefix search is used in networking to route and
classify packets. The route to be used for a packet and its
classification are determined by finding the longest matching
prefix in a Set. For example a packet using IPv6 (internet
protocol version 6) has a 128-bit destination address. A
router determines the output port over which Such a packet
should be routed by Searching a set of variable-length binary
Strings to find the longest String that matches a prefix of the
destination address. For classification purposes, other fields
of the header, Such as the port number, may also be included
in the String to be matched.
0003) To illustrate the problem of prefix search, consider
the list of prefix character strings shown in FIG. 1 in
alphabetical order. The principle is the same with binary
Strings. Given a Search String, Such as “cacea', the goal is to
find the longest Stored String that exactly matches a prefix of
this String. Although a simple linear Search of the list finds
that this String falls between 'cab' and “cad”, one must Scan
several strings backward from this point to find that the
longest matching prefix is “ca” In actual routing tables,
which may contain hundreds of thousands of entries, the
matching prefix may be far from the point where the linear
Search fails. An optimized data Structure is needed to effi
ciently find the matching prefix.
0004. A prior method for performing longest prefix
matching employs a data Structure called a trie. A trie for the
prefix list of FIG. 1 is shown in FIG. 2. As shown, the trie
is a tree Structure in which each node of the tree resolves one
character of the String being matched. Each internal node
consists of a list of characters. ASSociated with each char
acter is an outgoing link either to another internal node, a
rectangle in the figure, or to a leaf node, a circle in the figure.
A slash at the Start of a node indicates that a prefix leading
to that node with no additional characters is part of the list.
Each leaf node holds the result data associated with the
prefix leading to that leaf node, and in the figure, the leaf
nodes are labeled with these prefixeS. The result data might,
for example, be the output port associated with a data packet
and a flow-identifier.

0005 To search the trie, one starts at the root node, node
1 in the figure, and traverses the tree by following the
outgoing link at each node corresponding to the next char
acter in the String to be matched. When no matching
outgoing link can be found, the longest matching prefix has
been found. For example, given the String “cacea'. We Start
at node 51. The “c” directs us to node 54. The “a” directs us
to node 58. AS we cannot find a match for the next character,
“c”, at node 58, we follow the link associated with the slash
to the leaf node associated with the longest matching prefix,
“ca”. Note that if prefix "ca” were not in the list, we would
need to backtrack at this point to node 54 for prefix “c”.

Oct. 17, 2002

0006 Another prior method for prefix matching is to
perform binary search on a table. However, as described by
Radia Perlman, Interconnections, Bridges and Routers,
Addison Wesley, 1992, pages 233-239, and shown in FIG.
3, Since binary Search will find the closest matching String,
rather than the longest matching prefix, we must make two
modifications to the list to apply this technique. First, we
insert two entries for every entry in the list that encloses
other entries, that is, that would Serve as a longest matching
prefix for another prefix in the list but for the other prefix
itself being in the list. One of those entries is terminated by
the symbol 0, which comes alphabetically before all char
acters, and one by the Symbol 1, which comes alphabetically
after all characters. These two entries act as parentheses
enclosing all entries that contain the prefix. Second, we
attach to each entry in the list not ending in a 0 a pointer to
the nearest enclosing entry. FIG. 3 shows the list of FIG. 1
augmented in this manner. Note that the prefix "ca' has been
replaced by the two entries “ca0” and “ca1” that bracket all
entries containing the prefix "ca' and that all of these entries
have a pointer back to “caO”.
0007 To search the augmented list of FIG. 3 for the
longest matching prefix, one Searches for a String equal to a
prefix of the target or the alphabetically closest pair of
strings. Strings ending in “0” or “1” never exactly match a
prefix of the target string because “0” and “1” do not match
any character of the target String. If the Search finds an exact
prefix of the target String, the result data associated with the
String is retrieved. Otherwise, the Search found the closest
pair of Stored Strings, Sa and Sb. In this case there are three
possibilities:

0008 1. If Sa ends in a “0” symbol, then the longest
matching prefix is this string with the “0” removed.

0009 2. If Sb ends in a “1” symbol, then the longest
matching prefix is this string with the “1” removed.

0010) 3. Otherwise, an enclosing pointer from Sa is
followed to find a string ending in a “0” symbol which
encloses Sa and the nearest match is that string with the “0”
symbol removed.
0011 For example, a search for “cacea' will end between
“cab' and “cad'. Since this is not an exact match, “cab' does
not end in “0”, and “cad” does not end in “1”, the pointer
from “cab' is followed back to “caO” giving the longest
matching prefix, “ca”. Similarly a search for “cb” will end
between “ca1” and “cc” and follow the pointer from “ca1”
back to the common prefix, “c”.

SUMMARY OF THE INVENTION

0012 While the trie structure and binary search strategy
work, they are not well Suited for implementation in a
hardware Search engine. The trie requires a memory access
for every character of a String and possible backtracking if
a match is not found. This makes it inefficient in terms of
memory bandwidth usage. The binary Search Strategy
requires Storing two result pointers for the majority of
prefixes, one for a direct match and one to the enclosing
String or its associated result. This makes it inefficient in
terms of memory usage.
0013 The prior application Ser. No. 09/104,314, filed
Jun. 25, 1998 discloses and claims a data structure, an
augmented tree, that Stores prefix Sets in a manner that

US 2002/0152413 A1

enables efficient Searching and a hardware engine for Search
ing the augmented tree. The augmented tree Stores the prefix
Set with enclosing prefixes in a tree Structure Similar to a
B-tree, a tree with a radix greater than one previously used
to efficiently Search for exact matches by optimizing the tree
node size to the size of data blocks retrieved from Storage
discs. The prefix Search data structure comprises a tree
Structure having internal nodes for identifying Subsequent
nodes from prefix Search keys. Leaf nodes each comprise a
Set of prefix keys to be compared to a prefix Search key. The
Sets of prefix keys of plural leaf nodes together form a list
of prefix keys including enclosing prefix key pairs.

0.014. In accordance with the present invention, prefix
Search circuitry is provided on an integrated circuit. A
plurality of prefix Search engines are provided on the inte
grated circuit, each engine performing a prefix Search of a
prefix Search data Structure based on a prefix Search key.
0.015 Preferably, prefix search keys embedded in input
packet descriptors are distributed from an input queue over
an internal network to the plural Search engines and the
results of the prefix Searches are forwarded to an output
queue. At the output queue, the Search results are ordered in
the same order that the corresponding input packet descrip
tors arrived at the input queue. The internal network may
include an input bus from the input queue to the Search
engines and an output bus from the engines to the output
Gueue.

0016 Preferably, the search engines on the integrated
circuit are associated with an array of memory units, each
unit dedicated to a Search engine within the integrated
circuit. Each Search engine reads data in bursts over inte
grated circuit data pins dedicated to the Search engine, and
each Search engine addresses a memory unit over integrated
circuit pins shared with another Search engine. Preferably,
each memory unit is a Synchronous dynamic random acceSS
memory (SDRAM) which comprises plural banks of
memory cells, and a prefix Search tree data Structure is Stored
acroSS the plural banks to provide access to the tree Structure
in Successive read cycles. Internal nodes of the tree Structure
are duplicated acroSS plural banks, and leaf nodes are
interleaved acroSS plural bankS.
0.017. The preferred prefix search engine comprises a data
register which receives data of a tree Structure from memory,
a Search key register, a comparator and an address calculator.
The comparer compares a Search key in the Search key
register with data from the data register, and the address
calculator calculates memory addresses based on the com
parator output to read the data from memory into the data
register.

BRIEF DESCRIPTION OF THE DRAWINGS

0.018. The foregoing and other objects, features and
advantages of the invention will be apparent from the
following more particular description of preferred embodi
ments of the invention, as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to Scale, emphasis instead being placed upon
illustrating the principles of the invention.

0019 FIG. 1 is a list of prefixes used to illustrate the
invention.

Oct. 17, 2002

0020 FIG. 2 is a prior art trie used to search prefixes.
0021 FIG. 3 is the prefix list of FIG. 1 modified to
include enclosing prefixes and pointers in accordance with
another prior art approach.

0022 FIGS. 4a and 4b illustrate a tree data structure
embodying the present invention.

0023 FIG. 5 is a flow chart of the search method using
the tree of FIGS. 4a and 4b.

0024 FIG. 6 is an alternative tree having both partition
ing nodes and table nodes in accordance with the invention.
0025 FIG. 7 is a block diagram of a hardware search
engine used to implement the prefix Search of the present
invention.

0026 FIG. 8 is a timing diagram illustrating access of
data from a single SDRAM bank of FIG. 7.
0027 FIG. 9 illustrates the alternating access of data
from two banks of an SDRAM chip.
0028 FIG. 10 is a timing diagram illustrating shows a
timing diagram for two Search engines axing their respective
two blanks of SDRAM memory over a common set of
address and control lines.

0029 FIG. 11 illustrates the orientation of data within a
node to store the middle key before low keys and high to
improve performance.

0030 FIG. 12 illustrates a leaf node in an alternative
embodiment.

0031 FIG. 13 is a flow chart for processing a leaf node
as illustrated in FIG. 12.

0032 FIG. 14 is a graph of search time as a function of
node size.

0033 FIG. 15 is a block diagram of a search engine for
processing a Search algorithm including the process of FIG.
13 in the system of FIG. 7.

DETAILED DESCRIPTION OF THE
INVENTION

0034 FIGS. 4a and 4b show an augmented tree for the
prefix list of FIG. 1 modified to include the same enclosing
prefixes as in FIG. 3. This particular augmented tree has a
Single internal node, node 1, which is also the root node for
the tree. It has four leaf nodes, labeled 2-5. Each node holds
a Set of prefixes, which we shall also call keys in the
discussion to follow. Each internal node, Such as node 1,
holds the Set of keys that divide the key Space acroSS its
children. A suitable set of keys is the alphabetically lowest
key in each subtree except the first. Each child node holds
a contiguous Set of keys from the complete key list. To
facilitate acceSS by a hardware engine, as described below,
the keys in each node, internal or leaf, are Stored in three
parts. The middle key is stored first, followed by a set of
keys that are all less (in alphabetical order) than the middle
key (the low keys). The low keys are in turn followed by the
high keys, a set of keys that follow the middle key. While the
example shows a total of three keys in the one internal node
and five keys in each leaf node, larger nodes are preferable
to optimize memory bandwidth. In the preferred embodi

US 2002/0152413 A1

ment, each node holds 1 to 16 keys including one middle
key, Zero or more low keys, and Zero to Seven high keys.
0035. The structure is best understood by means of an
example. Consider Searching for the Search key “cacea'
using the augmented tree of FIGS. 4a and 4b. The search
begins at the root node (labeled 1). This node contains Some
parameters, a Single child pointer, and a set of dividing keys
partitioned into three Sets as described above. The param
eters encode the size of the node and its children. They
include the number of low keys (one in this example), the
number of high keys (one), and the size of each child node
(x bytes). The child pointer, p, identifies a block of memory
that holds contiguous child nodes of uniform size. The
pointer directly identifies the first child node. Subsequent
child nodes are found by indexing off of this pointer after
scaling by the child node size. Simplistically, the ith child
node is located at (p+ix). (Keys in a node are numbered 1
. . . k as are results associated with a leaf node's keyS.
Children of an internal node are numbered 0 . . . k.).
0036). In the preferred embodiment, the augmented tree is
stored in dynamic random access memory (DRAM) which
permits rapid access within a memory “row” of 512 bytes.
Nodes are up to 64 bytes in size, an internal node has one to
16 children, and the “contiguous’ children Start on any
64-byte boundary. Therefore the children of one internal
node may occupy parts of one to three DRAM rows. In order
to read any parts of a node quickly, each node is confined to
one DRAM row. To achieve this, the ith child of an internal
node is Stored at (p+ix--r) where, for the Second and third
rows, r accounts for wasted space at the ends of one and two
DRAM rows, respectively, containing lower-numbered chil
dren of the same internal node.

0037. The child node to be accessed is determined by
comparing the Search key to the entries Stored in the internal
node. The key, in this case “cacea, is first compared to the
middle key, “bcc1" in this example, and Since it is lexico
graphically larger than this key, it is then compared against
the high keys, “caaf in the example. AS the Search key is
greater than all of the keys in the internal node, the last child
(index i=3) is selected and the Search proceeds to this child,
labeled 5.

0038 Node 5 is a leaf node. The sets of prefix keys of
plural leaf nodes together form a list of prefix keys including
enclosing prefix key pairs. A leaf node could return the
longest matching prefix from which the output port and flow
identifier, for example, could then be determined. Prefer
ably, however, the leaf nodes comprise result pointers which
directly point to the desired output port and/or flow identifier
asSociated with the longest matching prefix. Such data could
also be stored directly in the leaf nodes, but in view of
varying lengths of results and sharing of results, pointers
result in more efficient Storage of data.
0.039 Leaf node 5 contains parameters, a result block
pointer, an enclosing result pointer, and a list of keys divided
into three sets. The parameters include the number of low
keys (3) and the number of high keys (3). At this node, the
Search key is again compared to the Stored keys. AS the key
“cacea' is less than the middle key of this node, “ca1, it is
compared against the low keys and it is found to fall between
keys “cab” and “cad'. Since no exact match is found, the
Search must now Scan for the longest enclosing prefix. If the
keys are Stored in alphabetical order, this is accomplished by

Oct. 17, 2002

Scanning backwards through the keys in this node, Starting
at “cab', to look for the nearest Start or end key, a String
ending in “0” or “1.” As no such prefix is found in the node,
the enclosing result pointer is followed to find the result
record for the enclosing prefix for the block, “ca”. Following
this pointer directly gives the result associated with key
“ca”, r(ca).
0040. If the search ends at or just after a key that is a
prefix of the Search key (that is, the Search ends between a
matching prefix and the next prefix key), that key is the
longest matching prefix, and the result is identified using the
result block pointer. If we search the structure of FIGS. 4a
and 4b for the search key “cadam”, the search would
proceed as above except for the final Step. Once key “cad’
is found as the third key associated with node 5 and
determined to be a prefix of “cadam”, the result block
pointer is followed to result block 9 and the third result
(corresponding to the third key) is retrieved giving r(cad).
0041) If, in scanning backwards, the search ends in a start
or end key, the result is identified using the result block
pointer. A Start key, a String ending in a 0, is the enclosing
key for the prefix being Searched and points to the result for
that enclosing key. On the other hand, if the Scan backwards
identifies an end key, a String ending in a 1, that key will not
be an enclosing key for the Search key but it does point to
the result for that key’s enclosing prefix.
0042 A flow-chart of the augmented tree search method
is shown in FIG. 5. The method starts at decision box 100
with variable “N” equal to the root node of the augmented
tree and variable "key' equal to the key being Searched for.
AS long as N is an internal node, the Search proceeds down
the left side of the figure (boxes 101 to 104) to identify the
child node to Search next by comparing against the parti
tioning keys stored in node N, k1 ... kn). Box 101 checks
if “key” is less than all of these stored keys. In this case the
child pointer is followed directly (box 102) to find the first
child and the search continues from point Abefore box 100.
If “key” is greater than k1), the key list is scanned to find
the last key, k), less than or equal to “key” (box 103). The
index of this key, j, is used to compute the address of the i-th
child node in box 104 and the search continues from point
A.

0043. After traversing a number of internal nodes, the
search eventually arrives at a leaf node (like node 5 in FIGS.
4a and 4b) and the Search proceeds down the right side of
FIG. 5 (boxes 105 to 114). There are three possible ways in
which the longest prefix matching the Search key can be
found corresponding to boxes 107, 110, and 111. First, box
105 scans the stored keys to find the last key, k, less than
or equal to the search key, “key.” Box 106 checks if k is
a prefix of key and, if So, the corresponding result is returned
in box 107. This path is followed, for example, in the search
for “cadam” in the augmented tree of FIGS. 4a and 4b as
described above.

0044) If not, the keysk. . . k1 are scanned for a prefix
Start key or end key, that is a key ending in the Symbol 0 or
the symbol 1, respectively. Box 109 checks if such a key,
km, j>=m>=1, is found. If So, the corresponding result is
returned in box 110. This path is followed, for example, if
we search the augmented tree of FIGS. 4a and 4b for the
search key “baz”. The search terminates on leaf node 2 with
j=6 and k="bae'. Scanning backward finds the prefix start

US 2002/0152413 A1

key km="b0” with m=5. The fifth entry of the result block
(6), r(b), is thus returned. The path to box 110 is also
followed if a prefix end key (ending in the symbol 1) is
found during the backward Scan. For example, Suppose we
search for key “cd” in the augmented tree of FIGS. 4a and
4b. The search will terminate on leaf node 5 with j=5 and
k="cc'. Scanning backward we encounter km="ca1 at
m=5. ASSociated with each prefix end key is the result not for
that key but for that key’s enclosing prefix. In this case, the
result for enclosing prefix "c', r(c), is associated with “ca1
and is returned from this search. We know that the longest
prefix enclosing “ca' is the same as the longest prefix
enclosing the Search key because “ca1 and the Search key
are between the same bounding Start and end keys or
parentheses. If there were a prefix that enclosed “ca” but not
the Search key, we would have encountered the end key of
that prefix in our backward Scan.
0.045. If k is not a prefix of the search key and we find
no prefix start or end keys between k and k1, then the
Search proceeds to box 111 and the enclosing result for the
node is returned. This path is followed, for example, in the
search for “cacea' in the augmented tree of FIGS. 4a and 4b
as described above. By building the augmented tree So that
the enclosing pointer of each node points to the result for the
enclosing prefix of the first key of the node, we bound the
number of keys we must Scan to find an enclosing prefix to
the contents of a single node.
0046 Root Tables and Bit Stripping
0047. With very long keys, e.g. 64-bits, the amount of
Storage required to hold the augmented tree is Significant. An
augmented tree with 300,000 prefixes of 64-bit keys, for
example may contain up to 19 million bits of Storage. The
actual number will be Smaller as most prefixes do not
contain the full 64 bits. The storage requirements for the
augmented tree can be reduced by Starting the Search by
indexing a table using the most significant Several bits of the
Search key and then discarding these bits. The table lookup
returns a pointer to the root node of an augmented tree
holding Stored keys beginning with those bits. AS all entries
in the tree have the same most significant bits, these bits can
be omitted from the Stored keys resulting in considerable
storage savings. For our example 300,000 key tree, a table
of 4096 20-bit root node pointers (to be indexed with the
most significant 12-bits of the Search key) takes about
80,000 bits. Removing the 12 most significant bits from all
300,000 stored keys saves 3.6 million bits.
0.048. This approach of stripping a common prefix off of
all Stored prefixes in a Subtree to Save Space can be applied
independently of the use of root tables. Any internal node of
an augmented tree that roots a Subtree for which all Stored
prefixes share a common prefix can apply this method.

0049 Similarly, the use of tables is not restricted to the
root of a tree. At any point in the tree Structure where it
would be advantageous to index on a prefix of the Search key
rather than to compare the Search key against partitioning
keys, a table node can be inserted in place of an internal tree
node.

0050 FIG. 6 illustrates the use of a root table and the use
of prefix Stripping both in conjunction with the table and
with normal augmented tree internal nodes. The figure
shows five tree nodes, labeled 20-24, forming the upper

Oct. 17, 2002

portion of the tree. The lower portions of the tree and all of
the leaf nodes are not shown. Each of the tree nodes is
tagged with its type: “table' or “internal'. A leaf node would
be tagged with type “leaf. A root pointer identifies the root
node, which in this case is a table node (20). The search tree
in the figure is configured for use with 32-bit Search keys.
0051 Table node 20 includes its tag, two parameters, and
a table of pointers to Subtrees. The two parameters indicate
the number of bits from the Search key to use in indexing the
table (12), and the number of bits from the search key to
discard before indexing (0). The remainder of the node
contains the table which is of size 2 where k is the first
parameter. Thus, the table portion of node 20 contains
2' =4096 entries. For clarity only four of these entries are
shown in the figure.
0.052 The first of these entries, at index OFE (hexadeci
mal), holds a null pointer, denoted by the Slash. It is not
unusual for many of the entries in a root table to be empty
(no stored prefixes start with the index of that table entry).
These empty entries are marked by Storing a null pointer. If
almost all of the entries in a table are empty, it may be more
efficient to replace the table node with a partitioning internal
node Since partitioning nodes do not consume any space
representing null entries.
0053. The second entry shown in the table, at index 1 AC
(hexadecimal), points to internal node 21 that roots a Subtree
where all of the stored prefixes start with the prefix 1 AC.
Thus each Stored prefix can be shortened by discarding these
common 12 bits. The internal node format is as described in
conjunction with FIGS. 4a and 4b above with two additions.
First, the node is tagged with its type, "internal’ to distin
guish it from “table' nodes and “leaf nodes. Second, a
parameter is added (12) indicating the number of bits to Strip
from the Search key before comparing the key against the
partitioning prefixes Stored in the node. If our Search key is
hexadecimal 1AC27EF4, for example, this node directs us to
Strip the most significant 12-bits (1AC) before Searching this
node and its associated Subtree with the remaining 20-bit
key, 27EF4.
0054. In some cases, a prefix stored in an augmented tree
is shorter than the indeX used to indeX a table node in the
tree. This situation is handled as illustrated by the third entry
shown in the table. In this case, the prefix "3” is stored in the
augmented tree. To encode this in the table, all indexes
Starting with 3 (hexadecimal) hold pointers to internal node
22. This causes any search with a key beginning with “3’ to
proceed to node 22. Node 22 in turn specifies that only 4-bits
are to be stripped off the search key. This allows the search
proceeding from this point to distinguish keys Starting with
prefixes "3a' and “3b' for example. While this causes
internal node 22 to use more Storage, to hold 28-bit keys, the
keys can be compressed at the next level of the tree by
Specifying that additional bits are to be discarded before
Searching that level. AS with null entries, duplicate entries in
a table waste Space, and in cases where there are many short
prefixes, replacing the table node with an internal node may
result in a more efficient representation.
0055. The final entry shown in node 20 of FIG. 6
illustrates the case where a table entry points to another table
node. In this case, index 57F (hexadecimal) directs the
search to table node 23. The parameters in node 23 direct
that 12-bits (the prefix 57F) be stripped from the search key,

US 2002/0152413 A1

and that the next 8-bits be used to index the table. For
example, if the search key is 57F1A1DE, the top 12-bits are
first stripped, leaving 1A1DE. The next 8-bits, 1A (hex), are
then used to index the table. The resulting pointer directs the
search to internal node 24 where these 8-bits are then
Stripped, leaving the Search to continue with the remaining
12-bits, 1 DE (hex).
0056. One skilled in the art will understand that the
possibilities for arranging augmented trees using table
nodes, internal nodes and bit Stripping extend beyond the
Simple example presented here. In general, an augmented
tree may be arranged with any combination of table nodes
and internal nodes, and one or more bits may be discarded
from the Search key at each node along a Search path. By
optimizing the combination of node types and bit Stripping,
the resulting tree can be made to consume considerably leSS
Storage than if all nodes were internal nodes and all prefixes
were stored full length.
0057. An augmented tree can be constructed using well
known techniques for constructing B-Trees. For example,
the method described in Cormen, LeiserSon, and Rivest,
Introduction to Algorithms, 1990, pp. 38.1-399 for incre
mentally constructing a B-Tree by inserting one node at a
time into an empty tree may be employed. Alternatively, one
can construct an augmented tree directly from a list of
prefixes augmented with parentheses, Such as the list shown
in FIG. 3. This is accomplished by segmenting the list into
fixed sized blocks that become the leaf nodes of the tree. A
new list is then constructed comprising the first prefix of
each node except of the first node. This list is then Seg
mented into fixed size blocks that form a rank of internal
nodes in the tree. The process, making a list from the first
prefix of a set of nodes and constructing a new set of nodes
by Segmenting this list, is then repeated until the list fits into
a single node. For example, the leaves of the tree of FIGS.
4a and 4b are constructed from the list of FIG. 3 by
Segmenting the list into blocks of 7 prefixes. Each 7-prefix
block becomes one leaf node of the tree. The first prefix of
each block except the first block is then extracted and used
to construct a new prefix list that fits entirely into the one
internal node of FIGS. 4a and 4b.

0.058 Hardware Search
0059. In the past, prefix search algorithms for packet
header processing have been executed in Software running
on a conventional processor. At the very high packet rates
required for internet backbone routing, however, (about 5M
packets/sec), Software searching is too slow to keep up. To
operate at these Speeds, a hardware prefix Search engine is
required.
0060 A block diagram of a hardware search engine is
shown in FIG. 7. The search ASIC (30) accepts input packet
descriptors, the packet header plus auxiliary information.
For each input packet descriptor, the ASIC performs a prefix
Search to route and classify the packet, appends this infor
mation to the packet descriptor and outputs the augmented
descriptor. AS Shown in the figure, the ASIC comprises an
input packet descriptor queue (31), an output packet descrip
tor queue (32), and a plurality of Search engines (35).
Multiple Search engines are required to meet the high packet
throughput requirements of backbone routing. A Single
Search engine cannot keep up with this rate.
0061. In the preferred embodiment there are six search
engines. However one skilled in the art will understand that

Oct. 17, 2002

any number of Search engines can be employed. Packet
descriptors arriving at the Search ASIC are queued in the
input queue (31). When a Search engine becomes idle, it is
dispatched to handle one of the waiting descriptors over
distribution bus (33). When a search is completed, the
augmented descriptor is enqueued in the output queue Via
output bus (34).
0062 Packet descriptors are tagged with their location in
the input queue to maintain packet ordering in the prefix
Search process. When a Search engine reads a packet
descriptor from the input queue, it records the descriptor's
location in the input queue. When the Search is complete, the
descriptor, appended with Search results, is Stored in the
identical location in the output queue. The output queue is
read in order, waiting until each Successive location is filled,
thus maintaining packet order even though the Search pro
ceSSes may finish out of order.
0063. The augmented tree search structure requires large
amounts of memory and is too large to be Stored on the
search ASIC. It must be stored in off-chip memory. In the
preferred embodiment, a separate copy of the Search Struc
ture is Stored in a separate Synchronous dynamic random
access memory (SDRAM) for each search engine. For six
Search engines there are Six SDRAM chips each holding a
complete copy of the augmented tree. One skilled in the art
will understand that it is also possible to interleave a single
copy across the SDRAM chips or to interleave a smaller
number of duplicate copies. In the preferred embodiment,
each SDRAM is a single 64Mb (4Mx16) chip.
0064. To economize on ASIC package pins, the search
engines are organized into pairs and each pair of Search
engines shares a set of address and control pins (except chip
Selects) (36). This set of pins is in turn connected to the pair
of SDRAMs associated with the pair of search engines. As
data bandwidth is critical, each Search engine and its cor
responding SDRAM exchange data over a dedicated 16-bit
data bus (37). This bus is used primarily for reading during
Search operations. However it is also used to write to the
SDRAM when initializing the augmented tree structures and
when broadcasting updates to the Search tree across the
SDRAMS.

0065. Each SDRAM chip contains a plurality of memory
banks. In the preferred embodiment there are two banks,
denoted A (39) and B (40). This banked structure permits
data to be read from one bank while the other bank is being
precharged or addressed. To optimize bandwidth, the pre
ferred embodiment Stores a copy of all internal nodes of the
augmented tree in both banks. This permits rapid access
during most of the Search, the traversal of internal nodes. To
optimize Storage, the leaf nodes are not duplicated, but
rather are interleaved across the two bankS.

0066. The timing of a typical access to an SDRAM chip
is shown in FIG.8. The figure shows time, in cycles, across
the top. The value of the Signals on the address/control or
data lines, if any, during a particular cycle are shown below.
The address of the location being referenced is divided into
two parts, the high-order bits form a row address and the
low-order bits form a column address. These two compo
nents are used in turn to address the row and column of the
two-dimensional memory array on the SDRAM chip. As
shown in the figure, the Search engine presents the row
address (RA) to the chip on the address/control lines during

US 2002/0152413 A1

cycle 1. The Search engine then waits four cycles while the
SDRAM fetches the requested row of memory. The column
address (CA) is then presented during cycle 5. Another four
cycles elapse while the SDRAM extracts this column from
the previously fetched row. Starting in cycle 9, the SDRAM
sends a burst of 20-bytes of data, two bytes per cycle over
the data lines. The first two bytes (D0) are sent in cycle 9,
then next two (D1) are sent in cycle 10, and so on. One cycle
before the end of the burst, in cycle 17, the search engine
sends a request to precharge the Selected bank (PA), in this
case bank A, to the SDRAM. Four cycles later, the bank is
precharged and able to accept another row address in cycle
21.

0067 Transferring two consecutive bursts of data from a
single SDRAM bank, as shown in FIG. 8, is rather ineffi
cient because the data lines remain idle while the bank is
precharged and addressed. In this example, the data lines
have a duty factor of 50% (busy 10 cycles of 20). FIG. 9
shows how a transfer efficiency of 100% can be achieved by
alternating accesses to the two banks on the SDRAM chip.
The Signals shown in italics in the lighter-shaded boxes are
directed to bank B. During cycles 11 and 15, while the data
from bank A is being transferred, bank B is being addressed.
Thus, during cycle 19, after the data burst from bank A is
complete, the transfer from bank B begins. By alternating
accesses to banks A and B in turn, the data pins are used
every cycle maintaining maximum bandwidth.
0068. During most of the augmented tree search, the
Search engine is accessing internal nodes. Because these
nodes are stored in both banks of the SDRAM, the search
engine is always able to find the node that it needs to acceSS
next while alternating banks. At the end of the Search, the
Search engine accesses a leaf node that is Stored in only one
bank. At this point, the search engine may idle the SDRAM
pins if, for example, the current access is directed to bank A
and the required leaf node is Stored only in bank A. How
ever, this overhead is not Severe because a leaf node is
accessed only once during each Search.
0069. To avoid idling the memory when a search task
must read two blocks of data from the same bank in
Successive accesses, each Search engine in the preferred
embodiment operates two instances of the Search algorithm
(two search tasks). The two tasks normally alternate their
accesses to the memory. Thus each task normally is able to
examine the data coming back from one node before pro
Viding the row address for its next read. Also, if one task
must momentarily idle because it must make two Successive
accesses to the same bank, the other task may be able to use
the idle time productively.
0070 The address and control lines are only lightly
utilized in the timing diagram of FIG. 9. This low duty
factor can be exploited to reduce pin count on the prefix
Search ASIC by having two Search engines share a single Set
of address and control pins as shown in FIG. 7. The two
search engines each communicate with their own SDRAM
chip over a common Set of address and control lines by
multiplexing their row access, column access, and precharge
requests on these lines. Dedicated chip select lines (not
shown in FIG. 7) are used to indicate the SDRAM to which
the request is targeted.
0071. The timing of this multiplexing is shown in FIG.
10. Search engine 1 places its requests on the shared address

Oct. 17, 2002

and control lines during odd cycles (1, 5, 11, ...) and Search
engine 2 places its requests on the control lines during even
cycles (2, 6, 12, . . .). This guarantees that there is never a
conflict over access to the lines. The two Search engines
transfer their data over Separate dedicated data buses as
shown.

0072 One skilled in the art will understand that alterna
tive SDRAM timing schemes are possible. For example, one
can vary the number of cycles between the Steps of pre
charge, row access, column access, and data transfer. Also,
one can transfer more or fewer bytes of data during each
burst. A designer will optimize the timing and the transfer
Size for a particular implementation.

0073. By arranging the storage of nodes in memory so
that the middle partitioning key is Stored first, as illustrated
in FIG. 11, the performance of the search engine can be
further enhanced. With the arrangement, the Search engine
reads the middle key, along with parameters and other
overhead information on its first access to the node. Based
on a comparison of the Search key to the middle key, it then
reads either the low keys or the high keys on its Second
access, but not both. Compared to the conventional approach
of reading the entire node from memory on each access, this
method results in a significant performance improvement.

0074 The timing of a middle-key-first node read can be
understood in conjunction with FIGS. 9 and 11. Each row
of FIG. 11 corresponds to two bytes of data, the amount
transferred by the Search engine in one cycle. The Search
engine starts reading data from the beginning of the node
record in cycle 9 of FIG. 9. In cycle 9 it reads two parameter
bytes. These parameters, Stored ahead of the middle key, are
those required to interpret the middle key, Such as the
number of bits to strip before comparison and the size of the
middle key, and those required to locate the Start of the high
and low key blocks, Such as the type of node, total Space for
low keys, and the number of low keys. In cycles 10-11, the
search engine reads the 4 bytes of the middle key. Other
parameter information, Such as the Size and number of the
high keys and the size of each child (for internal nodes)
along with the child pointer and result pointer (for leaf
nodes) is then read during cycles 12-18. If there is not
Sufficient parameter and pointer information to fill all of
these cycles, the Search engine Speculatively starts reading
low keys. In parallel with reading the parameters and
pointers, in cycles 12-14, the Search engine compares the
Search key with the middle key and, depending on the result,
calculates the address for either the low keys or the high
keys. This calculated address is used to modify the column
address for bank B that is output in cycle 15. Based on this
address, the Search engine then reads just the low keys, or
just the high keys from bank B in cycles 21-30.

0075 AS described earlier, the preferred embodiment
Stores a copy of all internal nodes of the augmented tree in
both banks A and B, while leaf nodes are stored only once
to conserve memory Space. Also, the preferred embodiment
alternates reading nodes for two instances of the Search
algorithm. By the latter property, the Search engine would
know in advance that it will read a leaf node from bank B
upon finishing the current internal node. In that case, the
sequence in FIG. 9 can be adjusted to eliminate idle
SDRAM data cycles due to successive accesses to bank B.
The Second row address, RB in cycle 11, is Suppressed, as

US 2002/0152413 A1

is the first precharge, PA in cycle 17. The second column
address, CB in cycle 15, is directed to bank A instead, as is
the second precharge, PB in cycle 27. Thus an internal node
can be processed using either one SDRAM bank or two, and
the search engine can prepare either SDRAM bank to read
the following leaf node without any idle cycles.

0.076 Optimizing the structure of the node and the search
tree to match the latency and burst-access size of the
memory can be generalized. For example, one could divide
the low keys into two parts and store the middle low key
first. These parts could in turn be subdivided and so on. Also,
the choice of the overall size of each node, which trades off
the depth of the tree, and hence the number of accesses
required, against the size of each node, and hence the
amount of data transferred on each access, can be optimized
to match the timing characteristics of the memory device.
With different memory timing the node size and organiza
tion may be optimized differently than presented here for the
preferred embodiment.

0077 One skilled in the art will understand that the size
of an augmented tree node should be set to a size determined
by the timing parameters of the tree memory to optimize
DRAM bandwidth and hence search time. Two parameters,
t, and t characterize the memory timing. The first param
eter, t, is the time required to access the first word of a node
from the first address cycle, 8 cycles in FIGS. 8-10. The
Second parameter, t, is the time to reference each Subse
quent word, 1 cycle in FIGS. 8-10. Given these parameters,
the time to reference N words can be calculated as t(N)=
t+(N-1)t.
0078. As the node size, N, gets larger, the time to access
each node increases according to the formula above. This
increased access time is offset, however, because the number
of nodes that must be accessed to complete the Search
decreases with node size. This number is given by d(N.M)=
log(M)/log(N) where M is the size of the tree. The total
search time is the product of these two formula T(N)=
log(M)(t+(N-1)t)/log(N). We can ignore the log(M) term
as it is independent of node size and focus on the remaining
component of search time, T1(N)=(t+(N-1)t)/log(N). By
Solving this equation for the value of N that gives a mini
mum T1(N), we can optimize the node size for a given set
of memory timing parameters.

007.9 For example, the graph of FIG. 14 shows how
Search time, T1, varies as the node size is varied from 2 to
20 keys with the DRAM timings shown in FIGS. 8-10. The
figure shows that the optimum node size for these timing
parameters is 8 words. The figure also shows that there is a
Steep penalty for Smaller node sizes but a more gradual
penalty for using node sizes that are larger than optimal.

0080. Alternative Data Structure
0081. In an alternate embodiment of the invention, the
leaf node is organized as shown in FIG. 12 and searched
using the algorithm shown in the flowchart of FIG. 13. The
modifications of this embodiment allow the longest match
ing prefix to be determined during the Single forward Scan to
a point within the node where the Search key is greater than
or equal to the prefix key Stored in the node; that is, the
backwards scan of FIG. 5 is not required. Further, this
embodiment only requires Scan of either the high or low
keys within a node.

Oct. 17, 2002

0082 Processing with only a forward scan is obtained by
ordering the closing prefixes within a high or low Set without
considering the trailing 1. The node within which a closing
prefix resides and the high or low set of prefixes in which it
resides remain determined by order with the trailing 1
considered; it is only the order within the high or low set
which changes. As a result, within a high or low set of
prefixes, a matching closing prefix will be noted in forward
Scan before locating any longer matching prefix. Any clos
ing prefix will be reached from within the closing parenthe
sis, So the closing prefix can point directly to the result for
that prefix.
0083. With only one of the high and low sets of prefixes
Searched, the System must account for the possibility that a
Search prefix, which falls within the range of low prefixes,
does not match any of those low prefixes but is within a
parenthetical having its closing prefix in the high Set. On the
other hand, a Search prefix within the range of the high
prefixes, but not matching any of those prefixes, may be
within a parenthetical having an opening prefix in the low
Set. In either case, the enclosing prefix defined by the
enclosing pointer would not be the closest matching enclos
ing prefix. In this embodiment, the leaf node is augmented
with three fields that facilitate finding the closest matching
prefix without Scanning all of the prefixes in a node. The
binary field, “high closer match,” if true indicates that the
node contains a longer (hence closer) enclosing prefix for
the high keys in the node than the prefix corresponding to the
enclosing result pointer. The “low closer match” field per
forms an identical function for the low keys. If one of these
two binary fields is true, the location of the closer matching
prefix is encoded in the “closer match offset” field as an
offset from the first key in the node.
0084. At most one of these two fields may be true in any
given leaf node. If the low is true, there must be a closing
parenthetical in the high Set for which no opening paren
thetical is found in the low Set, and if the high is true, there
must be an opening parenthetical in the low Set for which the
closing parenthetical is outside the node. Both cases being
true would violate the requirement that parentheticals be
nested.

0085 Specifically, enclosing keys are handled differently
in the embodiment of FIG. 12 than in the embodiment of
FIGS. 4a and 4b.

0086 1. The result pointer associated with a closing
parenthesis prefix, one ending in 1 in the figure,
points to the result for that prefix, not for an enclos
ing prefix as in FIGS. 3, 4a and 4b. For example, the
result for ca1 is the result for the prefix ca, not the
result for the prefix c.

0087 2. Within a list of high keys or a list of low
keys enclosing prefixes are ordered by their prefix
without considering the trailing 1 or 0. (The 1s in
FIG. 12 are enclosed in brackets to indicate that they
are not used in ordering the keys in the list). If both
parentheses are in one Such list, they would be
adjacent in the ordering and one may be discarded as
redundant.

0088. The flow chart of FIG. 13 shows the algorithm for
Searching a leaf node augmented with closest match infor
mation as in FIG. 12. The flow chart is best understood by

US 2002/0152413 A1

means of an example. Consider, for instance, Searching the
leaf node of FIG. 12 for the key “cac.” The procedure starts
at box 201 where the key, “cac,” is compared to mid, the
middle key stored in the node, “cadd.” As “cac' is lexico
graphically less than “cadd” the search proceeds to box 210
to search the low keys. In box 210 the low keys are searched
to find the last low key, k, that is a prefix of the Search key.
In performing this Search, the trailing 1 or 0 of an enclosing
prefix is ignored. Because the keys are Sorted in lexico
graphical order ignoring the trailing 1S and OS, the last key
that matches a prefix of the Search key is the longest
matching prefix. The results of this Search are checked in
box 211 to see if a matching prefix was found. If a prefix is
found, it is the longest matching prefix, and the result
associated with this prefix is returned in box 212. If no
matching prefix was found in box 210, which is the case
when the key is “cac,” the search proceeds to box 212.

0089 Box 212 uses the new fields of the leaf node to
check for a closer match elsewhere in the node without the
need to Scan the rest of the node. The box checks the value
of the “low closer match” field in the augmented leaf node.
If this field is false there is no closer match within the node
so the search proceeds to box 223 to return the result
asSociated with the enclosing pointer. If this field is true,
then there is a closer match in the node and the Search
proceeds to box 222 where the result associated with this
match is returned. In our example, where we are Searching
for a prefix of the key “cac” in the leaf node of FIG. 12, the
“low closer match” field is true so the search proceeds to box
222. In this box, the value of the "closer match offset field,
5 (abbreviated “closer” in FIG. 13) is used to find the closest
matching prefix at an offset of 5 keys after the first key in the
node. This corresponds to the closing parenthesis of the
prefix, “ca,” Stored in the Sixth position, So the result
asSociated with “ca' is returned. This closing prefix must be
a prefix for all unmatched prefixes within the low set of
prefixes because closing prefixes are by definition matching
prefixes of all prefixes between the opening and closing
parentheticals, and if any prefix were outside the parentheti
cals in the low Set, the opening parenthetical would have
been encountered and returned a result.

0090 FIG. 15 shows a block diagram of a search engine
for executing the alternate search algorithm of FIG. 5 with
FIG. 13 Substituted for the leaf node processing. The engine
consists of a set of registers, 310-314, to hold the state of the
Search, a comparator 303, control logic 302, address calcu
lation logic 301, and an address multiplexer 304. The search
is initiated by loading the address register with the address
of the root node of the augmented tree and loading the key
register with the Search key. The control logic then presents
the root address to the SDRAM and starts an access
Sequence to read a burst of data as illustrated in the timing
diagram of FIG.8. When the data returns from the off-chip
SDRAM, it is clocked into a data register. From this register
the data is routed to the appropriate location depending on
its type. The parameter fields at the Start of the node are
latched into the parameter register where they are used by
the control logic to direct the Search. Stored key fields are
routed to the comparator where they are compared against
the search key 16-bits at a time. Note that while the key
register is large enough to accommodate the longest possible
Search key, it is accessed 16-bits at a time to facilitate
comparison with the 16-bit wide data Stream returning from

Oct. 17, 2002

the SDRAM. Finally, when the search is complete, the result
data is routed to the result register from which it is placed in
the output FIFO.
0091) When key fields of an internal or leaf node are
being read from the SDRAM, the comparator performs a
masked compare to compare just the bits of the Stored prefix
key to the Search key. Masking is required because the
variable length prefixes within the node may not be aligned
to a 16-bit boundary and thus only part of the 16-bit word
read from memory may contain the Stored prefix. The
remaining bits must be masked from the comparison. The
results of the comparison are passed to the control logic to
direct the Search.

0092. During the traversal of internal nodes, the com
parison result determines the index of the child node, j in
FIG. 5, that is to be visited next. This information is passed
from the control logic to the address calculation logic where
it is used to compute the address of the next node to visit
according to the equation in Box 104 of FIG. 5. The address
calculation logic consists of an adder, Some multiplexers,
and a lookup table to compute the value of r, the DRAM
page roundoff factor.
0093. When the search reaches a leaf node, the control
logic carries out the algorithm of FIG. 13. As with an
internal node, the parameters including the enclosing result
and first result pointers, are first loaded into the parameter
register. Next, as the middle key is read, it is compared (16
bits at a time) to the Search key. The result of this compari
Son, along with the parameter values is used in an address
calculation to determine whether to read the high or low
keys and where to find them in the SDRAM. Finally, the
Scan of the high or low keys determines a prefix index, j, and
an indication of whether a matching prefix was found. If the
prefix was found, the address calculation logic computes the
address for the result according to box 221 of FIG. 13.
Otherwise the address calculation logic returns the closer
result within the node (box 222 of FIG. 13) or the enclosing
result pointer (box 223 of FIG. 13). This result address,
whatever its Source, is used to read the final result from the
SDRAM. This result is passed to the result register. One
skilled in the art will understand that depending on the
circumstances the result may be returned in different forms.
In Some cases the result itself may be returned. In other cases
just the pointer to the result (from the address register) is
returned, and in Still other cases a portion of the result and
a pointer to the remainder of the result are returned.
0094. While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the Spirit and Scope of the invention
as defined by the appended claims.
What is claimed is:

1. A method of prefix Search comprising:
distributing prefix Search keys to plural prefix Search

engines, and
at each Search engine, reading data from a prefix Search

data tree Structure Stored in memory and, in a com
parator, performing prefix Search comparisons of
Search keys and data from the prefix Search tree data
Structure to determine, in a forward pass of the tree data

US 2002/0152413 A1

Structure toward a leaf, memory addresses of nodes of
the tree data structure to read the data from memory and
obtain prefix Search results.

2. A method as claimed in claim 1 further comprising
distributing the prefix Search keys to the plural prefix Search
engines over a network from an input queue as the engines
become idle and forwarding results of prefix Searches of the
plural prefix Search engines over the network to an output
queue in an order independent of the order in the input
Gueue.

3. A method as claimed in claim 2 wherein the results of
the prefix Searches are ordered in the output queue in the
Same order that the corresponding prefix Search keys arrived
at the input queue.

4. A method as claimed in claim 1 further comprising:
addressing a memory unit from each Search engine over

integrated circuit pins shared with another Search
engine; and

reading the data in bursts over integrated circuit data pins
dedicated to the Search engine from the address loca
tions in the memory unit.

Oct. 17, 2002

5. A method as claimed in claim 4 further comprising
Storing a prefix Search tree data structure acroSS plural banks
of memory units and accessing the tree Structure in Succes
Sive read cycles.

6. A method as claimed in claim 1 further comprising
Storing a prefix Search tree data structure acroSS plural banks
of memory units and accessing the tree Structure in Succes
Sive read cycles.

7. A method as claimed in claim 6 wherein duplicate
copies of internal nodes of the tree Structure are Stored in
each of plural banks.

8. A method as claimed in claim 7 wherein leaf nodes are
interleaved acroSS plural banks.

9. A method as claimed in claim 1 wherein the determined
memory address is the address of the next tree node.

10. A method as claimed in claim 9 wherein the deter
mined memory address is determined from a comparison of
plural Stored keys with the Search key.

