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(57) ABSTRACT 

Prefix Searches for directing internet data packets are per 
formed in a prefix Search integrated circuit. The integrated 
circuit includes an array of Search engines, each of which 
accesses a prefix Search tree data Structure to process a prefix 
Search. An SDRAM is dedicated to each Search engine, and 
SDRAMs share address and control pins to plural search 
engines on the IC chip. Internal nodes of the tree data 
structure are duplicated across banks of the SDRAMs to 
increase bandwidth, and leaf nodes are Stored across the 
SDRAM banks to reduce storage requirements. Within each 
Search engine, data Stored in a data register from an SDRAM 
is compared to a prefix Search key Stored in a key register. 
Based on that comparison, an address is calculated to access 
further tree structure data from the SDRAM. Packet descrip 
tors containing Search keys are forwarded to the Search 
engines from an input queue and the Search results are 
forwarded to an output queue, the same packet order being 
maintained in the two queues. 
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PREFX SEARCH CIRCUITRY AND METHOD 

RELATED APPLICATIONS 

0001. This application is a is a continuation of U.S. 
application Ser. No. 09/140,030, filed Aug. 26, 1998, which 
is a continuation-in-part of U.S. application Ser. No. 09/104, 
314, filed Jun. 25, 1998, which claims benefit of Provisional 
Application No. 60/084,434, filed May 6, 1998, the entire 
teachings of which are incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

0002 A prefix search is used in networking to route and 
classify packets. The route to be used for a packet and its 
classification are determined by finding the longest matching 
prefix in a Set. For example a packet using IPv6 (internet 
protocol version 6) has a 128-bit destination address. A 
router determines the output port over which Such a packet 
should be routed by Searching a set of variable-length binary 
Strings to find the longest String that matches a prefix of the 
destination address. For classification purposes, other fields 
of the header, Such as the port number, may also be included 
in the String to be matched. 
0003) To illustrate the problem of prefix search, consider 
the list of prefix character strings shown in FIG. 1 in 
alphabetical order. The principle is the same with binary 
Strings. Given a Search String, Such as “cacea', the goal is to 
find the longest Stored String that exactly matches a prefix of 
this String. Although a simple linear Search of the list finds 
that this String falls between 'cab' and “cad”, one must Scan 
several strings backward from this point to find that the 
longest matching prefix is “ca” In actual routing tables, 
which may contain hundreds of thousands of entries, the 
matching prefix may be far from the point where the linear 
Search fails. An optimized data Structure is needed to effi 
ciently find the matching prefix. 
0004. A prior method for performing longest prefix 
matching employs a data Structure called a trie. A trie for the 
prefix list of FIG. 1 is shown in FIG. 2. As shown, the trie 
is a tree Structure in which each node of the tree resolves one 
character of the String being matched. Each internal node 
consists of a list of characters. ASSociated with each char 
acter is an outgoing link either to another internal node, a 
rectangle in the figure, or to a leaf node, a circle in the figure. 
A slash at the Start of a node indicates that a prefix leading 
to that node with no additional characters is part of the list. 
Each leaf node holds the result data associated with the 
prefix leading to that leaf node, and in the figure, the leaf 
nodes are labeled with these prefixeS. The result data might, 
for example, be the output port associated with a data packet 
and a flow-identifier. 

0005 To search the trie, one starts at the root node, node 
1 in the figure, and traverses the tree by following the 
outgoing link at each node corresponding to the next char 
acter in the String to be matched. When no matching 
outgoing link can be found, the longest matching prefix has 
been found. For example, given the String “cacea'. We Start 
at node 51. The “c” directs us to node 54. The “a” directs us 
to node 58. AS we cannot find a match for the next character, 
“c”, at node 58, we follow the link associated with the slash 
to the leaf node associated with the longest matching prefix, 
“ca”. Note that if prefix "ca” were not in the list, we would 
need to backtrack at this point to node 54 for prefix “c”. 

Oct. 17, 2002 

0006 Another prior method for prefix matching is to 
perform binary search on a table. However, as described by 
Radia Perlman, Interconnections, Bridges and Routers, 
Addison Wesley, 1992, pages 233-239, and shown in FIG. 
3, Since binary Search will find the closest matching String, 
rather than the longest matching prefix, we must make two 
modifications to the list to apply this technique. First, we 
insert two entries for every entry in the list that encloses 
other entries, that is, that would Serve as a longest matching 
prefix for another prefix in the list but for the other prefix 
itself being in the list. One of those entries is terminated by 
the symbol 0, which comes alphabetically before all char 
acters, and one by the Symbol 1, which comes alphabetically 
after all characters. These two entries act as parentheses 
enclosing all entries that contain the prefix. Second, we 
attach to each entry in the list not ending in a 0 a pointer to 
the nearest enclosing entry. FIG. 3 shows the list of FIG. 1 
augmented in this manner. Note that the prefix "ca' has been 
replaced by the two entries “ca0” and “ca1” that bracket all 
entries containing the prefix "ca' and that all of these entries 
have a pointer back to “caO”. 
0007 To search the augmented list of FIG. 3 for the 
longest matching prefix, one Searches for a String equal to a 
prefix of the target or the alphabetically closest pair of 
strings. Strings ending in “0” or “1” never exactly match a 
prefix of the target string because “0” and “1” do not match 
any character of the target String. If the Search finds an exact 
prefix of the target String, the result data associated with the 
String is retrieved. Otherwise, the Search found the closest 
pair of Stored Strings, Sa and Sb. In this case there are three 
possibilities: 

0008 1. If Sa ends in a “0” symbol, then the longest 
matching prefix is this string with the “0” removed. 

0009 2. If Sb ends in a “1” symbol, then the longest 
matching prefix is this string with the “1” removed. 

0010) 3. Otherwise, an enclosing pointer from Sa is 
followed to find a string ending in a “0” symbol which 
encloses Sa and the nearest match is that string with the “0” 
symbol removed. 
0011 For example, a search for “cacea' will end between 
“cab' and “cad'. Since this is not an exact match, “cab' does 
not end in “0”, and “cad” does not end in “1”, the pointer 
from “cab' is followed back to “caO” giving the longest 
matching prefix, “ca”. Similarly a search for “cb” will end 
between “ca1” and “cc” and follow the pointer from “ca1” 
back to the common prefix, “c”. 

SUMMARY OF THE INVENTION 

0012 While the trie structure and binary search strategy 
work, they are not well Suited for implementation in a 
hardware Search engine. The trie requires a memory access 
for every character of a String and possible backtracking if 
a match is not found. This makes it inefficient in terms of 
memory bandwidth usage. The binary Search Strategy 
requires Storing two result pointers for the majority of 
prefixes, one for a direct match and one to the enclosing 
String or its associated result. This makes it inefficient in 
terms of memory usage. 
0013 The prior application Ser. No. 09/104,314, filed 
Jun. 25, 1998 discloses and claims a data structure, an 
augmented tree, that Stores prefix Sets in a manner that 
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enables efficient Searching and a hardware engine for Search 
ing the augmented tree. The augmented tree Stores the prefix 
Set with enclosing prefixes in a tree Structure Similar to a 
B-tree, a tree with a radix greater than one previously used 
to efficiently Search for exact matches by optimizing the tree 
node size to the size of data blocks retrieved from Storage 
discs. The prefix Search data structure comprises a tree 
Structure having internal nodes for identifying Subsequent 
nodes from prefix Search keys. Leaf nodes each comprise a 
Set of prefix keys to be compared to a prefix Search key. The 
Sets of prefix keys of plural leaf nodes together form a list 
of prefix keys including enclosing prefix key pairs. 

0.014. In accordance with the present invention, prefix 
Search circuitry is provided on an integrated circuit. A 
plurality of prefix Search engines are provided on the inte 
grated circuit, each engine performing a prefix Search of a 
prefix Search data Structure based on a prefix Search key. 
0.015 Preferably, prefix search keys embedded in input 
packet descriptors are distributed from an input queue over 
an internal network to the plural Search engines and the 
results of the prefix Searches are forwarded to an output 
queue. At the output queue, the Search results are ordered in 
the same order that the corresponding input packet descrip 
tors arrived at the input queue. The internal network may 
include an input bus from the input queue to the Search 
engines and an output bus from the engines to the output 
Gueue. 

0016 Preferably, the search engines on the integrated 
circuit are associated with an array of memory units, each 
unit dedicated to a Search engine within the integrated 
circuit. Each Search engine reads data in bursts over inte 
grated circuit data pins dedicated to the Search engine, and 
each Search engine addresses a memory unit over integrated 
circuit pins shared with another Search engine. Preferably, 
each memory unit is a Synchronous dynamic random acceSS 
memory (SDRAM) which comprises plural banks of 
memory cells, and a prefix Search tree data Structure is Stored 
acroSS the plural banks to provide access to the tree Structure 
in Successive read cycles. Internal nodes of the tree Structure 
are duplicated acroSS plural banks, and leaf nodes are 
interleaved acroSS plural bankS. 
0.017. The preferred prefix search engine comprises a data 
register which receives data of a tree Structure from memory, 
a Search key register, a comparator and an address calculator. 
The comparer compares a Search key in the Search key 
register with data from the data register, and the address 
calculator calculates memory addresses based on the com 
parator output to read the data from memory into the data 
register. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.018. The foregoing and other objects, features and 
advantages of the invention will be apparent from the 
following more particular description of preferred embodi 
ments of the invention, as illustrated in the accompanying 
drawings in which like reference characters refer to the same 
parts throughout the different views. The drawings are not 
necessarily to Scale, emphasis instead being placed upon 
illustrating the principles of the invention. 

0019 FIG. 1 is a list of prefixes used to illustrate the 
invention. 
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0020 FIG. 2 is a prior art trie used to search prefixes. 
0021 FIG. 3 is the prefix list of FIG. 1 modified to 
include enclosing prefixes and pointers in accordance with 
another prior art approach. 

0022 FIGS. 4a and 4b illustrate a tree data structure 
embodying the present invention. 

0023 FIG. 5 is a flow chart of the search method using 
the tree of FIGS. 4a and 4b. 

0024 FIG. 6 is an alternative tree having both partition 
ing nodes and table nodes in accordance with the invention. 
0025 FIG. 7 is a block diagram of a hardware search 
engine used to implement the prefix Search of the present 
invention. 

0026 FIG. 8 is a timing diagram illustrating access of 
data from a single SDRAM bank of FIG. 7. 
0027 FIG. 9 illustrates the alternating access of data 
from two banks of an SDRAM chip. 
0028 FIG. 10 is a timing diagram illustrating shows a 
timing diagram for two Search engines axing their respective 
two blanks of SDRAM memory over a common set of 
address and control lines. 

0029 FIG. 11 illustrates the orientation of data within a 
node to store the middle key before low keys and high to 
improve performance. 

0030 FIG. 12 illustrates a leaf node in an alternative 
embodiment. 

0031 FIG. 13 is a flow chart for processing a leaf node 
as illustrated in FIG. 12. 

0032 FIG. 14 is a graph of search time as a function of 
node size. 

0033 FIG. 15 is a block diagram of a search engine for 
processing a Search algorithm including the process of FIG. 
13 in the system of FIG. 7. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0034 FIGS. 4a and 4b show an augmented tree for the 
prefix list of FIG. 1 modified to include the same enclosing 
prefixes as in FIG. 3. This particular augmented tree has a 
Single internal node, node 1, which is also the root node for 
the tree. It has four leaf nodes, labeled 2-5. Each node holds 
a Set of prefixes, which we shall also call keys in the 
discussion to follow. Each internal node, Such as node 1, 
holds the Set of keys that divide the key Space acroSS its 
children. A suitable set of keys is the alphabetically lowest 
key in each subtree except the first. Each child node holds 
a contiguous Set of keys from the complete key list. To 
facilitate acceSS by a hardware engine, as described below, 
the keys in each node, internal or leaf, are Stored in three 
parts. The middle key is stored first, followed by a set of 
keys that are all less (in alphabetical order) than the middle 
key (the low keys). The low keys are in turn followed by the 
high keys, a set of keys that follow the middle key. While the 
example shows a total of three keys in the one internal node 
and five keys in each leaf node, larger nodes are preferable 
to optimize memory bandwidth. In the preferred embodi 
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ment, each node holds 1 to 16 keys including one middle 
key, Zero or more low keys, and Zero to Seven high keys. 
0035. The structure is best understood by means of an 
example. Consider Searching for the Search key “cacea' 
using the augmented tree of FIGS. 4a and 4b. The search 
begins at the root node (labeled 1). This node contains Some 
parameters, a Single child pointer, and a set of dividing keys 
partitioned into three Sets as described above. The param 
eters encode the size of the node and its children. They 
include the number of low keys (one in this example), the 
number of high keys (one), and the size of each child node 
(x bytes). The child pointer, p, identifies a block of memory 
that holds contiguous child nodes of uniform size. The 
pointer directly identifies the first child node. Subsequent 
child nodes are found by indexing off of this pointer after 
scaling by the child node size. Simplistically, the ith child 
node is located at (p+ix). (Keys in a node are numbered 1 
. . . k as are results associated with a leaf node's keyS. 
Children of an internal node are numbered 0 . . . k.). 
0036). In the preferred embodiment, the augmented tree is 
stored in dynamic random access memory (DRAM) which 
permits rapid access within a memory “row” of 512 bytes. 
Nodes are up to 64 bytes in size, an internal node has one to 
16 children, and the “contiguous’ children Start on any 
64-byte boundary. Therefore the children of one internal 
node may occupy parts of one to three DRAM rows. In order 
to read any parts of a node quickly, each node is confined to 
one DRAM row. To achieve this, the ith child of an internal 
node is Stored at (p+ix--r) where, for the Second and third 
rows, r accounts for wasted space at the ends of one and two 
DRAM rows, respectively, containing lower-numbered chil 
dren of the same internal node. 

0037. The child node to be accessed is determined by 
comparing the Search key to the entries Stored in the internal 
node. The key, in this case “cacea, is first compared to the 
middle key, “bcc1" in this example, and Since it is lexico 
graphically larger than this key, it is then compared against 
the high keys, “caaf in the example. AS the Search key is 
greater than all of the keys in the internal node, the last child 
(index i=3) is selected and the Search proceeds to this child, 
labeled 5. 

0038 Node 5 is a leaf node. The sets of prefix keys of 
plural leaf nodes together form a list of prefix keys including 
enclosing prefix key pairs. A leaf node could return the 
longest matching prefix from which the output port and flow 
identifier, for example, could then be determined. Prefer 
ably, however, the leaf nodes comprise result pointers which 
directly point to the desired output port and/or flow identifier 
asSociated with the longest matching prefix. Such data could 
also be stored directly in the leaf nodes, but in view of 
varying lengths of results and sharing of results, pointers 
result in more efficient Storage of data. 
0.039 Leaf node 5 contains parameters, a result block 
pointer, an enclosing result pointer, and a list of keys divided 
into three sets. The parameters include the number of low 
keys (3) and the number of high keys (3). At this node, the 
Search key is again compared to the Stored keys. AS the key 
“cacea' is less than the middle key of this node, “ca1, it is 
compared against the low keys and it is found to fall between 
keys “cab” and “cad'. Since no exact match is found, the 
Search must now Scan for the longest enclosing prefix. If the 
keys are Stored in alphabetical order, this is accomplished by 
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Scanning backwards through the keys in this node, Starting 
at “cab', to look for the nearest Start or end key, a String 
ending in “0” or “1.” As no such prefix is found in the node, 
the enclosing result pointer is followed to find the result 
record for the enclosing prefix for the block, “ca”. Following 
this pointer directly gives the result associated with key 
“ca”, r(ca). 
0040. If the search ends at or just after a key that is a 
prefix of the Search key (that is, the Search ends between a 
matching prefix and the next prefix key), that key is the 
longest matching prefix, and the result is identified using the 
result block pointer. If we search the structure of FIGS. 4a 
and 4b for the search key “cadam”, the search would 
proceed as above except for the final Step. Once key “cad’ 
is found as the third key associated with node 5 and 
determined to be a prefix of “cadam”, the result block 
pointer is followed to result block 9 and the third result 
(corresponding to the third key) is retrieved giving r(cad). 
0041) If, in scanning backwards, the search ends in a start 
or end key, the result is identified using the result block 
pointer. A Start key, a String ending in a 0, is the enclosing 
key for the prefix being Searched and points to the result for 
that enclosing key. On the other hand, if the Scan backwards 
identifies an end key, a String ending in a 1, that key will not 
be an enclosing key for the Search key but it does point to 
the result for that key’s enclosing prefix. 
0042 A flow-chart of the augmented tree search method 
is shown in FIG. 5. The method starts at decision box 100 
with variable “N” equal to the root node of the augmented 
tree and variable "key' equal to the key being Searched for. 
AS long as N is an internal node, the Search proceeds down 
the left side of the figure (boxes 101 to 104) to identify the 
child node to Search next by comparing against the parti 
tioning keys stored in node N, k1 ... kn). Box 101 checks 
if “key” is less than all of these stored keys. In this case the 
child pointer is followed directly (box 102) to find the first 
child and the search continues from point Abefore box 100. 
If “key” is greater than k1), the key list is scanned to find 
the last key, k), less than or equal to “key” (box 103). The 
index of this key, j, is used to compute the address of the i-th 
child node in box 104 and the search continues from point 
A. 

0043. After traversing a number of internal nodes, the 
search eventually arrives at a leaf node (like node 5 in FIGS. 
4a and 4b) and the Search proceeds down the right side of 
FIG. 5 (boxes 105 to 114). There are three possible ways in 
which the longest prefix matching the Search key can be 
found corresponding to boxes 107, 110, and 111. First, box 
105 scans the stored keys to find the last key, k, less than 
or equal to the search key, “key.” Box 106 checks if k is 
a prefix of key and, if So, the corresponding result is returned 
in box 107. This path is followed, for example, in the search 
for “cadam” in the augmented tree of FIGS. 4a and 4b as 
described above. 

0044) If not, the keysk. . . k1 are scanned for a prefix 
Start key or end key, that is a key ending in the Symbol 0 or 
the symbol 1, respectively. Box 109 checks if such a key, 
km, j>=m>=1, is found. If So, the corresponding result is 
returned in box 110. This path is followed, for example, if 
we search the augmented tree of FIGS. 4a and 4b for the 
search key “baz”. The search terminates on leaf node 2 with 
j=6 and k="bae'. Scanning backward finds the prefix start 
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key km="b0” with m=5. The fifth entry of the result block 
(6), r(b), is thus returned. The path to box 110 is also 
followed if a prefix end key (ending in the symbol 1) is 
found during the backward Scan. For example, Suppose we 
search for key “cd” in the augmented tree of FIGS. 4a and 
4b. The search will terminate on leaf node 5 with j=5 and 
k="cc'. Scanning backward we encounter km="ca1 at 
m=5. ASSociated with each prefix end key is the result not for 
that key but for that key’s enclosing prefix. In this case, the 
result for enclosing prefix "c', r(c), is associated with “ca1 
and is returned from this search. We know that the longest 
prefix enclosing “ca' is the same as the longest prefix 
enclosing the Search key because “ca1 and the Search key 
are between the same bounding Start and end keys or 
parentheses. If there were a prefix that enclosed “ca” but not 
the Search key, we would have encountered the end key of 
that prefix in our backward Scan. 
0.045. If k is not a prefix of the search key and we find 
no prefix start or end keys between k and k1, then the 
Search proceeds to box 111 and the enclosing result for the 
node is returned. This path is followed, for example, in the 
search for “cacea' in the augmented tree of FIGS. 4a and 4b 
as described above. By building the augmented tree So that 
the enclosing pointer of each node points to the result for the 
enclosing prefix of the first key of the node, we bound the 
number of keys we must Scan to find an enclosing prefix to 
the contents of a single node. 
0046 Root Tables and Bit Stripping 
0047. With very long keys, e.g. 64-bits, the amount of 
Storage required to hold the augmented tree is Significant. An 
augmented tree with 300,000 prefixes of 64-bit keys, for 
example may contain up to 19 million bits of Storage. The 
actual number will be Smaller as most prefixes do not 
contain the full 64 bits. The storage requirements for the 
augmented tree can be reduced by Starting the Search by 
indexing a table using the most significant Several bits of the 
Search key and then discarding these bits. The table lookup 
returns a pointer to the root node of an augmented tree 
holding Stored keys beginning with those bits. AS all entries 
in the tree have the same most significant bits, these bits can 
be omitted from the Stored keys resulting in considerable 
storage savings. For our example 300,000 key tree, a table 
of 4096 20-bit root node pointers (to be indexed with the 
most significant 12-bits of the Search key) takes about 
80,000 bits. Removing the 12 most significant bits from all 
300,000 stored keys saves 3.6 million bits. 
0.048. This approach of stripping a common prefix off of 
all Stored prefixes in a Subtree to Save Space can be applied 
independently of the use of root tables. Any internal node of 
an augmented tree that roots a Subtree for which all Stored 
prefixes share a common prefix can apply this method. 

0049 Similarly, the use of tables is not restricted to the 
root of a tree. At any point in the tree Structure where it 
would be advantageous to index on a prefix of the Search key 
rather than to compare the Search key against partitioning 
keys, a table node can be inserted in place of an internal tree 
node. 

0050 FIG. 6 illustrates the use of a root table and the use 
of prefix Stripping both in conjunction with the table and 
with normal augmented tree internal nodes. The figure 
shows five tree nodes, labeled 20-24, forming the upper 

Oct. 17, 2002 

portion of the tree. The lower portions of the tree and all of 
the leaf nodes are not shown. Each of the tree nodes is 
tagged with its type: “table' or “internal'. A leaf node would 
be tagged with type “leaf. A root pointer identifies the root 
node, which in this case is a table node (20). The search tree 
in the figure is configured for use with 32-bit Search keys. 
0051 Table node 20 includes its tag, two parameters, and 
a table of pointers to Subtrees. The two parameters indicate 
the number of bits from the Search key to use in indexing the 
table (12), and the number of bits from the search key to 
discard before indexing (0). The remainder of the node 
contains the table which is of size 2 where k is the first 
parameter. Thus, the table portion of node 20 contains 
2' =4096 entries. For clarity only four of these entries are 
shown in the figure. 
0.052 The first of these entries, at index OFE (hexadeci 
mal), holds a null pointer, denoted by the Slash. It is not 
unusual for many of the entries in a root table to be empty 
(no stored prefixes start with the index of that table entry). 
These empty entries are marked by Storing a null pointer. If 
almost all of the entries in a table are empty, it may be more 
efficient to replace the table node with a partitioning internal 
node Since partitioning nodes do not consume any space 
representing null entries. 
0053. The second entry shown in the table, at index 1 AC 
(hexadecimal), points to internal node 21 that roots a Subtree 
where all of the stored prefixes start with the prefix 1 AC. 
Thus each Stored prefix can be shortened by discarding these 
common 12 bits. The internal node format is as described in 
conjunction with FIGS. 4a and 4b above with two additions. 
First, the node is tagged with its type, "internal’ to distin 
guish it from “table' nodes and “leaf nodes. Second, a 
parameter is added (12) indicating the number of bits to Strip 
from the Search key before comparing the key against the 
partitioning prefixes Stored in the node. If our Search key is 
hexadecimal 1AC27EF4, for example, this node directs us to 
Strip the most significant 12-bits (1AC) before Searching this 
node and its associated Subtree with the remaining 20-bit 
key, 27EF4. 
0054. In some cases, a prefix stored in an augmented tree 
is shorter than the indeX used to indeX a table node in the 
tree. This situation is handled as illustrated by the third entry 
shown in the table. In this case, the prefix "3” is stored in the 
augmented tree. To encode this in the table, all indexes 
Starting with 3 (hexadecimal) hold pointers to internal node 
22. This causes any search with a key beginning with “3’ to 
proceed to node 22. Node 22 in turn specifies that only 4-bits 
are to be stripped off the search key. This allows the search 
proceeding from this point to distinguish keys Starting with 
prefixes "3a' and “3b' for example. While this causes 
internal node 22 to use more Storage, to hold 28-bit keys, the 
keys can be compressed at the next level of the tree by 
Specifying that additional bits are to be discarded before 
Searching that level. AS with null entries, duplicate entries in 
a table waste Space, and in cases where there are many short 
prefixes, replacing the table node with an internal node may 
result in a more efficient representation. 
0055. The final entry shown in node 20 of FIG. 6 
illustrates the case where a table entry points to another table 
node. In this case, index 57F (hexadecimal) directs the 
search to table node 23. The parameters in node 23 direct 
that 12-bits (the prefix 57F) be stripped from the search key, 



US 2002/0152413 A1 

and that the next 8-bits be used to index the table. For 
example, if the search key is 57F1A1DE, the top 12-bits are 
first stripped, leaving 1A1DE. The next 8-bits, 1A (hex), are 
then used to index the table. The resulting pointer directs the 
search to internal node 24 where these 8-bits are then 
Stripped, leaving the Search to continue with the remaining 
12-bits, 1 DE (hex). 
0056. One skilled in the art will understand that the 
possibilities for arranging augmented trees using table 
nodes, internal nodes and bit Stripping extend beyond the 
Simple example presented here. In general, an augmented 
tree may be arranged with any combination of table nodes 
and internal nodes, and one or more bits may be discarded 
from the Search key at each node along a Search path. By 
optimizing the combination of node types and bit Stripping, 
the resulting tree can be made to consume considerably leSS 
Storage than if all nodes were internal nodes and all prefixes 
were stored full length. 
0057. An augmented tree can be constructed using well 
known techniques for constructing B-Trees. For example, 
the method described in Cormen, LeiserSon, and Rivest, 
Introduction to Algorithms, 1990, pp. 38.1-399 for incre 
mentally constructing a B-Tree by inserting one node at a 
time into an empty tree may be employed. Alternatively, one 
can construct an augmented tree directly from a list of 
prefixes augmented with parentheses, Such as the list shown 
in FIG. 3. This is accomplished by segmenting the list into 
fixed sized blocks that become the leaf nodes of the tree. A 
new list is then constructed comprising the first prefix of 
each node except of the first node. This list is then Seg 
mented into fixed size blocks that form a rank of internal 
nodes in the tree. The process, making a list from the first 
prefix of a set of nodes and constructing a new set of nodes 
by Segmenting this list, is then repeated until the list fits into 
a single node. For example, the leaves of the tree of FIGS. 
4a and 4b are constructed from the list of FIG. 3 by 
Segmenting the list into blocks of 7 prefixes. Each 7-prefix 
block becomes one leaf node of the tree. The first prefix of 
each block except the first block is then extracted and used 
to construct a new prefix list that fits entirely into the one 
internal node of FIGS. 4a and 4b. 

0.058 Hardware Search 
0059. In the past, prefix search algorithms for packet 
header processing have been executed in Software running 
on a conventional processor. At the very high packet rates 
required for internet backbone routing, however, (about 5M 
packets/sec), Software searching is too slow to keep up. To 
operate at these Speeds, a hardware prefix Search engine is 
required. 
0060 A block diagram of a hardware search engine is 
shown in FIG. 7. The search ASIC (30) accepts input packet 
descriptors, the packet header plus auxiliary information. 
For each input packet descriptor, the ASIC performs a prefix 
Search to route and classify the packet, appends this infor 
mation to the packet descriptor and outputs the augmented 
descriptor. AS Shown in the figure, the ASIC comprises an 
input packet descriptor queue (31), an output packet descrip 
tor queue (32), and a plurality of Search engines (35). 
Multiple Search engines are required to meet the high packet 
throughput requirements of backbone routing. A Single 
Search engine cannot keep up with this rate. 
0061. In the preferred embodiment there are six search 
engines. However one skilled in the art will understand that 
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any number of Search engines can be employed. Packet 
descriptors arriving at the Search ASIC are queued in the 
input queue (31). When a Search engine becomes idle, it is 
dispatched to handle one of the waiting descriptors over 
distribution bus (33). When a search is completed, the 
augmented descriptor is enqueued in the output queue Via 
output bus (34). 
0062 Packet descriptors are tagged with their location in 
the input queue to maintain packet ordering in the prefix 
Search process. When a Search engine reads a packet 
descriptor from the input queue, it records the descriptor's 
location in the input queue. When the Search is complete, the 
descriptor, appended with Search results, is Stored in the 
identical location in the output queue. The output queue is 
read in order, waiting until each Successive location is filled, 
thus maintaining packet order even though the Search pro 
ceSSes may finish out of order. 
0063. The augmented tree search structure requires large 
amounts of memory and is too large to be Stored on the 
search ASIC. It must be stored in off-chip memory. In the 
preferred embodiment, a separate copy of the Search Struc 
ture is Stored in a separate Synchronous dynamic random 
access memory (SDRAM) for each search engine. For six 
Search engines there are Six SDRAM chips each holding a 
complete copy of the augmented tree. One skilled in the art 
will understand that it is also possible to interleave a single 
copy across the SDRAM chips or to interleave a smaller 
number of duplicate copies. In the preferred embodiment, 
each SDRAM is a single 64Mb (4Mx16) chip. 
0064. To economize on ASIC package pins, the search 
engines are organized into pairs and each pair of Search 
engines shares a set of address and control pins (except chip 
Selects) (36). This set of pins is in turn connected to the pair 
of SDRAMs associated with the pair of search engines. As 
data bandwidth is critical, each Search engine and its cor 
responding SDRAM exchange data over a dedicated 16-bit 
data bus (37). This bus is used primarily for reading during 
Search operations. However it is also used to write to the 
SDRAM when initializing the augmented tree structures and 
when broadcasting updates to the Search tree across the 
SDRAMS. 

0065. Each SDRAM chip contains a plurality of memory 
banks. In the preferred embodiment there are two banks, 
denoted A (39) and B (40). This banked structure permits 
data to be read from one bank while the other bank is being 
precharged or addressed. To optimize bandwidth, the pre 
ferred embodiment Stores a copy of all internal nodes of the 
augmented tree in both banks. This permits rapid access 
during most of the Search, the traversal of internal nodes. To 
optimize Storage, the leaf nodes are not duplicated, but 
rather are interleaved across the two bankS. 

0066. The timing of a typical access to an SDRAM chip 
is shown in FIG.8. The figure shows time, in cycles, across 
the top. The value of the Signals on the address/control or 
data lines, if any, during a particular cycle are shown below. 
The address of the location being referenced is divided into 
two parts, the high-order bits form a row address and the 
low-order bits form a column address. These two compo 
nents are used in turn to address the row and column of the 
two-dimensional memory array on the SDRAM chip. As 
shown in the figure, the Search engine presents the row 
address (RA) to the chip on the address/control lines during 
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cycle 1. The Search engine then waits four cycles while the 
SDRAM fetches the requested row of memory. The column 
address (CA) is then presented during cycle 5. Another four 
cycles elapse while the SDRAM extracts this column from 
the previously fetched row. Starting in cycle 9, the SDRAM 
sends a burst of 20-bytes of data, two bytes per cycle over 
the data lines. The first two bytes (D0) are sent in cycle 9, 
then next two (D1) are sent in cycle 10, and so on. One cycle 
before the end of the burst, in cycle 17, the search engine 
sends a request to precharge the Selected bank (PA), in this 
case bank A, to the SDRAM. Four cycles later, the bank is 
precharged and able to accept another row address in cycle 
21. 

0067 Transferring two consecutive bursts of data from a 
single SDRAM bank, as shown in FIG. 8, is rather ineffi 
cient because the data lines remain idle while the bank is 
precharged and addressed. In this example, the data lines 
have a duty factor of 50% (busy 10 cycles of 20). FIG. 9 
shows how a transfer efficiency of 100% can be achieved by 
alternating accesses to the two banks on the SDRAM chip. 
The Signals shown in italics in the lighter-shaded boxes are 
directed to bank B. During cycles 11 and 15, while the data 
from bank A is being transferred, bank B is being addressed. 
Thus, during cycle 19, after the data burst from bank A is 
complete, the transfer from bank B begins. By alternating 
accesses to banks A and B in turn, the data pins are used 
every cycle maintaining maximum bandwidth. 
0068. During most of the augmented tree search, the 
Search engine is accessing internal nodes. Because these 
nodes are stored in both banks of the SDRAM, the search 
engine is always able to find the node that it needs to acceSS 
next while alternating banks. At the end of the Search, the 
Search engine accesses a leaf node that is Stored in only one 
bank. At this point, the search engine may idle the SDRAM 
pins if, for example, the current access is directed to bank A 
and the required leaf node is Stored only in bank A. How 
ever, this overhead is not Severe because a leaf node is 
accessed only once during each Search. 
0069. To avoid idling the memory when a search task 
must read two blocks of data from the same bank in 
Successive accesses, each Search engine in the preferred 
embodiment operates two instances of the Search algorithm 
(two search tasks). The two tasks normally alternate their 
accesses to the memory. Thus each task normally is able to 
examine the data coming back from one node before pro 
Viding the row address for its next read. Also, if one task 
must momentarily idle because it must make two Successive 
accesses to the same bank, the other task may be able to use 
the idle time productively. 
0070 The address and control lines are only lightly 
utilized in the timing diagram of FIG. 9. This low duty 
factor can be exploited to reduce pin count on the prefix 
Search ASIC by having two Search engines share a single Set 
of address and control pins as shown in FIG. 7. The two 
search engines each communicate with their own SDRAM 
chip over a common Set of address and control lines by 
multiplexing their row access, column access, and precharge 
requests on these lines. Dedicated chip select lines (not 
shown in FIG. 7) are used to indicate the SDRAM to which 
the request is targeted. 
0071. The timing of this multiplexing is shown in FIG. 
10. Search engine 1 places its requests on the shared address 
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and control lines during odd cycles (1, 5, 11, ...) and Search 
engine 2 places its requests on the control lines during even 
cycles (2, 6, 12, . . . ). This guarantees that there is never a 
conflict over access to the lines. The two Search engines 
transfer their data over Separate dedicated data buses as 
shown. 

0072 One skilled in the art will understand that alterna 
tive SDRAM timing schemes are possible. For example, one 
can vary the number of cycles between the Steps of pre 
charge, row access, column access, and data transfer. Also, 
one can transfer more or fewer bytes of data during each 
burst. A designer will optimize the timing and the transfer 
Size for a particular implementation. 

0073. By arranging the storage of nodes in memory so 
that the middle partitioning key is Stored first, as illustrated 
in FIG. 11, the performance of the search engine can be 
further enhanced. With the arrangement, the Search engine 
reads the middle key, along with parameters and other 
overhead information on its first access to the node. Based 
on a comparison of the Search key to the middle key, it then 
reads either the low keys or the high keys on its Second 
access, but not both. Compared to the conventional approach 
of reading the entire node from memory on each access, this 
method results in a significant performance improvement. 

0074 The timing of a middle-key-first node read can be 
understood in conjunction with FIGS. 9 and 11. Each row 
of FIG. 11 corresponds to two bytes of data, the amount 
transferred by the Search engine in one cycle. The Search 
engine starts reading data from the beginning of the node 
record in cycle 9 of FIG. 9. In cycle 9 it reads two parameter 
bytes. These parameters, Stored ahead of the middle key, are 
those required to interpret the middle key, Such as the 
number of bits to strip before comparison and the size of the 
middle key, and those required to locate the Start of the high 
and low key blocks, Such as the type of node, total Space for 
low keys, and the number of low keys. In cycles 10-11, the 
search engine reads the 4 bytes of the middle key. Other 
parameter information, Such as the Size and number of the 
high keys and the size of each child (for internal nodes) 
along with the child pointer and result pointer (for leaf 
nodes) is then read during cycles 12-18. If there is not 
Sufficient parameter and pointer information to fill all of 
these cycles, the Search engine Speculatively starts reading 
low keys. In parallel with reading the parameters and 
pointers, in cycles 12-14, the Search engine compares the 
Search key with the middle key and, depending on the result, 
calculates the address for either the low keys or the high 
keys. This calculated address is used to modify the column 
address for bank B that is output in cycle 15. Based on this 
address, the Search engine then reads just the low keys, or 
just the high keys from bank B in cycles 21-30. 

0075 AS described earlier, the preferred embodiment 
Stores a copy of all internal nodes of the augmented tree in 
both banks A and B, while leaf nodes are stored only once 
to conserve memory Space. Also, the preferred embodiment 
alternates reading nodes for two instances of the Search 
algorithm. By the latter property, the Search engine would 
know in advance that it will read a leaf node from bank B 
upon finishing the current internal node. In that case, the 
sequence in FIG. 9 can be adjusted to eliminate idle 
SDRAM data cycles due to successive accesses to bank B. 
The Second row address, RB in cycle 11, is Suppressed, as 
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is the first precharge, PA in cycle 17. The second column 
address, CB in cycle 15, is directed to bank A instead, as is 
the second precharge, PB in cycle 27. Thus an internal node 
can be processed using either one SDRAM bank or two, and 
the search engine can prepare either SDRAM bank to read 
the following leaf node without any idle cycles. 

0.076 Optimizing the structure of the node and the search 
tree to match the latency and burst-access size of the 
memory can be generalized. For example, one could divide 
the low keys into two parts and store the middle low key 
first. These parts could in turn be subdivided and so on. Also, 
the choice of the overall size of each node, which trades off 
the depth of the tree, and hence the number of accesses 
required, against the size of each node, and hence the 
amount of data transferred on each access, can be optimized 
to match the timing characteristics of the memory device. 
With different memory timing the node size and organiza 
tion may be optimized differently than presented here for the 
preferred embodiment. 

0077 One skilled in the art will understand that the size 
of an augmented tree node should be set to a size determined 
by the timing parameters of the tree memory to optimize 
DRAM bandwidth and hence search time. Two parameters, 
t, and t characterize the memory timing. The first param 
eter, t, is the time required to access the first word of a node 
from the first address cycle, 8 cycles in FIGS. 8-10. The 
Second parameter, t, is the time to reference each Subse 
quent word, 1 cycle in FIGS. 8-10. Given these parameters, 
the time to reference N words can be calculated as t(N)= 
t+(N-1)t. 
0078. As the node size, N, gets larger, the time to access 
each node increases according to the formula above. This 
increased access time is offset, however, because the number 
of nodes that must be accessed to complete the Search 
decreases with node size. This number is given by d(N.M)= 
log(M)/log(N) where M is the size of the tree. The total 
search time is the product of these two formula T(N)= 
log(M)(t+(N-1)t)/log(N). We can ignore the log(M) term 
as it is independent of node size and focus on the remaining 
component of search time, T1(N)=(t+(N-1)t)/log(N). By 
Solving this equation for the value of N that gives a mini 
mum T1(N), we can optimize the node size for a given set 
of memory timing parameters. 

007.9 For example, the graph of FIG. 14 shows how 
Search time, T1, varies as the node size is varied from 2 to 
20 keys with the DRAM timings shown in FIGS. 8-10. The 
figure shows that the optimum node size for these timing 
parameters is 8 words. The figure also shows that there is a 
Steep penalty for Smaller node sizes but a more gradual 
penalty for using node sizes that are larger than optimal. 

0080. Alternative Data Structure 
0081. In an alternate embodiment of the invention, the 
leaf node is organized as shown in FIG. 12 and searched 
using the algorithm shown in the flowchart of FIG. 13. The 
modifications of this embodiment allow the longest match 
ing prefix to be determined during the Single forward Scan to 
a point within the node where the Search key is greater than 
or equal to the prefix key Stored in the node; that is, the 
backwards scan of FIG. 5 is not required. Further, this 
embodiment only requires Scan of either the high or low 
keys within a node. 
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0082 Processing with only a forward scan is obtained by 
ordering the closing prefixes within a high or low Set without 
considering the trailing 1. The node within which a closing 
prefix resides and the high or low set of prefixes in which it 
resides remain determined by order with the trailing 1 
considered; it is only the order within the high or low set 
which changes. As a result, within a high or low set of 
prefixes, a matching closing prefix will be noted in forward 
Scan before locating any longer matching prefix. Any clos 
ing prefix will be reached from within the closing parenthe 
sis, So the closing prefix can point directly to the result for 
that prefix. 
0083. With only one of the high and low sets of prefixes 
Searched, the System must account for the possibility that a 
Search prefix, which falls within the range of low prefixes, 
does not match any of those low prefixes but is within a 
parenthetical having its closing prefix in the high Set. On the 
other hand, a Search prefix within the range of the high 
prefixes, but not matching any of those prefixes, may be 
within a parenthetical having an opening prefix in the low 
Set. In either case, the enclosing prefix defined by the 
enclosing pointer would not be the closest matching enclos 
ing prefix. In this embodiment, the leaf node is augmented 
with three fields that facilitate finding the closest matching 
prefix without Scanning all of the prefixes in a node. The 
binary field, “high closer match,” if true indicates that the 
node contains a longer (hence closer) enclosing prefix for 
the high keys in the node than the prefix corresponding to the 
enclosing result pointer. The “low closer match” field per 
forms an identical function for the low keys. If one of these 
two binary fields is true, the location of the closer matching 
prefix is encoded in the “closer match offset” field as an 
offset from the first key in the node. 
0084. At most one of these two fields may be true in any 
given leaf node. If the low is true, there must be a closing 
parenthetical in the high Set for which no opening paren 
thetical is found in the low Set, and if the high is true, there 
must be an opening parenthetical in the low Set for which the 
closing parenthetical is outside the node. Both cases being 
true would violate the requirement that parentheticals be 
nested. 

0085 Specifically, enclosing keys are handled differently 
in the embodiment of FIG. 12 than in the embodiment of 
FIGS. 4a and 4b. 

0086 1. The result pointer associated with a closing 
parenthesis prefix, one ending in 1 in the figure, 
points to the result for that prefix, not for an enclos 
ing prefix as in FIGS. 3, 4a and 4b. For example, the 
result for ca1 is the result for the prefix ca, not the 
result for the prefix c. 

0087 2. Within a list of high keys or a list of low 
keys enclosing prefixes are ordered by their prefix 
without considering the trailing 1 or 0. (The 1s in 
FIG. 12 are enclosed in brackets to indicate that they 
are not used in ordering the keys in the list). If both 
parentheses are in one Such list, they would be 
adjacent in the ordering and one may be discarded as 
redundant. 

0088. The flow chart of FIG. 13 shows the algorithm for 
Searching a leaf node augmented with closest match infor 
mation as in FIG. 12. The flow chart is best understood by 
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means of an example. Consider, for instance, Searching the 
leaf node of FIG. 12 for the key “cac.” The procedure starts 
at box 201 where the key, “cac,” is compared to mid, the 
middle key stored in the node, “cadd.” As “cac' is lexico 
graphically less than “cadd” the search proceeds to box 210 
to search the low keys. In box 210 the low keys are searched 
to find the last low key, k, that is a prefix of the Search key. 
In performing this Search, the trailing 1 or 0 of an enclosing 
prefix is ignored. Because the keys are Sorted in lexico 
graphical order ignoring the trailing 1S and OS, the last key 
that matches a prefix of the Search key is the longest 
matching prefix. The results of this Search are checked in 
box 211 to see if a matching prefix was found. If a prefix is 
found, it is the longest matching prefix, and the result 
associated with this prefix is returned in box 212. If no 
matching prefix was found in box 210, which is the case 
when the key is “cac,” the search proceeds to box 212. 

0089 Box 212 uses the new fields of the leaf node to 
check for a closer match elsewhere in the node without the 
need to Scan the rest of the node. The box checks the value 
of the “low closer match” field in the augmented leaf node. 
If this field is false there is no closer match within the node 
so the search proceeds to box 223 to return the result 
asSociated with the enclosing pointer. If this field is true, 
then there is a closer match in the node and the Search 
proceeds to box 222 where the result associated with this 
match is returned. In our example, where we are Searching 
for a prefix of the key “cac” in the leaf node of FIG. 12, the 
“low closer match” field is true so the search proceeds to box 
222. In this box, the value of the "closer match offset field, 
5 (abbreviated “closer” in FIG. 13) is used to find the closest 
matching prefix at an offset of 5 keys after the first key in the 
node. This corresponds to the closing parenthesis of the 
prefix, “ca,” Stored in the Sixth position, So the result 
asSociated with “ca' is returned. This closing prefix must be 
a prefix for all unmatched prefixes within the low set of 
prefixes because closing prefixes are by definition matching 
prefixes of all prefixes between the opening and closing 
parentheticals, and if any prefix were outside the parentheti 
cals in the low Set, the opening parenthetical would have 
been encountered and returned a result. 

0090 FIG. 15 shows a block diagram of a search engine 
for executing the alternate search algorithm of FIG. 5 with 
FIG. 13 Substituted for the leaf node processing. The engine 
consists of a set of registers, 310-314, to hold the state of the 
Search, a comparator 303, control logic 302, address calcu 
lation logic 301, and an address multiplexer 304. The search 
is initiated by loading the address register with the address 
of the root node of the augmented tree and loading the key 
register with the Search key. The control logic then presents 
the root address to the SDRAM and starts an access 
Sequence to read a burst of data as illustrated in the timing 
diagram of FIG.8. When the data returns from the off-chip 
SDRAM, it is clocked into a data register. From this register 
the data is routed to the appropriate location depending on 
its type. The parameter fields at the Start of the node are 
latched into the parameter register where they are used by 
the control logic to direct the Search. Stored key fields are 
routed to the comparator where they are compared against 
the search key 16-bits at a time. Note that while the key 
register is large enough to accommodate the longest possible 
Search key, it is accessed 16-bits at a time to facilitate 
comparison with the 16-bit wide data Stream returning from 
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the SDRAM. Finally, when the search is complete, the result 
data is routed to the result register from which it is placed in 
the output FIFO. 
0091) When key fields of an internal or leaf node are 
being read from the SDRAM, the comparator performs a 
masked compare to compare just the bits of the Stored prefix 
key to the Search key. Masking is required because the 
variable length prefixes within the node may not be aligned 
to a 16-bit boundary and thus only part of the 16-bit word 
read from memory may contain the Stored prefix. The 
remaining bits must be masked from the comparison. The 
results of the comparison are passed to the control logic to 
direct the Search. 

0092. During the traversal of internal nodes, the com 
parison result determines the index of the child node, j in 
FIG. 5, that is to be visited next. This information is passed 
from the control logic to the address calculation logic where 
it is used to compute the address of the next node to visit 
according to the equation in Box 104 of FIG. 5. The address 
calculation logic consists of an adder, Some multiplexers, 
and a lookup table to compute the value of r, the DRAM 
page roundoff factor. 
0093. When the search reaches a leaf node, the control 
logic carries out the algorithm of FIG. 13. As with an 
internal node, the parameters including the enclosing result 
and first result pointers, are first loaded into the parameter 
register. Next, as the middle key is read, it is compared (16 
bits at a time) to the Search key. The result of this compari 
Son, along with the parameter values is used in an address 
calculation to determine whether to read the high or low 
keys and where to find them in the SDRAM. Finally, the 
Scan of the high or low keys determines a prefix index, j, and 
an indication of whether a matching prefix was found. If the 
prefix was found, the address calculation logic computes the 
address for the result according to box 221 of FIG. 13. 
Otherwise the address calculation logic returns the closer 
result within the node (box 222 of FIG. 13) or the enclosing 
result pointer (box 223 of FIG. 13). This result address, 
whatever its Source, is used to read the final result from the 
SDRAM. This result is passed to the result register. One 
skilled in the art will understand that depending on the 
circumstances the result may be returned in different forms. 
In Some cases the result itself may be returned. In other cases 
just the pointer to the result (from the address register) is 
returned, and in Still other cases a portion of the result and 
a pointer to the remainder of the result are returned. 
0094. While this invention has been particularly shown 
and described with references to preferred embodiments 
thereof, it will be understood by those skilled in the art that 
various changes in form and details may be made therein 
without departing from the Spirit and Scope of the invention 
as defined by the appended claims. 
What is claimed is: 

1. A method of prefix Search comprising: 
distributing prefix Search keys to plural prefix Search 

engines, and 
at each Search engine, reading data from a prefix Search 

data tree Structure Stored in memory and, in a com 
parator, performing prefix Search comparisons of 
Search keys and data from the prefix Search tree data 
Structure to determine, in a forward pass of the tree data 
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Structure toward a leaf, memory addresses of nodes of 
the tree data structure to read the data from memory and 
obtain prefix Search results. 

2. A method as claimed in claim 1 further comprising 
distributing the prefix Search keys to the plural prefix Search 
engines over a network from an input queue as the engines 
become idle and forwarding results of prefix Searches of the 
plural prefix Search engines over the network to an output 
queue in an order independent of the order in the input 
Gueue. 

3. A method as claimed in claim 2 wherein the results of 
the prefix Searches are ordered in the output queue in the 
Same order that the corresponding prefix Search keys arrived 
at the input queue. 

4. A method as claimed in claim 1 further comprising: 
addressing a memory unit from each Search engine over 

integrated circuit pins shared with another Search 
engine; and 

reading the data in bursts over integrated circuit data pins 
dedicated to the Search engine from the address loca 
tions in the memory unit. 
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5. A method as claimed in claim 4 further comprising 
Storing a prefix Search tree data structure acroSS plural banks 
of memory units and accessing the tree Structure in Succes 
Sive read cycles. 

6. A method as claimed in claim 1 further comprising 
Storing a prefix Search tree data structure acroSS plural banks 
of memory units and accessing the tree Structure in Succes 
Sive read cycles. 

7. A method as claimed in claim 6 wherein duplicate 
copies of internal nodes of the tree Structure are Stored in 
each of plural banks. 

8. A method as claimed in claim 7 wherein leaf nodes are 
interleaved acroSS plural banks. 

9. A method as claimed in claim 1 wherein the determined 
memory address is the address of the next tree node. 

10. A method as claimed in claim 9 wherein the deter 
mined memory address is determined from a comparison of 
plural Stored keys with the Search key. 


