Abstract

Disclosed is sun screen formulation, comprising (a) a micronised organic UV absorber; and (b) a cosmetically acceptable carrier, wherein the micronised organic UV absorber is present in the oil phase of the formulation. The sunscreen composition of the invention provides excellent protection of the human skin against the damaging effects of sunlight, while permitting safe tanning of the skin.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LJ</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sun Screen Formulations

The present invention relates to new formulations and, in particular, to new UV-protection formulations which comprise a micronised UV absorber, wherein the micronised UV absorber is present in the oil phase of the formulation.

It has long been known that prolonged exposure to UV radiation which reaches the surface of the earth can lead to the formation of erythemas or light dermatoses, as well as to an increased incidence of skin cancers, or accelerated skin ageing.

Various sunscreen formulations have been proposed which include a material which is intended to counteract UV radiation, thereby inhibiting the said undesired effects on the skin.

A great number of compounds has been proposed for use as UV protectants in sunscreen formulations, especially soluble organic UV absorbers and insoluble micronised inorganic compounds, in particular zinc oxide and titanium dioxide.

With respect to the use in sunscreen formulations of soluble organic UV absorbers, they have the disadvantages that their effectiveness as UV protectants in terms of SPF (Sun Protection Factor) in a sunscreen formulation is often too low for commercial purposes; as a result of their solubility, they exhibit relatively high allergenic potential; and that as a result of intrinsic photochemical lability, the duration of the protective effect is often too low.

The high specific weight of insoluble inorganic compounds, such as titanium dioxide leads to a reduced stability of formulations containing them. Moreover, such inorganic compounds have been claimed to generate toxic radicals under the influence of light and water ("Redox Mechanisms in Heterogeneous Photocatalysis", Serpone et al, Electrochemistry in Colloids and Dispersions, Editors Mackay and Texter, VCH Publishers Inc., NewYork 1992).

In GB-A-2303549, there is described a method of producing micronised, insoluble organic UV absorbers, as well as a sunscreen composition comprising a) 0.1 to 15%, preferably 0.5 to 10% by weight, based on the total composition of a micronised formulation of an insoluble organic UV absorber, produced according to the said method; and optionally b) a cosmetically acceptable carrier.
Micronised, insoluble organic UV absorbers so obtained, when used in sunscreen formulations, provide excellent UV protection and have at least as high an SPF rating as corresponding sunscreen formulations containing a known inorganic UV absorber. Unlike the latter UV absorbers, micronised, insoluble organic UV absorbers show no tendency, under the influence of light, to generate radicals which could damage or sensitise human skin.

In a further development of the concept disclosed in GB-A-2303549, it has now been found that, micronised, insoluble organic UV absorbers which are present in the oil phase of the sunscreen formulation surprisingly show a significant improvement in sun protection.

Accordingly, the present invention provides, as a first aspect, a sunscreen formulation, which is especially suitable for use in pharmaceutical or cosmetic applications, comprising
(a) a micronised organic UV absorber; and
(b) a cosmetically acceptable carrier,
wherein the micronised organic UV absorber is present in the oil phase of the formulation.

The micronised organic UV absorber, component (a), is preferably produced by the method described in GB-A-2303549, namely by a process which comprises grinding an organic UV absorber, in coarse particle form, in a grinding apparatus, in the presence of 1 to 50%, preferably 5 to 40% by weight, based on the micronised organic UV absorber, of an alkyl polyglucoside having the formula CₙH₂ₙ₊₁O(C₆H₁₀O₅)ₓH, in which n is an integer ranging from 8 to 16 and x is the mean polymerisation level of the glucoside moiety (C₆H₁₀O₅) and ranges from 1.4 to 1.6, or an ester thereof.

The grinding apparatus used to produce the micronised organic UV absorber may be, e.g., a jet, ball, vibration or hammer mill, preferably a high speed stirring mill or impact mill, especially a rotating ball mill, vibrating mill, tube mill or rod mill.

The alkyl polyglucoside may consist of a C₁-C₁₂ ester of the compound of formula C₉H₁₂n₊₁O(C₆H₁₀O₅)ₓH, namely an ester formed by reacting a C₁-C₁₂ acid, such formic, acetic, propionic, butyric, sulfo-succinic, citric or tartaric acid, with one or more free OH groups on the glucoside moiety (C₆H₁₀O₅).
The micronised organic UV absorber may be incorporated into the oil phase with different methods.

In a preferred incorporation method the micronised organic UV absorber may be incorporated as powder. For this purpose the micronised organic UV absorber may be subjected to known powdering processes like solvent precipitation, vacuum spraying from solvents etc.. These powders have a particle size of 0,1 nm to 2 µm. In order to prevent agglomeration processes the micronised organic UV absorber may be coated before powdering with a surface active agent like nonionic, anionic, cationic or amphoteric surfactants like phospholipids or known polymers, for example PVP, acrylates etc..

As example, a water-soluble surfactant or emulsifier is added to the aqueous suspension of the micronised organic UV absorber. The mixture is then spray-dried. During the spray-drying process the surfactant or emulsifier sheathes the micro-particles in form of a thin film and inhibits aggregation or facilitates the re-dispersion to the desired particle size in the oil phase.

In another preferred method the micronised organic UV absorber may be transferred to the oil phase during the preparation of the sun screen formulation: when mixing the micronised organic UV absorber which was produced by aqueous grinding with the oil phase of the sun screen formulation the water will be removed by known methods like vacuum removal. By this measure the micronised organic UV absorber will be transferred to the oil phase of the formulation.

Furthermore, it was observed that the micronised organic UV absorber which is present in the aqueous phase of the sun screen composition will migrate into the oil phase after a couple of days or weeks.

Therefore, another aspect the present invention refers to a method of preparation of the sunscreen composition by micronising the organic UV absorber in the first step as aqueous suspension, mixing the micronised organic UV absorber with the oil phase of the sunscreen composition in a second step and storing the formulation for at least three weeks in a final step.
Suitable organic UV absorber may be, e.g., a triazine, a benzotriazole, a vinyl group-containing amide, a cinnamic acid amide or a sulfonated benzimidazole UV absorber.

A preferred class of triazine compounds is that having the formula

\[
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3
\end{array}
\]

in which

\(\text{R}_1, \text{R}_2 \) and \(\text{R}_3 \) independently are \(\text{H}; \text{OH}; \text{C}_1-\text{C}_3 \text{alkoxy}; \text{NH}_2; \text{NH}-\text{R}_4; \text{N}(\text{R}_4)_2; \text{OR}_4 \), wherein \(\text{R}_4 \) is \(\text{C}_1-\text{C}_3 \text{alkyl} \); phenyl; phenoxy; anilino; pyrrolo, in which the respective phenyl, phenoxy or anilino, or pyrrolo moieties are not substituted or substituted by one, two or three substituents selected from \(\text{OH}, \text{carboxy}, \text{CO-NH}_2, \text{C}_1-\text{C}_3 \text{alkyl}, \text{C}_1-\text{C}_3 \text{alkoxy}, \text{a methylidenediacamphor group}, \text{a group -(CH=CH)}_m\text{C(=O)-OR}_4, \text{a group}

\[
\text{CH}=\text{CH}-\text{C}(=\text{O})-\text{OH}
\]

or the corresponding alkali metal, ammonium, mono-, di- or tri-\(\text{C}_1-\text{C}_4 \text{alkylammonium}, \) mono-, di- or tri-\(\text{C}_2-\text{C}_4 \text{alkanolammonium salts}, \) or the \(\text{C}_1-\text{C}_3 \text{alkyl esters thereof}, \) a radical of formula (1a) \(-(\text{CH}_2)_m \),

\(\text{R}_5 \) is hydroxy; \(\text{C}_1-\text{C}_3 \text{alkyl} \) that is unsubstituted or substituted by one or more \(\text{OH} \) groups; \(\text{C}_1-\text{C}_3 \text{alkoxy} \); amino; mono- or di-\(\text{C}_1-\text{C}_3 \text{alkylamino} \); \(\text{M} \); a radical of formula

\[
\begin{array}{c}
\text{R}'' \text{N}^+-(\text{CH}_2)_m-\text{O}^{-}
\end{array}
\]

or

\[
\begin{array}{c}
\text{R}''\text{N}^+\text{O}^{-}
\end{array}
\]

\(\text{R}', \text{R}'' \) and \(\text{R}''' \) are each independently of the others \(\text{C}_1-\text{C}_{14} \text{alkyl} \) that is unsubstituted or substituted by one or more \(\text{OH} \) groups;
R₆ is hydrogen; M; C₁-C₆alkyl; or a radical of the formula -(CH₂)ₘ₂-O-T₁;

M is a metal cation;

T₁ is hydrogen; or C₁-C₆alkyl;

m is 0 or 1;

m₁ is from 1 to 5;

m₂ is from 1 to 4;

m₃ is from 2 to 14.

Preferred compounds of formula (1) are those having the formula

![Chemical structure](image)

in which

R₇ and R₈, independently of one another, are C₁-C₁₅alkyl; C₂-C₁₅alkenyl; a radical of the

formula -(CH₂)-CH(-OH)-CH₂-O-T₁; or; a radical of the

formula -(CH₂)ₘ₁-O-(CH₂)ₘ₂-T₂; a radical of the formula

![Chemical structure](image)

(2a)

R₉ is a direct bond; a straight-chain or branched C₁-C₄alkylene radical or a radical of the

formula −Cₘ₁H₂₋ₘ₁ or −Cₘ₁H₂₋ₘ₁O−;

R₁₀, R₁₁ and R₁₂, independently of one another, are C₁-C₁₅alkyl; C₁-C₁₅alkoxy or a radical of

the formula −O-Si-R₁₃

R₁₃
R_{13} is C$_1$-C$_8$alkyl;

T_1 is hydrogen; or C$_1$-C$_8$alkyl;

m_1, m_2 and m_3, independently of one another, are 1 to 4;

p_1 is 0 or a number from 1 to 5;

A_1 is a radical of the formula

$$(2b) \quad \text{or of the formula} \quad (2c)$$

$$(2d)$$

R_{14} is hydrogen; C$_1$-C$_{10}$alkyl, -(CH$_2$CHR$_{15}$-O)$_{n_1}$R$_{16}$; -CH$_2$-CH(-OH)-CH$_2$-O-T_1; or a radical

of the formula -(CH$_2$)$_{m_1}$-O-(CH$_2$)$_{m_2}$-T$_2$;

R_{15} is hydrogen; M; C$_1$-C$_8$alkyl; or a radical of the formula -(CH$_2$)$_{m_2}$-O-T_1;

R_{16} is hydrogen; or methyl;

Q_1 C$_1$-C$_8$alkyl;

M is a metal cation; and

n_1 is 1-16.

Preferred compounds of formula (2) are those of formulae

$$(2e)$$

$$(2f)$$

the formula
in which
R_{17} and R_{18}, independently of one another, are C_{3}-C_{18}alkyl; or -CH_{2}\cdot CH(-OH)-CH_{2}\cdot O-T_{1};
R_{19} is C_{1}-C_{10}alkyl or a radical of the formula
\[(2a_{1}) \quad -\text{CH}_{2} - \text{O} - T_{2} \quad \text{or the formula} \quad (2a_{2}) \quad -\text{CH}_{2} - \text{O} - \text{O} - T_{2} ;\]
R_{20} is hydrogen; M; C_{1}-C_{5}alkyl; -NH-C_{1}-C_{5}alkyl, preferably -NH-tert.alkyl; or a radical of the formula -(CH_{2})_{m}-O-T_{2};
T_{1} and T_{2} independently of one another, are hydrogen; or C_{1}-C_{5}alkyl; and
m is 1 to 4.

Uppermost of interest are compounds of the formulae (2e) and (2f), in which
R_{17} and R_{18}, independently of one another, are C_{3}-C_{18}alkyl; or -CH_{2}\cdot CH(-OH)-CH_{2}\cdot O-T_{1};
R_{19} is C_{1}-C_{10}alkyl;
and compounds of the formulae (2g) and (2h), in which
R_{17} and R_{18}, independently of one another, are C_{3}-C_{18}alkyl or -CH_{2}\cdot CH(-OH)-CH_{2}\cdot O-T_{1}; and
T_{1} is hydrogen; or C_{1}-C_{5}alkyl.

Very particularly preferred in this case are triazine compounds of the formula (2e) - (2h), in which R_{17} and R_{18} have the same meaning.

Furthermore, interesting triazines correspond to the formula
in which

R_{21} is C_1-C_{30}alkyl; C_2-C_{30}alkenyl; unsubstituted or C_1-C_6alkyl-mono- or polysubstituted C_5-C_{12}cycloalkyl; C_1-C_6alkoxy-C_1-C_{12}alkyl; amino-C_1-C_{12}alkyl; C_1-C_6monoalkylamino-C_1-C_{12}alkyl; C_1-C_6dialkylamino-C_1-C_{12}alkyl; a radical of the formula

(3a) $-(CH_2)_m-(O)_{m_1}$; or (3b) [Diagram];

R_{22}, R_{23} and R_{24}, independently of one another, are hydrogen, hydroxy, C_1-C_{30}alkyl, C_2-C_{30}alkenyl,

R_{25} is hydrogen; or C_1-C_6alkyl;

m_1 is 0 or 1; and

n_1 is 1 to 5.

Preferred compounds correspond to the formula

(4) [Diagram]

wherein
Further preferred compounds of formula (1) are those having one of the formulae:

(5) \[
\begin{align*}
\text{OCH}_3 & \quad \text{OCH}_3 \\
\end{align*}
\]

(6) \[
\begin{align*}
\text{OCH}_3 \\
\end{align*}
\]
as well as 2,4,6-tris(diisobutyl-4'-aminobenzalmalonate)-s-triazine and 2,4-bis(diisobutyl-4'-aminobenzalmalonate)-6-(4'-aminobenzylidenecamphor)-s-triazine.

Particularly preferred compounds of formula (1) are those having the formula:

\[
\begin{align*}
R_{26} & \text{OOC} & & \text{NH} & & \text{N} & & \text{N} & & \text{N} & & \text{NH} & & \text{COOR}_{26} \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & \\
\end{align*}
\]
in which the individual radicals \(R_{26} \) are the same or different and each is hydrogen; an alkali metal; an ammonium group \(N(R_{27})_4 \) in which \(R_{27} \) is hydrogen or an organic radical; \(C_1-C_2 \)-alkyl; or a polyoxyethylene radical which contains from 1 to 10 ethylene oxide units and the terminal OH group of which may be etherified by a \(C_1-C_2 \)-alcohol.

In relation to the compounds of formula (25), when \(R_{26} \) is an alkali metal it is preferably potassium or, especially sodium; when \(R_{26} \) is a group \(N(R_{27})_4 \) in which \(R_{27} \) has its previous significance, it is preferably a mono-, di- or tri-\(C_1-C_2 \)-alkylammonium salt, a mono-, di- or tri-\(C_2-C_4 \)-alkanolammonium salt or a \(C_1-C_3 \)-alkyl ester thereof; when \(R_{27} \) is a \(C_1-C_3 \)-alkyl group, it is preferably a \(C_1-C_2 \)-alkyl group, more preferably a methyl group; and when \(R_{27} \) is polyoxyethylene group, this preferably contains from 2-6 ethylene oxide units.

One preferred class of triazole micronised organic UV absorbers is that having the formula

\[
\begin{align*}
\text{(26)} & \quad \begin{array}{c}
\text{HO} \\
\text{T}_1 \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{T}_2 \\
\end{array}
\end{align*}
\]

in which \(T_1 \) is \(C_1-C_2 \)-alkyl or, preferably, hydrogen; and \(T_2 \) is \(C_1-C_4 \)-alkyl, preferably t-butyl, or \(C_1-C_4 \)-alkyl substituted by phenyl, preferably \(\alpha,\alpha \)-dimethylbenzyl.

A further preferred class of triazole micronised organic UV absorbers is that having the formula

\[
\begin{align*}
\text{(27)} & \quad \begin{array}{c}
\text{HO} \\
\text{T}_2 \\
\text{T}_2 \\
\end{array}
\end{align*}
\]

in which \(T_2 \) has its previous significance.
A still further preferred class of triazole micronised organic UV absorbers is that having the formula

\[
\begin{align*}
\text{(28)}
\end{align*}
\]

in which

\[T_2\] is hydrogen, \(\text{C}_1\text{C}_{12}\) alkyl, preferably t-butyl, or \(\text{C}_1\text{C}_4\) alkyl substituted by phenyl, preferably \(\alpha,\alpha\)-dimethylbenzyl.

A preferred class of vinyl group-containing amide micronised organic UV absorbers is that having the formula:

\[
\begin{align*}
\text{(29)}
R_{28}^\prime\text{Y}\text{N}\text{C}(R_{29})\text{C}(R_{30})\text{N}(R_{31})(R_{32}),
\end{align*}
\]

in which

\[R_{28}^\prime\] is \(\text{C}_1\text{C}_3\) alkyl, preferably \(\text{C}_1\text{C}_2\) alkyl, or phenyl optionally substituted by one, two or three substituents selected from \(\text{OH}, \text{C}_1\text{C}_3\alkoxy\) or \(\text{CO-OR}_{33}\),

\[R_{33}\] \(\text{C}_1\text{C}_3\) alkyl;

\[R_{29}, R_{30}, R_{31}\text{ and }R_{32}\] are the same or different and each is \(\text{C}_1\text{C}_3\alkyl\), preferably \(\text{C}_1\text{C}_2\alkyl\), or hydrogen;

\[Y\] is \(-\text{NH}\text{-} or \(-\text{O}\text{-}; and

\[m\] is 0 or 1.

Preferred compounds of formula (29) are 4-methyl-3-penten-2-one, ethyl-3-methylamino-2-butenoate, 3-methylamino-1-phenyl-2-buten-1-one and 3-methylamino-1-phenyl-2-buteno-1-one.

A preferred class of cinnamic acid amide micronised organic UV absorbers is that having the formula:

\[
\begin{align*}
\text{(30)}
R_{33}^\prime\text{O}\text{CH}\text{CH} \text{CO} \text{-NR}_{34}\text{R}_{35},
\end{align*}
\]

in which

\[R_{33}\] is hydroxy or \(\text{C}_1\text{C}_4\)alkoxy, preferably methoxy or ethoxy;
R_{34} is hydrogen or C_1-C_4 alkyl, preferably methyl or ethyl; and

R_{35} is \(-\text{CONH}_m\)-phenyl in which m is 0 or 1 and the phenyl group is optionally substituted by one, two or three substituents selected from OH, C_1-C_3 alkyl, C_1-C_3 alkoxy or CO-OR$_4$ in which R_4 is C_1-C_4 alkyl.

Preferably R_{35} is phenyl, 4-methoxyphenyl or the phenylaminocarbonyl group.

A preferred class of sulfonated benzimidazole micronised organic UV absorbers is that having the formula

![Formula](image)

in which M is hydrogen or an alkali metal, preferably sodium, an alkaline earth metal, such as magnesium or calcium, or zinc.

Further preferred classes of micronised or micronisable UV absorbers used for the present invention:

- p-aminobenzoic acid derivatives, typically 2-ethylhexyl-4-dimethylaminobenzoate
- salicylic acid derivatives, typically 2-ethylhexyl salicylate, homosalates, and isopropyl silyclates;
- benzophenone derivatives, typically 2-hydroxy-4-methoxybenzophenone;
- dibenzoylmethane derivatives, typically 1-(4-tert-butyphenyl)-3-(4-methoxyphenyl)propane-1,3-dione;
- diphenylacrylates, typically 2-ethylhexyl-2-cyano-3,3-diphenylacrylate and 3-(benzofuranyl)-2-cyanoacrylate;
- 3-imidazol-4-yl-acrylic acid and 3-imidazol-4-yl-acrylate;
- polymeric UV absorbers, such as the benzylidenemalonate derivatives described, inter alia, in EPA-709 080;
- cinnamic acid derivatives, typically the 2-ethylhexyl-4-methoxycinnamate or isoamylate or cinnamic acid derivatives disclosed, inter alia, in US-A-5 601 811 and WO 97/00851;
- camphor derivatives, typically 3-(4'-methyl)benzylidenebornan-2-one, 3-benzylidenebornan-2-one, N-[2(4)-2-oxyborn-3-ylidenemethyl]benzyl]acrylamide polymer, 3-(4'-trimethylammonium)benzylidenebornan-2-one methylsulfate, 3,3'-{(1,4-phenylenedimethine)-bis(7,7-dimethyl-2-oxobicyclo-[2.2.1]heptane-1-methanesulfonic acid) and the salts thereof, 3-(4'-sulfo)benzylidenebornan-2-one and the salts thereof;
- 2-phenylbenzimidazole-5-sulfonic acids and the salts thereof; and
- menthyl-o-aminobenzoate.

In the compounds of formula (1) to (30), C_1-C_{12} alkyl groups may be methyl, ethyl, n-propyl or isopropyl, butyl, pentyl, hexyl, heptyl, octyl, isoctyl, nonyl, decyl undecyl, dodecyl, methyl being preferred; and C_1-C_{9} alkoxy groups include methoxy, ethoxy, propoxy and isopropoxy, methoxy and ethoxy being preferred.

C_2-C_4 carboxyalkyl includes carboxymethyl, carboxyethyl, carboxypropyl and carboxyisopropyl, carboxymethyl being preferred.

C_5-C_9 cycloalkyl includes cyclopentyl, cyclohexyl and cyclooctyl.

The compounds of formula (1) to (30) are known.

Preferably, the micronised organic UV absorber, component (a) of the new sun screen agent, has a mean particle size in the range of from 0.01 to 2, more preferably from 0.02 to 1.5, especially from 0.05 to 1.0 μ.

The sun screen formulation may also comprise as optional component an oil-soluble organic UV absorber which is not micronized. This may be any known oil-soluble organic UV absorber, especially those which are already approved and marketed for cosmetic use. Such oil-soluble organic UV absorbers are described, for instance, in "Sunscreens", Development, Evaluation and Regulatory Aspects, Eds.: N.J. Lowe and N.A. Shaath, M.Dekker Inc., New York and Basel, 1990; and Ken Klein, Encyclopedia of UV absorbers for sunscreen products, Cosmetics & Toiletries 107 45-64 (1992).

The oil-soluble, non-micronised UV absorber may be, for example, a p-aminobenzoic acid derivative such as an ester, salt or an amine-modified derivative of p-aminobenzoic acid; a
salicylic acid derivative such as an ester or salt thereof; a benzophenone derivative; a
dibenzoylmethane derivative; a diphenylacrylate derivative; a benzofuran derivative; a
polymeric UV absorber containing one or more silico-organic residues; a cinnamate ester; a
camphor derivative; phenylbenzimidazole sulfonic acid and its salts; urocanic acid (3-
imidazol-4-yl-acrylic acid) or its ethyl ester; or amethyln anthranilate.

Specific examples of a p-aminobenzoic acid derivative include 4-aminobenzoic acid (PABA),
ethyl dihydroxypropyl PABA having the formula

\[
\text{CH}_3\text{CH(OH)CH}_2\text{N—COOC}_2\text{H}_5 ,
\]

PEG-25 PABA having the formula

\[
\text{H(O-CH}_2\text{CH}_2\text{H}_2\text{m N — CO - O-(CH}_2\text{CH}_2\text{O)x - C}_2\text{H}_5 ,}
\]
in which m, n and x are the same and each is approximately 25, octyl dimethyl PABA having
the formula

\[
\text{(CH}_3\text{)}\text{N—COO-isoctyl}
\]

and glyceryl aminobenzoate having the formula

\[
\text{H}_2\text{N—COOCH}_2\text{CH(OH)CH}_2\text{OH .}
\]

Specific examples of a salicylic acid derivative include homosalate (homomenthyl salicylate)
having the formula

\[
\text{CO—O —CH}_3 \\
\text{OH}
\]

triethanolamine salicylate having the formula
Specific examples of benzophenone derivatives include benzophenone-3-(2-hydroxy-4-methoxybenzophenone), benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) and benzophenone-8-(2,2'-dihydroxy-4-methoxybenzophenone).

A specific example of a dibenzoylmethane derivative is butyl methoxydibenzoylmethane [1-(4-tert.-butyl)-3-(4-methoxyphenyl)propane-1,3-dione].

Specific examples of a diphenylacrylate derivative include octocrylene (2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate) and etocrylene (ethyl-2-cyano-3,3′-diphenyl acrylate).

Specific examples of a benzofuran derivative include the 3-(benzofuranyl)-2-cyanoacrylates described in US 5338539 or EP 582189, especially the compounds having the formula

\[
\text{formula image}
\]
the 2-(2-benzofuranyl)-5-tert.-butylbenzoxazoles described in US 5518713 and the 2-(p-aminophenyl)benzofurans described in US 5362481.

Specific examples of a polymeric UV absorber containing one or more silico-organic residues are the benzylidenemalonate silicone derivatives disclosed in EP 709080, in particular the the compound having the formula

![Chemical structure](image)

in which R_{15} is H or OMe and r is approximately 7; and the polymers of the benzotriazole silicone type described in WO 94/06404, in particular the compound having the formula

![Chemical structure](image)

Specific examples of a cinnamate ester include octyl methoxy cinnamate (4-methoxy-cinnamic acid 2-ethylhexyl ester), diethanolamine methoxy cinnamate (diethanolamine salt of 4-methoxycinnamic acid), isoamyl p-methoxycinnamate (4-methoxycinnamic acid 2-isoamyl ester), 2,5-diisopropyl methyl cinnamate, the cinnamido derivatives disclosed in US 5601811 and the derivatives described in WO 97/00851.
Specific examples of camphor derivatives are 4-methyl-benzylidene camphor [3-(4'-methyl)benzylidene-bornan-2-one], 3-benzylidene camphor (3-benzylidene-bornan-2-one), polyacrylamidomethyl benzylidene camphor \{N-[2(and 4)-2-oxyborn-3-yldien-methyl]benzyl\}[acrylamide polymer], trimonium benzylidene camphor sulfate [3-(4'-trimethylammonium)-benzylidene-bornan-2-one methyl sulfate], terephthalidene dicamphor sulfonic acid \{3,3'-(1,4-phenylenedimethine)-bis-(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]heptan-1-methanesulfonic acid\} and salts thereof and benzylidene camphor sulfonic acid [3-(4'-sulfo)benzylidene-bornan-2-one] and salts thereof.

A specific example of a benzotriazole is 2-(2-hydroxy-5-methyl-phenyl)benzotriazole.

Specific examples of hydroxyphenyltriazine derivatives include, e.g. those described EP-A1-775,698, such as 2,4-bis-[[4--(2-ethyl-hexyloxy)-2-hydroxy]-phenyl]-6-(4-methoxyphenyl)-1,3,5-triazine.

Specific examples of bis-resorcinol-dialkylaminotriazines are, e.g., those described in EP-A1-780,382.

The sunscreen composition of the invention may be formulated as a water-in oil or an oil-in-water dispersion, an oil or oil-alcohol lotion, a vesicular dispersion of an ionic or nonionic amphiphilic lipid, a gel, a solid stick or an aerosol formulation.

When formulated as a water-in oil or an oil-in-water dispersion, the cosmically acceptable carrier preferably comprises 5 to 50% of an oil phase, 5 to 20% of an emulsifier and 30 to 90% of water, each by weight based on the total weight of the carrier.
The oil phase may comprise any oil conventionally used in cosmetic formulations, especially an emollient e.g., one or more of a fatty alcohol; hydrocarbon oil; a natural or synthetic triglyceride; a wax including esters of long-chain acids and alcohols as well as compounds having wax-like properties; a silicone oil; a fatty acid ester or a fatty alcohol; and lanoline-containing products.

Examples of fatty alcohols include cetyl alcohol, stearyl alcohol, octyl dodecanol, cetearyl alcohol and oleyl alcohol; examples of hydrocarbon oils are, e.g., mineral oil (light or heavy), petrolatum (yellow or white), polyethylene, paraffin, squalane, microcrystalline wax, cerasin, polybutene and hydrogenated polyisobutene; examples of a natural or synthetic triglyceride include castor oil, caprylic/capric triglyceride, Japan wax, hydrogenated vegetable oil, sweet almond oil, wheat germ oil, sesame oil, hydrogenated cottonseed oil, coconut oil, wheat germ glycerides, avocado oil, corn oil, trilaurin, hydrogenated castor oil, shea butter, cocoa butter, soybean oil, mink oil, sunflower oil, safflower oil, macadamia nut oil, olive oil, hydrogenated tallow, apricot kernel oil, hazelnut oil and borage oil; examples of a wax including esters of long-chain acids and alcohols as well as compounds having wax-like properties are, e.g., carnauba wax, beeswax (white or yellow), lanolin, candelelilla wax, ozokerite, lanolin oil, paraffin, Japan wax, microcrystalline wax, cerasin, jojoba oil, cetearyl esters wax, synthetic jojoba oil, synthetic beeswax and lanolin wax; a silicone oil is e.g. dimethicone or cyclomethicone; examples of a fatty acid ester or a fatty alcohol include isopropyl myristate, isopropyl palmitate, octyl palmitate, isopropyl lanolate, acetylated lanolin alcohol, the benzoate of C₁₂₋₁₅ alcohols, cetearyl octanoate, cetyl palmitate, myristyl myristate, myristyl lactate, cetyl acetate, propylene glycol dicaprylate/caprate, decyl olate, acetylated lanolin, stearyl heptanoate, diisostearyl malate, octyl hydroxystearate, octyl hydroxystearate and isopropyl isostearate; and examples of lanoline-containing products include lanolin, lanolin oil, isopropyl lanolate, acetylated lanolin alcohol, acetylated lanolin, hydroxylated lanolin, hydrogenated lanolin and lanolin wax.

The emulsifier may comprise any emulsifier conventionally used in cosmetic formulations, e.g., one or more of an ethoxylated ester of a natural oil derivative such as a polyethoxylated ester of hydrogenated castor oil; a silicone oil emulsifier such as a silicone polyol; an optionally ethoxylated fatty acid soap; an ethoxylated fatty alcohol; an optionally ethoxylated sorbitan ester; an ethoxylated fatty acid; or an ethoxylated glyceride.
The sunscreen composition of the invention may also comprise further components which are known to perform a useful function in a sunscreen composition. Examples of such further components include, e.g., emollients, skin moisturisers, skin tanning accelerators, antioxidants, emulsion stabilisers, thickening agents such as xanthan, moisture-retention agents such as glycerine, film formers, preservatives, perfumes and colourants.

The sunscreen composition of the invention provides excellent protection of the human against the damaging effects of sunlight, while permitting safe tanning of the skin. Moreover, the sunscreen composition of the invention has a skin waterproofing effect.

The following Examples further illustrate the present invention. Parts and percentages shown therein are by weight unless otherwise stated.
Example 1: Preparation of an O/W sunprotection lotion

Ingredients (% b.w.):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>polyglyceryl-3 methylglucose distearate</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>decyl oleate</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>caprylic/capric triglyceride</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>octyl methoxycinnamat</td>
<td>5.0</td>
</tr>
<tr>
<td>B</td>
<td>glycerin</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>phenonip</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>water</td>
<td>62.9</td>
</tr>
<tr>
<td>C</td>
<td>caromers</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
<td>0.8</td>
</tr>
<tr>
<td>D</td>
<td>50% aqueous suspension of micronised 2,2'-methylen-bis-[6-(2H-benztriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (d50 = 200 nm)</td>
<td>8.0</td>
</tr>
<tr>
<td>E</td>
<td>NaOH (10%)</td>
<td>ad libidum</td>
</tr>
</tbody>
</table>

The micronised organic UV absorber prepared by aqueous grinding (D) is added to the oil phase (A). Water is removed under vacuum so that the microparticles will transfer into the oil phase. Then, the homogenised oil phase (A) and the aqueous phase (B) are heated to 80°C each and stirred together. Then phase (C) is added and homogenised intensively. After cooling down to room temperature under stirring the emulsion is adjusted to pH 6.5-7 with 10% NaOH-solution.

The SPF (in vitro: SPF-analyser 290) of the emulsion is 34.
If the emulsion is prepared in the manner, that the aqueous suspension of the micronised UV absorber is added as additional phase either to the aqueous phase or separately at the end of the emulsifying process the *in-vitro*-SPF is only 12.

Example 2: O/W sunprotection lotion

Ingredients (% b.w.):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>polyglyceryl-3 methylglucose distearate</td>
</tr>
<tr>
<td></td>
<td>decyl oleate</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
</tr>
<tr>
<td></td>
<td>caprylyl/caprylic triglyceride</td>
</tr>
<tr>
<td></td>
<td>octocrylene</td>
</tr>
<tr>
<td></td>
<td>octyl methoxycinnamate</td>
</tr>
<tr>
<td>B</td>
<td>glycerin</td>
</tr>
<tr>
<td></td>
<td>terephthalidene dicampher sulfonic acid</td>
</tr>
<tr>
<td></td>
<td>phenonip*</td>
</tr>
<tr>
<td></td>
<td>water</td>
</tr>
<tr>
<td>C</td>
<td>carbomer</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
</tr>
<tr>
<td>D</td>
<td>dry micronised 2,2'-methylene-bis-[6-(2H-benztriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (d50 = 200 nm)]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>NaOH (10%)</td>
</tr>
<tr>
<td></td>
<td>ad libidum</td>
</tr>
</tbody>
</table>

Dry micronised 2,2'-methylene-bis-[6-(2H-benztriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (D) is suspended intensively in the oil phase by mixing and using supersonics. Then phase (A) and (B) are heated separately to 80°C and mixed without stirring. After addition of (C) it is homogenised intensively and cooled down to room temperature with stirring. At the end the desired pH is adjusted with (E).
The SPF (in vitro: SPF-analyser 290) of the emulsion is 30.

Example 3: O/W sunprotection lotion

Ingredients (% b.w.):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>polyglyceryl-3 methylglucose distearate</td>
</tr>
<tr>
<td></td>
<td>decyl oleate</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
</tr>
<tr>
<td></td>
<td>caprylic/capric triglyceride</td>
</tr>
<tr>
<td></td>
<td>octocrylene</td>
</tr>
<tr>
<td></td>
<td>octyl methoxycinnamate</td>
</tr>
<tr>
<td>B</td>
<td>glycerin</td>
</tr>
<tr>
<td></td>
<td>phenoxyethanol*</td>
</tr>
<tr>
<td></td>
<td>water</td>
</tr>
<tr>
<td>C</td>
<td>carbomer</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
</tr>
<tr>
<td>D</td>
<td>50% aqueous suspension of micronised 2,2'-methylene-bis-[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (d50 = 200 nm)</td>
</tr>
<tr>
<td>E</td>
<td>NaOH (10%)</td>
</tr>
</tbody>
</table>

The phases (A) and (B) are separately warmed up to 80°C and added together without stirring. After addition of (C) the formulation is homogenised intensively. After stirring the mixture is cooled down to room temperature. Phase (D) is adjusted with citric acid to pH 5.5 and additionally stirred for 15 minutes. At the end, the desired pH is adjusted with (E).
Immediate after preparation the *in-vitro*-SPF of 12 is determined which will rise to SPF of 37 after three weeks of storing. The presence of the micro-particles in the oil phase is detected microscopic.

Example 4: O/W sunscreen lotion

Ingredients (% b.w.):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>polyglyceryl-3-methylglucose distearate</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>decyl oleate</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>caprylic/capric triglyceride</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>2,4-Bis[[4-(2-ethylhexyloxy)-2-hydroxyphenyl]-6-(4-methoxyphenyl)-1,3,5-triazine</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>octyl methoxycinnamate</td>
<td>5.0</td>
</tr>
<tr>
<td>B</td>
<td>glycerin</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>phenonip<sup>4</sup></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>water</td>
<td>62.9</td>
</tr>
<tr>
<td>C</td>
<td>carbomer</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>isopropyl palmitate</td>
<td>0.8</td>
</tr>
<tr>
<td>D</td>
<td>50% aqueous suspension of micronised 2,2'-methylene-bis-[6-(2H-benztriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (d50 = 200 nm)</td>
<td>8.0</td>
</tr>
<tr>
<td>E</td>
<td>NaOH (10%)</td>
<td>ad libidum</td>
</tr>
</tbody>
</table>

2,4-Bis[[4-(2-ethylhexyloxy)-2-hydroxyphenyl]-6-(4-methoxyphenyl)-1,3,5-triazine is dissolved in octyl methoxycinnamate and added to the oil phase (A). The phases (A) and (B) are heated separately to 80°C and added together without stirring. After addition of (C) the mixture is homogenised intensively. Under stirring the mixture is cooled down to room
temperature. Phase (D) is adjusted to pH 5.5 with citric acid and added portionwise with cautious stirring. After additional stirring for ca. 15 minutes the desired pH is adjusted with (E).

Immediately after preparation the in-vitro-SPF of about 23 is determined which will rise to SPF of 54 after three weeks of storing. The presence of the micro-particles in the oil phase is detected microscopic.

Example 5:

60 g of the compound of formula

![Chemical Structure](101)

are dispersed in a solution of 12 g C₆-C₆alkyl-polyglucoside (Plantacare® 2000, Henkel) in 128 g of water and milled in a perl mill with 40 ml ZrO₂-grinding pearls to an average particle size of 170 nm.

After separating the grinding aids 0.2 % xanthan gum dispersed in 0.4 % 1,2-propyleneglycol are added to the obtained nanodispersion (= nanodispersion 2).

This nanodispersion is further worked up to a W/O emulsion of the following composition:

- 20 g nanodispersion 2 (comprising 6 % of the compound of formula (101))
- 5 g polyglyceryl-2-dipolyhydroxystearate
- 1 g glyceryl oleate
- 6 g caprylic/capric triglyceride
- 6 g octyldodecanol
- 5 g cetearyl isononanoate
- 1 g tocopheryl acetate
- 1.2 g beewax
- 49.3 g water
- 5 g glycerine
0.5 g preservative

The SPF (in vitro: SPF analyser 290) is 20.2.

Example 6:
If 1.5 g 2-ethylhexyl-p-methoxycinnamate at the expense of water is added to the nanodispersion 2 of Example 5 an unexpected high SPF of 36.2 is obtained.

<table>
<thead>
<tr>
<th>20 g</th>
<th>nanodispersion 2 (comprising 6% of the compound of formula (101))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 g</td>
<td>polyglyceryl-2-dipolyhydroxystearate</td>
</tr>
<tr>
<td>1 g</td>
<td>glyceryl oleate</td>
</tr>
<tr>
<td>6 g</td>
<td>caprylic/capric triglyceride</td>
</tr>
<tr>
<td>6 g</td>
<td>octyldecanol</td>
</tr>
<tr>
<td>5 g</td>
<td>cetearyl isonanoate</td>
</tr>
<tr>
<td>1 g</td>
<td>tocopheryl acetate</td>
</tr>
<tr>
<td>1.2 g</td>
<td>beewax</td>
</tr>
<tr>
<td>1.5 g</td>
<td>2-ethylhexyl-p-methoxycinnamate</td>
</tr>
<tr>
<td>47.8 g</td>
<td>water</td>
</tr>
<tr>
<td>5 g</td>
<td>Glycerin</td>
</tr>
<tr>
<td>0.5 g</td>
<td>preservative</td>
</tr>
</tbody>
</table>
Claims:

1. Sun screen formulation, comprising
 (a) a micronised organic UV absorber; and
 (b) a cosmetically acceptable carrier,
 wherein the micronised organic UV absorber is present in the oil phase of the formulation.

2. A sun screen formulation according to claim 1 in which the micronised organic UV absorber is a triazine, a benzotriazole, a vinyl group-containing amide, a cinnamic acid amide or a sulfonated benzimidazole UV absorber.

3. A sun screen formulation according to claim 2 in which the triazine UV absorber has the formula

 \[R_1 \]
 \[\begin{array}{c}
 \text{N} \\
 \text{N}
 \end{array} \]
 \[\begin{array}{c}
 \text{R}_2 \\
 \text{N}
 \end{array} \]
 \[\begin{array}{c}
 \text{R}_3 \\
 \text{N}
 \end{array} \]

 in which
 \(R_1, R_2 \) and \(R_3 \), independently, are H; OH; C\(_1\)-C\(_3\)alkoxy; NH\(_2\); NH-R\(_4\); N(R\(_4\))\(_2\); OR\(_4\), wherein \(R_4 \) is C\(_1\)-C\(_3\) alkyl; phenyl; phenoxy; anilino; pyrrolo, in which the respective phenyl, phenoxy or anilino, or pyrrolo moieties are not substituted or substituted by one, two or three substitutents selected from OH, carboxy, CO-NH\(_2\), C\(_1\)-C\(_3\)alkyl, C\(_1\)-C\(_3\)alkoxy, a methyldienecamphor group, a group -(CH=CH)\(_{m}\)C(=O)-OR\(_4\), a group

 \[\text{CH}=\text{CH}-\text{C}(=\text{O})-\text{OH} \] or the corresponding alkali metal, ammonium, mono-, di- or tri-C\(_1\)-C\(_3\)alkylammonium, mono-, di- or tri-C\(_2\)-C\(_3\)alkanolammonium salts, or the C\(_1\)-C\(_3\)alkyl esters thereof, a radical of formula (1a)

 \[\text{(CH}_2\text{)}_{m_1} \]
 \[\text{O} \]
 \[\text{R}_5 \]

 \(R_5 \) is hydroxy; C\(_1\)-C\(_3\)alkyl that is unsubstituted or substituted by one or more OH groups; C\(_1\)-C\(_3\)alkoxy; amino; mono- or di-C\(_1\)-C\(_3\)alkylamino; M; a radical of formula
R', R'' and R''' are each independently of the others C_{1-14}alkyl that is unsubstituted or substituted by one or more OH groups;

R_6 is hydrogen; M; C_{1-5}alkyl; or a radical of the formula -(CH_2)_{m_2}O-T_1;

M is a metal cation;
T_1 is hydrogen; or C_{1-5}alkyl;
m is 0 or 1;
m_1 is from 1 to 5;
m_2 is from 1 to 4;
m_3 is from 2 to 14.

4. A sun screen formulation according to claim 2 or 3 in which the triazine UV absorber has the formula

in which

R_7 and R_8, independently of one another, are C_{1-18}alkyl; C_{2-18}alkenyl; a radical of the formula -CH_2-CH(-OH)-CH_2-O-T_1; or; a radical of the
formula \[-(\text{CH}_2)_{m_1} - \text{O} - (\text{CH}_2)_{m_2} - T_2;\] a radical of the formula

\[(2a) \quad R_9 \quad \begin{array}{c} \text{Si} \quad \text{O} \\ R_{10} \quad \text{Si} \quad R_{12} \; ; \end{array} \]

\[R_{11} \]

\[p_1 \]

\[R_9 \] is a direct bond; a straight-chain or branched \(\text{C}_{1-4} \)-alkylene radical or a radical of the formula \(-\text{C}_{m_1} \text{H}_{2m_1}\) or \(-\text{C}_{m_1} \text{H}_{2m_1} \text{O}\) ;

\[R_{10}, R_{11} \text{ and } R_{12}, \text{ independently of one another, are } \text{C}_{1-4} \text{alkyl}\; ; \text{C}_{1-4} \text{alkoxy} \text{ or a radical of the formula} \]

\[-\text{O} - \text{Si} - R_{13} \]

\[R_{13} \]

\[R_{13} \] is \(\text{C}_{1-2} \)-alkyl;

\[T_1 \] is hydrogen; or \(\text{C}_{1-2} \)-alkyl;

\[m_1, m_2 \text{ and } m_3, \text{ independently of one another, are } 1 \text{ to } 4; \]

\[p_1 \] is 0 or a number from 1 to 5;

\[A_1 \] is a radical of the formula

\[(2b) \quad \begin{array}{c} \text{O} \\ R_{14} \end{array} \]

\[(2c) \quad \begin{array}{c} \text{N} \\ \text{CO}_2\text{R}_{15} \end{array} \]

\[(2d) \quad \begin{array}{c} \text{Q}_1 \end{array} \]

\[R_{14} \] is hydrogen; \(\text{C}_{1-10} \)-alkyl, \(-(\text{CH}_2\text{CHR}_{16} \text{O})_n\) \(R_{15} \); a \(-\text{CH}_2\text{-CH(-OH)}\text{-CH}_2\text{-O-}T_1; \) or radical

of the formula \[-(\text{CH}_2)_{m_1} - \text{O} - (\text{CH}_2)_{m_2} - T_2;\]

\[R_{15} \] is hydrogen; \(\text{M;C}_{1-2} \)-alkyl; or a radical of the formula \(-(\text{CH}_2)_{m_2} \text{O-} T_1 \);:

\[R_{15} \]

\[R_{16} \] is hydrogen; or methyl;

\[Q_1 \] \(\text{C}_{1-2} \)-alkyl;
M is a metal cation; and
\(n_1 \) is 1-16.

5. A sun screen formulation according to claim 2 in which the triazine compound has the formula

![Triazine Compound](image)

in which

- \(R_{21} \) is \(C_1-C_{30} \)alkyl; \(C_2-C_{30} \)alkenyl; unsubstituted or \(C_1-C_5 \)alkyl-mono- or polysubstituted \(C_5-C_{12} \)cycloalkyl, \(C_1-C_9 \)alkoxy-\(C_1-C_{12} \)alkyl; amino- \(C_1-C_{12} \)alkyl; \(C_1-C_5 \)monoalkylamino-\(C_1-C_{12} \)alkyl; \(C_1-C_9 \)dialkylamino-\(C_1-C_{12} \)alkyl; a radical of the formula

\[
(3a) \quad -(\text{CH}_2)_{n_1}-(\text{O})_{m_1} \quad \text{or} \quad (3b) \quad \text{[Image of radical]}
\]

- \(R_{22}, R_{23} \) and \(R_{24} \), independently of one another, are hydrogen, hydroxyl, \(C_1-C_{30} \)alkyl, \(C_2-C_{30} \)alkenyl,
- \(R_{25} \) is hydrogen; or \(C_1-C_5 \)alkyl;
- \(m_1 \) is 0 or 1; and
- \(n_1 \) is 1 to 5.

6. A sun screen formulation according to claim 5 in which the triazine compound has the formula
wherein

R_{26} is $-O{-CH_2-CH_{n-C_{10}H_{21}}}^{-}$, $-O{-isoC_{18}H_{36}}^{-}$, $-O{-CH_2-CH_{n-C_{6}H_{13}}}^{-}$, $-O{-n-C_{18}H_{37}}^{-}$, or $-O-2$-ethylhexyl; $-O{(CH_2}_3-N(C_2H_5)_2}^{-}$.

7. A sun screen formulation according to claim 2 in which the triazine compound has the formula
in which the individual radicals R_{26} are the same or different and each is hydrogen; an alkali metal; an ammonium group $N(R_{27})_4$ in which R_{27} is hydrogen or an organic radical; C_1-C_3-alkyl; or a polyoxyethylene radical which contains from 1 to 10 ethylene oxide units and the terminal OH group of which may be etherified by a C_1-C_3-alcohol.

8. A sun screen formulation according to claim 1 or 2 in which the triazole organic UV absorber has the formula

in which T_1 is C_1-C_3-alkyl or hydrogen; and T_2 is C_1-C_4-alkyl.

9. A sun screen formulation according to claim 1 or 2 in which the triazole organic UV absorber has the formula

in which T_2 is as defined in claim 8.
10. A sun screen formulation according to claim 2 in which the benzotriazole organic UV absorber has the formula

\[
\text{(28)}
\]

in which

\(T_2\) is hydrogen, \(C_1\text{-}C_{12}\text{alkyl}\) or \(C_1\text{-}C_4\text{alkyl}\) substituted by phenyl.

11. A sun screen formulation as defined in claim 10 in which \(T_2\) is t-butyl.

12. A sun screen formulation according to claim 2 in which the vinyl group-containing amide organic UV absorber has the formula

\[
R_{28}\text{-}(Y)_m\text{-}CO\text{-}C(R_{29})=C(R_{30})=N(R_{31})(R_{32}), \text{ in which}
\]

\(R_{28}\) is \(C_1\text{-}C_9\text{alkyl}\), phenyl or phenyl substituted by one, two or three substituents selected from \(\text{OH}, C_1\text{-}C_9\text{alkyl}, C_1\text{-}C_9\text{alkoxy}\) or \(\text{CO-OR}_{33}\),

\(R_{33}\) is \(C_1\text{-}C_9\text{alkyl}\);

\(R_{29}, R_{30}, R_{31}, R_{32}\) are the same or different and each is \(C_1\text{-}C_9\text{alkyl}\) or hydrogen;

\(Y\) is \(-\text{NH-}\) or \(-\text{O-}\); and

\(m\) is 0 or 1.

13. A sun screen formulation according to claim 2 in which the cinnamic acid amide organic UV absorber has the formula

\[
\text{(30)}
\]

\(R_{33}\) is hydroxy or \(C_1\text{-}C_9\text{alkoxy}\),

\(R_{34}\) is hydrogen or \(C_1\text{-}C_9\text{alkyl}\), and

\(R_{35}\) is \(-(\text{CONH})_m\text{-phenyl}\) in which \(m\) is 0 or 1 and the phenyl group is optionally substituted by one, two or three substituents selected from \(\text{OH}, C_1\text{-}C_9\text{alkyl}, C_1\text{-}C_9\text{alkoxy}\) or \(\text{CO-OR}_4\) in which \(R_4\) is \(C_1\text{-}C_9\text{alkyl}\).
14. A sun screen formulation according to claim 2 in which the sulfonated benzimidazole organic UV absorber has the formula:

\[(31)\]

M is hydrogen or an alkali metal, an alkaline earth metal or zinc.

15. A sun screen formulation according to any of the preceding claims in which the micronised organic UV absorber, component (a), has a mean particle size in the range of from 0.1 nm to 2\(\mu\).

16. A sun screen formulation according to any of the preceding claims wherein the sun screen formulation additionally comprises an oil-soluble organic UV absorber selected from a p-aminobenzoic acid derivative; a salicylic acid derivative; a benzophenone derivative; a dibenzoylmethane derivative; a diphenylacrylate derivative; a benzofuran derivative; a polymeric UV absorber containing one or more silico-organic residues; a cinnamate ester; a camphor derivative; a trianilino-s-triazine derivative; phenylbenzimidazole sulfonic acid or one of its salts; urocanic acid (3-imidazol-4-yl-acrylic acid) or its ethyl ester; menthyl anthranilate; a benzotriazole; a hydroxyphenyltriazine derivative; and a bis-resorcinoldialkylaminotriazine.

17. A sunscreen formulation according to any of the preceding claims comprising 0.5 to 10% by weight of a micronised organic UV absorber (a); and a cosmetically acceptable carrier (b).

18. A sunscreen formulation according to any of the preceding claims which is formulated as a water-in oil or an oil-in-water dispersion, an oil or oil-alcohol lotion, a vesicular dispersion of an ionic or nonionic amphiphilic lipid, an oil-alcohol or alcohol gel, a solid stick or an aerosol formulation.
19. A method for the preparation of the sunscreen formulation according to claim 1, wherein the organic UV absorber is micronised in the first step, and incorporated as powder into the oil phase of the composition.

20. A method according to claim 19, wherein the micronised organic UV absorber is coated before incorporating with a surface active agent or a polymer.

21. A method according to claim 20, wherein the surface active agent is an anionic, cationic, nonionic or amphoteric surfactant.

22. A method for the preparation of the sunscreen formulation according to claim 1 by micronising the organic UV absorber in the first step as aqueous suspension, mixing the micronised organic UV absorber with the oil phase of the sunscreen composition in a second step and storing the formulation for at least three weeks in a final step.

23. A method for the preparation of the sunscreen formulation according to claim 1 by micronising the organic UV absorber in the first step as aqueous suspension, mixing the micronised organic UV absorber with the oil phase of the sunscreen composition in a second step and removing the water from the aqueous phase in the final step.

24. A method according to claim 23 wherein the water is removed by applying a vacuum.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC | A61K7/42 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

- **Minimum documentation searched** (classification system followed by classification symbols)
 - IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used).

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 303 549 A (CIBA-GEIGY AG) 26 February 1997 (1997-02-26) cited in the application the whole document</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>US 5 733 531 A (M. MITCHNICK ET AL) 31 March 1998 (1998-03-31) claim 1; example V</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 696 345 A (INNOVATION SCIENTIFIQUE DERMATOLOGIQUE) 8 April 1994 (1994-04-08) example 1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Special categories of cited documents:**
 - "A": document defining the general state of the art which is not considered to be of particular relevance.
 - "E": earlier document but published on or after the international filing date.
 - "L": document which may throw doubts on prior art(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 - "O": document referring to an oral disclosure, use, exhibition or other means.
 - "P": document published prior to the international filing date but later than the priority date claimed.
 - "T": later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
 - "X": document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
 - "Y": document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "&": document member of the same patent family.

Date of the actual completion of the international search

30 September 1999

Date of mailing of the international search report

11/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel: (+31-70) 540-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Glikman, J-F

Form PCT/ISA/510 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 2303549 A</td>
<td>26-02-1997</td>
<td>AU 699875 B</td>
<td>17-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6519996 A</td>
<td>18-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9609538 A</td>
<td>23-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2227004 A</td>
<td>06-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9703643 A</td>
<td>06-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 313189 A</td>
<td>29-07-1999</td>
</tr>
<tr>
<td>US 5733531 A</td>
<td>31-03-1998</td>
<td>US 5587148 A</td>
<td>24-12-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5223250 A</td>
<td>29-06-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2425195 A</td>
<td>16-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2188166 A</td>
<td>02-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0756478 A</td>
<td>05-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10504520 T</td>
<td>06-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9528912 A</td>
<td>02-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 668862 B</td>
<td>23-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1565692 A</td>
<td>07-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69227109 D</td>
<td>29-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69227109 T</td>
<td>18-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0585239 A</td>
<td>09-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6509321 T</td>
<td>20-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9213517 A</td>
<td>20-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5531985 A</td>
<td>02-07-1996</td>
</tr>
</tbody>
</table>

FR 2696345 A | 08-04-1994 | NONE