Office de la Propriete Canadian CA 2532676 A1 2006/07/21

Intellectuelle Intellectual Property
du Canada Office (21) 2 532 676
Un organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de dépét/Filing Date: 2006/01/12 (51) CLInt./Int.Cl. GO6F 17/00(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2006/07/21 GO6F 3/0417(2000.01)
(30) Priorité/Priority: 2005/01/21 (US11/041,400) (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
WANG, HAIYONG, US;
WAKEAM, JAMIE N., US;
TURNER, JEROIVI— JOS PH, US;
POULOSE SEBASTIAN, US;
BHATTACHARYAY SU 3HA US

(74) Agent: SMART & BIGGAR

(54) Titre : SYSTEME ET METHODE DE STOCKAGE D'UN DOCUMENT DANS UN FORMAT BINAIRE SERIE
54) Title: SYSTEM AND METHOD FOR STORING A DOCUMENT IN A SERIAL BINARY FORMAT

¥///#,,,ﬁﬂ—ﬂ- 300

304
302
Storage Bypass Application
Save
- Raw Data v QOperation Raw Data
Ink Analyzer
Digitizer Storage ——— > / { —_— N Y
Non-Ink |
Data
o
tnk Document
_ Structure
N
308 506
Ink Document
Structure Save
Request
Raw Data Load P | |
Operation ink Document
Structure
(57) Abrégée/Abstract:

A computer-readable medium having a data structure for storing document data in a serialized binary format so that the document
data Is accessible to other applications. A document structure Is generated that includes root node data. The document is stored in

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2532676 A1 2006/07/21

(21) 2 532676
(13) A1

(57) Abrege(suite)/Abstract(continued):

a serial binary data format. The serial binary format includes storing size data associated with the document structure in a first data
fleld. The serial binary format also includes storing document structure descriptor data in a second data field, wherein the
document structure descriptor data includes at least one flag for indicating data expectancy. The serial binary format further
Includes storing root node data in a third data filed, wherein the root node data is indicated by at least one of the flags.

10

CA 02532676 2006-01-12

Abstract

A computer-readable medium having a data structure for storing document
data in a serialized binary format so that the document data 1s accessible to other
applications. A document structure 1s generated that includes root node data. The
document 1s stored in a serial binary data format. The serial binary format includes
storing size data associated with the document structure in a first data field. The serial
binary format also includes storing document structure descriptor data 1n a second data
field, wherein the document structure descriptor data includes at least one flag for
indicating data expectancy. The serial binary format further includes storing root node

data in a third data filed, wherein the root node data is indicated by at least one of the

flags.

10

15

20

235

CA 02532676 2006-01-12

SYSTEM AND METHOD FOR STORING A DOCUMENT IN A SERJAL BINARY
FORMAT

Background of the Invention
Tablet PCs typically allow a user to draw or write directly on the screen.

This drawing or writing is generally referred to as "inking." Inking is a type ot user input
and may include a touch screen and a user engaging a computing pen and writing on a screen
as if writing with a traditional pen and paper. Inking is used with a wide variety of
applications. For example, inking may be used in drawing applications, painting
applications, word processing applications, credit card signature applications, and the like.
Inking may include more than just a visual representation of pen strokes; it
may include a data type. While data structures are known, the size of the data structure used
to store information may become excessively large and cumbersome. Also, document
structure compatibility between programs increases efficiency and general usability of the

computer. Compatibility, however, may be an issue where a user desires to transfer ink data

from one application to another ink application.

Summary of the Invention
In general, aspects of the present invention relate to a system and method for

generating a document structure and storing the document structure in a serial binary format.
The present invention also relates to a system and method for generating an ink document
structure and storing the ink document structure so that it is accessible by other applications.
The present invention further relates to a system and method for modifying or altering a
portion of an inking without requiring reanalysis of the entire inking.

Aspects of the invention relate to a computer-readable medium having a data
structure for storing document data in a serialized binary format so that the document data is
accessible to other applications. A document structure is generated that includes root node
data. The document is stored in a serial binary data format. The serial binary format

includes storing size data associated with the document structure 1n a first data field. The

10

15

20

25

CA 02532676 2006-01-12

serial binary format also includes storing document descriptor data in a second data field,
wherein the document structure descriptor data includes at least one flag for indicating data
expectancy. The serial binary format further includes storing root node data in a third data
field, wherein the root node data is indicated by at least on of the flags.

Other aspects of the invention relate to a computer-implemented method for
storing a binary tree structure in a serialized format. The computer-implemented method
includes storing document structure size data in a first data field. The computer-implemented
method also includes storing document structure descriptor data in a second data field,
wherein the document structure descriptor data includes at least one flag for indicating data
expectancy. The computer-implemented method further includes storing root node data in a
third data field, wherein the root node data is indicated by at least one of the flags.

Yet another aspect of the invention relates to a computer-readable medium
having computer-executable instructions stored thereon. The instructions include generating
an ink document structure, wherein the ink document structure includes at least one root
node. The instructions also include storing the ink document structure in a serial binary
format. The serial binary format includes storing size data associated with the ink document
structure 1n a first data field The serial binary format also includes storing ink document
descriptor data in a second data field, wherein the ink document structure descriptor data
includes at least one flag for indicating data expectancy. The serial binary format may
further include storing root node data in a third data field, wherein the root node data is

indicated by at least one of the flags.

Brief Description of the Drawings

FIGURE 1 illustrates an exemplary computing device that may be used in one
aspect of the present invention.

FIGURE 2 illustrates an exemplary mobile device that may be used in one
aspect of the present invention.

FIGURE 3 illustrates one exemplary aspect of the system for storing ink

document data in a serial binary format.

10

15

20

25

CA 02532676 2006-01-12

FIGURE 4 illustrates an exemplary inking in accordance with one aspect of
the present invention.

FIGURE 5 illustrates an exemplary ink document structure that represents a
portion of the inking represented in FIGURE 4.

FIGURE 6 illustrates a data structure for storing a serial binary data block in
accordance with aspects of the present invention.

FIGURE 7 illustrates a data structure for storing context node data in
accordance with aspects of the present invention.

FIGURE 8 illustrates a flow chart depicting general aspects for storing an ink

document structure in a serial binary format.

Detailed Description

Embodiments of the present invention now will be described more fully
hereinafter with reference to the accompanying drawings, which form a part hereof, and
which show, by way of illustration, specific exemplary embodiments for practicing the
invention. This invention may, however, be embodied in many different forms and should
not be construed as limited to the embodiments set forth herein; rather, these embodiments
are provided so that this disclosure will be thorough and complete, and will fully convey the
scope of the invention to those skilled in the art. Among other things, the present invention
may be embodied as methods or devices. Accordingly, the present invention may take the

form of an entirely hardware embodiment, an entirely software embodiment or an
embodiment combining software and hardware aspects. The following detailed description

1S, therefore, not to be taken in a limiting sense.

[1lustrative Embodiments Of A Method And System For Storing Data In a Serial Binary

Format

In general, the present invention relates to a system and method for generating

an ink document structure and storing the ink document structure so that it 1s accessible by

other applications. More specifically, the present invention relates to a system and method

20

CA 02532676 2006-01-12

for storing data in a serial binary format to increase the efficiency of the storage. The present
invention also relates to a system and method for modifying or altering a portion of an ink
without requiring reanalysis of the entire inking. Even though the description set forth herein
references storing and loading an ink document, the serial binary format referenced herein
may be used to store other types of data. For example, the present invention may include
data associated with a word processing application, spreadsheet application, drawing
application, graphics application, notes application, picture application or the like.

Succinctly stated, the serial binary format may be used to store any type of data that is

associated with a binary tree structure.

1. [llustrative Embodiments Of an Ink Application
As general context of one aspect of the present invention, an ink application

may provide real-time visual feedback when a user employs a pen to input data. Inking,
however, may include much more than a visualization of pen strokes; it may include a data
type. A user may build applications for a digitizer that supports various levels of
functionality for pen, ink, ink parsing, and ink recognition. Such applications range from
recognizing simple text input to creating and editing complex ink documents.

Ink applications may also include ink-to-text conversion. In some situations,
an application may not accept direct ink input. In such a situation, an ink application may
implement handwriting recognition and convert the ink to text so that it may be cut and
pasted into an application that does not accept direct ink input. Applications may also
recognize 1nk objects and their context in relation to other document objects. Other
embodiments allow a user to manipulate ink and use the ink to author rich documents that
contain text, graphics, vector shapes, multimedia objects and the like. Such embodiments
handle ink as a data type that has the capability of reflowing and overlying ink objects.

Ink inputs may be associated with an application in the form of raw ink data.
In one embodiment, the raw ink data may be sent to an ink analyzer to process the raw ink
data and generate an ink document structure that may be separate from the raw ink data. The
ink analyzer may implement parsing and recognition processes in order to divide the raw ink

data into manageable stroke components. As more fully set forth below, in one embodiment,

4

10

15

20

235

30

CA 02532676 2006-01-12

the ink analyzer may generate an ink document structure having a binary tree where each
node of the tree defines a relationship to the parts of the raw ink data. The ink document
structure allows ink applications associated with a platform to relate the raw ink data and the
ink document structure in order to load the original ink and the associated ink document
structure. The ink document structure also allows a user to load and modify the ink without
requiring reanalysis of the entire ink document. Also, the present invention may allow ink to
be shared between multiple applications on a platform.

FIGURE 3 represents a general overview of onie exemplary embodiment of a
system for storing ink document data in a serial binary format. As illustrated, system 300
includes digitizer 302, application 304, and ink analyzer 306. Digitizer 302 may include the
computing device described in conjunction with FIGURE 1. Digitizer 302 may also include
the mobile computing device described in conjunction with FIGURE 2. In one embodiment,
the digitizer includes a TABLET PC digitizer running the WINDOWS XP TABLET PC
EDITION from MICROSOFT CORPORATION, headquartered in Redmond, Washington.
The digitizer 302, however, may include any device that facilitates the operation of an 1nk
application.

Digitizer 302 digitizes user input strokes (e.g. writing and/or drawing strokes)
and, in one embodiment, stores the data in raw data storage 308. Raw data storage 308 1s any
type of storage capable of maintaining data from digitizer 302. Raw data storage 308 may be
associated with one or more applications and/or one or more platforms. In another
embodiment, digitizer 302 bypasses raw data storage 308 and transmits the digitized data to
application 304.

Application 304 may include any application associated with a platform. In
one embodiment, application 304 is an application that facilitates ink. Application 304 may
include a word processing application, a paint application, a drafting application, a drawing
application, a credit card signature application or the like. In one embodiment, application
304 includes InkEdit, InkPicture and/or OneNote from MICROSOFT CORPORATION. In
another embodiment, application 304 is capable of performing a save operation and a load
operation. The save operation may include saving ink data and non-ink data. Application

304 may save raw ink data in raw data storage 308, and application 304 may save an ink

5

10

15

20

25

30

CA 02532676 2006-01-12

document structure to an ink analyzer that is associated with a platform. During a load
operation, application 304 may load and integrate the ink document structure and the raw ink
data as will be further set forth below.

Ink analyzer 306 may be configured to receive raw ink data from application
304. Ink analyzer 306 is configured to perform structural analysis on the raw ink data in
order to generate an ink document structure. The structural analysis may include parsing the
raw data and recognition of the raw data.

In one embodiment, the structural analysis may facilitate text recognition,
writing and drawing classification, and layout analysis. Ink analyzer 306 may include a
parsing component and a recognizer component that operate in coordination to enhance text
recognition. For example, a parser may perform operations as a pre-processing step before
the ink is sent to a recognizer. The pre-processing allows the parser to parse and "clean"
multi-lined ink and send it to the recognizer one parcel at a time. A parcel may include a
portion of the ink document. The parser may be further configured to correct incorrect input
stroke order information to ensure that all strokes are recognized regardless of the order of
input. Also, the parser may generate information about neighboring lines. For example, the
fact that two neighboring lines start with a bullet may be a strong indicator that a current line
starts with a bullet.

In another embodiment, the parsing operation of ink analyzer 306 may also
include classifying ink as a drawing or writing. A writing may include any ink stroke that
facilitates a word. A drawing stroke may include anything that is not a writing stroke. For
example, referring to FIGURE 4, the stroke "H" may include a writing stroke and the
"underline" may include a drawing stroke. In this manner, in accordance with one
embodiment, writing strokes may be the only strokes sent to the recognizer.

In yet another embodiment of ink analyzer 306, the layout analysis includes a
break down of writing and drawing strokes in relation to one another and non-ink data. Once
ink analyzer 306 analyzes the strokes of an inking, a tree representation (i.e. ink document
structure) of these strokes may be generated. Succinctly stated, ink analyzer 306 may include
any type of analyzer that is capable of storing a document in a binary tree and making the

binary tree accessible to other applications via a serial binary format. Even though the serial

6

10

15

20

25

30

CA 02532676 2006-01-12

binary format is described herein with reference to an ink document structure, the serial
binary format may be used to store any type of information associated with a document tree
structure.

Once ink analyzer 306 has generated the ink document structure based on the
raw data, the ink document structure is made available to application 304. The ink document
structure may include a live ink document structure. When a store operation is instigated, the
application requests that ink analyzer 306 store the ink document structure. In that ink
analyzer 306 is a platform component the ink document structure 1s available to other ink
applications. For example, if a user generates ink in a word processing document, this ink
may be cut and pasted to a drawing application without having to be reanalyzed. In this
example, the drawing application will understand how to generate the original ink from the
ink document structure, Also, since the ink is parsed and saved in a serial binary format
(discussed below), the ink may be modified and efficiently stored without requiring the entire
ink to be reanalyzed. The modified portion may correspond to a single parcel of the ink
document structure and, therefore, only require a reanalysis of the changed parcel.

In general, during a load operation, application 304 may load the raw ink data,
non-ink data and the ink document structure. The raw ink data may be loaded from raw data
storage 308. The non-ink data may also be loaded from raw data storage 308. It is
contemplated, however, that the non-ink data is loaded from any storage associated with
application 304. The ink document structure may be loaded from ink analyzer 306, which
may be a platform component. In one embodiment, application 304 associates the raw data
and the ink document structure so that the ink is loaded without requiring reanalysis.

FIGURE 4 represents an exemplary inking 400 in accordance with one aspect
of the present invention. Inking 400 may be associated or have relationships with text,
drawings, tables, charts and the like. Also, inking 400 may include various types of writings,
drawings, shapes, languages, symbols and skews. As more fully described below, inking 400
may include a plurality of inputs that correlate to a plurality of nodes of an ink document
structure. For example, reference number 402 indicates a writing region.

As another example, reference number 404 indicates an alignment level.

[llustrated in FIGURE 4, the first and last line of inking 400 are indented to the same level,

7

10

15

20

235

30

CA 02532676 2006-01-12

and therefore, indicate alignment level 404. The middle line of inking 400 is indented
inward, and therefore, indicates another alignment level.

In yet another example, reference number 406 indicates a paragraph and
reference number 408 indicates a line. Inking 400 also includes word 410, and although not
shown, word 410 may also include a stroke. A stroke may include a portion of a word.

FIGURE 5 represents an exemplary ink document structure 500. The
exemplary ink document structure 500 relates to the exemplary inking 400. Ink document
structure 500 1s but one example of an ink document structure. Any type of tree structure
may be implemented that facilitates the representation of a data structure. Ink document
structure 500 includes a plurality of nodes such as, root node 501, writing region node 502,
alignment level node 504, paragraph node 506, line node 508, word node 510 and/or a stroke
node (not shown). Ink document structure 500 may also include drawing node 512, hint
node 514, and one or more link.

In FIGURE 4, drawing 412 is an underline of the name "Mr. Bhattacharyay".
Drawing 412 1s represented in FIGURE 5 by drawing node 512. In that drawing 412 is
assoclated with the words "Mr." and "Bhattacharyay", drawing node 512 and word nodes 510
and 511 are associated through a link as depicted in FIGURE 5. Similarly, reference number
414 represents one type of hint. In one embodiment, hint 414 includes a hint box. Hint 414
may indicate that the input will be a number, letter, symbol, structure, code, order or the like.
For example, in FIGURE 4, the hint may include a hint that the input will be a number that is
not greater than three digits. Accordingly, an ink analyzer will not mistake the "5" for a "S".
In that hint 414 1s associated with the writing "35", hint node 514 may be associated to word
node 515 through a link as depicted in FIGURE 5. The above example is for exemplary and
descriptive purposes only.

In this manner, inking 400 may be represented as ink document structure 500
through nodes. For example, a stroke node (not shown) may be a child of word node 510.
Word node 510 may be a child of line node 508, and line node 508 may be a child of
paragraph node 506. Likewise, paragraph node 506 may be a child of alignment level node
504, and alignment level node 504 may be a child of writing region node 502. In this

manner, root node 501 may contain all the information of its children nodes. In one

8

10

15

20

25

30

CA 02532676 2006-01-12

embodiment, the entire inking 400 may be represented in reference to root node 501. Any
number of nodes may be associated with any type of document as long as they facilitate the

representation of the document in a document tree structure.

2. Ink Document Serialization

FIGURE 6 represents one exemplary embodiment for internally storing a
document structure in serial binary format 600. Even though an ink document structure is
referenced herein, serial binary format 600 may be used to stofe any type of tree document
structure. When the ink document structure is generated, one ore more strings will exist that
relate to the document structure. In one embodiment, compression includes a Lempel-Ziv
Welch format ("LZW format") of those strings. It is contemplated, however, that the strings
may be compressed by any compression format that reduces the size of the strings. FIGURE
6 includes an expanded view of the storage of data 604-618 (of which some data is optionally
stored). In one embodiment, storage includes MultiByteEncoded ("MBE") values, which
facilitate the storage of unsigned integers to save storage space.

Serial binary data block 602 includes serialized binary data for an ink
document and is represented by data blocks 604-618. Data blocks 604-618 represent an
expanded view of the whole serial binary data block 602. Size data 604 may be the first
information that is stored in the serial binary data block 602. Size data 604 includes data
assoclated with the size of the ink document structure. .

Ink document descriptor data 606 may follow size data 604. Ink document
descriptor data 606 may include any type of data that associates an expectance with regard to
the type of data included in serial binary data block 602. This expectancy may be indicated
by a set of flags that represent the associated data available in an ink document structure.
The tlags may indicate any data that is available in the serial binary data block 602. Data
blocks 604-618 are but a few examples of data that may be associated with an ink document
structure. In one embodiment of the present invention, root node data 614 (further described
below) 1s always associated with a flag in ink document descriptor 606.

Dirty region data 608 is optional data that may not be associated with every

ink document structure. Dirty region data 608 refers to data in the ink document structure

9

CA 02532676 2006-01-12

that is not fully analyzed before saving. Dirty region data 608 may refer to both ink data and
non-ink data such as TextWord, Image and the like. Dirty region data 608 may be indicated
by a flag associated with ink document descriptor data 606. When the ink document
descriptor data 606 includes a flag that indicates a dirty region, the flag indicates that the ink
5 document structure has a finite, non-empty dirty region. If dirty region data 608 exists, this
data may be represented as a series of rectangles, which are stored in a binary format to
facilitate the recreation of the dirty region. In the situation where the ink document is fully
analyzed, the dirty region data 608 may not be present and not require a flag in ink document
descriptor 606. In one embodiment, dirty region data 608 (if present) immediately follows
10 1nk document descriptor data 606.
In one embodiment, dirty region data 608 is stored to the serial binary data
block 602 as region data. Region data format may be used for storing dirty region data 608,
location data for non-ink leaf context nodes or location for hint nodes. Region data may
include an array of individual rectangles that define the whole area of region data. In order to
15 properly reconstruct a region data object (e.g. dirty region data 608) from a stream, the region
data may include the count of rectangles. For every rectangle, the region data may include
information regarding top data, left data, width data, and height data. The individual values
that describe the rectangle data may be stored using MBE or Signed MultiByte Encoding
("SMBE"). One example of a representation of persisted region data 1s as follows:
20 MBE [Count of Rectangles]
[Rectangle data] }

} Count of Rectangles
[Rectangle Data] }

Rectangle data may be represented as follows:
25 SMBE [Rectangle.Left]
SMBE [Rectangle. Top]
SMBE [Rectangle. Width]
SMBE [Rectangle.Height]
Global Unique IDentifier ("GUID") table data 610 is optional data that may

30 not be associated with every ink document structure. GUID table data 610 may include a

10

10

15

20

25

30

CA 02532676 2006-01-12

count of the number of MBE GUIDs that are associated with a GUID table and/or a list of
GUID values. The list of GUID values may include a 16-byte unsigned literal value for each
GUID. The ink document structure or any individual node in the document tree structure
may contain arbitrary data that is identified by a GUID. The arbitrary data may include
known data types and data types that are associated with a particular application. For data
that is associated with a particular application (i.e. custom property data), the data is stored
against a particular GUID. GUID table data 610 specifies the values of any GUID used in
relation to the ink document structure that are not deductively known. GUID table data 610
corresponding to any custom property data at the ink document level or context node level
and may be subsequently referred to via MBE, zero-based indices in relation to GUID table
data 610. As an example, non-predefined GUIDs may include application specific extended
node types and application specific extended properties on nodes. In the situation where
GUID table data 610 1s present in relation to serial binary data block 602, the presence is
1dentified by a flag that is related to the document descriptor data 606. Likewise, if GUID
table data 610 is not present, a flag is not set in ink document descriptor data 606. One
example of a representation of persisted GUID table data is as follows:

MBE [Count of Guids]

[GUID] }

} Count of Guids

[GUID] }

String table data 612 is optional data that may not be associated with every ink
document structure. String table data 612 may include a count of the number of MBE strings
In a string table, the size of compressed string data, and/or compressed string data. String
table data 612 may be associated with analysis hint suffix data, prefix text data, factoid data,
hint name data , word list data, custom node link data, and recognized string data. With
regard to one aspect of the invention, string table data 612 may include duplications. In so
far as the ink document structure is loaded in a particular sequence, maintaining an index to
string table data 612 allows loading of the appropriate string data from string table data 612.

An index may not be written every time a string is associated with string table

data 612. In such a situation, at least on byte per instance is saved. Moreover, the strings in

11

10

15

20

25

30

CA 02532676 2006-01-12

string table data 612 may be LZW compressed. By not writing an index for every string in
combination with LZW compression, the size of the string may be substantially reduced. In
the situation where string table data 612 is present in relation to serial binary data block 602,
the presence 1s identified by a flag that 1s related to ink document descriptor data 606.
Likewise, if string table data 612 is not present, a flag is not set in ink document descriptor
data 606. One example of a representation of persisted string table data 1s as follows:

// StringTable Data

MBE [Count of strings]

MBE [Size of Compressed string data]

|Compressed string data bytes]

Root node data 614 includes data related to the size of the root node and/or the
data associated with the root node. Root node data 614 may be stored as discussed in relation
to FIGURE 8 (more fully set forth below). In one aspect, root node data is mandatory data
that is associated with every ink document structure even if root node data 614 is empty. A
tlag associated with ink document descriptor data 606 may indicate the presence of root node
data 614.

Link data 616 1s optional data that may not be associated with every ink
document structure. Link data 616 includes data that indicates whether or not any nodes of
the ink document structure are linked to other nodes in the same ink document structure.
Link data 616 may be maintained globally in association with the ink document structure. In
storing link data 616, link data 616 may include a count of the number of links associated
with the ink document structure. Individual link data 616 may also include the MBE size of
the data. In one aspect, the MBE size data is followed by a link descriptor, which identifies
the type of link and origin information. In another aspect, link descriptor data is followed by

the SMBE value of a source node index and the SMBE value of a destination node index.

The source node index and the destination node index identify the source node and
destination node, respectively. In yet another aspect, if the link descriptor data indicates that
link data 616 includes a custom link, the custom link data is read from a global string table
that is 1dentified by an index in the global string table. In the situation where link data 616 is

present 1n relation to serial binary data block 602, the presence is identified by a flag that is

12

10

15

20

23

30

CA 02532676 2006-01-12

related to the ink document descriptor data 606. Likewise, i1f link data 616 1s not present, a
flag 1s not set in ink document descriptor data 606. One example of a representation of
persisted link data 1s as follows:

[ContextLink Descriptor] //1byte

SMBE [Source Node Index]

SMBE [Destination Node Index]

Custom property data 618 is optional data that may not be associated with
every ink document structure. Custom property data 618 may be associated with the ink
document structure, and in one aspect, is stored as custom property data associated with a
node. Custom property data may include any arbitrary data that an application associates
with a node. Custom property data may be identified by a GUID and my include a known or
unknown GUID. In the situation where the GUID is unknown, the GUID may be stored as
GUID table data 610. In storing custom property data 618, a flag may 1dentify custom
property data 618 as a known value. In another aspect, storing custom property data 618
includes an index to GUID table data 610. The storage of custom property data 618 may also
include the MBE value of the size of the data and an array of bytes that represent the data. In
the situation where custom property data 618 1s present in relation to serial binary data block
602, the presence 1s identified by a tlag that 1s related to ink document descriptor data 606.
Likewise, if custom property data 620 1s not present, a tlag 1s not set in ink document
descriptor data 606. One example of a representation of persisted ink document structure 1s
as follows:

MBE [Size]

<InkStructureDescriptor-1byte>

// Dirty Region Data

| AnalysisRegion Data]
//GuidTable Data
MBE [Count of Guids]
[GUID] }
+ Count of Guids
|GUID] }

13

10

15

20

25

30

CA 02532676 2006-01-12

// StringTable Data
MBE [Count of strings]
MBE [Size of LZ Compressed string data]
|LZ Compressed string data]

//Root Node data

MBE [Size]
|Data]
//Global Context Link Data
MBE [Size of the Link Table]
|Individual Link Data]

FIGURE 7 represents one exemplary embodiment for internally storing
context node data 700. In one embodiment, root node data 614 1s a context node and stored
as context node data 700. Context node data 700 may be included in the serialized binary
data for an ink document and 1s represented by data blocks 704-716. Data blocks 704-716
represent an expanded view of context node data 702.

Node descriptor data 704 may include data that is associated with each node
of an ink document structure. Node descriptor data 704 may be indicated by a collection of
flags that define the configuration of the node data as well as the types of nodes associated
with the ink document structure.

Node size data 706 may include possible known properties that are stored on a
particular node (e.g. lattice data, bounding boxes data, and/or pinning flags data). Node size
data 706 may also include unknown properties (extended/custom properties) along with
location data, children sub-node data, and stroke data. In one aspect, node size data 706 may
immediately tollow node descriptor data 704. Succinctly stated, node descriptor data 704
may indicate the size of the entire context node tree.

Node location data 708 is optional data that may not be associated with every
node type. In the situation where node location data 708 is present, the presence is identified
by a tlag that 1s related to node descriptor data 704. Likewise, if node location data 708 is
not present, a flag 1s not set in node descriptor data 704. In one aspect, if node descriptor

data 704 indicates a non-ink leaf node, node location data 708 may follow. A non-ink leaf

14

10

15

20

25

30

CA 02532676 2006-01-12

node may include any node that does not have children nodes and does not include stroke
data. For example, a non-ink leaf node may include an image node, a text node or a hint
node. In one embodiment node location data 708 is stored as region data. Region data may
include an array of individual rectangles that define the whole area of region data. In order to
properly reconstruct a region data object (e.g. node location data 708) from a stream, the
region data may include the count of rectangles. For every rectangle, the region data may
include information regarding top data, left data, width data, and height data. These
individual values that describe the rectangle data may be stored using MBE or SMBE. One
example of a representation of persisted region data is as follows:

MBE [Count of Rectangles]

|[Rectangle data] }

} Count of Rectangles
|[Rectangle Data] }

Rectangle data may be represented as follows:

SMBE [Rectangle.Left]
SMBE [Rectangle.Top]
SMBE [Rectangle. Width]
SMBE [Rectangle.Height]

Stroke data 710 is optional data that may not be associated with every node
type. Stroke data 710 may include data associated with any node that includes stroke data.
For example, stroke data 710 may be associated with an unclassified ink node, a word node,
or a drawing node. In the situation where stroke data 710 is present, the presence may be
1dentified by a flag that 1s related to node descriptor data 704. Likewise, if stroke data 710 i1s
not present, a flag is not set in node descriptor data 704.

When stroke data 710 is present, storage may include the MBE value of the
number of strokes associated with the node. In one aspect, each stroke is associated with a
one byte stroke descriptor that includes a collection of stroke descriptor flags. These flags
may indicate a stroke identification that signifies MBE stroke identification data. In one
aspect, if the stroke identification flag is not set, the stroke identification may include the last

stroke identification retrieved. The flags may also include writing stroke descriptor flags that

15

10

15

20

25

30

CA 02532676 2006-01-12

identify the type of stroke associated with writing. In another aspect, the flags may include
drawing stroke descriptor flags that identify the type of stoke associated with a drawing. The
flags may also include a highlighter descriptor flag that identifies the type of stroke
associated with a highlight. In yet another embodiment, the flags may include confirmed
ancestor descriptor flags that identify a valid confirmed ancestor for a stroke. The MBE
value of the confirmed ancestor serialization index may be stored in the stream. In still
another embodiment, the flags may include stroke language identification flags that identity a
language associated with the stroke. A signed encoded value corresponding to the language
may be stored in the stream. In yet another embodiment, the values associated with the flags
are stored in the above-recited order depending on the stroke descriptor data. It is further
contemplated that any type of flag may be set that facilitates the identification of a stroke.

Child node data 712 1s optional data that may not be associated with every
node type. In the situation where child node data 712 is present, the presence may be
identified by a flag that is related to node descriptor data 704. Likewise, if child node data
712 1s not present, a flag 1s not set in node descriptor data 704. Child node data 712 may
include container type nodes (i.e. paragraph nodes, line nodes, alignment nodes, writing
region nodes, and/or root nodes etc.). Container nodes may include any node type that
contains children nodes. Storage of child node data 712 includes storing the number of child
nodes and the data from each child node. The data from each child 1s stored in the same way
as context node data 702.

Node known properties data 714 is optional data that may not be associated
with every node type. In the situation where node known properties data 714 1s present, the
presence may be identified by a flag that is related to node descriptor data 704. Likewise, 1f
node known properties data 714 1s not present, a flag 1s not set in node descriptor data 704.

Node known properties data 714 includes properties where the data type and
format 1s known and facilitate optimization to reduce the data size. Node known properties
data 714 may include rotated bounding box data (an array of eight integers), recognition
lattice data (an array of bytes including variable length), annotation data confirmation data
(integer type) and/or hint data (for hint nodes). In one embodiment, this data is stored in a

predefined manner in order to optimize binary representation of the data. For example, an

16

10

15

20

235

30

CA 02532676 2006-01-12

array of integers may be saved 1n a signed encoded format. Also, complex data types, such
as structure or class data, may be stored in a binary format that efficiently defines the data.
One example of a representation of persisted known properties data is as follows:
[KnownProperty Descriptor] // 1 byte
[RotatedBounding BoxData]
8*SMBE]|integer representing coordinates]
|RecognitionLattice]
MBE]|Size of the Lattice Data]
[Lattice Data]
[Confirmation]
SMBE |[Confirmation]
| Annotation]
SMBE [Annotation]
[AnalysisHintProperties]
| AnalysisHintData]

Node custom properties data 716 is optional data that may not be associated
with every node type. In the situation where node custom properties data 716 is present, the
presence may be identified by a flag that 1s related to node descriptor data 704. Likewise, if
node custom properties data 716 1s not present, a flag 1s not set in node descriptor data 704.
Node custom property data may include any arbitrary data that an application associates with
a node. Node custom property data 716 may be identified by a GUID and may include a
known or unknown GUID. In the situation where the GUID is unknown, the GUID may be
stored as GUID table data 610. In storing node custom property data 716, a flag may identify
the node custom property data 716 as a known value. In another aspect, storing node custom
property data 716 includes an index to GUID table data 610. The storage of node custom
property data 716 may also include the MBE value of the size of the data and an array of

bytes that represent the data. One example of a representation of persisted context node data

1s as follows:
MBE [Size]
// Location Data - For Non-Ink Leaf nodes

17

CA 02532676 2006-01-12

[AnalysisRegion Data]
// Stroke Data - For Ink Leaf nodes
MBE [Count of Strokes]
[StrokeData] }
5 } Count of Strokes
[StrokeData] }
Each Stroke Data blob is represented in the stream as follows:
<] byte of StrokeDescriptor Flags>
MBE [Strokeld]
10 MBE [Index for the Confirmed Ancestor Node]
MBE [Languageld of the stroke]
// Children data - For Container Node
<1 byte Node Descriptor>
MBE [Size of the subnode data]
15 [SubNode data]
<] byte Node Descriptor>
MBE [Size of the subnode data]
[SubNode data]
[Data for Known Properties]
20 [TagMaxKnownPropertyCount + Index into Global Guid Table]
MBE [Size Custom Properties]
[Custom Property Data]

3. Illustrative process for storing a document in a serialized format
25 FIGURE 8 represents one general embodiment of a system for storing ink

document data in a serialized binary format. System 800 starts at starting block 802 and
flows to block 804 where an ink document is generated. Block 804 may include a digitizer
for digitizing stroke inputs from a user. The digitizer may include a computing device (e.g.
FIGURE 1), a mobile computing device (e.g. FIGURE 2), a TABLET PC running the

30 WINDOWS XP TABLET EDITION from MICROSOFT CORPORATION, or any device

18

10

15

20

23

30

CA 02532676 2006-01-12

that facilitates the operation of an ink application. Moreover, even though the description
herein references an ink document, the system 800 may be implemented in relation to any
type of data. For example, the present invention may also be used in association with a word
processing application, spreadsheet application, drawing application, graphics application,
notes application, picture application or the like. In one embodiment the application includes
InkEdit, InkPicture and/or OneNote from MICROSOFT CORPORATION. From block 804,
process 800 flows to block 806.

Block 806 indicates the step of generating raw ink data. In one embodiment,
generating raw ink data includes a digitizer converting stroke inputs into raw ink data and
storing the raw ink data to a raw data storage. In another embodiment, generating raw ink
data includes the digitizer converting stroke inputs into raw ink data and transmitting the raw
ink data to an application. The process 800 then flows to block 808.

Block 808 indicates the step for generating an ink document structure. Block
808 may include an ink analyzer receiving raw ink data from an application. Ink analyzer
may be configured for parsing and recognition operations as more fully set forth above in
conjunction with FIGURE 3. Block 808 may further include generating an ink document
structure as described above in accordance with FIGURES 4 and 5. In another embodiment,
the ink document structure includes a plurality of nodes that correlate to an inking. For
example, the ink document structure may include a writing region node, an alignment node, a
paragraph node, a line node, a word node or a stroke node. The ink document structure may
also include a drawing node and/or a hint node. It is contemplated that the ink document
structure may include any type of node that facilitates a binary tree representation of an

inking. In another embodiment, the nodes may be associated with links that correlate related

nodes.

Flowing to block 810, the ink document structure may be stored for global
accessibility. In one embodiment, the ink document structure is compressed and stored as set
forth above in conjunction with FIGURE 6 and 7. In such a case, an inking may be
generated in conjunction with an application and then stored for accessibility to other
applications. Stated another way, other applications associated with the platform may utilize

the ink document structure and the raw ink to regenerate the analyzed ink. This accessibility

19

10

15

20

25

CA 02532676 2006-01-12

facilitates cut and paste operations between applications. Also, the ink may be modified
without requiring reanalysis of the entire ink document inasmuch as the ink has been parsed,

recognized and saved in a serialized format.

4, [llustrative Operating Environment
Reterring to FIGURE 1, an exemplary system for implementing the invention

includes a computing device, such as computing device 100. In a basic configuration,
computing device 100 typically includes at least one processing unit 102 and system
memory 104. Depending on the exact configuration and type of computing device, system
memory 104 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, and
the like) or some combination of the two. System memory 104 typically includes operating
system 105, one or more applications 106, and may include program data 107. In one
embodiment, applications 106 further include application 120 for inking operations. This
basic configuration 1s illustrated in FIGURE 1 by those components within dashed line 108.
Computing device 100 may also have additional features or functionality. For
example, computing device 100 may also include additional data storage devices (removable
and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Such
additional storage is illustrated in FIGURE 1 by removable storage 109 and non-removable
storage 110. Computer storage media may include volatile and non-volatile, removable and
non-removable media implemented in any method or technology for storage of information,
such as computer readable instructions, data structures, program modules or other data.
System memory 104, removable storage 109 and non-removable storage 110 are all
examples of computer storage media. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other medium which can be used to
store the desired information and which can be accessed by computing device 100. Any such
computer storage media may be part of device 100. Computing device 100 may also have

input device(s) 112 such as keyboard, mouse, pen, voice input device, touch input device,

20

10

15

20

25

30

CA 02532676 2006-01-12

etc. Output device(s) 114 such as a display, speakers, printer, etc. may also be included. All
these devices are known in the art and need not be discussed at length here.

Computing device 100 also contains communications connection(s) 116 that
allow the device to communicate with other computing devices 118, such as over a network
or a wireless mesh network. Communications connection(s) 116 is an example of
communication media. Communication media typically embodies computer readable
Instructions, data structures, program modules or other data in a modulated data signal such
as a carrier wave or other transport mechanism and includes any information delivery media.
The term “modulated data signal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. The term computer readable media as used herein includes both storage media and
communication media.

FIGURE 2 illustrates a mobile computing device that may be used in one
exemplary embodiment of the present invention. With reference to FIGURE 2, one
exemplary system for implementing the invention includes a mobile computing device, such
as mobile computing device 200. The mobile computing device 200 has processor 260,
memory 262, display 228, and keypad 232. Memory 262 generally includes both volatile
memory (¢€.g8., RAM) and non-volatile memory (e.g., ROM, Flash Memory, or the like).
Mobile computing device 200 includes operating system 264, which is resident in memory
262 and executes on processor 260. Keypad 232 may be a push button numeric dialing pad
(such as on a typical telephone), or a multi-key keyboard (such as a conventional keyboard).
Display 228 may be a liquid crystal display, or any other type of display commonly used in
mobile computing devices. Display 228 may be touch-sensitive, and would then also act as
an input device.

One or more application programs 266 are loaded into memory 262 and run
on operating system 264. Examples of application programs include phone dialer programs,
email programs, scheduling programs, PIM (personal information management) programs,

word processing programs, spreadsheet programs, Internet browser programs, and so forth.

21

10

135

20

25

CA 02532676 2006-01-12

Mobile computing device 200 also includes non-volatile storage 268 within memory 262.
Non-volatile storage 268 may be used to store persistent information which should not be lost
if mobile computing device 200 1s powered down. Applications 266 may use and store
information in storage 268, such as e-mail or other messages used by an e-mail application,
contact information used by a PIM, appointment information used by a scheduling program,
documents used by a word processing application, and the like. In one embodiment,
applications 266 further include application 280 for inking operations.

Mobile computing device 200 has power supply 270, which may be
implemented as one or more batteries. Power supply 270 might further include an external
power source, such as an AC adapter or a powered docking cradle that supplements or
recharges the batteries.

Mobile computing device 200 is shown with two types of external notification
mechanisms: LED 240 and audio interface 274. These devices may be directly coupled to
power supply 270 so that when activated, they remain on for a duration dictated by the
notification mechanism even though processor 260 and other components might shut down to
conserve battery power. LED 240 may be programmed to remain on indefinitely until the
user takes action to indicate the powered-on status of the device. Audio interface 274 is used
to provide audible signals to and receive audible signals from the user. For example, audio
interface 274 may be coupled to a speaker for providing audible output and to a microphone
for receiving audible input, such as to facilitate a telephone conversation.

Mobile computing device 200 also includes radio interface layer 272 that
performs the function of transmitting and receiving communications, such as radio frequency
communications. Radio interface layer 272 facilitates wireless connectivity between mobile
computing device 200 and the outside world, via a communications carrier or service
provider. Transmissions to and from radio interface layer 272 are conducted under control of
operating system 264. In other words, communications received by radio interface layer 272
may be disseminated to application programs 266 via operating system 264, and vice versa.

The above specification, examples and data provide a complete description of

the manufacture and use of the composition of the invention. Since many embodiments of

22

CA 02532676 2006-01-12

the invention can be made without departing from the spirit and scope of the invention, the

invention resides in the claims hereinafter appended.

23

10

15

20

23

CA 02532676 2006-01-12

WHAT IS CLAIMED IS:

1. A computer-readable medium having a data structure stored thereon for
storing a binary tree structure in a serialized data format, comprising:

a first data field for storing size data associated with a document structure;

a second data field for storing document descriptor data, wherein the document
descriptor data includes one or more flags that indicate associated data of the document
structure; and

a third data field for storing root node data, wherein the root node data is indicated

by at least one of the flags.

2. The computer-readable medium of claim 1, further comprising a fourth
data field for storing dirty region data, wherein the presence of the dirty region data in the
serialized data 1s indicated by one of the flags associated with the document descriptor

data.

3. The computer-readable medium of claim 2, wherein the dirty region data
includes at least one of: location data of ink data that has not been analyzed by an ink

analyzer and location data of non-ink data that has not been analyzed by an ink analyzer.

4, The computer-readable medium of claim 2, wherein the dirty region data
includes at least one of: a count of rectangles associated with the dirty region data, top

data, left data, width data, and height data.

5. The computer-readable medium of claim 1, further comprising a fourth
data field for storing Global Unique Identifier data, wherein the presence of the Global
Unique Identifier data in the serialized data is indicated by one of the flags associated

with the document descriptor data.

24

10

13

20

25

30

CA 02532676 2006-01-12

6. The computer-readable medium of claim 5, wherein the Global Unique
Identifier data includes at least one of: application specific node types and application

specific extended properties.

7. The computer-readable medium of claim 1, further comprising a fourth
data field for storing string table data, wherein the presence of the string table data in the
serialized data is indicated by one of the flags associated with the document descriptor

data.

8. The computer-readable medium of claim 7, wherein the string table data 1s
associated with at least one of: analysis hint suffix data, prefix text data, factoid data,

hint node data, word list data, custom link node data, and recognized string data.

9. The computer-readable medium of claim 1, further comprising a fourth
data field for storing link data, wherein the presence of the link data in the serialized data

is indicated by one of the flags associated with the document descriptor data.

10. The computer-readable medium of claim 9, wherein the link data includes
at least one of: a count of links associated with the document structure, link data size, a

link descriptor, source node index data, and destination node index data.

11. The computer-readable medium of claim 1, further comprising a fourth
data field for storing custom property data, wherein the presence of the custom property
data in the serialized data is indicated by one of the flags associated with the document

descriptor data.
12. The computer-readable medium of claim 11, wherein the custom property

data includes at least one of: size data, and an array of bytes that represent the custom

property data.

23

10

15

20

25

CA 02532676 2006-01-12

13. The computer-readable medium of claim 1, wherein the root node data
includes descriptor data, and wherein the presence of the node descriptor data in the
serialized data includes one or more flags that indicate data associated with the root note

data.

14. The computer-readable medium of claim 13, wherein the root node data

includes size data that indicates the size of the root node data.

15. The computer-readable medium of claim 13, wherein the root node data
includes at least one of: node location data, stroke data, child node data, node known

properties data, and node custom properties data.

16. A computer-implemented method for storing a binary tree structure in a
serialized data format, comprising:

storing document structure size data in a first data field;

storing document structure descriptor data in a second data field, wherein the
document structure descriptor data includes at least one flag for indicating data
expectancy; and

storing root node data in a third data filed, wherein the root node data is indicated

by at least one of the flags.

17. The computer-implemented method of claim 16, further comprising
storing, 1n a fourth data field, at least one of: dirty region data, Global Unique Identifier
table data, string table data, link data, and custom property data.

18. The computer-implemented method of claim 16, wherein root node data

includes at least one of: expectancy data, size data, node location data, stroke data, child

node data, node known properties data, and node custom properties data.

26

CA 02532676 2006-01-12

19. A computer-readable medium having computer-executable instructions
stored thereon, the instructions comprising:
generating an ink document structure, wherein the ink document structure
includes at least one root node;
5 storing the ink document structure in a serial binary data format, wherein storing
the serial binary format includes:
storing size data associated with the ink document structure in a first data
field;
storing ink document descriptor data in a second data field, wherein the
10 ink document structure descriptor data includes at least one flag for indicating
data expectancy; and
storing root node data in a third data field, wherein the root node data 1s

indicated by at least one of the flags.

15 20. The computer-executable instructions of claim 19, wherein root node data
includes at least one of: expectancy data, size data, node location data, stroke data, child

node data, node known properties data, and node custom properties data.

Smart & Biggar
Ottawa, Canada

patent Agents

27

CA 02532676 2006-01-12

1/8

AN GENNS AEVESE ‘Papyy Spmmas A AR IS WYeEs gamms O cseamhh AN 0 A WS S—— G WYEST aume I I GEEN 2 venms el A A #_-——-_—"“_—““——w—__

—"___——___—_

104

107

I
: : REMOVABLE :
: : STORAGE ,
: ROM/RAM 102 ! 109
I | I
! SYSTEM | STORAGE l
| 105 | processiNg UNIT | ! 110
: APPLICATIONS | :
| l I
| 106 | INPUT DEVICE(S)
| I
INK i 112
120 . :
l
I
I
I
l
|
I
|
|

COMPUTING
DEVICES

CA 02532676 2006-01-12

2/8

— 200
»
o - S)
262
260 PROCESSOR MEMORY ”6a
LT =

2606
«l APP(S)
DISPLAY 280
| INK '

230ﬂ PERIPHERAL
DEVICE PORT
I STORAGE

268

POWER
SUPPLY 270

240

RADIO INTERFACE

LAYER

AUDIO

INTERFACE

F1g.2

CA 02532676 2006-01-12

3/8

90¢

00t

C'51]

abelols
eleq mey

\
/

21NPNNS
Juawnaoq Jui
uonelado
N —
PEOCT eleQ mey
}senbayy
SABS aiNPNIIS
JUBWIND0(] MU
aINPNS i
UBLIN20(YU
_ eleq
JU[-UON
p _ \ Ble(] mey
JazAjeuy Ju —
Uy € BleQ Mey uonesado
SABS
uonedddy
401>

ssedAg abei0}g

80¢

18zZibIQ

4013

00000000000000000000

4/8 400

410 412
404

414

\402

406 408

CA 02532676 2006-01-12

S/8

AUy

GLG

PJOM

WiH

145

PIOAA

PIOM

aur

ydeibeied

ELER
Justuu by

G351

PIOAA

PIOM

\r PIOM

] Ul

Aul
AUT

0LG
PIOMA \ PIOAA

806G
" ydeisbeied
906G
ELER \\JO@
uswubily

PDJOAN PIOAA
Ul
ydeibeied
I8N
juswubipy
———
c0G

uoibayy BuijipA

buimel j

006

CclLG

602

CA 02532676 2006-01-12

6/8

Serial Binary Data Block

600

Expanded

Size data
(Size of the whole ink document)

604

Ink Document Descriptor Data

.

606

Dirty Region Data
(Optional)

/

603

GUID Table Data
(Optional)

610

String Table Data
(Optional)

12

Root Node Data

Link Data
(Optional)

I

616

Custom Property Data
(Optional)

J

F1g.6

618

CA 02532676 2006-01-12

7/8

Context Node Data

702

Expanded

700

Node Descriptor Data

Node Size Data

’

Node Location Data
(Optional)

Stroke Data
(Optional)

Child Node Data
(Optional)

Node Known Properties Data
(Optional)

Node Custom Properties Data
(Optional)

Fig.7

a8s

704

706

708

710

712

714

716

CA 02532676 2006-01-12

8/8

800 <
Start

802

J, 804
Generate Ink _/
Document

l 806

Generate Raw Ink _/
Data

l 808
Generate Ink /
Document
Structure

’ 810
Store Ink
Document

Structure in a
Serialized Binary

Format 812

!
< End

Fi1g.8

302

Digitizer

308

300

304
Storage Bypass Application
Save
- ion Raw Data
Raw Data \ 4 q Operati | Ink Analyzer
Storage Raw Data /
Non-Ink
A
Data
S
Ink Document
Structure
AN
Ink Document
Structure Save
Request
Raw Data Load
> Operation
ink Document

Structure

306

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

