C. STOLLBERG.
SHEET STEEL KEG.
APPLICATION FILED AUG. 7, 1907.

911,085.


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Witnesses

Inventor:
Charles Stollberg

By: Munday, West, Adeck Yelk.
Attorneys
To all whom it may concern:

Be it known that I, CHARLES STOLLBERG, a citizen of the United States, residing in Toledo, in the county of Lucas and State of Ohio, have invented a new and useful Improvement in Sheet-Steel Kegs, of which the following is a specification.

My invention relates to improvements in the construction of sheet steel kgs or vessels for shipment and handling of white lead and other heavy materials.

The object of my invention is to provide a sheet steel keg or vessel of a strong, simple, efficient and durable construction, adapted to be tightly closed and conveniently opened, which may be cheaply manufactured and which will be suitable for handling and shipment of white lead or other heavy materials in the customary standard weight packages of a hundred pounds, fifty pounds or other like amounts, and in which the vessel will not be liable to injury, or its cover to displacement when the same are rolled or tumbled about, or even dropped from a wagon or a considerable height upon a stone pavement whether the same strikes upon its bottom or top head, corner or side.

My invention consists in the novel construction of parts and devices and in the novel combinations of parts and devices herein shown and described, and by which this object or result is accomplished.

In the accompanying drawing forming a part of this specification, Figure 1 is a central vertical section of a sheet metal or steel keg or vessel embodying my invention. Figure 2 is an enlarged detail sectional view showing the construction at the upper and lower ends or corners of the vessel and Figure 3 is a horizontal section on line 3—3 of Figure 1. Figure 4 is a detail partial elevation.

In the drawing, A represents the sheet steel body of the vessel, the same being formed from a rectangular blank into cylindrical shape, and having its meeting ends tightly and securely united by an externally projecting fold or lock seam a formed by the interfolded hooks or edge folds a a on the meeting ends of the body blank, as will be readily understood from Figure 3. The lock seam a is made externally projecting so that it will not interfere with the snug or bracing fit of the bottom head B and cover D within the body A. The cylindrical body has at its upper end an externally projecting hoop acting curved flange or roll a which snugly embraces the reinforcing or bracing circular wire or rod C which surrounds and externally stiffens and braces the upper end of the body and cooperates with the cover D to this end. The cover D has a deep countersunk cylindric wall d and an outwardly curved cover seat wall d which snugly fits and embraces the cover seat wall a on the body A, the cover thus affording a tight friction fit and usable closure for the vessel, and also serving to externally stiffen and brace the upper end of the body.

The body A has at its lower end an external curved flange or roll a which snugly surrounds and embraces the external reinforcing wire or rod C at the lower end of the body. The bottom head B has a deep countersunk cylindric wall b fitting tightly and snugly within the lower end of the body A and it is also provided with an outwardly curved flange or roll b which snugly fits and embraces the external curved flange or roll a of the body that embraces the lower stiffening wire C. The lower end of the body is thus strengthened and stiffened and braced not only by the external reinforcing wire or rod C, but also by the cylindrically curved flange or roll a of the body and the similarly curved flange or roll b of the bottom head B. To insure a suitably tight joint or seam between the bottom head and body, I interpose a suitable cement-like packing F between the contacting parts of the bottom head and body. Similar cement or packing G is also preferably interposed between the contacting surfaces of the cover D and body A. The cover D or its curved seat flange or roll d is furnished with integral locking lips d which are hammerd or elenched under the external annular shoulder at the upper end of the body formed by the upper reinforcing wire C and the external flange or roll a at the upper end of the body which surrounds and embraces said stiffening wire C. Both ends of the vessel are thus stiffened, strengthened and braced not only by external surrounding wires or rods, but also by double curved flanges or rolls, the inner set of such flanges or rolls being integral with the body and the outer set, one integral with the cover and the other integral with the bottom head. These external stiffening rolls at the upper and
lower ends of the vessel also form annular shoulders at both ends of the vessel for the same to roll upon, and thus materially facilitate the handling and rolling about of the vessel when filled with white lead or other heavy material. The deep countersunk walls of the cover and bottom head also afford a convenient hold for the fingers in lifting the heavy vessels when this is required.

I claim:

1. In a sheet metal or steel vessel, for handling and shipment of white lead or other heavy materials, the combination of a cylindrical body with stiffening rods or wires at each end of the cylindrical body, integral externally curved flanges or rolls at the upper and lower ends of said body embracing said stiffening wires or rods, a deep countersunk bottom having an outwardly curved integral flange surrounding and embracing the curved flange or roll at the lower end of the body and a removable deep countersunk cover having an outwardly curved flange fitting and embracing said curved flange or roll at the upper end of the body, and provided with integral bendable locking lips clenched under said roll at the upper end of the body, said external rolls at the upper and lower ends of the body and said outwardly curved integral flanges of said cover and bottom embracing said external rolls of the body being of equal size and serving as rims for the rolling of the vessel as well as to brace and strengthen the same, and for finger holds in lifting the vessel substantially as specified.

2. In a sheet metal or steel vessel for handling and shipment of white lead or other heavy materials, the combination of a cylindrical body with stiffening rods or wires at each end of the cylindrical body, integral externally curved flanges or rolls at the upper and lower ends of said body embracing said stiffening wires or rods, a deep countersunk bottom having an outwardly curved integral flange surrounding and embracing the curved flange or roll at the lower end of the body and a removable deep countersunk cover having an outwardly curved flange fitting and embracing said curved flange or roll at the upper end of the body, and provided with integral bendable locking lips clenched under said roll at the upper end of the body and a packing interposed between the contacting surfaces of said cover and body, said external rolls at the upper and lower ends of the body and said outwardly curved integral flanges of said cover and bottom embracing said external rolls of the body being of equal size and serving as rims for the rolling of the vessel as well as to brace and strengthen the same, and for finger holds in lifting the vessel substantially as specified.

CHARLES STOLLBERG.

Witnesses:

LAWRENCE RAAB,
WM. F. STOLLBERG.