A compound of formula (I) and when appropriate in the form of a racemic mixture or in the form of a stereoisomeric component and the pharmaceutically acceptable salts thereof, in which formula: n is an integer 0, 1 or 2, Y is [CH₃]ₐ, CHO, CHO₂H, CH₂OH, CH₂O₂, CH₂NHR or CHF, m is an integer 0 or 1 and R is hydrogen, methyl or ethyl, Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms, A is a group (a) or (b), wherein Rₐ is a straight or branched hydroxyalkyl or an alkyl group containing 1-5 carbon atoms and optionally substituted by one or more fluoro atoms, Rₖ is a saturated or unsaturated, straight or branched alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms, Rₐ, is the same as Rₐ and independently of Rₐ, Rₐₖ is the same as Rₐ and independently of Rₐₖ, p is an integer 0, 1 or 2, s is an integer 2, 3, 4, 5, useful for the treatment of cardiac arrhythmia, pharmaceutical compositions containing such compounds as active ingredients, processes for preparation of such components as well as intermediates for their preparation.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MO</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Novel antiarrhythmic agents I

Description

Field of the Invention

The present invention relates to novel, pharmacologically active compounds and to processes for their preparation. The invention also relates to pharmaceutical compositions containing the compounds and to methods of their pharmacological use.

The object of the invention is to provide substances useful in the treatment, acute as well as long term, of cardiac arrhythmias of diverse etiology.

Background Art

GB 1 433 920 discloses compounds of the formula

\[
\begin{array}{c}
\text{OCH}_2\text{CHOHCH}_2\text{NH-A-X-R}^1 \\
\text{R}^2
\end{array}
\]

wherein \(R^1 \) for instance stands for an alkyl or cycloalkyl radical or an aryl radical, \(R^2 \) for instance stands for halogen, CN or NO\(_2\) radical, A stands for an alkylene radical of from 2 to 6 carbon atoms and \(X \) stands for \(-S-, -SO-\), or \(-SO_2-\) radical.

These compounds are said to possess \(\beta \)-adrenergic blocking activity.

GB 1 457 876 discloses among others the compounds

\[
\begin{array}{c}
\text{NH}_2\text{COCH}_2 \\
\text{OCH}_2\text{CHOHCH}_2\text{NHCH}_2\text{CH}_2\text{NHSO}_2
\end{array}
\]
and

CH₂CHOHCH₂NHCH₂CH₂NHSO₂CH₂CH₃

CONH₂

These compounds are said to possess β-adrenergic blocking activity.

Disclosure of the Invention

The present invention concerns new compounds useful for treatment, acute as well as long term, of cardiac arrhythmics of diverse etiology.

An object is to provide antiarrhythmics which have less prominent side effects than existing antiarrhythmic drugs. The compounds should for instance be free of negative inotropic effect and the compounds may even be positively inotropic. The compounds should further separate the antiarrhythmic effect from central nervous and gastrointestinal effects.

The compounds of the invention are characterized by the general formula

[Chemical structure]

and when appropriate in the form of a racemic mixture or in the form of a stereoisomeric component and the pharmaceutically acceptable salts thereof, in which formula
n is an integer 0,1 or 2

\[Y \text{ is } \left[\text{CH}_2\right]_m, \text{CHOH, CHOCH}_3, \text{ CHNHR or CHF,} \]

m is an integer 0 or 1 and

R is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

\[A \text{ is a group} \]

\[R_a \quad (O)_p \quad - N - \left[\text{CH}_2\right]_s - S - R_c \quad \text{or} \quad - N - \left[\text{CH}_2\right]_s - S - R_c \]

\[R_a' \quad (O)_p \quad R_a'' \]

wherein \(R_a \) is a straight or branched hydroxalkyl or alkyl group containing 1-5 carbon atoms and optionally substituted by one or more fluoro atoms,

\(R_c \) is a saturated or unsaturated, straight or branched alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms,

\(R_a' \) is the same as \(R_a \) and independently of \(R_a'' \)

\(R_a'' \) is the same as \(R_a \) and independently of \(R_a''' \).

p is an integer 0, 1 or 2,

s is an integer 2, 3, 4 or 5.
Halogen atoms in formula I comprise fluorine, chlorine, bromine and iodine.

Alkyl groups in formula I which are straight and saturated are for instance methyl, ethyl, n-propyl, n-butyl.

Alkyl groups in formula I which are straight and unsaturated are for instance vinyl, allyl, propenyl, -C≡CH, -CH₂-C≡CH and -C≡CCH₃.

Alkyl groups in formula I which are branched and saturated are for instance i-propyl, s-butyl, i-butyl, t-butyl.

Alkyl groups in formula I which are branched and unsaturated are for instance

\[
\begin{align*}
 - \text{CH}_2^- & \quad \text{CH} = \text{C}^- \text{CH}_3, \\
 - \text{CH}_3^- & \quad \text{CH} = \text{C}^- \text{CH}_3, \\
 - \text{CH}_3^- & \quad \text{CH} = \text{C}^- \text{CH}_3
\end{align*}
\]

Alkyl groups in formula I which are substituted by fluorine are for instance 1-3 H changed for F in the definition for alkyl groups which are straight and saturated or branched and saturated for instance CH₂CHFCH₃, CH₂CH₂CF₃, CH₂CF₂CH₃, etc.

Alkyl groups in formula I which are substituted by hydroxy are for instance CH₂-OH, CH₂-CH₂-OH, CH-CH₃, CH-CH₂-CH₃, CH₂-CH-CH₃, CH₂-CH₂-CH₂

\[
\begin{align*}
 \text{OH} & \quad \text{OH} \\
 \text{OH} & \quad \text{OH} \\
 \text{CH-CH₂-CH₂-CH₃} & \quad \text{CH₂-CH-CH₂-CH₃} \\
 \text{CH₂-CH₂-CH₂-CH₃} & \quad \text{CH₂-CH₂-CH₂-CH₂-OH}
\end{align*}
\]

Preferred groups of compounds of the invention are obtained when

n is 1
Y is CHOH, CHF or \((\text{CH}_2)_m\)
wherein m = 1
Z is hydrogen

$$R_a \quad (O)_p$$

A is N- \((CH_2)_s \) -S- \(R_c \), where

5

\(R_a \) is \(CH_3 \), \(C_2H_5 \), \(C_3H_7 \), \(CH_2CH_2OH \),

\(CH_2CHOHCH_3 \),

\(R_c \) is \(C_2H_5 \), \(C_3H_7 \), \(CH_2CHFCH_3 \),

s is 3, 4, p is 0, 1, 2.

Especially preferred compounds are the sulfoxides i.e. when p is 1.

The following compounds of this group are especially preferred, compounds wherein

\(Y \) is \(CHOH \) or \((CH_2)_m \),

20

\(R_a \) is \(C_2H_5 \), \(CH_2CH_2OH \),

s is 3, p is 1,

\(R_c \) is \(C_3H_7 \).

A preferred compound can also be a quarternary nitrogen compound, obtained from the preferred compounds above by alkylation at the amino group.
Preferred compounds are

4-[[ethyl[3-(propylthio)propyl]amino]-2-hydroxy-propoxy]benzonitrile,

5 4-[[ethyl[3-(propylsulfanyloxy)propyl]amino]-2-hydroxypropoxy]benzonitrile,

4-[[ethyl[3-(propylsulfonyloxy)propyl]amino]-2-hydroxypropoxy]benzonitrile

10 4-[[ethyl[3-(methylsulfanyloxy)propyl]amino]-2-hydroxypropoxy]benzonitrile

15 3-[(4-cyanophenoxy)-N,N-diethyl-2-hydroxy-N-[3-(propyl-sulfanyloxy)propyl]-1-propanaminium iodide

20 4-[[ethyl[3-(propylthio)propyl]amino]-2(R)-hydroxy-propoxy]benzonitrile

25 4-[[ethyl[3-(propylsulfanyloxy)propyl]amino]-2(R)-hydroxy-propoxy]benzonitrile

4-[[ethyl[3-(propylthio)propyl]amino]-2(S)-hydroxy-propoxy]benzonitrile

25 4-[[ethyl[3-(propylsulfanyloxy)propyl]amino]-2(S)-hydroxy-propoxy]benzonitrile

30 4-[[ethyl[4-(ethylthiobutyl]amino]-2-hydroxy-propoxy]benzonitrile

35 4-[[ethyl[4-(ethylsulfanyl)butyl]amino]-2-hydroxy-propoxy]benzonitrile
4-[3-{(2-hydroxyethyl)[3-(propylsulfonyl)propyl]amino}propoxy]-benzonitrile

4-[3-{(2-hydroxyethyl)[3-(methylthio)propyl]amino}propoxy]-benzonitrile

4-[3-{(2-hydroxyethyl)[3-(methylsulfinyl)propyl]amino}propoxy]-benzonitrile

4-3-{ethyl[3-(propylsulfinyl)propyl]amino}-2-hydroxypropoxy]-benzonitrile, addition salt with hydrochloric acid

4-[3-{ethyl,3-(propylsulfinyl)propyl]amino}-2-hydroxypropoxy]-benzonitrile, addition salt with biphenyl-2,2'-diyl hydrogen phosphate

4-[3-{methyl[3-(2-propenyl-1-thio)propyl]amino}-2-hydroxypropoxy]-benzonitrile

4-[3-{ethyl,3-(2-fluoropropyl)thio propyl]amino}-2-hydroxypropoxy]-benzonitrile

4-[3-{ethyl,3-(2-fluoropropyl)sulfinyl]propyl]amino}-2-hydroxypropoxy]-benzonitrile

4-[3-{ethyl,3-(propylsulfinyl)propyl]amino}-2-fluoropropoxy]-benzonitrile
More preferred compounds are

\[
4\cdot \text{[ethyl[3-(propythio)propyl]amino]-2-hydroxy-prooxy]benzonitrile,}
\]

\[
4\cdot \text{[ethyl[3-(propylsulfonyl)propyl]amino]-2-hydroxyprooxy]-benzonitrile,}
\]

\[
4\cdot \text{[ethyl[3-(propylsulfonyl)propyl]amino]-2-hydroxyprooxy]-benzonitrile}
\]

\[
3\cdot \text{-(4-cyanophenoxy)-N,N-diethyl-2-hydroxy-N-[3-(propyl-sulfinyl)propyl]-1-propanaminium iodide}
\]

\[
4\cdot \text{[ethyl[3-(propythio)propyl]amino]-2(R)-hydroxy-prooxy]-benzonitrile}
\]

\[
4\cdot \text{[ethyl[3-(propylsulfonyl)propyl]amino]-2(R)-hydroxy-prooxy]-benzonitrile}
\]

\[
4\cdot \text{[ethyl[3-(propylsulfonyl)propyl]amino]-2(S)-hydroxyprooxy]-benzonitrile}
\]

\[
4\cdot \text{[ethyl[3-(propylsulfonyl)propyl]amino]-2(S)-hydroxyprooxy]-benzonitrile}
\]

\[
4\cdot \text{[ethyl[4-(ethylthio)butyl]amino]-2-hydroxyprooxy]-benzonitrile}
\]

\[
4\cdot \text{[ethyl[4-(ethylsulfinyl)butyl]amino]-2-hydroxyprooxy]-benzonitrile}
\]

\[
4\cdot \text{[2-hydroxyethyl][3-(propythio)propyl]amino,prooxy]-benzonitrile}
\]

\[
4\cdot \text{[2-hydroxyethyl][3-(propylsulfonyl)propyl]amino,prooxy]-benzonitrile}
\]

\[
4\cdot \text{[2-hydroxyethyl][3-(propylsulfonyl)propyl]amino,prooxy]-benzonitrile}
\]
4-[[3-[ethyl[3-[(2-fluoropropyl)thio]propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[[3-[ethyl[3-[(2-fluoropropyl)sulfinyl]propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-fluoropropoxy]-benzonitrile

The most preferred compounds are

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile,

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2(R)-hydroxy-propoxy]-benzonitrile

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2(S)-hydroxypropoxy]-benzonitrile

4-[[3-[ethyl[4-(ethylsulfinyl)butyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[[3-[(2-hydroxyethyl)3-(propylsulfinyl)propyl]amino]-propoxy]-benzonitrile

4-[[3-[ethyl[3-[(2-fluoropropyl)sulfinyl]propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-fluoropropoxy]-benzonitrile

Particularly preferred compounds are

4-[[3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile
4-[[ethyl[3-(propylsulfinyl)propyl]amino]-2(R)-hydroxy-propoxy]-benzonitrile

4-[[ethyl[3-(propylsulfinyl)propyl]amino]-2(S)-hydroxypropoxy]-benzonitrile

4-[[2-hydroxyethyl][3-(propylsulfinyl)propyl]amino]propoxy]-benzonitrile

In many instances the compounds of formula I occur in stereoisomeric forms, such forms being due to for instance optical isomerism, geometric isomerism and conformations of molecules.

The tertiary amines of the invention can be quarternarized with a lower alkyl group and the quarternary compounds have the same effect as the tertiary compounds.

The new compounds of this invention may be used therapeutically as a stereochemical mixture or in the stereochemical pure forms.
Pharmaceutical preparations

In clinical practice the compounds of the present invention will normally be administered orally, rectally or by injection in the form of pharmaceutical preparations comprising the active ingredient either as a free base or as a pharmaceutically acceptable non-toxic, acid addition salt, e.g. the hydrobromide, hydrochloride, phosphate, sulphate, sulphonate, sulphamate, citrate, lactate, maleate, tartrate, acetate and the like in association with a pharmaceutically acceptable carrier.

Accordingly, terms relating to the novel compounds of this invention whether generically or specifically are intended to include both the free amine base and the acid addition salts of the free base, unless the context in which such terms are used, e.g. in the specific examples would be inconsistent with the broad concept.

The carrier may be a solid, semisolid or liquid diluent or capsule. These pharmaceutical preparations constitute a further aspect of this invention. Usually the active substance will constitute between 0.1 and 99% by weight of the preparation, more specifically between 0.5 and 20% by weight for preparations intended for injection and between 2 and 50% by weight for preparations suitable for oral administration.

To produce pharmaceutical preparations containing a compound of the invention in the form of dosage units for oral application, the selected compound may be mixed with a solid pulverulent carrier, e.g. lactose, saccharose, sorbitol, mannitol, starches such as potato starch, corn starch or amylopectin, cellulose derivatives, gelatine or other suitable tablet excipients, and a lubricant such as magnesium stearate, calcium stearate, sodium stearyl fumarate, polyethylene glycol waxes, and the like, and then compressed to form tablets. If coated tablets are required, the cores, prepared as described above, may be sugar coated or film coated by conventional film coating polymers.

Dyestuffs may be added to these coatings in order to readily distinguish between tablets containing different active substances or different amounts of the active compound.
For the preparation of soft gelatine capsules (pearl-shaped closed capsules) consisting of gelatine and for example, glycerol or similar closed capsules, the active substance may be admixed with a vegetable oil. Hard gelatine capsules may contain granulates of the active substance in combination with solid, pulverulent carrier such as lactose, saccharose, sorbitol, mannitol, starches (e.g. potato starch, corn starch or amylopectin), cellulose derivatives or gelatine or other suitable pharmaceutically acceptable constituents.

Dosage units for rectal application can be prepared in the form of suppositories comprising the active substance in admixture with a neutral fatty base, or gelatine rectal capsules comprising the active substance in admixture with vegetable oil or paraffin oil.

Liquid preparations for oral application may be in the form of syrups or suspensions, for example solutions containing from about 0.2 to about 20% by weight of the active substance herein described, the balance being sugar alcohols and water optionally mixed with ethanol, glycerol, or propylene glycol. Optionally such liquid preparations may contain colouring agents, flavouring agents, saccharine and, as a thickening agent, such as carboxymethylcellulose, hydroxypropylmethylcellulose or the like.

Solutions for parenteral applications by injection can be prepared in an aqueous solution of a water-soluble pharmaceutically acceptable salt of the active substance preferably in a concentration of from about 0.5 to about 10% by weight. These solutions may also contain stabilizing agents and/or buffering agents and may conveniently be provided in various dosage unit ampoules.

Suitable doses for oral administration of the compounds of the invention are 1-300 mg 1 to 4 times a day, preferably 20-80 mg 1 to 4 times a day.

Methods of preparation

The compounds of the invention may be obtained by any of the following methods.
A. The compounds of the formula I
wherein A is

\[\text{Ra} \quad (O) \quad \text{p} \]
\[- N - \left(\text{CH}_2\right)_n - S - R_c \]

and the symbols n, Y and Z are defined as above, can be obtained by reaction of a compound of the formula

\[\text{Z} \quad \text{Ra} \]
\[\text{O} - \left(\text{CH}_2\right)_n - \text{YCH-N-H} \]

wherein Ra is as defined above with a compound of the formula

\[\text{L} - \left(\text{CH}_2\right)_s - S - R_c \]

wherein L is a leaving group such as Br, Cl, I, mesyloxy or tosylxy and s, p and R_c are as defined above.

The reaction is typically carried out in a suitable organic solvent such as acetonitrile, isopropanol or N,N-dimethylformamide. A suitable organic or inorganic base (acid acceptor) such as triethylamine or potassium carbonate is added to the mixture. The mixture is then heated to a temperature in the range of 40-100°C until the reaction is completed after which the products can be isolated and purified by conventional methods.
B. The compounds of the formula I wherein \(p \) is an integer 1 or 2 can be obtained by oxidation of a compound of the formula I wherein \(p \) is an integer 0.

When the substrate is an amine it could be neutralized with a suitable acid, e.g. p-toluene sulfonic acid in a solvent where the salt is soluble e.g. ethanol. When the sulfoxide \((p=1)\) shall be prepared the temperature should be kept between -20-0°C. When the sulfone \((p=2)\) shall be prepared a temperature in the range 20-80°C could be used.

C. The compounds of the formula I wherein

\[
\begin{align*}
\text{n} &= 1, \\
\text{Y} &= \text{CHOH}, \\
\text{Z} &= \text{H}, \\
\text{p} &= 1 \text{ or } 2, \\
\text{R}_a, \text{R}_c \text{ and } s &\text{ have the meaning given above,}
\end{align*}
\]

can be prepared by reaction of a compound of the formula

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{O} \\
\text{CH}_2
\end{array}
\end{array}
\end{array}\]

with a compound of the formula

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{R}_a \\
(0)^{\text{p}}
\end{array}
\hline
\text{HN} - \text{CH}_2
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{s} \\
\text{R}_c
\end{array}
\end{array}
\end{array}\]

wherein \(R_a, R_c, s \) and \(p \) have the meanings given above.
The reaction is typically carried out in a suitable solvent such as isopropanol or N,N-dimethylformamide. The mixture should be heated to a temperature in the range 40 - 100°C until the reaction is completed. Thereafter the product can be isolated by conventional methods.

D. The compounds of the formula I wherein

\[n = 1 \]
\[Y = \text{CHOH} \]
\[Z = \text{H} \]
\[p = 0, 1, 2 \]

and \(R_a, R_c \) and \(s \) having the meanings above, can be prepared by a reaction of a compound of formula

![Chemical Structure]

with a compound of the formula

\[
\text{H}_2\text{N} - (\text{CH}_2)_s - \text{S} - R_c
\]

The reaction conditions are the same as described in method C above.

The product from this reaction step, having the formula

![Chemical Structure]
is then alkylated by conventional methods by a suitable alkylating agent of a formula R_a-L, where L is a leaving group defined as above, to yield the compound of formula I as defined above.

When the sulfur atom in the product has a lower oxidation state (e.g. p = 0 or 1) it can be further oxidized to products with sulfur atoms of higher oxidation states (e.g. p = 1 or 2) described in method B above.

E. A compound of the formula

\[
\text{O}-(\text{CH}_2)_n-\text{CH}-\text{CH}_2-\text{N}(\text{CH}_2)_s-S-R_c
\]

where R_a, R_c, n, p and s have the meaning above

can be prepared by reacting a compound of the formula

\[
\text{O}-(\text{CH}_2)_n-\text{CH}-\text{CH}_2-\text{O-SO}_2M
\]

where M is a methyl or a 4-methyl-phenyl residue, with a compound of the formula

\[
\text{H}-\text{N}-\text{CH}_2-S-S-R_c
\]
The reaction is typically carried out in a suitable organic solvent such as acetonitrile or N,N-dimethylformamide. A suitable organic or inorganic base such as triethylamine or potassiumcarbonate is added to the mixture. The mixture is then heated to a temperature in the range of 90-100°C until the reaction is completed after which the products can be isolated and purified by conventional methods.

Intermediates

The compounds of the formula

\[
\begin{align*}
O - (CH_2)_n - Y - CH - NH \quad \text{II}
\end{align*}
\]

wherein

- \(n \) is an integer 0, 1 or 2
- \(Y \) is \((CH_2)_m \), CHO\(_2 \), CH\(_3 \), CHNHR or CHF,
- \(m \) is an integer 0 or 1 and
- \(R \) is hydrogen, methyl or ethyl,
- \(Z \) is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,
R_a is a straight or branched hydroxyalkyl or alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms,

are valuable intermediates for the preparation of the compounds of the formula I via the method A. These intermediates are new and constitute a part of the invention.

The compounds of formula II are prepared by reaction of a compound of the formula

$$\begin{align*}
\text{O} & - (\text{CH}_2)_n \text{ - CH - CH}_2 \\
\text{CN} &
\end{align*}$$

with a compound of the formula $R_a \text{- NH}_2$

wherein n and R_a have the definitions given above.

Other valuable intermediates are

$$\begin{align*}
R_a \quad (O)_p \\
\text{HN - CH}_2 \quad s \quad S \quad R_c \\
\text{III}
\end{align*}$$

wherein R_a, R_c, s and p have the definitions given above. Such intermediates can generally be obtained by a reaction of a compound of the formula

$$L - (\text{CH}_2)_s - S - R_c$$

where L is Cl, Br, I, mesyloxy or toslyloxy with an amine of the formula

$$\text{H}_2\text{N - R}_a$$

A typical procedure in analogy with procedure A can be used.
Examples of such intermediates are

\[
\begin{align*}
&\text{C}_2\text{H}_5 \\
&\text{HN} - \underbrace{\text{(CH}_2)_3}_0 - S - \text{C}_3\text{H}_7
\end{align*}
\]

and

\[
\begin{align*}
&\text{C}_2\text{H}_5 \\
&\text{HN} - \underbrace{\text{(CH}_2)_3}_0 - S - \text{C}_3\text{H}_7
\end{align*}
\]

Other valuable intermediates for the preparation of the compounds of the formula I via method D are

\[
\begin{align*}
&\text{Z} - \text{H} - \underbrace{\text{(CH}_2)_n}_0 - \underbrace{\text{Y} - \text{CH} - \text{N} - \underbrace{\text{(CH}_2)_s}_0 - S - R_c}_0
\end{align*}
\]

wherein \(Y, Z, R_c, n, s \) and \(p \) have the definitions given above:

Especially valuable are those intermediates wherein \(s \) is 3 and \(p \) is 0 or 1 such as

\[
\begin{align*}
&\text{O} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{NH} - (\text{CH}_2)_3 - S - \text{C}_3\text{H}_7 \\
&\text{OH}
\end{align*}
\]

and

\[
\begin{align*}
&\text{O} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{NH} - (\text{CH}_2)_3 - S - \text{C}_3\text{H}_7 \\
&\text{OH}
\end{align*}
\]

\[
\begin{align*}
&\text{CN}
\end{align*}
\]
Working Examples

Example 1

4-[3-ethyl[3-(propylthio)propyl]amino]-2-hydroxy-propoxy]-benzonitrile

\[\text{O} \quad \text{N} \quad \text{OH} \quad \text{C} \quad \text{S} \quad \text{Me} \]

a) 4-[3-(ethylamino)-2-hydroxypropoxy]-benzonitrile

86.0 g of 4-(oxiranylmethoxy) benzonitrile was dissolved in 250 ml acetonitrile and mixed with 29.7 g ethylamine in an autoclave. The mixture was heated in a boiling water-bath over night, evaporated and the residue was dissolved in 2-M hydrochloric acid. This acidic water layer was washed twice with ether, alkali with 10-M sodium hydroxide and extracted with three portions of dichloromethane.

The combined organic layers were dried over sodium sulfate and evaporated. The solid residue was recrystallized twice from a mixture of diisopropylether: acetonitrile (9:1). Yield 57 g of 4-3-(ethylamino)-2-hydroxypropoxy-benzonitrile.

NMR: 13C in CDCl$_3$: 14.88, 43.93, 51.28, 67.60, 70.77, 104.31, 115.26, 119.00, 133.93, 161.93 ppm

b) 4-[3-ethyl[3-(propylthio)propyl]amino]-2-hydroxypropoxy]-benzonitrile

4.7 g of 4-[3-(ethylamino)-2-hydroxypropoxy]-benzonitrile, 4.5 g of
1-bromo-3-(propylthio)-propane and 5.8 g potassium carbonate were mixed in 50 ml isopropanol and refluxed over night. The mixture was filtrated and evaporated. The residual oil 8.3 g was separated by column chromatography. Yield 4.9 g of the title compound.

NMR: 13C in CDCl$_3$: 11.44, 13.47, 22.62, 26.84, 29.56, 34.63, 47.44, 52.27, 56.03, 65.81, 70.47, 103.74, 115.08, 118.78, 133.57, 161.87, ppm

Example 2

$4\{3\{ethyl[3\{propylsulfanyl\}propyl]amino\}\}2\{\text{hydroxypropoxy}\}\}_\text{benzonitrile}$

2.45 g of $4\{3\{ethyl[3\{propylthio\}propyl]amino\}\}2\{\text{hydroxypropoxy}\}_\text{benzonitrile}$ and 1.4 g p-toluenesulfonic acid were mixed in 50 ml of ethanol. The mixture was cooled to -10°C and 1.7 g of m-chloroperbenzoic acid was added in small portions. The mixture was stirred for 0.5 hour at -10°C and one hour at room temperature and then evaporated. The residue was dissolved in dichloromethane and washed with three portions of sodium carbonate and twice with water and thereafter dried over sodium sulfate, filtrated and evaporated. The residue, 2.3 g yellow oil was purified by column chromatography. Yield:1.4 g of the title compound.

NMR: 13C in CDCl$_3$: 11.21, 11.33, 13.11, 16.02, 20.30, 20.43, 47.41, 47.45, 49.69, 49.95, 52.18, 52.41, 54.29, 54.41, 56.06, 56.09, 66.08, 70.41, 70.49, 103.76, 115.09, 118.83, 133.62, 161.88 ppm
Example 3

4-[3-ethyl[3-(propylsulfonyl) propyl]amino]-2-hydroxypropoxy]-benzonitrile

7.3 g of 4-[3-ethyl[3-(propylthio)propyl]amino]-2-hydroxypropoxy]-benzonitrile was mixed with 4.2 g of p-toluenesulfonic acid in 75 ml of ethanol. To this mixture was added 10.1 g of m-chloroperbenzoic acid in small portions. The temperature was allowed to rise to 45°C during the addition. The mixture was then stirred at room temperature for three hours. After that the reaction was completed, the solvent was evaporated and the residue was dissolved in dichloromethane, washed three times with sodium carbonate and twice with water. The organic layer was evaporated and the residue was dissolved in 2-M hydrochloric acid and washed three times with ether. The aqueous layer was made alkaline with 1-M sodium hydroxide solution and extracted with dichloromethane. The organic solutions were dried over sodium sulfate filtrated and evaporated. The crude product 5.4 g was purified by column chromatography. Yield: 3.2 g of the title compound.

NMR: 13C in CDCl$_3$; 11.41, 12.88, 15.64, 19.57, 47.44, 50.15, 51.88, 54.68, 56.04, 66.19, 70.45, 104.0, 115.2, 118.94, 133.79, 161.91 ppm
Example 4

4-[3-ethyl[3-(methylsulfinyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile

The title compound was prepared in analogy with the methods described in examples 1 and 2.

NMR: 13C in CDCl$_3$: 11.16, 11.27, 20.18, 20.31, 38.39, 38.50, 47.40, 51.87, 52.11, 52.17, 52.35, 56.02, 66.09, 70.37, 70.44, 103.68, 115.05, 118.79, 133.58, 161.83 ppm
Example 5

3-(4-cyanophenoxy)-N,N-diethyl-2-hydroxy-N-[3-(propylsulfonyl)propyl]-1-propanaminium iodide

5.0 g of 4-[[3-ethyl[3-(propylsulfonyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile and 2.4 g ethyliodide were dissolved in 50 ml of acetonitrile and heated to reflux for 5 hours. Another portion of ethyliodide, 2.4 g, was added and the reflux continued over night. The solution was evaporated and the residual oil, 6.6 g, was separated by column chromatography. Yield: 4.0 g of the title compound.

NMR: 13C in D$_2$O: 8.07, 13.42, 16.75, 47.73, 53.78, 55.53, 57.57, 60.38, 64.41, 67.42, 70.78, 104.00, 116.45, 120.77, 135.39, 162.35 ppm.

Example 6

4-[[3-ethyl[3-(propylthio)propyl]amino]-2(R)-hydroxypropoxy]benzonitrile
a) (4S)-2,2-Dimethyl-4-(4-cyanophenoxy)methyl-1,3-dioxolane

A solution of 4-hydroxy benzonitrile (55 g) in methanol (100 ml) was treated with potassium hydroxide (29 g) in water (30 ml) and evaporated at reduced pressure. The remaining potassium salt was dissolved in dry dimethylformamide (75 ml) and (4R)-2,2-dimethyl-4-methanesulfonyloxyethyl-1,3-dioxolane, 82.2 g, was added. The mixture was heated with stirring at 110°C for 20 h, allowed to cool and distributed between ether and water. The aqueous phase was extracted three times with ether, the combined ether phases washed three times with 10% aqueous potassium hydroxide and twice with water, dried over anhydrous sodium sulfate and evaporated. Yield 77 g of the title compound.

NMR: 13C in CDCl$_3$; 25.11, 26.57, 66.35, 68.85, 73.55, 104.30, 109.77, 115.17, 118.83, 133.79, 161.68 ppm.

b) (2R)-3-(4-cyanophenoxy)propane-1,2-diol

77 g of (4S)-2,2-dimethyl-4-(4-cyanophenoxy)methyl-1,3-dioxolane, was dissolved in methanol (200 ml) and water (75 ml). Concentrated hydrochloric acid (0.5 ml) was added and the mixture was kept at 50°C overnight. It was evaporated at reduced pressure and recrystallized from water to yield 46 g of the title compound as white leaves, m.p. 63-65°C.

NMR: 13C in CD$_3$OD; 63.90, 70.72, 71.44, 104.70, 116.56, 120.07, 135.09, 163.86 ppm.

c) (2S)-1-(4-cyanophenoxy)-3-methanesulfonyloxy propan-2-ol

57.2 g of (2R)-3-(4 cyanophenoxy)propane-1,2-diol was dissolved in dry pyridine, (300 ml) and treated dropwise with methanesulfonyl chloride, (20.7 ml), at -10°C. The reaction mixture was kept at 5°C overnight, evaporated at reduced pressure and poured on ice and 2 M hydrochloric acid. The solid precipitate was recrystallized three times from methanol.
to yield 12.3 g of the title compound, m.p. 119-121°C, $[\alpha]_D^{20} + 9.7^\circ$
(c 1.0, CH$_3$OH).

NMR: 13C in CD$_3$OD; 37.26, 68.77, 69.92, 71.76, 105.19, 116.65, 119.99,
135.19, 163.55 ppm.

d) 4-[3-[[ethyl[3-(propythio)propyl]amino]-2(R)-hydroxy-propoxy]benzonitrile

11.7 g of (2S)-1-(4-cyanophenoxy)-3-methanesulfonyloxy propane-2-ol, was
stirred and refluxed overnight with ethyl (3-propythio)propylamine
(13.9 g), potassium carbonate (12.6 g) and acetonitrile (100 ml).
Filtration and evaporation gave 21.5 g of crude product which was
distributed between ether and 2 M hydrochloric acid. The aqueous layer
was extracted three times with dichloromethane, in which it was present
as an ion pair. Evaporation and distribution between ether and 1 M
sodium hydroxide yielded the free base in the ether layer.
Chromatography over silica using methanol-dichloromethane 5:95 as
mobile phase gave 10.3 g of the title compound as a colourless oil,
$[\alpha]_D^{20} - 24.2^\circ$ (c 1.0, CH$_3$OH).

NMR: 13C in CDCl$_3$; 11.53, 13.32, 22.76, 26.92, 29.71, 34.20, 47.56,
52.38, 56.20, 65.82, 70.53, 103.97, 115.17, 118.95, 133.98, 161.95 ppm.
Example 7

4-[3-[ethyl][3-(propylsulfinyl)propyl]amino]-2(R)-hydroxypropoxy benzonitrile

Oxidation of 4-[3-[ethyl][3-(propylthio)propyl]amino]-2(R)-hydroxy propoxybenzonitrile with m-chloroperbenzoic acid was carried out as described for the racemate in example 2. \([\alpha]_{20}^{D} = 18.6^\circ\) (C 1.0, CH₃OH)

NMR: \(^{13}\text{C}\) in CDCl₃; 11.35, 11.47, 13.30, 16.24, 20.47, 20.62, 47.59, 47.63, 49.83, 50.12, 52.30, 52.57, 54.53, 54.66, 56.28, 56.31, 66.13, 70.52, 70.60, 104.08, 115.24, 119.02, 133.85, 162.0 ppm.

Example 8

4-[3-[ethyl][3-(propylthio)propyl]amino]-2(S)-hydroxypropoxy benzonitrile

The title compound was prepared in analogy with the method described in example 6. \([\alpha]_{20}^{D} = 24.0^\circ\) (C 1.0, CH₃OH).
NMR: 13C in CDCl$_3$; 11.52, 13.27, 22.74, 26.93, 29.70, 34.19, 47.58, 52.40, 56.22, 65.85, 70.54, 103.96, 115.16, 118.89, 133.72, 161.95 ppm.

Example 9

4-[[3-ethyl[[3-(propylsulfinyl)propyl]amino]-2(S)-hydroxypropoxy]-benzonitrile

The title compound was prepared in analogy with method described in example 7 and example 2. $[\alpha]_D^{20} + 18.0^\circ$ (C 1.0, CH$_3$OH). NMR: 13C in CDCl$_3$; 11.31, 11.43, 13.26, 16.18, 20.41, 20.57, 47.53, 47.58, 49.8, 50.08, 52.26, 52.53, 54.48, 54.61, 56.22, 56.24, 66.09, 70.48, 70.57, 104.0, 115.20, 118.97, 133.79, 161.96 ppm.

Example 10

4-[[3-ethyl[4-(ethylthio)butyl]amino]-2-hydroxypropoxy]benzonitrile
2 g of ethyl-[4-(ethylthio)butyl]amine and 2.17 g of 4-(oxiranylmethoxy)benzonitrile were mixed in 25 ml isopropanol and refluxed over night. The mixture was evaporated and the residual oil was dissolved in 2 M HCl. This acidic water layer was washed with three portions of ether and then the HCl-salt of the product was extracted as ion pair with three portions of dichloromethane. The organic layer containing the ion pair was alkalinized with 2 M NaOH and the organic layer now containing the base form of the product was dried over sodium sulfate and evaporated and purified by column chromatography. Yield: 3.7 g of the title compound.

NMR: 13C in CDCl$_3$; 11.67, 14.65, 25.81, 26.31, 27.18, 31.40, 47.57, 53.16, 56.08, 65.69, 70.64, 104.03, 115.20, 118.97, 133.79, 162.01 ppm.

Example 11

4-[3-[ethyl[4-(ethylsulfinyl)butyl]amino]-2-hydroxypropoxy]benzonitrile

1.68 g of 4-[3-[ethyl[4-(ethylthio)butyl]amino]-2-hydroxypropoxy]-benzonitrile was oxidized by 1.1 g of m-chloroperbenzoic acid in analogy with example 2. Yield: 0.7 g of the title compound.

NMR: 13C in CDCl$_3$; 6.66, 11.52, 20.41, 26.39, 45.67, 47.75, 51.25, 53.12, 56.24, 65.85, 70.54, 115.24, 119.0, 133.84, 104.0, 162.0 ppm.
Example 12

4-3-(2-hydroxyethyl)3-(propylthio)propylamino propoxy benzonitrile

A solution of 3-bromo propoxy benzonitrile (10 g) and ethanolamine (10 g) in 2-propanol (150 ml) was refluxed for 2 hours. After overnight standing, solvent was evaporated. The residue was dissolved in aqueous HCl (2 M) and washed with diethylether. The acidic aqueous layer was basified with sodium hydroxide solution (10 M). Extraction with methylene chloride and evaporation of the solvent gave crude material (7.2 g). Recrystallization from di-isopropylether gave 7.0 g of the title compound with m.p. 88°C.

NMR: 13C in CDCl$_3$: 29.15, 46.04, 51.09, 60.49, 66.38, 103.55, 115.02, 119.01, 133.74, 162.04 ppm.

b) 4-3-(2-hydroxyethyl)3-(propylthio)propylamino propoxy benzonitrile

A mixture of 4-3-(2-hydroxyethyl)amino propoxy benzonitrile (3 g), 1-bromo-3-(propylthio)propane (2.7 g) and potassium carbonate (3.7 g) in 2-propanol (50 ml) was refluxed for 28 hours. The solvent was evaporated and the residue dissolved in aqueous HCl (2 M) and extracted with diethylether. The aqueous layer was basified with sodium hydroxide (10 M) and extracted with methylene chloride followed by drying over sodium sulfate. Evaporation of the solvent gave a crude residue, which
was purified by column chromatography. Yield 2.6 g of the title compound as an oil.

NMR: 13C in CDCl$_3$: 13.13, 22.61, 26.53, 26.73, 29.60, 31.04, 50.11, 52.53, 55.67, 58.66, 66.06, 103.52, 114.92, 118.80, 133.60, 161.92 ppm.

Example 13

4-[[3-{(2-hydroxyethyl)}[3-(propylsulfinyl)propyl]amino]propoxy] benzonitrile

4 g of 4-[[3-{(2-hydroxyethyl)}[3-(propylthio)propyl]amino]propoxy]-benzonitrile was oxidized with m-chloroperbenzoic acid (2.1 g) in analogy with example 2. The yield, after column chromatography was 2.5 g of the title compound.

NMR: 13C in CDCl$_3$: 13.37, 16.28, 20.69, 26.66, 50.03, 50.42, 52.92, 54.65, 55.94, 59.09, 66.29, 103.88, 115.21, 119.12, 133.94, 162.18 ppm.
Example 14

4-\{3-[(2-hydroxyethyl)amino]propoxy\}benzonitrile

A mixture of 4-\{3-[(2-hydroxyethyl)amino]propoxy\}benzonitrile (1.3 g), 1-bromo-3-(propylsulfonfyl)propane (1.3 g) and potassium carbonate (1.6 g) in acetonitrile (100 ml) was refluxed over night. Work up by conventional methods including column chromatography. Yield: 0.5 g of the title compound.

NMR: \(^{13}\)C in CDCl\(_3\): 13.00, 15.82, 19.53, 26.51, 50.03, 50.20, 52.18, 54.71, 55.84, 58.98, 66.18, 103.75, 115.11, 119.02, 133.87, 162.01 ppm.

Example 15

4-\{3-[(2-hydroxyethyl)amino]propyl\}amino, propoxy, benzonitrile

3 g of 4-\{3-[(2-hydroxyethyl)amino]propoxy\}benzonitrile and 2.2 g 1-bromo-3-(methylthio)propane and 3.7 g of potassium carbonate were
mixed in 50 ml isopropanol and refluxed over night. The mixture was filtrated and evaporated, and the residue was dissolved in 2 M hydrochloric acid. This acid water layer was washed twice with ether, alkalized with 10 M sodium hydroxide and extracted with three portions of dichloromethane. The combined organic layers were dried over sodium sulfate and evaporated. The residual oil was purified by column chromatography. Yield: 1.2 g of the title compound.

NMR: 13C in CDCl$_3$: 15.60, 26.50, 26.89, 32.13, 50.47, 52.75, 55.99, 58.84, 66.30, 104.06, 115.18, 119.11, 133.98, 162.17 ppm.

Example 16

4-[[3-[(2-hydroxyethyl)[3-(methylsulfinyl)propyl]amino]propoxy]benzonitrile

1.1 g of 4-[[3-[(2-hydroxyethyl)[3-(methylthio)propyl]amino]propoxy]benzonitrile was oxidized with 0.87 g of m-chloroperbenzoic acid in analogy with example 2. Yield: 0.7 g of the title compound.

NMR: 13C in CDCl$_3$: 20.42, 26.48, 38.56, 50.28, 52.09, 52.74, 55.75, 58.94, 66.08, 103.67, 115.03, 118.98, 133.77, 161.98 ppm.
Example 17

4-{3-[methyl(3-(2-propenyl-1-thio)propy]amino-2-hydroxypropoxy} -benzonitrile

a) 4-{3(methylamino)-2-hydroxypropoxy]-benzonitrile

The title compound was prepared in analogy with the method described in example 1a. mp 100-102°C

NMR 13C in CDCl$_3$: 36.18, 53.82, 67.59, 70.88, 103.97, 115.13, 118.92, 133.79, 161.88.

b) 1-chloro-3(2-propenyl-1-thio)-propane.

A stirred mixture of 2-propene-1-thiol (6.8 g; 92 mmol), 1-bromo-3-chloropropane (14.5 g; 92 mmol) and potassium carbonate (20 g; 145 mmol) in acetonitrile (50 ml) was warmed at 80°C for five minutes. Filtration and evaporation gave an oily residue. Vacuum distillation at 10 mm Hg gave a fraction at 65°C. Yield: 7 g (51 %) of an colourless oil.

NMR: 13C in CDCl$_3$: 27.33, 31.74, 34.45, 43.23, 116,76, 134.03
c) 4-[[3-(methyl[3'-2-propenyl-1-thio)propyl]amino]-2-hydroxypropoxy]-benzonitrile.

A stirred mixture of 4-[3(methylamino)-2-hydroxypropoxy]-benzonitrile (4.12 g; 20 mmol), 1-chloro-3(2-propenyl-1-thio)propane (3.5 g; 23 mmol) sodium iodide (3.5 g; 24 mmol) and potassium carbonate (5 g; 36 mmol) in acetonitrile (50 ml) was refluxed for 24 hours. Filtration and evaporation of the solvent gave a residue which was purified by flash chromatography (SiO₂; CH₂Cl₂:CH₃OH (9:1). Yield: 5 g (78%) of a colourless oil.

NMR: ¹³C in CDCl₃; 26.62, 28.33, 34.81, 41.97, 56.63, 59.96, 65.82, 70.52, 104.08, 115.22, 116.78, 119.00, 133.84, 134.29, 161.98.

Example 18

4-[[3-ethyl[3'-(2-fluoropropyl)thio)propyl]amino]-2-hydroxypropoxy]-benzonitrile
A solution of 1-hydroxy-3-\((2\text{-fluoropropyl})\text{thio}\)propane (5.5 g, 36.1 mmol), prepared by conventional methods from 1-hydroxy-3-thiopropane and 1-bromo-2-fluoropropane, was mixed with triethyl amine (3.9 g, 39.7 mmol) in methylene chloride and was then stirred and cooled to 0 °C. Methanesulfonyl chloride (4.1 g, 36.1 mmol) was added during a period of 20 minutes. The solution was filtered and washed twice with sodium bicarbonate and water. The yield was 8.2 g. The mesylate was dissolved in acetonitrile (100 ml) and 4-\([3\text{-ethylamino}-2\text{-hydroxypropoxy}]\)benzonitrile (8.7 g, 39.4 mmol) was added. The solution was refluxed over night. The solvent was evaporated and the residue was purified by column chromatography on silica gel. Yield: 5.75 g of the title compound.

NMR: 13C in CDCl$_3$: 11.46, 19.88, 20.06, 26.87, 30.58, 37.74, 37.92, 47.46, 52.19, 56.07, 65.84, 70.47, 89.52, 90.86, 103.82, 115.11, 118.84, 133.64, 161.90.

Example 19

4-\([3\text{-ethyl}][3\text{-}(2\text{-fluoropropyl})\text{sulfinyl}]\text{propyl}][\text{amino}]\text{-2-hydroxypropoxy}]-benzonitrile

A solution of 4-\([3\text{-ethyl}][3\text{-}(2\text{-fluoropropyl})\text{thio}]\text{propyl}][\text{amino}]-2\text{-hydroxypropoxy}-benzonitrile (5.1 g, 14.4 mmol) and toluene-4-sulfonic acid (2.73 g, 14.4 mmol) in ethanol (100 ml) was stirred and cooled to -15 °C. To the mixture was added a solution of 3-chloroperbenzoic acid
(4.5 g, 14.4 mmol) in ethanol (10 ml). The solution was stirred at room temperature for 3 h. Solid calcium hydroxide (2.66 g, 36 mmol) was added and the slurry was stirred for 15 h. The slurry was filtered and evaporated to give an oily residue. The residue was dissolved in 2 M hydrochloric acid and washed with diethylether. The acidic solution was treated with 2 M sodium hydroxide to pH = 12 and extracted with methylene chloride. Drying over sodium sulfate and evaporation to dryness gave an oily residue which was purified by column chromatography on silica gel. Yield: 3.2 g of the title compound.

NMR: 13C in CDCl$_3$; 11.07, 11.09, 11.20, 20.11, 20.25, 20.43, 20.52, 20.62, 20.66, 20.84, 47.44, 47.50, 49.87, 50.11, 50.65, 50.92, 51.32, 52.10, 52.35, 56.12, 56.82, 56.99, 59.39, 59.55, 59.71, 66.08, 70.00, 70.44, 83.48, 83.67, 84.83, 85.01, 103.76, 115.09, 118.84, 136.48, 161.86.

Example 20

$$4-(3'-\text{ethyl}-3-(\text{propylsulfinyl})\text{propylamino}-2-\text{fluoropropoxy})-\text{benzonitrile}$$

In methylene chloride under argon atmosphere was dissolved (diethylamino)sulfur trifluoride (2.3 g, 14.2 mmol). The solution was cooled to -70°C. To this solution was added dropwise 4-(3'-\text{ethyl} 3-(\text{propylsulfinyl})\text{propylamino}-2-\text{hydroxypropoxy})-\text{benzonitrile} (5.0 g, 14.2 mmol) in methylene chloride (5 ml). The solution was stirred at
-70°C for 1/2 h and at room temperature for 2 h and then treated with water (50 ml) and with sodium hydroxide to pH = 11. The resulting layers were separated and the water layer was extracted with methylene chloride. The combined organic fractions were washed with water and dried over sodium sulfate. The oily residue was purified by column chromatography on silica gel. Yield: 1.0 g of the title compound.

NMR: 13C in CDCl$_3$; 11.69, 13.31, 16.21, 20.45, 20.63, 22.21, 48.31, 49.85, 49.89, 52.96, 53.05, 53.65, 53.69, 53.82, 53.86, 54.49, 54.53, 68.25, 68.28, 68.44, 68.46, 89.63, 89.70, 91.03, 91.10, 104.52, 115.08, 115.25, 118.88, 133.87, 133.94, 161.61.
Example 21

4-(3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy) benzonitrile, addition salt with hydrochloric acid

To a solution of 4-(3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy)-benzonitrile (1.06 g) in methylene chloride (3 ml) was added a saturated solution of hydrogen chloride in diethylether (3 ml) followed by diethylether (7 ml). Solvent was decanted from the resulting oil, which was washed with diethylether (3 x 10 ml) and dried under high vacuum. Yield: 1.1 g as an oil.

NMR: 13C in D$_2$O, relative dioxane (67.4 ppm); 8.74, 9.17, 13.29, 16.67, 18.23, 18.37, 18.47, 48.01, 49.23, 49.35, 50.97, 51.10, 51.73, 53.32, 53.66, 55.30, 64.77, 64.94, 70.45, 104.01, 116.36, 120.90, 135.36, 162.58 ppm.

Example 22

4-"3-[ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy) benzonitrile, addition salt with biphenyl-2,2'-diyl hydrogen phosphate

4-"3-ethyl[3-(propylsulfinyl)propyl]amino]-2-hydroxypropoxy-benzonitrile (0.35 g) and biphenyl-2,2'-diyl-hydrogen phosphate (0.25 g) were dissolved in methylene chloride (2 ml). Addition of diisopropylether (10 ml) gave a colourless precipitate. Solvent was decanted and the solid residue was washed with diethylether. Yield: 0.54 g (90%) of colourless crystals. M.p. 147°C.

NMR: 13C in CDCl$_3$; 8.68, 13.25, 16.23, 18.14, 48.38, 48.47, 49.44, 52.50, 54.49, 54.57, 56.14, 64.36, 69.96, 104.63, 115.39, 118.93, 121.64, 124.95, 129.42, 129.71, 133.98, 149.89, 149.96, 161.40 ppm.
Example 23

4-[2-hydroxy-3-[3(propylthio)propyl]amino propoxy]-benzonitrile

A solution of 4-(oxiranylmethoxy)-benzonitrile (1.32 g, 7.5 mmol) and 3-propylthio-1-propylamine (1g, 7.5 mmol) in acetonitrile (10 ml) was refluxed over night. The solution was evaporated and the residue was dissolved in 2 M hydrochloric acid. The acidic solution was washed with diethylether, alkalized with 10 M sodium hydroxide and extracted with metylene chloride. The solvent was evaporated and the residue was purified by column chromatography on silica gel. Yield: 1.1 g of the title compound.

NMR: 13C in CDCl$_3$: 13.26, 22.67, 29.26, 29.55, 34.09, 48.43, 51.44, 67.61, 70.63, 104.00, 115.15, 118.87, 133.78, 161.82.

Example 24

4-2-hydroxy-3-[3(propylsulfinyl)propyl]amino propoxy -benzonitrile
A solution of 4-[2-hydroxy-3-\{3(propylthio)propyl\}amino,propoxy]benzonitrile (0.9 g, 2.91 mmol) and toluene-4-sulfonic acid (0.55 g, 2.91 mmol) in ethanol (20 ml) was stirred and cooled to -15°C. To this solution was added a solution of 3-chloroperbenzoic acid (0.61 g, 2.91 mmol) in ethanol (10 ml) over a period of ten minutes. The mixture was stirred at -10°C for 1/2 h and at room temperature for 3 h. Solid calcium hydroxide (0.54 g, 7.27 mmol) was added and the slurry was stirred for ten minutes, filtrated and evaporated. Yield: 0.9 g of the title compound as colourless crystals with mp: 76-77°C.

NMR: 13C in CDCl$_3$: 13.42, 16.34, 23.44, 48.38, 48.15, 50.19, 51.56, 54.69, 68.68, 70.73, 104.32, 115.34, 119.077, 133.99, 162.01.
Example 25

N-ethyl-N[(3-propylthio)propyl]amine

\[
\text{\text{NH}} \quad \text{S}
\]

To a solution of 1-propanethiol (228.5 g, 3 mol) and sodium hydroxide (0.2 g) was added acrylonitrile (167.1 g, 3.15 mol) the reaction mixture was stirred over night. Water (100 ml) was added and the organic layer was separated and dried over sodium sulfate. Evaporation gave 398 g of 3-propylthio-propionitrile. A solution of 3-propylthio-propionitrile (194 g, 1.5 mol) in ether (100 ml) was added to a suspension of lithium aluminium hydride (60 g, 1.5 mol) in ether, conventional work up gave 158 g of 3-propylthio-propylamine. All 3-propylthio-propylamine was mixed with acetic anhydride (104 ml, 1.1 mol) and stirred for 1 h. Water (300 ml) was added and extraction with methylene chloride followed by drying over sodium sulfate and evaporation gave 161 g of 3-propylthio-propylacetamide. 3-propylthio-propylacetamide (133 g, 1 mol) was added to a suspension of lithium aluminium hydride (42 g, 1.1 mol) in ether. Conventional work up and distillation (100°C / 12 mm Hg) yielded 113.8 g of the title compound.

NMR: 13C in CDCl$_3$: 13.34, 15.19, 22.82, 29.87, 29.95, 34.11, 43.98, 48.69.
Example 26

N-ethyl-N[3-propylsulfinyl]-propylamine

\[
\text{NH} \quad \begin{array}{c}
\text{S} \\
/ \\
\text{O}
\end{array}
\]

A solution ethyl-(3-propylthio)-propylamine (1.61 g, 10 mmol) was oxidized with 3-chloroperbenzoic acid (2.1 g, 10 mmol) in analogy with example 2. The title compound was recrystallized as hydrochloride from ethyl acetate. Yield: 1.7 g.

NMR: 13C in CDCl$_3$; 12.77, 14.68, 15.65, 22.68, 43.28, 47.77, 49.75, 53.84

Example 27

4-[3-ethyl-3-(propylsulfinyl)propyl]amino-2-hydroxypropoxy-benzonitrile

A solution of 4-(oxiranylmethoxy)-benzonitrile (0.2 g, 1.13 mmol) and ethyl-(3-propylsulfinyl)-propylamine (0.2 g, 1.13 mmol) in acetonitrile (8 ml) was refluxed over night. The solvent was evaporated and the residue was dissolved in hydrochloric acid, washing with ether followed by alkalizing with sodium hydroxide and extracting with methylene chloride yielded 0.33 g of the title compound.

NMR: 13C in CDCl$_3$; 11.31, 11.43, 13.35, 16.30, 20.46, 20.64, 47.71, 47.76, 49.65, 50.15, 52.38, 52.86, 54.65, 54.78, 56.41, 56.45, 66.09, 70.53, 70.61, 104.24, 115.29, 119.04, 133.92, 162.00
Example of pharmaceutical compositions

The following examples illustrate the preparation of pharmaceutical compositions of the invention. The wording "active substance" denotes a compound according to the present invention or a salt thereof.

Formulation A. Soft gelatin capsules

500 g of active substance were mixed with 500 g of corn oil, whereupon the mixture was filled in soft gelatin capsules, each capsule containing 100 mg of the mixture (i.e. 50 mg of active substance).

Formulation B. Soft gelatin capsules

500 g of active substance were mixed with 750 g of pea nut oil, whereupon the mixture was filled in soft gelatin capsules, each capsule containing 125 mg of the mixture (i.e. 50 mg of active substance).

Formulation C. Tablets

500 g of active substance were mixed with 200 g of silicic acid of the trademark Aerosil. 450 g of potato starch and 500 g of lactose were mixed therewith and the mixture was moistened with a starch paste prepared from 50 g of potato starch and distilled water, whereupon the mixture was granulated through a sieve. The granulate was dried and sieved, whereupon 20 g of magnesium stearate was mixed into it. Finally the mixture was pressed into tablets each weighing 172 mg.

Formulation D. Effervescing tablets

100 g of active substance, 140 g of finely divided citric acid, 100 g of finely divided sodium hydrogen carbonate, 3.5 g of magnesium stearate and flavouring agents (q.s.) were mixed and the mixture was pressed into tablets each containing 100 mg of active substance.
Formulation E. Sustained release tablet

200 g of active substance were melted together with 50 g of stearic acid and 50 g of carnauba wax. The mixture thus obtained was cooled and ground to a particle size of at most 1 mm in diameter. The mixture thus obtained was mixed with 5 g of magnesium stearate and pressed into tablets each weighing 305 mg. Each tablet thus contains 200 mg of active substance.

Formulation F. Injection solution

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active substance</td>
<td>3.0 mg</td>
</tr>
<tr>
<td>Sodium pyrosulfite</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Disodium edetate</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>8.5 mg</td>
</tr>
<tr>
<td>Sterile water for injection</td>
<td>ad 1.0 ml</td>
</tr>
</tbody>
</table>

Formulation G. Hard gelatine capsules

10 g of active substance was mixed with 400 g of lactose and finally 2 g of magnesium stearate was added. The mixture was then filled in hard gelatine capsules, each capsule containing 206 mg of the mixture (i.e. 5 mg of active substance).

Formulation H. Tablets

50 g of active substance was mixed with 1500 g of lactose, 200 g of microcrystalline cellulose and 10 g magnesium stearate. Tablets of 5 mg active substance with a core weight of 176 mg were finally compressed.
Pharmacology

Drugs which cause a delay of the repolarization process, thereby prolonging the period during which the heart is unable to respond to a new stimulus (the so called effective refractory period), are said to exert a Class III antiarrhythmic action (Vaughan Williams, 1970, 1984). This effect can be recorded as a prolongation of the action potential of myocardial cells, and can be measured directly in transmembrane potential recordings or indirectly in the monophasic action potential. The compounds belonging to this invention have been studied with the latter technique.

Male guinea-pigs are anaesthetized with barbiturate and ventilated with room air under blood gas control. The heart is exposed by thoracotomy and the vagal nerves are cut. A standard electrocardiogram is recorded from skin electrodes, and a monophasic action potential (MAP) is recorded from the epicardial surface of the ventricles, usually from the left one, by a specially designed bipolar electrode, which is gently pressed against the epicardial surface or attached by use of suction pressure. A local electrocardiogram from the area of the MAP electrode is also obtained (between the peripheral electrode and reference from the skin electrodes). Arterial blood pressure is recorded via an arterial catheter in one femoral artery, and intravenous lines are used for infusion of barbiturate and test substance. Since the duration of the depolarization of the heart cells (the MAP duration) is dependent on the frequency, the evaluation of a drug effect must be made at a constant frequency. For that purpose a pacing electrode is attached to the left atrium, and the heart can be electrically stimulated at a constant frequency slightly above the normal sinus node frequency.

The monophasic action potential duration at 75% repolarization is used for primary screening.

All experiments are done under β-adrenoceptor blockade, achieved by pretreatment with 0.5 mg/kg propranolol.

The test substances are administered intravenously during 30 seconds in increasing doses at exact, predetermined intervals and recordings are
made at exact intervals after dosing, both on a Mingograph recorder and on tape for later analysis of the signals by a custom-designed computer program. Dose-response curves are constructed for the different variables, and the doses needed to obtain 10 and 20 per cent prolongation of the MAP duration are derived by interpolation. The dose giving 20 per cent increase of the MAP duration (D_{20} MAP) is used as a measure of potency.

Selected compounds are subject to further testing in anaesthetized and chronically instrumented conscious dogs, in which effects on atrial and ventricular refractoriness are also recorded.
TABLE 1

<table>
<thead>
<tr>
<th>Example no</th>
<th>D_{20}^{MAP}</th>
<th>VERP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1</td>
<td>6.7</td>
<td>n.t.</td>
</tr>
<tr>
<td>Ex. 2</td>
<td>7.3</td>
<td>+</td>
</tr>
<tr>
<td>Ex. 3</td>
<td>6.8</td>
<td>n.t.</td>
</tr>
</tbody>
</table>

$D_{20}^{\text{MAP}} = -\log$ dose (moles/kg) giving 20 per cent increase of the MAP duration in anaesthetized guinea-pigs (see screening method).

Change in ventricular refractoriness (VERP) in anaesthetized and conscious dogs at dose levels equivalent to D_{20}^{MAP} in guinea-pigs.

+ = prolonged VERP
 n.t. = not tested

Best mode of carrying out the invention

The compound $4-[3-\text{ethyl}[3-(\text{propylsulfinyl})-\text{propyl}_2\text{ amino}] - $2-hydroxypropoxy]-benzonitrile and their salts, processes for preparing said compound and method employing said compound in therapy represent the best mode of carrying out the invention known to the inventors at present.
Claims

1. A compound of the formula

\[
\text{O - (CH}_2\text{)}_n \quad \text{Y} \quad \text{CH-A}
\]

and when appropriate in the form of a racemic mixture or in the form of a stereoisomeric component and the pharmaceutically acceptable salts thereof, in which formula

n is an integer 0, 1 or 2,

Y is \(\text{[CH}_2\text{]}_m\), CHO, CHCOCH\(_3\), CHNHR or CHF,

m is an integer 0 or 1 and
R is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

A is a group

\[
\begin{align*}
R_a & \quad (0) \quad \text{p} \\
- \text{N} - \quad \text{[CH}_2\text{]}_s - \quad \text{S} - \quad R_c
\end{align*}
\]

or

\[
\begin{align*}
\Theta & \quad \text{N} - \quad \text{[CH}_2\text{]}_s - \quad \text{S} - \quad R_c \\
R_a & \quad \text{p}
\end{align*}
\]
wherein R_a is a straight or branched hydroxy alkyl or an alkyl group containing 1-5 carbon atoms and optionally substituted by one or more fluoro atoms.

R_c is a saturated or unsaturated, straight or branched alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms.

Ra' is the same as Ra and independently of Ra''.

Ra'' is the same as Ra and independently of Ra'.

p is an integer 0, 1 or 2.

s is an integer 2, 3, 4 or 5.

2. A compound according to claim 1

wherein n is 1,

Y is CH-OH, CHF or (CH$_2$)$_m$ wherein $m = 1$,

Z is hydrogen,

$$
Ra \quad (0)p
$$

A is $N - (CH_2)_s - S - R_c$

wherein R_a is CH$_3$, C$_2$H$_5$, C$_3$H$_7$, CH$_2$CH$_2$OH, CH$_2$CHOHCH$_3$

R_c is C$_2$H$_5$, C$_3$H$_7$, CH$_2$CHFCH$_3$,

s is 3, 4

3. A compound according to claim 2

wherein p is 1.
4. A compound according to claim 3

wherein \(Y \) is \(\text{CHOH}, (\text{CH}_2)_m \), wherein \(m = 1 \),

\[
R_a \text{ is } \text{C}_2\text{H}_5, \ \text{CH}_2\text{CH}_2\text{OH}, \
\text{s is } 3, \
R_c \text{ is } \text{C}_3\text{H}_7. \]

5. A compound according to claim 4 wherein

\(Y \) is \(\text{CHOH}, \)

\(R_a \text{ is } \text{C}_2\text{H}_5 \)

6. A compound according to claim 1

wherein \(n \) is 1,

\(Y \) is \(\text{CHOH}, \text{CHF}, (\text{CH}_2)_m \) wherein \(m = 1 \),

\(Z \) is hydrogen,

\[
A \text{ is } \begin{array}{c}
\text{N} \\
- \text{CH}_2\text{CH}_2\text{S} \\
\text{R}_a. \\
\end{array} \begin{array}{c}
\begin{array}{c}
\text{(Q)} \\
\text{P} \\
\end{array} \\
\end{array}
\]

wherein \(R_a \text{ is } \text{CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7 \),

\(R_c \text{ is } \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \text{CH}_2\text{CHFCH}_3 \),

\(s \) is 3, 4.

7. A compound according to claim 1;

\(4-\text{[3-\{ethyl\}3-(propylthio)propyl]amino}^-\text{-2-hydroxy-propoxy}^-\text{benzonitrile},\)
4-[3-[ethyl][3-(propylsulfinyl) propyl] amino]-2-hydroxypropoxy]-benzonitrile,

4-[3-[ethyl][3-(propylsulfonyl)propyl] amino]-2-hydroxypropoxy]-benzonitrile

3- (4-cyanophenox)-N,N-diethyl-2-hydroxy-N-[3-(propyl-sulfinyl)propyl]-1-propanaminium iodide

4-3-[ethyl][3-(propylthio)propyl] amino]-2(R)-hydroxy-propoxy]-benzonitrile

4-3-[ethyl][3-(propylsulfinyl)propyl] amino]-2(R)-hydroxy-propoxy]-benzonitrile

4-3-[ethyl][3-(propylthio)propyl] amino]-2(S)-hydroxy-propoxy]-benzonitrile

4-3-[ethyl][3-(propylsulfinyl)propyl] amino]-2(S)-hydroxy-propoxy]-benzonitrile

4-3-ethyl 4-(ethylthio)butyl amino]-2-hydroxypropoxy]-benzonitrile

4-3-ethyl 4-(ethylsulfinyl)butyl amino]-2-hydroxypropoxy]-benzonitrile

4-[3-[(2-hydroxyethyl)] 3-(propylthio)propyl amino]-propoxy]-benzonitrile

4-[3-[(2-hydroxyethyl)] 3-(propylsulfinyl)propyl amino]-propoxy]-benzonitrile

4-[3-[(hydroxyethyl)] 3-(propylsulfonyl)propyl amino]-propoxy]-benzonitrile

4-[3-[ethyl][3-(2-fluoropropylthio)propyl] amino]-2-hydroxypropoxy]-benzonitrile

4-[3-[ethyl][3-(2-fluoropropyl)sulfinyl propyl] amino]-2-hydroxypropoxy]-benzonitrile
4-[(3-ethyl 3-(propylsulfanyl)propyl)amino]-2-fluoropropoxy] -benzonitrile

4-[(3-ethyl 3-[(propylsulfanyl)propyl]amino]-2-hydroxypropoxy] -benzonitrile, addition salt with hydrochloric acid

4-[(3-ethyl 3-[(propylsulfanyl)propyl]amino]-2-hydroxypropoxy] -benzonitrile, addition salt with biphenyl-2,2'-diyl hydrogen phosphate

8. A process for the preparation of a compound of the formula

\[
\begin{align*}
\text{R}_a & \quad \text{(O)}_p \\
Z & \quad \text{II} \\
\text{O} - (\text{CH}_2)_n \quad \text{Y} - \text{CH} - \text{N} - [\text{CH}_2]_s - \text{S} - \text{R}_c
\end{align*}
\]

wherein \(n, Y, Z, R_a, s, p \) and \(R_c \) are as defined in claim 1, or a pharmaceutically acceptable salt or stereoisomer thereof, which process comprises reaction of a compound of the formula

\[
\begin{align*}
\text{R}_a & \\
Z & \quad \text{II} \\
\text{O} - (\text{CH}_2)_n \quad \text{Y} - \text{CH} - \text{N} - \text{H}
\end{align*}
\]

with a compound of the formula

\[
\begin{align*}
\text{(O)}_p \\
\text{L} - (\text{CH}_2)_s - \text{S} - \text{R}_c
\end{align*}
\]
wherein \(n, Y, Z, R_a, s, p \) and \(R_c \) are as defined above and \(L \) is a leaving group \(\text{Br, Cl, I, mesolox or tosyloxy} \), whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

9. A process for the preparation of a compound of the formula I of claim 1 wherein \(p \) is 1 or 2, which process comprises oxidation of a compound of the formula I of claim 1 wherein \(p \) is 0, whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

10. A process for the preparation of a compound of the formula I of claim 1 wherein

\[
\begin{align*}
\text{n} & = 1, \\
\text{Y} & = \text{CHOH}, \\
\text{Z} & = \text{H}, \\
\text{p} & = 1 \text{ or } 2, \\
\text{R}_a, \text{R}_c \text{ and } s & \text{ have the meaning given in claim 1,}
\end{align*}
\]

which process comprises reaction of a compound of the formula

\[
\begin{align*}
\text{O} - \text{CH}_2 & - \text{O} \\
\text{O} & \\
\text{O} & \\
\text{CN} & \\
\end{align*}
\]

with a compound of the formula

\[
\begin{align*}
\text{R}_a & \\
\text{HN} & - \left[\text{CH}_2\right]_s - \text{S} - \text{R}_c
\end{align*}
\]
wherein Rₐ, Rₑ, s and p have the meanings given above, whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

11. A process for the preparation of a compound of the formula I of claim 1 wherein

n = 1,
γ = CHOH,
Z = H,
p = 0, 1 or 2,
Rₐ, Rₑ and s have the meaning given in claim 1,

which process comprises reaction of a compound of the formula

\[
\begin{align*}
&\text{O - CH}_{2} \\
&\text{C}
\end{align*}
\]

with a compound of the formula

\[
\text{H}_{2}N - \left(\text{CH}_{2}\right)_{s} - S - R_{c}
\]

wherein Rₐ, Rₑ, s and p have the meanings given above to obtain a compound of the formula

\[
\begin{align*}
&\text{O - CH}_{2} - \text{CHOH} - \text{CH}_{2} - \text{NH} - \left(\text{CH}_{2}\right)_{s} - S - R_{c}
\end{align*}
\]
which is then alkylated, whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

12. A process for the preparation of a compound of the formula I of claim 1 wherein

\[Y = \text{CHOH} \]
\[Z = \text{H} \]

\[R_a, R_c, n, s \text{ and } p \] have the meaning given in claim 1 which process comprises reaction of a compound of the formula

\[\text{O} - (\text{CH}_2)_n - \text{CHOH - CH}_2 - \text{O} - \text{SO}_2\text{M} \]

with a compound of the formula

\[R_a \quad (0) \quad p \quad \text{III} \]
\[\quad \text{H - N - (CH}_2)_s - S - R_c \]

where M is a methyl or 4-methylphenyl residue, \(R_a, R_c, s \) and \(p \) have the meaning given above, whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

13. A process according to any of claims 8-12 characterized in that a compound according to any of claims 2-7 is prepared.
14. A compound of the formula

\[
\text{II}
\]

wherein

X is 0,
n is an integer 0, 1 or 2

Y is \([\text{CH}_2]_m, \text{CHOH}, \text{CHOCH}_3, \text{CHNHR}\) or \text{CHF},

\(m\) is an integer 0 or 1 and
\(R\) is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

\(R_a\) is a straight or branched hydroxyalkyl or alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms.

15. A compound of the formula

\[
\text{III}
\]

wherein \(R_a\), \(R_c\), \(s\) and \(p\) have the meanings given in claim 1.
16. A compound of the formula

\[
\text{O - (CH}_2\text{)_n - Y - CH - NH - (CH}_2\text{)_s - }\overset{(O)}{S} - R_c
\]

wherein Y, Z, R_c, n, s, and p have the meanings given in claim 1.

17. A pharmaceutical preparation comprising as active ingredient a compound according to any of claims 1-7 or a pharmaceutically acceptable salt or a stereoisomer thereof.

18. A pharmaceutical preparation according to claim 17 in dosage unit form.

19. A pharmaceutical preparation according to claims 17-18 comprising the active ingredient in association with a pharmaceutically acceptable carrier.

20. A method for the treatment of cardiac arrhythmia in mammals, including man, characterized by the administration to a host in need of such treatment of an effective amount of a compound according to any of claims 1-7 or a pharmaceutically acceptable salt thereof.

21. A compound according to any of claims 1-7 for use as a drug.

22. Use of a compound according to any of claims 1-7 for the preparation of medicaments with action against cardiac arrhythmia.
INTERNATIONAL SEARCH REPORT
International Application No PCT/SE88/00691

I. CLASSIFICATION OF SUBJECT MATTER
According to International Patent Classification (IPC) or to both National Classification and IPC

C 07 C 149/273, 149/14, 147/14, 147/02, 121/78, A 61 K 31/10

II. FIELDS SEARCHED

Classification System	Classification Symbols
IPC 4 | C 07 C; A 61 K

Documentation searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched

SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB, A, 1 457 876 (IMPERIAL CHEMICAL INDUSTRIES LIMITED) 8 December 1976 see page 12, lines 44-45, claims</td>
<td>1-13, 16-19, 21, 22</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 1 593 771 (C.H. BOEHRINGER SOHN) 30 April 1970 see claims</td>
<td>14</td>
</tr>
<tr>
<td>X</td>
<td>SE, B, 404 793 (C.H. BOEHRINGER SOHN) 30 October 1978 see the claim</td>
<td>14</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but not published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other specific reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
1989-02-15

Date of Mailing of this International Search Report
1989-03-00

International Searching Authority

Swedish Patent Office

Signature of Authorized Officer

Gerd Wranne

Form PCT/ISA/210 (second sheet) (January 1985)
III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SE, B, 421 123 (C.H. BOEHRINGER SOHN) 30 November 1981 see the claim</td>
<td>14</td>
</tr>
<tr>
<td>X</td>
<td>DE, A1, 25 03 222 (C.H. BOEHRINGER SOHN) 29 July 1976 see page 6, the last two compounds, page 10, the 5:th and 6:th compounds, claim 1 LU, 74246 AT, 340389 CH, 623024 SE, 7600846</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1 069 345 (IMPERIAL CHEMICAL INDUSTRIES LTD) 17 May 1967 see page 5 (Formula), page 6, 3:rd and 24:th compounds, claim 1</td>
<td>14</td>
</tr>
</tbody>
</table>
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. **Claim number:** 20, because they relate to subject matter not required to be searched by this Authority, namely:

 Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods (PCT Rule 39.1 (iv)).

2. **Claim numbers:**........, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, namely:

3. **Claim numbers:**........, because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(e).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

1) Claims 1-13, 15-19, 21, 22 compounds of formula I their preparation and use and intermediates of formulas III and IV.

2) Claim 14 intermediates of formula II (PCT Rule 13.1).

1. **As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.**

2. **As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:**

3. **No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim number:**

4. **As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.**

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.