(51) International Patent Classification 7:
C08F 291/00, 293/00, 4/00, 2/38

(11) International Publication Number: WO 00/14135
(43) International Publication Date: 16 March 2000 (16.03.00)

(21) International Application Number: PCT/EP99/06172
(22) International Filing Date: 23 August 1999 (23.08.99)
(30) Priority Data: 98810877.5 3 September 1998 (03.09.98) EP

(71) Applicant (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH–4057 Basel (CH).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ROTH, Michael [DE/DE]; FALGBACH, Rudolf [DE/DE]; SACKGASSE 3, D–64668 Rimbach (DE), NEUSCHIED, Peter [CH/CH]; Route des Prallettes 83A, CH–1723 Marly (CH).

(74) Common Representative: CIBA SPECIALTY CHEMICALS HOLDING INC.; Patentabteilung, Klybeckstrasse 141, CH–4057 Basel (CH).

(54) Title: GRAFTING OF ETHYLENICALLY UNSATURATED MONOMERS ONTO POLYMERS

(57) Abstract

The present invention relates to a process for the preparation of a grafted polymer wherein in a first step A) a stable nitroxy radical is grafted onto a polymer, which step comprises heating a polymer and a nitroxy–ether containing a group (=NO–X), wherein X is selected such, that cleavage of the O–X bond occurs and a radical X is formed at about the melting temperature of the polymer; and in a second step B) the grafted polymer of step A) is heated in the presence of an ethylenically unsaturated monomer or oligomer to a temperature at which cleavage of the nitroxy–polymer bond occurs and polymerization of the ethylenically unsaturated monomer or oligomer is initiated at the polymer radical; maintaining said temperature for further polymerization and afterwards cooling down the mixture to a temperature below 60 °C. Further subjects are grafted thermoplastic polymers prepared by said process, the intermediate polymeric radical initiator, the use of the polymeric radical initiator and the use of NO–ethers for grafting thermoplastic polymers.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
</tr>
<tr>
<td>AM Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
</tr>
<tr>
<td>AT Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
</tr>
<tr>
<td>AU Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
</tr>
<tr>
<td>AZ Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
</tr>
<tr>
<td>BA Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
</tr>
<tr>
<td>BB Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
</tr>
<tr>
<td>BE Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
</tr>
<tr>
<td>BF Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>Mal</td>
</tr>
<tr>
<td>BG Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>ML</td>
</tr>
<tr>
<td>BJ Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MN</td>
</tr>
<tr>
<td>BR Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
</tr>
<tr>
<td>BY Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MW</td>
</tr>
<tr>
<td>CA Canada</td>
<td>IT</td>
<td>Italy</td>
<td>MX</td>
</tr>
<tr>
<td>CF Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NR</td>
</tr>
<tr>
<td>CG Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NL</td>
</tr>
<tr>
<td>CH Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NO</td>
</tr>
<tr>
<td>CI Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>NZ</td>
</tr>
<tr>
<td>CM Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
</tr>
<tr>
<td>CN China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
</tr>
<tr>
<td>CU Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
</tr>
<tr>
<td>CZ Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
</tr>
<tr>
<td>DE Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
</tr>
<tr>
<td>DK Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
</tr>
<tr>
<td>EE Estonia</td>
<td></td>
<td></td>
<td>SG</td>
</tr>
<tr>
<td>SI Slovenia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK Slovakia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN Senegal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ Swaziland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD Chad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG Togo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ Tajikistan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM Turkmenistan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR Turkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT Trinidad and Tobago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA Ukraine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UG Uganda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US United States of America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ Uzbekistan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN Viet Nam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YU Yugoslavia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW Zimbabwe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grafting of Ethylenically Unsaturated Monomers onto Polymers

The present invention relates to a process for the preparation of grafted polymers wherein in a first step A) a stable nitroxyl radical is grafted onto a polymer, which step comprises heating a polymer and a compound containing a NO-ether to above the melting point of the polymer, mixing and reacting the components at said temperature; and in a second step B) the grafted polymer of step A) is heated in the presence of an ethylenically unsaturated monomer or oligomer to a temperature at which cleavage of the nitroxyl-polymer bond occurs. Further subjects of the present invention are grafted polymers prepared by said process, the intermediate polymeric radical initiator, the use of the polymeric radical initiator and the use of NO-ethers for grafting polymers.

Increasing activities have been directed towards chemical modifications of existing polymers in order to obtain functional and/or engineered new materials. Chemical modifications of existing polymers are important for at least two reasons: 1. They can be an inexpensive and rapid way of obtaining new polymers without having to search for new monomers; 2. they may be the only way to synthesize polymers with the intended new characteristics.

An important chemical modification is the free radical grafting of reactive monomers, which involves reaction of a polymer with a vinyl-group containing monomer or mixture of monomers capable of forming grafts onto the polymer backbone. If the grafts are long, the modified polymer becomes a true graft copolymer, of which the properties will be very different from those of the original polymer substrate. When the grafts are short with less than five moieties, most of the physical and or mechanical properties of the modified polymer substrate will be retained.

The advantages of free radical-grafting are further gained with the use of batch mixers or screw extruders as chemical reactors, which allow the free radical-grafting reaction to occur without solvents. This is for example described by G. H. Hu et al., in "Reactive Modifiers for Polymers", first edition, Blackie Academic & Professional an Imprint of Chapman & Hall, London 1997, chapter 1, pages 1-97.

These free radical-grafting reactions are usually performed in the presence of a free radical source such as a peroxide and a reactive monomer, such as for example acrylic acid. However the use of free radical sources such as peroxides may cause undesired properties and lead to problems during processing (gel formation, crosslinking, molecular weight reduction) or during use. Typically the long term stability is reduced and/or the polymer cannot anymore be used in outdoor applications or in applications at elevated temperatures.
US-A-4 581 429 to Solomon et al., issued April 8, 1986, discloses a free radical polymerization process which controls the growth of polymer chains to produce short chain or oligomeric homopolymers and copolymers, including block and graft copolymers. The process employs an initiator having the formula (in part) \(R'R''N-O-X \), where \(X \) is a free radical species capable of polymerizing unsaturated monomers.

Surprisingly it has now been found that with specific \(R'R''N-O-X \) compounds it is possible to produce a polymeric radical initiator by grafting the group \(R'R''N-O \) to the polymer and to use this macroinitiator for further grafting reactions of olefinically unsaturated monomers.

The polymerization processes and resin products of the present invention are useful in many applications, including a variety of specialty applications, such as for the preparation of grafted block copolymers which are useful as compatibilizing agents for polymer blends or dispersing agents for coating systems.

One subject of the present invention is a process for the preparation of a grafted polymer wherein in a first step

A) a stable nitroxy radical is grafted onto a polymer, which step comprises heating a polymer and a nitroxy-ether containing a group \((=NO-X) \), wherein

\(X \) is selected such, that cleavage of the O-X bond occurs and a radical \(X^• \) is formed at about the melting temperature of the polymer; and in a second step

B) the grafted polymer of step A) is heated in the presence of an ethylenically unsaturated monomer or oligomer to a temperature at which cleavage of the nitroxy-polymer bond occurs and polymerization of the ethylenically unsaturated monomer or oligomer is initiated at the polymer radical; maintaining said temperature for further polymerization and afterwards cooling down the mixture to a temperature below 60° C.

The reaction mixture after step A) may also be cooled down to a temperature below 60° C before further reaction of step B) is performed.

Optionally a free radical source is additionally present.

The reaction mixture after step A) may also be cooled down to a temperature below 60° C before further reaction of step B) is performed.

Preferably the free radical source is a bis-azo compound, a peroxide or a hydroperoxide.
Specific preferred radical sources are 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 1,1'-azobis(1-cyclohexanecarbonitrile), 2,2'-azobis(isobutyramide) dihydrate, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, dimethyl-2,2'-azobisisobutyrate, 2-(carbamoylazo)isobutyronitrile, 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(2-methylpropane), 2,2'-azobis(N,N'-dimethyleneisobutyramidine), free base or hydrochloride, 2,2'-azobis(2-amidinopropane), free base or hydrochloride, 2,2'-azobis(2-methyl-N-[1,1-bis(hydroxymethyl)ethyl]propionamide) or 2,2'-azobis[2-methyl-N-[1,1-bis(hydroxymethyl)ethyl]propionamide; acetyl cyclohexane sulphonyl peroxide, diisopropyl peroxy dicarbonate, t-amyl pernoecanoate, t-butyl pernoecanoate, t-butyl perpivalate, t-amylperpivalate, bis(2,4-dichlorobenzoyl)peroxide, diisononanoyl peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, bis (2-methylbenzoyl) peroxide, disuccinic acid peroxide, diacetyl peroxide, dibenzoyl peroxide, t-butyl per 2-ethylhexanoate, bis-(4-chlorobenzoyl)-peroxide, t-butyl perisobutyrinate, t-butyl permaleinate, 1,1-bis(t-butylperoxy)3,5,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, t-butyl peroxy isopropyl carbonate, t-butyl perisononaoate, 2,5-dimethylhexane 2,5-dibenzoate, t-butyl peracetate, t-amyl perbenzoate, t-butyl perbenzoate, 2,2-bis (t-butylperoxy) butane, 2,2 bis (t-butylperoxy) propane, dicumyl peroxide, 2,5-dimethylhexane-2,5-di-t-butylperoxide, 3-t-butylperoxy 3-phenylphthalide, di-t-amyl peroxide, α, α’-bis(t-butylperoxy isopropyl) benzene, 3,5-bis (t-butylperoxy)3,5-dimethyl 1,2-dioxolane, di-t-butyl peroxide, 2,5-dimethylhexyne-2,5-di-t-butylperoxide, 3,3,6,6,9,9-hexamethyl 1,2,4,5-tetraoxa cyclononane, p-menthane hydroperoxide, pinane hydroperoxide, diisopropylbenzene mono-α-hydroperoxide, cumene hydroperoxide or t-butyl hydroperoxide.

Peroxides are most preferred.

Examples of suitable polymers are mentioned below.

1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybutene-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).
Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:

a) radical polymerisation (normally under high pressure and at elevated temperature).

b) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcohohlates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkylxanes, said metals being elements of groups Ia, Ila and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).

2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).

3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
4. Hydrocarbon resins (for example C$_5$-C$_6$) including hydrogenated modifications thereof (e.g. tackifiers) and mixtures of polyalkylenes and starch.

5. Polystyrene, poly(p-methylstylene), poly(a-methylstyrene).

6. Copolymers of styrene or a-methylstyrene with dienes or acrylic derivatives, for example styrene/butadiene, styrene/acrylonitrile, styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrene/maleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene such as styrene/butadiene/styrene, styrene/isoprene/styrene, styrene/ethylene/butylene/styrene or styrene/ethylene/propylene/ styrene.

7. Graft copolymers of styrene or a-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpolymers; styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers, as well as mixtures thereof with the copolymers listed under 6), for example the copolymer mixtures known as ABS, MBS, ASA or AES polymers.

8. Halogen-containing polymers such as polychloroprene, chlorinated rubbers, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfo-chlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, as well as copolymers thereof such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate copolymers.

9. Polymers derived from α,β-unsaturated acids and derivatives thereof such as polyacrylates and polymethacrylates; polymethyl methacrylates, polyacrylamides and polyacrylonitriles, impact-modified with butyl acrylate.
10. Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers, for example acrylonitrile/ butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/ alkyl methacrylate/butadiene terpolymers.

11. Polymers derived from unsaturated alcohols and amines or the acyl derivatives or acetals thereof, for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1) above.

12. Homopolymers and copolymers of cyclic ethers such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers.

13. Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.

14. Polyphenylene oxides and sulfides, and mixtures of polyphenylene oxides with styrene polymers or polyamides.

15. Polyurethanes derived from hydroxyl-terminated polyethers, polyesters or polybutadienes on the one hand and aliphatic or aromatic polyisocyanates on the other, as well as precursors thereof.

16. Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an elastomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol; as well as polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (RIM polyamide systems).

17. Polyureas, polyimides, polyamide-imides, polyetherimids, polyesterimids, polyhydantoins and polybenzimidazoles.
18. Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones, for example polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylocyclohexane terephthalate and polyhydroxybenzoates, as well as block copolyether esters derived from hydroxyl-terminated polyethers; and also polyesters modified with polycarbonates or MBS.

19. Polycarbonates and polyester carbonates.

20. Polysulfones, polyether sulfones and polyether ketones.

Preferred polymers are polyethylene, polypropylene, polystyrene, styrene block-copolymers, polybutadiene or polyisoprene, EPDM (ethylene-propylene diene monomer) or EPR (ethylene-propylene rubber).

More preferred are polyethylene, polypropylene, polybutadiene, SBS and EPDM (ethylene-propylene diene monomer).

One preferred nitroxyl-ether is of formula (X)

```
[\begin{array}{c}
R_{1i2} \\
R_{1i1} \\
R_{1i3} \\
R_{1i2} \\
R_{1i1} \\
R_{1i3} \\
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
N \quad R_{1i0} \\
O \quad X \\
n \quad 1 \\
\end{array}
\end{array}
\end{array}
\end{array}

\text{wherein } n \text{ is } 0 \text{ or } 1

R_{1i1}, R_{1i2}, R_{1i3} \text{ are each independently of one another hydrogen, halogen, NO}_2, \text{ cyano,}
\text{ -CONR}_{1i0}R_{1i6}, -\{R_{1i6}\}COOR_{1i4}, -C(O)\{R_{1i7}, -OR}_{1i8}, -SR_{1i8}, -NHR_{1i8}, -N\{R_{1i8}\}_2, \text{ carbamoyl, di(C}_{1,}
\text{ C}_{10} \text{ alkyl)carbamoyl, -C(=NR}_{1i9}\}\{NHR_{1i9}\}_2;}
```
unsubstituted C_{1}-C_{18}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{2}-C_{18}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom; or
C_{1}-C_{18}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{2}-C_{18}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or
phenyl, which is unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino;
or R_{102} and R_{103}, together with the linking carbon atom, form a C_{3}-C_{12}cycloalkyl radical, a (C_{4}^{n_{1}}-C_{12}cycloalkanon)-yl radical or a C_{3}-C_{12}cycloalkyl radical containing at least one O atom and/or a NR_{108} group; or if n_{1} is 1
\[R_{102} \quad R_{101} \quad R_{103} \]

R_{104} is hydrogen, C_{1}-C_{18}alkyl, phenyl, an alkali metal cation or a tetraalkylammonium cation;
R_{105} and R_{106} are hydrogen, C_{1}-C_{18}alkyl, C_{3}-C_{18}alkyl which is substituted by at least one hydroxy group or, taken together, form a C_{2}-C_{12}alkylene bridge or a C_{2}-C_{12}-alkylene bridge interrupted by at least one O or and NR_{108} atom;
R_{107} is hydrogen, C_{1}-C_{18}alkyl or phenyl;
R_{108} is hydrogen, C_{1}-C_{18}alkyl or C_{2}-C_{18}alkyl which is substituted by at least one hydroxy group;
R_{109} is C_{1}-C_{12}alkylene or a direct bond;
R_{110} is C_{4}-C_{18}alkyl bound via a tertiary C-atom to the nitrogen atom, C_{9}-C_{11}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom; or
C_{4}-C_{18}alkyl bound via a tertiary C-atom to the nitrogen atom, C_{9}-C_{11}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or
phenyl, napththyl, which are unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino;
if n_{1} is 1
R_{111} is C_{1}-C_{18}alkyl, C_{2}-C_{9}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom; or
C_{1}-C_{18}alkyl, C_{2}-C_{9}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or
phenyl, naphthyl, which are unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or a polycyclic cycloaliphatic ring system or a polycyclic cycloaliphatic ring system with at least one di- or trivalent nitrogen atom; or

R_{110} and R_{111} together form a C_{2}-C_{12}alkylene bridge, a C_{3}-C_{12}alkylen-on bridge or a C_{2}-C_{12}alkylene bridge which is interrupted by at least one O or N atom, which bridges are unsubstituted or substituted with C_{1}-C_{18}alkyl, hydroxy(C_{1}-C_{4})alkyl, phenyl, C_{7}-C_{9}phenylalkyl, NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino,

R_{112} is hydrogen, -(R_{109})COOR_{104}, cyano, -OR_{108}, -SR_{108}, -NHR_{108}, -N(R_{106})_{2}, -NH-C(O)-R_{108}, unsubstituted C_{1}-C_{18}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{7}-C_{9}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom; or

C_{1}-C_{18}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{7}-C_{9}phenylalkyl, C_{3}-C_{12}cycloalkyl or C_{3}-C_{12}cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or

phenyl, naphthyl, which are unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino, di(C_{1}-C_{4}alkyl)amino; or

R_{111} and R_{112} together with the linking carbon atom form a C_{2}-C_{12}cycloalkyl radical.

Another preferred nitroxyl-ether is of formula XXa, XXb or XXc

\[
\begin{align*}
\text{(XXa)}, & \quad \text{(XXb)}, \\
\text{(XXc)} & \quad \text{(XXc)}
\end{align*}
\]

\[
\begin{align*}
R_{201} & \quad R_{202} & \quad Y_{1} & \quad N & \quad R_{204} \\
R_{203} & \quad R_{203} & \quad R_{205} & \quad R_{206} & \quad R_{207} & \quad R_{208} & \quad R_{209} & \quad R_{210} & \quad X \\
R_{211} & \quad R_{207} & \quad R_{206} & \quad R_{205} & \quad R_{204} & \quad R_{203} & \quad R_{202} & \quad R_{201} & \quad X
\end{align*}
\]

wherein

Y_{1} \text{ is O or CH}_{2};

Q \text{ is O or NR}_{220}, \text{ wherein } R_{220} \text{ is hydrogen or } C_{1}-C_{18}alkyl;

R_{201} \text{ is tertiary } C_{4}-C_{18}alkyl \text{ or phenyl, which are unsubstituted or substituted by halogen, OH,}

COOR_{221} \text{ or } C(O)-R_{222}, \text{ wherein } R_{221} \text{ is hydrogen, a alkali metal atom or } C_{1}-C_{18}alkyl \text{ and } R_{222} \text{ is } C_{1}-C_{18}alkyl; \text{ or}
R_{201} is C_2-C_{12}cycloalkyl, C_2-C_{12}cycloalkyl which is interrupted by at least one O or N atom, a polycyclic alkyl radical or a polycyclic alkyl radical which is interrupted by at least one O or N atom;

R_{202} and R_{203} are independently C_1-C_{18}alkyl, benzyl, C_2-C_{12}cycloalkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR$_{221}$ or C(O)-R$_{222}$ or together with the carbon atom form a C$_2$-C$_{12}$cycloalkyl ring;

if Y_1 is O,

R_{204} and R_{212} are OH, O(alkali-metal) C$_1$-C$_{18}$alkoxy, benzyloxy, NR$_{223}$R$_{224}$, wherein R_{223} and R_{224} are independently from each other hydrogen, C$_1$-C$_{18}$alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR$_{221}$ or C(O)-R$_{222}$;

if Y_1 is CH$_2$,

R_{204} is OH, C$_1$-C$_{18}$alkoxy, benzyloxy, O-C(O)-(C$_1$-C$_{18}$)alkyl or NR$_{223}$R$_{224}$;

R_{212} are a group C(O)R$_{225}$, wherein R_{225} is OH, C$_1$-C$_{18}$alkoxy, benzyloxy, NR$_{223}$R$_{224}$, wherein R_{223} and R_{224} are independently from each other hydrogen, C$_1$-C$_{18}$alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR$_{221}$ or C(O)-R$_{222}$;

R_{205}, R_{206}, R_{207} and R_{208} are independently of each other C$_1$-C$_{18}$alkyl, C$_2$-C$_{12}$cycloalkyl or phenyl; or

R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C$_2$-C$_{12}$cycloalkyl ring;

R_{209} and R_{210} are independently of each other hydrogen, formyl, C$_2$-C$_{18}$alkylformyl, benzoyl, C$_1$-C$_{18}$alkyl, C$_2$-C$_{12}$cycloalkyl, C$_5$-C$_{12}$cycloalkyl which is interrupted by at least one O or N atom, benzyly or phenyl which are unsubstituted or substituted by halogen, OH, COOR$_{221}$ or C(O)-R$_{222}$;

R_{211} is formyl, C$_2$-C$_{18}$alkylformyl, benzoyl, C$_1$-C$_{18}$alkyl, C$_5$-C$_{12}$cycloalkyl, C$_5$-C$_{12}$cycloalkyl which is interrupted by at least one O or N atom, benzyly or phenyl which are unsubstituted or substituted by halogen, OH, COOR$_{221}$ or C(O)-R$_{222}$.

Still another preferred nitroxy-ether contains a structural element of formula (XXX)
G₁, G₂, G₅, G₆ are independently C₁-C₆ alkyl or G₁ and G₂ or G₃ and G₄, or G₁ and G₂ and G₃ and G₄ together form a C₅-C₁₂ cycloalkyl group;
G₅, G₆ independently are H, C₁-C₁₆ alkyl, phenyl, naphthyl or a group COOC₁-C₁₈ alkyl.

More preferred is a nitroxyld-ether, wherein the structural element of formula (XXX) is any of formulae A to S.
wherein

G₁, G₂, G₃ and G₄ are independently alkyl of 1 to 4 carbon atoms, or G₁ and G₂ together and G₃ and G₄ together, or G₁ and G₂ together or G₃ and G₄ together are pentamethylene;

G₅ and G₆ are independently hydrogen or C₁₋₄ alkyl;

R, if m is 1, is hydrogen, C₁₋₁₉ alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ₁₂ groups, in which Z₁₂ is H, C₁₋₁₉ alkyl, C₃₋₁₉ alkenyl, C₆₋₁₉ cycloalkyl, phenyl or benzyl; or

R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

R, if m is 2, is C₂₋₁₉ alkylene, C₄₋₁₉ alkenylene, xylene, a divalent radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, or a cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 carbon atoms, where each dicarboxylic acid may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by one or two -COOZ₁₂ groups; or

R is a divalent radical of a phosphorus-containing acid or a divalent silyl radical;
R, if m is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by -COOZ₂₋₄, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical,

R, if m is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid; p is 1, 2 or 3,

R₁ is C₁₋₁₂alkyl, C₅₋₇cycloalkyl, C₇₋₉aralkyl, C₁₂₋₁₆alkanoyl, C₃₋₅alkenoyl or benzoyl;
when p is 1,
R₂ is C₁₋₁₈alkyl, C₅₋₇cycloalkyl, C₂₋₉alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl; or
when p is 2,
R₃ is C₂₋₁₂alkylene, C₆₋₁₂arylene, xylylene, a -CH₂CH(OH)CH₂-O-B-O-CH₂CH(OH)CH₂- group, wherein B is C₂₋₁₆alkylene, C₅₋₁₅arylene or C₉₋₁₂cycloalkylene; or, provided that R₁ is not alkanoyl, alkenoyl or benzoyl, R₂ can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or can be the group -CO-; or R₁ and R₂ together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or
R₂ is a group

\[
\begin{array}{c}
\text{T₇} \\
\text{T₈} \\
\end{array}
\]

where T₇ and T₈ are independently hydrogen, alkyl of 1 to 18 carbon atoms, or T₇ and T₈ together are alkylene of 4 to 6 carbon atoms or 3-oapentamethylene;
when p is 3,
R₂ is 2,4,6-triazinyl;
when n is 1,
R₃ is C₂₋₉alkylene or hydroxyalkylene or C₄₋₂₂acyloxyalkylene; or
when n is 2,
R₃ is (-CH₂)₉C(CH₂)₂;
R₄ is hydrogen, C₁₋₁₂alkyl, C₃₋₅alkenyl, C₇₋₁₀aralkyl, C₅₋₇cycloalkyl, C₂₋₄hydroxyalkyl, C₂₋₆alkoxyalkyl, C₆₋₁₀aryl, glycidyl, a group of formula -(CH₂)ₘ-COO-Q or of the formula -(CH₂)ₙ-O-CO-Q wherein m is 1 or 2 and Q is C₁₋₄alkyl or phenyl, or when n is 2, R₆ is C₂₋₁₀alkylene, C₆₋₁₂arylene, a group -CH₂CH(OH)CH₂-O-D-O-CH₂CH(OH)CH₂- wherein D is C₂₋₁₀alkylene, C₆₋₁₂arylene or C₆₋₁₂cycloalkylene, or a group -CH₂CH(OZ)₁CH₂-(OCH₂CH(OZ)₁CH₂)₂- wherein Z₁ is hydrogen, C₁₋₁₈alkyl, allyl, benzyl, C₂₋₁₂alkanoyl or benzoyl;
R₆ is hydrogen, C₁₋₁₀alkyl, allyl, benzyl, glycidyl or C₂₋₆alkoxyalkyl;
Q₁ is -N(R₁)ₗ- or -O⁻;
E is C₁₋₅alkylene, the group -CH₂CH(R₆)₁-O- wherein R₆ is hydrogen, methyl or phenyl, the group -(CH₂)ₘ-NH⁻ or a direct bond;
R₅ is C₁₋₁₈alkyl, C₇₋₁₂cycloalkyl, C₁₋₁₂aralkyl, cyanoethyl, C₆₋₁₂aryl, the group -CH₂CH(R₆)₁-OH; or a group of the formula

or a group of the formula

wherein G is C₂₋₆alkylene or C₆₋₁₂arylene and R is as defined above; or R₅ is a group -E-CO-NH-CH₂-OR₆;
R₆ is hydrogen or C₁₋₁₀alkyl;
Formula (F) denotes a recurring structural unit of a oligomer where T is ethylene or 1,2-propylene, or is a repeating structural unit derived from an α-olefin copolymer with an alkyl acrylate or methacrylate; k is 2 to 100; and R_{10} is hydrogen, C_{1-12}alkyl or C_{1-12}alkoxy;

T_2 has the same meaning as R_4;

T_3 and T_4 are independently alkylene of 2 to 12 carbon atoms, or T_4 is a group

![Diagram](image)

T_5 is C_2-C_{22}alkylene, C_5-C_7cycloalkylene, C_1-C_4alkylenedi(C_2-C_7cycloalkylene), phenylene or phenylenedi(C_1-C_4alkylene);

T_6 is -NH(CH$_2$)$_a$N(CH$_2$)$_b$N[CH$_2$C$_2$N]$_d$$^\text{H}$

where a, b and c are independently 2 or 3, and d is 0 or 1; e is 3 or 4;

E_1 and E_2, being different, are each oxo or imino;

E_3 is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms;

E_4 is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl or phenylalkyl of 7 to 12 carbon atoms; or

E_3 and E_4 together are polymethylene of 4 to 17 carbon atoms, or said polymethylene substituted by up to four alkyl groups of 1 to 4 carbon atoms; and

E_6 is an aliphatic or aromatic or aromatic tetravalent radical.

Further suitable heterocyclic nitroxyl-ether are for example mentioned in WO 98/30601 or in WO 98/44008, which are incorporated by reference.
Alkyl with up to 20 carbon atoms is, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl. The alkyl groups may be linear or branched.

C₃⁻C₁₈alkyl which is interrupted by one or more oxygen atoms is preferably derived from ethylene oxide or propylene oxide.

C₃⁻C₁₈alkyl interrupted by at least one O atom is for example -CH₂-CH₂-O-CH₂-CH₃, -CH₂-CH₂-O-CH₃ or -CH₂-CH₆-O-CH₂-CH₂-O-CH₂-CH₃. It is preferably derived from polyethylene glycol. A general description is -((CH₂)ₐ-O)ₐ-H/CH₃, wherein a is a number from 1 to 6 and b is a number from 2 to 10.

C₂⁻C₁₈alkenyl is linear or branched and for example propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, dodecenyl including their isomers.

C₃⁻C₈alkynyl is preferably propargyl.

C₃⁻C₁₂cycloalkyl is typically, cyclopentyl, methylcyclopentyl, dimethylcyclopentyl, cyclohexyl, methylcyclohexyl.

Cycloalkyl which is interrupted by at least one O or N atom is for example 2-tetrahydropyran-yl, tetrahydrofurane-yl, 1, 4 dioxan-yl, pyrroldin-yl, tetrahydrothiophen-yl, pyrazolidin-yl, imidazolidin-yl, butyrolactone-yl, caprolactame-yl.

Examples for alkali metal are lithium, sodium or potassium.

Alkyl substituted by-OH is typically 2-hydroxyethyl, 2-hydroxypropyl or 2-hydroxybutyl.

C₁⁻C₁₈alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, heptoxy, octoxy, decyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy and octadecyloxy.

C₁⁻C₁₈Alkyl substituted by C₁⁻C₈alkoxy, preferably by C₁⁻C₆alkoxy, in particular by methoxy or ethoxy, is typically 2-methoxyethyl, 2-ethoxyethyl, 3-methoxypropyl, 3-ethoxypropyl, 3-butoxypropyl, 3-octoxypropyl and 4-methoxybutyl.
C₁₋₉ alkyl substituted by di(C₁₋₃ alkyl)amino is preferably e.g. dimethylamino, diethylamino, 2-dimethylaminoethyl, 2-diethylaminoethyl, 3-dimethylaminopropyl, 3-diethylaminopropyl, 3-dibutylaminopropyl and 4-diethylaminobutyl.

C₁₋₉ alkyl substituted by C₁₋₃ alkylamino is preferably e.g. methylamino, ethylamino, 2-methylaminoethyl, 2-ethylaminoethyl, 3-methylaminopropyl, 3-ethylaminopropyl, 3-butyraminopropyl and 4-ethylaminobutyl.

C₁₋₃ alkylthio is typically thiomethyl, thioethyl, thiopropyl, thioisopropyl, thiobutyl and thioisobutyl.

C₂₋₁₈ alkylcarbonyl is for example acetyl, propionyl, butyryl, pentylicarbonyl, hexylcarbonyl or dodecylcarbonyl.

C₇₋₉ phenylalkyl or C₇₋₉ aralkyl is for example benzyl, phenylethyl, phenylpropyl, α,α-dimethylbenzyl or α-methylbenzyl.

Examples of C₂₋₁₂ alkylene bridges, preferably of C₂₋₆ alkylene bridges, are ethylene, propylene, butylene, pentylenne, hexylene.

C₂₋₁₂ alkylene bridges interrupted by at least one N or O atom are, for example,

-CH₂-O-CH₂-CH₂, -CH₂-O-CH₂-CH₂-CH₂, -CH₂-O-CH₂-CH₂-CH₂-
-CH₂-O-CH₂-CH₂-O-CH₂-, -CH₂-NH-CH₂-CH₂, -CH₂-NH-CH₂-CH₂-CH₂,
-CH₂-NH-CH₂-CH₂-CH₂-CH₂, -CH₂-NH-CH₂-CH₂-NH-CH₂- or -CH₂-NH-CH₂-CH₂-O-CH₂-

Examples for C₄₋₁₂ cycloalkanone-yl are cyclopentanone-yl, cyclohexanone-yl or cycloheptanone-yl.

Phenyl substituted by 1, 2 or 3 C₁₋₃ alkyl or C₁₋₃ alkoxy is typically methylphenyl, dimethylphenyl, trimethylphenyl, t-butylphenyl, di-t-butylphenyl, 3,5-di-t-butyl-4-methylphenyl, methoxyphenyl, ethoxyphenyl and butoxyphenyl.

Examples of polycyclic cycloaliphatic ring systems are adamantane, cubane, twistane, norbornane, bycyclo[2.2.2]octane or bycyclo[3.2.1]octane.

An example of a polycyclic heterocycloaliphatic ring system is hexamethylenetetramine (urotropine).
Examples of monocarboxylic acids with 1 to 18 carbon atoms are formic acid, acetic acid, propionic acid, phenyl acetic acid, cyclohexane carboxylic acid, mono-, di- and trichlor-acetic acid or mono-, di- and trifluor-acetic acid. Other suitable acids are benzoic acid, chlor-benzoic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid, chlorbenzenesulfonic acid, trifluormethanesulfonic acid, methylphosphonic acid or phenylphosphonic acid.

Examples of a monovalent radical of a carboxylic acid are an acetyl, caproyl, stearoyl, acryloyl, methacryloyl, cyclohexylcarboxylic acid, benzoyl or β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionyl radical.

Further examples are derived from propionic acid, laurinic acid or methyl ethyl acetic acid or the other isomers of valeric acid.

Examples of a cycloaliphatic carboxylic acid is for example cyclohexane carboxylic acid or cyclopentane carboxylic acid.

An example of an aromatic carboxylic acid is benzoic acid.

Typical unsaturated carboxylic acids are acrylic acid, methacrylic acid or crotonic acid.

Examples of a monovalent silyl radical are of the formula -(C₃H₆)·Si(Z')₂Z", in which j is an integer in the range from 2 to 5, and Z' and Z", independently of one another, are C₁⁻C₄alkyl or C₁⁻C₄alkoxy.

Examples of di-, tri- and tetravalent acids are for example malonyl, succinyl, glutaryl, adipoyl, suberoyl, sebacoyl, maleoyl, itaconyl, phthaloyl, dibutylmalonyl, dibenzylmalonyl, butyl(3,5-di-tert-butyl-4-hydroxybenzyl)malonyl or bicycloheptenedicarbonyl radical or a group of the formula
1,2,3,4-tetracarboxylic acid or pyromellitic acid.

Examples of a dicarbamic acid are the hexamethylenedicarbamoyl or 2,4-toluylenedicarbamoyl radicals.

C₂-C₁₂ alkanoyl is, for example, propionyl, butyryl, octanoyl, dodecanoyl, but preferably acetyl.

Hydroxyl-, cyano-, alkoxy carbonyl- or carbamide-substituted alkyl can be, for example, 2-hydroxyethyl, 2-hydroxypropyl, 2-cyanoethyl methylcarbamoylmethyl, 2-ethoxycarbonylpropyl, 2-aminocarbonylpropyl or 2-(dimethylaminocarbonyl)ethyl.

Any C₂-C₁₂ alkyne radicals are, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

C₆-C₁₂ alkenylene is for example butylene, pentylene, hexylene, heptylene or nonylene including their isomers.

C₆-C₁₂ arylene is, for example, o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

C₆-C₂₂ acyloxyalkylene is, for example, 2-ethyl-2-acetoxymethylpropylene. Any C₂-C₆ alkoxyalkyl substituents are, for example, methoxymethyl, ethoxymethyl, propoxymethyl, tert-butoxymethyl, ethoxyethyl, ethoxypropyl, n-butoxyethyl, tert-butoxyethyl, isopropoxyethyl or propoxypropyl.

C₁₁-C₁₈ alkanoyloxy is, for example, formyloxy, acetyloxy, propionyloxy, butyryloxy, valeryloxy, lauroyloxy, palmitoyloxy and stearoyloxy.
The nitroxy1-ethers of formula (X) are known and may be prepared according to WO 99/03984, EP-A-0 891 986 or WO 98/13392.

Some typical examples are given below.

The nitroxy1-ethers of formula XXa, b and c are also known and may be prepared according to European Patent Application No. 98810741.3.

Typical examples are given below.

The nitroxy1-ethers of formula XXX are also known and can be prepared as described in European Patent Application No. 98810531.8.

Furthermore DE 26 21 841, US 4'131'599 and DE 26 30 798 for example describe the preparation of 2,6-diethyl-2,3,6-trimethyl-4-oxopiperidine and 2,6-dipropyl-3-ethyl-2,6-dimethyl-
4-oxo-piperidine, which are intermediates for the corresponding 1-oxo and nytroxy-ether compounds.

Another method for the preparation of 2,2-dimethyl-6,6-dialkyl-4-oxopiperidine is described by F. Asinger, M. Thiel, H. Baltz, Monatshfte für Chemie 88, 464 (1957) or by J. Bobbitt et al. in J. Org. Chem. 58, 4837 (1993).

The oxidation of the piperidine compound to 1-oxo-piperidine derivatives is well known in the art and for example described by L.B. Volodarsky, V. A. Reznikov, V.I. Ovcharenko in Synthetic Chemistry of Stable Nitroxides, CRC Press, Boca Raton 1994.

The tetramethylpiperidine precursors are partially commercially available or can be prepared according to known methods. For example US 5 096 950 and the documents cited therein describe the preparation of the precursors. The oxidation and ether forming process can be done as described above.

Examples are given below.

Preferably G₁, G₂, G₃ and G₄ are methyl or ethyl and G₅ and G₆ are hydrogen or methyl.
More Preferably G_1, G_2, G_3, and G_4 are methyl and G_5 and G_6 are hydrogen.

Another preferred group of compounds are those wherein G_1 and G_3 are ethyl and G_2 and G_4 are methyl, or G_1 and G_4 are ethyl and G_2 and G_3 are methyl, and one of G_5 or G_6 is hydrogen and the other methyl or both are hydrogen.

Preferably X is selected from the group consisting of $C_1\ldots C_{18}$alkyl, $C_3\ldots C_{18}$alkenyl, $C_3\ldots C_{18}$alkyl, phenyl, phenyl($C_7\ldots C_{11}$)alkyl, phenyl or phenyl($C_7\ldots C_{11}$)alkyl substituted by $C_1\ldots C_{12}$alkyl, $C_1\ldots C_{12}$alkoxy, OH, amino, $C_1\ldots C_{12}$alkylamino, $C_1\ldots C_{12}$dialkylamino, NO$_2$ or halogen, $C_2\ldots C_7$cycloalkyl, or a group \[\begin{array}{c} \text{R} \\ \text{R} \\ \text{R} \end{array} \], wherein

R_{20}, R_{21}, and R_{22} are hydrogen or $C_1\ldots C_{12}$alkyl, $C_2\ldots C_{12}$alkenyl, phenyl or $C_2\ldots C_7$cycloalkyl.

More preferably X is selected from the group consisting of $C_1\ldots C_{18}$alkyl, benzyl, allyl, cyclopentyl or cyclohexyl.

Most preferred are allyl and cyclohexyl.

A preferred subgroup are compounds of the structural formulae A, B, O or P, wherein m is 1,

R is hydrogen, $C_1\ldots C_{18}$alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

p is 1;

R_1 is $C_1\ldots C_{12}$alkyl, $C_2\ldots C_7$cycloalkyl, $C_7\ldots C_{12}$aralkyl, $C_2\ldots C_{12}$alkanoyl or benzoyl; R_2 is $C_1\ldots C_{18}$alkyl, $C_2\ldots C_7$cycloalkyl, $C_2\ldots C_{12}$alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH$_2$CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl.

More preferred are those of structure A or B, wherein R is hydrogen, $C_1\ldots C_{18}$alkyl, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid, having 2 to 18 carbon atoms;

R_1 is $C_1\ldots C_{12}$alkyl, $C_7\ldots C_{12}$aralkyl, $C_2\ldots C_{12}$alkanoyl, $C_2\ldots C_{12}$alkenoyl or benzoyl;
R₂ is C₁₋C₁₈alkyl, glycidyl, a group of the formula \(-\text{CH}_2\text{CH(OH)-}Z\) or of the formula \(-\text{CO-}Z\), wherein Z is hydrogen, methyl or phenyl.

Another preferred subgroup is wherein the nitroxyl-ether is a compound of formula (X), nᵣ is 1
R₁₀₁ is cyano;
R₁₀₂ and R₁₀₃ are each independently of one another unsubstituted C₁₋C₁₂alkyl or phenyl; or R₁₀₂ and R₁₀₃, together with the linking carbon atom, form a C₅₋C₇cycloalkyl radical;
R₁₁₀ is C₄₋C₁₂alkyl bound via a tertiary C-atom to the nitrogen atom, C₉₋C₁₁phenylalkyl or phenyl; or R₁₁₀ and R₁₁₁ together form a C₂₋C₆alkylene bridge which is unsubstituted or substituted with C₁₋C₄alkyl; and R₁₁₂ is C₁₋C₄alkyl.

A further preferred subgroup is wherein the nitroxyl-ether is a compound of formula (XXa), Y is O;
R₂₀₁ is tertiary C₂₋C₈alkyl;
R₂₀₂ and R₂₀₃ are methyl, ethyl or together with the carbon atom form a C₅₋C₆cycloalkyl ring;
R₂₀₄ is C₁₋C₁₈alkoxy, benzyloxy or NR₂₂₃R₂₂₄, wherein R₂₂₃ and R₂₂₄ are independently of each other hydrogen or C₁₋C₈alkyl;
or of formula (XXb), wherein Q is O;
R₂₀₅, R₂₀₆, R₂₀₇ and R₂₀₈ are independently of each other methyl or ethyl; or R₂₀₅ and R₂₀₆ and/or R₂₀₇ and R₂₀₈ together with the carbon atom form a C₅₋C₆cycloalkyl ring;
R₂₀₉ and R₂₁₀ are independently of each other formyl, C₂₋C₈alkylcarbonyl, benzoyl, C₁₋C₈alkyl, benzyl or phenyl;
or of formula (XXc), wherein Y is O;
R₂₀₅, R₂₀₆, R₂₀₇ and R₂₀₈ are independently of each other methyl or ethyl; or R₂₀₅ and R₂₀₆ and/or R₂₀₇ and R₂₀₈ together with the carbon atom form a C₅₋C₆cycloalkyl ring;
R₂₁₁ is formyl, C₂₋C₁₈alkylcarbonyl, benzoyl, C₁₋C₁₈alkyl, benzyl or phenyl and R₂₁₂ is OH, C₁₋C₁₈alkoxy, benzyloxy, NR₂₂₃R₂₂₄, wherein R₂₂₃ and R₂₂₄ are independently of each other hydrogen or C₁₋C₁₈alkyl.

Preferably the polymer to be grafted on contains unsaturated moieties selected from the group consisting of polydienes, co-, block-, random- and tapered polymers of styrene, terpolymers with diolefins and copolymers with diolefins.
Preferred unsaturated polymers are polybutadiene, polyisoprene, styrene-isoprene-block-copolymers (SI, SIS), styrene-butadiene-block-copolymers (SB, SBS, SEBS), ABS, EPDM, butyl rubber, chloroprene rubber and nitrile rubber having a content of unsaturated repeating units from 0.1 to 85%. Mostly preferred are SB, SBS, EPDM having a content of unsaturated repeating units from 1 to 70%.

Preferably the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrene, conjugated dienes, acrolein, vinyl acetate, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters or (alkyl)acrylamides.

More preferably the ethylenically unsaturated monomer is styrene, α-methyl styrene, p-methyl styrene or a compound of formula \(\text{CH}_2=\text{C}(\text{R}_3)-(\text{C}=\text{Z})-\text{R}_6 \), wherein \(\text{R}_3 \) is hydrogen or \(\text{C}_1-\text{C}_4 \)alkyl, \(\text{R}_6 \) is \(\text{NH}_2, \text{OCH}_3, \text{glycidyl} \), unsubstituted \(\text{C}_1-\text{C}_{18} \)alkoxy or hydroxy-substituted \(\text{C}_1-\text{C}_{18} \)alkoxy, unsubstituted \(\text{C}_1-\text{C}_{18} \)alkylamino, di(\(\text{C}_1-\text{C}_{18} \)alkyl)amino, hydroxy-substituted \(\text{C}_1-\text{C}_{18} \)alkylamino or hydroxy-substituted di(\(\text{C}_1-\text{C}_{18} \)alkyl)amino;

Me is a monovalent metal atom

\(\text{Z} \) is oxygen or sulfur.

Most preferably \(\text{R}_6 \) is hydrogen or methyl, \(\text{R}_6 \) is \(\text{NH}_2, \text{glycidyl} \), unsubstituted or with hydroxy substituted \(\text{C}_1-\text{C}_4 \)alkoxy, unsubstituted \(\text{C}_1-\text{C}_4 \)alkylamino, di(\(\text{C}_1-\text{C}_4 \)alkyl)amino, hydroxy-substituted \(\text{C}_1-\text{C}_4 \)alkylamino or hydroxy-substituted di(\(\text{C}_1-\text{C}_4 \)alkyl)amino; and

\(\text{Z} \) is oxygen.

Specifically preferred ethylenically unsaturated monomers are methylacrylate, ethylacrylate, butylacrylate, isobuty lacrylate, tert. butylacrylate, hydroxyethylacrylate, hydroxypropylacrylate, dimethylaminoethylacrylate, glycidylacrylates, methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, dimethylaminoethyl(meth)acrylate, glycidyl(meth)acrylates, acrylonitrile, acrylamide or methacrylamide.

The temperature applied in the first reaction step depends on the polymer and is for example 50° to 150° C above the glass transition temperature (Tg) for amorphous polymers and 20° to 180° C above the melting temperature (Tm) for semi-crystalline polymers. Typical are following temperatures:

- low density polyethylene (LDPE) 170-260° C
- high density polyethylene (HDPE) 180-270° C
- polypropylene (PP) 180-280° C
polystyrene
styrene-block copolymers
ethylene-propylene-diene modified
ethylene propylene rubber

PS 190-280° C
SB(S) 180-260° C
EPDM 180-260° C
EPR 180-260° C

In a preferred process the temperature in the first step A) is from 150° C to 300° C, more preferred from 170° C to 280° C.

Preferably the temperature in the second step B) is from 70° to 280° C, more preferably from 70° to 210° C.

If a temperature of 120° to 180° C is applied, the group X is preferably allyl or benzyl.
If a temperature of 180° to 240° C is applied the group X is preferably benzyl or cyclohexyl.
If a temperature of 240° to 300° C is applied the group X is preferably cyclohexyl or alkyl.

Preferably the compound containing a structural element of formula (I) is present in an amount from 0.1% to 30%, more preferably in an amount from 1% to 20% and most preferably in an amount from 1% to 10% based on the weight of the polymer.

Preferably the ratio of the reaction product of step A) to the ethylenically unsaturated monomer or oligomer added in step B) is from 1:10000 to 10:1, more preferably from 1:1000 to 1:1 and most preferably from 1:500 to 1:1.

Step A) of the process may be performed in any reactor suitable for mixing a polymer melt. Preferably the reactor is an extruder or kneading apparatus as for example described in "Handbuch der Kunststoffextrusion" Vol.1, editor F. Hensen, W. Knappe and H. Potente, 1989, pages 3-7. If an extruder is used the process may be described as reactive extrusion process. Examples of reactive extrusion equipment and processes are given by G. H. Hu et al., in "ReactiveModifiers for Polymers", first edition, Blackie Academic & Professional an Imprint of Chapman & Hall, London 1997, chapter 1, pages 1-97.

Preferably, if an extruder is used, a reduced pressure of less than 200 mbar is applied during extrusion. Volatile byproducts are removed thereby.

The reaction time for step A) depends on the desired amount of grafted ONR′R’" initiator moieties. Typical reaction times are from a few minutes to an hour. Preferably the reaction time is from 1 min to 1 h, most preferably from 2 min to 20 min.
The reaction step B) may be performed immediately after step A), however it is also possible to store the intermediate polymeric radical initiator at room temperature for some time. The intermediate polymeric radical initiator is stable at room temperature and no loss of activity occurs up to several months.

The reaction for step B) may be performed in any reactor suitable for mixing a polymer melt with a monomer. The degree of grafting depends on the reaction time, on the temperature used and the activity of the polymeric initiator. Preferably the reaction time for step B) is from 1 min to 20 hours, more preferably from 30 min to 5 hours.

If the reaction step B) is performed in an extruder, a reaction time of 2 to 20 minutes is preferred.

The grafted polymers are useful in many applications such as compatibilizers in polymer blends or alloys, adhesion promoters between two different substrates, surface modification agents, nucleating agents, coupling agents between filler and polymer matrix or dispersing agents.

The process is particularly useful for the preparation of grafted block copolymers.

Grafted block copolymers are, for example, grafted block copolymers of polystyrene and polyacrylate (e.g., poly(styrene-co-acrylate) or poly(styrene-co-acrylate-co-styrene). They are useful as adhesives or as compatibilizers for polymer blends or as polymer toughening agents.

Poly(methylmethacrylate-co-acrylate) diblock graft copolymers or poly(methacrylate-co-acrylate-co-methacrylate) triblock graft copolymers are useful as dispersing agents for coating systems, as coating additives (e.g. rheological agents, compatibilizers, reactive diluents) or as resin component in coatings (e.g. high solid paints) Graft block copolymers of styrene, (meth)acrylates and/or acrylonitrile are useful for plastics, elastomers and adhesives.

Furthermore, graft block copolymers of this invention, wherein the grafted blocks have polar monomers on a non-polar polymer are useful in many applications as amphiphilic surfactants or dispersants for preparing highly uniform polymer blends.

Thus, the present invention also encompasses in the synthesis novel graft block, multi-block, star, gradient, random, hyperbranched and dendritic copolymers. The polymers prepared by the present invention are particularly useful for following applications:

- adhesives, detergents, dispersants, emulsifiers, surfactants, defoamers, adhesion promoters,
- corrosion inhibitors, viscosity improvers, lubricants, rheology modifiers, thickeners, crosslinkers,
paper treatment, water treatment, electronic materials, paints, coatings, photography, ink materials, imaging materials, superabsorbants, cosmetics, hair products, preservatives, biocide materials or modifiers for asphalt, leather, textiles, ceramics and wood.

Because the present graft polymerization is a "living" polymerization, it can be started and stopped practically at will. Furthermore, the polymer product retains the functional alkoxyamine group allowing a continuation of the polymerization in a living matter. Thus, in one embodiment of this invention, once the first monomer is consumed in the initial polymerizing step a second monomer can then be added to form a second block on the growing graft polymer chain in a second polymerization step. Therefore it is possible to carry out additional graft polymerizations with the same or different monomer(s) to prepare multi-block graft copolymers. Furthermore, since this is a radical polymerization, graft blocks can be prepared in essentially any order.

Consequently further subjects of the present invention are a polymeric radical initiator prepared according to step A) of the process without an additional free radical source and a polymeric radical initiator prepared according to step A) of the process with an additional free radical source.

Another subject of the invention are the grafted polymers obtainable by according to A) and B) of the process described above.

The polymeric radical initiator obtainable by step A) of the above process is schematically represented in formula (P1)

\[
\begin{bmatrix}
R_{101}^y \\
R_{201} \\
R_{301}
\end{bmatrix} \quad \begin{bmatrix}
Q_5 \\
Q_5 \\
z
\end{bmatrix}
\]

(P1), wherein

\(R_{401}\) is hydrogen, substituted or unsubstituted \(C_1-C_{18}\)alkyl, \(C_2-C_{18}\)alkenyl, \(C_2-C_{18}\)alkynyl; \(C_3-C_{22}\)cycloalkyl or \(C_3-C_{12}\)cycloalkyl containing at least one nitrogen or oxygen atom or \(C_3-C_{12}\)cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO, halogen, amino, hydroxy, cyano, carboxy; \(C_1-C_4\)alkoxy, \(C_1-C_4\)alkylthio, \(C_1-C_4\)alkylamino or di(\(C_1-C_4\)alkyl)amino, O(\(C_1-C_{18}\)alkyl), O(\(C_2-C_{18}\)alkenyl), C, -phenylalkyl, O-phenyl, OC\(C_7-C_9\)phenylalkyl or halogen or phenyl and naphthyl which are unsubstituted or substituted by \(C_1-C_4\)alkyl, \(C_1-C_4\)alkyl...
C₄alkoxy, C₁₋C₄alkylthio, halogen, cyano, hydroxy, carboxy, C₁₋C₄alkylamino or di(C₁₋C₄alkyl)amino;
R₉₉₉ is the stable nitroxy radical, bound at the oxygen atom;
R₅₀₀ is substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₃₋C₂₀cycloalkyl, phenyl, C₇₋C₁₄phenylalkyl;
R₆₅₁ is hydrogen, substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₂₋C₁₈alkynyl, C₅₋C₂₀cycloalkyl, phenyl, O(C₁₋C₁₈alkyl), O(C₂₋C₁₈alkenyl), C₇₋C₁₄phenylalkyl, O-phenyl, O- C₇₋C₉phenylalkyl or halogen, CN, COOR₆₅₀, CONR₆₅₀R₆₅₀;
Q₆ is CR₅₀₂₆₅₀₃, CH=CH₂, (CR₅₀₂₆₅₀₃)ₙ, CR₅₀₄=CR₅₀₅=CR₅₀₆R₅₀₇, (CR₅₀₄=CR₅₀₅=CR₅₀₆R₅₀₇)ₙ,
C=CR₅₀₆R₆₅₀₉, (C=CR₅₀₆R₆₅₀₉)ₙ, O, C=O, NR₅₁₀, NR₅₁₁-C=O, O-C(O)-O, SO₂, S, SiR₅₁₂R₅₁₃, O-
SiR₅₁₂R₅₁₃-O;
R₅₀₂, R₅₀₃, R₅₀₄, R₅₀₅, R₅₀₆, R₅₀₇, R₅₀₈, R₅₀₉, R₅₁₀, R₅₁₁, R₅₁₂ and R₅₁₃ independently of each other are hydrogen, substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₂₋C₁₈alkynyl, C₅₋C₂₀cycloalkyl, phenyl, O(C₁₋C₁₈alkyl), O(C₂₋C₁₈alkenyl), C₇₋C₁₄phenylalkyl, O-phenyl, O- C₇₋C₉phenylalkyl or halogen;
n is a number from 1 to 10;
y is a number from 1 to 25000 and;
z is a number from 0 to 25000.

Preferably R₆₅₁ is H or methyl; Q₆ is CR₅₀₂₆₅₀₃, CH=CH₂, CR₅₀₄=CR₅₀₅=CR₅₀₆R₅₀₇, wherein R₅₀₂ and R₅₀₃ is H, methyl or C₂₋C₉alkenyl and R₅₀₄, R₅₀₅, R₅₀₆ and R₅₀₇ are independently H or methyl.

Examples for the different substituents have been already given.

Within this selection polyethylene, polypropylene and polybutadiene, SBS and EPDM are especially preferred.

A further subject of the invention is a polymer of formula (P2) obtainable by step B) of the above process.

```
     R₄₉₈

Q₆     R₆₅₁

     y

Q₅

R₄₉₉

     (P2)

         R₅₀₁

         O₅

     R₄₉₈

R₅₀₉

         R₅₀₁

         O₅

     R₄₉₈

R₅₀₉

Definitions and examples of the substituents are as given above;
Qₖ is a homo-, co- or tapered polymer resulting from the monomers as described above, t is a number from 0 to 25000.

Rₙ may be removed thermally or chemically.

Preferably the polymer (P2) is grafted with a monomer selected from the groups described above and more preferably with styrenes, (meth)acrylates, butadiene, isoprene.

Most preferred are SB-g-styrenes, SB-g-(meth)acrylates, SI-g-styrenes, SI-g-(meth)acrylates, SBS-g-styrenes, SBS-g-(meth)acrylates, EPDM-g-styrenes, EPDM-g-(meth)acrylates.

Examples and preferences have been already given.

A further subject of the present invention is the use of a nitroxyl-ether containing a group (=NO-X), wherein X is selected such, that cleavage of the O-X bond occurs and a radical X- is formed at about the melting temperature of the polymer for the preparation of a grafted polymer with and without a free radical source.

Still further subjects are the use of a grafted polymer according to step A) of the above described process as macroinitiator for radical polymerization, and the use of the polymer obtained according to the process as adhesive or as compatibilizer for polymer blends or as polymer toughening agent.

The following examples illustrate the invention.

A) Grafting of N-OR compounds to the polymer (preparation of a polymeric initiator)
Polypropylene (MFR₂₃₀/2.16 = 1.43 according to ISO 1133) is extruded together with the compounds given in Table 2 in a twin screw extruder (TW 100 of Haake, Germany) at 180 - 210° C (heating zones 1-5) and 40 rpm. The melt viscosity (MFR) is determined according to ISO 1133 (Table 1).
The granulated polymer is dissolved, reprecipitated and high temperature NMR spectra are taken to determine whether polymer bound NO-moieties are present.
Table 1  Grafting of N-OR to polypropylene

<table>
<thead>
<tr>
<th>Example</th>
<th>Additives</th>
<th>Polymer bound NO [%]</th>
<th>MFR(230/2.16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.0% compound 1</td>
<td>0.26</td>
<td>2.03</td>
</tr>
<tr>
<td>A2</td>
<td>1.5% compound 1</td>
<td>0.37</td>
<td>2.14</td>
</tr>
<tr>
<td>A3</td>
<td>1.0% compound 1 + 0.2% peroxide 1</td>
<td>0.37</td>
<td>2.89</td>
</tr>
</tbody>
</table>

compound 1: 1-allyloxy-4-propoxy-2,2,6,6-tetramethylpiperidine
peroxide 1: 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane on chalk (45 %)
*MFR according to ISO 1133

B) Grafting of N-OR to the polymer and subsequent polymer analogous reaction

Commercially available SBS (styrene/butadiene/styrene copolymer, Kraton D 1102 CU, supplier: Shell) is extruded together with the compound given in Table 2 in a twin screw extruder (TW 100 of Haake, Germany) at 180 - 210°C (heating zones 1-5) and 40 rpm.

In an evacuated Schlenk reactor, purged with argon, 5 g of the granulated polymer is dissolved in 50 - 100 mL monomer under argon atmosphere. Dissolved oxygen is removed in freeze-thaw-cycles (liquid nitrogen). The reaction mixture is stirred and heated under argon atmosphere. Remaining monomer is removed under vacuum and the residue is dried under vacuum until constant weight is achieved. Molecular weights and molecular weight distributions are determined by gel permeation chromatography (GPC). The results are shown in Table 3.

Table 2  Grafting of N-OR to the polymer

<table>
<thead>
<tr>
<th>Example</th>
<th>Polymer type</th>
<th>Additives</th>
<th>Molecular weight (Mp*, GPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison 1</td>
<td>SBS</td>
<td>not processed</td>
<td>105.500</td>
</tr>
<tr>
<td>Starting material for inventive example 1 + 2</td>
<td>SBS</td>
<td>0.25% compound 2</td>
<td>106.700</td>
</tr>
</tbody>
</table>

compound 2: benzoic acid 1-cyclohexyloxy-2,2,6,6-tetramethyl-piperidin-4-yl ester
*bimodal distribution; peak molecular weight (Mp) from high MW peak
# Table 3  Polymeranalogous reactions

<table>
<thead>
<tr>
<th>Example</th>
<th>Polymer type</th>
<th>Monomer</th>
<th>Reaction conditions</th>
<th>Molecular weight (Mp*, GPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison 2</td>
<td>SBS</td>
<td>styrene</td>
<td>1 h, 130°C</td>
<td>102.700</td>
</tr>
<tr>
<td>Inventive example 1</td>
<td>SBS</td>
<td>styrene</td>
<td>1 h, 130°C</td>
<td>112.200**</td>
</tr>
<tr>
<td>Inventive example 2</td>
<td>SBS</td>
<td>styrene</td>
<td>4 h, 130°C</td>
<td>267.400**</td>
</tr>
</tbody>
</table>

* bimodal distribution; peak molecular weight (Mp) from high MW peak
** tailing in high MW area
Claims

1. A process for the preparation of a grafted polymer wherein in a first step
   A) a stable nitroxy radical is grafted onto a polymer, which step comprises heating a polymer
   and a nitroxy-ether containing a group (=NO-X), wherein
   X is selected such, that cleavage of the O-X bond occurs and a radical X• is formed at about
   the melting temperature of the polymer; and in a second step
   B) the grafted polymer of step A) is heated in the presence of an ethylenically unsaturated
   monomer or oligomer to a temperature at which cleavage of the nitroxy-polymer bond occurs
   and polymerization of the ethylenically unsaturated monomer or oligomer is initiated at the
   polymer radical; maintaining said temperature for further polymerization and afterwards cooling
   down the mixture to a temperature below 60° C.

2. A process according to claim 1, wherein a free radical source is additionally present.

3. A process according to claim 2, wherein the free radical source is a bis-azo compound, a
   peroxide or a hydroperoxide.

4. A process according to claim 3 wherein the free radical source is 2,2'-azobisisobutyronitrile,
   2,2'-azobisis(2-methyl-butyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-
   2,4-dimethylvaleronitrile), 1,1'-azobis(1-cyclohexanecarbonitrile), 2,2'-azobis(isobutyramide)
   dihydrate, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, dimethyl-2,2'-azobisisobutyrato, 2-
   (carbamoylazo)isobutyronitrile, 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(2-
   methylpropane), 2,2'-azobis(N,N'-dimethyleneisobutyramidine), free base or hydrochloride, 2,2'-
   azobis(2-amidonoprapane), free base or hydrochloride, 2,2'-azobis(2-methyl-N-[1,1-bis-
   (hydroxymethyl)ethyl]propionamide) or 2,2'-azobis(2-methyl-N-[1,1-bis(hydroxymethyl)]-2-
   hydroxyethyl)propionamide;
   acetyl cyclohexane sulphonyl peroxide, diisopropyl peroxy dicarbonate, t-amyl
   perneodecanoate, t-butyl perneodecanoate, t-butyl perpivalate, t-amylerpivalate, bis(2,4-
   dichlorobenzoxy)peroxide, diisononayl peroxide, didecanoyl peroxide, dioctanoyl peroxide,
   dilauroyl peroxide, bis (2-methylbenzoyl) peroxide, disuccinic acid peroxide, diacetyl peroxide,
   dibenzoyl peroxide, t-butyl per 2-ethylhexanoate, bis-(4-chlorobenzoxy)-peroxide, t-butyl
   perisobutyrate, t-butyl permaleinate, 1,1-bis(t-butylperoxy)3,5,5-trimethylcyclohexane, 1,1-bis(t-
   butylperoxy)cyclohexane, t-butyl peroxy isopropyl carbonate, t-butyl perisononanoate, 2,5-
   dimethylhexane 2,5-dibenzoate, t-butyl peracetate, t-amylerbenzoate, t-butyl perbenzoate,
   2,2-bis (t-butylperoxy) butane, 2,2 bis (t-butylperoxy) propane, dicumyl peroxide, 2,5-
   dimethylhexane-2,5-di-t-butylperoxide, 3-t-butylperoxy 3-phenylththalide, di-t-amyleroxide, α,
   α'-bis(t-butylperoxy isopropyl) benzene, 3,5-bis (t-butylperoxy)3,5-dimethyl 1,2-dioxolane, di-
butyl peroxide, 2,5-dimethylhexyne-2,5-di-t-butylperoxide, 3,3,6,6,9,9-hexamethyl 1,2,4,5-tetraoxa cyclononane, p-menthane hydroperoxide, pinane hydroperoxide, diisopropylbenzene mono-α-hydroperoxide, cumene hydroperoxide or t-butyl hydroperoxide.

5. A process according to claim 1 wherein the polymer is polyethylene, polypropylene, polystyrene, styrene block-copolymers, polybutadiene or polyisoprene, EPDM (ethylene-propylene diene monomer) or EPR (ethylene-propylene rubber).

6. A process according to claim 1, wherein the nitroxy-ether is of formula (X)

\[
\begin{align*}
\text{R}_{101} & \quad \text{R}_{102} \\
\text{R}_{103} & \quad \text{R}_{110} \\
\text{R}_{106} & \quad \text{R}_{107} \\
\text{R}_{108} & \quad \text{R}_{109} \\
\text{N} & \quad \text{O} \\
\text{X} & \quad \text{n}
\end{align*}
\]

wherein \( n \) is 0 or 1

\( \text{R}_{101}, \text{R}_{102}, \text{R}_{103} \) are each independently of one another hydrogen, halogen, NO\(_2\), cyano, -CONR\(_{105}\)R\(_{106}\), -(R\(_{109}\))COOR\(_{104}\), -(C(O)-R\(_{107}\), -OR\(_{108}\), -SR\(_{108}\), -NHR\(_{108}\), -N(R\(_{108}\))\(_2\), carbamoyl, di(C\(_1-C_{18}\)alkyl)carbamoyl, -C(=NR\(_{105}\))(NR\(_{108}\));

unsaturated C\(_1-C_{18}\)alkyl, C\(_2-C_{18}\)alkenyl, C\(_2-C_{18}\)alkynyl, C\(_7-C_{18}\)phenylalkyl, C\(_3-C_{12}\)cycloalkyl or C\(_3-C_{12}\)cycloalkyl containing at least one nitrogen or oxygen atom; or

C\(_1-C_{18}\)alkyl, C\(_2-C_{18}\)alkenyl, C\(_2-C_{18}\)alkynyl, C\(_7-C_{18}\)phenylalkyl, C\(_3-C_{12}\)cycloalkyl or C\(_3-C_{12}\)cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO\(_2\), halogen, amino, hydroxy, cyano, carboxy, C\(_1-C_{4}\)alkoxy, C\(_1-C_{4}\)alkylthio, C\(_1-C_{4}\)alkylamino or di(C\(_1-C_{4}\)alkyl)amino; or

phenyl, which is unsubstituted or substituted by C\(_1-C_{4}\)alkyl, C\(_1-C_{4}\)alkoxy, C\(_1-C_{4}\)alkylthio, halogen, cyano, hydroxy, carboxy, C\(_1-C_{4}\)alkylamino or di(C\(_1-C_{4}\)alkyl)amino;

or \( \text{R}_{102} \) and \( \text{R}_{103} \), together with the linking carbon atom, form a C\(_3-C_{12}\) cycloalkyl radical, a (C\(_4-C_{12}\)cycloalkanen)-yl radical or a C\(_3-C_{12}\)cycloalkyl radical containing at least one O atom and/or a NR\(_{108}\) group; or if \( n \) is 1

\[
\begin{align*}
\text{R}_{102} & \quad \text{R}_{101} \\
\text{R}_{103} & \quad \text{are a group}
\end{align*}
\]
R_{104} is hydrogen, C_{1}-C_{18}alkyl, phenyl, an alkali metal cation or a tetraalkylammonium cation; R_{105} and R_{106} are hydrogen, C_{1}-C_{18}alkyl, C_{2}-C_{18}alkyl which is substituted by at least one hydroxy group or, taken together, form a C_{2}-C_{12}alkylene bridge or a C_{2}-C_{12}alkylene bridge interrupted by at least one O or and NR_{106} atom; R_{107} is hydrogen, C_{1}-C_{18}alkyl or phenyl; R_{108} is hydrogen, C_{1}-C_{18}alkyl or C_{2}-C_{18}alkyl which is substituted by at least one hydroxy group; R_{109} is C_{1}-C_{12}alkyl or a direct bond; R_{110} is C_{4}-C_{18}alkyl bound via a tertiary C-atom to the nitrogen atom, C_{1}-C_{12}phenylalkyl, C_{3}- C_{12}cyloalkyl or C_{3}-C_{12}cyloalkyl containing at least one nitrogen or oxygen atom; or C_{4}-C_{18}alkyl bound via a tertiary C-atom to the nitrogen atom, C_{1}-C_{12}phenylalkyl, C_{3}-C_{12}cyloalkyl or C_{3}-C_{12}cyloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or phenyl, naphthyl, which are unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}- C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; if n_{1} is 1 R_{111} is C_{1}-C_{18}alkyl, C_{1}-C_{9}phenylalkyl, C_{3}-C_{12}cyloalkyl or C_{3}-C_{12}cyloalkyl containing at least one nitrogen or oxygen atom; or C_{1}-C_{18}alkyl, C_{1}-C_{9}phenylalkyl, C_{2}-C_{12}cyloalkyl or C_{3}-C_{12}cyloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or phenyl, naphthyl, which are unsubstituted or substituted by C_{1}-C_{4}alkyl, C_{1}-C_{4}alkoxy, C_{1}- C_{4}alkylthio, halogen, cyano, hydroxy, carboxy, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or a polycyclic cycloaliphatic ring system or a polycyclic cycloaliphatic ring system with at least one di- or trivalent nitrogen atom; or R_{110} and R_{111} together form a C_{2}-C_{12}alkylene bridge, a C_{3}-C_{12}alkyl- on bridge or a C_{2}- C_{12}alkylene bridge which is interrupted by at least one O or N atom, which bridges are unsubstituted or substituted with C_{1}-C_{18}alkyl, hydroxy(C_{1}-C_{4})alkyl, phenyl, C_{1}-C_{9}phenylalkyl, NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; R_{112} is hydrogen, -(R_{109})COOR_{104}, cyano, -OR_{106}, -SR_{106}, -NHR_{106}, -N(R_{106})_{2}, -NH-C(O)-R_{106}, unsubstituted C_{1}-C_{16}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{2}-C_{18}phenylalkyl, C_{3}-C_{12}cyloalkyl or C_{3}- C_{12}cyloalkyl containing at least one nitrogen or oxygen atom; or C_{1}-C_{18}alkyl, C_{2}-C_{18}alkenyl, C_{2}-C_{18}alkynyl, C_{2}-C_{18}phenylalkyl, C_{3}-C_{12}cyloalkyl or C_{3}-C_{12}cyloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO_{2}, halogen, amino, hydroxy, cyano, carboxy, C_{1}-C_{4}alkoxy, C_{1}-C_{4}alkylthio, C_{1}-C_{4}alkylamino or di(C_{1}-C_{4}alkyl)amino; or
phenyl, naphthyl, which are unsubstituted or substituted by C_1-C_4alkyl, C_1-C_4alkoxy, C_1-C_4alkylthio, halogen, cyano, hydroxy, carboxy, C_1-C_4alkylamino, di(C_1-C_4alkyl)amino; or R_{111} and R_{112} together with the linking carbon atom form a C_3-C_12cycloalkyl radical.

7. A process according to claim 1, wherein the nitroxy-ether is of formula XXa, XXb or XXc

wherein

Y is O or CH_3;

Q is O or NR_{220}, wherein R_{220} is hydrogen or C_1-C_18alkyl;

R_{201} is tertiary C_4-C_18alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222} wherein R_{221} is hydrogen, a alkali metal atom or C_1-C_18alkyl and R_{222} is C_1-C_18alkyl; or

R_{201} is C_5-C_12cycloalkyl, C_5-C_12cycloalkyl which is interrupted by at least one O or N atom, a polycyclic alkyl radical or a polycyclic alkyl radical which is interrupted by at least one O or N atom;

R_{202} and R_{303} are independently C_1-C_18alkyl, benzyl, C_5-C_12cycloalkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222} or together with the carbon atom form a C_5-C_12cycloalkyl ring;

if Y is O,

R_{204} and R_{212} are OH, O(alkali-metal) C_1-C_18alkoxy, benzylxoy, NR_{223}R_{224}, wherein R_{223} and R_{224} are independently from each other hydrogen, C_1-C_18alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222};

if Y is CH_3,

R_{204} is OH, C_1-C_18alkoxy, benzylxoy, O-C(O)-(C_1-C_18)alkyl or NR_{223}R_{224};

R_{212} are a group C(O)R_{225}, wherein R_{225} is OH, C_1-C_18alkoxy, benzylxoy, NR_{223}R_{224}, wherein R_{223} and R_{224} are independently from each other hydrogen, C_1-C_18alkyl or phenyl, which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222};

R_{206}, R_{207} and R_{208} are independently of each other C_1-C_18alkyl, C_5-C_12cycloalkyl or phenyl; or
R_{206} and R_{207} and/or R_{208} together with the carbon atom form a C_{5}-C_{12} cycloalkyl ring; 
R_{209} and R_{210} are independently of each other hydrogen, formyl, C_{2}-C_{18} alky carbonyl, benzoyl, 
C_{1}-C_{18} alkyl, C_{5}-C_{12} cycloalkyl, C_{5}-C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222};
R_{221}, is formyl, C_{2}-C_{18} alky carbonyl, benzoyl, C_{1}-C_{18} alkyl, C_{5}-C_{12} cycloalkyl, C_{5}-C_{12} cycloalkyl which is interrupted by at least one O or N atom, benzyl or phenyl which are unsubstituted or substituted by halogen, OH, COOR_{221} or C(O)-R_{222}.

8. A process according to claim 1, wherein the nitroxyl-ether contains a structural element of formula (XXX)

\[
\text{(XXX), wherein}
\]

\[
G_1, G_2, G_3, G_4 \text{ are independently } C_1-C_6 \text{ alkyl or } G_1 \text{ and } G_2 \text{ or } G_3 \text{ and } G_4, \text{ or } G_1 \text{ and } G_2 \text{ and } G_3 \\
\text{and } G_4 \text{ together form a } C_5-C_{12} \text{ cycloalkyl group;}
\]

\[
G_5, G_6 \text{ independently are } H, C_1-C_{18} \text{ alkyl, phenyl, naphthyl or a group } COOC_1-C_{18} \text{ alkyl.}
\]

9. A process according to claim 8, wherein the the structural element of formula (XXX) is any of formulae A to S

\[
\text{(A)}
\]
wherein

$G_1$, $G_2$, $G_3$ and $G_4$ are independently alkyl of 1 to 4 carbon atoms, or $G_1$ and $G_2$ together and $G_3$ and $G_4$ together, or $G_1$ and $G_2$ together or $G_3$ and $G_4$ together are pentamethylene;

$G_5$ and $G_6$ are independently hydrogen or C$_1$-C$_4$ alkyl;

$R$, if $m$ is 1, is hydrogen, C$_1$-C$_{19}$alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an $\alpha,\beta$-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ$_{12}$ groups, in which Z$_{12}$ is H, C$_1$-C$_{20}$alkyl, C$_3$-C$_{12}$alkenyl, C$_5$-C$_7$cycloalkyl, phenyl or benzyl; or

$R$ is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

$R$, if $m$ is 2, is C$_2$-C$_{12}$alkylene, C$_4$-C$_{12}$alkenylene, xylylene, a divalent radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, or a cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid having 8-14 carbon atoms, where each dicarboxylic acid may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by one or two -COOZ$_{12}$ groups; or

$R$ is a divalent radical of a phosphorus-containing acid or a divalent silyl radical;
R₁, if m is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by -COOZ₁₂, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical.

R₁, if m is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid; p is 1, 2 or 3,

R₁ is C₁-C₁₂alkyl, C₅-C₇cycloalkyl, C₇-C₉aralkyl, C₂-C₉₁₈alkanoyl, C₅-C₉alkenoyl or benzoyl;

when p is 1,

R₂ is C₁-C₁₈alkyl, C₅-C₇cycloalkyl, C₂-C₉alkenyl unsubstituted or substituted by a cyano, carbonyl or carboxamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z- or -CONH-Z wherein Z is hydrogen, methyl or phenyl; or

when p is 2,

R₂ is C₇-C₁₂alkylene, C₆-C₁₂arylene, xylylene, a -CH₂CH(OH)CH₂- group, wherein B is C₂-C₁₀alkyl, C₆-C₁₅arylene or C₆-C₁₂cycloalkylene; or, provided that R₁ is not alkanoyl, alkenoyl or benzoyl, R₂ can also be a divalent acyl radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid, or can be the group -CO--; or R₁ and R₂ together when p is 1 can be the cyclic acyl radical of an aliphatic or aromatic 1,2- or 1,3-dicarboxylic acid; or

R₂ is a group

where Tₗ and Tₘ are independently hydrogen, alkyl of 1 to 18 carbon atoms, or Tₗ and Tₘ together are alkyylene of 4 to 6 carbon atoms or 3-oxapentamethylene;

when p is 3,

R₂ is 2,4,6-triazinyl;

when n is 1,

R₃ is C₂-C₉alkylene or hydroxyalkylene or C₄-C₂₉acyloxyalkylene; or

when n is 2,

R₃ is (-CH₂)₂C(CH₃)₂; when n is 1,
$R_4$ is hydrogen, C$_1$-C$_{12}$alkyl, C$_3$-C$_6$alkenyl, C$_7$-C$_{12}$alkylnyl, C$_7$-C$_{12}$cycloalkyl, C$_2$-C$_4$hydroxyalkyl, C$_2$-C$_6$-alkoxyalkyl, C$_6$-C$_{10}$-aryl, glycidyl, a group of formula -(CH$_2$)$_m$COO-Q or of the formula -(CH$_2$)$_m$O-CO-Q wherein m is 1 or 2 and Q is C$_1$-C$_4$-alkyl or phenyl; or when n is 2,
$R_4$ is C$_2$-C$_{12}$alkylene, C$_6$-C$_{12}$-arylene, a group -CH$_2$CH(OH)CH$_2$O-D-O-CH$_2$CH(OH)CH$_2$- wherein D is C$_2$-C$_{10}$alkylene, C$_6$-C$_{12}$arylene or C$_6$-C$_{12}$cycloalkylene, or a group -CH$_2$CH(OZ$_1$)CH$_2$-(OCH$_2$CH(OZ$_1$)CH$_2$)$_2$- wherein Z$_1$ is hydrogen, C$_1$-C$_{18}$alkyl, allyl, benzy1, C$_2$-C$_{12}$alkanol or benzoyl;
$R_5$ is hydrogen, C$_1$-C$_{12}$alkyl, allyl, benzy1, glycidyl or C$_2$-C$_6$alkoxyalkyl;
Q$_1$ is -N(R$_7$)- or -O-;
E is C$_1$-C$_3$alkylene, the group -CH$_2$CH(R$_8$)-O- wherein R$_8$ is hydrogen, methyl or phenyl, the group -(CH$_2$)$_3$-NH- or a direct bond;
$R_7$ is C$_1$-C$_{18}$alkyl, C$_2$-C$_7$-cycloalkyl, C$_7$-C$_{12}$alkyl, cyanoethyl, C$_6$-C$_{10}$aryl, the group -CH$_2$CH(R$_8$)-OH; or a group of the formula

\[
\begin{array}{c}
\text{G}_1 \\
\text{O} \\
\text{N} \\
\text{X} \\
\text{G}_3 \\
\text{G}_4 \\
\end{array}
\]

or a group of the formula

\[
\begin{array}{c}
\text{G} \\
\text{N} \\
\text{E} \\
\text{CO} \\
\text{N} \\
\text{H} \\
\text{H} \\
\text{C} \\
\text{OR} \\
\end{array}
\]

wherein G is C$_2$-C$_6$alkylene or C$_6$-C$_{12}$arylene and R is as defined above; or
$R_7$ is a group -E-CO-NH-CH$_2$-OR$_8$;
R$_8$ is hydrogen or C$_1$-C$_{18}$alkyl;
Formula \( F \) denotes a recurring structural unit of an oligomer where \( T \) is ethylene or 1,2-propylene, or is a repeating structural unit derived from an \( \alpha \)-olefin copolymer with an alkyl acrylate or methacrylate;

\( k \) is 2 to 100;

and \( R_{10} \) is hydrogen, \( C_{1-12} \)alkyl or \( C_{1-12} \)alkoxy;

\( T_2 \) has the same meaning as \( R_4 \);

\( T_3 \) and \( T_4 \) are independently alkylene of 2 to 12 carbon atoms, or \( T_4 \) is a group

\[
\begin{align*}
\text{N} & \text{N} \\
\text{N} & \text{N} \\
T_7 & T_8
\end{align*}
\]

\( T_5 \) is \( C_2-C_{22} \)alkylene, \( C_5-C_7 \)cycloalkylene, \( C_{1-4} \)alkylenedi(\( C_5-C_7 \)cycloalkylene), phenylene or phenylenedi(\( C_{1-4} \)alkylene);

\( T_6 \) is

\[
\text{NH} \left( \text{CH}_2 \right)_a \text{N} \left( \text{CH}_2 \right)_b \text{N} \left( \text{CH}_2 \right)_c \text{N} \text{H}
\]

where \( a, b \) and \( c \) are independently 2 or 3, and \( d \) is 0 or 1;

\( e \) is 3 or 4;

\( E_1 \) and \( E_2 \) being different, are each oxo or imino;

\( E_3 \) is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl, said phenyl or said naphthyl substituted by chlorine or by alkyl of 1 to 4 carbon atoms, or phenylalkyl of 7 to 12 carbon atoms, or said phenylalkyl substituted by alkyl of 1 to 4 carbon atoms;

\( E_4 \) is hydrogen, alkyl of 1 to 30 carbon atoms, phenyl, naphthyl or phenylalkyl of 7 to 12 carbon atoms; or

\( E_3 \) and \( E_4 \) together are polymethylene of 4 to 17 carbon atoms, or said polymethylene substituted by up to four alkyl groups of 1 to 4 carbon atoms; and

\( E_5 \) is an aliphatic or aromatic or aromatic tetravalent radical.

10. A process according to claim 8, wherein \( G_1, G_2, G_3 \) and \( G_4 \) are methyl and \( G_5 \) and \( G_6 \) are hydrogen.
11. A process according to claim 1, wherein X is selected from the group consisting of C₁₋C₁₈alkyl, C₁₋C₁₈alkenyl, C₃₋C₁₈alkynyl, phenyl, phenyl(C₁₋C₁₈)alkyl, phenyl or phenyl(C₁₋C₁₁)alkyl substituted by C₁₋C₁₈alkyl, C₁₋C₁₈alkoxy, OH, amino, C₁₋C₁₂alkylamino, C₁₋C₁₂dialkylamino, NO₂ or halogen, C₂₋C₇cycloalkyl, or a group \[
\begin{align*}
\overset{R_{20}}{\text{R}} & \overset{R_{21}}{=} \overset{R_{22}}{\text{R}} \\
R_{20}, R_{21}, \text{and } R_{22} & \text{ are hydrogen or } C₁₋C₁₈alkyl, C₂₋C₁₂alkenyl, \text{phenyl or } C₂₋C₇cycloalkyl.
\end{align*}
\]

12. A process according to claim 11, wherein X is selected from the group consisting of C₁₋C₁₈alkyl, benzyl, allyl, cyclopentyl or cyclohexyl.

13. A process according to claim 9, wherein the nitroxy-l-ether is of the structural formulae A, B, O or P, wherein m is 1, R is hydrogen, C₁₋C₁₈alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzyol, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms; p is 1; R₁ is C₁₋C₁₂alkyl, C₂₋C₇cycloalkyl, C₁₋C₈aralkyl, C₂₋C₁₈alkanoyl, C₃₋C₆alkenoxy or benzyol; R₂ is C₁₋C₁₈alkyl, C₂₋C₇cycloalkyl, C₂₋C₈alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl.

14. A process according to claim 13, wherein the nitroxy-l-ether is of the structural formula A or B, wherein R is hydrogen, C₁₋C₁₈alkyl, cyanoethyl, benzyol, glycidyl, a monovalent radical of an aliphatic carboxylic acid, having 2 to 18 carbon atoms; R₁ is C₁₋C₁₂alkyl, C₂₋C₈aralkyl, C₂₋C₁₈alkanoyl, C₃₋C₆alkenoxy or benzyol; R₂ is C₁₋C₁₈alkyl, glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z, wherein Z is hydrogen, methyl or phenyl.

15. A process according to claim 6, wherein the nitroxy-l-ether is a compound of formula (X), n₁ is 1; R₁₀₁ is cyano;
R_{102} and R_{103} are each independently of one another unsubstituted C_{1}-C_{12}alkyl or phenyl; or R_{102} and R_{103}, together with the linking carbon atom, form a C_{5}-C_{7}cycloalkyl radical; R_{110} is C_{4}-C_{12}alkyl bound via a tertiary C-atom to the nitrogen atom, C_{9}-C_{11}phenylalkyl or phenyl; or R_{110} and R_{111} together form a C_{2}-C_{6}alkylene bridge which is unsubstituted or substituted with C_{1}-C_{4}alkyl; and R_{112} is C_{1}-C_{4}alkyl.

16. A process according to claim 6, wherein the nitroxyl-ether is a compound of formula (XXa), Y is O;
R_{201} is tertiary C_{4}-C_{6}alkyl;
R_{202} and R_{203} are methyl, ethyl or together with the carbon atom form a C_{5}-C_{6}cycloalkyl ring;
R_{204} is C_{1}-C_{10}alkoxy, benzyloxy or NR_{223}R_{224}, wherein R_{223} and R_{224} are independently of each other hydrogen or C_{1}-C_{6}alkyl;
or of formula (XXb), wherein Q_{1} is O;
R_{205}, R_{206}, R_{207} and R_{208} are independently of each other methyl or ethyl; or R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_{5}-C_{6}cycloalkyl ring;
R_{209} and R_{210} are independently of each other formyl, C_{2}-C_{6}alkylcarbonyl, benzoyl, C_{1}-C_{6}alkyl, benzyl or phenyl;
or of formula (XXc), wherein Y_{1} is O;
R_{205}, R_{206}, R_{207} and R_{208} are independently of each other methyl or ethyl; or R_{205} and R_{206} and/or R_{207} and R_{208} together with the carbon atom form a C_{5}-C_{6}cycloalkyl ring;
R_{211} is formyl, C_{2}-C_{10}alkylcarbonyl, benzoyl, C_{1}-C_{10}alkyl, benzyl or phenyl and
R_{212} is OH, C_{1}-C_{10}alkoxy, benzyloxy, NR_{223}R_{224}, wherein R_{223} and R_{224} are independently of each other hydrogen or C_{1}-C_{10}alkyl.

17. A process according to claim 1, wherein the polymer to be grafted on contains unsaturated moieties selected from the group consisting of polydienes, co-, block-, random- and tapered polymers of styrene, terpolymers with diolefins and copolymers with diolefins.

18. A process according to claim 1, wherein the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrene, conjugated dienes, acrolein, vinyl acetate, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters or (alkyl)acrylamides.

19. A process according to claim 18, wherein the ethylenically unsaturated monomer is styrene, α-methyl styrene, p-methyl styrene or a compound of formula CH_{2}=C(R_{a})-(C=Z)-R_{b}, wherein R_{a}
is hydrogen or C_{1-4}alkyl, R_b is NH_2, OCH_3, glycidyl, unsubstituted C_{1-10}alkoxy or hydroxy-substituted C_{1-10}alkoxy, unsubstituted C_{1-10}alkylamino, di(C_{1-18}alkyl)amino, hydroxy-substituted C_{1-10}alkylamino or hydroxy-substituted di(C_{1-18}alkyl)amino; Me is a monovalent metal atom Z is oxygen or sulfur.

20. A process according to claim 1, wherein the temperature in the first step A) is from 150° C to 300° C.

21. A process according to claim 1, wherein the temperature in the second step B) is from 70° to 280° C.

22. A process according to claim 1, wherein the compound containing a structural element of formula (I) is present in an amount of from 0.1% to 30% based on the weight of the polymer.

23. A process according to claim 1, wherein the ratio of the reaction product of step A) to the ethylenically unsaturated monomer or oligomer added in step B) is from 1:10000 to 10:1.

24. A process according to claim 1, wherein the first step A) is performed in an extruder.

25. A polymeric radical initiator obtainable according to step A) of claim 1 or claim 2.

26. A polymer obtainable according to steps A) and B) of the process of claim 1 or claim 2.

27. A polymeric radical initiator of formula (P1)

\[
\begin{array}{c}
\text{R}_{498} \\
\text{R}_{501} \\
\text{O}_2 \\
\text{R}_{501} \\
\text{R}_{498} \\
\end{array}
\]

(P1), wherein

\[
\begin{array}{c}
\text{R}_{498} \text{ is hydrogen, substituted or unsubstituted C}_{1-18}\text{alkyl, C}_{2-18}\text{alkenyl, C}_{2-18}\text{alkynyl; C}_{3-} \\
\text{C}_{20}\text{Cycloalkyl or C}_{3-12}\text{cycloalkyl containing at least one nitrogen or oxygen atom or C}_{3-} \\
\text{C}_{12}\text{Cycloalkyl containing at least one nitrogen or oxygen atom, which are substituted by NO}_2, \\
\text{halogen, amino, hydroxy, cyano, carboxy; C}_{1-}\text{alkoxy, C}_{1-}\text{alkylthio, C}_{1-}\text{alkylamino or di(C}_{1-} \\
\text{C}_{4}\text{alkyl}amino, O(C_{1-18}\text{alkyl}), O(C_{2-18}\text{alkenyl}), C_{7-11}\text{phenylalkyl, O-phenyl, OC}_{7-9}\text{phenylalkyl or halogen or phenyl and naphthyl which are unsubstituted or substituted by C}_{1-}\text{C}_{4}\text{alkyl, C}_{1-}}
\end{array}
\]
C₄alkoxy, C₁₋C₄alkylthio, halogen, cyano, hydroxy, carboxy, C₁₋C₄alkylamino or di(C₁₋C₄alkyl)amino;
R₄₉ is the stable nitroxy radical, bound at the oxygen atom;
R₅₀ is substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₃₋C₂₀cycloalkyl, phenyl, C₇₋C₁₁phenylalkyl;
R₅₁ is hydrogen, substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₂₋C₁₈alkiny, C₃₋C₂₀cycloalkyl, phenyl, O(C₁₋C₁₈alkyl), O(C₂₋C₁₈alkenyl), C₇₋C₁₁phenylalkyl, O-phenyl, O- C₇₋C₈phenylalkyl or halogen, CN, COOR₅₀₀, CONR₅₀₀R₅₀₀;
Q₅ is CR₅₀₀R₅₀₃, CH=CH₂, (CR₅₀₂R₅₀₃)n, CR₅₀₄=CR₅₀₅=CR₅₀₆=CR₅₀₇, (CR₅₀₄=CR₅₀₅=CR₅₀₆R₅₀₇)n,
C≡CR₅₀₉R₅₀₉, (C≡CR₅₀₉R₅₀₉)n, O, C=O, NR₅₁₀, NR₅₁₁-C=O, O-C(O)-O, SO₂, S, SiR₅₁₂R₅₁₃, O-SiR₅₁₂R₅₁₃-O;
R₅₀₂, R₅₀₃, R₅₀₄, R₅₀₅, R₅₀₆, R₅₀₇, R₅₀₈, R₅₀₉, R₅₁₀, R₅₁₁, R₅₁₂ and R₅₁₃ independently of each other are hydrogen, substituted or unsubstituted C₁₋C₁₈alkyl, C₂₋C₁₈alkenyl, C₂₋C₁₈alkiny, C₃₋C₇cycloalkyl, phenyl, O(C₁₋C₁₈alkyl), O(C₂₋C₁₈alkenyl), C₇₋C₁₁phenylalkyl, O-phenyl, O- C₇₋C₈phenylalkyl or halogen;
n is a number from 1 to 10;
y is a number from 1 to 25000 and;
z is a number from 0 to 25000.

28. A polymer of formula (P2)

(Q₅)ₚ

(R₄₉)

(Q₅)

(R₄₉)

(R₅₁)

(Q₅)

(R₅₁)

(Q₅)

(R₄₉)

(R₄₉)

(P2) wherein

Q₅ is a homo-, co- or tapered polymer resulting from the monomers as defined in claims 18 and 19, t is a number from 0 to 25000 and the other substituents are as defined in claim 27.

29. Use of a nitroxyl-ether containing a group (=NO-X), wherein X is selected such, that cleavage of the O-X bond occurs and a radical X* is formed at about the melting temperature of the polymer for the preparation of a grafted polymer with and without a free radical source.

30. Use of a grafted polymer according to step A) of claim 1 or claim 2 as macroinitiator for radical polymerization.
31. Use of the polymer obtained according to the process of claim 1 or claim 2 as adhesive or as compatibilizer for polymer blends or as polymer toughening agent.
**INTERNATIONAL SEARCH REPORT**

**A. CLASSIFICATION OF SUBJECT MATTER**

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08F291/00</td>
<td>C08F293/00</td>
</tr>
<tr>
<td>C08F4/00</td>
<td>C08F2/38</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08F</td>
<td>C08K</td>
</tr>
<tr>
<td>C08L</td>
<td></td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 99 25749 A (SUTORIS HEINZ FRIEDRICH; BASF AG (DE); BENEDIX FRANZ (DE); BARGHOO) 27 May 1999 (1999-05-27) examples 1,2 claims</td>
<td>1-31</td>
</tr>
<tr>
<td>X</td>
<td>US 4 581 429 A (RIZARDO EZIO ET AL) 8 April 1986 (1986-04-08) cited in the application abstract examples 40-45 claims</td>
<td>1-31</td>
</tr>
<tr>
<td>X</td>
<td>WO 97 36944 A (DOW CHEMICAL CO) 9 October 1997 (1997-10-09) page 10 -page 13 claim 1</td>
<td>1-31</td>
</tr>
<tr>
<td>X</td>
<td>Further documents are listed in the continuation of box C. Patent family members are listed in annex.</td>
<td></td>
</tr>
</tbody>
</table>

*Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 1 December 1999

Date of mailing of the international search report: 10/12/1999

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Pollio, M

Forms PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 837 080 A (ATOCHEM ELF SA) 22 April 1998 (1998-04-22) abstract page 5, line 13 -page 6, line 6 examples</td>
<td>1-31</td>
</tr>
<tr>
<td>X</td>
<td>US 5 723 511 A (GEORGES MICHAEL K ET AL) 3 March 1998 (1998-03-03) page 19, column 31, line 64 -column 32, line 13 example 1</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 5 627 248 A (KOSTER ROBERT A ET AL) 6 May 1997 (1997-05-06) abstract claim 2</td>
<td>1-31</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4581429 A</td>
</tr>
<tr>
<td></td>
<td>08-04-1986</td>
<td>AU 571240 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3486145 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0135280 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1797643 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5006537 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60089452 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3037884 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9736944 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1975697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 711277 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2594697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1214705 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1215402 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0889918 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0889890 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 329114 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 329115 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9736894 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5721320 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0837080 A</td>
</tr>
<tr>
<td></td>
<td>09-10-1997</td>
<td>FR 2754535 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2216987 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1182096 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5945492 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5723511 A</td>
</tr>
<tr>
<td></td>
<td>03-03-1998</td>
<td>EP 0814097 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10060064 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9411412 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5295593 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9305751 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2126670 A, C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1087349 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0621878 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6199916 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9307085 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5401804 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5549998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5627248 A</td>
</tr>
</tbody>
</table>