

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2021/048725 A1

(43) International Publication Date

18 March 2021 (18.03.2021)

(51) International Patent Classification:

C07K 16/28 (2006.01) *C12N 15/13* (2006.01)
A61K 39/395 (2006.01) *A61P 35/00* (2006.01)

Guangdong 519080 (CN). **HUANG, Weifeng**; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN).

(21) International Application Number:

PCT/IB2020/058303

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(22) International Filing Date:

07 September 2020 (07.09.2020)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

201910863109.0 12 September 2019 (12.09.2019) CN

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(71) **Applicant:** BIOTHEUS INC. [CN/CN]; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN).

(72) **Inventors:** XU, Yifeng; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN). ZHAI, Tianhang; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN). YUAN, Zhijun; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN). TSUN, Andy; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai, Guangdong 519080 (CN). SUN, Tsoyue Joanne; 10B, Building 4, No 1 Keji 7th Road, Tangjiawan Town, Xiangzhou District, Zhuhai,

(54) Title: ANTI-PD-L1 SINGLE-DOMAIN ANTIBODY AND DERIVATIVES AND USE THEREOF

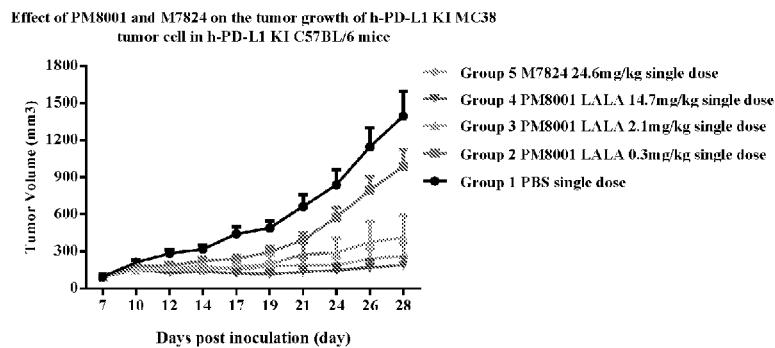


FIG. 20

(57) **Abstract:** Provided is a complementary determining region (CDR) of a VH chain of an anti-PD-L1 single-domain antibody, wherein the CDR of the VH chain includes the following: CDR1 with an amino acid sequence as shown in SEQ ID NO:5n+1; CDR2 with an amino acid sequence as shown in SEQ ID NO:5n+2, or CDR2 with an amino acid sequence having an sequence identity of greater than 85% with a sequence as shown in SEQ ID NO:2; and CDR3 with an amino acid sequence as shown in SEQ ID NO: 5n+3; wherein, each n is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*
- *in black and white; the international application as filed contained color or greyscale and is available for download from PATENTSCOPE*

ANTI-PD-L1 SINGLE-DOMAIN ANTIBODY AND DERIVATIVES AND USE THEREOF

TECHNICAL FIELD

The present application relates to the technical fields of biomedicine or biopharmacy,
5 and in particular to an anti-PD-L1 single-domain antibody and derivatives and use thereof.

BACKGROUND

Programmed death 1 ligand 1 (PD-L1), also known as CD274, is a member of the B7 family and a ligand for PD-1. PD-L1 is a type I transmembrane protein consisting a total of 290 amino acids, including one IgV-like region, one IgC-like region, one transmembrane 10 hydrophobic region and one intracellular region composed of 30 amino acids.

PD-L1 has an effect of negatively regulating immune responses. It is found through studies that PD-L1 is mainly expressed in activated T cells, B cells, macrophages, dendritic cells, and the like. In addition to lymphocytes, PD-L1 is also expressed in endothelial cells of many other tissues such as the thymus, heart, placenta and the like, and various non-15 lymphoid systems such as melanoma, liver cancer, gastric cancer, renal cell carcinoma, ovarian cancer, colon cancer, breast cancer, esophageal cancer, head and neck cancer and the like. PD-L1 has certain versatility in regulating autoreactive T and B cells and immune tolerance, and plays a role in T and B cell response in peripheral tissues. The high expression of PD-L1 on tumor cells is related to the poor prognosis of cancer patients.

20 Programmed death-1 (PD-1) combined with PD-L1, also known as CD279, is a member of the B7-CD28 superfamily. The cytoplasmic region of CD279 contains two tyrosine residues, one near the N-terminal is located in an immunoreceptor tyrosine-based inhibitory motif (ITIM), and the other near the C-terminal is located in an immunoreceptor tyrosine-based switch motif (ITSM). PD-1 is mainly expressed on surfaces of activated T lymphocytes,
25 B lymphocytes and macrophages. Under normal circumstances, PD-1 can inhibit the function of T lymphocytes and promote the function of Treg cells, thereby inhibiting autoimmune responses and preventing the occurrence of autoimmune diseases. However, in the development of tumors, the binding of PD-L1 expressed by tumor cells to PD-1 can promote

the immune escape of tumors by inhibiting lymphocytes. The binding of PD-L1 to PD-1 may cause a variety of biological changes and immune regulation, such as inhibiting the proliferation and activation of lymphocytes, inhibiting the differentiation of CD4+ T cells into Th1 and Th17 cells and inhibiting the release of inflammatory cytokines.

5 The successful application of monoclonal antibodies in cancer diagnostics and targeted therapy has launched a revolution in tumor therapy. Traditional monoclonal antibodies (150kD) have a high molecular mass that may hinder their propensity to penetrate through tissues, resulting in low effective concentrations in tumors and insufficient therapeutic effects. . In addition, long development periods, high production costs, insufficient stability
10 and many other factors of traditional antibodies limit their clinical application and popularization.

Single-domain antibodies are currently the smallest antibody molecules, and the molecular weight (without Fc) is 1/10 of that of ordinary antibodies. In addition to the antigen reactivity of monoclonal antibodies, single-domain antibodies also have unique functional
15 characteristics, such as a low molecular weight, high stability, good solubility, easy expression, high tissue penetrability, simple humanization and low preparation costs, which may overcome the shortcomings of traditional antibodies.

However, there is still a lack of satisfactory single-domain antibodies against PD-L1 in the field. Therefore, there is an urgent need in this field to develop specific single-domain
20 antibodies which are effective against PD-L1.

SUMMARY

The objective of the present application is to provide a class of specific single-domain antibodies which are effective against PD-L1.

25 In a first aspect of the present application, a complementarity determining region (CDR) of a VH chain of an anti-PD-L1 single-domain antibody is provided. The CDR of the VH chain consists of the following:

CDR1 with an amino acid sequence as shown in SEQ ID NO: 5n+1;

CDR2 with an amino acid sequence as shown in SEQ ID NO: 5n+2, or CDR2 with an amino acid sequence having an sequence identity of greater than 85% with a sequence as shown in SEQ ID NO: 2; and

CDR3 with an amino acid sequence as shown in SEQ ID NO: 5n+3.

5 Each n is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

In another preferred embodiment, n is 0 or 1.

In another preferred embodiment, the amino acid sequence of CDR2 is shown in SEQ ID NO: 2, 7, 81, 84, 87, 90, 93, or 96.

10 In another preferred embodiment, CDR1, CDR2 and CDR3 are separated by framework regions FR1, FR2, FR3 and FR4 of the VHH chain.

In a second aspect of the present application, a VHH chain of an anti-PD-L1 single-domain antibody is provided. The VHH chain of the anti-PD-L1 single-domain antibody includes the CDR1, CDR2 and CDR3 according to the first aspect of the present application.

15 In another preferred embodiment, an amino acid sequence of the VHH chain of the anti-PD-L1 single-domain antibody is shown in SEQ ID NO: 5n+4, 82, 85, 88, 91, 94 or 97.

n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

20 Any one of the amino acid sequences above also includes a derivative sequence which is obtained through addition, deletion, modification and/or substitution of 1-8 (preferably 1-5, more preferably 1-3) amino acid residues and can retain a PD-L1 binding affinity of the anti-PD-L1 single-domain antibody.

In another preferred embodiment, n is 0 or 1.

In another preferred embodiment, the amino acid sequence of the VHH chain of the anti-PD-L1 single-domain antibody is shown in SEQ ID NO: 4, 9, 82, 85, 88, 91, 94 or 97.

25 In a third aspect of the present application, an anti-PD-L1 single-domain antibody is provided. The anti-PD-L1 single-domain antibody is a single-domain antibody against a PD-L1 epitope and has the VHH chain of the anti-PD-L1 single-domain antibody according to

the second aspect of the present application.

In a fourth aspect of the present application, a polynucleotide is provided. The polynucleotide encodes a protein selected from the group of proteins including: the CDR region of the VHH chain of the anti-PD-L1 single-domain antibody according to the first 5 aspect of the present application, the VHH chain of the anti-PD-L1 single-domain antibody according to the second aspect of the present application, or the anti-PD-L1 single-domain antibody according to the third aspect of the present application.

In another preferred embodiment, the polynucleotide has an amino acid sequence as shown in SEQ ID NO: 5n, 83, 86, 89, 92, 95 or 98.

10 n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16.

In another preferred embodiment, the polynucleotide includes DNA or RNA.

In a fifth aspect of the present application, an expression vector is provided. The expression vector contains the polynucleotide according to the fourth aspect of the present application.

15 In another preferred embodiment, the expression vector also contains a nucleotide sequence encoding an Fc fragment of immunoglobulin.

In another preferred embodiment, the immunoglobulin is IgG1, IgG2, IgG3 or IgG4.

20 In a sixth aspect of the present application, a host cell is provided. The host cell contains the expression vector according to the fifth aspect of the present application, or a genome of the host cell is integrated with the polynucleotide according to the fourth aspect of the present application.

In another preferred embodiment, the host cell includes prokaryotic cells or eukaryotic cells.

25 In another preferred embodiment, the host cell is selected from the group of Escherichia coli, yeast cells and mammalian cells.

In a seventh aspect of the present application, a method of producing an anti-PD-L1 single-domain antibody is provided, which includes the steps of:

(a) culturing the host cell according to the sixth aspect of the present application under conditions suitable for the production of single-domain antibodies, and thereby obtaining a culture containing the anti-PD-L1 single-domain antibody; and

(b) isolating or recovering the anti-PD-L1 single-domain antibody from the culture.

5 In another preferred embodiment, the anti-PD-L1 single-domain antibody has an amino acid sequence as shown in SEQ ID NO: 5n+4, 82, 85, 88, 91, 94 or 97.

n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

10 In an eighth aspect of the present application, a single-domain antibody fusion protein is provided. The single-domain antibody fusion protein has a structure as shown in formula I from N-terminal to C-terminal:

Z1-Z2-L-Z3 (Formula I)

In the formula,

Z1 is the VH chain of the anti-PD-L1 single-domain antibody according to the second aspect of the present application;

15 Z2 is an Fc fragment of immunoglobulin;

L is a linker sequence; and

Z3 is an immunoregulatory molecule moiety.

In another preferred embodiment, the immunoglobulin is IgG1, IgG2, IgG3 or IgG4.

20 In another preferred embodiment, an amino acid sequence of Z2 is shown in SEQ ID NO: 99.

In another preferred embodiment, the amino acid sequence of Z2 is the same or substantially same as the amino acid sequence as shown in SEQ ID NO: 99.

In another preferred embodiment, L has an amino acid sequence selected from the group including GGGGS, (GGGGS)₂, (GGGGS)₃, (GGGGS)₄, (GGGGS)₅, or a combination thereof.

25 In another preferred embodiment, the amino acid sequence of L is shown in SEQ ID NO:

100.

In another preferred embodiment, the amino acid sequence of L is the same or substantially same as the amino acid sequence as shown in SEQ ID NO: 100.

5 In another preferred embodiment, the immunoregulatory molecule is a TGF β RII extracellular domain.

In another preferred embodiment, an amino acid sequence of Z3 is shown in SEQ ID NO: 101.

In another preferred embodiment, the amino acid sequence of Z3 is the same or substantially same as the amino acid sequence as shown in SEQ ID NO: 101.

10 In another preferred embodiment, the substantially same indicates that at most 50 (preferably 1-20, more preferably 1-10, more preferably 1-5, most preferably 1-3) amino acids are different, and the difference includes substitution, deletion or addition of amino acids.

15 In another preferred embodiment, the substantially same indicates that a sequence identity of an amino acid sequence and a corresponding amino acid sequence is at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%.

20 In another preferred embodiment, an amino acid sequence of the single-domain antibody fusion protein is shown in SEQ ID NO: 102.

In a ninth aspect of the present application, an immunoconjugate is provided. The immunoconjugate includes:

25 (a) the VHH chain of the anti-PD-L1 single-domain antibody according to the second aspect of the present application, the anti-PD-L1 single-domain antibody according to the third aspect of the present application, or the single-domain antibody fusion protein according to the eighth aspect of the present application; and

(b) a coupling moiety selected from the group including a detectable marker, a drug, a

toxin, a cytokine, a radionuclide or an enzyme.

In another preferred embodiment, the coupling moiety is a drug or a toxin.

In another preferred embodiment, the coupling moiety is a detectable marker.

In another preferred embodiment, the conjugate is selected from a fluorescent or
5 luminescent marker, a radioactive marker, a MRI (magnetic resonance imaging) or CT
(electronic computer X-ray tomography) contrast agent, or an enzymes capable of producing
a detectable product, a radionuclide, a biotoxin, a cytokine (such as IL-2 and similar), an
antibody, an antibody Fc fragment, an antibody scFv fragment, a gold nanoparticle/nanorod,
a viral particle, a liposome, a magnetic nanoparticle, a prodrug activating enzyme (such as
10 DT-diaphorase (DTD) or biphenyl hydrolase-like protein (BPHL)), a chemotherapeutic agent
(such as cisplatin) or any form of nanoparticle or similar.

In another preferred embodiment, the immunoconjugate contains a multivalent (such as
bivalent) VHH chain of the anti-PD-L1 single-domain antibody according to the second
aspect of the present application, the anti-PD-L1 single-domain antibody according to the
15 third aspect of the present application, or the single-domain antibody fusion protein according
to the eighth aspect of the present application.

In another preferred embodiment, the multivalent indicates that the amino acid sequence
of the immunoconjugate contains multiple repeated VHH chains of the anti-PD-L1 single-
domain antibody according to the second aspect of the present application, the anti-PD-L1
20 single-domain antibody according to the third aspect of the present application, or the single-
domain antibody fusion protein according to the eighth aspect of the present application.

In a tenth aspect of the present application, use of the anti-PD-L1 single-domain antibody
according to the third aspect of the present application or the single-domain antibody fusion
protein according to the eighth aspect of the present application is provided, which is used in
25 preparation of (a) reagents used for detecting PD-L1 molecules and (b) drugs used for treating
tumors.

In another preferred embodiment, detection includes flow cytometry and cellular
immunofluorescence detection.

In an eleventh aspect of the present application, a pharmaceutical composition is provided, which includes:

5 (i) the CDR of the VHH chain of the anti-PD-L1 single-domain antibody according to the first aspect of the present application, the VHH chain of the anti-PD-L1 single-domain antibody according to the second aspect of the present application, the anti-PD-L1 single-domain antibody according to the third aspect of the present application, the single-domain antibody fusion protein according to the eighth aspect of the present application, or the immunoconjugate according to the ninth aspect of the present application; and

(ii) a pharmaceutically acceptable carrier.

10 In another preferred embodiment, the pharmaceutical composition is in a form of injection.

15 In another preferred embodiment, the pharmaceutical composition is used for manufacturing a drug for treating tumor, and the tumor is selected from the group including gastric cancer, liver cancer, leukemia, kidney tumor, lung cancer, small intestinal carcinoma, bone cancer, prostate cancer, colorectal cancer, breast cancer, colon cancer, cervical cancer, lymphoma, adrenal gland tumor, bladder tumor, or a combination thereof.

In a twelfth aspect of the present application, one or more uses of the anti-PD-L1 single-domain antibody according to the third aspect of the present application or the single-domain antibody fusion protein according to the eighth aspect of the present application is provided:

20 (i) for detection of a human PD-L1 molecule;

(ii) for flow cytometry;

(iii) for cellular immunofluorescence detection;

(iv) for tumor treatment; and

(v) for tumor diagnosis.

25 In another preferred embodiment, the use is non-diagnostic and non-therapeutic.

In a thirteenth aspect of the present application, a recombinant protein is provided. The

recombinant protein includes:

5 (i) a sequence of a heavy chain variable region VHH according to the second aspect of the present application, a sequence of the single-domain antibody according to the third aspect of the present application, or the single-domain antibody fusion protein according to the eighth aspect of the present application; and

(ii) an optional tag sequence assisting expression and/or purification.

In another preferred embodiment, the tag sequence includes a 6His tag, an HA tag, a Flag tag, an Fc tag, an HSA or anti-HSA antibody or single-domain antibody, or a combination thereof.

10 In another preferred embodiment, the recombinant protein specifically binds to a PD-L1 protein.

15 In a fourteenth aspect of the present application, use of the VHH chain according to the second aspect of the present application, the single-domain antibody according to the third aspect of the present application, the single-domain antibody fusion protein according to the eighth aspect of the present application, or the immunoconjugate according to the ninth aspect of the present application is provided, which is used in manufacture of a medicament, a reagent, a detection plate or a kit.

The reagent, the detection plate or the kit is used for detecting a PD-L1 protein in a sample.

20 The medicament is used for treating or preventing a tumor expressing the PD-L1 protein (namely PD-L1 positive).

25 In another preferred embodiment, the tumor includes gastric cancer, lymphoma, liver cancer, leukemia, kidney tumor, lung cancer, small intestinal carcinoma, bone cancer, prostate cancer, colorectal cancer, breast cancer, colon cancer, drenal gland tumor, or a combination thereof.

In a fifteenth aspect of the present application, a method for detecting a PD-L1 protein in a sample is provided, which includes the steps:

(1) contacting the sample with the single-domain antibody according to the third aspect of the present application or the single-domain antibody fusion protein according to the eighth aspect of the present application; and

5 (2) detecting whether an antigen-antibody complex is formed or not, wherein the formation of the complex indicates the presence of the PD-L1 protein in the sample.

In another preferred embodiment, detection includes qualitative detection and quantitative detection.

10 In a sixteenth aspect of the present application, a method for treating a disease is provided. The method includes administering the single-domain antibody according to the third aspect of the present application, the single-domain antibody fusion protein according to the eighth aspect of the present application, or the immunoconjugate according to the ninth aspect of the present application in an effective amount to a subject in need.

In another preferred embodiment, the subject includes a mammal.

In another preferred embodiment, the mammal is a human.

15 It should be understood that within the scope of the present application, the technical features of the present application above and the technical features specifically described below (such as embodiments) can be combined with each other to form a new or preferred technical solution. Due to space limitations, more contents are not repeated here.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Figure 1 shows that single-domain antibodies of the present application can bind to a human PD-L1 protein on a cell surface, and the binding effect of a portion of the antibodies is similar to that of a positive control.

25 Figure 2 shows that modified single-domain antibodies can still bind to the human PD-L1 protein on the cell surface, and the binding effect of the antibodies is similar to that of a positive control.

Figure 3 shows that modified single-domain antibodies can still block the binding of the PD-L1 protein to the human PD-1 protein on the cell surface, and the blocking effect of the

antibodies is similar to that of a positive control.

Figure 4 shows that single-domain antibodies of the present application can effectively activate T cells, and the activation effect is similar to or better than that of an antibody of a positive control.

5 Figure 5 shows a schematic structural diagram of a fusion protein.

Figure 6 shows that the fusion protein of the present application can bind to the human PD-L1 protein on the cell surface.

10 Figure 7 shows that the fusion protein of the present application can block the binding of the PD-L1 protein to the human PD-1 protein on the cell surface, and the blocking effect of an antibody is similar to that of a positive control.

Figure 8 shows that the fusion protein of the present application can bind to TGF β 1, TGF β 2 and TGF β 3.

Figure 9 shows that the fusion protein of the present application can effectively block a TGF β /SMAD signal pathway.

15 Figure 10 shows that the fusion protein of the present application can effectively activate T cells, and the activation effect is similar to or better than that of an antibody of a positive control.

Figure 11 shows that the fusion protein of the present application can effectively inhibit tumor growth in mice.

20 Figure 12 shows a photograph of the PD-L1-VHH crystal sample of the present application.

Figure 13 shows the crystal structure of the PD-L1-VHH complex of the present application (the upper structure is PD-L1 and lower structure is the VHH).

25 Figure 14 shows a hydrogen bond interaction interface of PD-L1-VHH of the present application (the upper structure is PD-L1 and the lower structure is VHH).

Figure 15 shows a hydrophobic interaction interface of PD-L1-VHH of the present

application (the upper structure is PD-L1 and the lower structure is VHH).

Figure 16 shows the effect of different drug groups on the tumor volume of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

Figure 17 shows pictures of tumors in different drug groups 27 days after inoculation.

5 Figure 18 shows the effect of each group of drugs on tumor weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

Figure 19 shows the effect of different drug groups on body weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

10 Figure 20 shows the effect of different drug groups on tumor volume of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

Figure 21 shows pictures of tumors in different drug groups 28 days after inoculation.

Figure 22 shows the effect of each group of drugs on tumor weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

15 Figure 23 shows the effect of different drug groups on body weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

DETAILED DESCRIPTION

After extensive and in-depth research and extensive screening, the inventors developed a class of anti-PD-L1 single-domain antibodies. Experimental results show that the PD-L1 20 single-domain antibody and mutant derivatives thereof obtained in the present application can effectively block the interaction between PD-L1 and PD-1, and have relatively good thermal stability.

Specifically, the present application used a human-derived PD-L1 antigen protein for 25 immunizing llamas to obtain high-quality immune libraries containing single-domain antibody genetic sequences. The inventors screened for single-domain antibodies with genetic sequences showing relatively high humanization levels (sequence identity > 85%)

from the immune single-domain antibody gene library. PD-L1 protein molecules were subjected to biotinylation, and the immune library containing sequence of single-domain antibodies was screened using yeast display technology, and thus genes of the candidate single-domain antibodies specific to PD-L1 were obtained. Then the obtained genes and 5 engineered mutants thereof were transferred into Expi-CHO cells and further screened in the aspects of antibody affinity, ability to block the binding of PD-L1 to PD-1, thermal stability and activation of T cell activity to obtain a class and panel of single-domain antibodies, which can be expressed efficiently *in vitro* with high binding specificity to human PD-L1 antigen.

10 In addition, experimental results show that a fusion protein produced by fusing a single-domain antibody sequence (as a targeting moiety) of the present application with an IgG1 Fc fragment (as a linking moiety) and a TGF β RII extracellular domain (as an immunoregulatory molecule moiety) is highly active with PD-L1, and can effectively block the interaction between PD-L1 and PD-1, effectively block the TGF- β /SMAD signal pathway, effectively activate human T lymphocytes and effectively inhibit tumor growth in mice.

15 In addition, experimental results show that the single-domain antibody of the present application can significantly inhibit the growth of subcutaneously transplanted tumors and reduce tumor weight in mice. The inhibitory effect on tumor growth at the same molar dosage is higher than that of similar molecules, anti-PD-L1 single domain antibodies and TGF- β RII-Fc fusion proteins and has no apparent toxicity to animal models of diseases.

20 On this basis, the present application has been completed.

Single-domain antibody of the present application

As used herein, the terms "single-domain antibody of the present application", "anti-PD-L1 single-domain antibody of the present application" and "PD-L1 single-domain antibody of the present application" are used interchangeably and all refer to single-domain antibodies 25 with specificity in recognizing and binding to PD-L1 (including human PD-L1). Single-domain antibodies with an amino acid sequence of a VHH chain as shown in SEQ ID NO: 4, 9, 82, 85, 88, 91, 94 or 97 are particularly preferred.

As used herein, the term "antibody" or "immunoglobulin" is a heterotetrameric

glycoprotein of about 150,000 daltons with the same structural characteristics, which consists of two identical light chains (L) and two identical heavy chains (H). Each light chain is linked to a heavy chain through a covalent disulfide bond, and the numbers of disulfide bonds between the heavy chains of different immunoglobulin isotypes are different. Each heavy 5 chain and light chain also have regularly spaced intrachain disulfide bonds. Each heavy chain has a variable region (VH) at one end, followed by multiple constant regions. Each light chain has a variable region (VL) at one end and a constant region at the other end; the constant region of each light chain is relative to the first constant region of the corresponding heavy chain, and the variable region of each light chain is relative to the variable region of the 10 corresponding heavy chain. Special amino acid residues form an interface between the variable regions of the light chain and the heavy chain.

As used herein, the terms "single domain antibody (VHH)" and "nanobody" have the same meaning, referring to cloning the variable region of the heavy chain of an antibody and constructing a single domain antibody (VHH) consisting of only one heavy chain variable 15 region, and the single domain antibody is the smallest antigen-binding fragment with complete functions. Usually, after obtaining an antibody with naturally missing light chain and heavy chain constant region 1 (CH1), a variable region of a heavy chain of the antibody is cloned to construct a single domain antibody (VHH) consisting of only one heavy chain variable region.

20 As used herein, the term "variable" means that certain parts of the variable region of an antibody are different in sequence, so that the binding and specificity of various specific antibodies to specific antigens are formed. However, variability is not evenly distributed in the entire variable region of the antibody. Variability is concentrated in three fragments in the light chain and heavy chain variable regions known as CDRs or hypervariable regions. 25 The more conserved part of the variable region is called a framework region (FR). The variable regions of the natural heavy chain and light chain each contain four FRs, which are roughly in a β -folded configuration and connected by three CDRs forming a connecting loop, and in some cases, a partial β folded structure can be formed. The CDRs in each chain are closely joined together by the FR and form an antigen binding site of an antibody together

with the CDRs of another chain (see Kabat et al., NIH Publ. No. 91-3242, Volume I, pp. 647-669 (1991)). Constant regions are not directly involved in the binding of antibodies to antigens, but they exhibit different effector functions, such as participating in antibody-dependent cytotoxicity of the antibody.

5 As known by those skilled in the art, immunoconjugates and fusion expression products include conjugates formed by binding drugs, toxins, cytokines, radionuclides, enzymes and other diagnostic or therapeutic molecules to the antibody of the present application or fragments thereof. The present application also includes a cell surface marker or antigen bound to the anti-PD-L1 protein antibody or fragments thereof.

10 As used herein, the terms "heavy chain variable region" and " V_H " are used interchangeably.

As used herein, the terms "variable region" and "complementarity determining region (CDR)" are used interchangeably.

15 In a preferred embodiment of the present application, the heavy chain variable region of an antibody includes CDRs being CDR1, CDR2 and CDR3.

In a preferred embodiment of the present application, the heavy chain of an antibody includes the above heavy chain variable region and heavy chain constant region.

20 In the present application, the terms "antibody of the present application", "protein of the present application", or "polypeptide of the present application" are used interchangeably and all refer to a polypeptide which specifically binds to the PD-L1 protein, such as a protein or polypeptide having a heavy chain variable region, which may or may not contain initiation methionine.

25 The present application also provides other proteins or fusion expression products having the antibody of the present application. Specifically, the present application includes any protein or protein conjugate and fusion expression product (namely immunoconjugate and fusion expression product) having a heavy chain containing a variable region, as long as the variable region is identical or at least 90% homologous, preferably at least 95% homologous to the heavy chain variable region of the antibody of the present application.

Generally, antigen-binding properties of an antibody can be described by three specific regions, called variable regions (CDR), located in the heavy chain variable region, separated by four framework regions (FR), and the amino acid sequences of the four FRs are relatively conservative and do not directly participate in a binding reaction. These CDRs form a circular structure and are close to each other in spatial structure due to the β folds formed by the FRs therebetween, and the CDRs on a heavy chain and the CDRs on a corresponding light chain constitute antigen binding sites of an antibody. The amino acid sequences of antibodies of the same type can be compared to determine which amino acids constitute the FR or CDR regions.

10 The variable regions of the heavy chains of the antibody of the present application are of particular interest, because at least some of the variable regions are involved in binding to antigens. Therefore, the present application includes molecules which have the heavy chain variable regions of the antibody with CDRs, as long as the CDRs thereof have 90% homology or above (preferably 95% or above, most preferably 98% or above) with the CDRs identified 15 here.

The present application includes not only intact antibodies, but also fusion proteins formed by fragments of immunologically active antibodies or antibodies and other sequences. Therefore, the present application also includes fragments, derivatives and analogs of the antibodies.

20 As used herein, the terms "fragment", "derivative" and "analog" refer to polypeptides which substantially retain the same biological function or activity as the antibodies of the present application. The polypeptide fragments, derivatives or analogs of the present application may be (i) a polypeptide in which one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) are substituted, and such 25 substituted amino acid residues may or may not be encoded by genetic codes, (ii) a polypeptide with substitution groups in one or more amino acid residues, (iii) a polypeptide formed by fusing a mature polypeptide to another compound (such as a compound which extends the half-life of polypeptides, such as polyethylene glycol), or (iv) a polypeptide formed by fusing an additional amino acid sequence to the polypeptide sequence (such as a

leader sequence, a secretory sequence, a sequence used for purifying the polypeptide or proprotein sequence, or a fusion protein formed with the 6His tag). According to the teaching herein, these fragments, derivatives and analogs are within the scope well known to those skilled in the art.

5 The antibody of the present application refers to a polypeptide having PD-L1 protein binding activity and the CDRs above. The term also includes variant forms of polypeptides containing the CDRs above and having the same functions as the antibody of the present application. These variant forms include (but are not limited to) deletion, insertion and/or substitution of one or more (usually 1-50, preferably 1-30, more preferably 1-20, most 10 preferably 1-10) amino acids and the addition of one or more (usually within 20, preferably within 10, and more preferably within 5) amino acids at the C-terminal and/or N-terminal. For example, in this field, when amino acids with same or similar properties are used for substitution, functions of a protein are usually not changed. For another example, the addition of one or more amino acids to the C-terminal and/or N-terminal usually does not change 15 functions of a protein. The term also includes active fragments and active derivatives of the antibody of the present application.

The variant forms of the polypeptide include homologous sequences, conservative variants, allelic variants, natural mutants, induced mutants, DNA encoded proteins which can be hybridized with coding DNA of the antibody of the present application under high or low 20 stringency conditions, and polypeptides or proteins obtained by using antiserum against the antibody of the present application.

The present application also provides other polypeptides, such as a fusion protein containing the single-domain antibody or fragments thereof. In addition to almost full-length polypeptides, the present application also includes fragments of the single-domain antibody 25 of the present application. Generally, the fragments have at least about 50 consecutive amino acids of the antibody of the present application, preferably at least about 60 consecutive amino acids, more preferably at least about 80 consecutive amino acids, and most preferably at least about 100 consecutive amino acids.

In the present application, "conservative variants of the antibody of the present

application" refer to polypeptides formed by substitution of at most 10, preferably at most 8, more preferably at most 5, and most preferably at most 3 amino acids with amino acids having same or similar properties in comparison with the amino acid sequence of the antibody of the present application. These conservative variant polypeptides are best 5 produced through substitution of amino acids according to Table 1.

Table 1

Initial residues	Representative substitution	Preferred substitution
Ala (A)	Val; Leu; Ile	Val
Arg (R)	Lys; Gln; Asn	Lys
Asn (N)	Gln; His; Lys; Arg	Gln
Asp (D)	Glu	Glu
Cys (C)	Ser	Ser
Gln (Q)	Asn	Asn
Glu (E)	Asp	Asp
Gly (G)	Pro; Ala	Ala
His (H)	Asn; Gln; Lys; Arg	Arg
Ile (I)	Leu; Val; Met; Ala; Phe	Leu
Leu (L)	Leu; Val; Met; Ala; Phe	Ile
Lys (K)	Arg; Gln; Asn	Arg
Met (M)	Leu; Phe; Ile	Leu
Phe (F)	Leu; Val; Ile; Ala; Tyr	Leu
Pro (P)	Ala	Ala
Ser (S)	Thr	Thr
Thr (T)	Ser	Ser
Trp (W)	Tyr; Phe	Tyr
Tyr (Y)	Trp; Phe; Thr; Ser	Phe
Val (V)	Ile; Leu; Met; Phe; Ala	Leu

The present application also provides polynucleotide molecules encoding the antibody

or fragments thereof or fusion protein thereof. The polynucleotides of the present application can be in the form of DNA or RNA. DNA forms include cDNA, genomic DNA or artificially synthetic DNA. DNA can be single-stranded or double-stranded. DNA can be coding strands or non-coding strands.

5 Polynucleotides encoding the mature polypeptides of the present application include coding sequences only encoding the mature polypeptides, coding sequences of the mature polypeptides and various additional coding sequences, and the coding sequences of the mature polypeptides (and optional additional coding sequences) as well as non-coding sequences.

10 The term "polynucleotides encoding polypeptides" may include a polynucleotide encoding the polypeptide, or a polynucleotide which also includes the additional coding and/or non-coding sequence.

15 The present application also relates to polynucleotides which are hybridized with the sequences above, and the identity between the two sequences is at least 50%, preferably at least 70%, and more preferably at least 80%. The present application particularly relates to polynucleotides which can be hybridized with the polynucleotides of the present application under stringent conditions. In the present application, "stringent conditions" refer to: (1) hybridization and elution at relatively low ionic strength and relatively high temperature, such as $0.2 \times$ SSC, 0.1% SDS and 60°C; or (2) addition of a denaturing agent during 20 hybridization, such as 50% (v/v) formamide, 0.1% calf serum/0.1% Ficoll, 42°C or similar; or (3) hybridization occurring only when the identity between two sequences is at least 90% or above, and more preferably 95% or above. In addition, a polypeptide encoded by a hybridizable polynucleotide has the same biological function and activity as a mature polypeptide.

25 A full-length nucleotide sequence of the antibody of the present application or fragments thereof can usually be obtained by a PCR amplification method, a recombination method or an artificial synthesis method. A feasible method is using artificial synthesis method to synthesize relevant sequences, especially when the fragment length is short. Usually, a fragment with a very long sequence can be obtained by first synthesizing multiple small

fragments and then linking the fragments. In addition, a coding sequence of a heavy chain and an expression tag (such as 6His) can be fused together to form a fusion protein.

Once relevant sequences are obtained, a recombination method can be used to obtain the relevant sequences in large quantities. The relevant sequences are usually cloned into a vector, 5 then transferred into cells, and then isolated from proliferated host cells by a conventional method, so as to obtain the relevant sequences. Biomolecules (nucleic acids, proteins, or similar) involved in the present application include biomolecules which exist in an isolated form.

At present, DNA sequences encoding the protein (or fragments thereof, or derivatives 10 thereof) of the present application can be obtained completely through chemical synthesis. The DNA sequences can then be introduced into various existing DNA molecules (such as vectors) and cells known in the art. In addition, mutation can also be introduced into the protein sequences of the present application through chemical synthesis.

The present application also relates to vectors containing the suitable DNA sequences 15 and suitable promoters or control sequences. These vectors can be used to transform appropriate host cells to express proteins.

The host cells can be prokaryotic cells such as bacterial cells; or lower eukaryotic cells such as yeast cells; or higher eukaryotic cells such as mammalian cells. Representative examples include *Escherichia coli*, *Streptomyces*, bacterial cells of *Salmonella typhimurium*, 20 fungal cells such as yeast, insect cells of *Drosophila S2* or *Sf9*, animal cells of *CHO*, *COS7* and *293* cells or similar.

Transformation of the host cells with recombinant DNA can be performed by conventional techniques well known to those skilled in the art. When the host cells are prokaryotes such as *Escherichia coli*, competent cells which can absorb DNA can be harvested after an exponential growth phase and treated with a CaCl_2 method, and the steps used are well known in the art. Another way is to use MgCl_2 . If necessary, transformation can also be performed by an electroporation method. When the host cells are eukaryotes, the following DNA transfection methods can be selected: a calcium phosphate co-precipitation

method, conventional mechanical methods such as microinjection, electroporation, liposome packaging or similar.

Obtained transformants can be cultured by conventional methods to express polypeptides encoded by genes of the present application. According to the used host cells, 5 a culture medium used in culture can be selected from various conventional culture mediums. Culture is carried out under conditions suitable for the growth of the host cells. After the host cells have grown to an appropriate cell density, a selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are further cultured for a period of time.

10 The recombinant polypeptides in the method above can be expressed in cells or on cell membranes, or secreted out of the cells. If necessary, the recombinant proteins can be separated and purified through various separation methods according to the physical, chemical and other characteristics. These methods are well known to those skilled in the art. Examples of these methods include, but are not limited to conventional renaturation treatment, 15 treatment with a protein precipitation agent (a salting out method), centrifugation, osmotic fungus breaking, ultra-treatment, ultra-centrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, high performance liquid chromatography (HPLC) and other various liquid chromatography techniques and combinations of these methods.

20 The antibody of the present application can be used alone and can be combined or coupled with detectable markers (for diagnostic purposes), therapeutic agents, PK (protein kinase) modified moieties or any combination of these substances.

25 Detectable markers for diagnostic purposes include, but are not limited to fluorescent or luminescent markers, radioactive markers, MRI (magnetic resonance imaging) or CT (electronic computer X-ray tomography) contrast agents, or enzymes capable of producing detectable products.

Therapeutic agents which can be combined or coupled with the antibody of the present application include, but are not limited to: 1. radionuclides; 2. biotoxins; 3. cytokines such

as IL-2; 4. gold nanoparticles/nanorods; 5. virus particles; 6. liposomes; 7. magnetic nanoparticles; 8. prodrug activating enzymes (such as DT-diaphorase (DTD) or biphenyl hydrolase-like protein (BPHL)); 9. chemotherapeutics (such as cisplatin) or any form of nanoparticles or similar.

5 **Fusion protein of the present application**

As described herein, the "fusion protein of the present application" refers to a bifunctional fusion protein having both the anti-PD-L1 single-domain antibody described in the first aspect of the present application and an immunoregulatory molecule moiety.

In the present application, a fusion protein is provided, and the single-domain antibody 10 fusion protein has a structure as shown in formula I from N-terminal to C-terminal:

In the formula,

Z1 is the VH_H chain of the anti-PD-L1 single-domain antibody according to the second aspect of the present application;

15 Z2 is an Fc fragment of immunoglobulin;

L is a linker sequence; and

Z3 is an immunoregulatory molecule part.

Preferably, the immunoglobulin can be IgG1, IgG2, IgG3 or IgG4.

In a preferred embodiment, the immunoglobulin is IgG1, and the amino acid sequence 20 of Z2 is shown in SEQ ID NO: 99. In other embodiments, the amino acid sequence of Z2 is the same or substantially same as the amino acid sequence as shown in SEQ ID NO: 99.

In the present application, L is a flexible amino acid linker. Preferably, L has an amino acid sequence selected from the group including GGGGS, (GGGGS)₂, (GGGGS)₃, (GGGGS)₄, (GGGGS)₅, or a combination thereof.

25 In a preferred embodiment, the amino acid sequence of L is shown in SEQ ID NO: 100. In other embodiments, the amino acid sequence of L is the same or substantially same as the

amino acid sequence as shown in SEQ ID NO: 100.

5 In an embodiment of the present application, the immunoregulatory molecule is a TGF β RII extracellular domain. Preferably, the amino acid sequence of Z3 is shown in SEQ ID NO: 101. In other embodiments, the amino acid sequence of Z3 is the same or substantially same as the amino acid sequence as shown in SEQ ID NO: 101.

In the present application, the substantially same indicates that at most 50 (preferably 1-20, more preferably 1-10, more preferably 1-5, most preferably 1-3) amino acids are different, and the difference includes substitution, deletion or addition of amino acids.

10 Preferably, the substantially same indicates that the sequence identity of an amino acid sequence and a corresponding amino acid sequence is at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%.

15 In a preferred embodiment, the amino acid sequence of a single-domain antibody fusion protein is shown in SEQ ID NO: 102.

TGF β is a key inducer of Epithelial-mesenchymal-transition (EMT). At the same time, TGF β has a strong immunosuppressive effect in a tumor microenvironment, and thus has an important regulatory effect on tumor development, metastasis and drug resistance.

20 Therefore, in an embodiment of the present application, a TGF β receptor II is selected as an immunoregulatory molecule in the fusion protein. The fusion protein of the present application has the advantages of high dual target binding affinity and specificity, and thereby further enhancing the anti-tumor immune function.

Pharmaceutical composition

25 The present application also provides a composition. Preferably, the composition is a pharmaceutical composition, which contains the antibody or active fragments thereof or fusion protein thereof and a pharmaceutically acceptable carrier. Generally, these substances can be formulated in a non-toxic, inert and pharmaceutically acceptable aqueous carrier medium, wherein the pH is usually about 5-8, preferably about 6-8, although the pH can be

changed according to properties of the formulated substances and disease conditions to be treated. The formulated pharmaceutical composition can be administered by conventional routes, including (but not limited to) intratumoral administration, intraperitoneal administration, intravenous administration, or topical administration.

5 The pharmaceutical composition of the present application can be directly used to bind PD-L1 protein molecules, and thus can be used to treat tumors. In addition, other therapeutic agents can also be used at the same time.

10 The pharmaceutical composition of the present application contains a safe and effective amount (such as 0.001-99 wt%, preferably 0.01-90 wt%, more preferably 0.1-80 wt%) of the single-domain antibody (or a conjugate thereof) of the present application and a pharmaceutically acceptable carrier or excipient. Such carrier includes (but is not limited to) saline, buffer, glucose, water, glycerol, ethanol and combinations thereof. A pharmaceutical preparation should be matched with the administration mode. The pharmaceutical composition of the present application can be prepared into an injection form, for example, 15 the pharmaceutical composition is prepared by conventional methods with physiological saline or an aqueous solution containing glucose and other adjuvants. The pharmaceutical composition such as an injection and a solution should be manufactured under sterile conditions. The dosage of active ingredients is a therapeutically effective amount, such as about 10 μ g/kg body weight to about 50 mg/kg body weight per day. In addition, the 20 polypeptides of the present application can also be used with other therapeutic agents.

25 When the pharmaceutical composition is used, a safe and effective amount of the immunoconjugate is administered to a mammal, wherein the safe and effective amount is usually at least about 10 μ g/kg body weight, and in most cases not higher than about 50 mg/kg body weight. Preferably, the dosage is about 10 μ g/kg body weight to about 10 mg/kg body weight. Of course, factors such as the administration route and the health conditions of patients should also be considered for the specific dosage, which are within the skill range of a skilled physician.

Labelled single-domain antibody

In a preferred embodiment of the present application, the single-domain antibody contains a detectable marker. More preferably, the marker is selected from the following group of isotopes, colloidal gold markers, colored markers or fluorescent markers.

Colloidal gold labelling can be performed by methods known to those skilled in the art.

5 In a preferred solution of the present application, the anti-PD-L1 single-domain antibody is labelled with colloidal gold to obtain a colloidal gold labelled single-domain antibody.

The anti-PD-L1 single-domain antibody of the present application has high specificity and titer.

Detection method

10 The present application also relates to a method for detecting a PD-L1 protein. Steps of the method are generally as follows: obtaining a cell and/or tissue sample; dissolving the sample in a medium; and detecting the level of the PD-L1 protein in the dissolved sample.

15 In the detection method of the present application, the sample used is not particularly limited, and a representative example is a sample containing cells in a cell preservation solution.

Kit

20 The present application also provides a kit containing the antibody (or fragments thereof) of the present application or detection plates. In a preferred embodiment of the present application, the kit further includes a container, an instruction for use, a buffer agent or similar.

25 The present application also provides a detection kit for detecting the level of PD-L1. The kit includes an antibody for identifying the PD-L1 protein, a lysis medium for dissolving a sample and general reagents and buffers required for detection, such as various buffers, detection markers, detection substrates, or similar. The detection kit may be an in-vitro diagnostic device.

Use

As described above, the single-domain antibody of the present application has high

values in biological use and clinical use, and use of the single-domain antibody relates to the fields of diagnosis and treatment of PD-L1 related diseases, basic medical research, biological research, or similar. Preferred use is for clinical diagnosis and targeted therapy for PD-L1.

5 **The main advantages of the present application include:**

- 1) The single-domain antibody of the present application is highly specific to human PD-L1 protein with a correct spatial structure.
- 2) The single-domain antibody of the present application has high affinity.
- 3) The single-domain antibody of the present application is easy to produce.
- 10 4) The single-domain antibody can inhibit a PD-1/PD-L1 pathway on the basis of TGF- β in a targeting and tumor microenvironment, restore T cells activity, enhance immune response and more effectively improve the effect of inhibiting tumor occurrence and development.
- 5) The single-domain antibody of the present application has no apparent toxicity.

15 The present application will be further described below in conjunction with working examples. It should be understood that these working examples are only used to illustrate the present application and not to limit the scope of the present application. Experimental methods without specific conditions in the following working examples are usually carried out according to conventional conditions, such as conditions in Sambrook et al., *Molecular*
20 *Cloning: Laboratory Manual* (New York: Cold Spring Harbor Laboratory Press, 1989), or conditions recommended by manufacturers. Unless otherwise specified, percentages and parts are weight percentages and parts by weight.

Example 1: Construction of a single-domain antibody library

Animal immunity

25 1 mg of a human PD-L1 antigen and a Freund's adjuvant were mixed in equal volumes for immunizing two llamas once a week with a total of 4 times to stimulate B cells to express antigen-specific single-domain antibodies. After four times of immunization, 50 ml of llama

peripheral blood was extracted and separated with a lymphocyte separation solution to obtain lymphocytes. An RNA extraction reagent Trizol (purchased from Invitrogen) was used to extract total RNA. A cDNA synthesis kit (purchased from Invitrogen) was used for reverse transcription to obtain total llama cDNA.

5 Single-domain antibody gene amplification

In a first round of PCR, IgG2 and IgG3 sequences were amplified from cDNA:

Table 1. Primers for the first round of PCR

Name	Sequence (5' to 3')	SEQ ID
Upstream primer	GTCCTGGCTGCTCTTCTACAAGG	103
Downstream primer	GGTACGTGCTGTTGAACGTGTTCC	104

Products of the first round of PCR were subjected to agarose gel electrophoresis, and fragments at 750 bp were recovered after gel cutting and used for a second round of VHH sequence amplification. Primers for the second round of PCR amplification were as follows:

Table 2. Primers for the second round of PCR

Name	Sequence (5' to 3')	SEQ ID
Upstream primer	CTAGTGCAGGCCGcTGGAGACGGTGACCTGGGT	105
Downstream primer	CGCGGATCCCAGGTGCAGCTGCAGGAGTCTGGRGGAGG	106

Products of the second round of PCR were used as templates for a third round of PCR, homologous arms were added to a VHH gene, and primers for the third round of PCR amplification were as follows:

15 Table 3. Primers for the third round of PCR

Name	Sequence (5' to 3')	SEQ ID
Upstream primer	ATTTTTACTGCTGTTTATTGCAGCAGCATCCTCCGCATTAGCTAAAAGAGAGGGCTGAAGCACAGGTGCAGCTGCA GGAGTCTGGRGGAGG	107

Downstream primer	AGTTGTCAGTCCTGTGCCCGCCCTCCTCCCGCGCCA CCTCCGCCCGCACCTCCGCCACCACTGGAGACGGTGA CCTGGGT	108
-------------------	--	-----

The target fragments were recovered by using a PCR purification kit (purchased from QIAGEN).

Library construction

5 A linearized yeast display vector and products of the third round of PCR were mixed and electrotransformed into *saccharomyces cerevisiae* (ATCC® 20828) to construct an anti-PD-L1 single-domain antibody library from two animals, and the library size was measured to 4.47×10^7 and 4.14×10^7 .

Example 2: Screening of a PD-L1 single-domain antibody

Biotinylation of human PD-L1 protein

10 A human PD-L1 protein was dissolved in an appropriate volume of double-distilled water, and a biotin was dissolved and mixed with the protein solution according to a product instruction of a biotin labelling kit (purchased from Thermo) and then incubated at 4°C for 2 hours. A desalting column (purchased from Thermo) was used to remove excess biotin, and pretreatment by the desalting column and collection operation of a sample were both carried
15 out according to steps in the product instruction.

MACS enrichment of yeasts which specifically bind to PD-L1

20 A VHH library constructed in Example 2 was inoculated into an SD-CAA amplification culture medium (1 L of SD-CAA amplification culture medium contained 6.7 g of YNB, 5 g of casamino acids, 13.62 g of $\text{Na}_2\text{HPO}_4 \cdot 12\text{H}_2\text{O}$, 7.44 g of NaH_2PO_4 and 2% of glucose), the number of inoculated yeast cells was greater than ten times the library capacity (initial amplification concentration was 0.5 OD₆₀₀/ml), and culture was carried out overnight at 30°C and 225 rpm. Ten times the library capacity of the yeast cells were taken and centrifuged at 3000 rpm for 5 minutes (the following centrifugation operations were the same) to remove the culture medium, the yeast cells were resuspended with an SD-CAA induction culture
25 medium, the initial concentration was adjusted to be 0.5 OD₆₀₀/ml, and induction was carried

out overnight. The concentration of the library after induction was measured, and ten times the library capacity of the yeast cells were taken and centrifuged to remove the culture medium. The yeast cells were resuspended with 50 ml of a washing buffer (PBS + 0.5% BSA + 2 mM EDTA) and centrifuged to remove the supernatant. The yeast cells were resuspended 5 with 10 ml of the washing buffer.

A biotin-labelled PD-L1 protein (final concentration 100 mM) was added, incubated at room temperature for 30 minutes and centrifuged, and the yeast cells were collected and washed 3 times with 50 ml of the washing buffer. The yeast cells were resuspended with 5 ml of the washing buffer, 200 μ l of SA magnetic beads (purchased from Miltenyi) were added, 10 and the cells were incubated upside down for 10 minutes. A mixture of the yeast and magnetic beads was washed 3 times with the washing buffer and then added into an LS column (purchased from Miltenyi). The LS column was placed on a magnetic stand and washed with the washing buffer to remove non-specifically bound yeast cells. The column was removed 15 from the magnetic stand, and the washing buffer was added to elute the yeast. The eluted yeast was centrifuged and transferred into a 200 ml SD-CAA amplification culture medium for amplification.

Florescence-activated cell sorting to obtain high-affinity yeast cells

The yeast cells enriched by MACS were inoculated into an SD-CAA amplification culture medium, and the initial amplification concentration was 0.5 OD₆₀₀/ml. Shake flask 20 culture was carried out overnight at 30°C and 225 rpm. The yeast cell were resuspended with an SD-CAA induction culture medium (1L of SD-CAA induction culture medium contains 6.7 g of YNB, 5 g of casamino acids, 13.62 g of Na₂HPO₄·12H₂O, 7.44 g of NaH₂PO₄, 2% of galactose, 2% of raffinose and 0.1% of glucose), the initial concentration was 0.5 OD₆₀₀/ml, and induction was carried out overnight. An anti-c-Myc mouse-derived antibody (purchased 25 from Thermo) diluted by 1:200 and 100 nM of biotin-labelled PD-L1 antigen were added and incubated at room temperature for 10 minutes. The yeast was washed 3 times with PBS, a goat anti-mouse IgG (H+L) Alexa Fluor Plus 488 (purchased from Invitrogen) diluted by 1:500 and a streptavidin APC-conjugated fluorescent antibody (purchased from Invitrogen) were added and incubated in the dark at 4°C for 15 minutes. 2 ml of PBS was added to

resuspend the cells, and a BD FACS AriaIII instrument was used for sorting to obtain yeast which has high binding affinity to PD-L1 antigen.

Obtaining genetic sequences of PD-L1 single-domain antibody candidates

Yeast liquid with high binding ability to the PD-L1 antigen, which was obtained by
5 MACS and FACS enrichment, was cultured overnight in an SD-CAA amplification culture
medium at 30°C and 225 rpm. Yeast plasmids were extracted according to operations of a
yeast plasmid extraction kit (purchased from TIANGEN). The plasmids were transformed
into Top10 competent cells (purchased from TIANGEN) by electrotransfer, coated on an
ampicillin resistant flat plate and cultured overnight at 37°C. Single clones were taken for
10 sequencing to obtain a VHH gene sequence.

Example 3: Construction, expression and purification of a heavy chain antibody

Construction of an antibody gene into a pCDNA3.1 expression vector

A VHH gene sequence was linked to a human IgG1 (LALA mutation) Fc fragment and
digested into a linearized pCDNA3.1 vector by using a homologous recombinase (purchased
15 from Vazyme) and an *EcoR I/Not I* enzyme, and the process was carried out in accordance
with a product instruction. A homologous recombination product was transformed into
Top10 competent cells, coated on an ampicillin resistant flat plate and cultured overnight at
37°C, and single clones were taken for sequencing.

Cell transfection

20 An ExpiCHO™ expression system kit (purchased from Thermo) was used for
transferring plasmids into Expi-CHO cells, and a transfection method was in accordance with
a product instruction; after the cells were cultured for 5 days, the supernatant was collected,
and protein A magnetic beads (purchased from GenScript) were used for purifying the target
protein according to a sorting method. The magnetic beads were resuspended with an
appropriate volume of binding buffer (PBS + 0.1% Tween 20, pH 7.4) (1-4 times the volume
25 of magnetic beads) and then added into a sample to be purified, and the mixture was
incubated at room temperature for 1 hour and gently shaken during the period. The sample
was placed on a magnetic stand (purchased from Beaver), the supernatant was removed, and

the magnetic beads were washed 3 times with the binding buffer. 3-5 times the volume of the magnetic beads of an elution buffer (0.1M sodium citrate, pH 3.2) was added for shaking at room temperature for 5-10 minutes, the mixture was placed back on the magnetic stand, and the elution buffer was collected and transferred into a collection tube with an added 5 neutralization buffer (1M Tris, pH 8.54) and mixed uniformly.

Example 4: Binding of a purified anti-PD-L1 antibody to human PD-L1

A pCHO1.0 vector (purchased from Invitrogen) of human PD-L1 cDNA (purchased from Sino Biological) was cloned into MCS through transfection to produce CHO cells (CHO-hPD-L1 cells) overexpressing human PD-L1. The cell density of the CHO-hPD-L1 10 cells subjected to enlarge cultivation was adjusted to 2×10^6 cells/ml, and 100 μ l of the cells were added into each well of a 96-well flow plate and centrifuged for later use. A purified PD-L1 antibody was diluted with PBS, three times dilution was started for a total of 12 points when the concentration was 400 nM, and 100 μ l of the diluted sample was added into each 15 well of the 96-well flow plate with cells, incubated at 4°C for 30 minutes and washed twice with PBS. 100 μ l of goat F(ab')2 anti-human IgG-Fc (PE) (purchased from Abcam) diluted 100 times with PBS was added into each well, incubated at 4°C for 30 minutes and washed twice with PBS. 100 μ l of PBS was added into each well for resuspending the cells, detection was carried out on a CytoFlex (Bechman) flow cytometer, and corresponding MFI was calculated.

20 In a measuring experiment according to the method above, experimental results are shown in Figure 1, all the purified samples of the present application and the CHO-hPD-L1 cells have binding activity, and the binding activity of some purified samples was similar to that of a control antibody TECENTRIQ® (atezolizumab) (ATE; recorded in US20130034559, also known as 243.55.S70).

25 **Example 5: Affinity measurement of a PD-L1 antibody**

ForteBio affinity measurement was performed in accordance with an existing method (Estep, P et al., solution-based measurement of high-throughput antibody-antigen affinity and epitope classification, MAbs, 2013.5(2): p.270-8). In short, a sensor was equilibrated

offline in an analysis buffer for 30 minutes and then tested online for 60 seconds to establish a baseline, and a purified antibody obtained as described above was loaded online onto an AHQ sensor. Then the sensor was placed in a 100 nM PD-L1 antigen for reaction for 5 minutes and then transferred into PBS for dissociation for 5 minutes. A 1:1 combination model was used for dynamic analysis.

Table 4. Affinities of candidate molecules

Number	SEQ ID	KD(M)	Kon(1/Ms)	Koff(1/s)
C-Ye-02	14	7.98E-08	4.69E+04	3.75E-03
C-Ye-04	9	4.89E-09	1.03E+05	5.05E-04
C-Ye-06	19	1.34E-07	4.35E+04	5.81E-03
C-Ye-17	34	3.96E-07	2.58E+04	1.02E-02
C-Ye-18	4	5.39E-09	8.33E+04	4.49E-04
C-Ye-20	39	4.86E-08	9.06E+04	4.40E-03
C-Ye-24	44	1.95E-08	7.71E+04	1.51E-03
C-Ye-26	49	3.41E-08	9.41E+04	3.21E-03
C-Ye-27	54	5.79E-08	5.45E+04	3.15E-03
C-Ye-30	59	3.94E-08	5.32E+04	2.10E-03
C-Ye-32	64	4.43E-08	5.83E+04	2.58E-03
C-Ye-34	69	2.44E-08	7.81E+04	1.91E-03
C-Ye-39	74	5.03E-07	2.12E+04	1.07E-02
C-Ye-42	79	3.89E-08	5.70E+04	2.22E-03

Example 6: Gene modification of a PD-L1 antibody

In order to remove potential glycosylation sites in C-Ye-18, a CDRH2 portion of an amino acid sequence of C-Ye-18 was point-mutated into 6 forms in Table 5:

10

Table 5. Mutant sequences of C-Ye-18 CDR region

Number	SEQ ID	CDRH2 region
C-Ye-18	2	SINSSSSSTYYRDSVKG
C-Ye-18-1	81	SINSGSSSTYYRDSVKG

C-Ye-18-2	84	SISSSSSTYYRDSVKG
C-Ye-18-3	87	SIGSSSSSTYYRDSVKG
C-Ye-18-4	90	SIYSGSSSTYYRDSVKG
C-Ye-18-5	93	SINSDSSSTYYRDSVKG
C-Ye-18-6	96	SINSGSSSTYYRDSVKG

In this study, IMGT (<http://www.imgt.org>) was used to evaluate the humanization level of mutant sequences of C-Ye-18 CDR regions, results are shown in Table 6, the humanization level of all C-Ye-18 mutants was higher than 87%, and the requirements of later drug development are met.

5

Table 6. Homology of mutant sequences of C-Ye-18 CDR regions and human

Number	Germline	Homology
C-Ye-18	IGHV3-74*01	87.80%
C-Ye-18-1	IGHV3-74*01	88.80%
C-Ye-18-2	IGHV3-74*01	87.80%
C-Ye-18-3	IGHV3-74*01	87.80%
C-Ye-18-4	IGHV3-74*01	87.80%
C-Ye-18-5	IGHV3-74*01	87.80%
C-Ye-18-6	IGHV3-74*01	87.80%

A protein construction and expression purification method was the same as that in Example 3, and the purity of an obtained protein was detected by HPLC. According to the HPLC method, the mobile phase was 150 mM Na₂HPO₄·12H₂O, and the pH was 7.0. Chromatographic conditions: detection wavelength 280 nm, column temperature 25°C, flow rate 0.35 ml/min, detection time 20 minutes, and a Zenix-C SEC-300 chromatographic column (SEPAK 4.6 × 300 mm, 3 μm).

10

Table 7. Purity detection results of C-Ye-10 mutant antibodies

Number	Monomer ratio (%)
C-Ye-18	90.70
C-Ye-18-1	97.40

C-Ye-18-2	96.40
C-Ye-18-3	98.50
C-Ye-18-4	73.70
C-Ye-18-5	83.00
C-Ye-18-6	95.80

Example 7: Binding of C-Ye-18 mutant samples to human PD-L1

This experiment detected the binding activity of the purified C-Ye-18 mutant samples and CHO-hPD-L1 cells. The experimental method was the same as that in Example 4. Experimental results are in Figure 2. The C-Ye-18 mutant samples and CHO-hPD-L1 cells have good binding activity, and the level was comparable to that of C-Ye-18 and a control antibody ATE.

Example 8: Affinity measurement of C-Ye-18 mutant samples

This experiment detected the binding affinity of the purified C-Ye-18 mutant samples and human PD-L1. The experimental method was the same as that in Example 5. Experimental results are shown in Table 8. The C-Ye-18 mutant samples have very good binding activity with the human PD-L1 protein.

Table 8. Affinity of C-Ye-18 mutant samples

Number	KD(M)	kon(1/Ms)	kdis(1/s)
C-Ye-18-1	4.13E-09	2.46E+05	1.02E-03
C-Ye-18-2	5.41E-09	2.34E+05	1.27E-03
C-Ye-18-3	7.03E-09	2.41E+05	1.70E-03
C-Ye-18-4	6.40E-09	2.41E+05	1.54E-03
C-Ye-18-5	4.08E-09	2.72E+05	1.11E-03
C-Ye-18-6	6.00E-09	2.32E+05	1.39E-03

Example 9: Blocking of binding of PD-L1 to PD-1 by C-Ye-18 mutant samples

A pCHO1.0 vector (purchased from Invitrogen) of human PD-L1 cDNA (purchased from Sino Biological) was cloned into MCS through transfection to produce CHO cells

(CHO-hPD -1 cells) overexpressing human PD-L1. The cell density of the CHO-hPD-1 cells subjected to enlarge cultivation was adjusted to 2×10^6 cells/ml, and 100 μ l of the cells were added into each well of a 96-well flow plate and centrifuged for later use. Purified mutant samples were diluted with PBS, three times dilution was started for a total of 12 points when 5 the concentration was 400 nM, 60 μ l of a diluted sample was added into each well of a 96-well sample dilution plate, 60 μ l of biotinylated human PD-L1 protein (purchased from AcroBiosystems) was added into each well at the same time, the final concentration was 500 ng/ml, and the mutant samples were incubated at 4°C for 30 minutes. 100 μ l of a co- 10 incubation sample was added into each well of the 96-well flow plate with cells, incubated at 4°C for 30 minutes and washed twice with PBS. 100 μ l of a Streptavidin, R-Phycoerythrin Conjugate (purchased from Thermo Fisher) diluted 100 times with PBS was added into each well, incubated at 4°C for 30 minutes and washed twice with PBS. 100 μ l of PBS was added into each well for resuspending the cells, detection was carried out on a CytoFlex (Beckman) flow cytometer, and corresponding MFI was calculated.

15 In a measuring experiment according to the method above, experimental results are shown in Figure 3, all the mutant samples of the present application can block the binding of PD-L1 to PD-1, and the blocking level was comparable to that of C-Ye-18 and a control antibody ATE.

Example 10: Thermal stability of C-Ye-18 mutant samples

20 DSC (Differential scanning calorimetry) was used to detect the thermal stability of different antibodies. The samples were concentrated and then diluted with PBS to 1 mg/ml, and a 5000 \times fluorescent color developing agent Cyro Orange (purchased from Bio-Rad) was diluted 50 times with ultrapure water to obtain a 100 \times fluorescent color developing agent 25 Sypro Orange. 50 μ l of each 1mg/ml sample was taken, 10 μ l of the 100 \times fluorescent color developing agent Sypro Orange and 40 μ l of ultrapure water were added and mixed uniformly, 30 μ l of each was add into a 96-well PCR plate, and each sample was added into three replicated wells and placed into a PCR instrument. A temperature-raising program was set as follows: the constant temperature of 25°C was hold for 5 minutes, and the temperature was raised to 99°C at a speed of 0.5°C/min. After the program ends, the temperature values

of the lowest points of curves in a "Melt Curve" diagram were read, namely the Tm value of the sample. Specific results are shown in the following Table 9.

Table 9. Tm values of C-Ye-18 mutants

Number	Tm1(°C)	Tm2(°C)	Tm3(°C)
C-Ye-18	53.5	67.5	82
C-Ye-18-1	60	67.5	82
C-Ye-18-2	62.5	67.5	82
C-Ye-18-3	58	67	82
C-Ye-18-4	48	66	82
C-Ye-18-5	66	66-67	82.5
C-Ye-18-6	63	67.5	82

Example 11: A mixed lymphocyte reaction experiment

5 In the present Example, a mixed lymphocyte reaction experiment (MLR) was used to detect the activity of C-Ye-18 mutant samples to activate T cells. A specific experimental method was as follows.

PBMC cells (purchased from SAILY BIO, SLB-HPB) were resuscitated, centrifuged, resuspended with 10 ml of an X-VIVO-15 culture medium (purchased from LONZA) and 10 subjected to adherent culture in a cell incubator at 37°C for 2 hours, and nonadherent cells were removed. 10 ml of a DC culture medium was added, 10 ng/ml GM-CSF (purchased from R&D) and 20 ng/ml IL-4 were added into an X-VIVO-15 culture medium for culture for 3 days, 5 ml of the DC culture medium was added, the cells were continuously cultured for 6 days, a DC mature culture medium was added, 1000 U/ml TNF- α (purchased from 15 R&D), 10 ng/ml IL-6 (purchased from R&D), 5 ng/ml IL-1 β (purchased from R&D) and 1 μ M PGE2 (purchased from Tocris) were added into the X-VIVO-15 culture medium, the cells were cultured for 2 days, mature DC cells were collected, and the cell density was adjusted to be 2×10^5 cells/ml with the X-VIVO-15 culture medium.

PBMC cells (purchased from SAILY BIO, SLB-HPB) from another donor were thawed, 20 centrifuged and resuspended with 10 ml of the X-VIVO-15 culture medium. CD4 $^+$ T cells

were enriched with a CD4⁺ T cell sorting kit (purchased from Stemcell) and resuspended with X-VIVO-15, the cell density was adjusted to be 2×10^6 cells/ml, the CD4⁺ T cells were mixed with the collected mature DC cells at a ratio of 1:1, and 100 μ l of a mixture was added into each well of a 96-well U-shaped bottom plate.

5 The C-Ye-18 mutant samples were diluted with the X-VIVO-15 culture medium, three times dilution was started for a total of 9 points when the concentration was 200 nM, 100 μ l of the mixed cells were added into each well and cultured for 5 days, the supernatant was collected, and an ELISA (purchased from eBioscience) method was used to detect the expression amount of IFN- γ and IL2.

10 Results are shown in Figure 4, the C-Ye-18 mutant samples, C-Ye-18-1, C-Ye-18-5 and C-Ye-18-6 all show relatively good biological activity in the MLR experiment, and the activation level was similar to or superior to that of a control antibody ATE.

Example 12 Cloning and expression of a fusion protein PD-L1/TGF β RII

15 In the present Example, a TGF β RII extracellular domain (SEQ ID NO: 101) was used as an immunoregulatory molecule moiety of a fusion protein, and a PD-L1 antibody (human IgG1 Fc, LALA mutation) (C-Ye-18-5, SEQ ID: 94) was used as a targeting moiety of the fusion protein to form a PD-L1 antibody/TGF β RII extracellular region fusion protein (PM8001, SEQ ID: 102).

20 According to a molecular cloning technology, a C-terminal amino acid of a PD-L1 single-chain antibody of the present application was linked to the TGF β RII extracellular region through (G₄S)₄G and routinely expressed through an Expi-CHO expression system. An expression and purification method was the same as that in Example 3, and a fusion protein PM8001 with the structure as shown in Figure 5 was obtained.

Example 13 Binding of a PM8001 molecule to human PD-L1

25 A method for detecting the binding activity of a purified PD-L1 antibody (C-Ye-18-5, SEQ ID: 94), a PM8001 molecule, a TGF- β R2-Fc fusion protein, a positive control M7824 (WO2015/118175 A2) and a negative control IgG protein to PD-L1 on a cell surface was the same as that in Example 4. In a measuring experiment according to the method above,

experimental results are shown in Figure 6, the PM8001 molecule of the present application and the CHO-hPD-L1 cells have binding activity, and the binding activity was similar to that of the positive control molecule M7824.

5 **Example 14 Blocking of binding of PD-L1 protein to PD-1 cells by a PM8001 molecule**

A method for detecting blocking of the binding activity of PD-L1 protein to PD-1 cells by a purified PD-L1 antibody (C-Ye-18-5), a PM8001 molecule, a TGF- β R2-Fc fusion protein, a positive control M7824 and a negative control IgG protein was the same as that in Example 9. In a measuring experiment according to the method above, experimental results 10 are shown in Figure 7, the PM8001 molecule of the present application can block the binding of PD-L1 protein to PD-1 cells, and the blocking level was comparable to that of the positive control molecule M7824.

15 **Example 15 An ELISA level binding experiment of a PM8001 molecule and human TGF- β family protein**

Human TGF- β 1 (acrobiosystems, TG1-H421), TGF- β 2 (PeproTech, 100-35B) and TGF- β 3 (PeproTech, 100-36E) protein were diluted with an ELISA coating solution and then added into an ELISA plate for coating overnight at 4°C. The coating solution was removed, 250 μ l of PBST was added into each well for washing 3 times, and the ELISA plate was blocked with 5% BSA for 1 hour at room temperature for later use. A purified PD-L1 20 antibody (C-Ye-18-5), a PM8001 molecule, a TGF- β R2-Fc fusion protein and a positive control M7824 were subjected to gradient dilution and then added into the blocked ELISA plate for incubation at room temperature for 2 hours. PBST was added for washing 3 times, goat anti-human Fc-HRP (abcam, ab97225) was added into each well for incubation at room 25 temperature for 1 hour, after PBST was added for washing 3 times, an ELISA color developing solution was added and placed at room temperature for 3 minutes, an ELISA termination solution was added, and a value of absorbance at 450 nm was read.

In a measuring experiment according to the method above, experimental results are shown in Figure 8, the PM8001 molecule of the present application has relatively good

binding to human TGF- β 1 and TGF- β 3 proteins at the ELISA level and relatively weak binding activity to human TGF- β 2 protein, and the binding level was comparable to that of the positive control molecule M7824.

5 **Example 16 An experiment of a PM8001 molecule in blocking a TGF- β /SMAD signal pathway**

An appropriate amount of 293-TGF- β /SMAD effector cells were taken, inoculated on a 96-well cell culture white bottom plate and placed in an incubator with 5% CO₂ for culture overnight at 37°C. A purified PD-L1 antibody (C-Ye-18-5), a PM8001 molecule, a TGF- β R2-Fc fusion protein and a positive control M7824 were subjected to gradient dilution, 10 mixed with TGF- β 1 (Acro Biosystems, TG1-H421) and incubated at room temperature for 30 minutes. The mixture above was added into the white bottom plate with cells for continuous culture overnight. A Bio-Glo TM reagent (Promega) was added into each hole, and a multifunctional microplate reader was used to read a fluorescence signal value.

15 In a measuring experiment according to the method above, experimental results are shown in Figure 9, the PM8001 molecule of the present application can block a TGF- β /SMAD signal pathway *in vitro*, and the blocking level was comparable to that of the positive control molecule M7824.

Example 17 A mixed lymphocyte reaction experiment

20 A method of using mixed lymphocytes to detect a purified PD-L1 antibody (C-Ye-18-5), a PM8001 molecule, a TGF- β R2-Fc fusion protein, a positive control M7824 and a negative control IgG protein in activation of human T lymphocytes was the same as that in Example 9. Results are shown in Figure 10, the PM8001 molecule of the present application shows relatively good biological activity in an MLR experiment, and the activation level was comparable to or superior to that of the positive control molecule M7824.

25 **Example 18 Pharmacokinetic evaluation of PM8001 in mice**

Six SD mice including half male and half female were used in an experiment, light and dark adjustment was carried out every 12 hours, the temperature was 24+/-2°C, the humidity was 40-70%, and the mice drank water and had a diet freely. The mice were purchased from

Zhejiang Weitong Lihua Experimental Technology Co., Ltd. On the day of the experiment, a PM8001 molecule was injected into the tail veins of the SD mice once at a dosage of 10 mg/Kg.

Blood collection time points: blood was collected from the jugular veins of the mice 5 minutes, 4 hours, 10 hours, 24 hours, 48 hours, 72 hours, 120 hours, 168 hours, 240 hours, 336 hours, 504 hours and 672 hours after administration. A whole blood sample was placed at 2-8°C for 30 minutes and centrifuged at 12000 rpm for 5 minutes, serum was collected and centrifuged at 12000 rpm for 5 minutes at 2-8°C and stored at -80°C, and the molecular weight of free PM8001 in the serum was detected by ELISA. Results are shown in Table 10. 10 The free state molecule of PM8001 of the present application has a half-life of about 146 hours in the SD mice.

Table 10. T1/2 of PM8001 in SD mice

Test drug	Mode of administration	T1/2
PM8001	IV	146 hours

Example 19 Study on the tumor suppression activity of PM8001

In this experiment, MC38 cells (h-PD-L1 KI MC38) expressing human PD-L1 were used 15 for determining the anti-tumor effect of PM8001 in PD-L1 transgenic mice. Firstly, an h-PD-L1 KI MC38 tumor-bearing mouse model was established by subcutaneous inoculation. Grouping was carried out when the average tumor volume was 80-120 mm³, the mice were given with different antibodies and different dosages of treatment during single 20 intraperitoneal injection, the tumor volumes and body weight changes of the mice of each group were monitored twice every week for a total of three weeks, the dosage and mode of administration are shown in Table 11, and the tumor volume changes of the mice are shown in Figure 11.

Table 11. An experimental scheme of the tumor suppression activity of PM8001

Group	Administration Dosage	Administration volume	Administration concentration
Negative control	N/A	10 ml/kg	N/A

M7824	24 mg/kg	10 ml/kg	2.4 mg/ml
PM8001	14.7 mg/kg	10 ml/kg	1.47 mg/ml
C-Ye-18-5	10 mg/kg	10 ml/kg	1 mg/ml
TGF- β R II-Fc	10 mg/kg	10 ml/kg	1 mg/ml
C-Ye-18-5+TGF- β R II-Fc	10 mg/kg + 10 mg/kg	10 ml/kg + 10 ml/kg	1 mg/ml + 1 mg/ml

Experimental results are shown in Figure 11. After inoculation with h-PD-L1 KI MC38, the tumor volume of the negative control group was continuously increased, the tumor growth of the TGF- β R II-Fc and C-Ye-18-5 single-use groups was inhibited, while the PM8001 group has better control of tumor growth than the TGF- β R II-Fc and C-Ye-18-5 groups, indicating that PM8001 has a significant tumor suppression efficacy, which was comparable to or even slightly superior to that of the positive control group.

Example 20 Identification of the crystal structure of a complex of PD-L1 and a single-domain antibody VHH fragment

In this experiment, an X-ray diffraction method was adopted for identifying the crystal structure of a complex of PD-L1 and a single-domain antibody VHH fragment. A human-derived PD-L1-His tag (SEQ ID: 109) was expressed by an Escherichia coli prokaryotic system. A PD-L1 single-domain antibody fusion protein (SEQ ID: 110) was expressed by a CHO system. The PD-L1 single-domain antibody fusion protein was digested and purified with an IdeS enzyme followed by a GingisKHAN enzyme, and finally a PD-L1 single-domain antibody VHH (SEQ ID: 111) was obtained. PD-L1 and VHH were mixed at a molar ratio of 1:1 to prepare a complex sample for crystallization. The purified complex was digested with carboxypeptidase B to remove the His tag of PD-L1. The complex (7.5 mg/mL) was mixed with a crystallization reagent at a ratio of 1:1 and subjected to crystal culture at 18°C. Three days later, crystals were observed under INT kit culture conditions, and the crystal morphology is shown in Figure 12.

A single crystal was selected for an X-ray diffraction experiment at Shanghai Light Source, and diffraction data with a resolution of 1.6 Å was obtained. XDS software was used for data processing. A molecular replacement method was adopted for crystal phase

identification with PD-L1 (PDB ID: 5jds) and VHH (PDB ID: 5m2j) structures as models respectively. Refmac5 was used for refining the crystal structure. COOT was used for model detection, manual reconstruction and structural verification. The complex crystal belongs to a P21 space group, and the crystal cell parameters are: a=34.62 Å, b=97.99 Å, c=67.52 Å, 5 $\alpha=90.00^\circ$, $\beta=90.02^\circ$, $\gamma=90.00^\circ$.

The crystal structure of the PD-L1-VHH complex obtained after structural analysis is shown in Figure 13. Epitope analysis shows that a main hydrogen-bond interaction between PD-L1 and VHH is concentrated on Tyr56, Asn63, His69, Asp73, Lys75, Ser117, Gly119, Ala121 and other amino acids on PD-L1 (Figure 14). In addition, Tyr56, His69 and Tyr123 10 on PD-L1 and Tyr32, Trp33, Tyr35, Leu45, Trp47, Pro100 and Tyr103 on VHH constitute a hydrophobic interaction interface (Figure 15).

Example 21 The growth inhibition effect of a PM8001 injection on an h-PD-L1 knock-in MC38 model inoculated subcutaneously in h-PD-L1 knock-in C57BL/6 mice

In this study, the *in-vivo* anti-tumor effect of PM8001 (SEQ ID: 102) administered 15 through intraperitoneal injection on an h-PD-L1 knock-in MC38 mouse colon cancer tumor-bearing model inoculated subcutaneously in h-PD-L1 knock-in C57BL/6 mice, and the safety in h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors were investigated.

In this study, the h-PD-L1 knock-in MC38 subcutaneous tumor-bearing model was 20 established by subcutaneously inoculating h-PD-L1 knock-in MC38 mouse colon cancer cells into h-PD-L1 knock-in C57BL/6 mice (purchased from GemPharmatech Co, Ltd). Ten days after inoculation, the mice were divided into 5 groups (6 mice per group) according to the tumor volume and subjected to intraperitoneal injection of PBS, 14.7 mg/kg PM8001, 10 mg/kg PM8001-NSD (anti-human PD-L1 VHH), 10 mg/kg PM8001-TGF- β RII and 24.6 25 mg/kg M7824 (the corresponding molar dosages of the above administration groups were the same) respectively, and administration was carried out twice at an interval of three days. The anti-tumor effect and the safety in the tumor-bearing mice of PM8001, PM8001-NSD, PM8001-TGF- β RII and M7824 were investigated.

Figure 16 shows the effect of different drug groups on the tumor volume of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors. Figure 17 shows tumor pictures of different drug groups 27 days after inoculation. The tumors of the mice in a negative control PBS group grow rapidly, the tumor volume reaches 1500 mm³ or above 27 days after inoculation (namely, the 17th day after administration), and it indicates that the tumor model in this experiment was successfully established. Compared with the negative control PBS group, the same molar dosage of PM8001, PM8001-NSD, PM8001-TGF- β RII and M7824 can inhibit tumor growth to different degrees, and TGI of the above groups on the 17th day after administration were 80%, 72%, 15% and 53% respectively; the PM8001 injection group has a higher tumor growth inhibition effect than that of PM8001-NSD, PM8001-TGF- β R II and a similar molecular group M7824. At the end of the experiment, the tumors were taken and weighed. The tumor weight in the PM8001 injection group was lower than that of PM8001-NSD, PM8001-TGF- β R II and the similar molecular group M7824. Figure 18 shows the effect of each group of drugs on tumor weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

Figure 19 shows the effect of different drug groups on body weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors. There was no abnormality in the state of the mice in each group; compared with the control group, the body weight of the mice in each administration group was not significantly reduced; at the end of the experiment, the gross anatomy of the mice in each group shows no apparent lesions in main organs, and it indicates that the used administration dosages of drugs in each group in this experiment show no apparent toxicity to the mice.

Example 22 The growth inhibition effect of different dosages of PM8001 on an h-PD-L1 knock-in MC38 model inoculated subcutaneously in h-PD-L1 knock-in C57BL/6 mice

In this study, the *in vivo* anti-tumor effect of three different dosages of PM8001 injections on an h-PD-L1 knock-in MC38 mouse colon cancer tumor-bearing model inoculated subcutaneously in h-PD-L1 knock-in C57BL/6 mice (purchased from GemPharmatech Co, Ltd), and the safety in h-PD-L1 knock-in mice implanted with h-PD-

L1 knock-in MC38 tumors were investigated.

In this study, the h-PD-L1 knock-in MC38 subcutaneous tumor-bearing model was established by subcutaneously inoculating h-PD-L1 knock-in MC38 mouse colon cancer cells into h-PD-L1 knock-in C57BL/6 mice, and this model can be used to evaluate the anti-tumor effect related to action mechanisms of test products and safety characteristics in a disease state. Seven days after inoculation, the mice were divided into 5 groups (6 mice in each group) according to the tumor volume and administered with single intraperitoneal injection of PBS, different dosages (0.3, 2.1, 14.7 mg/kg) of the PM8001 injection or 24.6 mg/kg M7824 respectively. The anti-tumor effect of different dosages of PM8001 and the safety in tumor-bearing mice were investigated and compared with the similar molecule M7824.

Figure 20 shows the effect of different drug groups on tumor volume of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors. Figure 21 shows tumor pictures of different drug groups 28 days after inoculation. The tumors of the mice in a negative control PBS group grow rapidly, the tumor volume reaches 1300 mm³ or above 28 days after inoculation, and it indicates that the tumor model in this experiment was successfully established. Compared with the negative control PBS group, PM8001 can inhibit tumor growth in a dosage-dependent manner. TGIs at low, medium and high dosages of PM8001 were 31%, 76% and 93% respectively; at the same molar dosage, the tumor growth inhibition effect of the PM8001 group (14.6 mg /kg) was higher than that of the similar molecule M7824 group (24.6 mg/kg). At the end of the experiment, tumors were taken and weighed. PM8001 can reduce tumor weight in a dosage-dependent manner. At the same molar dosage, the tumor inhibition rate of the PM8001 group (14.6 mg/kg) was higher than that of the similar molecule M7824 group (24.6 mg/kg). Figure 22 shows the effect of each group of drugs on tumor weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors.

Figure 23 shows the effect of different drug groups on body weight of h-PD-L1 knock-in mice implanted with h-PD-L1 knock-in MC38 tumors. There was no abnormality in the state of the mice in each group; compared with the control group, the body weight of the mice in each administration group was not significantly reduced; at the end of the experiment,

the gross anatomy of the mice in each group shows no apparent lesions in main organs, and it indicates that the used administration dosages of drugs in each group in this experiment show no apparent toxicity to the mice.

All documents mentioned in the present application are cited as references in the present
5 application, as if each document was individually cited as a reference. In addition, it should be understood that after reading the above teaching content of the present application, those skilled in the art can make various changes or modifications to the present application, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

10

Sequence information of the present application**SEQ ID NO: 1 C-Ye-18 CDR1 amino acid sequence**

GFTFSSYWMY

5

SEQ ID NO: 2 C-Ye-18 CDR2 amino acid sequence

SINSSSSSTYYRDSVKKG

SEQ ID NO: 3 C-Ye-18 CDR3 amino acid sequence

10 AKDPGGYA

SEQ ID NO: 4 C-Ye-18 VHH amino acid sequenceEVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINSSS
15 SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSS**SEQ ID NO: 5 C-Ye-18 VHH nucleotide sequence**GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTCACCTCAGTAGCTACTGGATGTATTG
20 GCTCCGTCAAGGCTCCAGGGAAGGGGCTCGAGTGGGTCTCATCTATTAAATAGTA
GTAGTAGTACGACATACTATCGAGACTCCGTGAAGGGCCGATTACCACATCTCC
AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

25

SEQ ID NO: 6 C-Ye-04 CDR1 amino acid sequence

SGFTFSSYWMY

SEQ ID NO: 7 C-Ye-04 CDR2 amino acid sequence

30 SINTSSSTYYRDSVKKG

SEQ ID NO: 8 C-Ye-04 CDR3 amino acid sequence

AKDPGGYA

SEQ ID NO: 9 C-Ye-04 VHH amino acid sequence

QVQLQESGGGLVQPGGLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINTSS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
5 QVTVSS

SEQ ID NO: 10 C-Ye-04 VHH nucleotide sequence

CAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
10 GCTCCGTCAAGGCTCCAGGGAAAGGGGCTCGAGTGGGTCTCATCTATTAACTA
GTAGTAGTAGCACATACTATCGAGACTCCGTGAAGGGCCGATTCACCATCTCC
AGAGACAAACGCCAAGAACACGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

15

SEQ ID NO: 11 C-Ye-02 CDR1 amino acid sequence

GRTFNNSAMGAMG

SEQ ID NO: 12 C-Ye-02 CDR2 amino acid sequence

20 TITWSSGSSFYANSVKG

SEQ ID NO: 13 C-Ye-02 CDR3 amino acid sequence

ASRKLGGVVTVVTSYDF

25

SEQ ID NO: 14 C-Ye-02 VHH amino acid sequence

QVQLQESGGGLVQAGGLRLSCAASGRTFNNSAMGAMGWFRQAPGKEREVATI
TWSSGSSFYANSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCASRKLGGVVT
VVTSYDFWGQGTQTVVSS

30

SEQ ID NO: 15 C-Ye-02 VHH nucleotide sequence

CAGGTGCAGCTGCAGGAGTCTGGGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCACCTCAATAACTCGGCCATGGCGC
CATGGGATGGTCCGCCAGGCGCCAGGGAAAGAGCGTGAGTTGTCGCGACAA
TTACCTGGAGTAGTGGTAGCTCATTATGCAAACCTCCGTGAAGGGCCGATTCA
35 CCATCTCCAGAGAACGCCAAGAACACGGTGTATCTGCAAATGAACAGCCTG
AACCTGAGGACACGGCGTTATTACTGTGCATCACGCAAATTGGGAGGGGT

TGTAACGGTAGTTACTCGTATGACTTCTGGGCCAGGGACCCAGGTACCGT
CTCCAGT

SEQ ID NO: 16 C-Ye-06 CDR1 amino acid sequence

5 GRTFDNYAMGAMG

SEQ ID NO: 17 C-Ye-06 CDR2 amino acid sequence

TITWSSGSSFYANSVKG

10 **SEQ ID NO: 18 C-Ye-06 CDR3 amino acid sequence**

ASRKLGGVVTVVTSYDF

SEQ ID NO: 19 C-Ye-06 VH_H amino acid sequence

15 QVQLQESGGGLVQPGGSLRLSCAASGRTFDNYAMGAMGWFRQAPGKEREVATI
TWSSGSSFYANSVKGRFTISRDNAKNTVYLQMNSLKPPDTAVYYCASKLGGVVT
VVTSYDFWGQGTQVTVSS

SEQ ID NO: 20 C-Ye-06 VH_H nucleotide sequence

20 CAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGGTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCACCTCGATAACTATGCCATGGCGC
CATGGGATGGTTCCGCCAGGCGCCAGGGAAAGAGCGTGAGTTGTCGCGACAA
TTACCTGGAGTAGTGGTAGCTCATTATGCAAACCTCCGTGAAGGGCCGATTCA
CCATCTCCAGAGACAAACGCCAAGAACACCGGTATCTGCAAATGAACAGCCTG
AAACCTGACGACACGGCCTTATTACTGTGCATCACGCAAATTGGGAGGGT
25 TGTAACGGTAGTTACTCGTATGACTTCTGGGCCAGGGACCCAGGTACCGT
CTCCAGT

SEQ ID NO: 21 C-Ye-09 CDR1 amino acid sequence

GRTFSTYAVG

30

SEQ ID NO: 22 C-Ye-09 CDR2 amino acid sequence

GRLTWGSRTYYADSVKG

SEQ ID NO: 23 C-Ye-09 CDR3 amino acid sequence

AADYRSNSTWSLQSPARYEN

SEQ ID NO: 24 C-Ye-09 VHH amino acid sequence

5 QVQLQESGGGLVQAGDSLGLSCTASGRTFSTYAVGWFRQAPGKGREFVGRLTWS
GSRTYYADSVKGRFTISRDNAKNTVYLQMNSLRPEDTAVYYCAADYRSNSTWSL
QSPARYENWGQGTQTVSS

SEQ ID NO: 25 C-Ye-09 VHH nucleotide sequence

10 CAGGTGCAGCTGCAGGAGTCTGGGGAGGATTGGTGCAGGCTGGGGACTCTCT
GGGACTCTCCTGTACAGCCTCTGGACGCACCTTCAGTACCTATGCCGTGGGGTG
GTTCCGCCAGGCTCCAGGGAAGGGCGTGAATTGTAGGACGTCTTACATGGA
GCGGGAGTAGAACATACTATGCAGACTCCGTGAAGGGCCGATTACCATCTCC
15 AGAGACAAACGCCAAGAACACGGTGTATCTGCAAATGAACAGCCTGAGACCTGA
GGACACGGCCGTTATTACTGTGCAGCCACTACCGAAGTAACAGTACCTGGT
CCCTGCAAAGCCCAGCAGTTATGAAAATTGGGCCAGGGACCCAGGTCAAC
GTCTCCAGT

SEQ ID NO: 26 C-Ye-10 CDR1 amino acid sequence

GRTVSNYAMG

20

SEQ ID NO: 27 C-Ye-10 CDR2 amino acid sequence

RITGSGSSTFYADSVKG

SEQ ID NO: 28 C-Ye-10 CDR3 amino acid sequence

25 AADRWRSMDVTRSDPREYEN

SEQ ID NO: 29 C-Ye-10 VHH amino acid sequence

30 QVQLQESGGGLVQAGGSLRLSCVASGRTVSNYAMGWFRQAPGKEREVARITGS
GSSTFYADSVKGRFTISRNLLSNTVYLQMNSLKREDTAVYYCAADRWRSMDVTR
DPREYENWGQGTQTVSS

SEQ ID NO: 30 C-Ye-10 VHH nucleotide sequence

35 CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGTAGCCTCTGGACGCACCGTCAGTAACATGCCATGGGCTG
GTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTGTAGCACGGATTACCGGGA

GTGGTAGTAGCACATTCTATGCAGACTCCGTGAAGGGCCGATTACCATCTCCA
GAAACAACCTGTCGAACACGGTGTATCTGCAGATGAACAGCCTGAAACGTGAG
GACACGGCCGTTATTACTGTGCAGCAGATCGCTGGCGTTCAATGGTGACTAGA
TCTGACCCGAGGGAGTATGAGAACTGGGCCAGGGACCCAGGTACCGTCTC
5 CAGT

SEQ ID NO: 31 C-Ye-17 CDR1 amino acid sequence

GRTVSNYAMG

10 **SEQ ID NO: 32 C-Ye-17 CDR2 amino acid sequence**

RITGSGSSTFYADSVKG

SEQ ID NO: 33 C-Ye-17 CDR3 amino acid sequence

AADRWRSMVTRSDPREYEN

15

SEQ ID NO: 34 C-Ye-17 VH_H amino acid sequence

QVQLQESGGGLVQAGGSLRLSCVASGRTVSNYAMGWFRQAPGKEREVARITGS
GSSTFYADSVKGLFTISRNNLSNTVYLQMNSLKREDTAVYYCAADRWRSMVTRSD
PREYENWGQGTQVTVSS

20

SEQ ID NO: 35 C-Ye-17 VH_H nucleotide sequence

CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGTAGCCTCTGGACGCACCGTCAGTAACTATGCCATGGGCTG
GTTCCGCCAGGCTCCAGGGAGGAGCGTGAGTTGTAGCACGGATTACCGGGA
25 GTGGTAGTAGCACATTCTATGCAGACTCCGTGAAGGGCCTATTACCATCTCCA
GAAACAACCTGTCGAACACGGTGTATCTGCAGATGAACAGCCTGAAACGTGAG
GACACGGCCGTTATTACTGTGCAGCAGATCGCTGGCGTTCAATGGTGACTAGA
TCTGACCCGAGGGAGTATGAGAACTGGGCCAGGGACCCAGGTACCGTCTC
CAGT

30

SEQ ID NO: 36 C-Ye-20 CDR1 amino acid sequence

GRTVSNYAMG

SEQ ID NO: 37 C-Ye-20 CDR2 amino acid sequence

35 RITGSGSSTFYADSVKG

SEQ ID NO: 38 C-Ye-20 CDR3 amino acid sequence

AADRWRSMVTRSYPREYEN

5 **SEQ ID NO: 39 C-Ye-20 VHH amino acid sequence**

QVQLQESGGGLVQAGGSLRLSCVASGRTVSNYAMGWFRQAPGKEREVARITGS
GSSTFYADSVKGRFTISRDNAKNAVYLQMNSLKPEDTAVYYCAADRWRSMVTRS
YPREYENWGQGTQTVSS

10 **SEQ ID NO: 40 C-Ye-20 VHH nucleotide sequence**

CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGTAGCCTCTGGACGCACCGTCAGTAATGCCATGGGCTG
GTTCCGCCAGGCTCCAGGGAGGAGCGTGAGTTGTAGCACGGATTACCGGGA
GTGGTAGTAGCACATTCTATGCAGACTCCGTGAAGGGCCATTACCATCTCCA
15 GAGACAACGCCAAGAACGCGGTGTATCTGCAAATGAACAGCCTGAAACCTGAG
GACACGGCCGTTATTACTGTGCAGCAGATCGCTGGCGTTCAATGGTGACTAGA
TCTTACCCGAGGGAGTATGAGAACTGGGCCAGGGACCCAGGTACCGTCTC
CAGT

20 **SEQ ID NO: 41 C-Ye-24 CDR1 amino acid sequence**

GRTVSNYAMG

SEQ ID NO: 42 C-Ye-24 CDR2 amino acid sequence

RITGSGRTYYADSVKG

25

SEQ ID NO: 43 C-Ye-24 CDR3 amino acid sequence

AADRWRSMVTRSDPREYEN

SEQ ID NO: 44 C-Ye-24 VHH amino acid sequence

30 QVQLQESGGGVVQAGDSLRLSCVASGRTVSNYAMGWFRQAPGKEREVARITGS
GRTYYADSVKGRFTISRNLLSNTVYLQMNSLKREDTAVYYCAADRWRSMVTRS
DPREYENWGQGTQTVSS

SEQ ID NO: 45 C-Ye-24 VHH nucleotide sequence

35 CAGGTGCAGCTGCAGGAGTCTGGAGGAGGTGTGGTGCAGGCTGGGACTCTCT

5 GAGACTCTCCTGTGTAGCCTCTGGACGCACCGTCAGTAACTATGCCATGGGCTG
GTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTGTAGCACGGATTACCGGGA
GTGGTCGTACCACATACTATGCAGACTCCGTGAAGGGCCGATTACCATCTCCA
GAAACAACCTGTCGAACACCGGTATCTGCAGATGAACAGCCTGAAACGTGAG
5 GACACGGCCGTTATTACTGTGCAGCAGATCGCTGGCGTTCAATGGTGACTAGA
TCTGACCCGAGGGAGTATGAGAACTGGGCCAGGGACCCAGGTACCGTCTC
CAGT

SEQ ID NO: 46 C-Ye-26 CDR1 amino acid sequence
10 GRTVSNYAMG

SEQ ID NO: 47 C-Ye-26 CDR2 amino acid sequence
15 RITGSGSSTFYADSVKG

15 **SEQ ID NO: 48 C-Ye-26 CDR3 amino acid sequence**
AADRWRSMVTRSDPRDYEN

20 **SEQ ID NO: 49 C-Ye-26 VH_H amino acid sequence**
QVQLQESGGGLVQAGGSLRLSCVASGRTVSNYAMGWFRQAPGKEREVARITGS
GSSTFYADSVKGRFTISRNNLSNTVYLQMNSLKREDTAVYYCAADRWRSMVTRS
DPRDYENWGQGTQTVSS

25 **SEQ ID NO: 50 C-Ye-26 VH_H nucleotide sequence**
CAGGTGCAGCTGCAGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGTAGCCTCTGGACGCACCGTCAGTAACTATGCCATGGGCTG
GTTCCGCCAGGCTCCAGGGAAGGAGCGTGAGTTGTAGCACGGATTACCGGGA
GTGGTAGTAGCACATTCTATGCAGACTCCGTGAAGGGCCGATTACCATCTCCA
GAAACAACCTGTCGAACACCGGTATCTGCAGATGAACAGCCTGAAACGTGAG
30 GACACGGCCGTTATTACTGTGCAGCAGATCGCTGGCGTTCAATGGTGACTAGA
TCTGACCCGAGGGATTATGAGAACTGGGCCAGGGACCCAGGTACCGTCTC
CAGT

35 **SEQ ID NO: 51 C-Ye-27 CDR1 amino acid sequence**
GRTFSRYAVG
SEQ ID NO: 52 C-Ye-27 CDR2 amino acid sequence

AITWSGGYTYYADSVKG

SEQ ID NO: 53 C-Ye-27 CDR3 amino acid sequence

AVDTRNVIGPRAGDY

5

SEQ ID NO: 54 C-Ye-27 VH_H amino acid sequence

QVQLQESGGGLVQAGGSLRLSCAASGRTFSRYAVGWFRQAPGLGRDFVAAITWS
GGYTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVDTRNVIGPRA
GDYWGQGTQTVSS

10

SEQ ID NO: 55 C-Ye-27 VH_H nucleotide sequence

CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCACCTCAGTAGGTATGCCGTGGGCTG
GTTCCGCCAGGCTCCAGGGCTGGGCGTGACTTGTAGCAGCTATTACCTGGAG
15 TGGTGGTTACACATACTATGCGGACTCCGTGAAGGGCCGATTCAACCATCTCCAG
AGACAACGCCAAGAACACACGGTGTATTGCAAATGAACAGCCTGAAACCTGAGG
ACACGGCCGTTTATTACTGTGCAGTCGATACGAGGAATGTAATCGGCCAAGA
GCGGGAGACTACTGGGCCAGGGACCCAGGTACCGTCTCCAGT

20 **SEQ ID NO: 56 C-Ye-30 CDR1 amino acid sequence**

GSTFSRYAVG

SEQ ID NO: 57 C-Ye-30 CDR2 amino acid sequence

AITWSGGYTYYADSVKG

25

SEQ ID NO: 58 C-Ye-30 CDR3 amino acid sequence

AVDTRNVIGPRAGDY

SEQ ID NO: 59 C-Ye-30 VH_H amino acid sequence

30 QVQLQESGGGLVQAGGSLRLSCAASGSTFSRYAVGWFRQAPGLGRDFVAAITWSG
GYTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVDTRNVIGPRA
DYWGQGTQTVSS

SEQ ID NO: 60 C-Ye-30 VH_H nucleotide sequence

5 CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGAAGCACCTCAGTAGGTATGCCGTGGGCTG
GTTCCGCCAGGCTCCAGGGCTGGGCGTGACTTGTAGCAGCTATTACCTGGAG
TGGTGGTTACACATACTATGCGGACTCCGTGAAGGGCCGATTCAACCATCTCCAG
AGACAACGCCAAGAACACACGGTGTATTGCAAATGAACAGCCTGAAACCTGAGG
ACACGGCCGTTTATTACTGTGCAGTCGATACGAGGAATGTAATCGGCCAAGA
GCGGGAGACTACTGGGCCAGGGACCCAGGTACCGTCTCCAGT

10 **SEQ ID NO: 61 C-Ye-32 CDR1 amino acid sequence**
GRTFSRYAVG

15 **SEQ ID NO: 62 C-Ye-32 CDR2 amino acid sequence**
AITWSGGYTYYADSVKG

20 **SEQ ID NO: 63 C-Ye-32 CDR3 amino acid sequence**
AVDTRNVIGPRAGDY

25 **SEQ ID NO: 64 C-Ye-32 VH_H amino acid sequence**
QVQLQESGGGLVQAGGSLRLSCAASGRTFSRYAVGWFRQAPGLRDFVAAITWS
GGYTYYYADSVKGRTFISRDNAKNTIYLQMNSLNVEDTGVYYCAVDTRNVIGPRAG
DYWGQGTQTVSS

30 **SEQ ID NO: 65 C-Ye-32 VH_H nucleotide sequence**
CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCACCTCAGTAGGTATGCCGTGGGCTG
GTTCCGCCAGGCTCCAGGGCTGGGCGTGACTTGTAGCAGCTATTACCTGGAG
TGGTGGTTACACATACTATGCGGACTCCGTGAAGGGCCGATTCAACCATCTCCAG
AGACAACGCCAAGAACACACGATCTATCTCAAATGAACAGCCTGAAACGTTGAGG
ACACGGGCCTTATTACTGCGCAGTCGATACGAGGAATGTAATCGGCCAAGA
GCGGGAGACTACTGGGCCAGGGACCCAGGTACCGTCTCCAGT

35 **SEQ ID NO: 66 C-Ye-34 CDR1 amino acid sequence**
AASGRTFSRFAMG

40 **SEQ ID NO: 67 C-Ye-34 CDR2 amino acid sequence**

AISWSGGMIYYTDSVKG

SEQ ID NO: 68 C-Ye-34 CDR3 amino acid sequence

AVDTRNVIGPRAGDY

5

SEQ ID NO: 69 C-Ye-34 VH_H amino acid sequence

QVQLQESGGGLVQAGGSLRLSCAASGRTFSRFAMGWFRQAPGKEREVAAISWSG
GMIYYTDSVKGRFTISRDNAKNMLYLQMNSLKPEDTAVYYCAVDTRNVIGPRAG
DYWGQGTQTVSS

10

SEQ ID NO: 70 C-Ye-34 VH_H nucleotide sequence

CAGGTGCAGCTGCAGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCACTTCACTAGTTGAGCTTGCATGGGCTG
GTTCCGCCAGGCTCCAGGGAAAGGAGCGTGAGTTGAGCCGCTATTAGCTGGA
15 GTGGTGGTATGATATACTATACAGACTCCGTGAAGGGCCGATTCAACCATCTCCA
GAGACAACGCCAAGAACATGCTGTATCTGCAAATGAACAGCCTGAAACCTGAG
GACACGGCCGTTATTACTGTGCAGTCGATACGAGGAATGTAATCGGCCAAG
AGCGGGAGACTACTGGGGCCAGGGGACCCAGGTACCGTACCGTCTCCAGT

20 **SEQ ID NO: 71 C-Ye-39 CDR1 amino acid sequence**

GRAFSVYPMA

SEQ ID NO: 72 C-Ye-39 CDR2 amino acid sequence

RLTYTSNTFYADSVKG

25

SEQ ID NO: 73 C-Ye-39 CDR3 amino acid sequence

AVENRSSSWSLQSPARYDD

SEQ ID NO: 74 C-Ye-39 VH_H amino acid sequence

30 QVQLQESGGGLVQAGGSLRLSCTASGRAFSVYPMAWFRQAPGKEREFIARLTYS
NTFYADSVKGRTISRDNAKNTVYLQMNSLKPEDTAVYYCAVENRSSSWSLQSPA
RYDDWGQGTQTVSS

SEQ ID NO: 75 C-Ye-39 VH_H nucleotide sequence

11 CAGGTGCAGCTGCAGGAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCTCTCT
GAGACTCTCATGTACAGCCTCTGGACGCCCTCAGTGTCTACCCCATGGCCTG
GTTCCGCCAGGCTCCAGGGAAAGGAGCGTGAGTTATAGCACGTCTACGTATA
CTAGTAACACATTCTATGCAGACTCCGTGAAGGGCCATTACCATCTCCAGAG
5 ACAACGCCAAGAACACGGTGTATCTGCAGATGAACAGCCTGAAACACTGAGGAC
ACGCCGTTTATTACTGTGCGGTGAGAACCGCAGTAGTAGTTGGTCCCTGCAA
AGCCCGCACGTTATGATGACTGGGCCAGGGACCCAGGTCACCGTCTCCAG
T

10 **SEQ ID NO: 76 C-Ye-42 CDR1 amino acid sequence**

GRTGSRYAVG

SEQ ID NO: 77 C-Ye-42 CDR2 amino acid sequence

AITWSGGYTYYADSVKG

15

SEQ ID NO: 78 C-Ye-42 CDR3 amino acid sequence

AVDTRNVIGPRAGDY

SEQ ID NO: 79 C-Ye-42 VH_H amino acid sequence

20 QVQLQESGGGLVQAGGSLRLSCAASGRTGSRYAVGWFRQAPGLRDFVAAITWS
GGYTYYADSVKGRTISRDNAKNTMYLQMNSLKPEDTAVYYCAVDTRNVIGPRA
GDYWGQGTQTVSS

SEQ ID NO: 80 C-Ye-42 VH_H nucleotide sequence

25 CAGGTGCAGCTGCAGGAGTCTGGAGGAGGATTGGTGCAGGCTGGGGGCTCTCT
GAGACTCTCCTGTGCAGCCTCTGGACGCCACCGCAGTAGGTATGCCGTGGGCT
GGTCCGCCAGGCTCCAGGGCTGGGGGTGACTTTGTAGCAGCTATTACCTGG
GTGGTGGTTACACATACTATGCGGACTCCGTGAAGGGCCGATTACCATCTCCA
GAGACAACGCCAAGAACACGATGTATCTGCAAATGAACAGCCTAAACCTGAA
30 GACACGGCCGTTATTACTGTGCAGTCGATACGAGGAATGTAATCGGCCAAG
AGCGGGAGACTACTGGGCCAGGGACCCAGGTCACCGTCTCCAGT

SEQ ID NO: 81 C-Ye-18-1 CDR2 amino acid sequence

SINSGSSSTYYRDSVKG

35

SEQ ID NO: 82 C-Ye-18-1 VH_H amino acid sequence

EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINSGS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QTVSS

5 **SEQ ID NO: 83 C-Ye-18-1 VHH nucleotide sequence**

GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
GCTCCGTCAGGCTCCAGGGAAAGGGGCTCGAGTGGGTCTCATCTATTAAATAGTG
10 GTAGTAGTAGCACATACTATCGAGACTCCGTGAAGGGCCGATTCACCATCTCC
AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

SEQ ID NO: 84 C-Ye-18-2 CDR2 amino acid sequence

15 SISSSSSTYYRDSVKKG

SEQ ID NO: 85 C-Ye-18-2 VHH amino acid sequence

EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSISSSSS
20 SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGTQ
VTVSS

SEQ ID NO: 86 C-Ye-18-2 VHH nucleotide sequence

GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
25 GCTCCGTCAGGCTCCAGGGAAAGGGGCTCGAGTGGGTCTCATCTATTAGTAGTA
GTAGTAGTAGCACATACTATCGAGACTCCGTGAAGGGCCGATTCACCATCTCC
AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

30

SEQ ID NO: 87 C-Ye-18-3 CDR2 amino acid sequence

SIGSSSSSTYYRDSVKKG

SEQ ID NO: 88 C-Ye-18-3 VHH amino acid sequence

EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSIGSSS
35 SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QTVSS

SEQ ID NO: 89 C-Ye-18-3 VHH nucleotide sequence

5 GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
GCTCCGTCAAGGCTCCAGGGAAGGGGCTCGAGTGGGTCTCATCTATTGGTAGTA
GTAGTAGTACACATACTATCGAGACTCCGTGAAGGGCCGATTACCACATCTCC
AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

10

SEQ ID NO: 90 C-Ye-18-4 CDR2 amino acid sequence

SIYSGSSSTYYRDSVKKG

SEQ ID NO: 91 C-Ye-18-4 VHH amino acid sequence

15 EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSIYSGS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSS

SEQ ID NO: 92 C-Ye-18-4 VHH nucleotide sequence

20 GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
GCTCCGTCAAGGCTCCAGGGAAGGGGCTCGAGTGGGTCTCATCTATTACAGTG
GTAGTAGTACACATACTATCGAGACTCCGTGAAGGGCCGATTACCACATCTCC
AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
25 GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
AGGGGACCCAGGTACCGTCTCCAGT

SEQ ID NO: 93 C-Ye-18-5 CDR2 amino acid sequence

SINSDSSSTYYRDSVKKG

30

SEQ ID NO: 94 C-Ye-18-5 VHH amino acid sequence

EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINSDS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSS

35

SEQ ID NO: 95 C-Ye-18-5 VHH nucleotide sequence

5 GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
 GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
 GCTCCGTCAGGCTCCAGGGAAAGGGGCTCGAGTGGGTCTCATCTATTAAATAGTG
 ACAGTAGTAGCACATACTATCGAGACTCCGTGAAGGGCCGATTCACCATCTCC
 10 AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
 GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
 AGGGGACCCAGGTACCGTCTCCAGT

SEQ ID NO: 96 C-Ye-18-6 CDR2 amino acid sequence

10 SNSGSSSTYYRDSVKG

SEQ ID NO: 97 C-Ye-18-6 VHH amino acid sequence

15 EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSISGSS
 SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
 QVTVSS

SEQ ID NO: 98 C-Ye-18-6 VHH nucleotide sequence

20 GAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGTCTCT
 GCGACTCTCCTGTGCAGCCTCTGGATTACCTTCAGTAGCTACTGGATGTATTG
 GCTCCGTCAGGCTCCAGGGAAAGGGGCTCGAGTGGGTCTCATCTATTAGTGGTA
 GTAGTAGTAGCACATACTATCGAGACTCCGTGAAGGGCCGATTCACCATCTCC
 AGAGACAAACGCCAAGAACACCGCTGTATCTGCAAATGAACAGTCTGAAATCTGA
 GGACACGGCCGTGTATTACTGTGAAAAGATCCTGGTGGGTACGCCAAAGGCC
 AGGGGACCCAGGTACCGTCTCCAGT

25

SEQ ID NO: 99 IgG1 Fc fragment amino acid sequence

DKTHTCPPCPAPEAAGGPSVFLPPPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
 WYVDGVEVHNAKTKPREEQYNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALP
 30 APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ
 PENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL
 SLSPG

SEQ ID NO: 100 fusion protein linker amino acid sequence

35 GGGSGGGGSGGGSGGGGSG

SEQ ID NO: 101 TGF β RII extracellular domain amino acid sequence

IPPHVQKSVNNDMIVTDNNNGAVKFPQLCKFCDVRFSTCDNQKSCMSNCITSICEK

PQEVCVAVWRKNDENITLETVC HDPKLPYHDFILED AASPKCIMKEKKPGETFFM
CSCSSDECNDNIIFSEEYNTSNPD

SEQ ID NO: 102 PM8001 amino acid sequence

5 EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYW MYWLRQAPGKGLEWVSSINSDS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSSDKTHTCPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVSVLTVLHQDWLNGKEYKCKVS
10 NKALPAPIEKTI SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW
ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY
TQKSLSLSPGGGGGGGGGGGGGGGGGGGGGGGGGIPPHVQKSVNNDMIVTDNNGAVKF
PQLCKFCDVRFSTCDNQKSCMSNCITSICEKPQEVCVAVWRKNDENITLETVCHD
PKLPYHDFILED AASPKCIMKEKKPGETFFMCSCSSDECNDNIIFSEEYNTSNPD

15 **SEQ ID NO: 103 upstream primer for first round**

GTCCTGGCTGCTCTTCTACAAGG

SEQ ID NO: 104 downstream primer for first round

GGTACGTGCTGTTGAACTGTTCC

20

SEQ ID NO: 105 upstream primer for second round

CTAGTGCAGGCCG C TGGAGACGGTGACCTGGGT

SEQ ID NO: 106 downstream primer for second round

25 CGCGGATCCCAGGTGCAGCTGCAGGAGTCTGGRRGGAGG

SEQ ID NO: 107 upstream primer for third round

ATTTTTACTGCTGTTTATT CGCAGCATCCTCCGCATTAGCTAAAGAGAGGGCT
GAAGCACAGGTGCAGCTGCAGGAGTCTGGRRGGAGG

30

SEQ ID NO: 108 downstream primer for third round

AGTTGTCAGTT CCTGTGCCCCCCCCT CCTCCCGCGCCACCTCCGCCCGCACCTCC
GCCACCAcTGGAGACGGTGACCTGGGT

35 **SEQ ID NO: 109 PD-L1-His tag amino acid sequence**

MFTVTVPKDLYVVEYGSNMTIECKFPVEKQLDLAALIVYWEMEDKNIIQFVHGEE
DLKVQHSSYRQRARLLKDQLSLGNAALQITDVKLQDAGVYRCMISYGGADYKRIT
VKVNAPYHHHHHH

5 **SEQ ID NO: 110 PD-L1 single-domain antibody fusion protein amino acid sequence**
EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINSDS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSSDKTHTCPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS
10 NKALPAPIEKTIASKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW
ESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY
TQKSLSLSPG

SEQ ID NO: 111 PD-L1 single-domain antibody amino acid sequence
15 EVQLQESGGGLVQPGGSLRLSCAASGFTFSSYWMYWLRQAPGKGLEWVSSINSDS
SSTYYRDSVKGRFTISRDNAKNTLYLQMNSLKSEDTAVYYCAKDPGGYAKGQGT
QVTVSSDK

CLAIMS

What is claimed is:

1. A complementarity determining region (CDR) of a VHH chain of an anti-PD-L1 single-domain antibody, wherein the CDR of the VHH chain consists of the following:

5 CDR1 with an amino acid sequence as shown in SEQ ID NO: 5n+1;

CDR2 with an amino acid sequence as shown in SEQ ID NO: 5n+2, or CDR2 with an amino acid sequence having an sequence identity of greater than 85% with a sequence as shown in SEQ ID NO: 2; and

CDR3 with an amino acid sequence as shown in SEQ ID NO: 5n+3;

10 wherein, each n is independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

2. A VHH chain of an anti-PD-L1 single-domain antibody, wherein the VHH chain of the anti-PD-L1 single-domain antibody comprises the CDR1, CDR2 and CDR3 according to claim 1.

15 3. The anti-PD-L1 single-domain antibody according to claim 2, wherein the amino acid sequence of CDR2 is shown in SEQ ID NO: 93.

4. An anti-PD-L1 single-domain antibody, wherein the anti-PD-L1 single-domain antibody is a single-domain antibody against a PD-L1 epitope and has the VHH chain of the anti-PD-L1 single-domain antibody according to claim 2.

20 5. The anti-PD-L1 single-domain antibody according to claim 2, wherein an amino acid sequence of the VHH chain of the anti-PD-L1 single-domain antibody is shown in SEQ ID NO: 94.

25 6. A polynucleotide, wherein the polynucleotide encodes a protein selected from the group comprising the CDR region of the VHH chain of the anti-PD-L1 single-domain antibody according to claim 1, the VHH chain of the anti-PD-L1 single-domain antibody according to claim 2, or the anti-PD-L1 single-domain antibody according to claim 4.

7. A single-domain antibody fusion protein, wherein the single-domain antibody fusion

protein has a structure as shown in formula I from N-terminal to C-terminal:

wherein,

Z1 is the VHH chain of the anti-PD-L1 single-domain antibody according to claim 2;

5 Z2 is an Fc fragment of immunoglobulin;

L is a linker sequence; and

Z3 is an immunoregulatory molecule part.

8. The single-domain antibody fusion protein according to claim 7, wherein an amino acid sequence of the single-domain antibody fusion protein is shown in SEQ ID NO: 102.

10 9. An immunoconjugate, comprising:

(a) the VHH chain of the anti-PD-L1 single-domain antibody according to claim 2, the anti-PD-L1 single-domain antibody according to claim 4, or the single-domain antibody fusion protein according to claim 8; and

15 (b) a coupling moiety selected from the group comprising detectable markers, drugs, toxins, cytokines, radionuclides or enzymes.

10. Use of the anti-PD-L1 single-domain antibody according to claim 4 or the single-domain antibody fusion protein according to claim 8 in manufacture of (a) reagents used for detecting PD-L1 molecules; and (b) drugs used for treating tumors.

11. A pharmaceutical composition, comprising:

20 (i) the CDR of the VHH chain of the anti-PD-L1 single-domain antibody according to claim 1, the VHH chain of the anti-PD-L1 single-domain antibody according to claim 2, the anti-PD-L1 single-domain antibody according to claim 4, the single-domain antibody fusion protein according to claim 7, or the immunoconjugate according to claim 9; and

(ii) a pharmaceutically acceptable carrier.

25 12. Use of the VHH chain according to claim 2, the single-domain antibody according to claim 4, the single-domain antibody fusion protein according to claim 5 or the

immunoconjugate according to claim 9 in manufacture of medicaments, reagents, detection plates or kits;

wherein, the reagents, the detection plates or the kits are used for detecting a PD-L1 protein in a sample; and

5 wherein, the medicaments are used for treating or preventing tumors expressing the PD-L1 protein (PD-L1 positive).

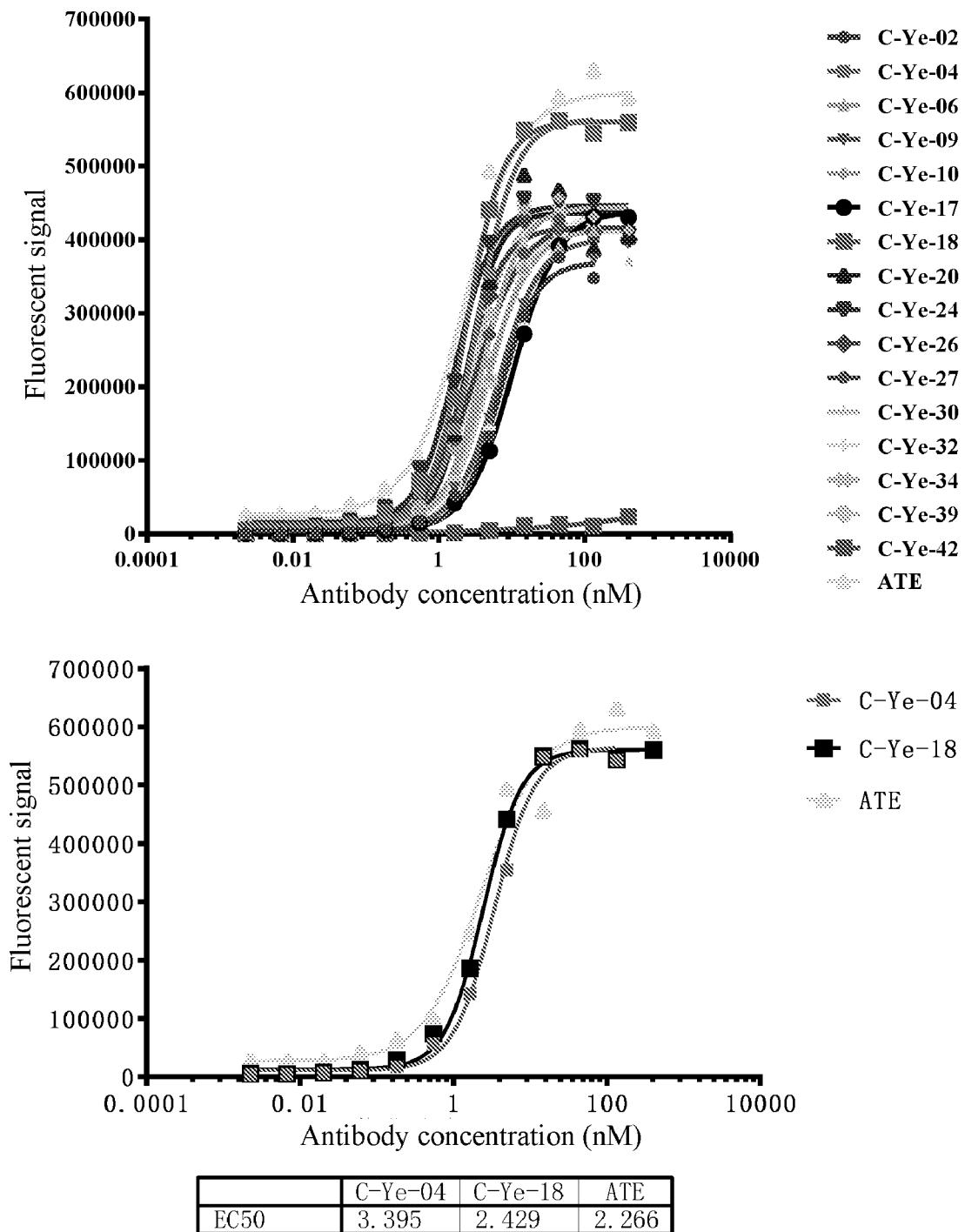


FIG. 1

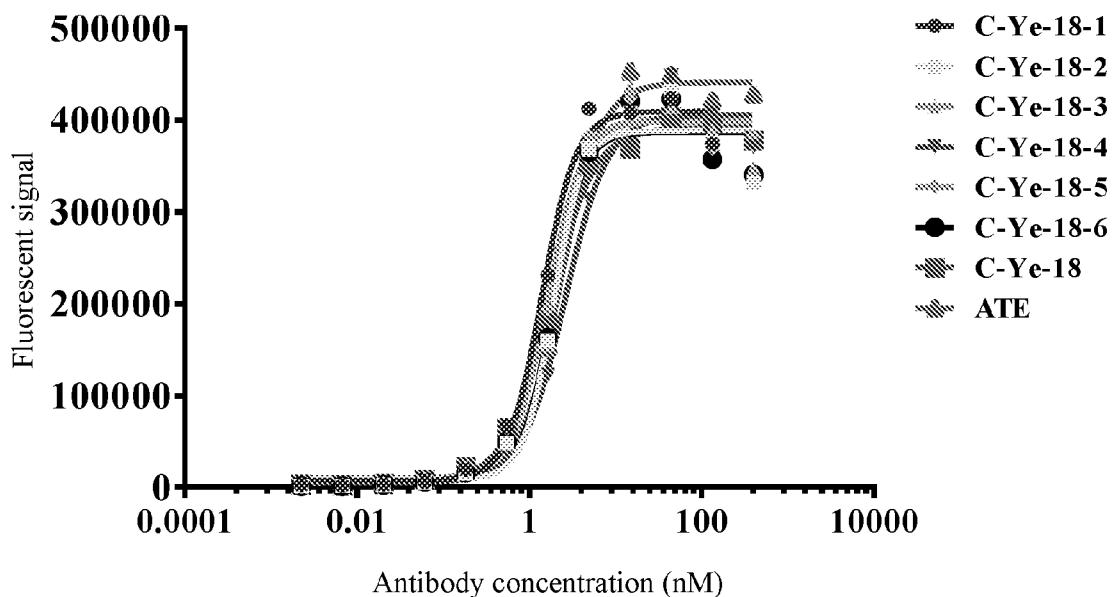


FIG. 2

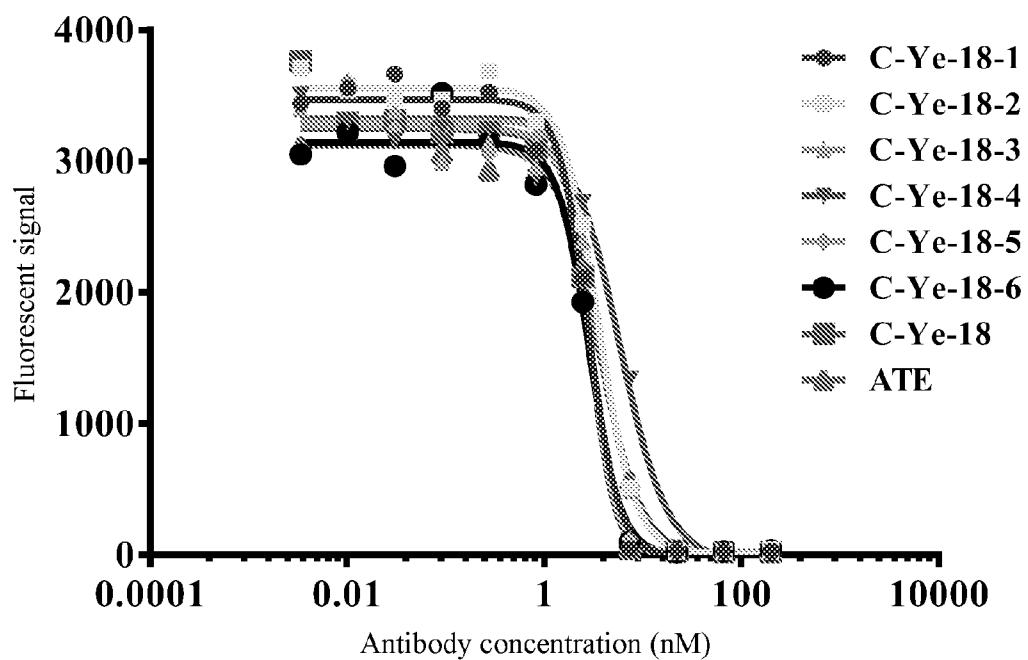


FIG. 3

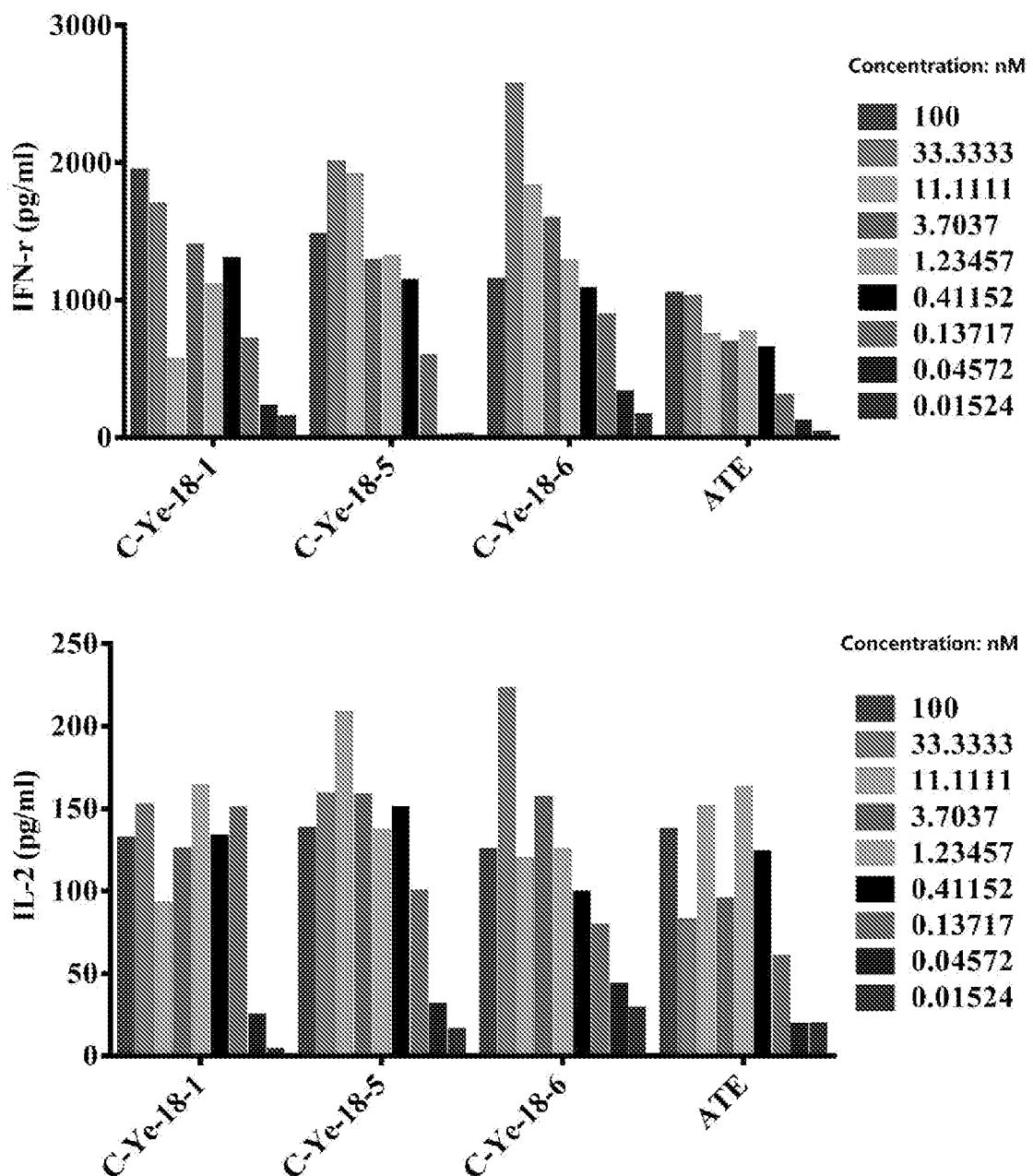


FIG. 4

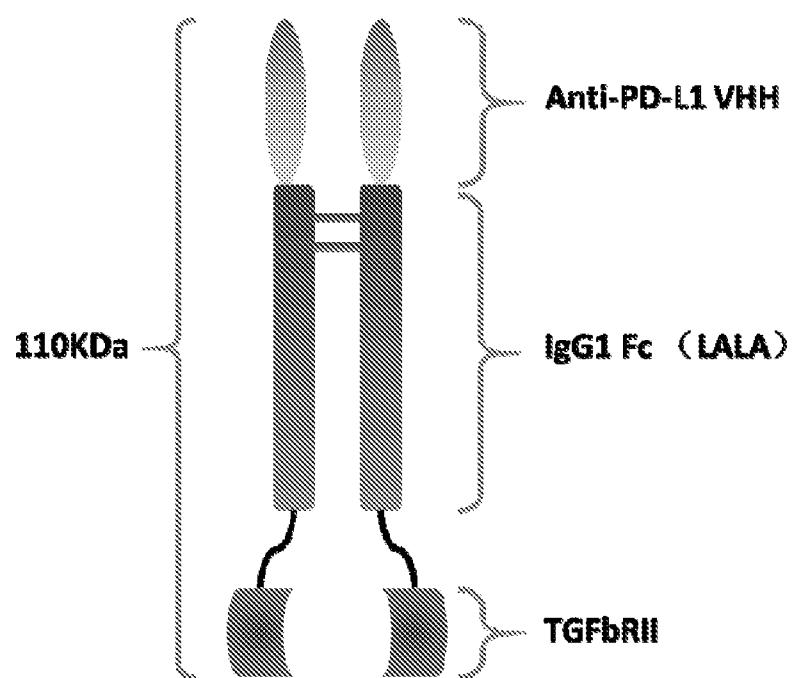


FIG. 5

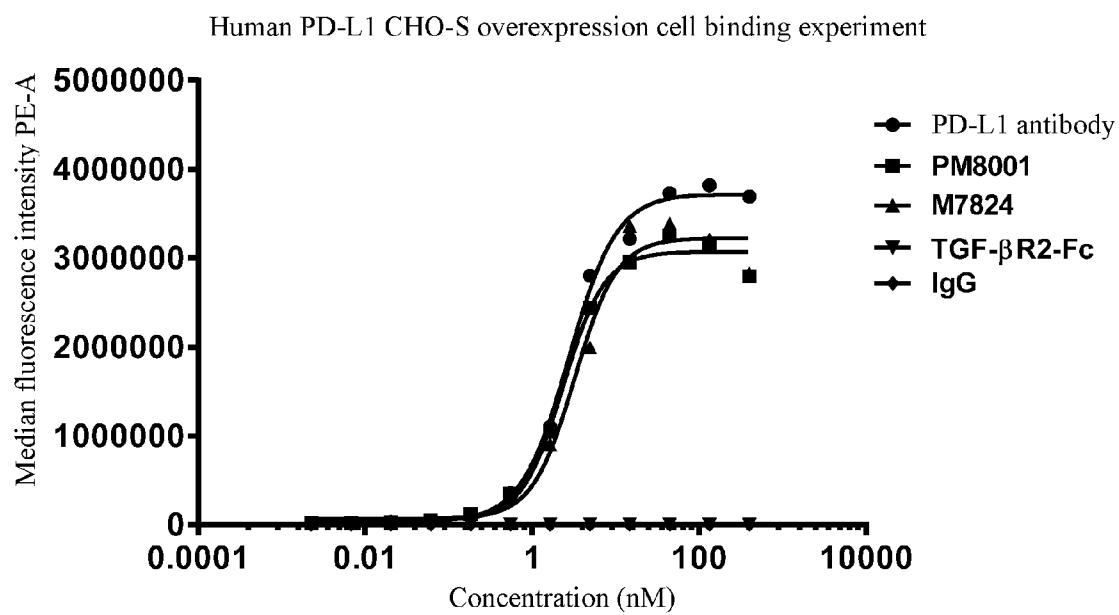


FIG. 6

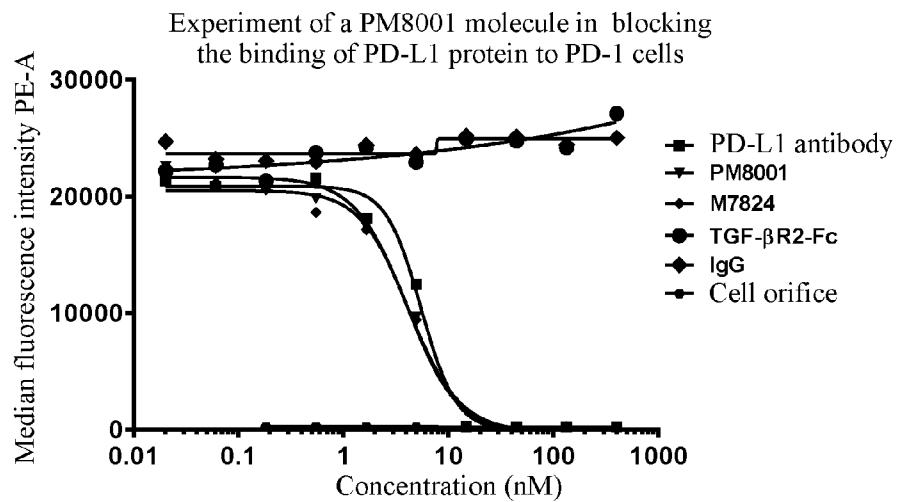


FIG. 7

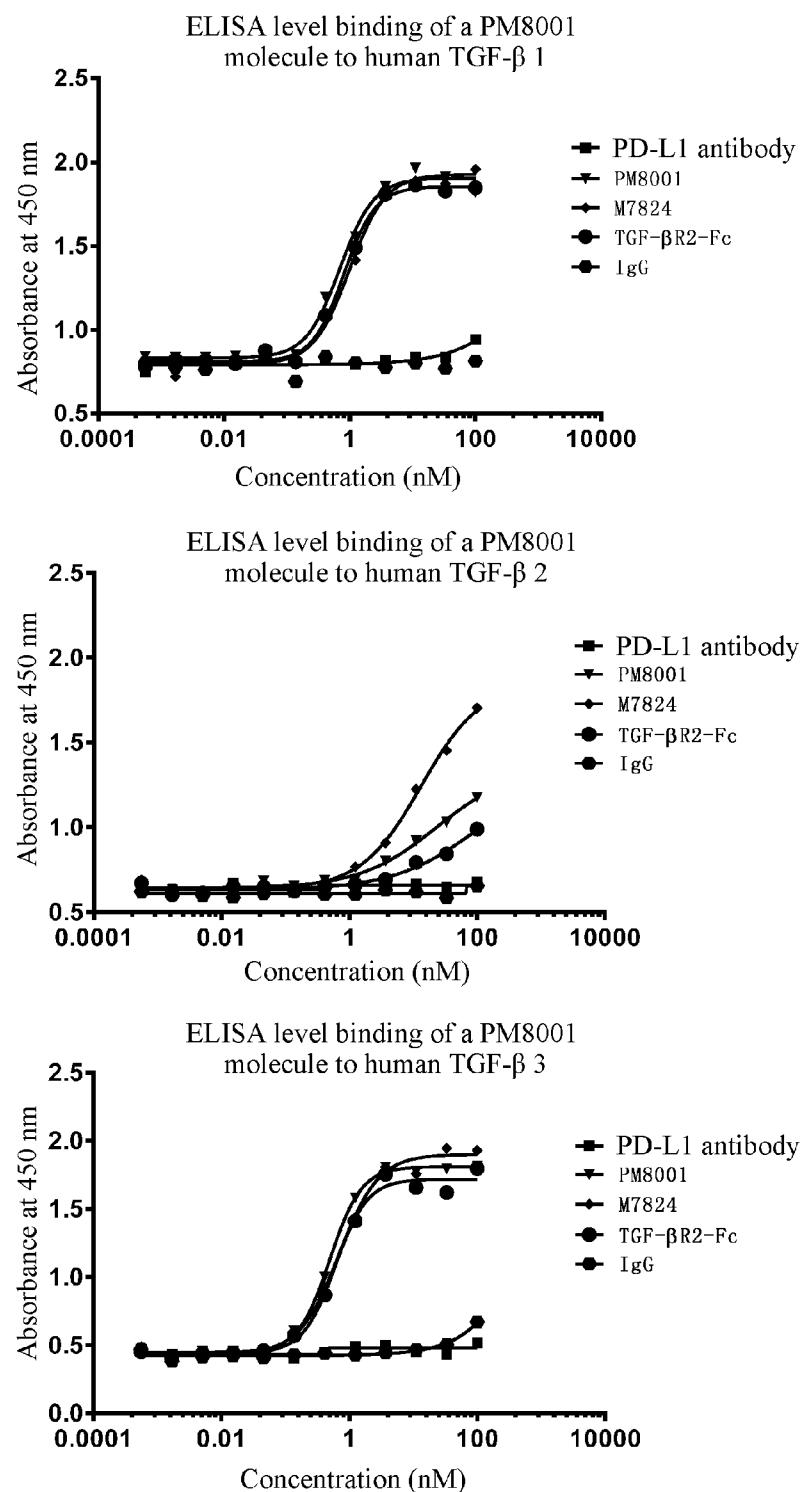


FIG. 8

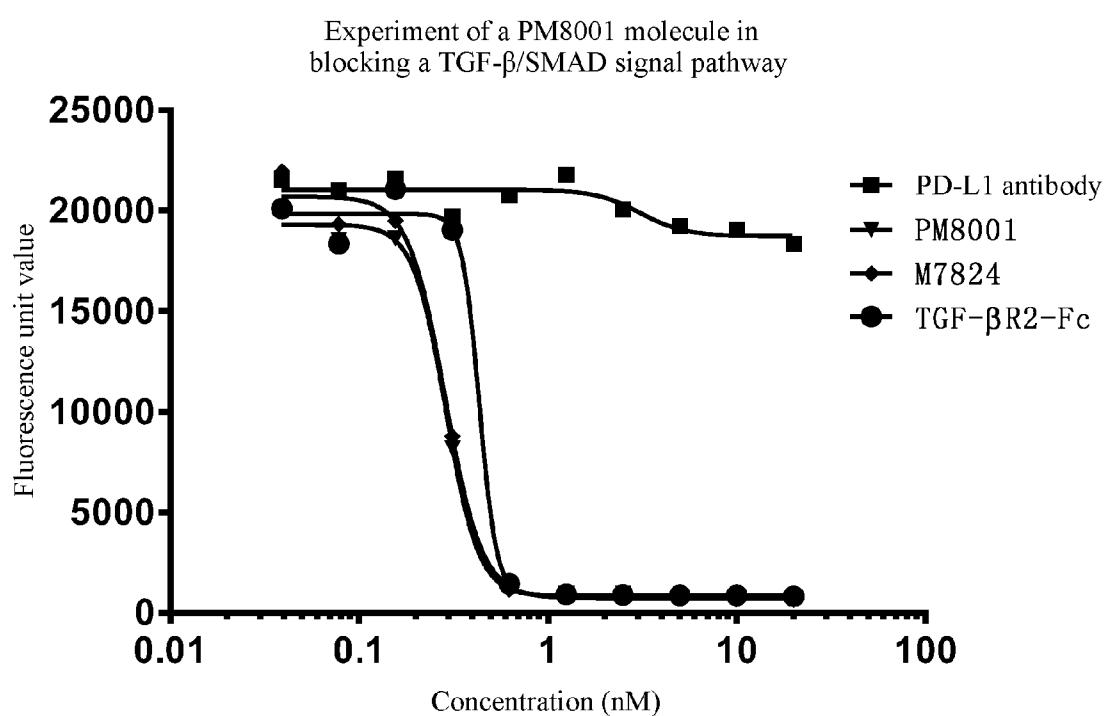


FIG. 9

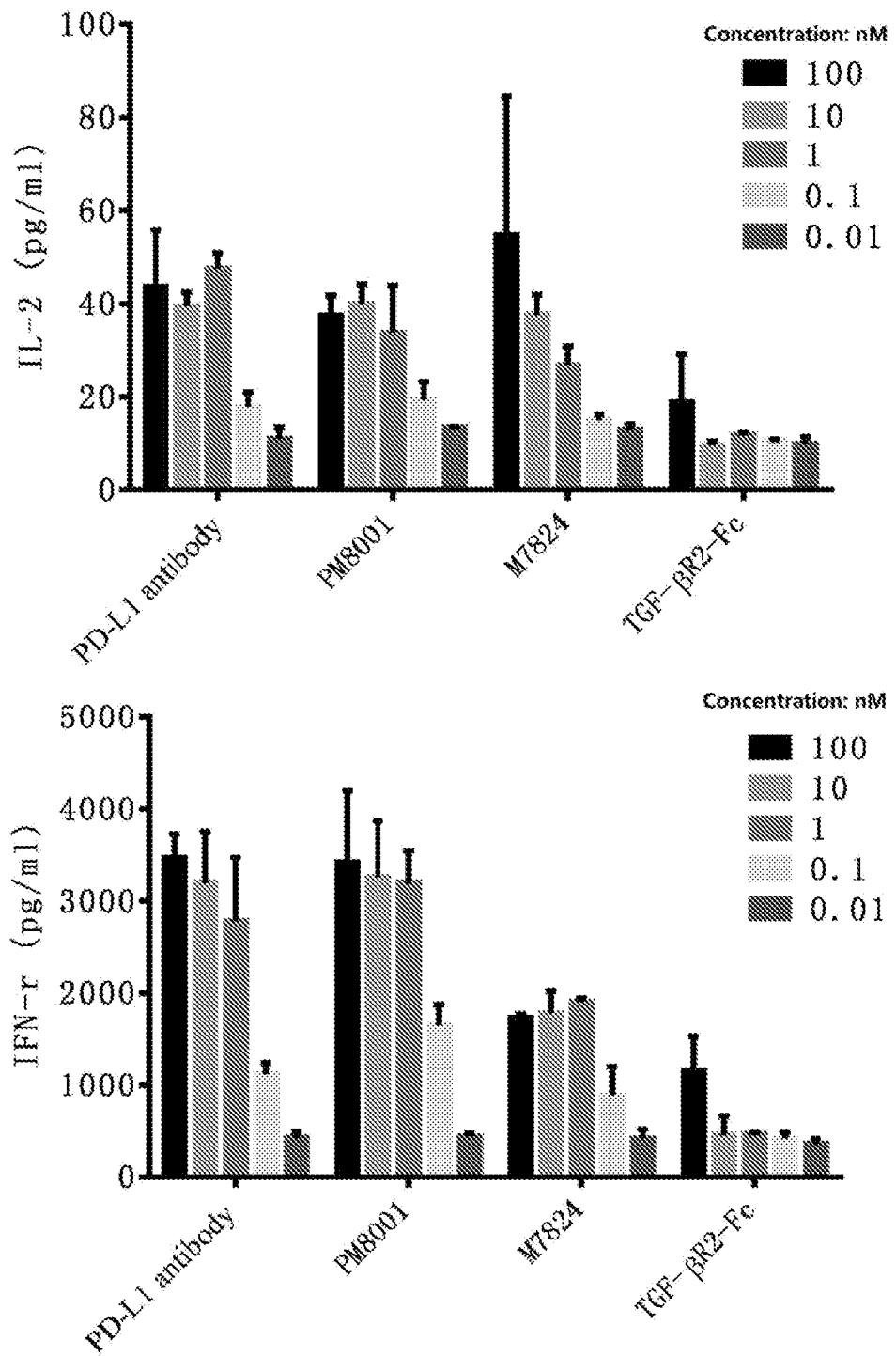


FIG. 10

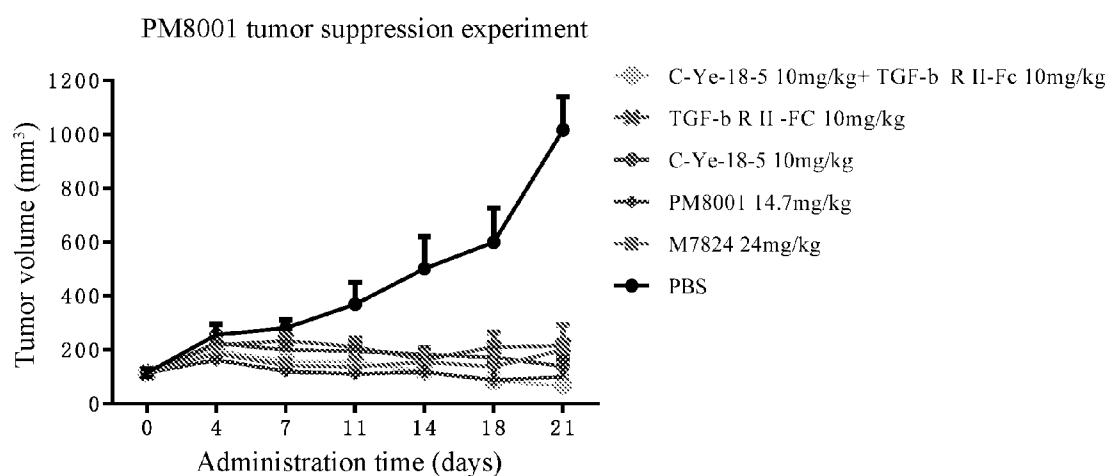


FIG. 11

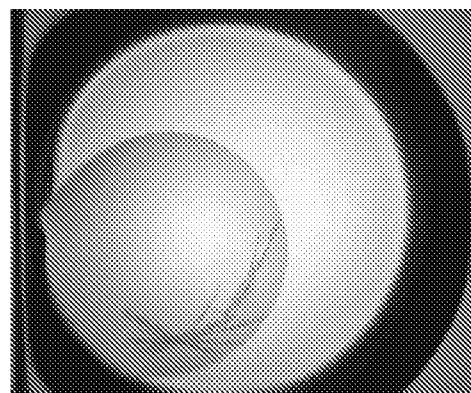


FIG. 12

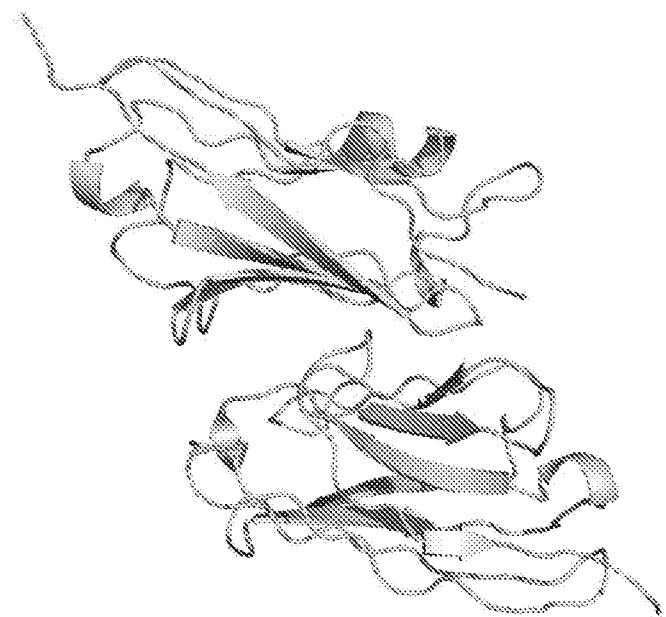


FIG. 13

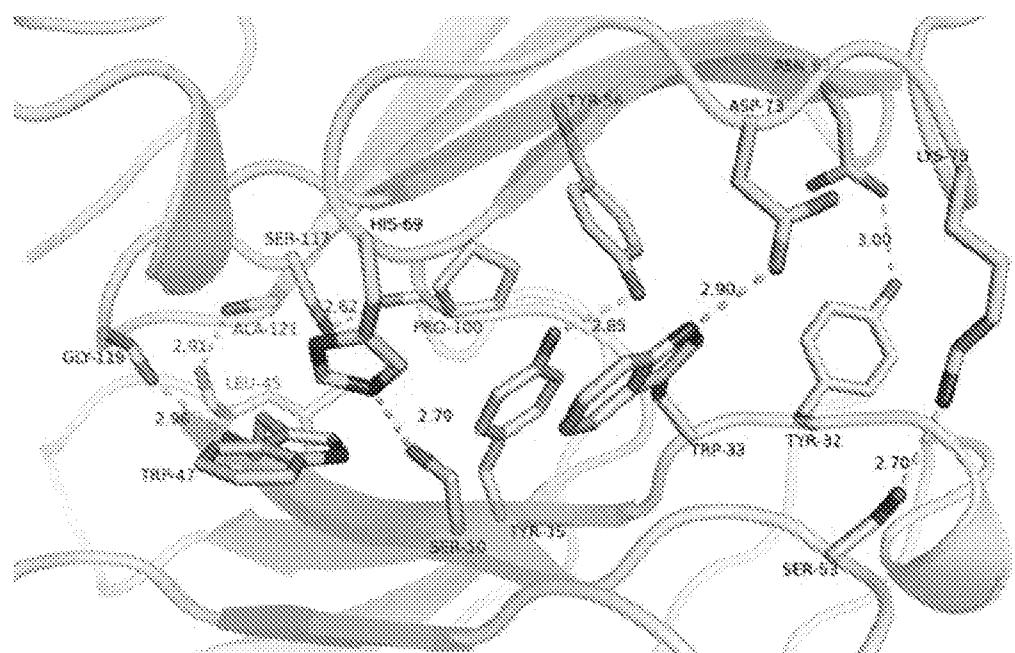


FIG. 14

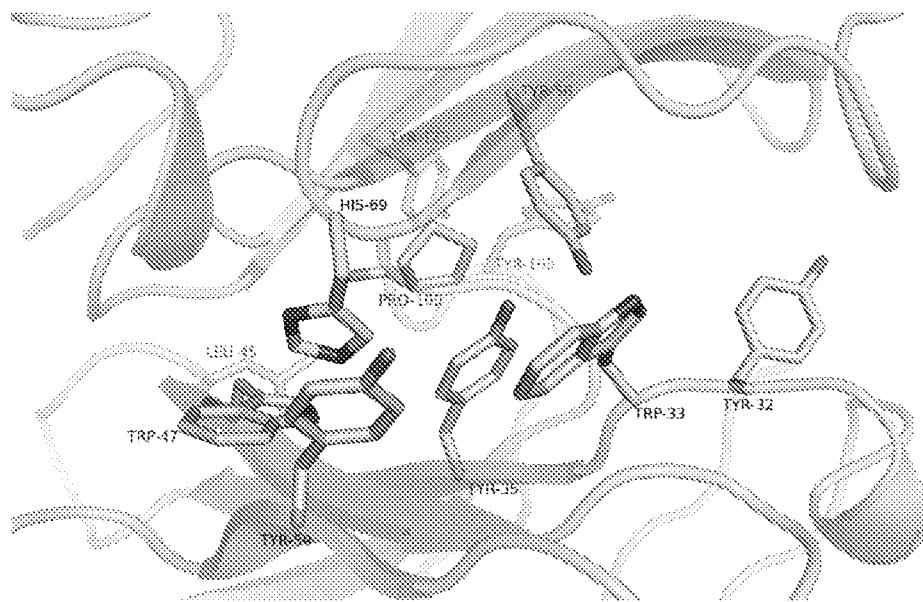


FIG. 15

Effect of PM8001 on tumor volume of h-PD-L1 KI MC38 in h-PD-L1 KI C57BL/6 mice

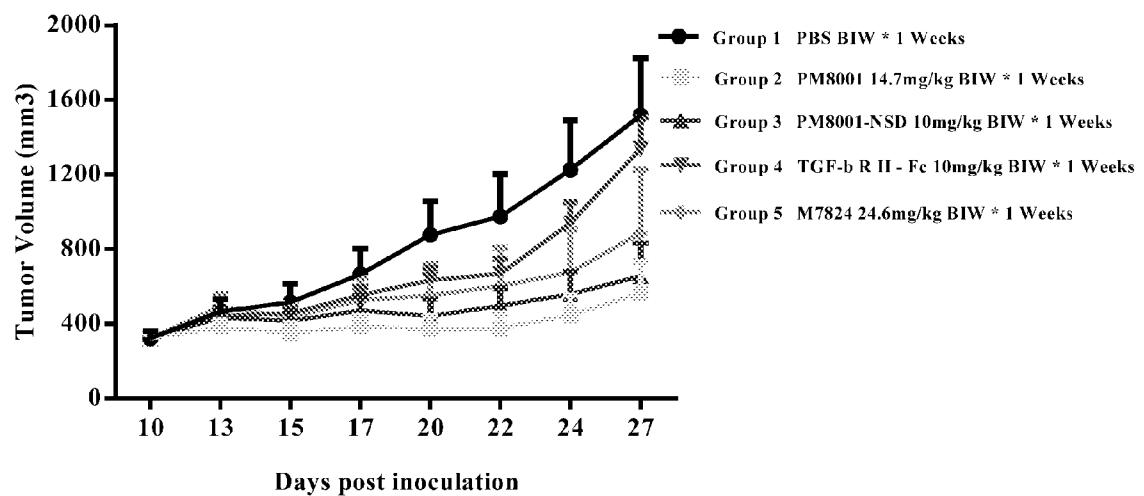
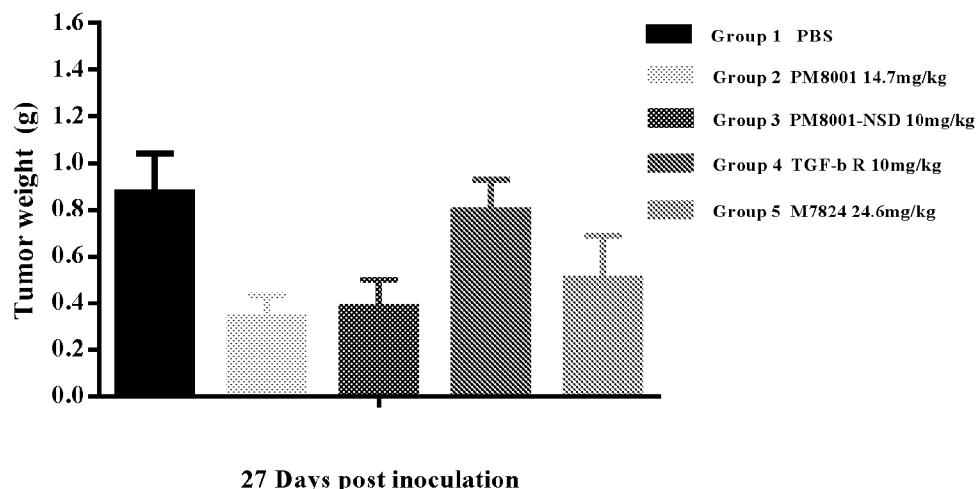
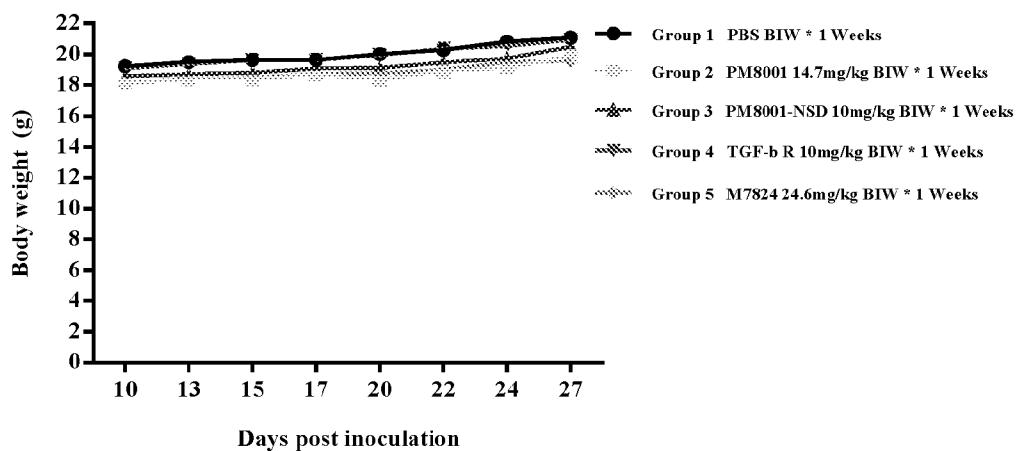



FIG. 16

小鼠肺组织形态观察 (The review of mice lung tissue)						
序号	1	2	3	4	5	6
Experiments	Study on the growth inhibition effect of PMS601 on an EGR1-KI mice model inoculated subcutaneously in left ear (1.0 mg/kg + TGF- β 10 ng/ml)					项目编码 Project ID: PMS601
实验组 Experiment	肺组织切片 Lung tissue sections 肺组织形态 Lung tissue morphology					实验日期 Experiment date 2019/1/18
动物 Animal	1	2	3	4	5	6
Group 1: PBS						
Group 2: PMS601- 100 100 mg/kg						
Group 3: PMS601- NSD- 100 mg/kg						
Group 4: PMS601- TGF- β 10 mg/kg						
Group 5: M7474- 24.6 mg/kg						

FIG. 17


Effect of PM8001 on tumor weight of h-PD-L1 KI MC38 in h-PD-L1 KI C57BL/6 mice

27 Days post inoculation

FIG. 18

Effect of PM8001 on body weight of h-PD-L1 KI C57BL/6 mice inoculated with h-PD-L1 KI MC38

Days post inoculation

FIG. 19

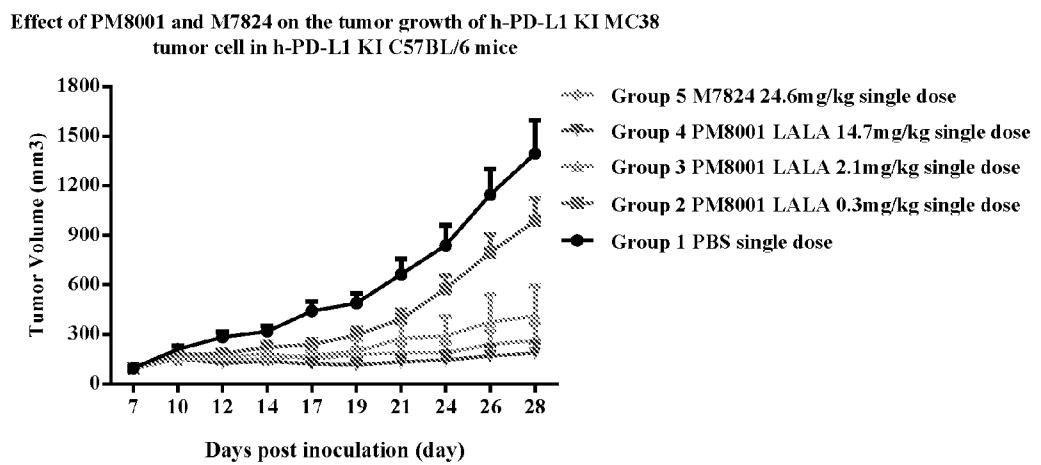
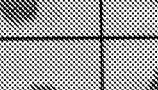
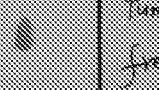
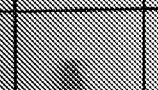
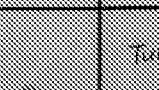
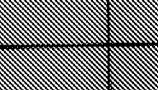
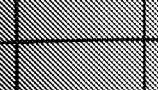
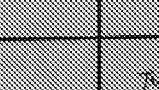
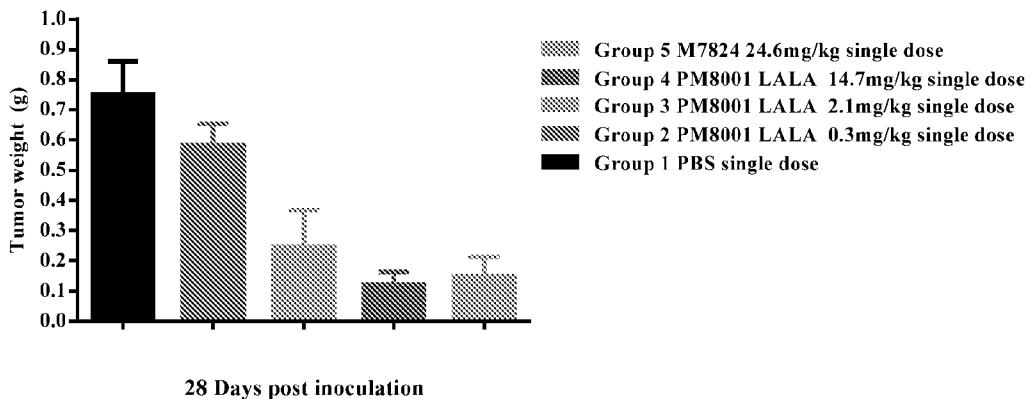
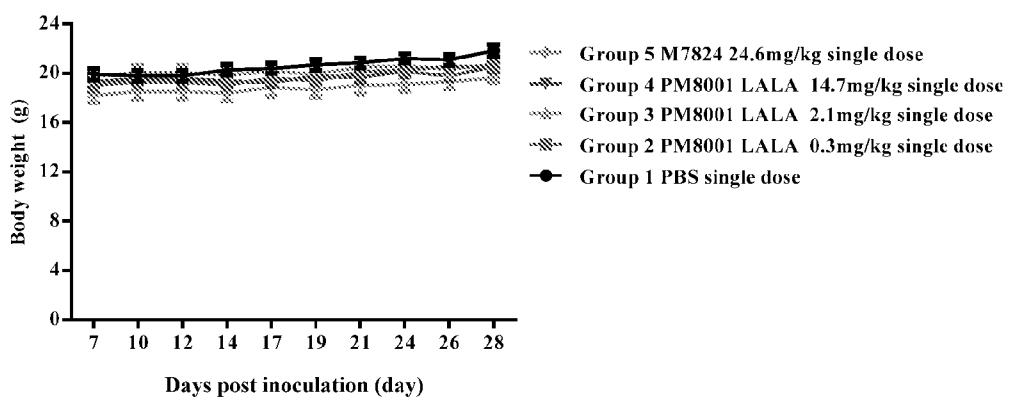


FIG. 20



小鼠肿瘤拍照记录表 The record of mice tumor picture											
项目名称		项目描述									
Experiment	Study on the growth inhibiting effect of PBS on an induced EK-MB-38 model inoculated subcutaneously in nude mice (BALB/c nude mice)										Project ID
Title											PM8001
实验设备	Ophthalmic scissors Ophthalmic forceps										实验日期
Equipment											2019-11-28
组别 Group	1	2	3	4	5	6	7	8	9	10	11
Group 1: PBS											
Group 2: PM8001 1ml x 0.3mg/kg											
Group 3: PM8001 1ml x 0.3mg/kg											
Group 4: PM8001 1ml x 0.3mg/kg											
Group 5: PM8001 2ml x 0.3mg/kg											


FIG. 21

Effect of PM8001 and M7824 on the tumor weight of h-PD-L1 KI MC38 tumor cell in h-PD-L1 KI C57BL/6 mice

FIG. 22

Effect of PM8001 and M7824 on the body weight of h-PD-L1 KI C57BL/6 mice inoculated with h-PD-L1 KI MC38 tumor cell

FIG. 23

Sequence Listing

<110> Biotheus Inc.

<120> ANTI-PD-L1 SINGLE-DOMAIN ANTIBODY AND DERIVATIVES AND USE THEREOF

<130> 401575

<150> CN201910863109.0

<151> 2019-09-12

<160> 111

<170> SIPOSequenceListing 1.0

<210> 1

<211> 10

<212> PRT

<213> artificial sequence

<400> 1

Gly Phe Thr Phe Ser Ser Tyr Trp Met Tyr

1 5 10

<210> 2

<211> 17

<212> PRT

<213> artificial sequence

<400> 2

Ser Ile Asn Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys

1 5 10 15

Gly

<210> 3

<211> 8

<212> PRT

<213> artificial sequence

<400> 3

Ala Lys Asp Pro Gly Gly Tyr Ala

1 5

<210> 4

<211> 115

<212> PRT

<213> artificial sequence

<400> 4

Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

20 25 30

Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35 40 45

Ser Ser Ile Asn Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val

50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr

65 70 75 80

Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys

85 90 95

Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr

100 105 110

Val Ser Ser

115

<210> 5
<211> 345
<212> DNA
<213> artificial sequence

<400> 5
gaggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctgggggtc tctgcgactc 60
tcctgtgcag cctctggatt cacctcagt agctactgga tgtattggct ccgtcaggct 120
ccagggaaagg ggctcgagtg ggctctcatct attaatagta gtagtagtag cacatactat 180
cgagactccg tgaaggccg attcaccatc tccagagaca acgccaagaa cacgctgtat 240
ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct 300
ggtgggtacg ccaaaggcca ggggacccag gtcaccgtct ccagt 345

<210> 6
<211> 11
<212> PRT
<213> artificial sequence

<400> 6
Ser Gly Phe Thr Phe Ser Ser Tyr Trp Met Tyr
1 5 10

<210> 7
<211> 17
<212> PRT
<213> artificial sequence

<400> 7
Ser Ile Asn Thr Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
Gly

<210> 8
<211> 8
<212> PRT
<213> artificial sequence

<400> 8
Ala Lys Asp Pro Gly Gly Tyr Ala
1 5

<210> 9
<211> 115
<212> PRT
<213> artificial sequence

<400> 9
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Asn Thr Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
100 105 110
Val Ser Ser
115

<210> 10
<211> 345
<212> DNA
<213> artificial sequence

<400> 10
caggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctggggggtc tctgcgactc 60
tcctgtgcag cctctggatt caccttcagt agctactgga tgtattggct ccgtcaggct 120
ccagggaaagg ggctcgagtg ggtctcatct attaatacta gtagtagtag cacatactat 180
cgagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgctgtat 240
ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct 300
ggtgggtacg ccaaaggcca ggggaccag gtcaccgtct ccagt 345

<210> 11
<211> 13
<212> PRT
<213> artificial sequence

<400> 11
Gly Arg Thr Phe Asn Asn Ser Ala Met Gly Ala Met Gly
1 5 10

<210> 12
<211> 17
<212> PRT
<213> artificial sequence

<400> 12
Thr Ile Thr Trp Ser Ser Gly Ser Ser Phe Tyr Ala Asn Ser Val Lys
1 5 10 15
Gly

<210> 13
<211> 17
<212> PRT
<213> artificial sequence

<400> 13
Ala Ser Arg Lys Leu Gly Gly Val Val Thr Val Val Thr Ser Tyr Asp
1 5 10 15
Phe

<210> 14
<211> 127
<212> PRT
<213> artificial sequence

<400> 14
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Asn Asn Ser
20 25 30
Ala Met Gly Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg
35 40 45
Glu Phe Val Ala Thr Ile Thr Trp Ser Ser Gly Ser Ser Phe Tyr Ala
50 55 60
Asn Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
65 70 75 80
Thr Val Tyr Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val
85 90 95
Tyr Tyr Cys Ala Ser Arg Lys Leu Gly Gly Val Val Thr Val Val Thr
100 105 110
Ser Tyr Asp Phe Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 15
<211> 381
<212> DNA
<213> artificial sequence

<400> 15

caggtgcagc tgcaggagtc tgggggagga ttgggtcagg ctgggggctc tctgagactc	60
tcctgtcagc cctctggacg caccttaat aactcgccca tggcgccat gggatggttc	120
cgccaggcgc cagggaaaga gcgtgagttt gtcgcgacaa ttacctggag tagtggtagc	180
tcattttatg caaactccgt gaagggccga ttaccatct ccagagacaa cgccaagaac	240
acggtgtatc tgcaaatgaa cagcctgaaa cctgaggaca cggccgtta ttactgtgca	300
tcacgcaaat tgggaggggt tgtaacggta gttacttcgt atgacttctg gggccagggg	360
acccaggtca ccgtctccag t	381

<210> 16
<211> 13
<212> PRT
<213> artificial sequence

<400> 16
Gly Arg Thr Phe Asp Asn Tyr Ala Met Gly Ala Met Gly
1 5 10

<210> 17
<211> 17
<212> PRT
<213> artificial sequence

<400> 17
Thr Ile Thr Trp Ser Ser Gly Ser Ser Phe Tyr Ala Asn Ser Val Lys
1 5 10 15
Gly

<210> 18
<211> 17
<212> PRT
<213> artificial sequence

<400> 18
Ala Ser Arg Lys Leu Gly Gly Val Val Thr Val Val Thr Ser Tyr Asp
1 5 10 15
Phe

<210> 19
<211> 127
<212> PRT
<213> artificial sequence

<400> 19
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Asp Asn Tyr
20 25 30
Ala Met Gly Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg
35 40 45
Glu Phe Val Ala Thr Ile Thr Trp Ser Ser Gly Ser Ser Phe Tyr Ala
50 55 60
Asn Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
65 70 75 80
Thr Val Tyr Leu Gln Met Asn Ser Leu Lys Pro Asp Asp Thr Ala Val
85 90 95
Tyr Tyr Cys Ala Ser Arg Lys Leu Gly Gly Val Val Thr Val Val Thr
100 105 110
Ser Tyr Asp Phe Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 20
<211> 381
<212> DNA
<213> artificial sequence

<400> 20
caggtgcagc tgcaggagtc tggaggaggc ttgggtcaggc ctggggggtc tctgagactc

tcctgtgcag cctctggacg caccttcgat aactatgcca tgggcgccat gggatggttc
cgccaggcgc cagggaaaga gcgtgagttt gtcgcgacaa ttacctggag tagtggtagc
tcattttatg caaactccgt gaagggccga ttcaccatct ccagagacaa cgccaagaac
acggtgtatc tgcaaatgaa cagcctgaaa cctgacgaca cggccgtta ttactgtgca
tcacgcaaat tgggagggggt tgtaacggta gttacttcgt atgacttctg gggccagggg
acccaggtca ccgtctccag t 120
180
240
300
360
381

<210> 21
<211> 10
<212> PRT
<213> artificial sequence

<400> 21
Gly Arg Thr Phe Ser Thr Tyr Ala Val Gly
1 5 10

<210> 22
<211> 18
<212> PRT
<213> artificial sequence

<400> 22
Gly Arg Leu Thr Trp Ser Gly Ser Arg Thr Tyr Tyr Ala Asp Ser Val
1 5 10 15
Lys Gly

<210> 23
<211> 20
<212> PRT
<213> artificial sequence

<400> 23
Ala Ala Asp Tyr Arg Ser Asn Ser Thr Trp Ser Leu Gln Ser Pro Ala
1 5 10 15
Arg Tyr Glu Asn
20

<210> 24
<211> 127
<212> PRT
<213> artificial sequence

<400> 24
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Asp
1 5 10 15
Ser Leu Gly Leu Ser Cys Thr Ala Ser Gly Arg Thr Phe Ser Thr Tyr
20 25 30
Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Lys Gly Arg Glu Phe Val
35 40 45
Gly Arg Leu Thr Trp Ser Gly Ser Arg Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Tyr Arg Ser Asn Ser Thr Trp Ser Leu Gln Ser Pro Ala
100 105 110
Arg Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 25
<211> 381
<212> DNA
<213> artificial sequence

<400> 25
caggtgcagc tgcaggagtc tgggggagga ttgggtgcagg ctggggactc tctgggactc
tcctgtacag cctctggacg caccttcagt acctatgccg tgggtgggtt ccgccaggct 60
120

ccagggaaagg ggcgtgaatt tgtggacgt cttacatgga gcgggagtag aacatactat 180
gcagactccg tgaaggccg attcaccatc tccagagaca acgccaagaa cacgggttat 240
ctgcaaatga acagcctgag acctgaggac acggccgtt attactgtgc agccgactac 300
cgaagtaaca gtacctggtc cctgcaaagc ccggcacgtt atgaaaattg gggccagggg 360
acccaggtca ccgtctccag t 381

<210> 26
<211> 10
<212> PRT
<213> artificial sequence

<400> 26
Gly Arg Thr Val Ser Asn Tyr Ala Met Gly
1 5 10

<210> 27
<211> 17
<212> PRT
<213> artificial sequence

<400> 27
Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 28
<211> 19
<212> PRT
<213> artificial sequence

<400> 28
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
1 5 10 15
Tyr Glu Asn

<210> 29
<211> 126
<212> PRT
<213> artificial sequence

<400> 29
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Thr Val Ser Asn Tyr
20 25 30
Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Leu Ser Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Arg Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
100 105 110
Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 30
<211> 378
<212> DNA
<213> artificial sequence

<400> 30
caggtgcagc tgcaggagtc tggaggagga ttgggtcagg ctgggggctc tctgagactc 60
tcctgtgtag cctctggacg caccgtcagt aactatgca tggctgggtt ccggcaggct 120
ccagggaaagg agcgtgagtt tgttagcacgg attaccggga gtggtagtag cacattctat 180

gcagactccg tgaaggccg attcaccatc tccagaaaca acttgcgaa cacgggttat 240
ctgcagatga acagcctgaa acgtgaggac acggccgtt attactgtgc agcagatcgc 300
tggcggtcaa tggtacttag atctgacccg agggagtagt agaactgggg ccaggggacc 360
caggtcaccg tctccagt 378

<210> 31
<211> 10
<212> PRT
<213> artificial sequence

<400> 31
Gly Arg Thr Val Ser Asn Tyr Ala Met Gly
1 5 10

<210> 32
<211> 17
<212> PRT
<213> artificial sequence

<400> 32
Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 33
<211> 19
<212> PRT
<213> artificial sequence

<400> 33
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
1 5 10 15
Tyr Glu Asn

<210> 34
<211> 126
<212> PRT
<213> artificial sequence

<400> 34
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Thr Val Ser Asn Tyr
20 25 30
Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val
50 55 60
Lys Gly Leu Phe Thr Ile Ser Arg Asn Asn Leu Ser Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Arg Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
100 105 110
Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 35
<211> 378
<212> DNA
<213> artificial sequence

<400> 35
caggtgcagc tgcaggagtc tggaggagga ttgggtcagg ctggggctc tctgagactc 60
tcctgtgtag cctctggacg caccgtcagt aactatgca tggctgggtt ccggcaggct 120
ccagggaaagg agcgtgagtt tggtagcacgg attaccggta gtggtagtag cacattctat 180
gcagactccg tgaaggccct attcaccatc tccagaaaca acttgcgaa cacgggttat 240

ctgcagatga acagcctgaa acgtgaggac acggccgtt attactgtgc agcagatgc 300
tggcggtca tggtactag atctgacccg agggagtagt agaactgggg ccaggggacc 360
caggtcaccg tctccagt 378

<210> 36
<211> 10
<212> PRT
<213> artificial sequence

<400> 36
Gly Arg Thr Val Ser Asn Tyr Ala Met Gly
1 5 10

<210> 37
<211> 17
<212> PRT
<213> artificial sequence

<400> 37
Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 38
<211> 19
<212> PRT
<213> artificial sequence

<400> 38
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Tyr Pro Arg Glu
1 5 10 15
Tyr Glu Asn

<210> 39
<211> 126
<212> PRT
<213> artificial sequence

<400> 39
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Thr Val Ser Asn Tyr
20 25 30
Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ala Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Tyr Pro Arg Glu
100 105 110
Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 40
<211> 378
<212> DNA
<213> artificial sequence

<400> 40
caggtgcagc tgcaggagtc tggaggagga ttgggtcagg ctgggggctc tctgagactc 60
tcctgtgtag cctctggacg caccgtcagt aactatgca tggctgggtt ccggcaggct 120
ccagggaaagg agcgtgagtt tggtagcacgg attaccgggat gttggtagtag cacattctat 180
gcagactccg tgaaggcccg attcaccatc tccagagaca acgccaagaa cgcgggtgtat 240
ctgcaaatga acagcctgaa acctgaggac acggccgttt attactgtgc agcagatgc 300

tggcgttcaa tggtgactag atcttacccg agggagtagt agaactgggg ccaggggacc 360
caggtcaccg tctccagt 378

<210> 41
<211> 10
<212> PRT
<213> artificial sequence

<400> 41
Gly Arg Thr Val Ser Asn Tyr Ala Met Gly
1 5 10

<210> 42
<211> 17
<212> PRT
<213> artificial sequence

<400> 42
Arg Ile Thr Gly Ser Gly Arg Thr Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 43
<211> 19
<212> PRT
<213> artificial sequence

<400> 43
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
1 5 10 15
Tyr Glu Asn

<210> 44
<211> 126
<212> PRT
<213> artificial sequence

<400> 44
Gln Val Gln Leu Gln Glu Ser Gly Gly Val Val Gln Ala Gly Asp
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Thr Val Ser Asn Tyr
20 25 30
Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Arg Ile Thr Gly Ser Gly Arg Thr Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Leu Ser Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Arg Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Glu
100 105 110
Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 45
<211> 378
<212> DNA
<213> artificial sequence

<400> 45
caggtgcagc tgcaggagtc tggaggaggt gtgggtcagg ctggggactc tctgagactc 60
tcctgtgtag cctctggacg caccgtcagt aactatgcca tgggctgggtt ccggccaggct 120
ccagggaaagg agcgtgagtt tggtagcacgg attaccggga gtggtcgtac cacatactat 180
gcagactccg tgaaggcccg attcaccatc tccagaaaca acttgcgaa cacgggtgtat 240
ctgcagatga acagcctgaa acgtgaggac acggccgttt attactgtgc agcagatcgc 300
tggcggtcaa tggtgactag atctgaccgg agggagtagt agaactgggg ccaggggacc 360

<210> 46
 <211> 10
 <212> PRT
 <213> artificial sequence

<400> 46
 Gly Arg Thr Val Ser Asn Tyr Ala Met Gly
 1 5 10

<210> 47
 <211> 17
 <212> PRT
 <213> artificial sequence

<400> 47
 Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val Lys
 1 5 10 15
 Gly

<210> 48
 <211> 19
 <212> PRT
 <213> artificial sequence

<400> 48
 Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Asp
 1 5 10 15
 Tyr Glu Asn

<210> 49
 <211> 126
 <212> PRT
 <213> artificial sequence

<400> 49
 Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Arg Thr Val Ser Asn Tyr
 20 25 30
 Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
 35 40 45
 Ala Arg Ile Thr Gly Ser Gly Ser Ser Thr Phe Tyr Ala Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Leu Ser Asn Thr Val Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Lys Arg Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Ala Asp Arg Trp Arg Ser Met Val Thr Arg Ser Asp Pro Arg Asp
 100 105 110
 Tyr Glu Asn Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
 115 120 125

<210> 50
 <211> 378
 <212> DNA
 <213> artificial sequence

<400> 50
 caggtgcagc tgcaggagtc tgggggagga ttgggtcagg ctgggggctc tctgagactc 60
 tcctgtgtag cctctggacg caccgtcagt aactatgcc a tggctggtt ccggcaggct 120
 ccagggaaagg agcgtgagtt t gtagcacgg attaccggaa gtggtagtag cacattctat 180
 gcagactccg tgaagggccg attcaccatc tccagaaaca acttgcgaa cacgggttat 240
 ctgcagatga acaggctgaa acgtgaggac acggccgtt attactgtgc agcagatgc 300
 tggcggtcaa tggtgcactag atctgaccgc agggattatg agaactgggg ccaggggacc 360
 caggtcaccg tctccagt 378

<210> 51
<211> 10
<212> PRT
<213> artificial sequence

<400> 51
Gly Arg Thr Phe Ser Arg Tyr Ala Val Gly
1 5 10

<210> 52
<211> 17
<212> PRT
<213> artificial sequence

<400> 52
Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 53
<211> 15
<212> PRT
<213> artificial sequence

<400> 53
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr
1 5 10 15

<210> 54
<211> 122
<212> PRT
<213> artificial sequence

<400> 54
Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Arg Tyr
20 25 30
Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Leu Gly Arg Asp Phe Val
35 40 45
Ala Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr Trp
100 105 110
Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120

<210> 55
<211> 366
<212> DNA
<213> artificial sequence

<400> 55
caggtgcagc tgcaggagtc tggaggagga ttgggtgcagg ctgggggctc tctgagactc 60
tcctgtgcagc cctctggacg caccttcagt aggtatgccg tggctgggtt ccggcaggct 120
ccagggctgg ggcgtgactt tgttagcagct attacctgga gtggctggta cacatactat 180
gcggactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgggttat 240
ttgcaaatga acagcctgaa acctgaggac acggccgtt attactgtgc agtcgatacg 300
aggaatgtaa tcggcccaag agcggggagac tactggggcc aggggaccga ggtcaccgtc 360
tccagt 366

<210> 56
<211> 10

<212> PRT
<213> artificial sequence

<400> 56
Gly Ser Thr Phe Ser Arg Tyr Ala Val Gly
1 5 10

<210> 57
<211> 17
<212> PRT
<213> artificial sequence

<400> 57
Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 58
<211> 15
<212> PRT
<213> artificial sequence

<400> 58
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr
1 5 10 15

<210> 59
<211> 122
<212> PRT
<213> artificial sequence

<400> 59
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Thr Phe Ser Arg Tyr
20 25 30
Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Leu Gly Arg Asp Phe Val
35 40 45
Ala Ala Ile Thr Trp Ser Gly Tyr Thr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr Trp
100 105 110
Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120

<210> 60
<211> 366
<212> DNA
<213> artificial sequence

<400> 60
cagggtgcagc tgcaggagtc tggaggagga ttgggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctgaaag caccctcagt aggtatgccg tgggctgggtt cgcgcaggct 120
ccagggctgg ggcgtgactt tgttagcagct attacctgga gtgggtggta cacatactat 180
gcggactccg tgaaggcccg attcaccatc tccagagaca acgccaagaa cacgggtgtat 240
ttgcaaatga acagcctgaa acctgaggac acggccgtt attactgtgc agtcgatacg 300
aggaatgtaa tcggcccaag agcgggagac tactggggcc aggggaccca ggtcaccgtc 360
tccagt 366

<210> 61
<211> 10
<212> PRT
<213> artificial sequence

<400> 61
Gly Arg Thr Phe Ser Arg Tyr Ala Val Gly
1 5 10

<210> 62
<211> 17
<212> PRT
<213> artificial sequence

<400> 62
Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 63
<211> 15
<212> PRT
<213> artificial sequence

<400> 63
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr
1 5 10 15

<210> 64
<211> 122
<212> PRT
<213> artificial sequence

<400> 64
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Arg Tyr
20 25 30
Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Leu Gly Arg Asp Phe Val
35 40 45
Ala Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Ile Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Asn Val Glu Asp Thr Gly Val Tyr Tyr Cys
85 90 95
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr Trp
100 105 110
Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120

<210> 65
<211> 366
<212> DNA
<213> artificial sequence

<400> 65
cagggtcagc tgcaggagtc tggaggagga ttgggtcagg ctgggggctc tctgagactc 60
tcctgtcagc cctctggacg cacttcagt aggtatgccg tggctgggtt ccggcaggct 120
ccagggctgg ggcgtgactt tgttagcagct attacctgga gtgggtggta cacatactat 180
gcggactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgatctat 240
ctccaaatga acagcctgaa cgttgaggac acgggcgttt attactgcgc agtcgatacg 300
aggaatgtaa tcggcccaag agcggggagac tactggggcc aggggaccca ggtcaccgtc 360
tccagt 366

<210> 66
<211> 13
<212> PRT
<213> artificial sequence

<400> 66
Ala Ala Ser Gly Arg Thr Phe Ser Arg Phe Ala Met Gly
1 5 10

<210> 67
<211> 17
<212> PRT
<213> artificial sequence

<400> 67
Ala Ile Ser Trp Ser Gly Gly Met Ile Tyr Tyr Thr Asp Ser Val Lys
1 5 10 15
Gly

<210> 68
<211> 15
<212> PRT
<213> artificial sequence

<400> 68
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr
1 5 10 15

<210> 69
<211> 122
<212> PRT
<213> artificial sequence

<400> 69
Gln Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Arg Phe
20 25 30
Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Ser Trp Ser Gly Gly Met Ile Tyr Tyr Thr Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Met Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr Trp
100 105 110
Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120

<210> 70
<211> 366
<212> DNA
<213> artificial sequence

<400> 70
caggtgcagc tgcaggagtc tggggggagga ttgggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg cactttcagt aggtttgccca tgggctgggtt ccggccaggct 120
ccagggaaagg agcgtgagtt tggtagccgct attagctgga gtgggtgtat gatatactat 180
acagactccg tgaaggggccg attcaccatc tccagagaca acgccaagaa catgctgtat 240
ctgcaaatgaa acagcctgaa acctgaggac acggccgttt attactgtgc agtcgatacg 300
aggaatgtaa tcggcccaag agcggggagac tactggggcc aggggaccca ggtcacccgtc 360
tccagt 366

<210> 71
<211> 10
<212> PRT
<213> artificial sequence

<400> 71
Gly Arg Ala Phe Ser Val Tyr Pro Met Ala
1 5 10

<210> 72
<211> 16

<212> PRT

<213> artificial sequence

<400> 72

Arg Leu Thr Tyr Thr Ser Asn Thr Phe Tyr Ala Asp Ser Val Lys Gly
1 5 10 15

<210> 73

<211> 19

<212> PRT

<213> artificial sequence

<400> 73

Ala Val Glu Asn Arg Ser Ser Ser Trp Ser Leu Gln Ser Pro Ala Arg
1 5 10 15
Tyr Asp Asp

<210> 74

<211> 125

<212> PRT

<213> artificial sequence

<400> 74

Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Arg Ala Phe Ser Val Tyr
20 25 30
Pro Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Ile
35 40 45
Ala Arg Leu Thr Tyr Thr Ser Asn Thr Phe Tyr Ala Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu
65 70 75 80
Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Val Glu Asn Arg Ser Ser Ser Trp Ser Leu Gln Ser Pro Ala Arg Tyr
100 105 110
Asp Asp Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 75

<211> 375

<212> DNA

<213> artificial sequence

<400> 75

caggtgcagc tgcaggagtc tgggggagga ttgggtcagg ctgggggctc tctgagactc 60
tcatgtacag cctctggacg cgccttcagt gtctacccca tggcctgggtt ccggccaggct 120
ccagggaaagg agcgtgagtt tatagcacgt cttacgtata ctagtaacac attctatgca 180
gactccgtga agggccgatt caccatctcc agagacaacg ccaagaacac ggtgtatctg 240
cagatgaaca gcctgaaacc tgaggacacg gccgtttatt actgtgcgtt cgagaaccgc 300
agttagtagtt ggtccctgca aagccggca cgttatgatg actggggcca ggggacccag 360
gtcaccgtct ccagt 375

<210> 76

<211> 10

<212> PRT

<213> artificial sequence

<400> 76

Gly Arg Thr Gly Ser Arg Tyr Ala Val Gly
1 5 10

<210> 77

<211> 17

<212> PRT

<213> artificial sequence

<400> 77
Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly

<210> 78
<211> 15
<212> PRT
<213> artificial sequence

<400> 78
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr
1 5 10 15

<210> 79
<211> 122
<212> PRT
<213> artificial sequence

<400> 79
Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Gly Ser Arg Tyr
20 25 30
Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Leu Gly Arg Asp Phe Val
35 40 45
Ala Ala Ile Thr Trp Ser Gly Gly Tyr Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Val Asp Thr Arg Asn Val Ile Gly Pro Arg Ala Gly Asp Tyr Trp
100 105 110
Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120

<210> 80
<211> 366
<212> DNA
<213> artificial sequence

<400> 80
caggtgcagc tgcaggagtc tggaggagga ttgggtgcagg ctgggggctc tctgagactc 60
tcctgtgcag cctctggacg caccggcagt aggtatgccg tggctgggtt ccggcaggct 120
ccagggctgg ggcgtgactt tgttagcagct attacctgga gtggctggta cacatactat 180
gcggactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgatgtat 240
ctgcaaatga acagcctaaa acctgaagac acggccgtt attactgtgc agtcgatacg 300
aggaatgtaa tcggcccaag agcggggagac tactggggcc aggggaccca ggtcaccgtc 360
tccagt 366

<210> 81
<211> 17
<212> PRT
<213> artificial sequence

<400> 81
Ser Ile Asn Ser Gly Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
Gly

<210> 82
<211> 115
<212> PRT
<213> artificial sequence

<400> 82

Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ser Ile Asn Ser Gly Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
 100 105 110
 Val Ser Ser
 115

<210> 83
 <211> 345
 <212> DNA
 <213> artificial sequence

<400> 83
 gaggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctgggggtc tctgcgactc
 tcctgtgcag cctctggatt caccttcagt agctactgga tgtattggct ccgtcaggct
 ccagggaaagg ggctcgagtg ggtctcatct attaatagtg gtagtagtag cacatactat
 cgagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgctgtat
 ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct
 ggtgggtacg ccaaaggcca ggggacccag gtcaccgtct ccagt

<210> 84
 <211> 17
 <212> PRT
 <213> artificial sequence

<400> 84
 Ser Ile Ser Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
 1 5 10 15
 Gly

<210> 85
 <211> 115
 <212> PRT
 <213> artificial sequence

<400> 85
 Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30
 Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
 Ser Ser Ile Ser Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val
 50 55 60
 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
 65 70 75 80
 Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
 100 105 110
 Val Ser Ser
 115

<210> 86
 <211> 345
 <212> DNA
 <213> artificial sequence

<400> 86
gaggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctggggggtc tctgcgactc 60
tcctgtgcag cctctggatt caccttcagt agctactgga tgtattggct ccgtcaggct 120
ccagggaaagg ggctcgagtg ggtctcatct attagtagta gtagtagtag cacatactat 180
cgagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgctgtat 240
ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct 300
ggtgggtacg ccaaaggcca ggggacccag gtcaccgtct ccagt 345

<210> 87
<211> 17
<212> PRT
<213> artificial sequence

<400> 87
Ser Ile Gly Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
Gly

<210> 88
<211> 115
<212> PRT
<213> artificial sequence

<400> 88
Glu Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Gly Ser Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
100 105 110
Val Ser Ser
115

<210> 89
<211> 345
<212> DNA
<213> artificial sequence

<400> 89
gaggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctggggggtc tctgcgactc 60
tcctgtgcag cctctggatt caccttcagt agctactgga tgtattggct ccgtcaggct 120
ccagggaaagg ggctcgagtg ggtctcatct attggttagta gtagtagtag cacatactat 180
cgagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgctgtat 240
ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct 300
ggtgggtacg ccaaaggcca ggggacccag gtcaccgtct ccagt 345

<210> 90
<211> 17
<212> PRT
<213> artificial sequence

<400> 90
Ser Ile Tyr Ser Gly Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
Gly

<210> 91
<211> 115
<212> PRT

<213> artificial sequence

<400> 91
Glu Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Tyr Ser Gly Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
100 105 110
Val Ser Ser
115

<210> 92

<211> 345

<212> DNA

<213> artificial sequence

<400> 92

gagggtgcagc tgcaggagtc tggaggaggc ttgggtgcagc ctgggggtc tctgcgactc 60
tcctgtgcag cctctggatt caccctcagt agctactgga tgtattggct ccgtcaggct
ccagggaaagg ggctcgagtg ggtctcatct atttacagtg gtagtagtag cacatactat 120
cgagactccg tgaagggccg attcaccatc tccagagaca acgccaagaa cacgctgtat 180
ctgcaaatga acagtctgaa atctgaggac acggccgtgt attactgtgc aaaagatcct 240
ggtgggtacg ccaaaggcca ggggaccag gtcaccgtct ccagt 300
345

<210> 93

<211> 17

<212> PRT

<213> artificial sequence

<400> 93

Ser Ile Asn Asn Ser Asp Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15
Gly

<210> 94

<211> 115

<212> PRT

<213> artificial sequence

<400> 94

Glu Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Asn Ser Asp Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
100 105 110
Val Ser Ser
115

<210> 95

<211> 345

<212> DNA

<213> artificial sequence

<400> 95

gagggtgcagc	tgccaggagtc	tggaggaggc	ttgggtgcagc	ctggggggtc	tctgcgactc	60
tcctgtgcag	cctctggatt	cacccatgt	agctactgga	tgtattggct	ccgtcaggct	120
ccagggaaagg	ggctcgagtg	ggctctcatct	attaatagtg	acagtagtag	cacatactat	180
cgagactccg	tgaaggccg	attcaccatc	tccagagaca	acgccaagaa	cacgctgtat	240
ctgcaaatga	acagtctgaa	atctgaggac	acggccgtgt	attactgtgc	aaaagatcct	300
ggtgggtacg	ccaaaggcca	ggggacccag	gtcaccgtct	ccagt		345

<210> 96

<211> 17

<212> PRT

<213> artificial sequence

<400> 96

Ser Ile Asn Ser Gly Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val Lys

1 5 10 15

Gly

<210> 97

<211> 115

<212> PRT

<213> artificial sequence

<400> 97

Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

20 25 30

Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35 40 45

Ser Ser Ile Ser Gly Ser Ser Ser Thr Tyr Tyr Arg Asp Ser Val

50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr

65 70 75 80

Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys

85 90 95

Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr

100 105 110

Val Ser Ser

115

<210> 98

<211> 345

<212> DNA

<213> artificial sequence

<400> 98

gagggtgcagc	tgccaggagtc	tggaggaggc	ttgggtgcagc	ctggggggtc	tctgcgactc	60
tcctgtgcag	cctctggatt	cacccatgt	agctactgga	tgtattggct	ccgtcaggct	120
ccagggaaagg	ggctcgagtg	ggctctcatct	attatgtgta	gttagtagtag	cacatactat	180
cgagactccg	tgaaggccg	attcaccatc	tccagagaca	acgccaagaa	cacgctgtat	240
ctgcaaatga	acagtctgaa	atctgaggac	acggccgtgt	attactgtgc	aaaagatcct	300
ggtgggtacg	ccaaaggcca	ggggacccag	gtcaccgtct	ccagt		345

<210> 99

<211> 226

<212> PRT

<213> artificial sequence

<400> 99

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Ala Gly

1 5 10 15

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met

20 25 30

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His

35 40 45
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
50 55 60
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
65 70 75 80
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
85 90 95
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
100 105 110
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
115 120 125
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
130 135 140
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
145 150 155 160
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
165 170 175
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
180 185 190
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
195 200 205
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
210 215 220
Pro Gly
225

<210> 100
<211> 21
<212> PRT
<213> artificial sequence

<400> 100
Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
1 5 10 15
Gly Gly Gly Ser Gly
20

<210> 101
<211> 136
<212> PRT
<213> artificial sequence

<400> 101
Ile Pro Pro His Val Gln Lys Ser Val Asn Asn Asp Met Ile Val Thr
1 5 10 15
Asp Asn Asn Gly Ala Val Lys Phe Pro Gln Leu Cys Lys Phe Cys Asp
20 25 30
Val Arg Phe Ser Thr Cys Asp Asn Gln Lys Ser Cys Met Ser Asn Cys
35 40 45
Ser Ile Thr Ser Ile Cys Glu Lys Pro Gln Glu Val Cys Val Ala Val
50 55 60
Trp Arg Lys Asn Asp Glu Asn Ile Thr Leu Glu Thr Val Cys His Asp
65 70 75 80
Pro Lys Leu Pro Tyr His Asp Phe Ile Leu Glu Asp Ala Ala Ser Pro
85 90 95
Lys Cys Ile Met Lys Glu Lys Lys Pro Gly Glu Thr Phe Phe Met
100 105 110
Cys Ser Cys Ser Ser Asp Glu Cys Asn Asp Asn Ile Ile Phe Ser Glu
115 120 125
Glu Tyr Asn Thr Ser Asn Pro Asp
130 135

<210> 102
<211> 498
<212> PRT
<213> artificial sequence

<400> 102
Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly

1	5	10	15													
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	
20								25						30		
Trp	Met	Tyr	Trp	Leu	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	
35								40						45		
Ser	Ser	Ile	Asn	Ser	Asp	Ser	Ser	Ser	Thr	Tyr	Tyr	Arg	Asp	Ser	Val	
50								55						60		
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn	Thr	Leu	Tyr	
65								70						75		80
Leu	Gln	Met	Asn	Ser	Leu	Lys	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	
85									90						95	
Ala	Lys	Asp	Pro	Gly	Gly	Tyr	Ala	Lys	Gly	Gln	Gly	Thr	Gln	Val	Thr	
100								105						110		
Val	Ser	Ser	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glut	
115								120						125		
Ala	Ala	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	
130								135						140		
Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	
145								150						155		160
Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	
165									170						175	
Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	
180									185						190	
Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	
195								200						205		
Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	
210								215						220		
Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	
225								230						235		240
Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	
245									250						255	
Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	
260								265						270		
Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	
275								280						285		
Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	
290								295						300		
Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	
305								310						315		320
Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	
325									330						335	
Ser	Leu	Ser	Pro	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly				
340								345						350		
Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Ile	Pro	Pro	His	Val	Gln		
355								360						365		
Lys	Ser	Val	Asn	Asn	Asp	Met	Ile	Val	Thr	Asp	Asn	Asn	Gly	Ala	Val	
370								375						380		
Lys	Phe	Pro	Gln	Leu	Cys	Lys	Phe	Cys	Asp	Val	Arg	Phe	Ser	Thr	Cys	
385								390						395		400
Asp	Asn	Gln	Lys	Ser	Cys	Met	Ser	Asn	Cys	Ser	Ile	Thr	Ser	Ile	Cys	
405									410						415	
Glu	Lys	Pro	Gln	Glu	Val	Cys	Val	Ala	Val	Trp	Arg	Lys	Asn	Asp	Glu	
420									425						430	
Asn	Ile	Thr	Leu	Glu	Thr	Val	Cys	His	Asp	Pro	Lys	Leu	Pro	Tyr	His	
435								440						445		
Asp	Phe	Ile	Leu	Glu	Asp	Ala	Ala	Ser	Pro	Lys	Cys	Ile	Met	Lys	Glu	
450								455						460		
Lys	Lys	Lys	Pro	Gly	Glu	Thr	Phe	Phe	Met	Cys	Ser	Cys	Ser	Ser	Asp	
465								470						475		480
Glu	Cys	Asn	Asp	Asn	Ile	Ile	Phe	Ser	Glu	Glu	Tyr	Asn	Thr	Ser	Asn	
485									490						495	

<210> 103
<211> 23
<212> DNA
<213> artificial sequence

<400> 103		
gtcctggctg ctcttctaca agg		23
<210> 104		
<211> 23		
<212> DNA		
<213> artificial sequence		
<400> 104		
ggtacgtgct gttgaactgt tcc		23
<210> 105		
<211> 33		
<212> DNA		
<213> artificial sequence		
<400> 105		
ctagtgcggc cgcctggaga cggtgacctg ggt		33
<210> 106		
<211> 38		
<212> DNA		
<213> artificial sequence		
<400> 106		
cgcggatccc aggtgcagct gcaggagtct ggrrggagg		38
<210> 107		
<211> 89		
<212> DNA		
<213> artificial sequence		
<400> 107		
atttttactg ctgttttatt cgcatcc tccgcattag ctaaaagaga ggctgaagca		60
caggtgcagc tgcaggagtc tggrrggagg		89
<210> 108		
<211> 81		
<212> DNA		
<213> artificial sequence		
<400> 108		
agttgtcagt tcctgtgccc cccctctcc cgccaccc cggccgcac ctccgccacc		60
actggagacg gtgacctggg t		81
<210> 109		
<211> 123		
<212> PRT		
<213> artificial sequence		
<400> 109		
Met Phe Thr Val Thr Val Pro Lys Asp Leu Tyr Val Val Glu Tyr Gly		
1 5 10 15		
Ser Asn Met Thr Ile Glu Cys Lys Phe Pro Val Glu Lys Gln Leu Asp		
20 25 30		
Leu Ala Ala Leu Ile Val Tyr Trp Glu Met Glu Asp Lys Asn Ile Ile		
35 40 45		
Gln Phe Val His Gly Glu Glu Asp Leu Lys Val Gln His Ser Ser Tyr		
50 55 60		
Arg Gln Arg Ala Arg Leu Leu Lys Asp Gln Leu Ser Leu Gly Asn Ala		
65 70 75 80		
Ala Leu Gln Ile Thr Asp Val Lys Leu Gln Asp Ala Gly Val Tyr Arg		
85 90 95		
Cys Met Ile Ser Tyr Gly Gly Ala Asp Tyr Lys Arg Ile Thr Val Lys		
100 105 110		
Val Asn Ala Pro Tyr His His His His His		
115 120		
<210> 110		

<211> 341
<212> PRT
<213> artificial sequence

<400> 110
Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Asn Ser Asp Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr
100 105 110
Val Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
115 120 125
Ala Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
130 135 140
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
145 150 155 160
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
165 170 175
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
180 185 190
Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
195 200 205
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
210 215 220
Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
225 230 235 240
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
245 250 255
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
260 265 270
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
275 280 285
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
290 295 300
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
305 310 315 320
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
325 330 335
Ser Leu Ser Pro Gly
340

<210> 111
<211> 117
<212> PRT
<213> artificial sequence

<400> 111
Glu Val Gln Leu Gln Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Trp Met Tyr Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Asn Ser Asp Ser Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Asp Pro Gly Gly Tyr Ala Lys Gly Gln Gly Thr Gln Val Thr

100
Val Ser Ser Asp Lys
115

105

110