TREATMENT OF TEXTILES WITH CROSS-LINKABLE ACRYLIC POLYMERS AND THE RESULTING PRODUCTS

Edward W. Weitzel and Charles H. Hamby, Greenville, S.C., assignors to Dorr-Oliver-Milliken Research Corporation, Spartanburg, S.C., a corporation of Delaware

No Drawing. Filed Oct. 18, 1965, Ser. No. 497,519

Int. Cl. B44d 1/44, 1/22

U.S. Cl. 117—62

7 Claims

ABSTRACT OF THE DISCLOSURE

A process for treating sheer knit or woven textile articles to improve their resistance to pulling, snagging and picking comprising applying an aqueous acrylic polymeric emulsion containing crosslinkable groups to a textile article, drying the treated textile article partially cross-link the polymer, and curing the acrylic polymer under textile resin curing conditions so as to cross-link the polymer and to obtain a soft, resilient coating on the textile article.

This invention relates to a process and resulting article whereby a textile material is treated with a polymeric emulsion to increase the material's resistance to pulling, snagging and picking.

In the production of knitting or weaving of sheer garments such as sheer knitted stockings some difficulties arise that are peculiar to the art. Due to the deviation of production elements such as sinkers and needles in knitting machines and stitch or groups to a textile article, drying the treated textile article partially cross-link the polymer, and curing the acrylic polymer under textile resin curing conditions so as to cross-link the polymer and to obtain a soft, resilient coating on the textile article.

The fabrics or articles treated in accordance with this invention show an increased resistance to picking, snagging or pulling.

The term "picking" as used herein refers to the tendency of sheer fabrics to have unsightly broken threads and holes, this characteristic particularly being present in knitted stockings and the like. The measurement of this physical characteristic of fabrics particularly stockings can be carried out on the Hanes Pick Tester, U.S. Patent 3,044,293. This tester comprises a small cylindrical tumbling device equipped with both a number of straight pins protruding from the cylinder wall. In the use of this pick testing device the stockings are first board inspected and all defects marked and then put into the pick tester and tumbled for three minutes at approximately 18.8 r.p.m. The straight pins hold the hose as well as the bails in the tumbler thus giving hose a tumbling action. After three minutes in the tester the samples are removed and inspected for defects. Defects are classified as to their location in the hose (boot or welt). The additional defect totals are recorded.

The process of this invention is particularly beneficial in treating garments or fabrics produced from textured textile yarn. One of the textured yarns that is particularly difficult to work with and has been proven to give a relatively high number of picks, pulls and snags in woven or sheer knitted garments is "AGILON®" yarn or any equivalent edge-crimped yarn. AGILON® yarns as produced in accordance with the method and apparatus as set forth in U.S. Patent 2,919,334 to Bollinger et al. or by the apparatus set forth in Patent No. 2,977,746 to Klein, particularly shows improved results when finished in accordance with the process of this invention. It is known that AGILON® stockings, particularly those knitted from multifilament yarn, i.e., 15 denier, 3 filament will demonstrate between 10 and 20 picks per hose when tested on the Hanes pick tester described above. After treatment according to the process of this invention, the AGILON® stockings will generally when tested on a Hanes pick tester demonstrate from one to five picks per hose, under the same conditions.

Garments made from yarn produced from other tex-
turing methods such as the Pinlon process, covered in part by Patents 2,914,810, 3,153,272 and 3,174,206 will show marked improvement when finished in accordance with the process of this invention.

Yarns made by other texturing processes such as "Spunize" or by other gear crimping, stuffer box or false twist crimping methods can be treated beneficially in accordance with this invention and will improve the pick, pull and snag resistance of the garments that are so treated.

The polymers that are most useful in this invention are those known to the art as the acrylics, including particularly the acrylates. These polymers may be homopolymers or copolymers so long as the acrylate chain has both ester groups and a side chain group that is comprised of compounds selected from the group having epoxides, carboxyl and/or methylol groups. Among the most preferred polymers are the acrylates and particularly the alkyl acrylate monomers such as methylacrylate, ethylacrylate, propylacrylate, butylacrylate, pentylacrylate and the like up to and including 12 carbon atoms alkyl acrylates. Within this particular group poly-n-butylacrylate having a molecular weight in the range of one thousand to one million is the preferred species.

Any of the above acrylic monomers may be reacted with any copolymerizable compounds containing epoxide groups, carboxyl groups or methylol groups. Compounds having functional groups that can be cross-linked are preferably n-methylolacrylamide, glycidyl acrylate, acrylic acid and methacrylic acid. These co-monomers that can react in the copolymerization process or in situ to form a side chain group having an epoxide, carboxyl and/or methylol group are usually present in an amount ranging from 0.5 percent to 10 percent by weight of the polymeric material formed.

In addition to the above compounds that have functional groups that can be cross-linked, particularly where the crosslinking takes place in an in situ reaction, acrylic anhydride, glycol esters of acrylic or methacrylic acid and acrylamide may be used.

The backbone of the polymeric chain may be comprised of any of the acrylic monomers set out in the book entitled "Reaction Of The Acrylic Esters," reprinted from Chapter VI Monomeric Acrylic Esters by E. H. Riddle, published by the Reinhold Publishing Corporation, 430 Park Avenue, New York (Sp-182 copyright 1954 by the Reinhold Publishing Corporation).

The polymerization or copolymerization of these acrylic monomers may be carried out with either a persulfate or peroxide catalyst or with a redox catalyst system in accordance with the recipes and formulations set forth in the publication entitled "Emulsion Polymerization Of Monomeric Acrylic Esters," published by Rohm and Haas Company, Special Products, Washington Square, Philadelphia 5, Pennsylvania (Sp-154 published in April 1960, superseding Sp-154 dated May 1959). In these polymerization and copolymerization reactions which are generally well-known in the prior art the cross-linkable monomer should be present in the emulsion reaction in the general range of 0.2% to 20%, by weight, of the acrylic monomer.

Among the preferred cross-linkable compounds characterized above are the methyol acrylamides, e.g.:

\[
\text{HOCH}_2\text{-NH-CH=CH}_2 \quad \text{(N-methylol-acrylamide)}
\]

\[
\text{HOCH}_2\text{-NH-C=CH}_2 \quad \text{(N-methylol-N-methacrylamide)}
\]

\[
\text{HOCHCR\text{-NH-CH=CH}_2} \quad \text{(N-methylol-N-acylamide) and}
\]

\[
\text{HOCHNR\text{-CH=CH}_2} \quad \text{(N-acylamide acrylamide)}
\]

Additional suitable methyol acrylamides include those having more than one methyol group, such as shown in the following formulae:

\[
(X)
\]

\[
(Y)
\]

\[
(Z)
\]

wherein \(R^1 \) is selected from hydrogen, lower alkyl and the residue of an aldehyde; \(R^2 \) is selected from hydrogen and methyl; \(R^3 \) is selected from hydrogen and lower alkyl and \(X \) is selected from oxygen and sulfur.

Other acrylamide compounds may be utilized, e.g., alkylene-bisacylamides to provide compounds of the following formulae:

\[
(X')
\]

\[
(Y')
\]

wherein \(R^2 \), \(R^4 \) and \(X \) are as before, \(R^3 \) being hydrogen, lower alkyl or \(CH\text{OR}^4 \) wherein \(R^1 \) is as before at least one \(R^5 \) being \(CH\text{OR}^4 \). Typical compounds include that derived from acrylamide and glyoxal and the N-methyol, di-N-methylol derivatives thereof.

Additional, but less preferred, compounds include:

\[
(X'')
\]

\[
(Y'')
\]

wherein \(R^3 \), \(R^4 \) and \(X \) are as before, and \(x=1,6 \) e.g., N-methylol-methylene-bis - (acylamide), methylene-bis-(N-methylol acrylamide) and the like.

Additional, but less preferred, compounds include:

\[
(X''')
\]

\[
(Y''')
\]

wherein \(R^3 \), \(R^4 \) and \(X \) are as given above, e.g., as wherein \(R^1 \) and \(R^2 \) are hydrogen and \(X \) is oxygen.

The catalysts useful in activating the acid or base reactive groups are those conventionally used to activate the reaction of textile resins. Preferably, latent acid or base acting catalysts are utilized, that is, compounds which are acidic or basic in character under the curing conditions. The most common acid acting catalysts are the organic acids, metal salts, for example, magnesium chloride, zinc nitrate and zinc fluoroborate and the amino salts, for example, monoethanolamine hydrochloride and 2-amino-2-methyl-propanol nitrate.

The latent base acting catalyst utilized herein preferably comprises alkali-metal salts, such as alkali-metal carbonates like sodium carbonate which is neutral to mildly alkaline, for example pH of about 8.5 on the
fabric but decomposes at temperatures in excess of about 80° C. to form the stronger base sodium carbonate, which will initiate substantial reaction at the elevated temperatures during curing. Sodium carbonate may be utilized if desired since the pH of 9.5 in the fabric produced by this compound in normal condition is generally insufficient to initiate the desired degree of reaction under normal temperature conditions.

If fabrics containing a base reactive group are maintained at pH levels above ten, however, degradation occurs, so that essentially neutral or mildly alkaline catalysts are preferred when base reactive compounds are utilized.

Additional base acting catalysts include potassium bicarbonate, potassium carbonate, sodium silicate, alkali metal phosphates, such as sodium or potassium phosphates, barium carbonate, quaternary ammonium hydroxides and carbonates, for example, lauryl trimethyl ammonium hydroxides and carbonates and the like.

The amount of catalyst to be utilized is that conventionally used in activating the reaction between textile resins or polymers and hydroxy groups of cellulose, for example, up to about 5% by weight of an acid acting compound on the fabric with the preferred range being from about 1% to about 2%, based on the weight of the fiber or preferred range using a catalyst is again the conventional amount and is generally between about 0.2% to about 16%, preferably about 2 to 16%.

The amount of catalyst to be utilized will depend in part on the temperature at which the reaction is conducted and the amount of catalyst consumed in the reaction. For example, when base catalysts are used and if a highly acidic group is released during the reaction, the amount of base applied to the textile material should be at least sufficient to provide an excess of base in addition to that which is consumed by the highly acidic group.

The polymeric material described above is utilized in a water base emulsion as the treatment medium for sheer fabrics and garments in accordance with this invention. In order to carry out the processes of this invention the polymeric material is first diluted in an aqueous emulsion. The polymer may be present in an amount ranging from about 0.1% to 46% solids by weight, based upon the weight of the aqueous emulsion. In this preferred embodiment of this invention the polymeric material is primarily insoluble in water and will preferably be present in the emulsion in the approximate range of 0.3 to 28% solids, by weight, based upon the weight of the emulsion where a viscosity improver can be used to obtain a more uniform emulsion a higher solid content can be used.

In order to effect cross-linking of the polymer and in order to accomplish good adhesion to the fabric or garment substrate it is necessary to add a catalyst/initiator to the aqueous emulsion for the reaction. These catalyst/initiators are preferably acid catalysts that are well-known in the textile arts, although in certain instances and depending upon the polymers or copolymers selected, a basic catalyst may be used. Among the catalysts most frequently used are oxalic acid and diammonium phosphate.

It should be understood that any of the well-known lubricants that are conventionally used to facilitate subsequent processing of fabrics or stockings may be added to the polymeric emulsions so long as they are compatible therewith, i.e., Lanogel 418. Likewise, antifoaming agents and other additives that do not affect the "hand," stretch or other desirable characteristics of the fabric or garment may be added to the emulsion.

After the desired emulsion has been prepared and brought to the proper consistency either by the dilution of a polymeric material that may be a powder or granular or by the addition of the polymeric material to water to form an aqueous emulsion and after the catalyst has been added in a proper concentration usually ranging from 0.1% to 20%, by weight, based upon the weight of the emulsion, the process if treating the garments or fabrics is commenced.

In the usual procedure the aqueous emulsion is applied to the fabric or garment. For example, a number of stockings or other sheer fabrics or garments may be placed in a suitable container that is designed for a liquid treatment of articles and the articles or garments dipped and preferably submerged in the emulsion bath for a period of time ranging from a few seconds to five minutes or more. The emulsion bath may be at room temperature or at a temperature ranging from about 50°F. to 125°F. After the textile article has been subjected to this treatment for a required length of time the article is placed in an extractor for the purpose of extracting the excess liquid emulsion that may remain therein. This extractor may comprise a spin dryer, for example. It should be understood that other means for applying the emulsion for this invention may be utilized, for example, spraying, vapor treatment or the like. Subsequent to extraction the garments are preferably air dried for a period of time ranging approximately from an hour to 24 hours. At the end of this period the polymeric material will usually be present on the garment or fabric in a weight percentage varying from about 0.1 to 10%, based on the weight of the garment or fabric. During this period of time due to the catalytic initiator present in the emulsion, some curing or cross-linking will take place. It is preferable, though not absolutely necessary, that some curing take place in this stage so that subsequent treatments of the garments or fabric may be facilitated, without adhesion of the garments or fabrics to the processing equipment. For example, in the further processing of stockings which involves "boarding" if some curing is allowed at room temperature prior to curing in a subsequent step at higher temperature bonding may be accomplished much more quickly and with less difficulty than otherwise.

Where stockings are processed according to this invention a number of alternative boarding procedures may be used. In this first procedure to be described the stockings may be boarded while wet. Here a light coating of oil or equivalent is placed on the boards with a subsequent removal of any excess oil. The boards are then preheated to varying temperatures in the approximate range of 200 to 300°F., most preferably 240 to 260°F. Heating of the boards may be accomplished as in conventional boarding processes i.e., by use of steam. The hose are then placed on the hot boards and are allowed to remain on the boards until all wets are dry. The period of time involved in this boarding procedure will vary from approximately one to five minutes. The hose are then preferably vacuumed for a few seconds and the dry hose removed from the boards.

In an alternative procedure and the one which is preferred for use in accordance with this invention garments, including hose are allowed to dry after treatment with the above described emulsion and extraction for a sufficient period of time to effect the partial cure of this polymeric material. In this procedure the boards are coated with a light oil such as knitting oil. In any respect, such oil is removed. The hose are then placed on hot boards and are allowed to remain there for a period ranging from one to five minutes at the above temperatures. Again, the dry hose are vacuumed for a few seconds and removed from the boards.

A typical procedure for the preparation of the polymers of the type that are useful in this invention is as follows:

To a 1000 ml. round bottom five-neck flask equipped with a thermometer, a stirrer (a) with a half moon paddle, a water cooled condenser and four more openings, the addition of the chemicals listed below is started.
At first 75% of the water and of the emulsifiers and all of the sodium bicarbonate are introduced in the flask (this is the initial charge); the rest of the chemicals, except the oxidizing agent, ammonium persulfate and the reducing agent Formopon are used to form a premulsion. The premulsion must be stable in order to assure uniform and consistent addition of the chemicals. This is done by obtaining the maximum viscosity of the emulsion system upon slow addition of the acrylates to the water phase, where the emulsifiers were already dissolved, and with slow stirring, an oil in water stable premulsion is formed. The speed of the stirrer was 110–116 r.p.m. until about the last 10–15 ml of the premulsion at which point the speed was increased to 125 r.p.m. Of this premulsion 25% is added to the reaction flask after the initial charge is sparged with nitrogen for one hour and forty-five minutes at the rate of ca. 60 bubbles per minute. One hour and forty-five minutes later the reducing agent is added, followed by the addition of 68.3% of the oxidizing agent (ammonium persulfate) five minutes later. At this point the temperature begins to rise, the emulsion looks blue, and at 29° C, the addition of the balance of the premulsion is resumed, at ca. 55–65 drops per minute. The reaction temperature is kept between 25–30° C, and may be regulated to a great extent by the rate of addition of the premulsion. When the reaction temperature began to drop (even after an increase in preemulsion addition rate), then, the reaction temperature was allowed to drop to 45±1° C, while the rate of addition of the premulsion was slowed down gradually. At this point 1 ml of the oxidizing agent was added and the temperature began to rise; this was followed by an increase of the rate of addition of the premulsion to about 65 drops per minute. As the viscosity of the reaction increased the rate of stirring was increased, so as to maintain a slight vortex in the polymerization reaction. While the exotherm was being dissipated, again the same procedure was used, that is, reducing the rate of addition of the premulsion before the last portion of the oxidizing agent was added; the rate of addition was once more increased and the exotherm was sufficient to complete the premulsion addition. Ten minutes after all the premulsion was added the temperature reached a maximum of 54° C. At this point a slight drop in temperature was observed (53.7° C), vacuum was applied for thirty minutes. This brought the temperature down to 32° C. The reaction was stopped and the amount of coagulum was estimated to be <0.1 gm. Upon dilution and stirring no colob or formation was observed. A film made from this polymer was practically clear (with very few and small ripples) and extremely soft and slightly tacky.

The chemicals used in this preparation are as follows:

<table>
<thead>
<tr>
<th>Chemicals Used</th>
<th>Synonym</th>
<th>Weight or Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H2O</td>
<td>Water</td>
<td>58.5 gns.</td>
</tr>
<tr>
<td>2 Triton X-405</td>
<td>(5%)</td>
<td>1.77 gns.</td>
</tr>
<tr>
<td>3 CH3CHOOC3H7ONa(28%)</td>
<td>Sodium Lauryl Sulphate (Sles) UB</td>
<td>4.44 gns.</td>
</tr>
<tr>
<td>4 NaHCO3</td>
<td>Sodium Bicarbonate</td>
<td>0.19 gns.</td>
</tr>
<tr>
<td>5 CH3CHOOC3H7OH(10%)</td>
<td>N-Methylacrylamide</td>
<td>5.94 gns.</td>
</tr>
<tr>
<td>6 CH3CH2CH2COOH</td>
<td>Methyl Methacrylate</td>
<td>2.14 gns.</td>
</tr>
<tr>
<td>7 CH3COCH2COOH</td>
<td>Butyl Acrylate</td>
<td>11.38 gns.</td>
</tr>
<tr>
<td>8 CH2CH2COOH</td>
<td>Methacrylic acid</td>
<td>1.34 gns.</td>
</tr>
<tr>
<td>9 Na2SO3</td>
<td>Formopon</td>
<td>3.03 ml.</td>
</tr>
<tr>
<td>10 (NH4)2SO4(28%)</td>
<td>Ammonium Persulfate</td>
<td>5.36 ml.</td>
</tr>
</tbody>
</table>

A typical polymer of this type is now made by the Rohm and Haas, Co. under the name E-287. The following example is illustrative of the concept of invention and is not specifically described herein but further within the scope and spirit of the invention.

EXAMPLE

Thirty-six grams of an n-butyl acrylate with self-cross-linking methylol groups of the type prepared above (46% solids) was mixed with one gallon of water. One dozen ladies’ hose were put into a cotton dye bag and submerged in the emulsion and agitated for five minutes. The dozen hose in the cotton dye bag were removed and extracted for one minute, then air dried at room temperature for a few hours. Hose were cured by boiling at 255° F. for one and one-half minutes. Hanes pick test results on 36 tests gave an average value of 5.41 picks per hose, which is a three to four times improvement over current commercial finishes. The pick test procedure used in this example is as follows:

1. Code or number each hose to be tested.
2. Pull each hose over board and identify each pick that might be in the hose. Use an ink felt pen for marking these picks.
3. Enter six (6) hose into pick tests on each cycle.
4. Run pick tests for three (3) minutes or a clock setting of 14 on the rack clock.
5. When machine is stopped, remove hose from machine-beeing careful not to further snag the hose.
6. Pull each hose over board and count and record all picks in hose. Identify each pick in order that it will not be counted again.
7. Run hose through tests for six (6) times on procedure above.
8. At end of six (6) cycles, total all picks per stocking and get an average of picks per hose. Record results on forms provided.

Having thus described the invention what is claimed is:

1. The method of treating a stocking comprising applying an aqueous emulsion of a cross-linkable polyacrylate polymer to the stocking, drying the stocking to partially cross-link the polymer, boiling the dried stocking in the presence of steam and curing the partially cross-linked polymer to a cross-linked condition by heating to obtain a stocking made from a soft cross-linked polyacrylate coating, said cross-linkable polymer being a cross-linkable member selected from the group consisting of methylol, carboxyl and epoxy groups.
2. The method of claim 1 wherein the polymer is poly-n-butylacrylate (having a cross-linkage member selected from the group consisting of methylol, carboxyl and epoxy groups).
3. The method of claim 2 wherein the stocking is treated at a temperature in the range of 240 to 260° F. (in the presence of steam).
7. The stocking of claim 6 wherein the yarn is textured by an edge-crimping process.

References Cited

<table>
<thead>
<tr>
<th>UNITED STATES PATENTS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,075,887 4/1937 Dreyfus</td>
<td>2,157,119 5/1939 Miles</td>
<td>2,469,961 5/1949 Gottschalck</td>
</tr>
<tr>
<td>2,919,934 1/1960 Bolinger et al.</td>
<td>2,954,358 9/1960 Hurwitz</td>
<td></td>
</tr>
</tbody>
</table>

| 3,137,668 6/1964 Kuppers | | |

WILLIAM D. MARTIN, Primary Examiner
T. G. DAVIS, Assistant Examiner

U.S. Cl. X.R.