
US0078.90508B2 

(12) United States Patent (10) Patent No.: US 7,890,508 B2 
Gerber et al. (45) Date of Patent: Feb. 15, 2011 

(54) DATABASE FRAGMENT CLONING AND 6,377,959 B1 4/2002 Carlson 
MANAGEMENT 6,539,381 B1 3/2003 Prasadet al. 

6,694,337 B1* 2/2004 King et al. .................. 707/2O1 
(75) Inventors: Robert H. Gerber, Bellevue, WA (US); 6.820, 180 B2 * 1 1/2004 McBrearty et al. .......... T11 162 

Balan Sethu Raman, Redmond, WA 
(US); James R. Hamilton, Bellevue, 
WA (US); John F. Ludeman, (Continued) 
Sammamish, WA (US); Murali M. FOREIGN PATENT DOCUMENTS 
Krishna, Bellevue, WA (US); Samuel 
H. Smith, Albuquerque, NM (US); WO 2004/090724 A1 10, 2004 
Shrinivas Ashwin, Sammamish, WA 
(US) OTHER PUBLICATIONS 

(73) Assignee: Microsoft Corporation, Redmond, WA Ning An et al. “Improving performance with bulk-inserts in Oracle 
(US) R-trees.” Sep. 2003, VLDB Endowment, Proceedings of the 29th 

International Conference on Very Large Data Bases, vol. 29 (Berlin, 
(*) Notice: Subject to any disclaimer, the term of this Germany, Sep. 12, 2003), ISBN: 0-12-722442-4, pp. 948-951.* 

patent is extended or adjusted under 35 (Continued) 
U.S.C. 154(b) by 336 days. 

Primary Examiner Mohammad Ali 
(21) Appl. No.: 11/207,482 Assistant Examiner—Angelica Ruiz 

(22) Filed: Aug. 19, 2005 (57) ABSTRACT 

(65) Prior Publication Data Mechanisms and techniques for database fragment cloning 
US 2007/OO43749 A1 Feb. 22, 2007 and management are provided. A database object, Such as a 

table, rowset or index, is divided into fragments. Each frag 
(51) Int. Cl. ment is cloned to create cloned fragments, which operation 

G06F 7/00 (2006.01) ally are substantially identical to one another. One or more of 
G06F 7/30 (2006.01) the cloned fragments may be designated as a primary cloned 

(52) U.S. Cl. ....................... 707/736; 707/756; 715/227; fragment for performing database operations or as a second 
71.5/229 ary cloned fragment for serving as backup. Updates to each 

(58) Field of Classification Search ................. 707/101, fragment are implemented on the primary cloned fragment 
707/201, 20, 202, 203, 204 and are then propagated from the primary cloned fragment to 

See application file for complete search history. the corresponding secondary cloned fragments. A cloned 
fragment can go offline, becoming unavailable to be updated. 

(56) References Cited When the cloned fragment returns online, the cloned frag 
U.S. PATENT DOCUMENTS 

4,432,057 A 2f1984 Daniellet al. 
4,933,038 A 6, 1990 Liu 
5,170,480 A 12/1992 Mohan et al. 
5.440,727 A 8, 1995 Bhide et al. 
5,555,404 A 9/1996 Torbjornsen et al. 

Partition A 

Database object 

ment is refreshed with data included in the primary cloned 
fragment. While being refreshed, the cloned fragment may 
continue to be updated. The cloned fragment is eligible to be 
designated as a primary cloned fragment when the refreshing 
process has been completed. 

7 Claims, 17 Drawing Sheets 

105 

Clared 
as fragment 

B..a 

140 

Cloned 
fragment 
A.z 

Cloned 
fragment 
B.2 

Cloned 
fragment 
Brz 

  

  



US 7,890,508 B2 
Page 2 

U.S. PATENT DOCUMENTS 

7,164,676 B1* 1/2007 Chakraborty ............... 370,368 
2003/0097381 A1* 5, 2003 Detweiler et al. . ... TO7,201 
2005. O149582 A1* 7, 2005 Wissmann et al. ... TO7,201 
2008/0126439 A1* 5/2008 Kaminsky ................... 707/2O3 

OTHER PUBLICATIONS 

Betty Salzberg, Allyn Dimock; Principles of Transaction-Based On 
Line Reorganization; College of Computer Science Noartheastern 
University; Boston Massachusetts, 02115. 

International Search Report, PCT/US06/28346, Jul. 20, 2006 pp. 
1-12. 

Search Report Received for European Patent Application No. 
06800 192.4 mailed on Sep. 24, 2009, 12 pages. 
Office Action Received for European Patent Application No. 
06800 192.4 mailed on Nov. 17, 2009, 7 pages. 
International Preliminary Report on Patentability Received for PCT 
application No. PCT/US2006/028346, mailed on Feb. 28, 2008, 8 
pageS. 

* cited by examiner 

  



U.S. Patent Feb. 15, 2011 Sheet 1 of 17 US 7,890,508 B2 

100 105 

N 
Database Database object 

111 112 

Partitions Partition A Partition B OO O O Partition N 

Cloned 
fragments 

Cloned 
fragment OOOO fragment 

A. n.Z 

FIG. 1 

  

  

  



U.S. Patent 

Cloning 

Feb. 15, 2011 

Cloned 
fragment 
A.1.a 

Cloned 
fragment 
A.1.b 

Cloned 
fragment 
A. 1.C 

Sheet 2 of 17 

Cloned 
fragment 
A.2.a 

Cloned 
fragment 
A.2.b 

Cloned 
fragment 
A.2.C 

Fragmentation 

- 1 - 
152 

FIG. 2 

US 7,890,508 B2 

153 

Cloned 
fragment 
A.3.a 

Cloned 
fragment 
A.3.b 

Cloned 
fragment 
A.3.C 

  

  
  



U.S. Patent Feb. 15, 2011 Sheet 3 of 17 US 7,890,508 B2 

3OO 

301 

134 137 
Cloned 
fragment 
A.1.a 

Cloned 
fragment 
A.2.a 

Cloned 
fragment 
A.3.a 

132 
Cloned 
fragment 
A.1.b 

Cloned Cloned 
fragment 312 fragment 
A.2.b A.3b 

133 
Cloned 
fragment 
A.1.C 

Cloned 
fragment 
A.2.c 

Cloned 
fragment 
A.3.C 

303 

FG. 3 

  

    

  

  

      

  

  



U.S. Patent Feb. 15, 2011 Sheet 4 of 17 US 7,890,508 B2 

400 

fragment 
A. 1...a 

? 133 
Cloned Cioned 
fragment fragment 
A.1.b A. 1. C 

FG. 4 

  

  



U.S. Patent Feb. 15, 2011 Sheet 5 Of 17 US 7,890,508 B2 

500 

Cloned fragment 

5 

5 

5 

11 

12 

13 

Fragment identifier 

5 

Clone identifier 

14 

FIG. 5 

  



U.S. Patent Feb. 15, 2011 Sheet 6 of 17 US 7,890,508 B2 

600 

Cloned record 
identifier 

Clone update 
identifier 

FIG. 6 

  



U.S. Patent Feb. 15, 2011 Sheet 7 of 17 US 7,890,508 B2 

704 705 706 707 

Secondary 
cloned index 
fragment 

1.b 

Secondary 
cloned data 
fragment 
D2.b 

Secondary 
cloned data 
fragment 

Primary 
cloned index 
fragment 

1.a 

Primary Primary 
cloned data cloned data 
fragment fragment 
D1.a D2.a 

FIG. 7 

  

  

  

    

  

  

    

  



U.S. Patent Feb. 15, 2011 Sheet 8 of 17 US 7,890,508 B2 

805 

cloned fragment 
Online: 

Primary cloned Receiving 
fragment propagated 

as a a b d ed updates 

Secondary 
cloned fragment nRefresh 

Secondary 
cloned fragment PreRefresh 

Secondary 
cloned fragment Offline 

FIG. 8 

  

  

  

    

  

  

    

  

  

    

    

  

  



U.S. Patent Feb. 15, 2011 Sheet 9 Of 17 US 7,890,508 B2 

N 
900 

911 

Computing device 
923 

Primary 
cloned 

fragments 

Secondary 
cloned 

fragments 
912 

Computing device 
926 

Computing device 
924 

Primary 
cloned 

fragments 

Primary 
cloned 

fragments 

Secondary Secondary 
cloned cloned 

fragments fragments 

Computing device 
925 

Primary 
cloned 

fragments 

Secondary 
cloned 

fragments 

FIG. 9 

  

    

  

    

  

  

  

      

  

    

    

    

  

    



U.S. Patent Feb. 15, 2011 Sheet 10 of 17 US 7,890,508 B2 

1000 1001 

N ldentify SetOfFragments to be 
updated 

1012 

NO Stop nprocessed elements 
in SetOfFragments? 

Y ES 

Get one unprocessed element from 
SetOfFragments 

Determine primary cloned fragment 
& SetOfRecords to be updated 

Jnprocessed elemen 
in SetOfFeCords? 

1 OO6 

Mark element 
as processed 

YES 1007 

e Get one unprocessed element from 
SetOfRecords 

1008 

Get new CUD for the record 

1009 

Update record with new values and 
new CUD 

1010 

Propagate old CUID & updated 
record with new CUD to all 
secondary cloned fragments 

(See FIG. 16) 
1011 

FIG 10 

  

  

  

    

  

  



U.S. Patent Feb. 15, 2011 Sheet 11 of 17 US 7,890,508 B2 

A. 150 
N 1102 

Mark clone state as PreRefresh 

1104 

11OO 

Run PreRefresh optimizations 

Populate StaleCloneCRIDs 
temporary table in read 

Committed mode with the CRIDS 
from all inconsistent, missing 

and extra records 

1170 

Make Stale ClOne Current 
(Continue at FIG. 17) 

FIG 11 

  

  



U.S. Patent Feb. 15, 2011 Sheet 12 of 17 US 7,890,508 B2 

1200 

N 1203 

Wait for changes to 
configuration of cloned 

fragments associated with 
a table 

A cloned 
fragment has become 

unavailable? 

Increment the table's 
CUD value 

Transactionally persist the 
table's new CUD value 

FIG. 12 

    

  

  

  

  



U.S. Patent Feb. 15, 2011 Sheet 13 of 17 US 7,890,508 B2 

N 1302 
Prepare to execute a new 
statement against the 

database 

1300 

Execute the non 
DML Statement 

against the database 
DML statement? 

Read the CUD value for 
the table being updated 

1308 

Associate the CUD value 
With the DML statement 

Store the CUD value into 
each row of every primary 
cloned fragment updated 
by the DML statement 

Store the CUD Value into 
each row or index entry in 
cloned fragment affected 
by a propagated update 
of the DML statement 

(See FIG. 14) 

FIG. 13 

  

    

    

  

    

  

  



U.S. Patent Feb. 15, 2011 Sheet 14 of 17 US 7,890,508 B2 

1400 
1403 

Primary data 
cloned fragment 

1405 1409 

Secondary cloned 
data fragments 

Secondary cloned 
index fragment 

Primary cloned 
index fragment 

  

    

  

    

    

  

  



U.S. Patent Feb. 15, 2011 Sheet 15 Of 17 US 7,890,508 B2 

1500 

Computing device 

1505 

Central processing 
Unit (CPU) Output device(s) 

Input device(s) 

Communication 
device(s) 

FIG. 15 

  



U.S. Patent Feb. 15, 2011 Sheet 16 of 17 US 7,890,508 B2 

N 
1601 

1600 

Identify SetOfSecondaries to be 
updated for current record in 
primary cloned fragment 

nprocessed elements 
in SetOfSecondaries? 

YES 

Get one unprocessed element from 
SetOfSecondaries 

ecord with Same CRID 
Old CUD exists? 

Update record 
With new Vals 
& new CUD 

s the cloned fragmen 
in in Refresh State? 

Mark the cloned fragment as offline 

1609 

Mark element as processed 

FIG. 16 

    

    

  

  

    

    

  

  

    

  

    

  



U.S. Patent Feb. 15, 2011 Sheet 17 Of 17 US 7,890,508 B2 

Continue from FG. 11 

N 1114 
ldentify the first batch of CRIDs 

from StaleClOneCRIDS as 

1170 

Batch OfStaleCRIDS 

1116 1118 

Mark clone ls 
BatchOfStaleCRIDS 

empty? 

NO 1122 

Start transaction in repeatable 
read mode 

Stop 
1124 

YES State aS 
Current 

112O 

Get read locks on rows in 
primary cloned fragment 
identified by CRIDs in 
Batch OfStaleCRIDS 

1126 

Delete rows in Stale clone 
identified by CRDs in 
BatchOfStaleCRIDS 

1128 

Insert rows from primary 
identified by CRDs in 
Batch OfStaleCRDS 

Commit transaction 

Initialize next batch of CRIDS 
from StaleClOneCRDS as 

BatchOfStaleCRIDS 

1130 

1132 

FIG. 17 

  

  

    

    

    

  

    

    

  

  

  

  

  

  

  



US 7,890,508 B2 
1. 

DATABASE FRAGMENT CLONING AND 
MANAGEMENT 

BACKGROUND 

Database systems are typically used to effectively manage 
information that is organized for accessibility. To ensure 
availability, a system may include backup copies of the data 
base in case the primary copy is damaged or lost. One com 
mon technique for databasebackup is to periodically copy an 
entire database onto computer-readable media. For example, 
an information system administrator may copy the database 
onto disks or tapes at the end of each week. Although a copy 
of the database can be preserved in this manner, copying the 
entire database is time-consuming and the activities between 
the backup intervals are lost if not tracked through other 
CaS. 

Another technique of databasebackup involves maintain 
ing copies of the same database on different computing 
machines. In the event that one of the databases became 
unusable, another copy of the database in another computing 
machine can still be accessed. This type of failover backup 
can ensure database availability. However, synchronizing 
multiple copies of the entire database in different machines in 
real-time is a complex and costly process. 
An effective way to ensure the availability of a database 

without undue complexity or unnecessary loss of data con 
tinues to elude those skilled in the art. 

SUMMARY 

The following presents a simplified summary of the dis 
closure in order to provide a basic understanding to the reader. 
This summary is not an extensive overview of the disclosure 
and it does not identify key/critical elements of the invention 
or delineate the scope of the invention. Its sole purpose is to 
present some concepts disclosed herein in a simplified form 
as a prelude to the more detailed description that is presented 
later. 
The present example provides mechanisms and techniques 

for database fragment cloning and management. A database 
object, Such as a table, a rowset, index, or a partition of a table 
or index, is divided into fragments. Note that a rowset is 
considered to be a set of rows in a table or entries in an index. 
The terms row and record are considered substantially iden 
tical. Thus, a rowset is also equivalent to a recordset. Each 
fragment is cloned to create cloned fragments, which opera 
tionally are substantially identical to one another. One of the 
cloned fragments may be designated as a primary cloned 
fragment for performing database operations and one or more 
cloned fragments may be designated as secondary cloned 
fragments for purposes of serving as backup to the primary 
fragment clone. Updates to each fragment are implemented 
on the primary cloned fragment and are then propagated from 
the primary cloned fragment to the corresponding secondary 
cloned fragments. 
A cloned fragment can go offline, becoming unavailable to 

updates. Such an offline, unavailable cloned fragment is 
defined to be a stale cloned fragment, as the data in Such a 
cloned fragment may no longer be transactionally up-to-date 
with the corresponding primary cloned fragment. When the 
stale cloned fragment returns online, the cloned fragment is 
refreshed with data included in the primary cloned fragment. 
While being refreshed, the cloned fragment may continue to 
be updated. The cloned fragment becomes immediately eli 
gible as a candidate to be designated as the primary cloned 
fragment when the refreshing process has been completed. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
Many of the attendant features will be more readily appre 

ciated as the same becomes better understood by reference to 
the following detailed description considered in connection 
with the accompanying drawings. 

DESCRIPTION OF THE DRAWINGS 

The present description will be better understood from the 
following detailed description read in light of the accompa 
nying drawings, wherein: 

FIG. 1 shows an example cloning data structure of a data 
base object managed by a database system. 

FIG. 2 shows example cloned fragments of a database 
object. 

FIG.3 shows example operations for updating cloned frag 
ments of a database object. 

FIG. 4 shows example operations for refreshing a stale 
cloned fragment associated with a database object. 

FIG. 5 shows an example data structures for identifying a 
cloned fragment. 

FIG. 6 shows an example data structures for identifying a 
record in a cloned fragment of a database object. 

FIG. 7 shows example processes for updating secondary 
cloned index fragments and secondary cloned data fragments. 

FIG. 8 shows the progression of states when refreshing a 
stale cloned fragment. 
FIG.9 is an example database system with cloned database 

fragments. 
FIG. 10 shows an example process for updating a database 

object. 
FIG. 11 shows an example refresh process that refreshes a 

stale cloned fragment of a database object. 
FIG. 12 shows an example process for modifying clone 

update identifiers (CUIDs). 
FIG. 13 shows an example process for assigning a CUID 

value allocated in accordance with the process shown in FIG. 
12. 

FIG. 14 shows example propagation paths for CUID val 
CS. 

FIG.15 shows an example computer device for implement 
ing the described systems and methods. 

FIG. 16 shows an example process for propagating and 
applying updates to a record and propagating an old CUID 
value from a primary cloned fragment to all secondary cloned 
data fragments, as well as to all cloned index fragments that 
contain a copy of the record. 

FIG. 17 shows an example process for making a stale clone 
current as part of the refresh process shown in FIG. 11. 

Like reference numerals are used to designate like parts in 
the accompanying drawings. 

DETAILED DESCRIPTION 

The detailed description provided below in connection 
with the appended drawings is intended as a description of the 
present example and is not intended to represent the only 
forms in which the present example may be constructed or 
utilized. The description sets forth the functions of the 
example and the sequence of steps for constructing and oper 
ating the example. However, the same or equivalent functions 
and sequences may be accomplished by different examples. 

Although the present examples are described and illus 
trated herein as being implemented in a database fragment 
cloning and management system, the system described is 
provided as an example and not a limitation. As those skilled 
in the art will appreciate, the present examples are Suitable for 



US 7,890,508 B2 
3 

application in a variety of different types of database frag 
ment cloning and management Systems. 

FIG. 1 shows an example cloning data structure 100 of a 
database object 105 managed by a database system. A data 
base is a collection of information organized in a manner that 
enables desired pieces of data in the database to be quickly 
selected and/or updated. A database object may be the entire 
or any portion of the database. For example, database object 
105 may be an entire table, an index, a set of rows (e.g. 
rowset), or the like. 

Database object 105 may be divided into partitions 111 
113. Typically, database object 105 is partitioned for conve 
nience or performance reasons. For example, database object 
105 may include data associated with multiple years. Data 
base object 105 may be divided into partitions 111-113 where 
each partition is associated with a particularyear. Partitioning 
of database object 105 is an optional step that may or may not 
be implemented in an actual implementation. 

Each partition 111-113 of database object 105 (or the 
entire, unpartitioned object 105) is typically divided into frag 
ments, such as fragments 121-124. Fragments 121-124 are 
portions of database object 105 divided by the database sys 
tem on an operational basis. For example, fragments 121-124 
may be assigned to different computing devices so that a 
query associated with database object 105 may be performed 
with fragments 121-124 by the computing devices working in 
parallel. 

Fragments in database object 105 are further cloned to 
create cloned fragments. As shown in FIG. 1, each of logically 
divided fragments 121-124 are cloned to produce example 
cloned fragments 131, 140-146. Typically, fragments of a 
database object (or of a partition of a database object) are 
created by splitting Such an object into discrete sets of rows 
(for tables) or index entries (for indices). Hashing on a key of 
a table or index is one basis for accomplishing Such splitting. 
Sets of rows are sometimes referred to as rowsets or as sets of 
records. Cloned fragments will be discussed in more detail in 
conjunction with FIG. 2. Briefly stated, when properly 
updated, the cloned fragments associated with a particular 
fragment of database object 105 are operationally identical so 
that the cloned fragments may be readily used by the database 
system. The use of cloned fragments enable two or more 
copies of a particular fragment to be available for use. Such as 
to maintain a high level of data availability, speed up queries 
and other database operations, perform load-balancing, or the 
like. For example, to maintain a high level of data availability, 
at least one cloned fragment may serve as a backup of another 
cloned fragment that is used for database operations. To speed 
up searches, multiple operationally identical cloned frag 
ments may be used concurrently for database queries. To 
perform load-balancing, different, but operationally identical 
copies of cloned fragments may be activated based on work 
load conditions. 

FIG. 2 shows example cloned fragments 131-139 of a 
database object. As shown in the figure, the cloned fragments 
131-139 can be viewed as three groups 151-153. Each group 
of cloned fragments is related to a particular fragment of a 
database object. The cloned fragments within each group are 
created as operationally identical to each other. Thus, when 
properly updated, each of the cloned fragments 131-139 can 
be used for database operations that are applicable to the 
corresponding fragments 151-153. 

In one embodiment, cloned fragments 131-139 may be 
configured to provide a high level of data availability. In this 
embodiment, a cloned fragment from each of the groups 
151-153 can be designated as the primary cloned fragment for 
database operations. Other cloned fragments in the group are 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
secondary cloned fragments that serve as readily available 
backups. In FIG. 2, cloned fragments 131, 135 and 139 are 
shown as primary cloned fragments while the remaining 
cloned fragments are designated as secondary cloned frag 
mentS. 

To provide a high level of data availability, each of the 
cloned fragments in the group may be included in different 
devices so that if one of the devices fails, a secondary cloned 
fragment in another device can very quickly replace the 
cloned fragment in the failed device as the primary cloned 
fragment. For example, cloned fragments 131-133 may each 
be included in separate devices so that either of the secondary 
cloned fragments 132-133 may be designated as primary if 
the device in which the primary cloned fragment 131 is 
included fails. 
The database system that manages the cloned fragments 

may perform various operations on cloned fragments. These 
operations are typically performed using standard database 
operations, such as Data Manipulation Language (DML) 
statements or other structured query language (SQL) state 
ments. Example operations to update and refresh cloned frag 
ments will be discussed in more detail in conjunction with 
FIGS. 3 and 4. In one example implementation, operations 
may include: 

1. Creating a cloned fragment 
A cloned fragment can be created to be indistinguishable 

from a normal table or an index rowset in a database. 
2. Deleting a cloned fragment 
Clones can be deleted just like rowsets in a database. 
3. Fully initializing a cloned fragment's data 
A cloned fragment can be completely initialized, from 

scratch, to contain a new rowset that is loaded into the 
cloned fragment. 

4. Propagating data changes to a cloned fragment 
Changes to the primary cloned fragment are propagated to 

one or more secondary cloned fragments. Propagation 
occurs within the same transactional context as updates 
to the primary cloned fragment. 

5. Refreshing a stale cloned fragment 
When a cloned fragment has been offline or has otherwise 

not received transaction propagation of updates from the 
primary cloned fragment, it is defined to be a stale 
cloned fragment. Stale cloned fragments can also be 
described as outdated fragment clones. The process of 
bringing a stale clone back to transactional consistency 
with a primary fragment clone is called refresh. 

6. Reading a cloned fragment 
A cloned fragment can be read for purposes of data 

retrieval (table access) or for lookup (index access) just 
like normal tables or indices are read and accessed. In 
this implementation, user workloads only read from pri 
mary cloned fragments. This restriction may be used for 
purposes of simplifying the mechanism for avoiding 
unnecessary deadlocks in the system. However, this 
restriction may be relaxed if deadlocks are either not a 
problem or are avoided through other means in a given 
system. 

7. Updating a cloned fragment 
User workloads update the primary cloned fragment and 

the database system propagates and applies those 
changes to secondary clones corresponding to that pri 
mary fragment within the same transaction. Propagating 
a change means applying a Substantially identical DML 
operation to a secondary clone that was applied to a 
primary clone. 

FIG.3 shows example operations 300 for updating cloned 
fragments 131-139 of a database object. Database updates 



US 7,890,508 B2 
5 

may include any type of modifications, such as adding, delet 
ing and changing data. When changes associated with a data 
base object are determined, the fragments in the database 
object that need to be updated are identified. The primary 
cloned fragments corresponding to the identified fragments 
are updated. As shown in the figure, operations 301-303 are 
operations to update primary cloned fragments 131, 135 and 
139, respectively. After primary cloned fragments 131, 135 
and 139 have been updated, the updates are then propagated 
to the corresponding secondary cloned fragments. In FIG. 3, 
operations 311-313 are operations to update the secondary 
cloned fragments corresponding to the updated primary 
cloned fragments. 

Typically, operations 301-303 and 311-313 are imple 
mented via the standard database operations of insert, update 
and delete that implement the DML statement semantics. To 
achieve consistency, the operations to update a primary 
cloned fragment and the operations to update the secondary 
fragments corresponding to the primary cloned fragment may 
be configured as an atomic set of operations. 

FIG. 4 shows example operations 400 for refreshing a stale 
cloned fragment 133 associated with a database object. A 
cloned fragment is stale if the fragment has not been available 
to execute the propagated update operations associated with 
the database object corresponding to the Stale fragment. For 
example, cloned fragment 133 might have been unavailable 
for updating due to a variety of reasons, such as a device 
failure, loss of connectivity, system update, or the like. To be 
useful, secondary cloned fragment 133 will have to be 
brought back to transactional consistency with primary 
cloned fragment 131 through a refreshing process. 
When cloned fragment 133 returns online and becomes 

available to execute updating operations, cloned fragment 
133 is refreshed based on data included in the current, pri 
mary cloned fragment that contains all current and past 
updates. For example, in FIG.4, clone refresh operation 413 
is executed to refresh cloned fragment 133 with data included 
in primary cloned fragment 131. In this manner, cloned frag 
ment 133 is refreshed with updates that occurred while cloned 
fragment 133 was unavailable. For efficiency, clone refresh 
operation 413 can be implemented via SQL delete operations 
that remove stale rows and SQL insert operations that add 
new rows copied from the primary. Such an implementation 
enables the refreshing operation to be managed via similar 
executions paths to those used by normal SQL statement 
executions in the database system without adding extra pro 
CCSSCS. 

An update operation 401 for primary cloned fragment 131 
occurs when an update for the database object affects the 
portion of the object corresponding to the primary cloned 
fragment 131. The update is then propagated to secondary 
cloned fragments associated with primary cloned fragment 
131. As shown in FIG. 4, secondary cloned fragment 132 is 
updated by operation 411 associated with primary cloned 
fragment 131. The need to update a cloned fragment can 
occur while the cloned fragment is being refreshed. For 
example, an update for cloned fragment 133 may occur while 
clone refresh operation 413 is executing. Update operation 
412 can be performed on cloned fragment 133 while clone 
refresh operation 413 is executing. Typically, a user's update 
operation 412 is a higher priority database operation than 
clone refresh operation 413. Update operation 412 and clone 
refresh operation 413 may be implemented in a variety of 
ways and timing relative to each other. For example, when 
updating is necessary, update operation 412 on cloned frag 
ment 133 may be completed before clone refresh 413 contin 
ues. Furthermore, clone refresh 413 is designed to minimize 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
both the frequency and duration of any delays caused due to 
locking againstany given update operation 412. Clone refresh 
accomplishes that by running as a sequence of Small, trans 
actional batches that take and hold locks for only short inter 
vals of time. Operation 412 updates only the rows or entries in 
the stale clone that have already been refreshed by operation 
413 or that remained unchanged in the primary while the stale 
clone was offline. That is, operation 412 is prevented from 
updating a row that is out-of-date in a stale clone. A propa 
gated update operation is not allowed to make an inconsistent 
row in a stale clone appear to be up-to-date. This restriction 
could be relaxed in an implementation in which an entire row 
is propagated with update 412. However, performance rea 
Sons would tend to discourage Such an operation 412 that 
propagated entire rows for all DML operations, regardless of 
whether only a few column values had changed. It is the 
responsibility of the clone refresh operation 413 to introduce 
new, up-to-date rows into a stale clone. 

Operations 400 to refresh a stale cloned fragment shown in 
FIG. 4 enable a database system to refresh a stale cloned 
fragment back to transactional consistency with the corre 
sponding primary fragment, while maintaining the online 
status of that primary using standard database operations. The 
use of standard database operations, such as those represent 
ing DML statements, allows clone refreshing to be managed 
as an extra, but standard SQL statement load on the database 
system, without the need for special processes. Operations 
400 also enables the refreshing of a stale cloned fragment 
without having to exclusively lock the entire fragment and 
without having to prolong the refreshing process with the 
need to catch up the updates that may have occurred during 
the refresh process, since those updates continue to be applied 
while the refresh operation 413 proceeds Significantly, opera 
tions 400 further enable a stale secondary cloned fragment to 
be efficiently updated so as to quickly become eligible to be a 
primary cloned fragment. 

In one example implementation, clone refresh operation 
413 includes multiple small batches of refreshing operations. 
Using Small batches of refreshing operations avoids blocking 
out concurrent user workloads for large periods of time. Thus, 
the refreshing process is performed in an incremental fashion, 
allowing the process to co-exist online with user workloads. 

Multiple instances of the clone refresh operation 413 
shown in FIG. 4 can run concurrently against different stale 
cloned fragments within the same or different fragments of 
any database object. That is, Such refresh operations are inde 
pendent of each other. 

FIG. 5 shows an example data structures 511-514 for iden 
tifying a cloned fragment 500. Data structure 500 is used to 
identify a cloned fragment corresponding to a database 
object. In this example, the data structure identifies cloned 
fragment 500 that corresponds to a table associated with a 
database. As shown in FIG. 5, the identifier for cloned frag 
ment 500 may include table identifier 511, partition identifier 
512, fragment identifier 513 and clone identifier 514. Table 
identifier 511 identifies the database object (a table in this 
case) to which cloned fragment 500 corresponds. A database 
object may be divided into partitions to separate data for 
convenience or performance reasons. Partition identifier 512 
identifies the partition to which cloned fragment 500 corre 
sponds. 
The database system that manages the database object is 

configured to automatically separate the database object into 
fragments and to clone the fragments. Fragment identifier 513 
identifies the particular fragment of the database object to 
which cloned fragment 500 corresponds. Clone identifier 514 



US 7,890,508 B2 
7 

identifies cloned fragment 500 among the multiple cloned 
fragments associated with the particular fragment of the data 
base object. 

FIG. 6 shows an example data structures 611-612 for iden 
tifying record 600 in a cloned fragment of a database object. 
A cloned fragment can include records (or index entries) of a 
database. For example, the cloned fragment may include 
records embodied as rows in a portion of a table associated 
with the database. Data structures 611-612 in record 600 
enable record 600 in the cloned fragment and the update 
status of the record to be identified. 
As shown in FIG. 6, record 600 may include a cloned 

record identifier 611 and a clone update identifier 612. Cloned 
record identifier 611 uniquely identifies record 600 within the 
corresponding table or index. Cloned record identifiers in 
index records are propagated with updates from the corre 
sponding cloned data fragments. A user-defined unique key 
may be used as a cloned record identifier or a system defined 
unique key may be added (or augmented to the user defined 
key) Such that the composite key is Sufficiently unique to 
serve as a cloned record identifier. For example, a fragment 
identifier can be added to a key for purposes of providing 
additional uniqueness. A clone update identifier identifies the 
update status of record 600. In this example implementation, 
cloned record identifier 611 should be unique within the 
context of a given table. Clone update identifier 612 only has 
to uniquely identify the update status of a record relative to the 
update status of the other records with the same cloned record 
identifier 611 for a given database object uniquely over time. 

In one embodiment, a database system includes primary 
cloned fragments and secondary cloned fragments and the 
cloned fragments include rows. Both cloned record identifier 
611 and clone update identifier 612 may be included as col 
umns in the rows of cloned fragments. The columns of cloned 
record identifier 611 and clone update identifier 612 may be 
included in the secondary cloned fragments, and contain 
identical values as they do on the primary cloned fragment 
when a secondary cloned fragment is transactionally consis 
tent. Thus, the cloned record identifier 611 enables a mapping 
of rows between primary and secondary cloned fragments, 
and clone update identifier 612 allows the verification of 
whether the rows are consistent. 

The refreshing process for a stale cloned fragment uses the 
cloned record identifier (CRID) and clone update identifier 
(CUID) to determine whetheraparticular record in the cloned 
fragment should be refreshed. For example, a record in a stale 
cloned fragment may include: 

CRID=x and CUID=y 

The corresponding record in the primary cloned fragment 
associated with the stale cloned fragment may include: 

CRID=x and CUID=Z 

The refreshing process uses the CRID to identify each record 
in the stale cloned fragment and to locate the corresponding 
record in the primary cloned fragment, if it exists. The 
refreshing process then compares each Such record in the 
stale cloned fragment with the corresponding record in the 
primary cloned fragment, if it exists, to determine whether the 
record in the stale cloned fragment should be updated. 

Fragments of a database object can be any type of frag 
ments, such as a data fragment, an index fragment, or the like. 
For an index fragment, each row in an index specifies where 
the row came from by storing its data fragment identifier as 
part of the index key. The index itself does not need to know 
which of the clones of a base table fragment is currently the 
primary. As there is one primary cloned fragment for a given 
fragment, an index record can be mapped to a specific frag 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
ment for access purposes, at any given time. Thus, index 
fragments may include a co-existing collection of disjoint 
secondary rowsets (or index entries) that refer to different 
fragments of a table. As long as each Such secondary rowset is 
treated separately from the others in the same index fragment, 
the assumptions and the technique outlined above continue to 
apply. For implementation, locking the rows in an index frag 
ment corresponding to any particular base table fragment 
should not cause any locking on the other rows in the index 
fragment (which do not correspond to that base table frag 
ment). 

Index fragments can be cloned similar to data fragments. 
For the purposes of update propagation, cloned index frag 
ments are treated as additional indexes on the same set of base 
table fragments. That is, updates to all cloned index fragments 
propagate directly from the primary cloned data fragments of 
the base table on which the cloned index fragments are built. 
While it is possible to propagate updates from one index 
fragment to another, this process may introduce an additional 
latency step. If the set of index entries in a given index frag 
ment corresponding to the records in a given data fragment 
are treated as a secondary rowset, then the corresponding 
primary rowset is substantially identical to a base table frag 
ment. Each secondary rowset in a clone of an index fragment 
is thus independent of all the other secondary rowsets within 
that same clone for update propagation purposes. 

FIG. 7 shows examples processes for updating cloned 
index fragments and cloned data fragments. As discussed 
above, an up-to-date (or current) secondary cloned fragment 
of a data fragment is Substantially identical to the primary 
cloned fragment for a given data fragment. Similarly, an 
up-to-date secondary cloned fragment of an index fragment is 
Substantially identical to the primary cloned fragment for that 
index fragment. Cloned index fragments are allowed to con 
tain index entries that refer to records in more than one data 
fragment. Hence, cloned index fragments may receive propa 
gated updates from more than one cloned data fragment. 
The example in FIG.7 shows an index fragment I1 contains 

index entries that reference records in two distinct data frag 
ments, D1 and D2. In this example, both the primary cloned 
index fragment I1.a 705 and secondary cloned index frag 
ment I1.b706 receive propagated updates directly from both 
the primary cloned data fragment D1.a 702 and the primary 
cloned data fragment D2.a 703. 
The mapping between data fragments and index fragments 

represents the result of a standard database operation called 
physical database design. For any given indexed column of a 
table, column values can be discretely mapped to one or more 
index fragments based upon the partitioning and fragmenta 
tion definitions of the index. The partitioning definitions for 
tables and indices may specify any of the traditional database 
methods of spitting records into sets, e.g. by ranges of values, 
hashing of values or via round-robin assignments. System 
defined fragmentation definition is accomplished via hashing 
on a key of a table or index. However, if the hash based 
fragmentation populates fragments with rows (or index 
entries) in a highly disproportionate, data-skewed fashion, a 
round-robin assignment of rows to fragments can be used. 
When a cloned index fragment becomes Stale and needs to 

be refreshed, there are two potential ways to accomplish the 
refresh. If a primary cloned index fragment exists, the Stale 
secondary cloned index fragment can be refreshed directly 
from that primary cloned index fragment. Alternately, a stale 
secondary cloned index fragment can be directly refreshed 
from the set of primary cloned data fragments of the indexed 
table. In the latter case, only those records in the primary 



US 7,890,508 B2 
9 

cloned data fragments are used in the refresh whose key 
values map to the index fragment that is being refreshed. 

In an example implementation, clone update identifier 
(CUID) values may be maintained on a per-table basis. That 
is, for a DML statement that updates a given primary cloned 
fragment, a CUID value is read from metadata specific to that 
fragments table. Records that are updated by that statement 
are assigned that CUID value. When the updates to those 
records are propagated to a secondary cloned fragment, the 
new CUID values assigned are also propagated. 

In this example implementation, CUID values are unique 
to a given table over time. The current CUID value is persisted 
transactionally in the metadata that describes a given table. 

At the point that CUID values hit the point of wrapping 
around from a maximum value to a minimum value, various 
techniques can be used to reset CUID values to a consistent 
minimum value. Given the byte range of values for CUIDs 
(e.g. around 6 bytes), this case would occur on a historical 
scale of time. One simple technique for resetting CUID val 
ues would take an exclusive lock on a table and reset the 
CUID values in all records in that table's primary cloned 
fragments to the minimum CUID value. Then, the normal 
update propagation mechanism would effectively reset the 
CUIDs in the secondary cloned fragments. 
The CUID values for a table are incremented every time a 

fragment of the table goes offline. This implementation will 
be discussed below in conjunction with FIG. 12. 

Other CUID assignment policies are possible, but each has 
the potential to affect the basic technique for clone refresh. 
For example, transaction IDs can be used as a basis for CUID 
values, but require a somewhat less advantageous clone 
refresh technique in order to ensure update propagation and 
clone refresh interact correctly. Specifically, in the WaitFor 
Propagation step (described below), the basic Clone Refresh 
technique would have to wait for all currently active transac 
tions to complete, instead of just waiting for all current DML 
statements to complete. 

In general, a technique for managing CUID values can be 
implemented if the technique can satisfy the following 
requirements: 

a) For a given CRID value used within a fragment, all 
records identified by that CRID value in transactionally 
consistent secondary cloned fragments must have CUID 
values that are identical to the CUID value in the record 
identified by that CRID value in the primary cloned 
fragment. 

b) For a given fragment, if a CRID is found in a stale 
secondary cloned fragment (prior to refresh) as well as 
in the primary cloned fragment, then the CUIDs can be 
the same only if the row has not been updated in the 
primary cloned fragment since the secondary cloned 
fragment became stale. 

An example DML statement for updating a cloned frag 
ment is shown below. The example DML statement includes: 
two records in Sales.2004.1.a (cloned record identifiers 
(CRIDs): 5 & 3) that are updated using a CUID value of 3. 
The example Sales.2004.1.a primary cloned fragment is 

shown in 

TABLE 1. 

Primary cloned fragment Sales.2004.1.a. 

CRID CUID Other columns 

1 2 
5 3. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 

TABLE 1-continued 

Primary cloned fragment Sales.2004.1.a. 

CRID CUID Other columns 

7 1 
3 3. 
8 1 

After the primary cloned fragment Sales.2004.1.a is 
updated, those updates are propagated and applied to the 
secondary cloned fragment Sales.2004.1.b as shown in Table 
2. 

TABLE 2 

Primary cloned fragment Sales.2004.1.b 

CRID CUID Other columns 

1 2 
5 23. 
7 1 
3 13 
8 1 

At a given point in time, an available fragment has one 
primary cloned fragment (potential source for a clone refresh) 
and N Secondary clones (potential targets of a refresh). A 
secondary cloned fragment whose rows are not transaction 
ally consistent with the corresponding rows in a primary 
cloned fragment is an outdates or stale cloned fragment. The 
rows (records or index entries) within a stale cloned fragment 
can be in one of the following example states. The term 
primary row refers to a row in a primary cloned fragment. 
Rows within a stale cloned fragment may be: 

1. Consistent 
Primary row didn't change while the stale secondary 

cloned fragment was offline. Or else, a refresh process 
has already updated the row in the stale secondary 
cloned fragment to be consistent with a corresponding 
primary row. A consistent row in a secondary cloned 
fragment corresponds to a row in a primary cloned frag 
ment that has the same CRID and CUID values. 

2. Inconsistent 
Primary row was updated while stale secondary cloned 

fragment was offline. An inconsistent row in a stale 
secondary cloned fragment corresponds to a row in a 
primary cloned fragment with the same CRID value, but 
a different CUID value. 

3. Missing 
New primary row was created while the stale secondary 

cloned fragment was offline. A missing row in a stale 
secondary cloned fragment describes the case when 
there exists a primary row with a CRID value for which 
there is no corresponding row in the Stale secondary 
cloned fragment with the same CRID value. 

4. Extra 

Primary row was deleted while stale secondary cloned 
fragment was offline. An extra row in a stale secondary 
cloned fragment describes the case when there exists a 
row in the stale secondary cloned fragment with a CRID 
value for which there is no corresponding row in the 
primary cloned fragment with the same CRID value. 

The CRIDs of the stale clone's rows that are not consistent 
are captured in a temporary file (StaleCloneCRIDs) in an 
early stage of the refresh technique. Thattemporary file has a 



US 7,890,508 B2 
11 

column, Stale CRID with values that identify records that 
need to be refreshed, e.g. that are inconsistent, missing, or 
extra. In one implementation of the temporary file (Stale 
CloneCRIDs), an additional Batch ID column can be added 
and initialized with values that simplify the process of access 
ing discrete sets of rows within StaleCloneCRIDs in a number 
of Small, incremental batch operations. 

FIG. 8 shows the progression of states when refreshing a 
stale cloned fragment. As shown in FIG. 8, secondary cloned 
fragment 805 progresses from an Offline state to a PreRefresh 
state. While the stale clone is in the PreRefresh state, opera 
tions can be applied to the Stale clone for purposes of opti 
mizing the performance of the refresh operation. Next, sec 
ondary cloned fragment 805 is considered to be online and is 
placed in the InRefresh state. The stale cloned fragment 
remains in the InRefresh state while being refreshed. In this 
state, secondary cloned fragment 805 may be updated by 
changes propagated from the primary cloned fragment 803. 

After the refreshing process has been performed, second 
ary cloned fragment 805 enters the Current state. Once sec 
ondary cloned fragment 805 enters the Current state, it is 
eligible to become a primary. 

FIG. 11 shows an example refresh process 1100 that 
refreshes a stale cloned fragment of a database object. 

O. StaleCloneCDnline 1150: 
In block 1102, when a stale clone is targeted for Clone 

Refresh (e.g. when it becomes accessible to the system 
after being offline), it is placed in a PreRefresh state. 
Next, in block 1104, pre-pass optimizations can be 
executed while the cloned fragment is in the PreRefresh 
state. Such optimizations are designed to optimize the 
Subsequent performance of the remainder of the refresh 
process 1100. 

1. Enable UpdatePropagation 1160: 
The stale cloned fragment is marked as being in the InRe 

fresh state at block 1106. Then, at block 1108, propaga 
tion of updates are enabled from the primary cloned 
fragment to the stale cloned fragment. The application of 
propagated updates to the stale cloned fragment may be 
Selective. For example, the application of propagated 
updates is performed only on those records that have 
already been refreshed or that can be determined to 
require no refresh. That is, propagated updates are 
applied only to records whose CUID values for a given 
CRID value match that of the corresponding record in 
the primary cloned fragment. In another example imple 
mentation, if entire row values are propagated by 
updates, then updates can be propagated and applied to 
any record of a stale cloned fragment while the cloned 
fragment is being refreshed. 

2. WaitForPropagation 1110: 
At the next block 1110, the refresh process 1100 waits until 

all active DML statements on the primary cloned frag 
ment have started to propagate updates to the stale 
cloned fragment. (Or an equivalent mechanism is used 
that ensures all subsequent DML to the primary is con 
sistently propagated to the stale cloned fragment.) Block 
1110 can beachieved by waiting for all currently execut 
ing DML statements to complete, as any newly activated 
DML statement is guaranteed to propagate updates to all 
online cloned fragments, including stale cloned frag 
ments in the InRefresh state. 

3. BuildStaleCloneCRIDS 1112: 
At block 1112, in ReadCommitted mode, the Stale 
CloneCRIDs temporary table is created and initialized. 
StaleCloneCRIDs is guaranteed to cover all non-up-to 
date rows (inconsistent, missing and extra rows) in the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
stale cloned fragment, but due to running in ReadCom 
mitted isolation mode, StaleCloneCRIDs may occasion 
ally include CRIDS rows that are actually consistent. In 
one implementation of populating the StaleCloneCRIDs 
temporary table, a SQL outer join operation can be used 
on the corresponding cloned record identifier (crid) col 
umns of the primary and Stale cloned fragments where 
the corresponding clone update identifier (cuid) column 
values do not match or are null. The following pseudo 
code provides an example of one Such outer join. Note 
that in this example, an additional Batch Id column is 
added to the StaleCloneCRIDs table to provide an 
example basis that could be used for creating refresh 
batches of a given size. 

SELECT 
(case when (p.crid is not null) then p.crid else c.crid end) as crid, 
IDENTITY(int, 1,1) AS Batch. Id 

into 
StaleCloneCRIDS 

FROM 
(select crid, cuid from primary fragment clone) as p 
FULL OUTER JOIN 
(select crid, cuid from Stale fragment clone) as c 
ON (p.crid = c.crid) 

where 
p.cuid <> c.cuid OR 
(p.crid is null) OR 
(c.crid is null) 

4. MakeCurrent 1170: 
FIG. 17 shows an example process 1170 for making a stale 

clone current. Process 1170 is part of the example 
refresh process 1100 shown in FIG. 11. 

The first small batch (BatchOfStaleCRIDs) of Stale 
CRIDs from the StaleCloneCRIDs temporary table is 
initialized in block 1114. In one example of block 1114, 
the BatchOfStaleCRIDS are defined to be the CRIDs of 
rows in the StaleCloneCRIDs temporary table whose 
Batch Id column values are between the parameterized 
values of (a)start Id and (alend Id. The initial, actual 
(a)start Id value is set to be that of the smallest Batch. Id 
column value (e.g. Batch Id initialized with the seed 
value of 1 by the IDENTITY function) in the Stale 
CloneCRIDs temporary table. The initial, actual 
(aend Id value is then set to the value of the desired 
Batch.Size. The value of Batch.Size can be varied to 
achieve different refresh goals. A smaller value of 
Batch.Size can provide greater concurrency with ongo 
ing user workloads. A larger value for Batch.Size may 
potentially yield better refresh performance. At decision 
block 1116, a check is made to determine whether the 
BatchOfStaleCRIDs is empty. If the BatchOfStale 
CRIDs is empty, refresh process 1100 proceeds to block 
1118 and marks the refreshed cloned fragment as being 
in the Current state. A secondary cloned fragment in the 
current state is eligible to become a primary cloned 
fragment. Then, process 1100 exits at block1120. 

Ifat decision block 1116, the BatchOfStaleCRIDs is found 
not to be empty, then: 

a. At block 1122, a new transaction is started in Repeated 
Read mode. 

b. At block 1124, read locks are set on rows in the primary 
cloned fragment identified by BatchOfStaleCRIDs. This 
step is not functionally required, but is important for 
purposes of avoiding potential deadlocks with propa 
gated updates. 



US 7,890,508 B2 
13 

c. At block 1126, rows are deleted in the stale cloned 
fragment that are identified by CRIDs in the BatchOf 
StaleCRIDs. The following pseudo-code describes one 
example implementation of deleting out-of-date rows 
from a stale cloned fragment. The actual values of 5 
(a)start Id and (aend Id are those set earlier in the 
MakeCurrent process 1170 (at block 1114 or block 
1132). 

delete from stale fragment clone 
where exists (select * from StaleCloneCRIDs ass 

where stale fragment clone.crid = s.crid and 
(S.Batch Id between (a)start Id and (ciend Id)) 

d. At block 1128, rows are inserted from the primary clone 
that are identified by BatchOfStaleCRIDs into the stale 
cloned fragment. An example pseudo-code description 
of one example implementation of inserting new rows 
from the primary fragment into a stale cloned fragment 
follows. The actual values of (a start Id and (a end Id 
are those set earlier in the MakeCurrent process 1170 (at 
block 1114 or block 1132). 

insert into stale fragment clone 
Select from primary fragment clone asp 
where exists 

(select * from StaleCloneCRIDs ass 
where p.crid = s.crid and 
(S.Batch Id between (a)start Id and (ciend Id)) 

e. At block 1130, the transaction is committed 
f. At block 1132, the next batch of CRIDs from the Stale 
CloneCRIDs temporary table are identified as the next 
BatchOfStaleCRIDS. The actual values used for the 
(a)start Id and (alend ID are each incremented by the 
value of the desired Batch.Size. 

g. The refresh process 1100 then proceeds back to block 
1116. 

If errors occur during the processing of a BatchOfStale 
CRIDs, then the transaction is aborted and the refresh 
process 1100 exits. 

If the refresh process 1100 does not complete successfully, 
the stale cloned fragment is moved to the PreRefresh 
state (or to the Offline state if access was completely lost 
to the stale cloned fragment). 

The example cloned fragment refreshing technique makes 
continuous forward progress, while minimizing conflicts 
with existing workloads via Small, short transactions. The 
clone refresh technique discussed above can also be applied 
to cloned index fragments, just as it is applied to cloned data 
fragments. In one example implementation, stale secondary 
cloned index fragments can be refreshed from the corre 
sponding primary cloned index fragment. 

If all of the cloned data fragments for a base table fragment 
go offline, then the rows corresponding to that fragment in 
every index fragment are effectively offline as well. When the 
base table primary cloned fragment comes back offline, the 
refresh technique operates on any Stale table cloned data 
fragments as well as on any stale cloned index fragments. At 
that point, updates operations are propagated to the Stale 
secondary cloned index and data fragments being refreshed. 
Similarly, if all the cloned fragments for an index fragment go 
offline, the index access path using that index fragment will 
be offline. A stale cloned index fragment is restored via clone 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
refresh when it once again becomes accessible. In one 
example implementation, stale cloned index fragments are 
refreshed directly using the rows of the base table fragments. 
However, a stale, secondary cloned index fragment can also 
be refreshed from the corresponding primary cloned index 
fragment. 
The performance of the database fragment cloning and 

management mechanism discussed above can be enhanced 
by the example optimizations discussed below: 

a) PreRefresh Step of Clone Refresh 
Before running the clone refresh technique, the same 

refresh technique (described for process 1100 in FIG. 
11) can be run, but completely in read committed mode. 
(For example, when run during a PreRefresh step, block 
1122 of process 1100 starts a transaction in Read Com 
mitted mode.) In the absence of a lot of parallel updates, 
this pre-pass will clean up the vast majority of the rows 
in the cloned fragment, leaving a few inconsistencies, 
and potentially having introduced a few more. The idea 
is that after doing the pre-pass, the strict refresh phase 
(process 1170 in FIG. 17) in repeatable read mode will 
operate much faster. Fewer rows will be locked (due to 
fewer batches) for an overall, shorter period of time, thus 
increasing concurrency in the system. 

When a primary cloned fragment has multiple secondary 
cloned fragments which need refreshing, the refresh 
passes on all the secondary cloned fragments can be run 
independently of each other. The degree of parallelism 
can be controlled based on how quickly the cloned frag 
ments are to be brought back online, traded off against 
how much of a concurrency hit to impose on the system. 

b) Transaction Resilience to Failure of Secondary Cloned 
Fragment 
When a propagated update to a secondary cloned fragment 

fails for system reasons, the cloned fragment will be 
marked offline. The effects of ongoing transactions are 
preserved directly in the rows of the primary cloned 
fragment. No additional queue of pending work is 
required for purposes of preserving the effects of prior 
transactions. For convenience of error handling, the 
statement whose updates were being propagated can be 
rolled back. But this is not necessary if the failure of the 
update propagation to a failed secondary cloned frag 
ment does not have other side effects on the statements 
execution. The updates for that statement will have 
already been applied to and be preserved in the primary 
cloned fragment. 

c) Transaction Resilience to Failure of Primary Cloned 
Fragment 
When a primary cloned fragment fails, a user transaction 

accessing that cloned fragment need not be aborted if 
there is an online, consistent secondary cloned fragment 
that can be designated immediately as a new primary. 
However, any statement currently accessing the failed 
primary cloned fragment will be rolled-back. 

d) Clone Refresh Resilience 
If a clone refresh update to a record in a secondary cloned 

fragment fails due to system reasons, the clone refresh 
pass may restart from the beginning, retry the currently 
active MakeCurrent batch or reiterate the entire Make 
Current processing of the StaleCloneCRIDs. 

FIG. 9 is an example database system 900 with cloned 
database fragments. Database system 900 typically includes 
multiple computing devices 911-914 for distributing work 
load and providing reliable availability for accessing a data 
base object as well as load-balancing. An object within the 
example database is divided into cloned fragments, which are 



US 7,890,508 B2 
15 

divided among computing devices 911-914. In this manner, 
computing devices 911-914 can concurrently perform opera 
tions on different portions of the object in the example data 
base. Computing devices 911-91.4 may be configured with 
any type of database system, such as a SQL server. 
As shown in the figure, computing devices 911-91.4 may 

include primary cloned fragments 923-926 and secondary 
cloned fragment 934-937. In one embodiment, primary 
cloned fragments 923-926 are used by computing devices 
911-914 to perform productivity related tasks, such as adding, 
deleting or modifying the database object, queries, reports, or 
the like. Secondary cloned fragments 934-937 serve as 
backup of the primary cloned fragments 923-926. 

Typically, the primary cloned fragments in each computing 
device do not correspond to the secondary cloned fragments 
in the device. If one of the computing devices 911-914 fails, 
another computing device can take over the operations using 
the secondary cloned fragments that correspond to the pri 
mary fragments managed by the failed device. In this manner, 
database system 900 can ensure that a fragment of a database 
object remains available as long as at least one clone of that 
fragment remains accessible. 

In another embodiment, computing devices 911-91.4 may 
include overlapping primary cloned fragments. In this man 
ner, multiple computing devices may perform operations, 
Such as queries, on the same portion of the database object. 

FIG. 10 shows an example process 1000 for updating a 
database object. A database object can include the data of the 
entire database or a portion of the database, such as a table, an 
index or the like. An update may involve the modification of 
one or more of the fragments. At block 1001, fragments of the 
database object that are affected by the update are identified, 
and these form a set named SetOfFragments, that is a local 
data structure for the process 1000. Each element in this set is 
initially marked as unprocessed (this does not change the 
actual fragment, just the element in the local data structure). 
Process 1000 continues to decision block 1002, where a 
determination is made whether there still remain any unproc 
essed elements in the set SetOfFragments. If not, process 
1000 continues to termination block 1012 where the process 
terminates. 

Returning to decision block 1002, if there still remain 
unprocessed elements in the set SetOfFragments, process 
1000 continues to block 1003, where the unprocessed ele 
ment is obtained from the set SetOfFragments, and this rep 
resents the fragment that should be updated next. At block 
1004, the corresponding primary cloned fragment is deter 
mined, and the set of records within the primary cloned frag 
ment that need to be updated, are identified, forming a set 
named SetOfRecords, that is a local data structure for the 
process 1000. Each element in this set is initially marked as 
unprocessed (this does not change the actual record, just the 
element in the local data structure). At decision block 1005, a 
determination is made whether there still remain any unproc 
essed elements in the set SetOfRecords. If not, process 1000 
continues to block 1006, where the current element in the set 
SetOfFragments is marked as processed (this does not change 
the actual fragment, just the element in the local data struc 
ture). Process 1000 then goes back to decision block 1002. 

Returning to decision block 1005, if there still remain 
unprocessed elements in the set SetOfRecords, process 1000 
continues to block 1007, where an unprocessed element is 
obtained from the set SetOfRecords. That element represents 
the record that should be updated next. In block 1008, a CUID 
is obtained for the record. (CUID value maintenance and 
assignment is further described elsewhere in this document in 
the context of FIGS. 12 and 13.) 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
Process 1000 continues to block 1009, where the record is 

updated with the new values as well as the new CUID. At 
block 1010, the old CUID, as well as the updated record 
(containing the new CUID) is propagated to all secondary 
cloned data fragments, as well as to all cloned index frag 
ments that contain a copy of this record, both primary and 
secondary. FIG. 16 describes this block in more detail. 

After the update has been propagated and applied, process 
1000 continues to block 1011, where the current element in 
the set SetOfRecords is marked as processed (this does not 
change the actual record, just the element in the local data 
structure). Process 1000 then goes back to decision block 
1005. 

FIG. 12 shows an example process 1200 for modifying 
clone update identifiers (CUIDs). Process 1200 may be 
implemented for each database object, such as a table of a 
database. At block 1203, process 1200 waits for changes to 
the configuration of cloned fragments associated with a table. 
At decision block 1205, a determination is made whether a 
cloned fragment has become unavailable. If the cloned frag 
ments are all available, process 1200 returns to the wait state 
at block 1203. 

Returning to decision block 1205, if a cloned fragment has 
become unavailable, process 1200 moves to block 1207 
where the table's CUID value is incremented. At block 1209, 
the table's new CUID value is transactionally persisted. 

FIG. 13 shows an example process 1300 for assigning a 
CUID value allocated in accordance with process 1200 
shown in FIG. 12. A database system may be configured to 
execute process 1300 for statements that operate on a data 
base. At block 1302, the process prepares to execute a new 
statement against the database. At decision block 1304, a 
determination is made whether the new statement is a DML 
statement, which typically includes operations such as insert, 
delete and modify items in a database. If the statement is not 
a DML statement, process 1300 goes to block 1320 where the 
non-DML statement is executed against the database. Then, 
the process returns to block 1302. 

Returning to decision block 1304, if the statement is a 
DML statement, process 1300 continues at block 1306 where 
the CUID value for a table of a database being updated is read. 
At block 1308, the CUID value is associated with the DML 
statement. At block 1310, the CUID value is stored into each 
row of every primary cloned fragment updated by the DML 
statement. At block 1312, the CUID value is stored into each 
row or index entry in cloned fragment affected by a propa 
gated update of the DML statement. The CUID value may be 
propagated with the update to both cloned data and index 
fragments. Example propagation paths for CUID values will 
be discussed in conjunction with FIG. 14. When the CUID 
value has been propagated, process 1300 returns to block 
1302. 

FIG. 14 shows example propagation paths for CUID val 
ues. In FIG. 14, primary cloned data fragment 1403 has 
implemented an update included in a DML statement. As 
discussed above, a CUID value associated with the DML 
statement is stored in each row updated by the DML state 
ment in the primary cloned data fragment 1403. Primary 
cloned data fragment 1403 may propagate the CUID value 
along with the update to secondary cloned data fragments 
1405 through path 1411. Particularly, the CUID value asso 
ciated with the DML statement is assigned to each row 
affected by the update propagation. In one implementation, 
the CUID value is propagated to the primary cloned index 
fragment 1407 and secondary cloned index fragment 1409 
from primary cloned data fragment through paths 1412 and 
1413, respectively. In another implementation, instead of 



US 7,890,508 B2 
17 

propagating the CUID value with path 1413, the CUID value 
is propagated from the primary cloned index fragment 1407 
to secondary cloned index fragment 1409 through path 1415. 

FIG. 16 shows an example process 1600 for propagating 
and applying an updated record and old CUID value from a 
primary cloned fragment to all secondary cloned data frag 
ments, as well as to all cloned index fragments that contain a 
copy of this record. Those cloned fragments receiving propa 
gated updates could be in the Current state, or they could be in 
the InRefresh state. Process 1600 typically forms one step in 
a larger update process, described in another part of this 
document. At block 1601, all secondary cloned data frag 
ments, as well as all cloned index fragments (both primary 
and secondary) that contain a copy of this record are identi 
fied. Those cloned fragments form a set named SetOfSecond 
aries, that is a local data structure for the process 1600. Each 
element in this set is initially marked as unprocessed (this 
does not change the actual cloned fragment, just the element 
in the local data structure). Process 1600 continues to deci 
sion block 1602, where a determination is made whether there 
still remain any unprocessed elements in the set SetOfSec 
ondaries. If not, process 1600 continues to termination block 
1603 where the process terminates, and any larger process 
that comprises process 1600 as a step, then continues onto the 
next step in that larger process. 

Returning to decision block 1602, if there still remain 
unprocessed elements in the set SetOfSecondaries, process 
1600 continues to block 1604, where an unprocessed element 
is obtained from the set SetOfSecondaries. That element rep 
resents the secondary cloned fragment that should be updated 
next. That secondary cloned fragment could be a secondary 
cloned data fragment, a primary cloned index fragment, or a 
secondary cloned index fragment. At decision block 1605, a 
determination is made whether a record exists in the second 
ary cloned fragment with the same CRID as the record from 
primary cloned fragment, and whose CUID matches the old 
CUID value of the record from primary cloned fragment. If 
yes, then process 1600 continues to block 1606, where the 
record is updated with new values and the new CUID. Process 
1600 then continues to block 1609. 

Returning to decision block 1605, if a matching record is 
not found, then process 1600 continues to decision block 
1607, where a determination is made whether the secondary 
cloned fragment is in the InRefresh state. If not, then at block 
1608, the secondary cloned fragment is marked offline, since 
it is no longer consistent with the primary cloned fragment. 
Process 1600 then continues to block 1609. 

Returning to decision block 1607, if the secondary cloned 
fragment is in the InRefresh state, then process 1600 contin 
ues to block 1609, where the current element in the set Set 
OfSecondaries is marked as processed (this does not change 
the actual cloned fragment, just the element in the local data 
structure). Process 1600 then goes back to decision block 
1602. 

FIG. 15 shows an example computer device 1500 for 
implementing the described systems and methods. In its most 
basic configuration, computing device 1500 typically 
includes at least one central processing unit (CPU) 1505 and 
memory 1510. 

Depending on the exact configuration and type of comput 
ing device, memory 1510 may be volatile (such as RAM), 
non-volatile (such as ROM, flash memory, etc.) or some com 
bination of the two. Additionally, computing device 1500 
may also have additional features/functionality. For example, 
computing device 1500 may include multiple CPUs. The 
described methods may be executed in any manner by any 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
processing unit in computing device 1500. For example, the 
described process may be executed by multiple CPU's in 
parallel. 
Computing device 1500 may also include additional stor 

age (removable and/or non-removable) including, but not 
limited to, magnetic or optical disks or tape. Such additional 
storage is illustrated in FIG. 15 by storage 1515. Computer 
storage media includes Volatile and nonvolatile, removable 
and non-removable media implemented in any method or 
technology for storage of information Such as computer read 
able instructions, data structures, program modules or other 
data. Memory 1510 and storage 1515 are all examples of 
computer storage media. Computer storage media includes, 
but is not limited to, RAM, ROM, EEPROM, flash memory or 
other memory technology, CD-ROM, digital versatile disks 
(DVD) or other optical storage, magnetic cassettes, magnetic 
tape, magnetic disk storage or other magnetic storage devices, 
or any other medium which can be used to store the desired 
information and which can accessed by computing device 
1500. Any such computer storage media may be part of com 
puting device 1500. 

Computing device 1500 may also contain communications 
device(s) 1540 that allow the device to communicate with 
other devices. Communications device(s) 1540 is an example 
of communication media. Communication media typically 
embodies computer readable instructions, data structures, 
program modules or other data in a modulated data signal 
Such as a carrier wave or other transport mechanism and 
includes any information delivery media. The term “modu 
lated data signal” means a signal that has one or more of its 
characteristics set or changed in Such a manner as to encode 
information in the signal. By way of example, and not limi 
tation, communication media includes wired media Such as a 
wired network or direct-wired connection, and wireless 
media Such as acoustic, RF, infrared and other wireless 
media. The term computer-readable media or device-read 
able media as used herein includes both computer storage 
media and communication media. The described methods 
may be encoded in any computer-readable media in any form, 
Such as data, computer-executable instructions, and the like. 
Computing device 1500 may also have input device(s) 

1535 such as keyboard, mouse, pen, voice input device, touch 
input device, etc. Output device(s) 1530 such as a display, 
speakers, printer, etc. may also be included. All these devices 
are well known in the art and need not be discussed at length. 

Those skilled in the art will realize that storage devices 
utilized to store program instructions can be distributed 
across a network. For example, a remote computer may store 
an example of the process described as Software. A local or 
terminal computer may access the remote computer and 
download a part or all of the Software to run the program. 
Alternatively, the local computer may download pieces of the 
Software as needed, or execute Some Software instructions at 
the local terminal and some at the remote computer (or com 
puter network). Those skilled in the art will also realize that 
by utilizing conventional techniques known to those skilled in 
the art that all, or a portion of the software instructions may be 
carried out by a dedicated circuit, such as a DSP program 
mable logic array, or the like. 
The invention claimed is: 
1. One or more device-readable storage media with device 

executable instructions for performing steps comprising: 
creating a primary cloned fragment associated with a Sub 

set of records in a database table, the primary cloned 
fragment having a first plurality of records; adding a first 
plurality of update identifiers to the primary cloned frag 
ment, wherein each of the first plurality of update iden 



US 7,890,508 B2 
19 

tifiers is a member of one of the first plurality of records: 
in response to a secondary cloned fragment being offline 
during an update, preserving an update in the primary 
cloned fragment; identifying the secondary cloned frag 
ment corresponding to the primary cloned fragment, the 
secondary cloned fragment being stale relative to the 
primary cloned fragment and the secondary cloned frag 
ment having a second plurality of records and a second 
plurality of update identifiers, wherein each of the sec 
ond plurality of update identifiers is a member of one of 
the second plurality of records; refreshing the stale sec 
ondary cloned fragment with the preserved update when 
the stale secondary cloned fragment returns online by 
performing a database operation, wherein the refreshing 
step further comprises: identifying a first update identi 
fier of a first record in the first plurality of records 
included in the primary cloned fragment; identifying a 
second update identifier of a second record in the second 
plurality of records in the Stale secondary cloned frag 
ment, the second record corresponding to the first 
record; and determining whether the first record and 
second record with identical cloned record identifiers 
are consistent based, at least in part, on whether the first 
update identifier and the second update identifier are 
equal and while refreshing the stale secondary cloned 
fragment: performing an update to the primary cloned 
fragment; and updating the stale secondary cloned frag 
ment in response to the performing the update on the 
primary cloned fragment. 

2. The one or more device-readable storage media as 
recited in claim 1, wherein the updating step further com 

10 

15 

25 

30 

20 
prises updating up-to-date rows of the stale secondary cloned 
fragment, but not updating any non-up-to-date rows of the 
stale secondary cloned fragment. 

3. The one or more device-readable storage media as 
recited in claim 1, wherein the refreshing step further com 
prises, when the first and second records are determined to be 
inconsistent, 

refreshing the second record with data in the first record; 
and 

assigning a value of the first update identifier to the second 
update identifier. 

4. The one or more device-readable storage media as 
recited in claim 3, further comprising performing the deter 
mining, refreshing and assigning steps for each record of the 
second plurality of records included in the secondary cloned 
fragment. 

5. The one or more device-readable storage media as 
recited in claim 1, wherein the refreshing step further com 
prises running a pre-refreshing operation on the secondary 
cloned fragment in a read committed mode. 

6. The one or more device-readable storage media as 
recited in claim 5, wherein the pre-refreshing operation is run 
in parallel on other secondary cloned fragments correspond 
ing to the primary cloned fragment. 

7. The one or more device-readable storage media as 
recited in claim 1, wherein the database operation for refresh 
ing the secondary cloned fragment includes Data Manipula 
tor Language (DML) operations of inserting, deleting and 
updating records in the secondary clone. 

k k k k k 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 7,890,508 B2 Page 1 of 1 
APPLICATIONNO. : 1 1/207482 
DATED : February 15, 2011 
INVENTOR(S) : Robert H. Gerber et al. 

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: 

In column 19, line 25, in Claim 1, delete “equal and insert -- equal; --, therefor. 

Signed and Sealed this 
Twenty-sixth Day of July, 2011 

David J. Kappos 
Director of the United States Patent and Trademark Office 

  


