

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2006-15155
(P2006-15155A)

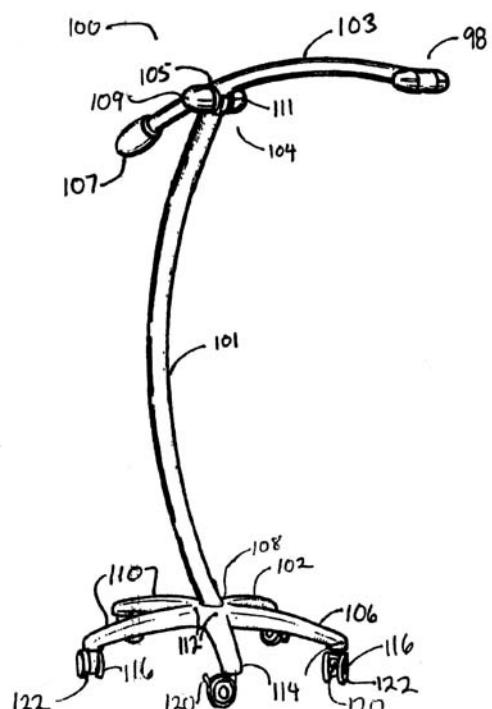
(43) 公開日 平成18年1月19日(2006.1.19)

(51) Int.C1.	F 1	テーマコード (参考)
A61C 19/00 (2006.01)	A 61 C 19/00	Z 4 C 0 5 2
A61C 3/04 (2006.01)	A 61 C 3/04	4 C 3 4 1
A61G 15/00 (2006.01)	A 61 G 15/00	Z

審査請求 未請求 請求項の数 65 O L 外国語出願 (全 148 頁)

(21) 出願番号	特願2005-193171 (P2005-193171)	(71) 出願人	300057780 ディスカス デンタル インプレッション ズ インコーポレーテッド アメリカ合衆国 カリフォルニア州 90 232 カルバー シティ ハイグエラ ストリート 8550
(22) 出願日	平成17年6月30日 (2005.6.30)	(74) 代理人	100074099 弁理士 大菅 義之
(31) 優先権主張番号	60/585, 224	(72) 発明者	エリック ポール ローズ アメリカ合衆国, カリフォルニア州 9 0232, カルバー シティ, ヒゲ ラ ストリート 8550
(32) 優先日	平成16年7月2日 (2004.7.2)		
(33) 優先権主張国	米国(US)		
(31) 優先権主張番号	60/641, 462		
(32) 優先日	平成17年1月4日 (2005.1.4)		
(33) 優先権主張国	米国(US)		
(31) 優先権主張番号	60/647, 725		
(32) 優先日	平成17年1月26日 (2005.1.26)		
(33) 優先権主張国	米国(US)		
(31) 優先権主張番号	60/647, 723		
(32) 優先日	平成17年1月26日 (2005.1.26)		
(33) 優先権主張国	米国(US)		

最終頁に続く


(54) 【発明の名称】歯科用支持システム

(57) 【要約】 (修正有)

【課題】歯科医院の施術が効率的に行えるよう、歯科用支持システムの提供。

【解決手段】支持構造物 100 は、基部 102 と関節のある支持部品 104 を含む。本発明の一つの実施例によれば、基部は本体部 106 を含む。基部 102 は、関節のある支持部品 104 の連結機構 108 を受け入れて、関節のある支持部品 104 に連結されるようになっている。連結機構 108 は、関節のある支持部品 104 を本体部 106 に実質的に固定して連結するようになっている。関節のある支持部品は支柱 101 とブーム 103 を含む。ブーム・ジョイント取っ手 109、111 を含むブーム・ジョイント 105 によって、支柱 101 とブーム 103 は互いに連結される。ブーム 103 の後方の端点がブーム平衡錘 107 を含む。本体部 106 が複数のビーム 110 を含む。複数のビーム 110 は互いに關して放射状の方向に配置されている。

【選択図】 図1

【特許請求の範囲】**【請求項 1】**

ピボット部品と基部を有する歯科用支持システムであって、
前記ピボット部品は、少なくとも第一の構造と少なくとも第二の構造とを有し、
前記の少なくとも第一の構造は、前記ピボット部品と歯科用機器の少なくとも一部が並べられたときに、前記歯科用機器の前記少なくとも一部の、対応する少なくとも一つの構造と係合しあって、前記歯科用機器を支えるようになっており、
前記基部は、前記ピボット部品の前記少なくとも第二の構造と係合しあうような、少なくとも一つの構造を有しており、
前記ピボット部品は、前記基部に関して、実質的に垂直軸の周りを回転するようになっている

10

ことを特徴とする歯科用支持システム。

【請求項 2】

前記のピボット部品は、両端から間隔をあけた部分に少なくとも一つの構造を有するブームと、一端に向かう少なくとも一つの構造を有する支柱とを有し、
前記ブームの前記構造は、前記支柱の前記構造と係合しあって、前記ブームが実質的に前記支柱に対して垂直方向になっている

ことを特徴とする、請求項 1 に記載の歯科用支持システム。

【請求項 3】

前記基部上の前記構造はピンを有し、
前記第一の構造は、前記ピンを受けるようになっている弓形のスロットを有し、
前記ピンは、前記軸の周りの前記ピボット部品の動きを制限している
ことを特徴とする、請求項 1 または請求項 2 に記載の歯科用支持システム。

20

【請求項 4】

前記ブームの前記構造がヨークを有し、
前記支柱の前記構造がシャフトを有し、
前記シャフトが前記支柱に実質的に固定して取り付けられている
ことを特徴とする、請求項 2 に記載の支持システム。

【請求項 5】

前記ヨークが第一の制動面を有し、
前記シャフトが第二の制動面を有し、
前記第一と第二の制動面は、摩擦部品と互いに係合するようになっている
ことを特徴とする、請求項 4 に記載の支持システム。

30

【請求項 6】

前記摩擦部品が摩擦座金を有し、
該摩擦座金は、貫通孔の輪郭を定めている内壁面を含み、
該貫通孔は、該貫通孔を通して前記シャフトの一部を受けるようになっている
ことを特徴とする、請求項 5 に記載の支持システム。

【請求項 7】

前記座金が、回転防止機構を有し、
該回転防止機構は、前記シャフトの長手方向軸の周りの、前記座金の回転運動を最小化するようになっていて、
それによって前記座金は前記支柱に関して実質的に回転方向に固定されている
ことを特徴とする、請求項 6 に記載の支持システム。

40

【請求項 8】

前記回転防止機構は、前記内壁面に第一の実質的に平らな領域を有し、
前記シャフトは、第二の実質的に平らな領域を含む外面を有し、
前記第一の実質的に平らな領域は、前記第二の実質的に平らな面に係合するようになっている
ことを特徴とする、請求項 6 または請求項 7 に記載の支持構造。

50

【請求項 9】

前記ピボット部品が、
シャフトと座金と摩擦部品と取っ手とを有し、
該シャフトは機械的に前記基部に取り付けられていて、
該シャフトは前記基部に対して実質的に回転方向に固定されていて、
該シャフトはその外面に第一の複数のねじ山を有していて、
該シャフトはヨークを支えるようになっていて、
該ヨークは前記シャフトの長手方向軸の周りに回転するようになっていて、
該ヨークは第一の制動面を含み、
前記座金は、前記シャフトに対して実質的に回転方向に固定されるように、前記シャフトによって支えられるようになっていて、
前記座金は第二の制動面を含み、
前記摩擦部品は、前記第一と第二の制動面の間に配置されるようになっていて、
前記取っ手は、その内壁面に第二の複数のねじ山を含み、
前記第一と第二の複数のねじ山は、互いに係合しあうようになっていて、
それによって、
前記シャフトの前記長手軸方向の周りの、前記取っ手の所定方向の回転時に、
前記取っ手は、前記第一と第二の制動面を互いに向き合わせ、前記摩擦部品と共に互いに係合しあうようにさせる
ことを特徴とする、請求項 1 に記載の支持システム。 20

【請求項 10】

基部と支柱とブームを有する支持システムであって、
前記基部は少なくとも一つの構造を有し、
前記支柱は、互いの間隔をあけた少なくとも第一の構造と少なくとも第二の構造を有し、
前記少なくとも第一の構造は、前記支柱が基部に対して実質的に垂直の方向になるよう、着脱自在に前記基部の構造と互いに係合しあうようになっており、
前記ブームは、第一と第二の端と中央部を有し、
前記中央部は、少なくとも一つの構造を有し、
該構造は、前記支柱に対して実質的に垂直方向に、着脱自在に前記支柱に取り付けるために、前記支柱の前記の少なくとも第二の構造と互いに係合しあうようになっていることを特徴とする支持システム。 30

【請求項 11】

前記基部上の前記構造はピンを有し、
前記第一の構造は、前記ピンを受けるようになっている弓形のスロットを有し、
前記ピンは、軸の周りの、ピボット部品の動きを制限している
ことを特徴とする、請求項 10 に記載の支持システム。

【請求項 12】

前記支柱が、前記第一と第二の構造から間隔をあけたところに少なくとも第三の構造を有し、
前記の少なくとも第三の構造が、電源パックの少なくとも一つの対応する構造と、互いに係合しあうようになっている
ことを特徴とする、請求項 10 または請求項 11 に記載の支持システム。 40

【請求項 13】

前記ブームの前記第一の端が、少なくとも一つの構造を有し、
該構造は、歯科用器具の少なくとも一つの対応する構造と、着脱自在に互いに係合しあうようになっている
ことを特徴とする、請求項 12 に記載の支持システム。

【請求項 14】

前記ブームの前記第一の端が、少なくとも一つの構造を有し、 50

該構造は、歯科用器具の少なくとも一つの対応する構造と、着脱自在に互いに係合しあうようになっている

ことを特徴とする、請求項12または請求項13に記載の支持システム。

【請求項15】

前記歯科用器具と前記電源パックの間の電気的接続を供給するための入出力ケーブルをさらに有し、

該ケーブルは、前記支柱および前記ブームの中に実質的に収容され、

前記ブームの中の前記ケーブルは、前記歯科用器具と、前記支柱の中の前記ケーブルとに、着脱自在に取り付けられている

ことを特徴とする、請求項14に記載の歯科用支持システム。

10

【請求項16】

前記ブームの前記構造がヨークを有し、

前記支柱の前記構造がシャフトを有し、

該シャフトが前記支柱に実質的に固定して取り付けられている

ことを特徴とする、請求項10から請求項15のいずれか一項に記載の支持システム。

【請求項17】

前記ヨークが第一の制動面を有し、

前記シャフトが第二の制動面を有し、

前記第一と第二の制動面が、摩擦部品と互いに係合するようになっている

ことを特徴とする、請求項16に記載の支持システム。

20

【請求項18】

前記摩擦部品が摩擦座金を有し、

該摩擦座金は、貫通孔の輪郭を定めている内壁面を含み、

該貫通孔は、該貫通孔を通して前記シャフトの一部を受けるようになっている

ことを特徴とする、請求項17に記載の支持システム。

【請求項19】

前記座金が、回転防止機構を有し、

該回転防止機構は、前記シャフトの長手方向軸の周りの、前記座金の回転運動を最小化するようになっている、

それによって前記座金は前記支柱に対して、実質的に回転方向に固定されている

30

ことを特徴とする、請求項18に記載の支持システム。

【請求項20】

前記回転防止機構は、前記内壁面に第一の実質的に平らな領域を有し、

前記シャフトは、第二の実質的に平らな領域を含む外面を有し、

前記第一の実質的に平らな領域は、前記第二の実質的に平らな領域に係合するようになっている

ことを特徴とする、請求項18または請求項19に記載の支持構造。

【請求項21】

回転基部と支柱とブームと少なくとも一つの照明システムを有する、歯科用照明システムのための歯科用支持システムであって、

40

前記回転基部は、

表面で前記照明システムを支えるためのものであり、

加工途中品に近接して広範囲の角度で前記照明システムの位置を定めるようになっていて、

前記照明システムの動きを実質的に制限するためのロック機構を有しており、

前記支柱は、前記回転基部に取り付けられており、

前記ブームは、前記支柱に対して実質的に垂直になっていて、前記支柱に対して回転運動と傾斜運動ができる、

前記照明システムは、前記ブームの一方の端点に取り付けられていて、歯科漂白処置を容易にするために、前記ブームの前記端点に関して回転運動の自由と傾斜運動の自由があ

50

る

ことを特徴とする歯科用支持システム。

【請求項 2 2】

どのような加工途中品の右側または左側にでも、前記システムが配置されるように適合されうる

ことを特徴とする、請求項 2 1 に記載の歯科用支持システム。

【請求項 2 3】

前記ブームが湾曲していることを特徴とする、請求項 2 1 または請求項 2 2 に記載の歯科用支持システム。

【請求項 2 4】

前記支柱に取り付けられた、少なくとも一つの電源パックをさらに有する

ことを特徴とする、請求項 2 1 、請求項 2 2 、または請求項 2 3 に記載の歯科用支持システム。

【請求項 2 5】

ピボット部品と基部を有する歯科用支持システムであって、

前記ピボット部品は、歯科用器具を支えるようになっており、

前記基部は前記ピボット部品を支え、それによって、前記基部に関して実質的な垂直軸のまわりに、前記ピボット部品が回転できる

ことを特徴とする歯科用支持システム。

【請求項 2 6】

前記基部がピンを有し、

前記軸のまわりの前記ピボット部品の動きを前記ピンが制限するように、前記ピンを受けるようになっている弓形のスロットを、前記ピボット部品が有している

ことを特徴とする、請求項 2 5 に記載の歯科用支持システム。

【請求項 2 7】

前記基部が制動装置を有し、

該制動装置は、前記軸のまわりの前記ピボット部品の動きを弱める

ことを特徴とする、請求項 2 5 または請求項 2 6 に記載の歯科用支持システム。

【請求項 2 8】

前記ピボット部品がブームと支柱を有することを特徴とする、請求項 2 5 または請求項 2 7 に記載の歯科用支持システム。

【請求項 2 9】

前記基部に関して、角度をつけて 前記支柱を配置するための、ブーム・ヒンジ位置決め装置を、前記ブームが有する

ことを特徴とする、請求項 2 8 に記載の歯科用支持システム。

【請求項 3 0】

前記ブームを適切な位置に保持するために、前記ブーム・ヒンジ位置決め装置をロックできる

ことを特徴とする、請求項 2 9 に記載の歯科用支持システム。

【請求項 3 1】

ロックされた位置の前記ブーム・ヒンジが、前記ブーム・ヒンジに連結されたブームの遠位端に対する約 50 ポンドの静荷重に耐えるようになっている

ことを特徴とする、請求項 2 9 または請求項 3 0 に記載の歯科用支持システム。

【請求項 3 2】

前記ブーム・ヒンジ位置決め装置は、歯科用器具が遠位端で前記ブームに連結されたときに、その重力に耐えるようになっている

ことを特徴とする、請求項 3 0 または請求項 3 1 に記載の歯科用支持システム。

【請求項 3 3】

ピボットと、

前記ピボットによって支えられている、少なくとも一つの実質的に水平なシャフトと、

10

20

30

40

50

実質的に水平な軸の周りを旋回するように、前記シャフトによって回転自在に支えられているヨーク部品と、

前記ピボットに連結された実質的に垂直なシャフトと、

前記の実質的に垂直なシャフトを受けるようになっている穴と、前記ピボットを支えるようになっている上面とを有する、プラグ部品と、

を有する、歯科用支持システム。

【請求項 3 4】

前記プラグ部品の表面に関して動く、前記ピボットの表面の間に配置された、摩擦部品をさらに有することを特徴とする、請求項 3 3 に記載の歯科用支持システム。

【請求項 3 5】

前記プラグ部品の実質的に平らな上面と、前記ピボット部品の実質的に平らな下面との間に配置された座金を、前記摩擦部品が有し、

前記二つの平らな面は、実質的に互いに平行で、前記垂直なシャフトに対して実質的に垂直であり、前記垂直なシャフトの垂直軸のまわりを互いに関して回転するようになっている

ことを特徴とする、請求項 3 3 または請求項 3 4 に記載のブーム・ヒンジ。

【請求項 3 6】

前記ピボットと前記プラグ部品の間に配置された摩擦装置をさらに有し、

前記摩擦装置は、前記プラグ部品に関する前記ピボットの回転運動を弱めるようになっている

ことを特徴とする、請求項 3 3 、請求項 3 4 、または請求項 3 5 に記載の歯科用支持システム。

【請求項 3 7】

前記摩擦装置が、弱め方の量をさまざまに変えられるようになっていることを特徴とする、請求項 3 6 に記載の歯科用支持システム。

【請求項 3 8】

前記摩擦装置が、

摩擦パッドと、

前記ピボットの回転面を前記摩擦パッドに押し付ける圧迫装置と

を有することを特徴とする、請求項 3 6 または請求項 3 7 に記載の歯科用支持システム。

【請求項 3 9】

前記シャフトと前記プラグ部品の間に配置された摩擦部品をさらに有することを特徴とする、請求項 3 3 から請求項 3 8 のいずれか一項に記載の歯科用支持システム。

【請求項 4 0】

前記摩擦部品が、前記シャフト上に配置されたゴム製の輪を有することを特徴とする、請求項 3 9 に記載の歯科用支持システム。

【請求項 4 1】

ヨークの実質的に水平な軸のまわりを回転するようになっている第一のペアリングと、
ピボット部品の実質的に垂直な軸の回りを回転するようになっている第二のペアリング
と、

前記の実質的に垂直な軸のまわりの回転運動を阻害するようになっているダンパと
を有する、歯科用支持システム。

【請求項 4 2】

前記ヨークがブームを有することを特徴とする、請求項 4 1 に記載の歯科用支持システム。

【請求項 4 3】

前記ピボット部品が支柱を有することを特徴とする、請求項 4 1 または請求項 4 2 に記載の歯科用支持システム。

【請求項 4 4】

10

20

30

40

50

前記ヨーク上の対応する構造と互いに係合するようになっている、少なくとも一つの構造を、前記ブームが有することを特徴とする、請求項42に記載の歯科用支持システム。

【請求項45】

前記ヨークが第一の制動面を有し、
前記シャフトが第二の制動面を有し、

前記第一と第二の制動面は、摩擦部品と互いに係合するようになっている
ことを特徴とする、請求項41から請求項45のいずれか一項に記載の支持システム。

【請求項46】

前記摩擦部品が摩擦座金を有し、
該摩擦座金は、貫通孔の輪郭を定めている内壁面を含み、
該貫通孔は、該貫通孔を通して前記シャフトの一部を受けるようになっている
ことを特徴とする、請求項45に記載の支持システム。

10

【請求項47】

前記座金が、回転防止機構を有し、
該回転防止機構は、前記シャフトの長手方向軸のまわりの、前記座金の回転運動を最小化するようになっていて、
それによって前記座金は、前記支柱に対して、実質的に回転方向に固定されている
ことを特徴とする、請求項46に記載の支持システム。

【請求項48】

前記回転防止機構は、前記内壁面に第一の実質的に平らな領域を有し、
前記シャフトは、第二の実質的に平らな領域を含む外面を有し、
前記第一の実質的に平らな領域は、前記第二の実質的に平らな面に係合するようになっ
ている
ことを特徴とする、請求項46または請求項47に記載の支持構造。

20

【請求項49】

回転自在にヨーク部品を支えている、実質的に水平なシャフトと、
回転自在にピボット部品の位置を定めている、実質的に垂直なシャフトと、
前記の実質的に垂直なシャフトのまわりの、前記ピボット部品の回転を弱めるようにな
っている制動装置と
を有する、歯科用支持システム。

30

【請求項50】

前記制動装置が摩擦部品を有することを特徴とする、請求項49に記載の歯科用支持
システム。

【請求項51】

合成高分子弾性ポリマー (elastomeric polymer)、天然高分子弾性ポリマー、粘性流
体、およびそれらの組み合わせからなる群から選択された物質を、前記摩擦部品が有する
ことを特徴とする、請求項49または請求項50に記載の歯科用支持システム。

【請求項52】

前記摩擦部品の第一の摩擦面を、第二の摩擦面に押し付けるようになっている圧迫プラ
グを、前記制動装置が有することを特徴とする、請求項49、請求項50、または請求項
51に記載の歯科用支持システム。

40

【請求項53】

複数のねじ山がついた実質的に円筒形の外面を、前記圧迫プラグが有することを特徴と
する、請求項52に記載の歯科用支持システム。

【請求項54】

前記摩擦部品の前記第一の摩擦面を、前記第二の摩擦面に押し付けるためのねを、前
記制動装置がさらに有することを特徴とする、請求項49から請求項53のいずれか一項
に記載の歯科用支持システム。

【請求項55】

歯科用漂白システム、歯科用硬化システム、歯科用検査システム、視認・清掃用器具、

50

画像装置、X線装置、根管根尖探知器、またはそれらの組み合わせを、前記歯科用器具が有する

ことを特徴とする、請求項1から請求項10、請求項13から請求項20、請求項25から請求項31のいずれか一項に記載の歯科用支持システム。

【請求項41】

実質的に水平な軸のまわりを回転するようになっている第一のペアリングと、実質的に垂直な軸のまわりを回転するようになっている第二のペアリングと、前記の実質的に垂直な軸のまわりの回転運動を阻害するようになっているダンパとを有する、歯科用支持システム。

【請求項42】

前記の実質的に水平な軸がブームを有することを特徴とする、請求項41に記載の歯科用支持システム。

【請求項43】

前記の実質的に垂直な軸が支柱を有することを特徴とする、請求項41または請求項42-41に記載の歯科用支持システム。

【請求項45】

回転自在にヨーク部品を支えている、実質的に水平なシャフトと、回転自在にピボット部品の位置を定めている、実質的に垂直なシャフトと、前記の実質的に垂直なシャフトのまわりの、前記ピボット部品の回転を弱めるようになっている制動装置とを有する、歯科用支持システム。

【請求項46】

前記制動装置が摩擦部品を有することを特徴とする、請求項45に記載の歯科用支持システム。

【請求項47】

合成高分子弹性ポリマー、天然高分子弹性ポリマー、粘性流体、およびそれらの組み合わせからなる群から選択された物質を、前記摩擦部品が有することを特徴とする、請求項46に記載の歯科用支持システム。

【請求項48】

前記摩擦部品の第一の摩擦面を、第二の摩擦面に押し付けるようになっている圧迫プラグを、前記制動装置が有することを特徴とする、請求項45に記載の歯科用支持システム。

【請求項49】

複数のねじ山がついた実質的に円筒形の外面を、前記圧迫プラグが有することを特徴とする、請求項48に記載の歯科用支持システム。

【請求項50】

前記摩擦部品の前記第一の摩擦面を、前記第二の摩擦面に押し付けるためのばねを、前記制動装置がさらに有することを特徴とする、請求項45に記載の歯科用支持システム。

【請求項51】

歯科用漂白システム、歯科用硬化システム、歯科用検査システム、視認・清掃用器具、画像装置、X線装置、根管根尖探知器、またはそれらの組み合わせを、前記歯科用器具が有する

ことを特徴とする、請求項1に記載の歯科用支持システム。

【発明の詳細な説明】

【関連出願へのクロスリファレンス】

【0001】

本願は、米国特許仮出願第60/585,224号(United States provisional patent application, Serial Number 60/585,224, "Dental Light Devices With Phase Change Heat Sink", 出願日2004年07月02日)；米国特許仮出願第60/641,462号(60/641,462, "Boom Hinge For A Dental Lamp", 出願日2005年01月04日)；米国特許仮出願第60/647,725号

10

20

30

40

50

(60/647,725, "Automatic Control for a Dental Whitening Lamp", 出願日2005年01月26日) ; 米国特許仮出願第 60/647,723号 (60/647,723, "Boom Hinge For A Dental Lamp ", 出願日2005年01月26日) ; 米国特許仮出願第 60/658,517号 (60/658,517, "Apparatus and Method For Radiation Spectrum Shifting in Dentistry Application", 出願日2005年03月03日) ; 米国特許仮出願第 60/641,469号 (60/641,469, "Lamp For Dentistry Applications", 出願日2005年01月04日) ; 米国特許仮出願第 60/647,580号 (60/647,580, "Light Guide For Dental Whitening Lamp", 出願日2005年01月26日) ; 米国特許仮出願第 60/641,461号 (60/641,461, "Support Structure For A Dental Lamp", 出願日2005年01月04日) ; 米国特許仮出願第 60/641,468号 (60/641,468, "Light Guide For A Dental Whitening Lamp", 出願日2005年01月04日) ; 米国特許仮出願第 60/647,612号 (60/647,612, "Light Path Apparatus For A Dental Lamp", 出願日2005年01月26日) ; 米国特許仮出願第 60/647,593号 (60/647,593, "Support Structure For A Dental Lamp", 出願日2005年01月26日) ; 米国意匠出願第 29/220,642号 (U.S. design patent applications serial no. 29/220,642, "Lamp For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,680号 (29/220,680, "Light Guide For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,679号 (29/220,679, "Power Pack For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,712号 (29/220,712, "Support Structure For A Lamp For Dentistry", 出願日2005年01月04日) ; 第 29/XXX,XXX号 (29/XXX,XXX, "Support Structure For Dental Applications", 出願日2005年06月22日) ; 第 29/XXX,XXX号 (29/XXX,XXX, "Support Structure for Dental Applications", 出願日2005年06月22日) ; 米国特許仮出願第 60/604,577号 (U.S. provisional applications Serial No. 60/604,577, "Lip Retractors" , 出願日2004年08月25日) ; 米国特許仮出願第 60/594,297号 (60/594,297, "Curing Light Having A Detachable Tip", 出願日2005年03月25日) ; 米国特許仮出願第 60/631,267号 (60/631,267, "Curing Light Having A Reflector", 出願日2004年11月26日) ; 米国特許仮出願第 60/594,327号 (60/594,327, "Curing Light", 出願日2005年03月30日) ; 米国特許仮出願第 60/664,696号 (60/664,696, "Curing Light Having A Detachable Tip", 出願日2005年03月22日) の利益を請求するものであり、ここに参考として記載する。
。

【 0 0 0 2 】

30

本願は、米国意匠出願第 29/220,642号 (U.S. design applications No. 29/220,642, "Lamp For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,680号 (29/220,680, "Light Guide For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,679号 (29/220,679, "Power Pack For Dentistry Applications", 出願日2005年01月04日) ; 米国意匠出願第 29/220,712号 (29/220,712, "Support Structure For A Lamp For Dentistry", 出願日2005年01月04日) ; 第 29/XXX,XXX号 (29/XXX,XXX, "Support Structure For Dental Applications", 出願日2005年06月22日) ; 第 29/XXX,XXX号 (29/XXX,XXX, "Support Structure for Dental Applications", 出願日2005年06月22日) ; の、一部継続出願であり、ここに示したこれらの内容は、この参照により開示に含まれる。

【 0 0 0 3 】

40

本願は、同時係属中の米国特許仮出願第 10/XXX,XXX号 (10/XXX,XXX, "Dental Light Devices Having an Improved Heat Sink", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Voice Alert System for Dentistry Applications", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Retracting Devices", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Curing Light Capable of Multiple Wavelengths", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Curing Light", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Illumination System for Dentistry Applications", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Light Guide for Dentistry Applications", 同時出願) ; 第 10/XXX,XXX号 (10/XXX,XXX, "Automatic Control For Dental Applications", 同時出願) ; を含み、ここに示したこれらの内容

50

は、この参照により開示に含まれる。

【技術分野】

【0004】

本発明は歯科用機器に関し、より詳細には、歯科用機器のための位置決め装置に関する。

【背景技術】

【0005】

歯科の実務は、相変わらず非常に労働集約的なままである。さらに、関連する労働者は非常に技術に熟練している。いくつかの活動は委託できるし、別のいくつかの活動は自動化できるが、歯科の多くの重要な活動は、いまだに歯科医によってなされなくてはならない。歯科処置が、歯科医によって行われようと他の歯科専門家によって行われようと、歯科医または他の歯科専門家は、耐えられるコストで望ましい歯科サービスを提供するためには、時間的に効率の良いやり方で施術しなくてはならない。

【0006】

効率的に施術しなくてはならないという、この必要性は、歯科医院の設計に反映されている。調節可能な歯科用椅子によって、患者の口に簡単に手が届くような方向に、患者の位置を定めることができる。歯科用器具は、特定の歯科処置に利用するのに適した、包装済みのキットの形で供給される。材料や歯科用具の保管棚は、歯科医とその助手の双方または一方が、すぐに手が届くように、患者のすぐそばに置いてある。

【0007】

さらに、作業用のトレイや歯科用器具を支えるための棚、患者の口を照らすための作業用の光には、届きやすい範囲に器具を置いておけるようにした調節可能な支持構造物が備えられており、作業場所はよく照らされている。

【0008】

歯科医院で、様々な種類の関節のある支持構造物を使うことが知られている。これらの構造物の例は、Wolfに対する米国特許第4,013,328号、Bobrickらに対する米国特許第4,097,919号、Litelらに対する米国特許第4,260,376号、Watanabeに対する米国特許第4,332,557号（第31548号として再発行された）、Guentherに対する米国特許第4,437,144号、Matthewsに対する米国特許第4,494,177号、Oramに対する米国特許第4,581,698号、Fuchsに対する米国特許第4,934,933号、Gehlyに対する米国特許第5,497,295号、Allredらに対する米国特許第5,803,905号、Changらに対する米国特許第6,213,671号、Yarboroughに対する米国特許第6,361,320号、Sanderに対する米国特許第6,543,914号、Wahlに対する米国特許第6,568,836号などに見られる。上述の特許の開示は全体として、この参照によりここに含まれる。

【0009】

これらの参照で説明されている支持構造物は様々な関節継ぎ手（articulating joint）を含む。それら関節継ぎ手は、ランプや器具用のトレイなどの負荷の空間的な位置を調節可能に決められるようにしてある。たとえば、米国特許第4,907,919号には、はめ込み式ブーム（telescoping boom）付きの、軌道に取り付けられた照明システムが示されている。米国特許第6,543,914号には、外科用顕微鏡とランプを支持するためのガス圧ばねと互いに連結した、ブームと支柱（strut）の配列が示されている。米国再発行特許第31548号には、歯科処置用ランプが回転自在の腕木にぶら下がっている、歯科処置システムが示されている。また、米国特許第4,437,144号には、平行四辺形に連結した、高さが調節可能な支持腕が示されている。

【0010】

これら前述の負荷支持システムは、特定の使い方では有益かもしれない、一定の特徴を提示している。経済的に効率的な歯科活動を可能にするような、効果的な負荷の位置決めの問題が重要であることは、これら前述の負荷支持システムの多様性によって示されている。

【発明の開示】

10

20

30

40

50

【0011】

上記の背景の観点から、本発明は、歯科医院の施術の効率性を改善することに関する。

本発明は、様々な歯科処理機器や歯科用機器を支えるのに適した、歯科に応用するための支持システムを含む。ここで、歯科用機器には、たとえば、歯科用漂白システム、歯科用硬化(curing)システム、歯科用検査システム、歯の視認・清掃用器具(a dental viewing and cleaning instrument)、画像装置、X線装置、根管根尖探知器(root canal apex locator)、または類似のもの、またはそれらの組み合わせを含む。

【0012】

支持システムは、支柱とブームのシステムを含み、ブームは、両端から間隔をあけた位置の辺りで、支柱に回転自在に取り付けられている。ブームは少なくとも一つの構造を含み、その構造は、支柱の一端に向かった係合しあう(inter-engaging)構造の、対応する少なくとも一つの構造と係合し、回転運動台(pivot mount)を形成するようになっている。

【0013】

一形態において、ブームは一端に向かう少なくとも一つの構造を含み、その構造は、歯科用器具または歯科用機器の少なくとも一つの構造と、係合しあうようになっている。さらに、ブームは第二の端点に向かう少なくとも一つの構造も含む。その構造は、平衡をとるための物体または平衡錘と係合するようになっている。平衡をとるための物体または平衡錘は、歯科用器具や歯科用機器の釣り合いをとることで、一連の様々な位置で歯科用器具や歯科用機器が平衡を保つようにするための、相応して係合しあう少なくとも一つの構造を含む。

【0014】

一つの実施例では、本発明は、様々な歯科処置の連なりを遂行するための複数の歯科用器具または歯科用機器を支えるようになっていて、ブーム上の対応する構造と係合しあう少なくとも一つの構造を含んでいる支持システムを含む。そこでは、複数の器具または機器は、様々な平衡をとるための物体または平衡錘によって、支持システムとの代替可能な連結するようになっているかもしれない。

【0015】

一形態において、支持システムは、新規の方法で、新規および/または従来の機器と協同し、たとえば関連装置および/またはスペーサを用いて、処置機器と患者の口のそれぞれの位置を固定し維持するようになっているかもしれない。

【0016】

別の形態では、本支持システムは、様々な歯科処置器具の支持、提示、操作のための統合システムを、個別に、または同時に、提供する。

別の実施例では、本発明によるシステムは、互換な処置機器を使っていないときに保管し維持するための、組織だった保管システムを含む。

【0017】

より進んだ実施例では、支持システムは、たとえば電源パックとして参照される、統合された電源と制御のモジュールを含む。電源パックは、電力のような動力を、本発明の支持システムによって支持されるようになっている一つ以上の歯科用器具または歯科用機器に、供給するようになっている。両端から間隔をあけた位置にある、支柱の少なくとも一つの対応する構造と係合しあう、少なくとも一つの構造を、電源パックは含む。

【0018】

一形態において、たとえば、電源パックと一つ以上の歯科処置装置との間の動作制御通信を含むような制御機能を、電源パックが供給するようになっているかもしれない。

別の形態においては、電源パックと歯科処置装置との間の動作制御通信が、特定の処置装置に適した通信機能を含むように、電源パックは、一つ以上の歯科処置装置との、知的な通信を提供するようになっているかもしれない。

【0019】

10

20

30

40

50

さらに進んだ形態においては、操作者からの制御入力を受け取り、操作者に状態と制御フィードバックを供給するようになっている、ユーザ・インターフェイス部品を、電源パックが含むかもしれない。

【0020】

他の形態においては、本発明の支持システムの機能は、望ましい人間工学、輸送可能性、強度、最適な重さ、組立の簡単さ、貯蔵可能性(storability)、保守性、調整機能、または位置決め可能性(positionability)を含むかもしれない。それらの一つ以上は、様々な程度で、結果としての歯科処置の有効性に貢献するかもしれない。

【0021】

本発明は、医院がそのような支持システムの数々を備えると、歯科医院での施術の効率が改善するという、目立たない支持システムも提供する。

支持システムに取り付けられるようになっている、いかなる歯科用機器(たとえば歯科用漂白の照明源)でも簡単に調節できるようにするために、本発明はさらにブーム・ヒンジを含む。様々な形態において、ブーム・ヒンジは、多種多様な歯科患者と歯科専門家に適した、機器の位置決めを提供するようになっているかもしれない。他の形態においては、本発明によるブーム・ヒンジは、どのような歯科機器の特定の空間的位置決めでもできるように、そして、一度位置が決められたら、さらに機器の位置を調節することが望まれるまでは、実質的にその場に機器を固定し続けるように、簡単に調節されるかもしれない。

【0022】

本発明の一つの実施例によると、本発明に使われる摩擦座金は、外径が約0.50インチと約3インチの間である。特定の実施例では、摩擦座金は、約0.78インチの外径である。他の実施例では、本発明による摩擦座金は、直径が約1.91インチである。さらに別の実施例では、本発明による摩擦座金は、厚さが約0.01インチと約0.50インチの間である。特定の実施例では、本発明による摩擦座金は、約0.125インチの厚さである。他の直径、厚さ、形態の摩擦座金も、本発明の様々な実施例に適用可能であり、ここに述べた本発明の範囲内に入るだろう、と当業者なら正しく理解するだろう。前述の寸法と寸法の範囲は、本発明に適した機械的な許容範囲を盛り込むものとして理解されることを意図していることも、当業者なら正しく理解するだろう。

【0023】

他の実施例では、本発明はさらにシャフトを受けるためのプラグを含み、ピボットが該プラグに関して回転するようになっている。

他の実施例では、本発明はピボットの回転運動を弱める装置を含む。一形態において、その弱め装置は、ピボットとプラグの間に配置された座金かもしれない。他の形態においては、その弱め装置は、ピボット・シャフトとプラグの間に配置された摩擦パッドかもしれない。

【0024】

さらに進んだ実施例においては、スパナ・プラグが、摩擦パッドに対してピボット・シャフトを押すようになっているかもしれない。この実施例の一形態においては、スパナ・プラグは調節可能で、それによって、プラグに関してピボットの回転運動を、調節可能に弱めることができる。この実施例の他の形態においては、ばねが、シャフトに対して摩擦パッドを押すようになっているかもしれない。

【0025】

本発明のさらに別の実施例では、シャフトが弱め装置を含む。この実施例の一形態においては、摩擦リングがシャフトに取り付けられるかもしれない。

本発明の、これらの利点と特徴および他の利点と特徴は、添付の図と共に提供される、本発明についての以下の詳細な記述に照らすと、より容易に理解されるであろう。

【発明を実施するための最良の形態】

【0026】

別途定義をしない限り、ここで使われる全ての科学技術用語は、本発明の属する分野の

10

20

30

40

50

当業者が通常理解するのと同じ意味を持つ。ここで述べると類似または同等の、どのような方法、装置、材料でも、本発明の実用または試験用に用いることができるだろうが、望ましい方法、装置、材料は、ここで述べるものである。

【0027】

ここで言及される全ての刊行物は、説明と開示の目的で、参照されることによりここに含まれる。たとえば、それら刊行物で述べられる意匠や手順は、すぐに述べる本発明に関連して使われるかもしれない。上記、下記および文書全体で、列挙または検討した刊行物は、本願の出願日より前に、ただそれら自体の開示のために提供された。以前の発明を理由に、本願の発明者がそのような開示に先行する権利がない、と承認していると解釈されるべきものではない。

10

【0028】

以下の詳細な説明は、本発明の諸相に従って規定される現在好ましい装置の説明として意図しており、本発明を実践、利用するための唯一の形態を述べることを意図しているのではない。むしろ、本発明の精神と範囲の中に包含されるように意図されている、別の実施態様によって、同一または同等の機能と部品が達成されるかもしれない、と理解すべきである。

【0029】

本発明の支持システムは、多種多様な歯科用機器を支えるようになっているかもしれない。たとえば、本発明の支持構造物は、薬品賦活機器や歯科用画像機器を支えるようになっている。薬品賦活機器としては、歯科用漂白または歯科用硬化のための放射線源のようなものがある。歯科用画像機器としては、X線位置決め機器や、フィルムや電子的センサを含むX線式検知器や、内視鏡画像機器や、超音波画像機器や、歯科分野の現存の、またはいずれ存在するかもしれない、様々な他の画像機器、のようなものがある。

20

【0030】

本支持システムは、たとえばモジュール形式で、ブーム、支柱、基部をその中に含む。

ブームは、両端から間隔をあけたところに、少なくとも一つの構造を持つ。その構造は、ブームを支柱に回転自在に取り付けるための、支柱の一端に向かった対応する構造と、支柱とブームが並べられたときに係合しあうようになっている。

【0031】

ブームは、一端に向かった少なくとも一つの構造を持つ。その構造は、歯科用器具上または歯科用機器上の、歯科用器具をブームに取り付けるための対応する構造と、ブームと器具が並べられたときに係合しあうようになっている。

30

【0032】

ブームはさらに、第二の端点に向かった少なくとも一つの構造を持つ。その構造は、平衡をとるための物体または平衡錘の対応する構造と、ブームと該物体が並べられたときに係合しあうようになっている。

【0033】

支柱は、両端から間隔をあけたところに、少なくとも一つの構造を持つ。その構造は、電源パック上の対応する構造と、支柱と電源パックが並べられたときに係合しあうようになっている。

40

【0034】

支柱は、第二の端点に向かった少なくとも一つの構造を持つ。その構造は、支持基部の対応する構造と、支柱と支持基部が並べられたときに係合しあうようになっている。

関連装置、スペーサ、ランプ・システム、支柱、ブーム、電源パック、基部、平衡をとるための物体または平衡錘、または本支持システムの他のいかなる部品に関しても、ここで使う語の形は、隣接する部品の対応する部分とかみ合うように形成された、一つの部品の一部を参照している。これは、型による成型(molding)、鋳造(casting)、機械加工、その他の適切な方法によって形成されるだろう、上で列挙した部品の一部や、別々に作られた後に組み立てられる部分を含む。

【0035】

50

係合しあう構造として適切なものには以下のものがあるが、これらに限定されるわけではない：舌状の物と溝（groove）、柱（post）とソケット、揺動可能な（swingable）フックとソケット、弾力のあるクリップとソケット、舌状または翼状の部品とスロット、ボールと空洞（cavity）、ボールとソケット、ねじと座金、凹部と突起、導管（channel）と棒またはケーブル、など。これらのうちいくつかについては、より具体的に以下で詳細を例示する。

【0036】

本発明の光灯システムは、対象に対して用意に調節されるだろうし、右利きと左利きの両方の利用者に人間工学的に適合している。さらに、光灯システムの一部は、上記のように、分離可能でモジュール式であり、光灯システムの組み立て、分解、梱包、輸送、運搬がしやすいようになっている。さらに、個々の部品またはモジュールが、修理や更新のために送られることもあるかもしれない。

【0037】

図1は、本発明による歯科用機器のための支持構造物100を示している。図のとおり、支持構造物100は、基部102と関節のある支持部品104とを含む。本発明の一つの実施例によれば、基部は本体部106を含む。基部102は、関節のある支持部品104の連結機構108（以下の図3aを参照）を受けいれて、関節のある支持部品104に連結されるようになっている。連結機構108は、関節のある支持部品104を本体部106に実質的に固定して連結するようになっている。

【0038】

一つの実施例では、関節のある支持部品は支柱101とブーム103を含む。ブーム・ジョイント取っ手109、111を含むブーム・ジョイント105によって、支柱101とブーム103は互いに連結される。

【0039】

図1の実施例では、器具または装置の連結機構98のような構造を、ブーム103の前方の端点が含む。本発明の範囲には、多種多様な装置連結機構が含まれるが、図示されている装置連結機構は玉継手（ball joint）である。

【0040】

装置連結機構に連結された負荷の質量によって作られる重力トルクを相殺するようになっている、ブーム制御機構のような第二の構造を、支持構造物100のブーム103は、様々な実施例において含んでいる。たとえば、図示された実施例では、ブーム103の後方の端点がブーム平衡錘107を含む。しかし、たとえば、ねじりばねや引張ばねのような多種多様のブーム制御機構が、ブーム103を制御するのに適用でき、本発明の範囲に入るということは、当業者なら認識するだろう。

【0041】

一つの実施例では、図示したように、本体部106が複数のビーム110を含む。複数のビーム110は互いに關して放射状の方向に配置されていて、複数のビーム110のそれぞれの近位端112が連結機構108に近接するようになっており、複数のビーム110のそれぞれの遠位端114が連結機構108から離れているようにもなっている。様々な実施例において、ビーム110と本体部106の双方または一方は、単一の統一部品からなるかもしれないし、個々の部品の組み立てによるかもしれない。

【0042】

本発明のある実施例によれば、基部102は5つのビーム110を含む。5つのビーム110は、実質的に対称な放射状に配置され、実質的に同一平面上にあり、実質的に水平方向に伸びている。異なるビーム数も想定される。

【0043】

本発明の別の実施例では、本体部106がある部品を含むかもしれない。その部品は、特定の実施例における、機能的要件や審美的要件を含む様々な要件によって、円盤状、半球状、頂部が切断された半球状、半楕円状（hemi-ellipsoid shape）、円錐状、頂部が切断された円錐状、その他様々な形状であろう。

10

20

30

40

50

【0044】

さらに進んだ態様では、本発明の一つの実施例によれば、基部102はベアリング装置を含む。ベアリング装置は、床のような支持平面に関して、歯科用機器支持構造物100の動きを容易にするようになっている。図示した一つの実施例によれば、ベアリング装置は複数のキャスターホイール116を含む。一つの実施例では、複数のキャスターホイールは、複数のビーム110のそれぞれの端114に配置されている。別の実施例では、キャスターホイールは、円盤状の基部の外面に隣接して配置されている。

【0045】

本発明のさらに別の実施例では、複数のキャスターホイール116が、複数のそれぞれのブレーキ装置を含む。さらに進んだ態様では、複数のブレーキ装置のそれぞれが、個々の活性化レバー120を含む。本発明の別の実施例では、単一の共通の活性化装置が、複数のブレーキ装置のそれぞれと係合するようになっている。

【0046】

本発明のさらに別の実施例では、単一の共通のブレーキ装置が使われる。たとえば、本発明の一つの実施例によると、基部102はブレーキシュー機構を含む。ブレーキシューが床に係合したときに、ブレーキシューの下面と床の間の摩擦力によって、支持構造物100の、床に関して横向きの動きを妨げるように、ブレーキシュー機構は、本体部106の下面に隣接したところから床に向かって、ブレーキシューを下向きに押し付けるようになっている。

【0047】

さらに進んだ態様では、本発明の一つの実施例によると、複数のキャスターホイール116は、複数のそれぞれのタイヤ122を含む。様々な実施例において、これらのタイヤは、様々な材料を単独で使ったり組み合わせて使ったりして、作られるかもしれない。そういう材料には、たとえば以下のものが含まれる。天然ラテックスゴムのようなエラストマー、スチレンブタジエンニトリルゴムやスチレンイソブレンニトリルゴムのようなKratonゴム（登録商標）、ポリウレタン、ネオブレン、ポリブタジエン、ポリイソブチレン；熱可塑性プラスチックや熱硬化性樹脂、たとえば、ポリプロピレン、ポリエチレン、超高分子量ポリエチレン（UHMWPE）、ポリテトラフルオロエチレン（PTFE、テフロン（登録商標））、ポリビニルジフルオライド（PVDF）、ポリアミド（ナイロン）、ポリアラミド（Kevlar）、アセタール樹脂（Delrin）、ポリスチレン、ポリエステル、ベークライト；たとえば、グラスファイバー、カーボンファイバー、セルロース、麻などの強化材や、当該技術分野で公知の他のどのような強化材でもよいが、それら強化材と、前述のどれかの材料がともに使われたものを含む、強化複合材料。

【0048】

本発明の特定の実施例によると、キャスターホイール116のタイヤ122は、空気タイヤ、半空気タイヤ（semi-pneumatic）、またはソリッドタイヤかもしれない。さらに進んだ実施例では、キャスターホイール116はタイヤ付きではなく、金属製か、高分子膜付き金属製（たとえばエポキシ樹脂でコーティングされた鋼鉄製）の、円周状の表面を持つかもしれない。

【0049】

しかし、次のことに注意すべきである。ベアリング装置は全くキャスターホイールを含まないかもしれない、かわりに空気ベアリングを含むかもしれない。ここで空気ベアリングは、基部下面にある溝および／または開口を通じて、圧縮空気を能動的に送り出すか放出するかして形成され、基部下面と床の間の摩擦を減らすようになっている。本発明のそれぞれの実施例によれば、他のキャスター式でないベアリング装置には、たとえば強化PTFEやUHMWPEで作られた高分子化合物製の滑り具を含む。

【0050】

図2は、本発明の一つの実施例による、歯科応用のための装置支持材200を、断面立図で示したものである。図2では、図1の関節のある部品104の構成要素を少し詳しく

10

20

30

40

50

説明している。

【0051】

図示した一態様において、装置支持材200は、ある構造（たとえば、少なくとも2自由度の回転ブーム・ヒンジ202のような、ブーム・ジョイントといった構造）を持ったブームを含む。特に図示した実施例では、ブーム・ヒンジ202は、実質的に垂直な軸の周りの回転運動を含む第一の自由度と、実質的に水平な軸の周りの回転運動を含む第二の自由度とを持つ。図示した実施例では、実質的に水平な軸の周りの回転は、ブーム・ヒンジ202に少なくとも一つの構造を含むことによって、影響を受けるかもしれない。その構造とは、たとえば、以下のうち少なくとも一つまたは全てを含むかもしれない：ブーム・ジョイント・ヨーク204、ブーム・ジョイント・ヨーク204とブーム・ジョイント・ピボット206の間に配置されたブーム・ジョイント・シャフト208を持つ、ブーム・ジョイント・ピボット206部品。

【0052】

実質的に水平な軸の周りの回転は、ブーム・トップ・プラグ212の実質的に垂直方向の穴の中に配置されたブーム・ピボット・シャフト210を、ブーム・ヒンジ202に含むことによって、影響を受ける。本発明によるブーム・ヒンジの典型的な実施例と態様は、以下でさらに詳細に議論する。

【0053】

上述のとおり、図1に関して、関節のある支持部品は、支柱101とブーム103を含む。図示した実施例では、図2で見られるとおり、支柱とブームの双方が湾曲している。

本発明のさらに進んだ実施例によると。ブーム103の湾曲は、実質的に円弧である。本発明の他の実施例によると、ブームの湾曲は、たとえば、橢円曲線、卵型曲線、非単調曲線（S字曲線など）のような、円弧以外の曲線を含むかもしれない。

【0054】

支柱とブームが図示したように湾曲していることの利点の一つは、床面積（他の点では混雑した歯科用検査室かもしれない）の利用を最適化できることである。たとえば、歯科用検査椅子150、机、または他の歯科検査室の機器の何らかの部分などの下にある凹所215の下に、支柱101の湾曲によって、基部102のより大きな部分が入れるようになるかもしれない。

【0055】

このようにして、凹所215の外側に、他の用途に使える空間が保存される。他の面では、支柱101とブーム103の湾曲は、審美的に心地良いかもしれない、その結果、歯科医院の装飾品として貢献するかもしれない。にもかかわらず、本発明の特定の実施例によれば、支柱および／またはブームは、実質的に直線状であるかもしれない。

【0056】

本発明の一つの実施例によれば、支柱とブームの双方は、信号装置および／または物質移動装置を支えるようになっているかもしれない。典型的な信号装置は、金属製、セラミック製、または導電性高分子製のワイヤ、または光ファイバといった、纖維状の信号搬送体を含むかもしれない。さらに典型的な信号装置は、ラジオ波導波管などの非纖維状の信号搬送体を含むかもしれない。典型的な物質移動装置は、たとえば、加圧された空気または水を輸送するようになっている可塑性ポリマーや金属製管組織を含む。図示した実施例では、歯科用器具または歯科用装置のための電源線を、支柱とブームが支えるようになっている。

【0057】

一つの実施例によれば、床に対して垂直な平面内の曲線を定める、凹面と凸面を、支柱が含むかもしれない。取り付け（mounting）ケーブルのような構造を少なくとも一つ持つ、少なくとも一つの電源パックが、支柱の構造（たとえば支柱の湾曲の凸面側にある溝）に取り付けられるかもしれない。図示したように、電源パックは光灯システムを制御するための制御器を含む。

【0058】

10

20

30

40

50

図3aは、本発明の一つの実施例による、典型的な支柱101の背面図を示している。図示したとおり、支柱の外面に長手方向に配置されたワイヤ用の溝152を、支柱は含む。図示した実施例では、このワイヤ用の溝152は、支柱101の下端から支柱101の上端まで伸びている。

【0059】

図3bは、本発明の一つの実施例による、支柱101の断面を示している。図3bではワイヤ用の溝152の輪郭が目で見えて、他の点では実質的に楕円状円筒形の、支柱101の外面154の内側に凹んだ空洞部を含んでいるのが分かる。ワイヤ用の溝152は、第一と第二の縁(lips)を含むかもしれない。第一と第二の縁156は図示した実施例によれば、支柱101の下端から上端まで、ワイヤ用の溝152に沿ってその長さと実質的に同じだけ、伸びているかもしれない。しかし、他の実施例によれば、縁156は、ワイヤ用の溝152に沿って断続的な突起として形成されるよう意図されているかもしれない。

【0060】

本発明の一つの実施例によれば、支柱は次のようなもので作られているかもしれない。ステンレス鋼、押出アルミニウム、ニッケル/チタン合金などの合金などの、金属または金属合金。そして、Liquid Metal, Inc.から入手できるものを含むアモルファス金属やその類似品、たとえば、米国特許第6,682,611号や米国特許出願第2004/0121283号などで述べられているようなもの（これら特許文献の内容の全ては参考によりここに含まれる）。

【0061】

本発明の別の実施例によれば、支柱は高分子材料で作られているかもしれない。適した高分子化合物には次のものが含まれる。ポリエチレン、ポリプロピレン、ポリブチレン、ポリスチレン、ポリエステル、アクリルポリマー、ポリ塩化ビニル、ポリアミド、またはULTEM(登録商標)のようなポリエーテルイミド。そして、ポリカーボネートとポリブチレン・テレフタレート樹脂の複合材料であるXenoxy(登録商標)樹脂や、ポリカーボネートとイソフタレート・テレフタレート・レゾルシノール樹脂（全てGE Plastic s社で入手可能）の共重合体であるLexan(登録商標)樹脂などの、高分子合金。そして、芳香族ポリエステルや芳香族ポリエステル・アミドのような液晶高分子であって、構成成分として、以下のものからなる群から選択される少なくとも一つの化合物を含むもの：ヒドロキシカルボン酸（ヒドロキシ安息香酸塩（硬性モノマー）、ヒドロキシナフト酸塩（軟性モノマー）など）、芳香族ヒドロキシアミンおよび芳香族ジアミン（米国特許第6,242,063号、第6,274,242号、第6,643,552号、および第6,797,198号に例示されているもので、それらの内容は参考によりここに含まれる）、末端に無水物群があるか側面に無水物があるポリエテルイミド無水物（米国特許第6,730,377号に例示されているもので、その内容は参考によりここに含まれる）、またはそれらの組み合わせ。

【0062】

さらに、次のような高分子複合材料を使ってもよい：工業プレプレグ、または、顔料、カーボン粒子、シリカ、グラスファイバー、金属粒子または導電性ポリマーのような導電性粒子、またはそれらの混合物で満たされた高分子である複合材料。たとえば、ポリカーボネートとABS(アクリロニトリル・ブタジエン・スチレン)の混合物が、ランプハウジングやランプヘッドに使われるかもしれない。

【0063】

図3cは、本発明の一つの実施例による、溝カバー225の断面図である。図3cの溝がバーは、板状部226、第一の突起227、第二の突起236を含む。第一の突起227と第二の突起236は、板状部226の裏面238に実質的に垂直になっている。さらに、第一と第二の突起は、板状部226の長手方向の端239、241の内側にある。227と236の各突起は、角度のついた返し(barb)243、245を、それぞれの背面249、251に含む。その結果、溝カバー225のそれぞれの側面は、それぞれの長手方向の凹部253、255を含み、それら凹部が、ワイヤ用の溝152の縁156のうち対応する一方の縁と機械的に結合されるようになっている。この機械的な結合により、溝

10

20

30

40

50

カバー 225 は、ワイヤ用の溝 152 に隣接することになり、ワイヤ用の溝 152 を封鎖する効果がある。

【0064】

本発明の一つの実施例によれば、溝カバー 225 は相対的に柔軟ではなく、ワイヤ用の溝 152 の封鎖は実質的に永続する。本発明の別の実施例によれば、溝カバー 225 は相対的に柔軟で、その結果、溝カバー 225 は最初の取り付けの後で簡単に取り外しや取り替えができる。

【0065】

本発明の一つの実施例では、溝カバー 225 は、上述のようなエラストマーを含む材料で作られているかもしない。

本発明の他の実施例によれば、溝カバー 225 は、次のような材料で作られているかもしない：たとえば、アルミニウム、鋼鉄、ステンレス鋼などの金属性の物質、または、支柱の構成に関して既に述べた各種の材料。本発明のさらに別の実施例によれば、特定の実施例の要件によって、前記の材料やその他の材料の組み合わせが、前記の材料と共に、あるいは排他的に、使われるかもしない。

【0066】

本発明の別の実施例では、支柱 101 に関して図 3b に図示した実施例と類似の方法で、ブーム 103 (図 2 に示した) もワイヤ用の溝を含むかもしない。そのような場合、ブーム 103 のワイヤ用の溝を覆うために、図 3c のような溝カバー 225 も使われるかもしない。

【0067】

図 3d は、本発明の一つの実施例によるブーム 103 の断面図を示している。図 3d に示した実施例では、ブーム 103 はワイヤ用の溝を含まない。かわりに、ブーム 103 は実質的に中空で、内部に軸方向の空洞を持つ。本発明の一つの実施例によれば、たとえばワイヤおよび / または管組織が、軸方向の空洞 259 の内部に置かれて支えられるかもしない。

【0068】

支柱の構成について前述したのと同じ材料のうち一つ以上のものによって、あるいは別の材料によって、ブームが作られるかもしない。本発明の一つの実施例によれば、ブームは押出アルミニウムによって作られるかもしない。

【0069】

再び図 3a を参照するが、本発明の一つの実施例によれば、支柱 101 はある構造または連結機構 108 を含む。連結機構 108 は支柱 101 をその下端で、基部 106 に連結するようになっているかもしない (たとえば図 2 に示したように)。本発明の図示した一つの実施例によれば、連結機構 108 はプラグ 264 を含む。図示した実施例では、プラグ 264 は、実質的に円筒状の外面を含み、基部 106 にある構造 (たとえば図 2 に示してあるような、実質的に円筒状の内面 266 を持つ空洞など) で受けるようになっているかもしない。

【0070】

本発明の一つの実施例によれば、プラグ 264 は、実質的に中空ではなく、たとえば一体鋳造で作られているかもしない。本発明の他の実施例によれば、プラグ 264 は部品を組み立てたものとして作られているかもしない。

【0071】

本発明のさらに別の実施例によれば、連結機構は、突起部を含むかもしない (図示せず)。突起部は、支柱 101 の内部空洞 268 で受けるようになっているかもしない。本発明の様々な実施例によって、突起部は内部空洞 268 内に、たとえば、摩擦力嵌合、一つ以上のねじ部品、スプリング・ピン、他の留め付け手段などによって保持されるかもしない。

【0072】

本発明のさらに進んだ態様では、一つの実施例によれば、連結機構 108 は位置合わせ

10

20

30

40

50

装置 269 を含むかもしれない。本発明の一つの実施例では、位置合わせ装置は、鋼鉄製小ねじ (machine pin) のような、だぼまたはピンかもしれない。図示した実施例では、ピンは実施的に円筒状の鋼鉄のピンかもしれない、穴の中にあり、プラグ 264 の長手方向軸に実質的に垂直に調整されているかもしれない。他の実施例 (ここでは図示せず) では、位置合わせ装置 269 は、断面が長方形のピン、方形キー (rectangular key)、半月キー (Woodruff key)、ロール・ピン、または当業者に公知の他の位置あわせ装置であるかもしれない。

【0073】

本発明の一つの態様においては、(図1に示したように) 基部 102 について支柱 101 を特定の方向に保持するのに、位置合わせ装置 269 が役立つ。一つの実施例によると、基部のビーム 110 のうちの一つと一直線に並んだ、支柱の湾曲面を、この方向が保っている。

【0074】

一つの実施例では、図1に示したように、支柱 101 はその全長にわたって一様な外のり寸法かもしれない。別の実施例では、支柱 101 は、図4に示したように、全長にわたって一様な外のり寸法というわけではないかもしれない。

【0075】

図4は、歯科用機器支持構造物を、本発明の他の実施例にもとづいて示している。図4から明らかなように、支柱やブームの形状は、厳密に管状である必要がない。図4の支持構造物 100' は、支柱 262 を含む。支柱 262 は、支柱に沿った高さの関数として、互いに分岐してその後合流する、側面を持つ。その結果、図示した実施例で示されているように、支柱の中央部の断面積は、上部 265 や下部 267 に比べて大きい。

【0076】

図4で、支柱 101 の中央部は、支柱の他の部分より大きな寸法である。一つの態様では、この中央部は電源パック 261 の取り付け位置と一致するかもしれない。別の態様では、支柱 101 のより広い部分は電源パック 261 を載せるために平らになっているかもしれない。第三の態様では、支柱 101 のより広い部分は電源パック 261 を載せるためにくぼんでいるか凹所が設けられるかして、電源パック 261 が支柱 101 の一般的な輪郭からかけ離れて突き出さないようになっているかもしれない。

【0077】

本発明の一つの実施例では、ブーム 103 と支柱 101 の設置面積が、基部 106 の設置面積を超えないように配置されているかもしれない。特に、ブーム 103 が最小の対頂角に回転されたとき、それによってランプヘッドが基部のすぐ近くで最低の高さとなり、床への光灯システムの投影は、基部 106 の外周内に完全に納まる。

【0078】

他の実施例では、歯科用光灯システムの重心が基部 106 の内部に納まるようにしつつ、ブーム 103 と支柱 101 は、その設置面積が基部 106 の設置面積を超えるように配置されるかもしれない。

【0079】

本発明の別の実施例では、ブーム 103 がどの角度の位置であっても、平衡錘の最外面が、基部 107 の外周を超えない。

本発明の一つの態様において、図4の支柱 262 は、中央部 263 に空洞または中空部分を含む。本発明の一つの実施例によると、この中空部は、たとえば、制御モジュールまたは電源パックのような機器をその中に受けるようになっている。よって、本発明の一つの態様によれば、流線型で統合的な支持構造物が得られる。突端または機器が服に引っかかったり、さもなくば専門家の活動を妨げたりするかもしれないのような歯科医院では、そのような支持構造物は利点がある。

【0080】

図5は、本発明の一つの実施例による、基部 106 の斜視図を示している。図示したように、基部 106 は、たとえば、実質的に円筒状の内面 266 を持つ空洞といった構造を

10

20

30

40

50

含む。上述のとおり、この空洞はその内部に連結機構 108 を受けるようになっているかもしれない。図 5 では、基部 106 内の空洞に向かって開いているスロット 279 も見える。本発明の一つの実施例によれば、実施的に円筒状の連結機構 108 の外面から突き出している位置合わせ装置 269 を、このスロットが受けるようになっているかもしれない。本発明の一つの実施例によれば、図示したように、単一のスロット 279 が基部にある。他の実施例では、複数のスロットが用意され、対応する複数の位置合わせ装置 269 を受けるようになっているかもしれない。

【 0 0 8 1 】

再び図 2 とそこで説明した本発明の実施例とを参照すると、平衡錘 107 は、ブーム 103 の後端に位置している。図示した実施例では、平衡錘 107 の前面の開口から内側に向かって作られた軸方向の穴 306 を、平衡錘 107 が含む。

【 0 0 8 2 】

図示した実施例では、たとえば溶接またはリベットやねじ部品の使用によって、ブームの内面 301 (図 3 を参照) に固定的に連結された、内部隔壁 299 を、ブームが含む。本発明の他の実施例では、内部隔壁は、押出成形または成型によって作られるブーム構造の一部として、一体的に作られている。

【 0 0 8 3 】

本発明の一つの実施例によれば、内部隔壁 299 は、横方向に位置し内部隔壁の中を通り、雌ねじのついた穴 304 を含む。一つの実施例では、雌ねじのついた穴 304 は、ブーム 103 の局地的な長手方向軸と実質的に同軸に位置している。

【 0 0 8 4 】

図 2 の実施例では、平衡錘シャフト 305 は、平衡錘 107 の穴 306 の中と、内部隔壁 299 の、雌ねじのついた穴 304 の中の双方に位置している。図示したとおり、さらに別の、雌ねじのついた穴 308 が、平衡錘 107 の中にある。雌ねじのついた穴 308 は、対応する穴 306 の開口と、平衡錘 107 の外面 310 との間にある。このさらに別の、雌ねじのついた穴 308 は、穴 306 に対して実質的に垂直に位置している。本発明の一つの実施例によれば、雄ねじのついた止めねじ 312 が穴 308 の中にあり、止めねじ 312 の内側の端点が平衡錘シャフト 305 の外面 314 に接するように、平衡錘 107 の表面 310 から内部に向かって止めねじ 312 が進むようになっている。

【 0 0 8 5 】

図 6 は、本発明の一つの実施例により、平衡錘シャフト 305 をさらに詳しく示したものである。図示したとおり、平衡錘シャフト 305 は、平衡錘 107 の軸方向の穴 306 で受けられるようになっている後部 320 を含む。内部隔壁 299 の雌ねじのついた穴 304 で受けられるようになっている前部 322 をも、平衡錘シャフト 305 は含む。図示した実施例では、前部 322 は、複数の雄ねじ 324 を含む。複数の雄ねじ 324 は、内部隔壁 299 の雌ねじのついた穴 304 の、対応する複数の雌ねじと、ねじで連結されるようになっている。

【 0 0 8 6 】

さらに進んだ態様では、本発明の一つの実施例によれば、平衡錘シャフト 305 は、その外面 328 上に、少なくとも一つの平面 326 を含む。平衡錘シャフト 305 の長手方向軸の周りの軸トルク (axial torque) を使うための、レンチまたは他の道具を、平面 326 が受けるようになっている。この軸トルクの利用は締め付けに効果がある。その結果、平衡錘シャフトの雄ねじ 324 と、内部隔壁 299 の雌ねじのついた穴 304 の雌ねじとが、実質的に固定されて係合する。

【 0 0 8 7 】

当業者なら理解するとおり、平衡錘シャフトの雄ねじ 324 と、内部隔壁 299 の雌ねじのついた穴との固定された係合は、たとえば、割り座金や球面座金などの止め座金や、当該技術分野で周知のねじによるロック手法などを使うことによって、より強まるかもしれない。

【 0 0 8 8 】

10

20

30

40

50

さらに別の態様では、図6の実施例によると、平衡錘シャフト305の外面328は、外周に溝330を含む。本発明の一つの実施例では、外周の溝330は、平衡錘シャフトの長手軸に対して傾いた角度になっている側面332を、少なくとも一つ含む。本発明の一つの態様によれば、頂部が切断された円錐状の止めねじ312の内側の端点上に作られた対応する傾斜角(図2に示したとおり)は、止めねじ312が内部に進むのにつれて、たとえば隔壁299に関して、平衡錘シャフト305の長手軸方向に沿った固定された側面部へと、平衡錘を押しつけるのに効果的である。

【0089】

図7は、歯科用機器支持構造物のためのブーム・ジョイント340の斜視図を示している。ブーム・ジョイント340は、ヨーク342とピボット344を含む。図示したブーム・ジョイント340では、ヨークは第一の縦材(side member)346と第二の縦材348を含み、それぞれに対応する第一と第二の穴が、実質的に水平方向にそこを通っている。同様に、ピボット344は第三の縦材350と第四の縦材352を含み、それぞれに対応する第三と第四の穴が、実質的に水平方向にそこを通っている。第一、第二、第三、第四の穴は、それらと同軸でそれらを通っている、たとえば根角ボルト(carriage bolt)のような心棒に沿って並ぶようになっている。この方法では、ヨーク342とピボット344は、お互いの回転に関して、心棒354によって相互に支えられている。

【0090】

ヨーク342は、たとえば雌型連結機構356を含む。雌型連結機構356は、たとえば、支柱によってヨークが支えられているような支柱の上端358と、連結されるようになっている。図示したように、ピボット344は、一つ以上のボルト362によって、ブーム360に連結されている。

【0091】

第一のハンドル364には、第一のレバーアーム366と、雌ねじのついた穴がある。雌ねじのついた穴は、心棒354の雄ねじのついた端点を受けるようになっているかもしれない。それによって、対応するピボットの縦材350、352に関してヨークの縦材346、348を圧迫したり緩めたりするのに、ハンドルの回転が役に立つ。縦材と縦材の間の摩擦特性を修正するために、縦材と縦材の間に摩擦座金が配置されるかもしれない。

【0092】

縦材346、348の圧迫は、ヨーク342に関してピボット344の心棒354の周りの回転を防ぐのに役立つ。逆に、縦材346、348を緩めることによって、ヨーク342に関してピボット344の心棒354の周りの回転が可能になる。第二のハンドル368には第二のレバーアーム370がある。図8では、ハンドル368をさらに詳細に示している。図示したとおり、ハンドル368は、たとえば根角ボルト376などの雄ねじのついたボルトを受けるようになっている、雌ねじのついた穴を含む。雌型連結機構356は、第一のフランジ372と第二のフランジ374を含み、それぞれのフランジには、そこを通るそれぞれの穴がある。フランジ372、374の穴は、実質的に互いに一列に並んでいて、ボルト376を受けるようになっている。当業者には明らかだろうが、回転するハンドル368は、フランジ372、374をお互いに関して圧迫したり緩めたりするのに役立つ。フランジ372、374の圧迫は、支柱358に関してヨーク342の支柱358の周りの回転を防ぐのに役立つ。逆に、フランジ372、374を緩めることによって、支柱358に関してヨーク342の回転が可能になる。

【0093】

図6と図7のブーム・ジョイントの長期にわたる操作は、以下のうち一つ以上のものの磨耗という結果を招くことを、当業者なら理解するだろう：支柱358の外面、それに対応する構造(たとえば雌型連結機構356の内面)、ピボット344の第三の縦材350や第四の縦材352の外面、それに対応する、ヨーク342の縦材346、348の内面。そのような磨耗が起こると、それぞれの界面での摩擦力が、それに従って変化する。つまり、予測不可能かつ/または望ましくないかもしれない方法で、支持構造物の寿命の間、ブーム・ジョイントの運動反応特性に対する減衰と抵抗も変化する。本発明は、そのよ

10

20

30

40

50

うな反応特性におけるそのような変化を最小化することを目的としている。他の解決法も可能だが、それらのうちいくつかは、生産するのがより困難か、安定した状態に保つのがより困難である。

【0094】

図9は、本発明の一つの実施例による、ブーム・ジョイント105の断面図を示している。図示したように、ブーム・ジョイント105は、ブーム・ジョイント・ピボット210とブーム・ジョイント・ヨーク212を含む。ブーム・ジョイント・ピボットは、ブーム・ジョイント・シャフト216を受けるようになっている水平な穴214を含む。水平な穴214は、内部の実質的に円筒状の壁面218によって輪郭が定まる。本実施例によれば、壁面218はスロット220を含む。再び図2を参照すると、スロット220は半月キー(Woodruff key)222のような固定装置の一部を受けるようになっているかもしれない。

【0095】

シャフト216と穴214の双方に共通の軸224の周りの、シャフト216の回転を防ぐことが、半月キー222の目的である。後述の別の図に関連していざれ明らかになるとおり、ヨーク212も、シャフト216の一部の周りに配置されているかもしれない穴を含む。現在考慮している本発明の実施例では、支持構造物を使う間、ヨークは半月キー222に固定的に連結されてはいない。その結果、ヨーク212と、ヨーク212に固定的に連結されているブーム108は、シャフト216によって回転自在に支えられている。シャフト216も同様に、ピボット210とシャフト216によって支えられているかもしれない。

【0096】

本発明の支柱101とブーム108は、どのような高分子材料で作ってもよいが、好ましくは、成型または鋳造が可能な高分子化合物、または金属、または金属合金で作るのが良い。適切な金属または金属合金、高分子化合物や高分子複合材料には、上述のものが含まれる。

【0097】

図示した実施例では、ブーム・ジョイント・ピボット210が、上部232だけでなく基部230も含む。様々な実施例において、基部230と上部232は単一の一体ユニットとして形成されるかもしれないし、個々の構成部品を組み立てたものとして作られるかもしれない。図示した実施例では、基部230は、垂直シャフト234を含む。これも先と同じく、様々な実施例において、基部230と垂直シャフト234は、個々の構成部品を含むかもしれないし、単一の一体ユニットを形成しているかもしれない。

【0098】

本発明の一つの実施例では、支柱101は、実質的に中空の穴または空洞240を含むかもしれない。支柱頂部プラグ242は、全体または一部分が空洞240の中にあるかもしれない。支柱頂部プラグ242は、実質的に円筒状の内面246によって輪郭が定まる、軸方向の穴244を含むかもしれない。軸方向の穴244の放射径(radial diameter)は、第一の場所248での穴の直径が第二の場所250での穴の直径よりも大きくなるように、該穴の長さにしたがって様々な異なる。穴244の長さにつれて穴の直径が変わることでは、出っ張り252が存在する。

【0099】

本発明の一つの実施例によると、軸方向の穴244の中に軸受筒254があるかもしれない。実質的に円筒状の内面258に対して実質的に同軸に位置している、実質的に円筒状の外面256を、軸受筒254は含むかもしれない。

【0100】

一つの典型的な実施例では、軸受筒254は、油で満たされた多孔質の青銅材料を含むかもしれない。別の典型的な実施例では、軸受筒254は、小さな摩擦係数の高分子化合物を含むかもしれない。この高分子化合物は、以下のものを含む様々な材料から選択されるかもしれないが、それらに限られるわけではない：たとえば、ポリエチレン、超高分子

量ポリエチレン (UHMWPE) 、アセチルポリマー素材やアセチルポリマー素材で強化された纖維 (Delrin) 、ポリアミド (ナイロン) 、ポリビニルジフルオライド (PVDF) 、ポリテトラフルオロエチレン (テフロン (登録商標)) 、そしてこれらの高分子化合物と同様に望ましく適切な特性の他の高分子化合物、工業プレプレグ、支柱とブームの構成のところで述べた、詰め物入りの高分子複合材料。

【0101】

本発明の別の実施例では、軸受筒254は相対的に大きな摩擦係数または中間的な摩擦係数の材料を含むかもしれない。それは、垂直シャフト234が自分の長手軸の周りに回転運動するのを減らすか制限するのに、外面260と内面248との相互作用によって、軸受筒が役立つようになるためである。

10

【0102】

図示したように、ブーム・ジョイント・ピボット210の垂直シャフト234の、実質的に円筒状の外面260は、軸受筒254の実質的に円筒状の内面258に接していて支えられている。さらに、ブーム・ジョイント・ピボット210の基部230の下面270の実質的に平らな部分は、支柱頂部プラグ242の上面272の実質的に平らな部分に接していて支えられている。

【0103】

スプリットリング (Cリング) のような保持装置274は、垂直シャフト234の溝276の中にお互いに位置していて、軸方向の穴244の実質的に円筒状の表面のさらなる出っ張り278に接している。

20

【0104】

保持装置274は、垂直シャフト234を穴244の中に保持し、支柱頂部プラグ242に関して上向きにブーム・ジョイント・ピボット210が動くのを防いでいる。

この配置によれば、ブーム・ジョイント・ピボット210が、支柱頂部プラグの穴244とブーム・ジョイント・ピボット・シャフト234の相互の軸の周りに回転するのを許しつつ、支柱頂部プラグ242がブーム・ジョイント・ピボット210を支えて保持している。

20

【0105】

図示した実施例では、支柱頂部プラグ242の上面272の実質的に円形の凹部282の中に位置している、摩擦座金280の摩擦動作によって、この回転が弱められるかもしれない。摩擦座金280の外周が、多種多様な形かもしれないことを当業者なら理解するだろう。その多種多様な形には以下のものを含むが、これに限定されるわけではない：楕円形、長方形、正方形、正弦曲線の形、鋸歯状の形、支柱頂部プラグ242に関する摩擦座金の回転を減少させるような、その他の形。

30

【0106】

様々な実施例で、摩擦座金は、対応する様々な材料を含むように作られている。その様々な材料には以下のものを含むが、これに限定されるわけではない：ポリウレタン、ポリブチレン、ラテックスゴム、または、天然または合成の他のゴム材料。合成ゴム材料は、エラストマー材料であることが好ましく、Kraton Polymers社から入手可能な、スチレン・ブタジエン・ゴムやスチレン・イソブレン、EPDM (エチレン・プロピレン・ジエン・モノマー) ゴム、ニトリル (アクリロニトリル・ブタジエン) ゴム、その他の類似物のような、様々な共重合体やブロック共重合体 (Kraton (登録商標)) を含む。さらに、他のエラストマー樹脂、コルク、木材、セラミック材料、その他の材料、あるいは、摩擦座金の機能に適した材料の組み合わせでもよい。さらに、摩擦座金は、たとえば、とりわけ、セラミック纖維、グラスファイバー、鉱物纖維材料などの纖維性材料を含むかもしれない。

40

【0107】

本発明の他の実施例では、支えられている歯科用機器に2から5ポンドの力が側面から加えられるか近接して加えられたとき、摩擦座金280または他の摩擦要素と、支柱頂部プラグ242やブーム・ジョイント・ピボット210との間に働く摩擦力を弱めることで

50

、ブーム・ジョイント・ピボット210が回転するのを十分可能にできる。

【0108】

本発明のさらに進んだ態様では、図9に図示した実施例によると、実質的に円筒状のピンなどのピン290が、支柱頂部プラグ242の上面272にある穴292の中と、ブーム・ジョイント・ピボット210の基部230の下面270にある弓形のスロット294の中とに、共に位置している。

【0109】

さて図10に移ると、これは、下から見た斜視図でブーム・ジョイント・ピボット210を示したもので、弓形のスロット294がよりはっきりと見える。図示した実施例では、弓形のスロット294は、実質的に垂直な内壁296と、実質的に垂直な外壁298とを含む。弓形のスロット294は、実質的に垂直な端壁300、302も含む。図9に関して見れば、ブーム・ジョイント・ピボット210が支柱頂部プラグ242に取り付けられるかもしれないとき、ピン290が弓形のスロット294内にあり端壁300、302から離れている範囲で、ブーム・ジョイント・ピボット210が自由に回転するだろう、ということは当業者には明らかであろう。ピン290の外面が端壁300、302の一方と接したとき、ブーム・ジョイント・ピボットの回転は、対応する方向で阻まれる。

【0110】

支柱頂部プラグ242の上面272によって支えられている、ブーム・ジョイント・ピボット210の下面270も、図10は示している。さらに図10は、スロット294と内壁296の場所も示している。スロット294が他の場所でもうまく働くだろうということを、当業者なら理解するだろう。たとえば、本発明の一つの実施例では、スロット294に類似の弓形のスロットが、支柱頂部プラグ242の上面272に用意されるかもしれない（図9に示したとおり）。これに対応して、支柱頂部プラグ242上の、292に示したのと類似の穴が、ブーム・ジョイント・ピボット210の下面270に用意され、その中にピン290があるようになっている。

【0111】

図11は、本発明の一つの実施例によって、ブーム・ジョイント・ヨーク212を腹側面の斜視図で示している。図示したとおり、ヨーク212は実質的に円筒状の外面400を有する。円筒状の表面400上の矩形の投影として実質的に形づくられた縁404によって、外面にある開口402の輪郭が定められている。

【0112】

ヨーク212内の内部空洞上に、開口402は開いている。再び図9と図10を参照すると、空洞402の後壁406が、ブーム・ジョイント・ピボット210の外面408から離れているよう配置されているのが分かる。

【0113】

図11に示したように、ヨーク212は、第一の実質的に円形の端面410と第二の実質的に円形の端面412（図示せず）も、含む。本発明の一つの実施例によれば、端面410と412は、実質的に平面である。端面410、412のそれぞれは、端面の表面を通り法線方向に同軸に配された、それぞれに対応する穴414、416を有する。

【0114】

穴414と416のそれぞれは、それぞれに対応する、実質的に円筒状の壁418、420によって、輪郭が定められている。上述のとおり、図9について見れば、壁418と420はシャフト216上にヨーク212を回転自在に支えるのに、役立っている。

【0115】

壁418がキー溝スロット422を有するように図示されているし、様々な実施例によれば、壁418と壁420がそのようなキー溝422を含むが、キー溝は単に、半月キー222（図9に示したとおり）がヨーク212を通ってブーム・ジョイント・ピボット210のスロット220に入るようとするだけだ、ということに注意されたい。よって、シャフト216はブーム・ジョイント・ピボット210に関しては回転しないよう固定されているが、ヨーク212に関しては回転自在なのである。

10

20

30

40

50

【0116】

図12は、ブーム・ジョイント・シャフト216の断面図を示している。図示した実施例では、対応する2つの半月キーを受けるようになっている、2つの空洞500、502を、シャフトが含むかもしれない。他の実施例では、シャフトは半月キー用の空洞を1つ含み、1つの半月キーだけが使われるかもしれない。本発明のさらに別の実施例では、小ねじを受けるようになっているスロットが、ブーム・ジョイント・シャフト216の表面504の長さの前部または一部にわたってついている。小ねじまたは半月キーを使うのは、ブーム・ジョイント・シャフト216がブーム・ジョイント・ピボット210に関して回転しないよう固定されたままかもしれない多くの方法の中の、単なる典型にすぎない、ということを当業者なら理解するだろう。

10

【0117】

ブーム・ジョイント・シャフト216の外面についているねじ山506、508も図示されている。これらのねじ山は、それぞれ取っ手109、111(図1に示した)を受けるようになっている。本発明の一つの実施例によれば、ねじ山506、508は、たとえば1インチあたり約20のねじ山という間隔になっているが、標準的または非標準的ないかなる数のねじ山でも、適切なものとして利用されうる。

【0118】

図12のシャフト504は、図示したように、第一の円周状の溝2200と第二の円周状の溝2202も含むかもしれない。円周状の溝2200、2202は、それぞれの保持装置をそこで受けるようになっているかもしれない。たとえば、溝2200、2202のそれぞれは、止め輪固定装置を保持するようになっているかもしれない。

20

【0119】

さらに、シャフト504は第一の平面領域2204と第二の平面領域2206も含む。さらなる詳細は後述するが、平面領域2204、2206は、シャフト504に関してブーム・ジョイント座金が回転するのを、最小化または防止するようになっている。

【0120】

図13aは本発明の一つの実施例による、ブーム・ジョイント座金2208を示している。ブーム・ジョイント座金2208は、外面2210と内面(図示せず)を含むかもしれない。実質的に円形の第一の部分2212と、実質的に平らな第二の部分2214とを有する縁によって、座金の穴は縁取られるかもしれない。本発明の一つの実施例では、実質的に平らな部分2214の輪郭は、座金の外面の凹部2216によって調節されるかもしれない。図示した例では、この凹部は、外面2210にパンチを加えることで形成されるかもしれない。実質的に平らな部分の輪郭を調整することによって、最小の遊びでシャフト504にぴったり嵌るようにできるかもしれない。

30

【0121】

図13bは、本発明の他の実施例による、他のブーム・ジョイント座金2218を示している。ブーム・ジョイント座金2218は、2つの実質的に平らな部分2220、2222を有する縁を持つ穴を含む。後述するとおり、本発明の一つの実施例による、平らな部分2220、2222の輪郭を調整する必要は、2つの平らな部分を使うことと、改善された製作公差とによって、取り除ける。

40

【0122】

図14は本発明の一つの実施例による、ブーム・ヒンジ取っ手600の斜視図を示している。図示した実施例によると、ブーム・ヒンジ取っ手600は、実質的に半楕円形の外面604を含むかもしれない。図示した実施例では、ブーム・ヒンジ取っ手600の外面604の周囲に、複数の突起602が配置されるかもしれない。支えられている歯科用機器の使用者のための把持面(gripping surface)を突起602が提供することで、ブーム・ジョイント105に合わせるために取っ手600を使用者が回すのが簡単になる。ブーム・ヒンジ取っ手600の別の実施例では、外面604は突起のかわりに溝がついている。溝もまた、歯科用漂白ランプの使用者のための、把持面を提供する。さらに進んだ実施例では、把持を容易にするために、把持面に盛り上がった複数の筋または凹んだ複数の筋

50

が付けられることがある。

【0123】

ブーム・ヒンジ取っ手600の内側にある複数のリブ606は、取っ手600の構造的な補強となっており、雌ねじのついた円筒608を支えている。リブ606のそれぞれは、外向きの面606を含んでいるかもしれない。さらなる詳細は後述するが、外向きの面は、ブーム・ジョイント座金の表面(つまり2210)と接するようになっているかもしれない。ねじ山のある円筒608は、ブーム・ヒンジ取っ手600の中央にあるかもしれないし、ブーム・ジョイント・シャフト216の、ねじ山のある端508を受けるような形状と配置になっているかもしれない。この配置によって、ブーム・ジョイント105の調節が可能になる。

10

【0124】

本発明の一つの実施例によれば、雌ねじのある円筒608は、摩擦圧入(frictional press fit)により取っ手600と連結されるかもしれない。本発明の他の実施例では、雌ねじのある円筒608は、組み立て作業中の超音波溶接によって取っ手600と連結されるかもしれない。本発明のさらに別の実施例では、取っ手の内面に直接形成されたねじ山を支えられるような耐久性のある材料で、取っ手600が形成されるかもしれない。

【0125】

図15は、本発明の一つの実施例による、ブーム・ジョイントの一部を、斜視図で示している。実質的に円形の境界線411を有する実質的に平らな表面410を持ったヨーク212を、ブーム・ジョイント105は含む。実質的に円形の境界線を有する摩擦座金2250と、図13aに関して述べたようなブーム・ジョイント座金2208も、図示されている。ブーム・ジョイント・シャフト216が、ヨーク212、摩擦座金2250およびブーム・ジョイント座金2208を支えているのも図示されている。さらに、ブーム・ジョイント・シャフト216の溝2202に置かれている、スプリットリング固定器具2252が図示されている。

20

【0126】

ブーム・ジョイント・シャフト216は、複数の雄ねじ508を含むかもしれない。図14に関して述べたように、雄ねじがブーム・ジョイント取っ手600をうけるようになっているかもしれない。

30

【0127】

シャフト504の溝2200と2202に、それぞれの固定装置(たとえば2252)があること(図12に示したとおり)によって、ヨーク212に関するシャフト506の軸方向の動きを実質的に防げる、ということを当業者なら理解するだろう。また、シャフト506をブーム・ジョイント・ピボット210に連結している半月キー(または他の装置)があることで、長軸の周りのシャフト506の回転も実質的に防げる。

【0128】

ジョイント座金2208の平らな表面2212に接した、シャフト216の平らな表面2206の動きによって、シャフト216に関するブーム・ジョイント座金2208の回転は、妨げられる。

【0129】

ブーム・ジョイント取っ手600の回転は、シャフト216に関して軸方向に内向きに取っ手を進ませることになるかもしれない。その結果、ブーム・ジョイント取っ手の表面605は、ブーム・ジョイント座金2208の表面2210に作用するかもしれない。そして座金2208が軸方向に内側に押し付けられて、ブーム・ジョイント座金の内向きの表面2254と、摩擦座金の隣接する面との間に、摩擦座金2250を押し付けるかもしれない。摩擦座金はそれに対応して、ヨーク212の表面410に押し付けられるかもしれない。

40

【0130】

摩擦座金2250、ヨーク212の表面410、およびブーム・ジョイント座金の表面2254の間の摩擦により、ヨークがブーム・ジョイント座金に連結される傾向がある。

50

よって、機械的な連結の連鎖が次のように確立される：実質的に互いに固定されて連結されているブーム 103 とヨーク 212 から、摩擦座金 2250 を通して、ブーム・ジョイント座金 2208 へ、そして、座金 2208 の平らな面 2212 とシャフト 216 の平らな面 2206 を経由して、シャフトと半月キー 222 を通して、ブーム・ジョイント・ピボット 210 へ、そしてその結果、ブーム・ジョイント・ピボットを支えている支柱 101 へ。このようなことを考慮すると、支柱 101 とブーム 103 の間の相対的な動きに対する抵抗が、ブーム・ジョイント取っ手 600 の回転によって調節可能である、ということを当業者なら理解するだろう。

【0131】

図 16 は、支柱頂部プラグ 242 の腹側面を斜視図で示している。前述のとおり、支柱頂部プラグ 242 は、支柱 101 の中空の穴 240 の中に位置するようになっている。第一の平面 544 と突起を有する鍵型部 542 まで、次第に細くなっていく、一般的に円筒形の底面 540 を、支柱頂部プラグ 242 は有している。第二の平面 548 は、支柱頂部プラグ 242 の上面 550 の下にある突起の上に位置している。

【0132】

支柱頂部プラグ 242 の本実施例では、支柱頂部プラグ 242 は、支柱 101 の中空の穴 240 の中に一つの方向に嵌るように、形づくられ、配置されるかもしれない。第一の平面 544、第二の平面 548、および突起 546 によって、支柱 101 の中空の穴 240 への挿入の方向が決まるかもしれない。

【0133】

実質的に円筒状の内面 246 によって輪郭を定められた、軸方向の穴 244 を、支柱頂部プラグ 242 が含むかもしれない。軸方向の穴 244 は、ブーム・ジョイント・ピボット 210 のシャフト 234 を受ける。軸方向の穴 244 は、実質的に円筒状の内面 246 に、出っ張り 278 を含むかもしれない。ブーム・ジョイント・ピボット 210 のシャフト 234 の周りの固定装置 274 (図 9 で説明した) は、出っ張り 278 に当たって停止するかもしれない。図 2 に関して既に述べたとおり、固定装置 274 はシャフト 234 を軸方向の穴 244 の中に保持するかもしれない。その結果、穴 244 と垂直シャフト 234 の共通の軸のまわりにブーム・ジョイント・ピボット 210 が回転するのを許しつつ、支柱頂部プラグ 242 がブーム・ジョイント・ピボット 210 を支えて保持する。

【0134】

支柱頂部プラグ 242 の一つの実施例では、支柱頂部プラグ 242 は支柱 101 にぴったりと嵌るかもしれない。支柱頂部プラグ 242 の別の実施例では、支柱頂部プラグ 242 の上縁は、O リングを保持する溝 552 を有するかもしれない。O リング 554 により、支柱 101 の中空の穴 240 内にぴったり嵌るようにできる。

【0135】

図 17 は、支柱頂部プラグ 242 の上面図を示している。支柱頂部プラグ 242 の上部は、支柱 101 の楕円形に合わせるために、本発明の本実施例では、楕円形になっているかもしれない。他の一般的な形も本発明の範囲内で考慮される。支柱 101 および支柱頂部プラグ 242 は、図 17 に示した形に限定されない。

【0136】

支柱頂部プラグ 242 の上面 272 は実質的に平らで、上述のとおり、ブーム・ジョイント・ピボット 210 の基部 230 の実質的に平らな表面 270 を支えている。一つの実施例によれば、上面 22 の凹部 282 内に摩擦座金 280 がある (図 10 で見られる)。摩擦座金 280 は、支柱頂部プラグ 242 に関するブーム・ジョイント・ピボット 210 の回転を減少させる。上述のとおり、本発明の一つの実施例によれば、摩擦座金 280 と支柱頂部プラグ 242 とブーム・ジョイント・ピボット 210 との間に作用する摩擦力を減少させることは、2 ポンドから 5 ポンドの間の力が搭載装置の側面にかかるか搭載装置に近接してかかったときにだけ、ブーム・ジョイント・ピボット 210 の回転を可能にするのに十分である。

【0137】

10

20

30

40

50

上面 272 にある穴 292 へ向かって開いていて、支柱頂部プラグ 242 内に伸びている開口を、支柱頂部プラグ 242 は含むかもしれない。穴 292 はピン 290 を受けるような形状と配置になっているかもしれない。図 9 に示したように、ピン 290 は、支柱頂部プラグ 242 の上面 272 にある穴 292 の中と、ブーム・ジョイント・ピボット 210 の基部 230 の下面 270 にある弓形のスロット 294 の中との両方に位置している。

【0138】

図 18 は、支柱頂部プラグ 242 の、プラグの長軸に沿った断面図を示している。2つの出っ張り 252、278 があるように形成された、軸方向の穴 244 を、支柱頂部プラグ 242 は含む。出っ張り 278 は、図 2 にあるとおり、ブーム・ジョイント・ピボット 210 の溝 276 にある固定装置 274 を支える。

10

【0139】

上面 272 にあって、軸方向の穴 244 と同軸の凹部 282 は、摩擦座金 280 を受けかもしれない（図 17 に示した）。この実施例では、支柱頂部プラグ 242 の上面 272 を取り巻く縁（rim）560 を、支柱頂部プラグ 242 が含む。縁 560 の下面 561 は、支柱 101 の上部に接して停止する。支柱頂部プラグ 242 が支柱 101 にぴったり嵌るように、縁 560 は、支柱 101 の上面と合う形状と配置になっているかもしれない。

【0140】

図 19 は、本発明の一つの実施例による、支柱 101、ブーム 103、およびブーム・ジョイント 105 の組立図を示している。支柱頂部プラグ 242 は支柱 101 の中にある。ブーム・ジョイント・ピボット 210 はブーム 103 に組み込まれて示されている。ブーム・ジョイント 105 の両側にある取っ手 600 は、ブーム 103 の角度方向を固定したり緩めたりして、支柱 101 に関して角度を調整するのに、役立つ。

20

【0141】

図 20 は、本発明の別の実施例による、支柱頂部プラグとピボット部品 800 の断面図である。ピボット 802 は、ピボット・シャフト 804 を受けるようになっている、垂直な穴 816 を有している。図 2 に示したブーム・ジョイント 200 の実施例と類似の方法で、ブーム・ジョイント・シャフト 216（図示せず）を受けるようになっている、水平な穴 806 を、ピボットが含むかもしれない。これも図 2 に示したブーム・ジョイント 200 の実施例と類似の方法で、固定装置の一部を受けるようになっているスロット 808 を、穴 806 が含むかもしれない。ピボット 802 は、実質的に平らな下面 810 を有する。下面 810 は、第一の弓形のスロット 812 と第二の弓形のスロット 814 を、垂直な穴 816 の周りの逆の位置にあるように、含むかもしれない。第一の弓形のスロット 812 は第一のピン 818 を受けるようになっているかもしれない。第二の弓形のスロット 814 は第二のピン 820 を受けるようになっているかもしれない。

30

【0142】

第一のピン 818 と第二のピン 820 は、支柱頂部プラグ 822 に取り付けられている。実質的に円筒形の内面 826 によって輪郭が定められた、軸方向の穴 824 を、支柱頂部プラグ 822 が含む。軸方向の穴 824 の放射径は、第二の場所 830 でよりも第一の場所 828 で穴の直径が大きくなるように、穴の長さによって様々に変わる。本発明の一つの実施例によれば、軸受筒 832 が軸方向の穴 824 の中にある。軸方向の穴 824 の実質的に円筒状の内面 826 に対し、実質的に同軸で間隔をあけた、実質的に円筒状の外を、軸受筒 832 は含むかもしれない。軸受筒は、たとえば、小さな摩擦係数の材質でできているかもしれない。ピボット・シャフト 804 は、軸方向の穴 824 の中の軸受筒 832 の中に位置している。ピボット・シャフト 804 は、第一の溝 834 と第二の溝 836 を有する。摩擦リング 838 が第一の溝 834 に配される。摩擦リング 838 は、たとえば、ゴムでできている。本発明の他の実施例では、第一の溝 834 に2つ以上の摩擦リングがある。座金を保持しているスプリットリング（C リング）のような固定装置 840 は、ピボット・シャフト 804 の第二の溝 836 の中であって、軸方向の穴 824 の実質的に円筒状の表面の出っ張り 842 に接している位置にある。固定装置 840 はピボッ

40

50

ト・シャフト 804 を保持し、ピボット 802 が支柱頂部プラグ 822 に関して上向きに動くのを防いでいる。本発明の一つの実施例によれば、ピボット・シャフト 804 は点 844 においてピボット 802 に溶接されている。本発明の他の実施例では、図 18 に関して述べた実施例と類似の方法で、ねじでピボット・シャフト 804 をピボット 802 に保持している。

【0143】

この配置によれば、支柱頂部プラグの穴 824 とピボット・シャフト 804 に共通な軸の周りに、ピボット 802 が回転するのを許しつつ、支柱頂部プラグ 822 がピボット 802 を支えて保持する。それぞれ第一の弓形のスロット 812 と第二の弓形のスロット 814 の中にある、第一のピン 818 と第二のピン 820 によって許される動きによって、この実施例での回転運動は制限される。たとえば該運動は、180 度までに制限される。

【0144】

図示した実施例では、軸方向の穴 824 の横のピボット・シャフト 804 上の第一の溝 834 内にある摩擦リング 838 の摩擦作用によって、回転運動は減少する。

図 21 は、本発明の他の実施例による、ブーム・ジョイント・ピボット 620 と、ブーム・ジョイント用の支柱頂部プラグ 622 とを、断面図で示している。

【0145】

ブーム・ジョイント・ピボット 620 は、上部 624 と基部 626 を含むかもしれない。図 30 で示すブーム・ジョイント 105 の実施例と類似の方法でブーム・ジョイント・シャフト 216 を受けるようになっている、水平な穴 628 を、ブーム・ジョイント・ピボット 620 の上部 624 が含む。図 9 に示したブーム・ジョイント 105 の実施例と類似の方法の、半月キーなどの固定装置の一部を受けるようになっているスロット 630 を、穴 628 が含む。

【0146】

図 22 は、本発明によるブーム・ジョイント・ピボット 162 のさらに進んだ実施例を、断面図で示している。図 20 に示したように、ピボット 1620 は、それを貫くよう形成された穴を含む。穴は、ブーム・ジョイントの水平なピボット・シャフト 1622 を受けるようになっている。図 12 のブーム・ジョイント・ピボット・シャフト 216 で、502 として識別されていたような半月キーのキー溝を、本実施例のシャフト 1622 は含まない。むしろ、本実施例のシャフト 1622 は穴 1624 を含み、穴 1624 は、シャフト 1622 内に、シャフト 1622 の長手軸に対して実質的に垂直であるように形成されているかもしれない。本発明の一つの実施例によれば、穴 1624 内に締め具を保持するようになっているねじ山または他の機構を支える内面を、穴 1624 が含む。

【0147】

図示した実施例では、締め具は皿頭の小ねじ 1626 として示されている。しかし、当業者なら、多種多様な他の締め具が小ねじ 1626 の代用となるかもしれない、と理解するだろう。たとえば、使われる締め具としては、とりわけ、以下のうちの 1 つ以上を含むかもしれない：ロール・ピン、頭のない六角ねじ（止めねじ）、押さえねじ、リベット、鋼鉄製だぼなどのだぼ。

【0148】

図 23 は、ブーム・ジョイントの水平なピボット・シャフト 1622 をさらに詳しく示している。図示したとおり、シャフトは、雄ねじのついた端 506、508 だけでなく、貫通孔 1624 も含む。本発明の様々な実施例では、貫通孔 1624 は、小ねじを受けるために雌ねじがついているかもしれないし、ロール・ピンのような締め具を受けるために滑らかかもしれない。

【0149】

再び図 22 を参照すると、本発明の一つの実施例では、シャフト 1622 の外面と、シャフト 1622 が中にある穴の内向きの面との間の、界面 1628 に、接着剤が配されるかもしれない。様々な実施例において、接着剤は以下のものを含むかもしれない：たとえば、Loc-Tite（登録商標）または Super Glue（登録商標）などのシア

10

20

30

40

50

ノアクリレートをベースにした材料、1液型または2液型のエポキシ、1液型または2液型のポリウレタン接着剤、または発泡取り付け接着剤(foam mounting adhesive)などの他の構造接着式の接着剤。発泡取り付け接着剤は、衝撃吸収にも助けとなるかもしれない。

【0150】

本発明の他の実施例では、ねじ1626または他の締め具を受ける、ピボット1620内の穴は、たとえば皿穴領域1632のような凹所を含むかもしれない。締め具の頭と、図11の212に示したようなヨークとの間の干渉を防ぐために、凹所は締め具の頭を受けるようになっている。本発明のさらに別の実施例では、穴1630がシャフト1622を横断していて、シャフトの反対側までピボット1620の中を伸びている。本発明のさらに別の実施例では、穴1630はピボット1620を完全に貫通して伸びている。

【0151】

図21の基部626は、垂直穴開口632と水平穴開口634とを含む。基部626はさらに弓形のスロット636を含むが、これは図29でより詳しく見ることができる。

再び図21を参照すると、垂直穴開口632は、貫通孔640を有するピボット・シャフト638を受けるようになっているかもしれない。水平穴開口634は、ねじ642を受けるようになっているかもしれない。本発明の第一の実施例では、水平穴開口634は、ねじ642上のねじ山と結合するようになっている、ねじ山のついた部分644を有する。別の実施例では、ピボット・シャフト638の貫通孔640は、ねじ山がついていて、ねじ642上のねじ山と結合するようになっているかもしれない。

【0152】

ピボット・シャフト638は一般的に円筒状の形で、貫通孔640を一端に含み、フランジ646をもう一端に含むかもしれない。本発明の一つの実施例では、ピボット・シャフト638は、より小さな直径の第一の部分648と、より大きな直径の第二の部分650とを有する。

【0153】

支柱頂部プラグ622は一般的に、軸方向に位置し、支柱頂部プラグ622の上面654から伸びている、円筒状の開口652を含むかもしれない。開口652は、摩擦パッド656を受けるような配置になっているかもしれない。摩擦パッド656は、押される力が強くなるにつれ、より大きな摩擦抵抗を与える。摩擦パッド656は、たとえば、エラストマー材料で作られているかもしれない。開口652はさらにピボット・シャフト638を受けるようになっていて、そこではピボット・シャフト638のフランジ646が摩擦パッド656に接しているかもしれない。開口652は、支柱頂部プラグ622の上面654の近傍で、部分的にねじ山がついているかもしれない。軸受筒658は、ピボット・シャフト638の上に嵌っている。開口652はさらに、スパナ・ナット660を受けるようになっているかもしれない。スパナ・ナット660は、ねじ山のついた上部662と、ねじ山のない下部664とを有する。スパナ・ナット660のねじ山のついた部分662が開口652にねじ込まれていく間、スパナ・ナットの下部664が軸受筒658に接する。

【0154】

操作中に、ブーム・ジョイント・ピボット620は、ピボット・シャフト646にねじ642で固定される。ピボット・シャフト646は、支柱頂部プラグ622内部にある軸受筒658の中で回転する。摩擦パッド656に対するピボット・シャフト646の摩擦作用によって、ピボット・シャフト646の回転は減少するかもしれない。スパナ・ナット660によって供される、摩擦パッド656に対するピボット・シャフト646の圧迫の量を調節することによって、ピボット・シャフト646を回転するのに必要な力は、調節可能かもしれない。

【0155】

本発明の一つの実施例では、支柱に関してのブームの回転に対する、望ましい抵抗を供するために、摩擦パッド656の特性が選ばれるかもしれない。支柱に関してブームが滑

10

20

30

40

50

らかで予測可能に動くことは、歯科施術者の職場において、重要な価値がある。ちなみに、歯科的処置の間、漂白ランプヘッドなどの歯科用機器を押しのける患者の力が、患者に快適な水準にまで、驚くほど増すということが判明している。

【0156】

さらに、動くのが望ましいとされるまでは、患者または歯科施術者によって、実質的に固定の位置にランプヘッドが保持されるようにブームの動きを十分に減少することは、有利である。たとえば、図15に示したブーム・ヒンジの実施例は、他のブーム・ヒンジの配置と比べて、顕著に改善した特性を示している。他のブーム・ヒンジの配置としては、たとえば、図7に示したものや、Vanceに対して1962年4月24日に特許された米国特許第3,031,215号、Schoenigらに対して1987年6月9日に特許された米国特許第4,671,478号などの、典型的な公開された従来のランプ支持構造物に見られるものなどがある。これら特許の開示は全体として、この参照によりここに含まれる。

【0157】

よって、ジョイントの特性についての見積もりは、一つの例示にした実施例に関して行われてきた。ブーム・ジョイントの様々な構成部品によって、摩擦座金656にかかる力を特徴づけるのに、行われた見積もりが役立つ。また、摩擦座金656の予測された有効な耐用年限を含む、部品の予測性能を特徴づけるのにも、行われた見積もりが役立つ。

【0158】

患者が押しのける力は、患者の快適さと、歯科用機器指示構造物の有効性との全てにわたり、驚くほど重要な要因である、と事例証拠は示唆している。最適な支持構造物は、効果的に機器を支持するために、移動に対する十分な抵抗力を供さなくてはならないし、いくつかの実施例においては、患者の歯に対して機器が実質的に動かないよう保持しなくてはならない。さらに、支持構造物は、患者が望んだときに不当な努力を払わずとも機器を移動できるようにするかもしれない。さらに、いくつかの実施例では、患者の小さな動きおよび/または無意識の動きに、支えられている機器が対応できるようにするために、指示構造物が十分な可動性を有するようにするのが望ましい。

【0159】

さらに、初期調整にもよるが、支持されている機器および/またはその近傍にかかる力を使って、支持構造物を位置調整できることが望ましい。歯科用機器から比較的遠い位置にある、ブーム・ジョイントやキャスター・ロックなどの、支持構造物の一部に対して常に注意を向ける必要がないようにするためである。

【0160】

機構と機能のこの組み合わせは、全体的な機能性の認識のためと、患者と歯科施術者にとって簡単に使えるようにすることのために、驚くほど重要であり、利用可能だと知られている様々な従来の支持機構によっては満たされないものである。さらに、特性の最適な組み合わせを達成するのは、特定の意匠の特徴にしたがって実施される本発明の態様に、驚くほど敏感であると分かっている。

【0161】

たとえば、図19のブーム・ジョイントを含む、本発明のある実施例は、多数の稼動サイクル上で一貫性と再現性を保つ、非常に線形的で安定的な対荷重特性を示すことが分かっている。よって、積載物(つまり、機器支持構造物によって支えられている機器)に特定の力を加えると、多数の稼動サイクル上で驚くほど一貫性と再現性がある、積載物の移動という結果になる、と分かっている。適切な再配置性と患者が押しのける特性とを可能にしつつ、効果的な支持を維持し、歯科用機器の部品を制御する、という問題は、このようにして様々な態様で本発明を適用することにより、解決した。

【0162】

図24は力の表2000を示している。表2000は、負荷を載せるブームの端点上に加えられて、支柱に関してのブームの対応する動きを作り出す力に関する。この加えられた力は、患者の押しのける力2002として示されているが、たとえば、患者の口か

10

20

30

40

50

ら離れたところでブームに連結されているかもしれない漂白ランプヘッドを、患者が押しのけるのに必要な力を表している。

【0163】

特定の押しのける力に対応する関節トルクが2004として示されている。さらに、本発明の一つの実施例における摩擦座金に加えられるばね力2006も示されている（単位はポンド）。また、特定のBelliveau座金ばねの、対応するばねのたわみ（単位はインチ）2008も示されている。よって、たとえば、図示した実施例では、約355ポンドのばね力が、約0.022インチのばねのたわみを作り出すかもしれない。その結果の関節トルクは48ポンドで、患者が押しのける2ポンドの力に形を変える。

【0164】

図25は、ばねのたわみ2012（単位はインチ）と患者の押しのける力（単位はポンド）2014との間の関係2010をグラフで示している。図示した実施例では、この関係は実質的に線形である。

【0165】

図26は、本発明の一つの実施例による、ブーム・ジョイント装置のばね力関数2016の特性のグラフを示している。垂直軸は、実質的に軸方向のばねに加えられた力2006を表す。水平軸は、加えられた力2006に対応するばねの位置ずれ2008をインチ単位で表す。図26に示したとおり、図示した実施例によるBelliveau座金などのばねの位置ずれは、実質的にばねに加えられた軸方向の力2006に比例する。これに対応して、関係2016を表すグラフの線は、実質的に直線である。本発明の様々な実施例においては、一体成形のばねや部品で構成されたばねや、別のばね力特性を有するばねを使えるかもしれない、ということを当業者なら理解するだろう。

【0166】

図27は、図21に示したのとは別の、ブーム・ジョイント・ピボット620の実施例と、支柱頂部プラグ622の実施例との側面図である。図27には、ねじ642を有する、ブーム・ジョイント・ピボット620の側面が示してある。ブーム・ジョイント・ピボット620は、上述のように、支柱頂部プラグ622の上に取り付けられるかもしれない。ねじ642は、ブーム・ジョイント・ピボット620をピボット・シャフト638に取り付けるかもしれない（図21で示したとおり）。

【0167】

図28は、ブーム・ジョイント・ピボット620の別の実施例と、支柱頂部プラグ622の別の実施例の、垂直断面図である。ブーム・ジョイント・ピボット620は、垂直穴開口632と水平穴開口634を含む。ブーム・ジョイント・ピボット620はさらに、支柱頂部プラグ622に取り付けられたピン666を受ける、弓形のスロット636を含む。ピボット・シャフト638は、垂直穴開口634内の適切な位置にある。ピボット・シャフト638の貫通孔640は、水平穴開口634と整列しているかもしれない。つまり、ねじ642を受ける場所にあるかもしれない（図示せず）。

【0168】

支柱頂部プラグ622は、図21よりさらに詳しく見て取れる。一般的に円筒状の開口652が軸方向に位置しており、支柱頂部プラグ622の上面654から伸びているのが図示されている。ブーム・ジョイント・ピボット620が支柱頂部プラグ622に関して回転するのを可能にするかもしれないが、ブーム・ジョイント・ピボット620の回転を減らしもするかもしれないような本発明の要素を、開口652が受けるかもしれない。図21で見られるように、開口652は、摩擦パッド656、軸受筒658、およびスパンナ・ナット660を受けるような位置にあるかもしれない。摩擦パッドは、摩擦パッドを押す力が増すにつれて、より大きな摩擦抵抗を示すかもしれない。摩擦パッド656は、たとえば、上述したような摩擦座金に適した材料などのエラストマー材料で作られているかもしれない。軸受筒658は、たとえば、図9の軸受筒254に使うとして述べたようなプラスチック材料を含む、摩擦係数の小さな物質で作られているかもしれない。座金670と、Bellieval座金のようなばね672とが、摩擦座金656と開口652

10

20

30

40

50

の底部との間に位置しているかもしれない。

【0169】

上述のように、ピボット・シャフト638のフランジ646を押すかもしれない軸受筒658に、スパナ・ナット660がねじ込まれるかもしれない。ピボット・シャフト638のフランジ646は摩擦パッド656に接している。ばね672は、下からフランジ646に摩擦パッドを押し付ける力を与える。摩擦パッド656がピボット・シャフト638の回転を弱めるが、ピボット・シャフト638は軸受筒658内で回転自在である。スパナ・ナット660がピボット・シャフト638によりきつくねじ込まれると、回転の弱め方が大きくなるだろうから、スパナ・ナット660によってピボット・シャフト638の回転を弱めて調節可能にすることができます。

10

【0170】

図29は別のブーム・ジョイント・ピボット620の斜視図である。ピン666を受ける弓形のスロット636が、垂直穴開口632と同様に、はっきり見えるかもしれない。

図30は垂直ピボット・シャフト638の斜視図である。垂直ピボット・シャフトは、第二の部分650よりも直径の小さな第一の部分648を含む。フランジ646は、第二の部分650に隣接している。貫通孔640は、垂直ピボット・シャフト638の第一の部分648を貫通する水平な穴であるかもしれない。垂直ピボット・シャフト638は、垂直ピボット・シャフト638の第二の部分650に隣接したフランジ646も含む。垂直ピボット・シャフト638は、たとえば、セラミック材料や高分子材料（これらの材料には、とりわけ、上述のブームや支柱に適した材料を含む）で作られているかもしれない。

20

【0171】

図31はピボット・シャフト638の断面図である。ピボット・シャフト638は、第二の部分650よりも直径の小さな第一の部分648を含む。フランジ646は、第二の部分650に隣接している。貫通孔640が、1つの面取りした端680とともに示されているかもしれない。あるいは、貫通孔640の両端が面取りされるかもしれない。

【0172】

図32は、本発明の別の実施例によるピボット・シャフトの斜視図である。ピボット・シャフト690は、フランジ694に隣接した円筒状の部分692を含む。円筒状の部分692は、貫通孔696を含む。貫通孔696は、ねじ642（図示せず）を受けるような形状と配置になっている。

30

【0173】

図33は、図32に示したピボット・シャフト690の断面図を示している。上記のとおり、ピボット・シャフト690は、円筒状の部分692、フランジ694、および貫通孔696を含む。この図では、貫通孔696は皿穴状で両端698が面取りされている。

【0174】

図34はスパナ・ナット660の上面図を示している。スパナ・ナット660も、圧迫栓（compression plug）として参照されるかもしれない。スパナ・ナット660は実質的に円形かもしれない。一つの実施例では、スパナ・ナット660の円周702に関して対称な位置にある、2つの曲線状の切り込み700を、スパナ・ナット660が有するかもしれない。切り込み700は、スパナ・ナット660の上面704から伸びて、底面（この図では見えない）より前の点で終わる。支柱頂部プラグ622の開口からスパナ・ナットがねじれ外れるのを防ぐためのピンを受けるように、切り込み700は形づくられ、配置されている。別の実施例では、スパナ・ナット660は、曲線状の切り込みを1つだけ有するかもしれない。さらに別の実施例では、典型的にはスパナ・ナット660の円周を取り巻いて対称的な位置にある複数の切り込みを、スパナ・ナット660が含むかもしれない。

40

【0175】

図35は、本発明の方針によるスパナ・ナット660の側面図を示している。スパナ・ナット660は、ねじ山のある上部662と、ねじ山のない下部664とを含む。スパナ

50

・ナット 660 の上面 704 から伸びて、ねじ山のない下部 664 で終わっている、1つの切り込み 700 が見られる。

【0176】

図36は軸受筒 2270 を示している。互いに離れて同軸に位置していて実質的に円筒状の、内面 2274 と外面 2276 とを有する管状部 2272 を、軸受筒 2270 が含むかもしれない。外面 2276 から放射状に外側の位置にあるフランジ部分 2278 も、軸受筒 2270 が含むかもしれない。

【0177】

図37は、本発明のさらに進んだ実施例による、スパナ・ナット 660 を示している。スパナ・ナット 660 は、上面 2284 に、第一の弓形のスロット 2280 と第二の弓形のスロット 2282 とを含む。スロット 2280、2282 は、スパナ・ナット 660 の回転のための器具を受けるようになっている。図34に示した、スパナ・ナット 660 のスロット 700 とは違い、スロット 2280 と 2282 は、ナットのねじ山 700 に割り込まない。これに対応して、図37のナットの実施例は、図34のスパナ・ナット 660 よりも、取り付けの間に cross-threading や他の損傷を経験する程度が低くなるかもしれない。

【0178】

図38は、本発明の方針による支柱頂部プラグ 622 の斜視図である。支柱頂部プラグ 622 は、支柱頂部プラグ 622 の実質的に中央に、一般的には円筒形の構造 710 を含む。第一の円弧形の構造 712 と第二の円弧形の構造 714 が、中央の構造 710 の両側にある。中央の構造は、上述のピボットと摩擦パッド部品を保持するような形状と配置になっている。第一と第二の円弧形の構造 712、714 は、支柱頂部プラグ 622 を支柱 191 の中空の穴の中にきちんと配置するのに役立つ。

【0179】

図39は、支柱頂部プラグ 622 の断面図である。軸方向に位置し、支柱頂部プラグ 622 の上面 654 から伸びている、一般的に円筒状の開口 652 を支柱頂部プラグ 622 の中央の構造 710 が含む。開口 652 は上述のとおり、ばね 672、座金 670、摩擦パッド 656、ピボット・シャフト 638、軸受筒 658、およびスパナ・ナット 660 を受けるようになっている。

【0180】

開口 652 の底にある突起 716 によって、ばねと座金を整列できる。開口 652 は、スパナ・ナット 660 のねじ山とかみ合うように、上面 654 の近くにねじ山がついている。支柱頂部プラグ 622 はさらに、支柱 101 に支柱頂部プラグ 622 を整列させるために使われる、第一の円弧形の構造と第二の円弧形の構造とを含む。

【0181】

図40は、本発明の方針による支柱頂部プラグ 622 の上面図を示している。支柱 101 の楕円形の形状に合わせるために、本発明の本実施例では、支柱頂部プラグ 622 の上部は楕円形である。支柱頂部プラグ 622 の上面 654 は実質的に平面である。支柱頂部プラグ 622 は、支柱頂部プラグ 622 の上面 654 から広がっている開口 652 を含む。スパナ・ナット 660 が開口 652 内の適切な位置にある。スパナ・ナット 660 は切り込み 700 を含む。一度スパナ・ナット 660 が開口 652 の中にねじ込まれて望ましい位置に達したら、スパナ・ナット 660 が動くのを妨げるためのピン（図示せず）を、切り込み 700 が受ける。支柱頂部プラグ 622 はさらに、ピン 666 を含む穴開口 668 を含む。

【0182】

図41は、本発明の他の実施例による、支柱頂部プラグとピボットの組み立て部品 750 を、組み立て図で示している。組立部品は、ピボット 620 とスパナ・ナット 660、ピボット・シャフト 690、摩擦パッド 656、座金 670、ばね 672、支柱頂部プラグ 622、およびネジ 642 を含む。軸受筒 658 は、スパナ・ナット 660 の内部に位置している。

10

20

30

40

50

【0183】

図42は、本発明の一つの実施例による、玉継手の構成部品を斜視図で示している。玉継手(ball and socket jointともball jointとも言う)902はヘッド・チューブ908を含み、ヘッド・チューブ908は、ヘッド・チューブ908の向かい合った両端に第一の開口910と第二の開口911を有している。開口910、911は、それぞれ溝910a、911aを含む。第三の開口912が、ヘッド・チューブ908の側面に存在している。玉継手902はさらに、それぞれ第一と第二の開口910、911で受けられる、第一のボール・カップ914と第二のボール・カップ915を含む。歯科用漂白ランプ(図示せず)を保持する回転運動台906が、ボール・スイベル(ball swivel)904によって玉継手902に連結する。第一と第二のボール・カップ914、915は、ヘッド・チューブ908にある第三の開口912を通っているボール・スイベル904を受けるような形態になっている。玉継手902は以下でより詳細に説明する。

【0184】

一つの実施例によると、それぞれのボール・カップ915は、接触板2290を含むかもしれない。本発明の様々な実施例では、補強板が、ボール・カップ915と一体成形されるか、ボール・カップ915の表面に接着剤か接着テープで取り付けられるか、ネジやリベットなどの締め具によって取り付けられる、かもしれない。第一と第二の開口910、911は、それぞれ第一と第二のボール・カップ914、915を受けるようになっている。歯科用の器具または機器を保持するようになっている回転運動台906は、ボール・スイベル904によって玉継手902に連結する。第一と第二のボール・カップ914、915は、ヘッド・チューブ908にある第三の開口912を通っているボール・スイベル904を受けるような形態になっているかもしれない。玉継手902は以下でより詳細に説明する。

【0185】

図44は、本発明の一つの実施例による、玉継手の構成部品を斜視断面図で示している。玉継手902が、ヘッド・チューブ908の断面図と共に示されている。第一のボール・カップ914は、ヘッド・チューブ908内部の場所にある。回転運動台906のボール・スイベル904が、ヘッド・チューブ908の第三の開口912を通って挿入されているのが示されている。

【0186】

たとえば上述の図42や図44に示したような玉継手は、ブーム103の末端に歯科用の器具または装置を連結するのに使われるかもしれない様々な構造の連結機構のうちの単なる典型例に過ぎない、ということを当業者なら理解するだろう。たとえば別の実施例では、グースネック部品などの可撓性部品が、積載装置とブームの前端との間に置かれる。本発明の支持構造物は、特定の応用や積載装置に適切な、どのような可撓性連結装置でも含むかもしれない。

【0187】

図43は分解斜視図で、歯科用機器(ここには図示せず)とブーム103を分離可能なように取り付けられるようにするための、歯科用機器支持構造物ブーム用のフォワード組立部品(forward assembly)900を示している。ヘッド・チューブ908がブーム103の端に取り付けられるかもしれない。機器連結組立部品900はソケット継手かもしれない、その中には、たとえば図44に示したような、支えられている機器上の回転運動台906のボール・スイベル904を受けるようになっている玉継手902を含む。

【0188】

ヘッド・チューブ908は、ブーム103の端に取り付けられるかもしれない。ヘッド・チューブ908には三つの開口がある。第一と第二の開口910、911はヘッド・チューブの両端にあって、玉継手を作る部品を受けるようになっている。第三の開口912は、ヘッド・チューブ908の前面にあって、支えるべき歯科用機器(図示せず)上のボール・スイベル904を受けるようになっている。

【0189】

10

20

30

40

50

本実施例のフォワード組立部品 900 は以下のものを含む：第一と第二のボール・カップ 914、915、第一と第二のスペーサ 916、917、第一と第二のばね 918、919、第一と第二のナットプレート 920、921、および第一と第二の玉継手の取っ手 (ball joint knob) 922、923。各ボール・カップ 914、915 は湾曲面を有しており、ボール・カップ 914、915 が該湾曲面で結合したときに、ボール・スイベル 904 を受けるような形の実質的に球形の空間を形成するようになっている。

【0190】

玉継手を形成するために、球形の空間がヘッド・チューブ 908 の第三の開口 912 と整列するように、ボール・カップ 914、915 がヘッド・チューブ 908 に挿入される。スペーサ 916、917 は、それぞれ開口 910、911 に挿入され、結合したボール・カップ 914、915 の両側に置かれる。第一と第二のばね 918、919 は、それぞれ第一と第二のスペーサ 916、917 に接して置かれる。

【0191】

ナットプレート 920、921 がヘッド・チューブ 908 の向かい合う端に、第一と第二の開口 910、911 の上から、取り付けられる。ナットプレート 920、921 はそれぞれ、ねじ山がついているかもしれない中心部の開口 918、919 を有しているかもしれない。

【0192】

本発明の一つの実施例によれば、取っ手 922、923 のそれぞれは、雄ねじのついた遠心端を有する、超音波溶接された鈑 (stud) を含むかもしれない。取っ手 922、923 のねじは、ナットプレート 920、921 の中心部の開口を通ってねじ込まれ、ばね 918、919、スペーサ 916、917、およびボール・カップ 914、915 を押し、ボール・カップ 914、915 をボール・スイベル 904 に押し付ける。取っ手 922、923 が固く締められているとき、受けられているボール・スイベル 904 は、結合したボール・カップ 914、915 の内部で動かないかもしれない。取っ手 922、923 が緩められると、受けられているボール・スイベル 904 は、結合したボール・カップ 914、915 の内部で動くかもしれない。

【0193】

ボール・ソケットの第一の代替となる実施例は、ボール・カップ 914、915 に圧力をかけるためのねじによる圧力よりもむしろ、ばねの強さに頼ることを必要とする。さらに、ここに示したばね 918、919 はコイルばねである。コイルばねの代替物には、たとえば、当業者には公知のとおり、ばね座金や他の線形の力を加えるための機構を含む。

【0194】

図 45 は、本発明の一つの実施例によって、さらに詳しくナットプレート 920、921 と、ばね部分組立部品 918 とを示している。ボール・スイベル 904 の動きの様々な自由度を許しつつ、図示していない取っ手 922、923 の回転に対応して、ボール・カップ 914、915 を押すためのばね張力を供給するように、ばね組立部品は適合されている。

【0195】

図 46 はボール・カップ 915 の拡大図を示していて、これはボール・カップ 914 の鏡像になっている。ボール・カップ 915 は内部空間 915c を含んでいる。内部空間 915c は、ボール・カップ 914 の対応する空間と結合したときに、ボール・スイベル 904 を保持するかもしれない実質的に球形の空間を形成する (図 44 に示したとおり)。開口 915a のおかげで、ボール・スイベル 904 に連結しているシャフトが、開口 912 を通ってヘッド・チューブ 908 から出られる (図 44 に示したとおり)。ボール・カップ 915 は、うね (ridge) 915b も含む。うね 915b が溝 911a に嵌ることによって、ヘッド・チューブ 908 の開口 911 内でのボール・カップ 915 の回転を制限するだけでなく、開口 911 内へのボール・カップ 915 の挿入方向も制限する (図 42 に示したとおり)。

【0196】

10

20

30

40

50

図47は、本発明の他の実施例による、ボール・カップ2300の別の実施例を示している。組立部品900(図43に示した)を組み立てている間、接触板2290をボール・カップ914、915の端に取り付けなくてはならない。これは、両面接着テープまたは他の形態の接着剤を使うことでなされるかもしれない。図47に示した実施例では、接触板2310が中心の穴2312を含む。接触板2310を取り付け面2304上の構造2302上で静止しているかもしれない。構造2302は、十字形や他の多点形状(multi-pointed form)など、どのような形でも良いが、接触板2310の中央の穴2312の直径よりも、わずかに幅広である。うまく接触板2310を固定するためには、圧迫によって、中央の穴2312の範囲内に構造2302を押し付けて嵌める。この嵌め込みは、接触板2310が実質的にボール・カップ2300に固定されるような、押し付けによる嵌め込みまたは摩擦力による嵌め込みかもしれない。

10

20

30

40

50

【0197】

図47は、本発明の他の実施例による、玉継手の別の実施例を示している。ヘッド・チューブ2400は、図42のヘッド・チューブ908と実質的に同じ目的に役立つかかもしれないが、断面は図42のような円形や橢円でなく、正方形、長方形、その他の角のある形である。開口2410が角のある形だと、図42で示したのと類似の方法でボール・カップを挿入できる一方、ヘッド・チューブ内でのボール・カップの回転を防ぐための、図46に示したうね915bのようなうねや、それに対応する溝911aが不要になる。なぜなら、角のある形への嵌め込みは、もともと回転不可能な性質だからである。

【0198】

たとえば図42から図44に示したような玉継手は、ブーム103の端に歯科用の器具や装置を取り付けるのに使われるかもしれない様々な連結機構のうちで、単に典型的なものであるに過ぎない、ということを当業者なら理解するだろう。たとえば、別の実施例では、グースネック部品などの可撓性部品が、積載装置とブームの前端との間に置かれる。本発明の支持構造物は、特定の応用や積載装置に適切な、どのような可撓性連結装置でも含むかもしれない。

【0199】

図49は、一つの実施例による、玉継手の取っ手922をさらに詳しく示している。玉継手の取っ手は、半卵形の外面930を有する本体部を含む。玉継手の取っ手922の内部は、部分的に中空で、内部の円筒状部品936と本体部の内面との間に複数のリブ934を含む。内部の円筒状部品は第一の長手軸を有し、第二の長手軸を有するシャフト938が、内部の円筒状部品936の中に配されている。そして、第一と第二の長手軸は実質的に一致するようになっている。図示したとおり、シャフトは、その一部分に複数のねじ山940がついている、実質的に円筒状の外面を含む。ねじ山940は、対応するナットプレート920(図45に示したとおり)の雌ねじ924と連結するようになっている。

【0200】

これまで述べてきた、歯科用の支持構造物の様々な発明の実施例は、多種多様な従来の歯科用機器および新規の歯科用機器を支えるのに使える、ということが当業者には理解されるだろう。その結果生じる新規の組み合わせは、歯科に関連する効果的な機能性を提供するだけではない。多種多様な施術と機能のために、機能モジュールを交換でき、支持構造物を再利用できる、という点で効率がよい。

【0201】

よって、本発明による歯科用支持構造物は、以下のようなものを支えるための様々な実施例で使われる、と当業者なら理解するだろう：歯科用漂白ランプ、ランプをあてている間の歯科用合成物、たとえば内視鏡的根面平滑化などの内視鏡的画像用の歯科用画像システム、超音波画像システム、および、歯科のX線画像対象物のX線画像で使われるのに適したX線フィルムおよび/または電子X線センサを支えるシステム。

【0202】

図50は、本発明の一つの実施例による、歯科用機器のための支持構造物を示している。図示した実施例には、歯科用漂白ランプ1100を含む。歯科用漂白ランプは、ハウジング1104のついたランプヘッド1102を有する。ランプヘッド1102は、ランプヘッドを玉継手1107に連結するのに役立つシャフト1105も有する。そして、玉継手1107はブーム1108の遠心端に連結されている。支柱1110がブーム1108トランプヘッド1102を支えている。支柱1110は、その上端で、ブーム・ジョイント1200によりブーム1108に連結されている。そして支柱1110は、その下端で基部1112により支えられている。図示した実施例では、基部1112は、支柱1110が取り付けられている中央部1116から広がっている、複数のアーム1118を含む。中央部1116から離れた、複数のアーム1118のそれぞれの端に、キャスタホイール1120が取り付けられている。歯科用漂白ランプの全体を支えている床に、キャスタホイール1120が接している。

10

20

【0203】

図示した実施例では、ランプヘッド1102は患者の体に着脱自在に取り付けられるようになっている。一つの典型的な実施例では、開唇器(lip retractor)などの開唇装置が導光器(light guide)に連結されていて、導光器はランプヘッド1102に連結されている。その結果、歯科処置のためにランプヘッドが適切に患者と一列に並ぶようにするために、位置が広範囲にわたって調節可能であるような方法でランプヘッドを支えるのが、本発明によって可能になる。患者の頭のわずかな動きは可能なものの、このランプヘッドと患者の整列は保たれるだろう。これが可能なのは、開唇装置が導光器と着脱自在に係合しているからであり、また、患者の頭のこのわずかな動きを可能にするために、開唇装置が導光器に位置していても固定されてはいないからである。

20

【0204】

図51は、本発明の一つの実施例により、玉継手902、ランプヘッド1102、導光器1120、および開唇装置1122の間の組立関係を示している。回転運動台906は、ランプヘッド1102と玉継手902の間に連結されている。硬化用灯(curing lamp)の光軸が、歯科漂白の対象である目的の歯と一列に並ぶように、玉継手によってランプヘッドを適切な場所で旋回させることができる。

30

【0205】

導光器1120は、ランプヘッド1102の前端と連結するようになっている。一つの実施例では、ランプヘッド1102の外面領域1124に隣接して保持されるようになっている内面領域1122を、導光器1120が含む。本発明の一つの実施例によれば、表面領域1122と1124の隣接を保つために、内面1122上の突起部品または隆起が、外面領域1124の凹部1126に押し付けられるようになっている。

30

【0206】

本発明の一つの実施例では、導光器1120は、弾性的に圧縮可能なクッション1128を前面の縁に含む。弾性的に圧縮可能なクッション1128は、歯科漂白処置の対象(図示せず)と導光器の間の界面を柔らかくするのに役立つ。

40

【0207】

本発明のさらに進んだ態様では、図示した実施例に見られるとおり、導光器が第一と第二のスロット1130と1132を含む。歯科漂白の対象とランプヘッドの間の関係を安定させるために、これらのスロットは、開唇器1138から突き出た翼状部1134、1136を受けるようになっている。

【0208】

開唇器1138は、溝1140、1142と弾性部品1144とを含む。溝1140、1142は、漂白処置の間、歯科漂白の対象者の唇を支えるようになっている。弾性部品1144は溝1140、1142に連結されており、漂白の対象を開唇器に連結するため、溝を唇に向けて外向きに押し付けるようになっている。

【0209】

漂白の対象が開唇器1138に連結され、翼状部1134、1136を対応するスロッ

50

ト 1 1 3 0 、 1 1 3 2 に差し込むことで、開唇器は導光器 1 1 2 0 に連結されると、漂白の対象はランプヘッド 1 1 0 2 に関して空間的に安定する。このようにして支持構造物は、漂白の対象に対して実質的に安定した空間上の関係にランプヘッドを支えるのに役立つ。

【 0 2 1 0 】

上述のとおり、対象物と本発明の支持構造物との間のこの空間的に安定した関係は、本発明の他の実施例においても見られるものであり、様々な装置や処置に関するものである。

【 0 2 1 1 】

一つの実施例では、光源と電源パックの間の 第一の電気的接続を供給するための出入力ケーブルと、電源パックと外部電源の間の第二の電気的接続を供給するための電源ケーブルとが使われ、出入力ケーブルと電源ケーブルが電源パックに着脱自在に取り付けられるようになっているかもしれない。

【 0 2 1 2 】

図 5 2 は、本発明の他の実施例による歯科用照明源を示している。図示した実施例では、歯科用照明源は歯科漂白照明源である。しかし、歯科用合成物の硬化用照明源も同様に示されうる、と読者は理解するだろう。図示した実施例では、玉継手 9 0 2 がライトハウジング 1 1 5 0 に連結されている。後部に玉継手 9 0 2 のボールを有する、第一の細長い部分 1 1 5 2 を、ライトハウジング 1 1 5 0 は含む。ハウジング 1 1 5 0 の前端は、図示した実施例では、弓形の表面 1 1 5 4 である。

【 0 2 1 3 】

弓形の表面 1 1 5 4 は、1つ以上の照明源 1 1 5 6 を支えている。本発明の一つの実施例では、1つ以上の照明源 1 1 5 6 は1つ以上の発光ダイオード (LED) を含む。本発明の他の実施例では、1つ以上の照明源 1 1 5 6 は、たとえばハロゲンアーク灯のような小型のアーク灯を1つ以上含む。本発明のさらに別の実施例では、1つ以上の光源 1 1 5 6 は、たとえばハロゲン白熱灯などの白熱灯を1つ以上含み、本発明のまたさらに別の実施例では、前記1つ以上の光源は、離れた光源に接続されている1つ以上の光ファイバーおよび/または1つ以上の光波長変換器 (optical wavelength transformer) を含む。光波長変換器としては、米国特許出願第60/658,517号で開示されたものなどがあり、その開示は全体として、この参照によりここに含まれる。

【 0 2 1 4 】

図示した実施例では、信号ケーブル 1 1 7 0 が、その一端でライトハウジング 1 1 5 0 に接続されている。信号ケーブルは、1つ以上の照明源 1 1 5 6 に電力を供給するようになっている電源ケーブルを含むかもしれない。離れた光源から、1つ以上の照明源へ光を伝達するようになっている光ファイバーのような光導体 (optical light guide) をも、信号ケーブルが含むかもしれない。本発明の少なくとも1つの実施例において、信号ケーブル 1 1 7 0 は、張力緩和機構 (strain-relief feature) を含む。

【 0 2 1 5 】

一つの実施例では、電源ケーブルが、外部電源から歯科用器具と電源パックへの接続を供給しているかもしれない。また、電源ケーブルは実質的に支柱の中に含まれていて、外部電源から取り外し可能である。

【 0 2 1 6 】

本発明の他の態様を説明すると、図 5 2 の実施例は、第一と第二の翼状連結部品 1 1 5 8 、 1 1 6 0 を示している。翼状連結部品 1 1 5 8 、 1 1 6 0 のそれぞれは、対応するスロット 1 1 6 2 、 1 1 6 4 を含む。スロット 1 1 6 2 、 1 1 6 4 は、図 5 3 に示したような開唇器 1 1 3 8 の対応する翼状部 1 1 3 4 、 1 1 3 6 を受けるようになっている。

【 0 2 1 7 】

開唇器 1 1 3 8 が歯科処置の対象者に着用されているとき、翼状部 1 1 3 4 、 1 1 3 6 をスロット 1 1 6 2 、 1 1 6 4 に差し込むことは、対象者と1つ以上の照明源 1 1 5 6 との間の空間的な関係を安定させるのに役立つ。

10

20

30

40

50

【0218】

図54は、本発明の他の実施例による、歯科用支持構造物を示している。図54では、内視鏡的歯内治療装置1180の構成部品に、支持構造物100"が連結されているのを示している。図示した実施例の装置1180は、内視鏡的根面平滑器(root planer)である。歯根を露出させるために、患者のやわらかい歯茎を患者の歯から引き離し、切り離す、歯内治療処置を行うことが周知であることは、当業者なら理解するだろう。その後、堆積した歯垢その他の物質を露出した歯根から取り除くために、歯石除去器のような歯科用器具が使われる。最終的には、患者の歯茎は歯根の上に再び戻され、適切に縫合され、治癒が可能になる。不幸にして、本処置の侵襲的な性質のせいで、治癒過程は長期にわたり痛みを伴う。

10

【0219】

図54に示した本発明の実施例では、支持構造物100"は、内視鏡的根面平滑システム1180を支えている。内視鏡的根面平滑システム1180は、ハンドピース1182を含む。ハンドピースは、根面平滑器具と光学装置を含む遠心端1184を有する。

【0220】

前記光学装置は、根面平滑器具の先端に隣接した小さな空間的領域を照らすようになっていて、反射光を受ける。光学装置で受けた反射光は、今度はセンサによって、直接的に受けられるか、光ファイバーなどの光導波管(optical waveguide)を使って受けられる。

20

【0221】

センサは受けた光を信号に変換する。信号は増幅されて、システムのディスプレイ画面1186に画像として表示される。根面平滑システム1180の残りの部分(balance)にハンドピース1182がアンビリカル・ケーブル1180で連結されているのが示されているが、無線式のハンドピースも、ここで開示されている本発明の範囲に含まれる。

【0222】

本発明の一つの態様では、本発明の根面平滑システムは、外科的に歯茎を取り外して後でまた元に戻すことをせずに、歯茎と患者の歯根との間から、歯垢や他の堆積物を取り除くのが可能になっている。本発明の一つの態様では、様々な歯科用の器具および/または材料を、便利なように置いておけるトレイ1190を、根面平滑システムが含む。本発明の一つの実施例によれば、トレイ1190は、たとえば加圧滅菌器で滅菌したりできるように、簡単に取り外し可能である。

30

【0223】

図示した実施例の他の態様では、システムのモニタ画面1186が、回転自在および/または着脱自在に、支持構造物のブーム103に玉継手902で連結されている。図示した実施例のさらに別の態様では、歯内治療的根面平滑システムが、電源パック1192を含む。本発明の一つの実施例によれば、電源パック1192が稼動用電力を電気ケーブル1194によって根面平滑システムの残りの部分に供給している。本発明のさらに別の実施例は、電源パック1192内に、たとえばマイクロプロセッサなどのデジタル処理装置を含む。デジタル処理装置は、歯内治療的根面平滑システムの信号を制御し処理するようになっている。

40

【0224】

図55に示した本発明の実施例では、支持構造物100"が、歯内治療的根尖探知器(apex locator)システム1200を支えている。歯内治療的根尖探知器システム1200は、同軸信号線1202のような信号伝達媒体を含む。信号線1202は、根尖探知器固定装置1204に連結されるようになっている。

【0225】

根尖探知器固定装置1204は、支持クランプ部1206、絶縁部1208、および接触部1210を含む。支持クランプ部1206は、歯科患者の歯1212に着脱自在でありながらしっかりと、取り付けられるようになっている。支持クランプ部1206は絶縁部1208を支え、絶縁部1208は接触部1210を支えるようになっている。

50

【0226】

根管処置を行う間、歯内治療的なやすり、リーマ、その他の適当な道具1214が、歯1212の髓室や歯根を掘るのに使われる。道具1214の表面が接触部1210に接触し、信号線1202から受け取った電気信号が電気的に道具1214に伝達される。

【0227】

電気的信号を生成し、たとえば道具1214や歯1212の系のインピーダンスにもとづく計測を行うようになっている処理装置1216と、信号線1214が、信号線の第二の端点で連結している。

【0228】

計測されたインピーダンスまたは他の信号に応じて、処理システム1216は、システムのディスプレイ画面1218に像を描き出す。様々な実施例において、その像は文字によるものおよび／または図画的なものであって、歯1212の根管1218に対する道具1214の空間的な位置を表している。根尖探知器固定装置1204が根尖探知器システム1200の残りの部分と信号線1202で連結しているのが図示されているが、無線式の根尖探知器固定システムも、ここで開示された本発明の範囲内にある。

【0229】

本発明の一つの態様では、本発明の根尖探知機システムは、歯根壁面(root wall)や、歯根の根尖1222のところの歯根膜の部分に穴を開けることなく、根管1218を掘ったり成形したりできるようになっている。

【0230】

本発明の一つの態様では、様々な歯科用の器具および／または材料を、便利なように置いておけるトレイ1190を、根尖探知機システムが含む。本発明の一つの実施例によれば、トレイ1190は、たとえば加圧滅菌器で滅菌したりできるように、簡単に取り外し可能である。

【0231】

図示した実施例の他の態様では、システムのモニタ画面1218が、回転自在および／または着脱自在に、支持構造物のブーム103に玉継手902で連結されている。図示した実施例のさらに別の態様では、根尖探知器システム1200が、電源パック1192を含む。

【0232】

本発明の一つの実施例によれば、電源パックが稼動用電力を電気ケーブル1194によって根尖探知器システムの残りの部分に供給している。本発明のさらに別の実施例は、電源パック1192内に、たとえばマイクロプロセッサなどのデジタル処理装置を含む。デジタル処理装置は、歯内治療的根尖探知器システムの信号を制御し処理するようになっている。

【0233】

本発明の一つの実施例には、支持構造物100”と歯内治療的根尖探知器システムの組み合わせを含む。歯内治療的根尖探知器システムとしては、米国特許出願第60/594,388号で開示されたものなどがあり、その開示は全体として、この参照によりここに含まれる。

【0234】

図56が示すのは、歯科撮影用固定(dental imaging fixturing)システム1230を支えるようになっている、図1の歯科用支持構造物100を含む、本発明の別の実施例である。図示した実施例では、玉継手902支持部品1232に連結される。後部に玉継手902のボールを有する、第一の細長い部分1234を、支持部品1232は含む。支持部品1232の前端は、図示した実施例では、第一と第二の翼状連結部品1236、1238を含む。翼状連結部品1236、1238のそれぞれは、対応するスロット1240、1242を含む。スロット1240、1242は、開唇器1248の対応する翼状部1244、1246を受けるようになっている。

【0235】

開唇器1248が歯科処置の対象者に着用されているとき、翼状部1244、1246

10

20

30

40

50

をスロット 1240、1242 に差し込むことは、対象者と 1 つ以上の X 線源との間の空間的な関係を安定させるのに役立つ。

【0236】

本発明の一つの実施例によれば、図示したように、開唇器 1248 は、第一と第二の噛み部品 (bite member) 1250、1252 を含む。噛み部品 1250、1252 のそれぞれは、対応する 1 つ以上のフィルム指示クリップ 1253 (対応する X 線フィルム包装を支えるようになっている) を有する。

【0237】

操作中、少なくとも 1 つの X 線フィルム包装が 1 つ以上のフィルム支持クリップ 1253 に留められる。当技術分野で周知のように、X 線フィルム包装は、光漏れのない (light-tight) 包装に封入された化学 X 線フィルムのシートを含む。開唇器 1248 の唇を受ける溝の中に患者の唇が位置するようにすることにより、開唇器 1248 は、歯科用 X 線の対象と連結される。そして対象者が噛み部品を噛んで、対象者の歯との安定した空間的関係に開唇器をさらに固定する。翼状部 1244、1246 をスロット 1240、1242 に差し込むことによって、開唇器 1248 は、歯科用支持構造物 100 に関して安定する。これは、対象者の歯と X 線フィルム包装 1256 とを床に関して安定させるのに役立つ。よって、X 線源に関して安定させるのにも役立つ。その結果、X 線フィルムの曝露の間に X 線対象者が動いてしまってフィルム曝露が不均一性になりがちだ、という公知の傾向が減少する。

【0238】

図 57 が示すのは、歯科撮影用固定システム 1230 を支えるようになっている、図 54 の歯科用支持構造物 100" を含む、本発明のさらに進んだ実施例である。

図 56 の実施例とは違い、図 57 の実施例は、噛み部品 1250、1252 にそれぞれ連結されている電子的 X 線センサ 1280、1282 を含む。電子的画像センサで X 線を探知し撮影することは、化学的フィルムを使うことよりも好ましいかもしれない。なぜなら、電子的画像センサは化学的フィルムよりも敏感な傾向があり、化学現像過程が不要で、ほとんどの電子的画像センサによって作られるディジタル画像は、ただちにディジタル操作ができるからである。

【0239】

本発明の一つの実施例では、電子的画像センサのそれぞれは、着脱自在なプラグつきの、対応する信号ケーブルを含む。

図 58 は、本発明の一つの実施例による、超音波画像システム 1300 を含む、図 54 の歯科用機器支持構造物 100" を示している。支持構造物は、超音波送受波器 (transducer) 1312 を支える画像ハンドル 1310 と、画像画面 1314 とを含む。超音波送受波器は、歯および / または骨の領域に近接して位置するのに適している。送受波器によって生成され受信される超音波振動は、システム 1300 によって使われて、歯および / または骨の領域の画像を画面 1314 上に作り出す。

【0240】

図 59 は、本発明の一つの実施例による、歯科用組立トレイ 1350 を示している。歯科用組立トレイは、唇を受ける第一と第二の溝 1358、1360 を含む。歯を受ける第三の溝 1354 が、唇を受ける溝に対して、実質的に通常の方向に位置しており、その凹んだ領域内で患者の上顎歯または下顎歯を受けるようになっている。第一と第二の固定翼上部 1362、1364 が、それぞれ、唇を受ける第一と第二の溝 1358、1360 に連結されている。図示した実施例に示したとおり、連結部品 1356 が間にあって、唇を受ける第一と第二の溝 1358、1360 および歯を受ける溝 1352 のいずれとも連結している。様々な実施例において、上顎歯と下顎歯の両方を同時に受けるような配置になっている、歯を受ける一対の溝を、歯科用組立トレイが含む、ということは当業者なら理解するだろう。

【0241】

使用時に、歯科用組み立てトレイ 1350 は、歯科漂白用合成物や歯科鋳造 (dental c

10

20

30

40

50

ast) 用合成物などの歯科用合成物を、歯を受ける溝 1352 の凹んだ領域内で受けるようになっている。

【0242】

本発明の例示した実施例を今まで説明し、図示してきたが、これらは本発明の典型例なのであって、限定と考えられるべきではない、ということが理解されねばならない。したがって、本発明は前記の説明によって限定されるとは考えられず、ここに追加される請求項の範囲によってのみ限定される。

【図面の簡単な説明】

【0243】

【図1】図1は、本発明の一つの実施例による、歯科用機器のための支持構造物の斜視図 10 である。

【図2】図2は、歯科用支持構造物の様々な形態の断面立図である。

【図3】図3aから図3dは、歯科用支持構造物の様々な形態を示している。

【図4】図4は、本発明の別の実施例による、歯科に適用するための支持構造物を示している。

【図5】図5は、歯科用支持構造物に含まれるようになっている基部の斜視図である。

【図6】図6は、歯科用機器のための支持構造物用の、平衡錘取り付けシャフトの斜視図 20 である。

【図7】図7は、歯科用支持構造物のためのブーム・ジョイントの斜視図である。

【図8】図8は、ブーム・ジョイントの側面図である。

【図9】図9は、本発明の一つの実施例による、ブーム・ジョイントの断面図である。

【図10】図10は、本発明の一つの実施例による、ブーム・ジョイント・ピボットの斜視図 20 である。

【図11】図11は、本発明の一つの実施例による、ブーム・ヒンジ・ヨークの斜視図である。

【図12】図12は、本発明の一つの実施例による、ブーム・ジョイント水平シャフトを示している。

【図13】図13aと図13bは、本発明のそれぞれの実施例による、ブーム・ジョイント座金を示している。

【図14】図14は、本発明の一つの実施例による、ブーム・ジョイント取っ手の斜視図 30 である。

【図15】図15は、本発明の一つの実施例による、ブーム・ジョイントの斜視図である。

【図16】図16は、本発明の一つの実施例による、支柱頂部プラグの腹部 斜視図である。

【図17】図17は、本発明の一つの実施例による、支柱頂部プラグの上面図である。

【図18】図18は、本発明の一つの実施例による、支柱頂部プラグの断面図である。

【図19】図19は、本発明の一つの実施例による、支柱、ブーム、およびブーム・ジョイントの組立図である。

【図20】図20は、本発明のさらに進んだ実施例による、ブーム・ジョイントの断面図 40 である。

【図21】図21は、本発明のさらに進んだ実施例による、ブーム・ジョイントの断面図である。

【図22】図22は、本発明のさらに進んだ実施例による、ブーム・ジョイントの断面図である。

【図23】図23は、本発明の一つの実施例による、ブーム・ジョイント・シャフトを示している。

【図24】図24は、本発明の一つの実施例による、患者が押しのける力、関節トルク、ばねの力、ばねのたわみの間の関数関係を示す、実験に基づく値の表を示している。

【図25】図25は、本発明の一つの実施例による、ばねのたわみと患者が押しのける力 50

との間の関数関係のグラフである。

【図26】図26は、本発明の一つの実施例による、ばねの力とばねのたわみとの間の関数関係のグラフである。

【図27】図27は、本発明の一つの実施例による、ピボットと支柱頂部プラグ部品の正面図である。

【図28】図28は、本発明の一つの実施例による、ピボットと支柱頂部プラグ部品の断面図である。

【図29】図29は、本発明の一つの実施例による、ピボットの腹部斜視図である。

【図30】図30は、本発明の一つの実施例による、垂直ピボット・シャフトの腹部斜視図である。

【図31】図31は、本発明の一つの実施例による、垂直ピボット・シャフトの断面図である。

【図32】図32は、本発明の別の実施例による、垂直ピボット・シャフトの腹部斜視図である。

【図33】図33は、本発明の別の実施例による、垂直ピボット・シャフトの断面図である。

【図34】図34は、本発明の一つの実施例による、スパナ・ナットの上面図である。

【図35】図35は、本発明の一つの実施例による、スパナ・ナットの側面図である。

【図36】図36は、本発明の一つの実施例による、軸受筒の腹部斜視図である。

【図37】図37は、本発明の別の実施例による、スパナ・ナットの上面図である。

【図38】図38は、本発明の一つの実施例による、支柱頂部プラグの腹部斜視図である。

【図39】図39は、本発明の一つの実施例による、支柱頂部プラグの断面図である。

【図40】図40は、本発明の別の実施例による、支柱頂部プラグの上面図である。

【図41】図41は、本発明の別の実施例による、支柱頂部プラグとピボット部品の組立図である。

【図42】図42は、本発明の別の実施例による、玉継手の様々な部品の斜視図である。

【図43】図43は、歯科用機器支持構造物ブーム用のフォワード部品の分解斜視図である。

【図44】図44は、本発明の一つの実施例による、玉継手の部品の斜視断面図である。

【図45】図45は、本発明の一つの実施例による、ナットプレートとばね部品の斜視図である。

【図46】図46は、本発明の一つの実施例による、ボール・カップの腹部斜視図である。

【図47】図47は、本発明の別の実施例による、ボール・カップの斜視図である。

【図48】図48は、本発明の別の実施例による、玉継手部品の斜視図である。

【図49】図49は、本発明の一つの実施例による、玉継手の取っ手の斜視図である。

【図50】図50は、本発明の一つの実施例による、歯科用漂白ランプを含む歯科用機器のための支持構造物を示している。

【図51】図51は、本発明の一つの実施例による、歯科用漂白ランプを含む歯科用機器のための支持構造物を示している。

【図52】図52は、本発明の一つの実施例による、歯科用漂白ランプを含む歯科用機器のための支持構造物の一部を示している。

【図53】図53は、患者の唇を歯科用漂白ランプにつなぎ、それにより患者の唇を歯科用機器のための支持構造物につなぐための、本発明の一つの実施例による装置を示している。

【図54】図54は、本発明の一つの実施例による、内視鏡付き歯科用平滑器 (endoscopic tooth planer) のような内視鏡的な装置を含む、歯科用機器のための支持構造物を示している。

【図55】図55は、本発明の一つの実施例による、内視鏡付き根尖探知装置 (endoscopic

10

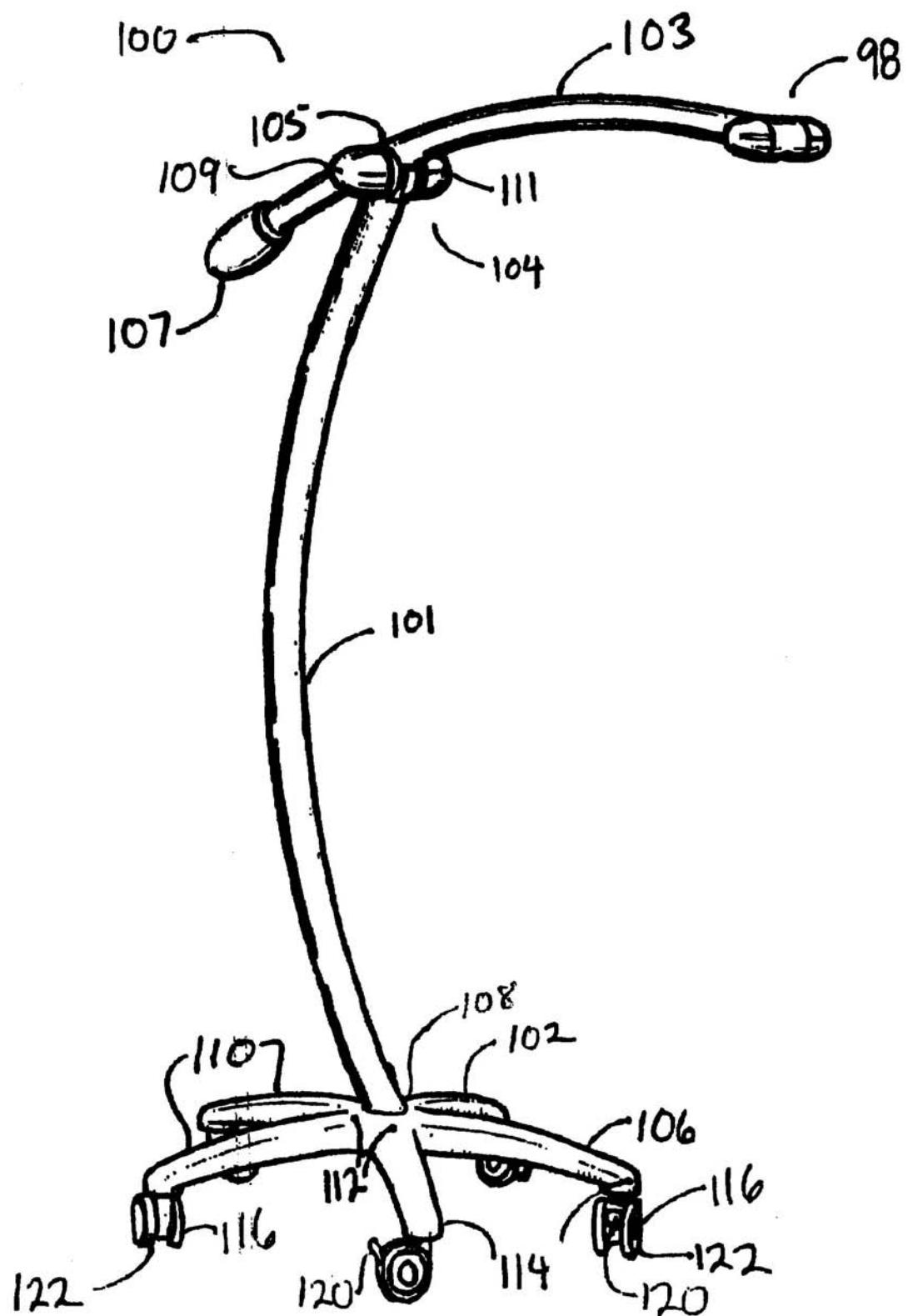
20

30

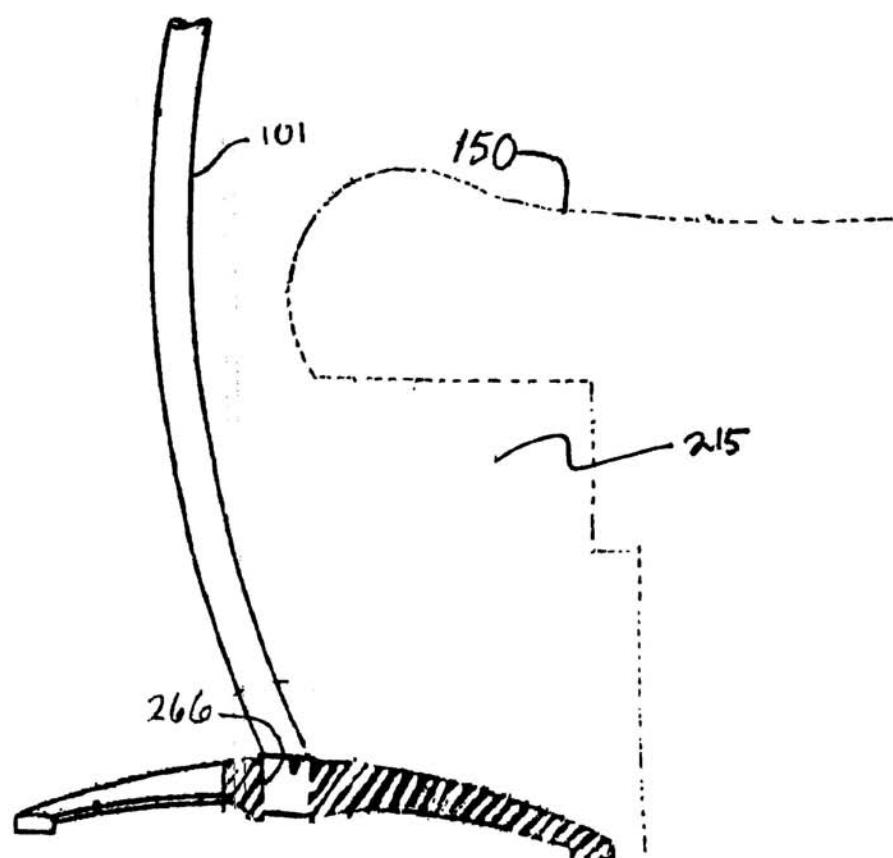
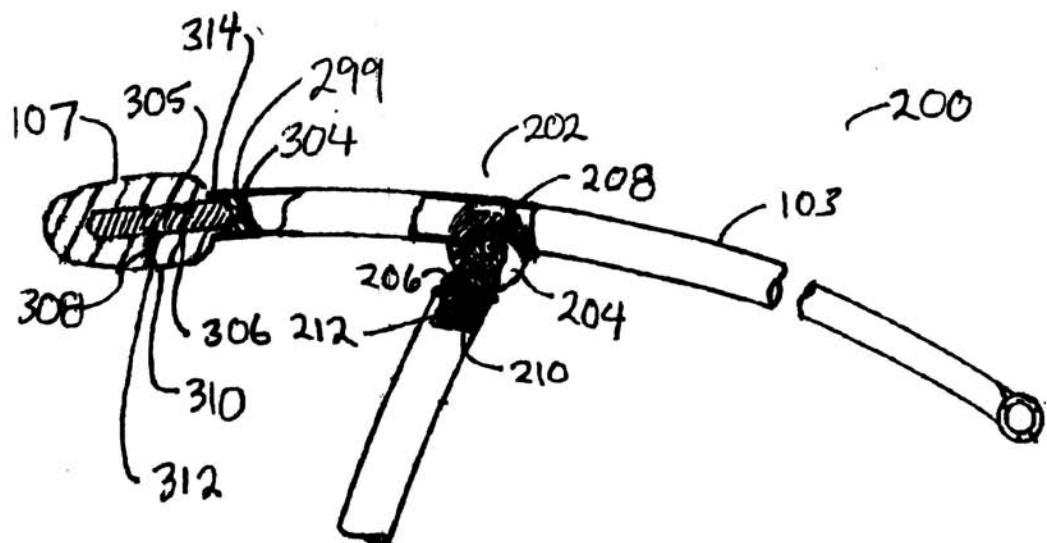
40

50

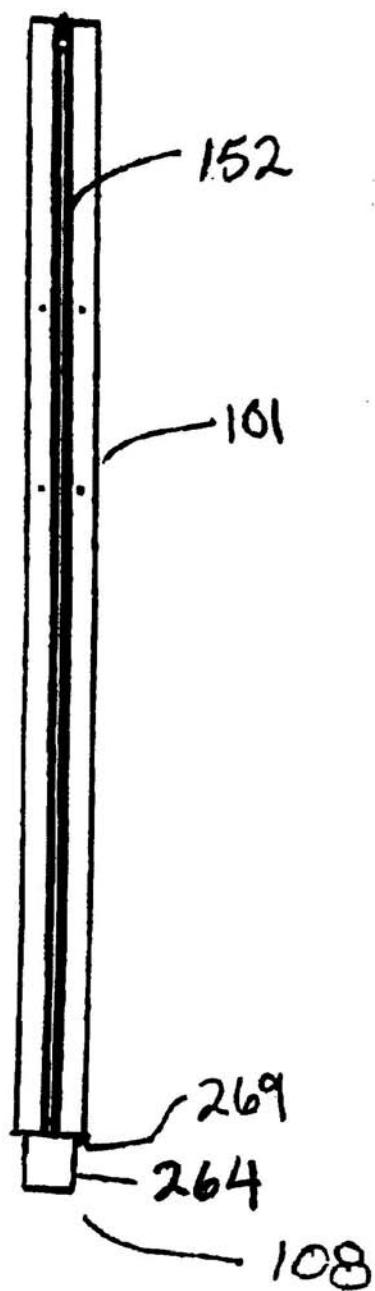
ic apex locator device) を含む歯科用機器のための支持構造物を示している。

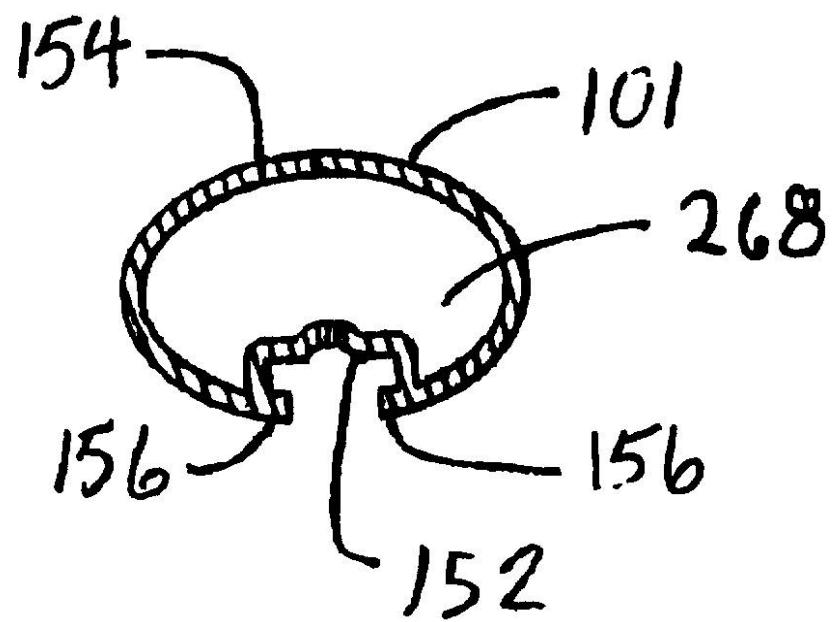

【図 5 6】図 5 6 は、本発明の一つの実施例による、X 線フィルム支持構造物を含む、歯科用機器のための支持構造物の一部を示している。

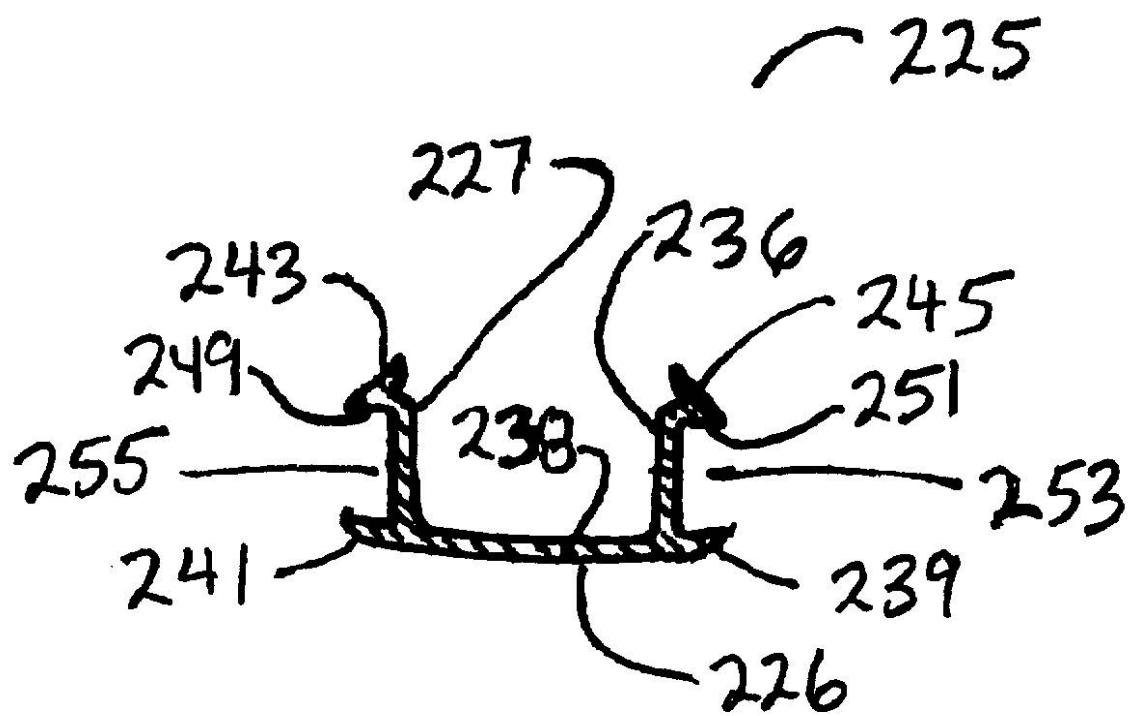
【図 5 7】図 5 7 は、本発明の一つの実施例による、電子的 X 線画像センサ支持構造物を含む、歯科用機器のための支持構造物の一部を示している。

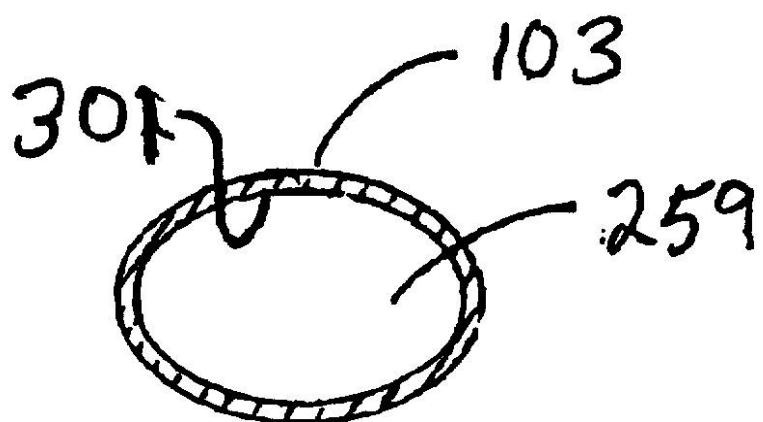


【図 5 8】図 5 8 は、本発明の一つの実施例による、超音波画像装置を含む、歯科用機器のための支持構造物を示している。

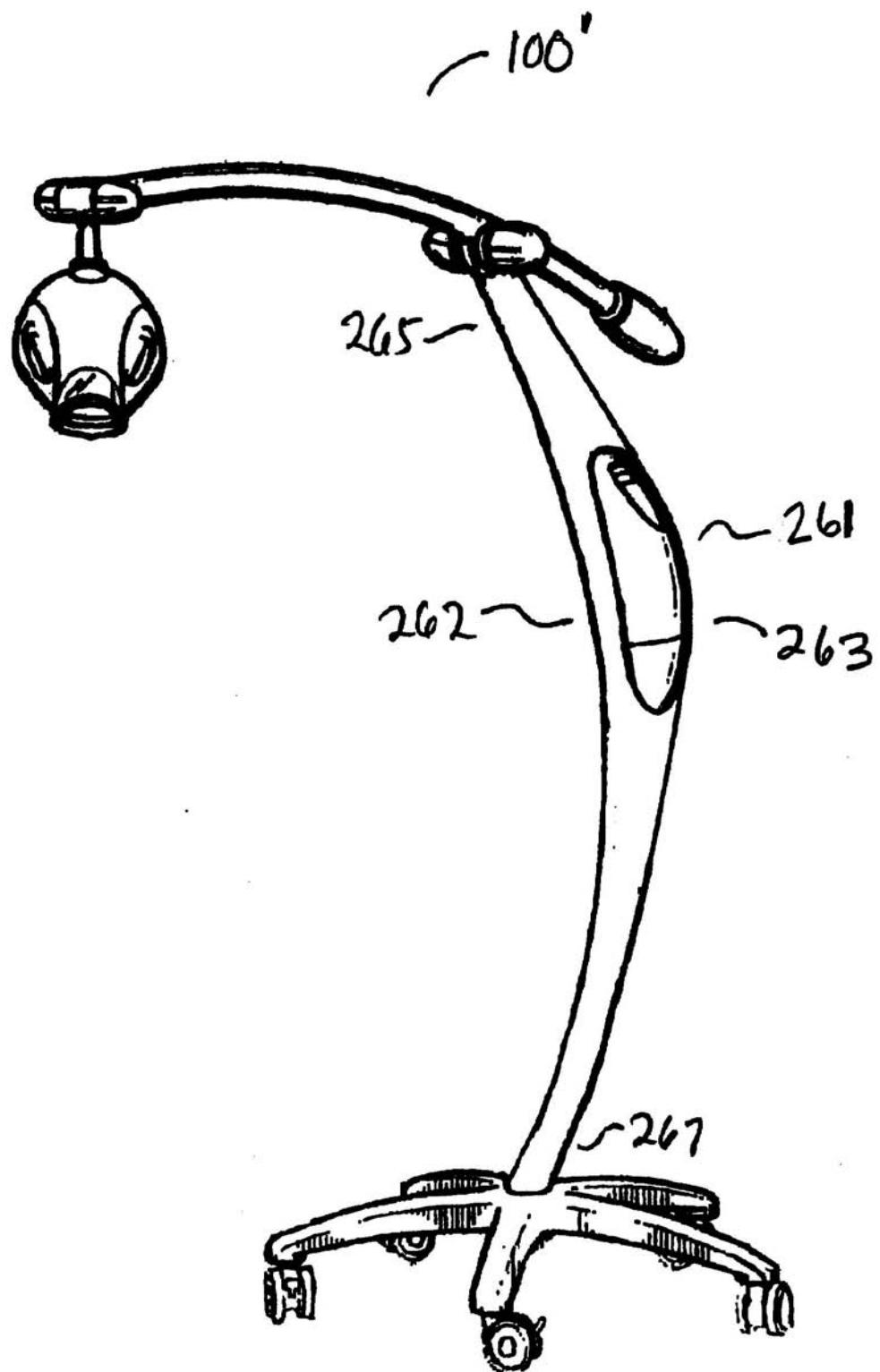
【図 5 9】図 5 9 は、本発明の方式による、支持構造物と共に用いる歯科用組み立てトレイを示している。

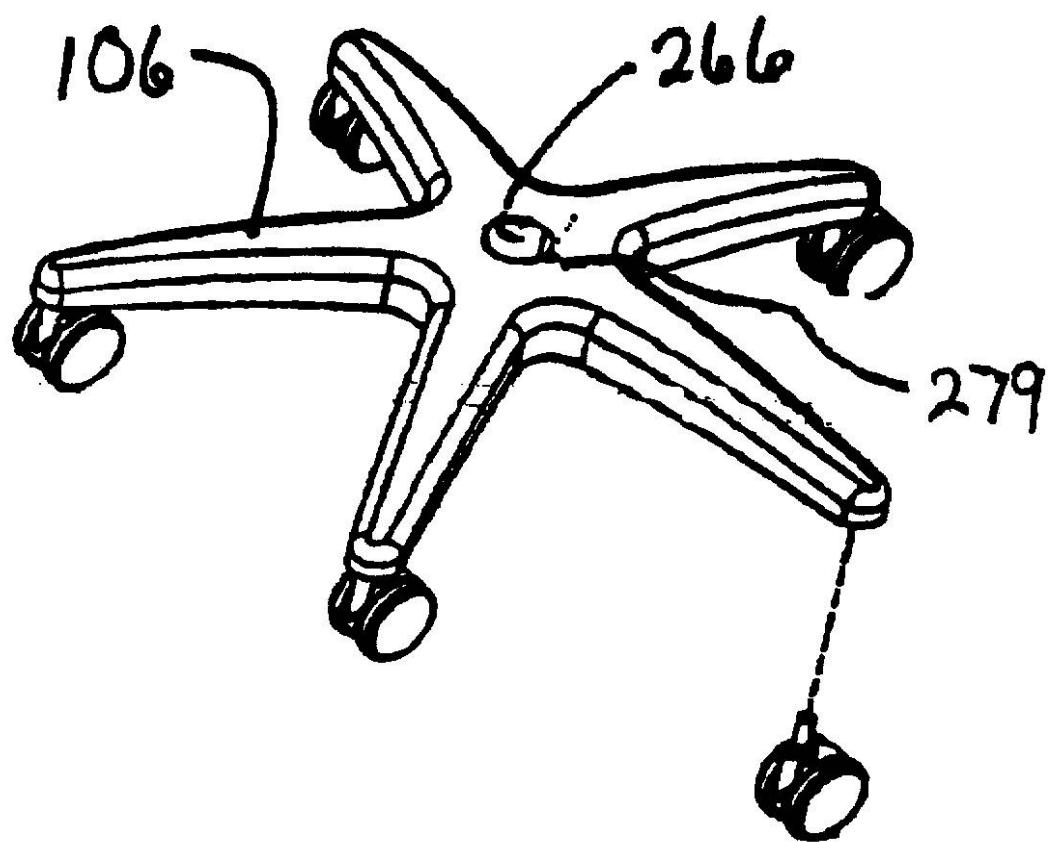

【図1】

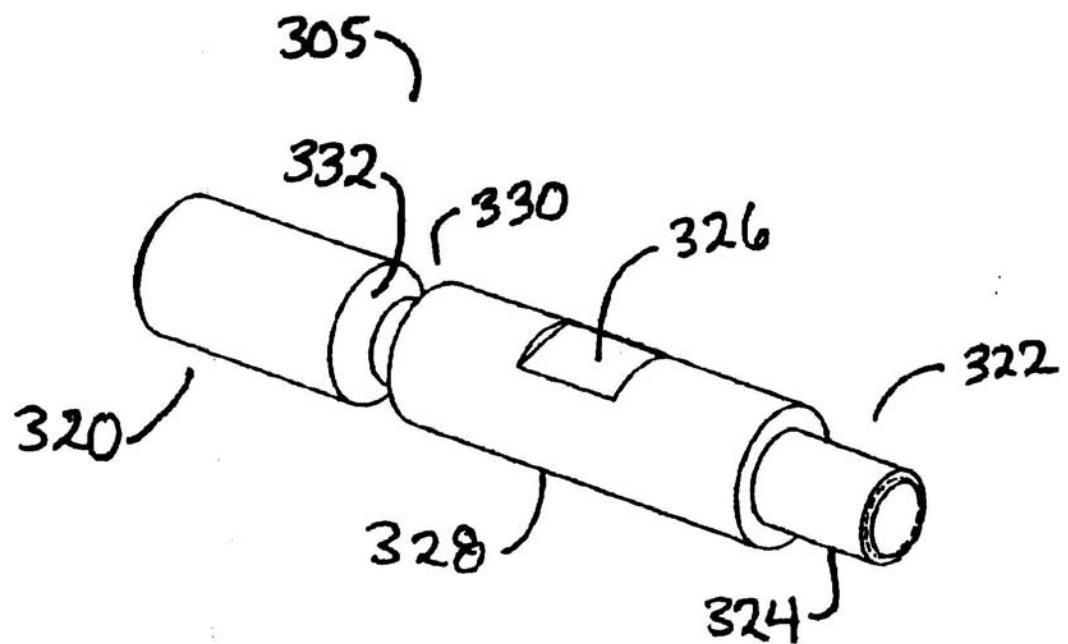

【図2】

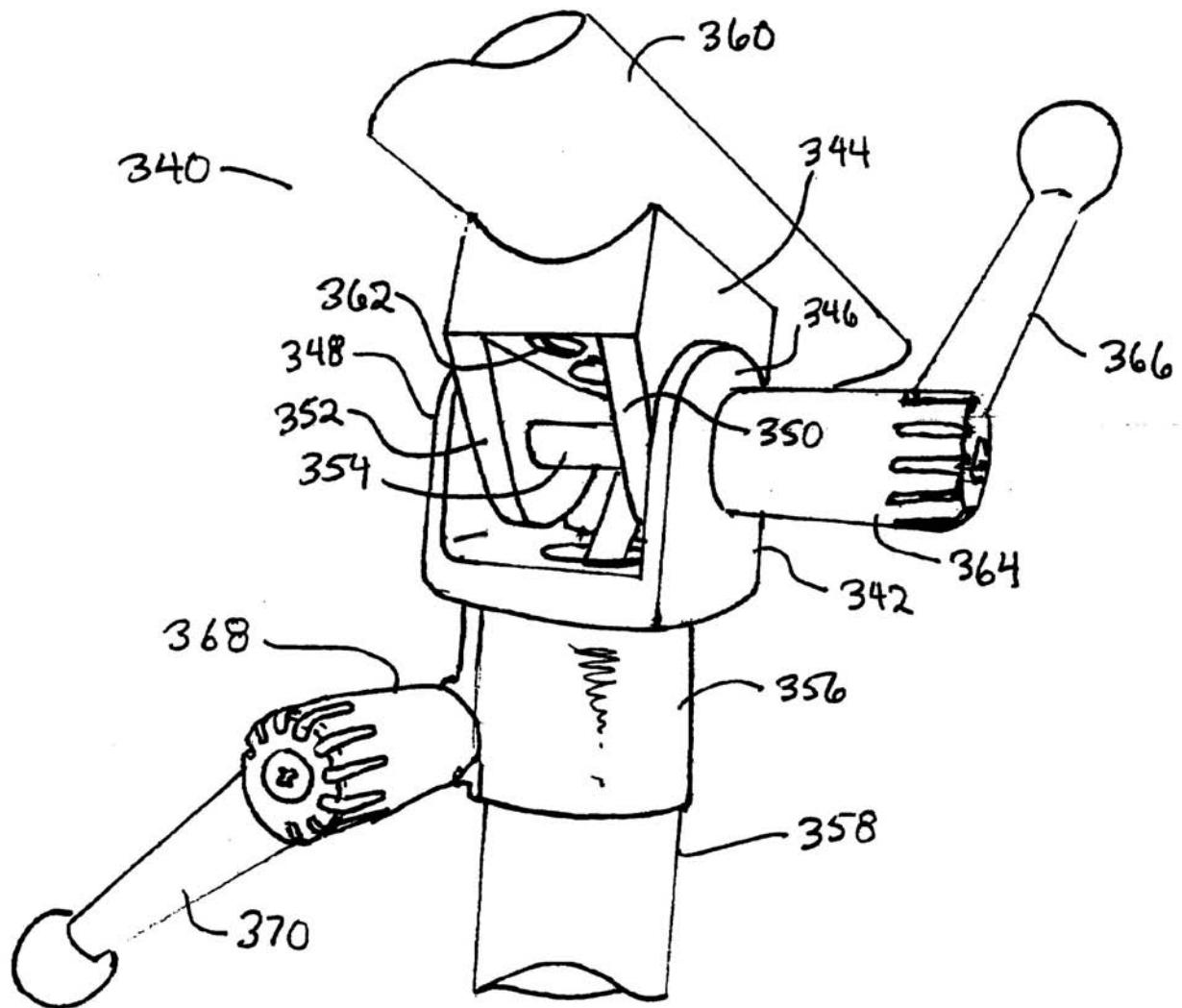

【図3a】

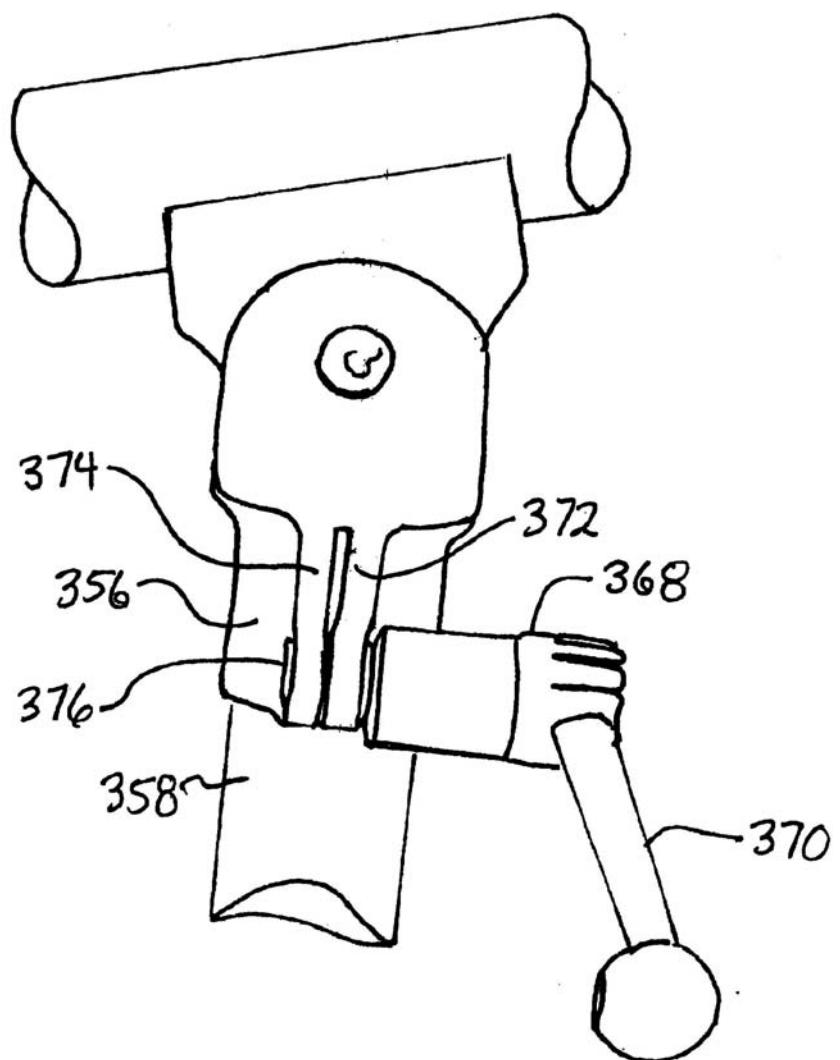

【図3b】

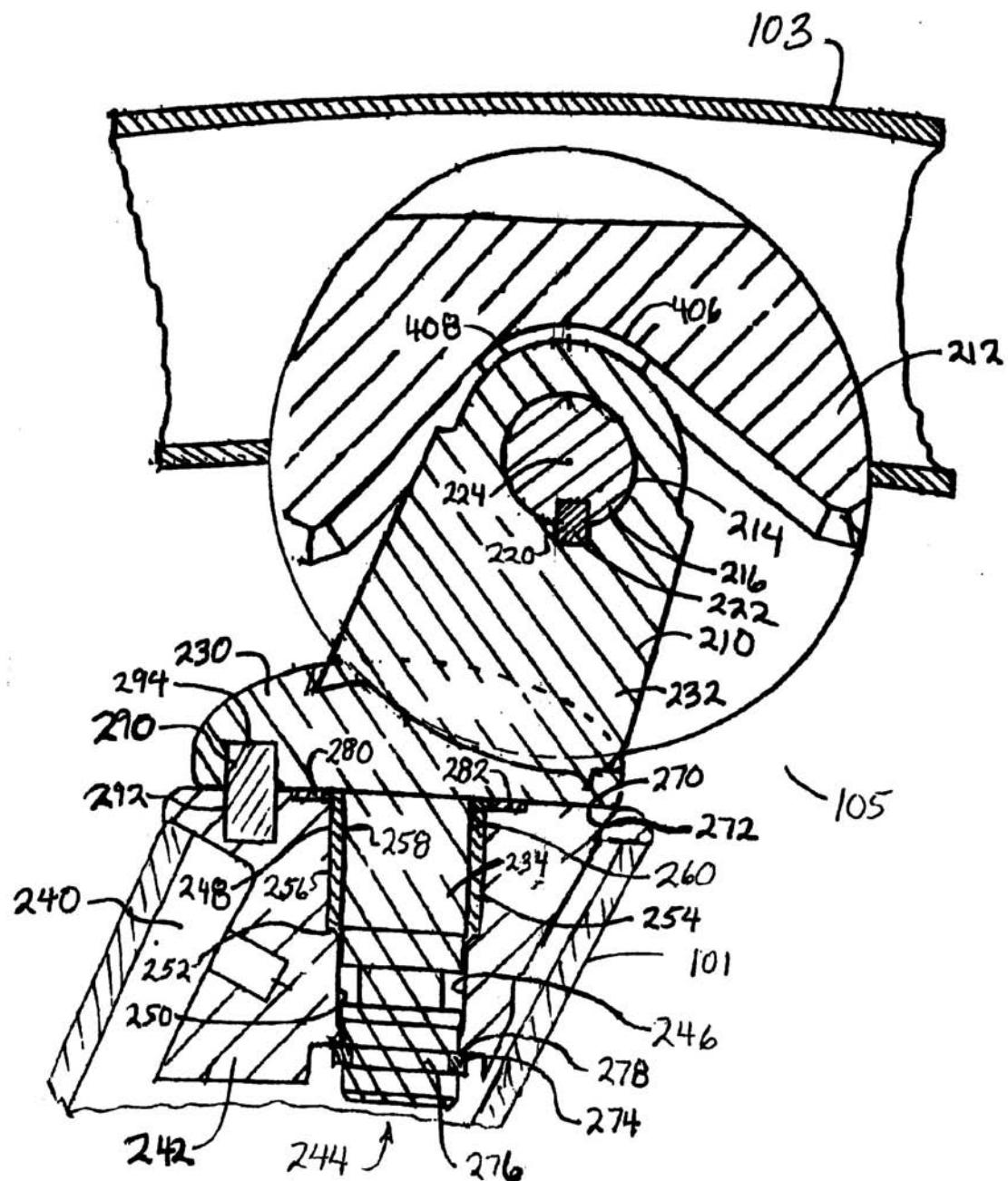

【図3c】

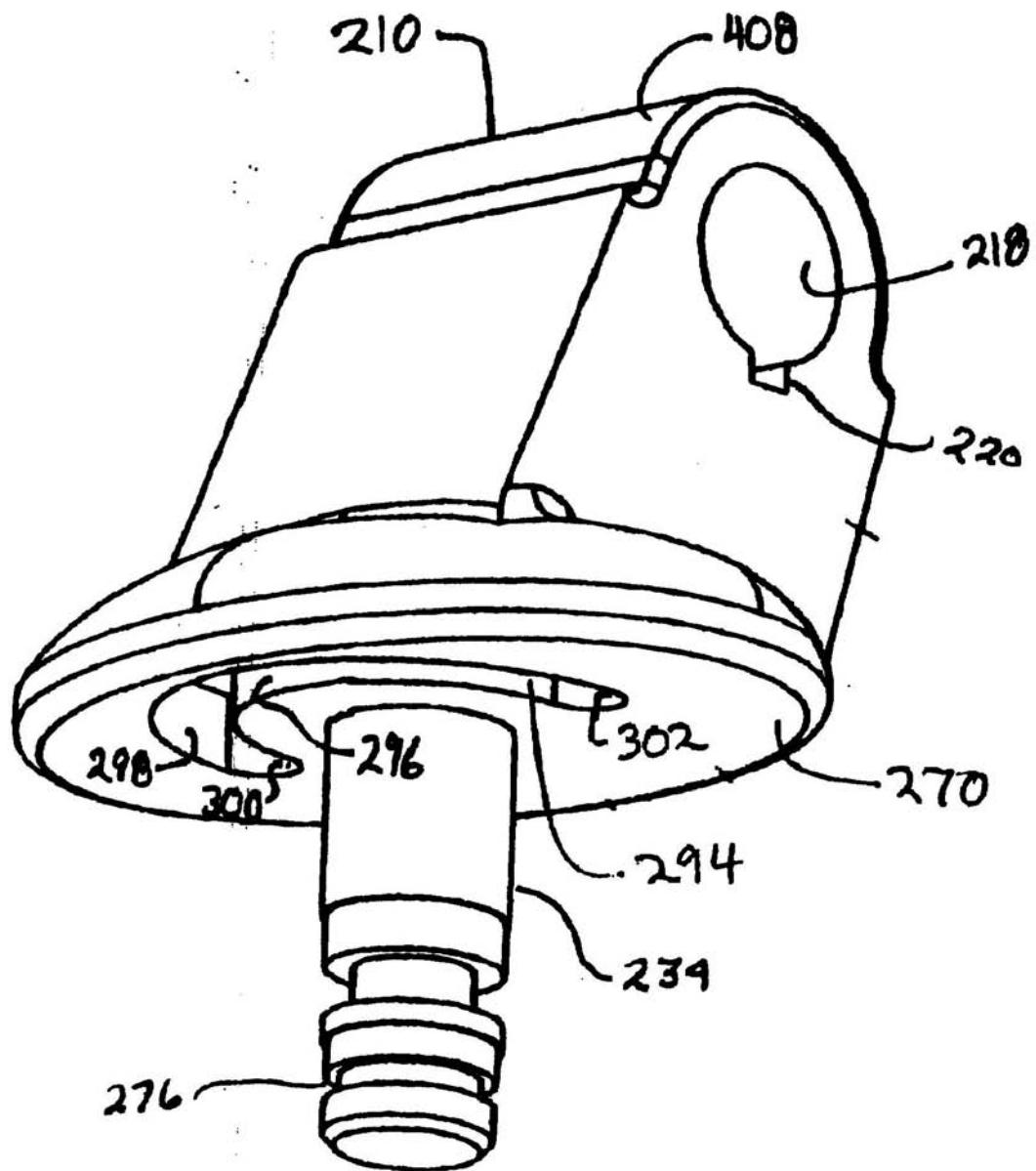

【図3d】

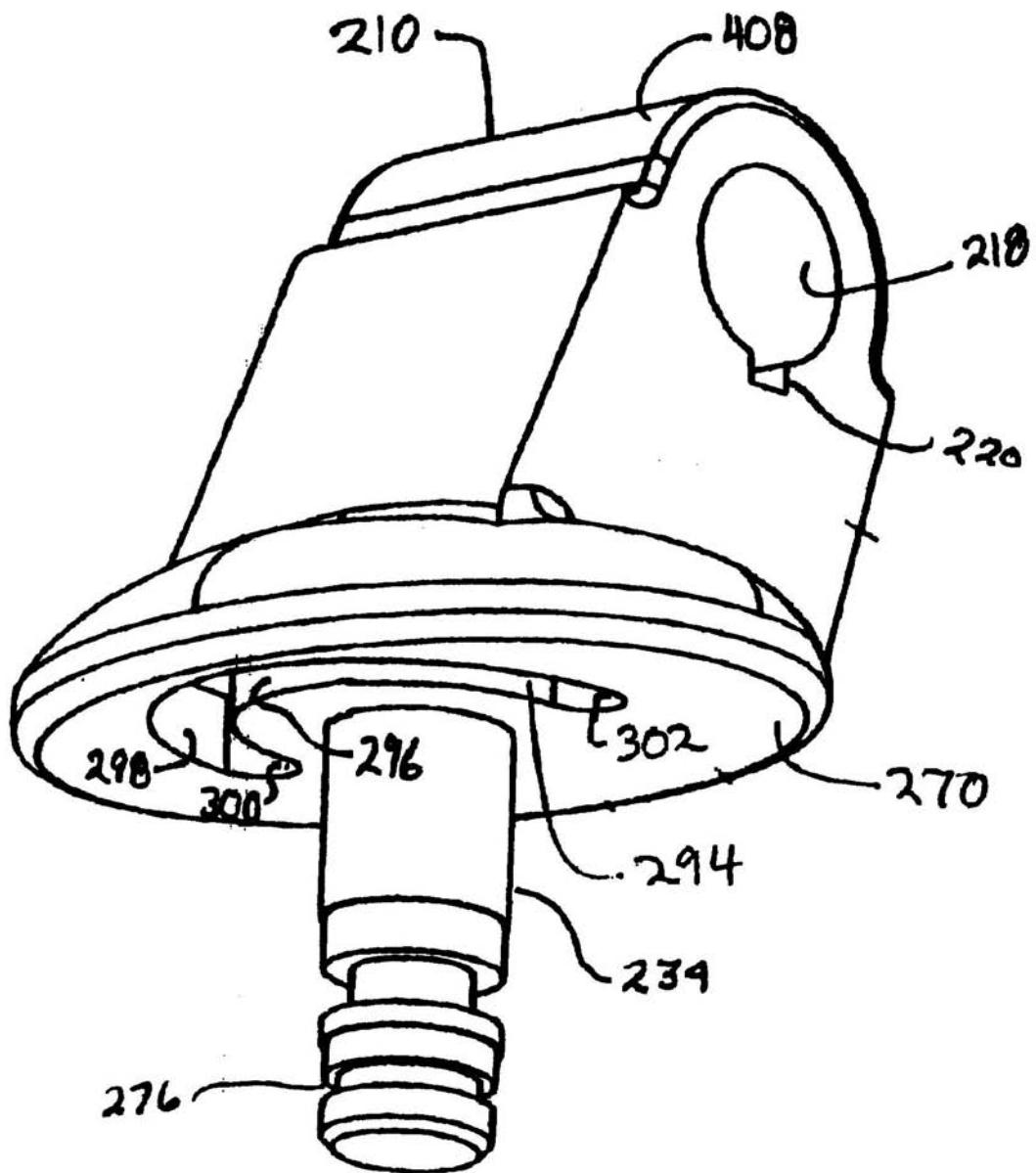

【図4】

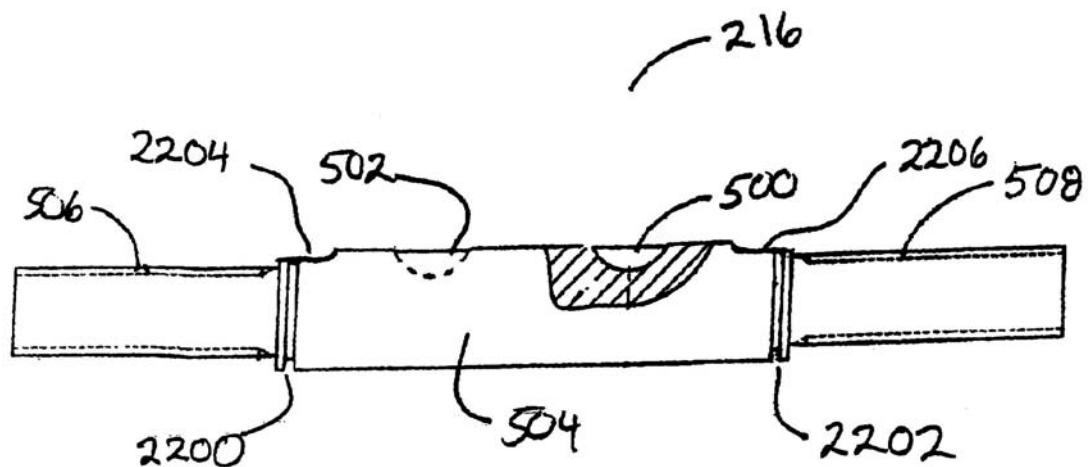

【図5】

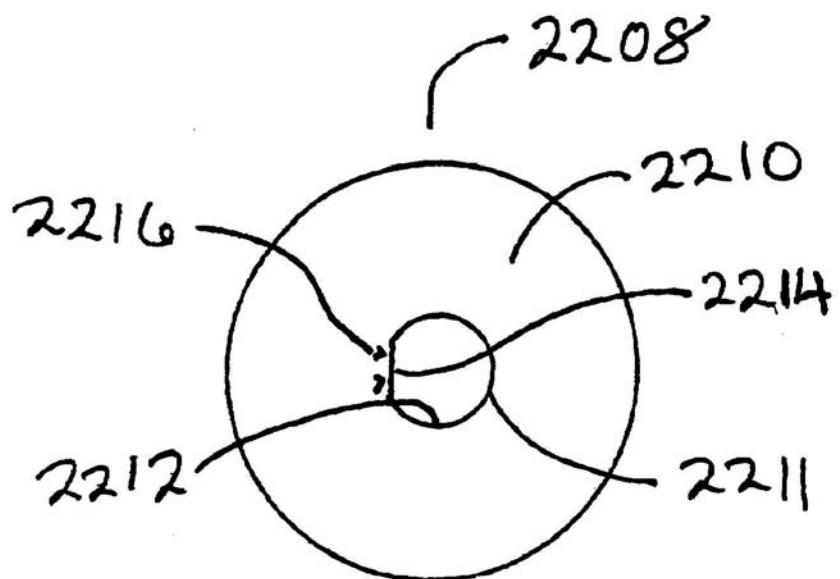

【図6】

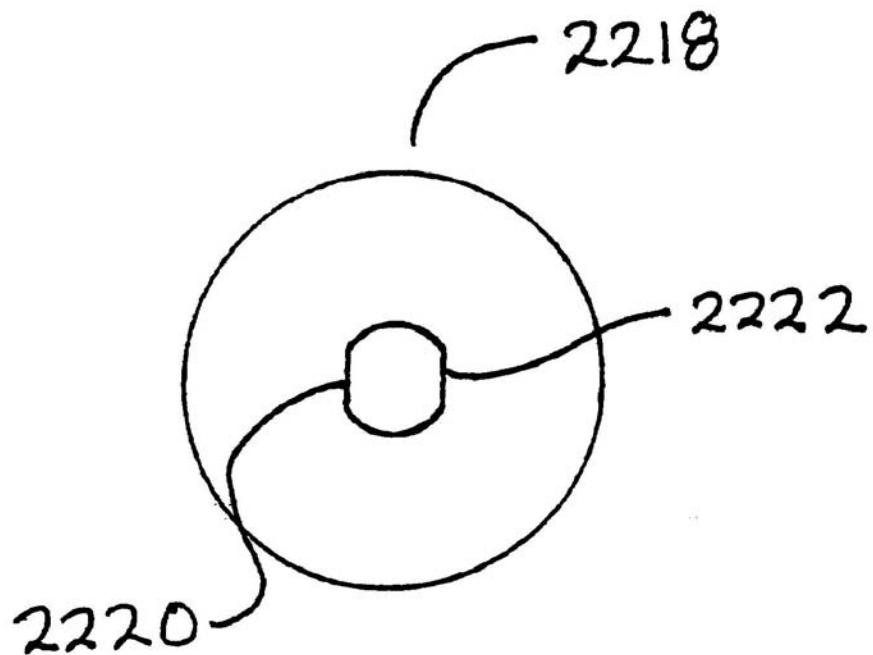

【 义 7 】

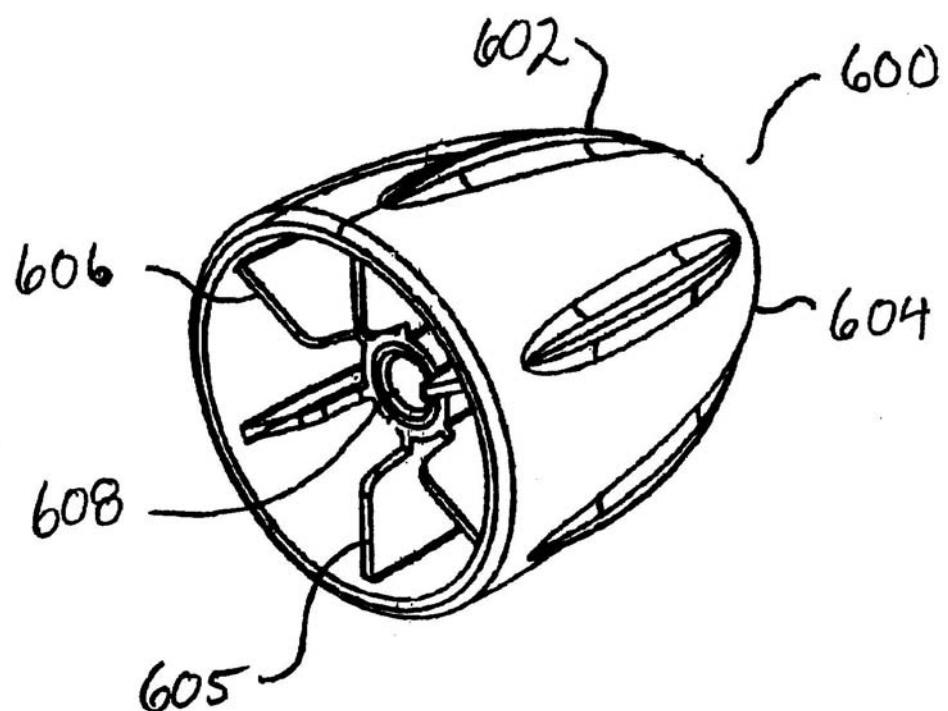

【図8】

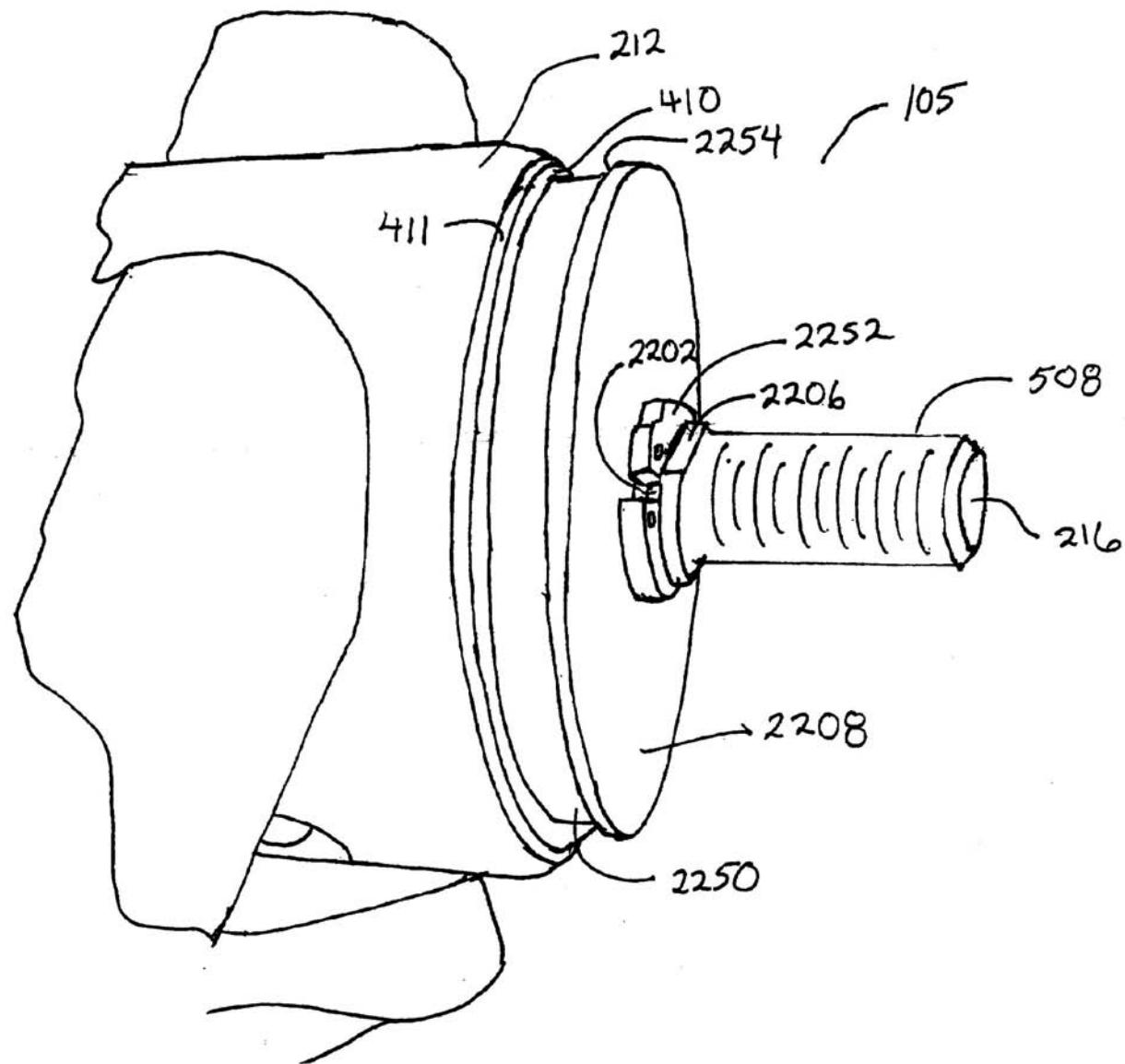

【図9】

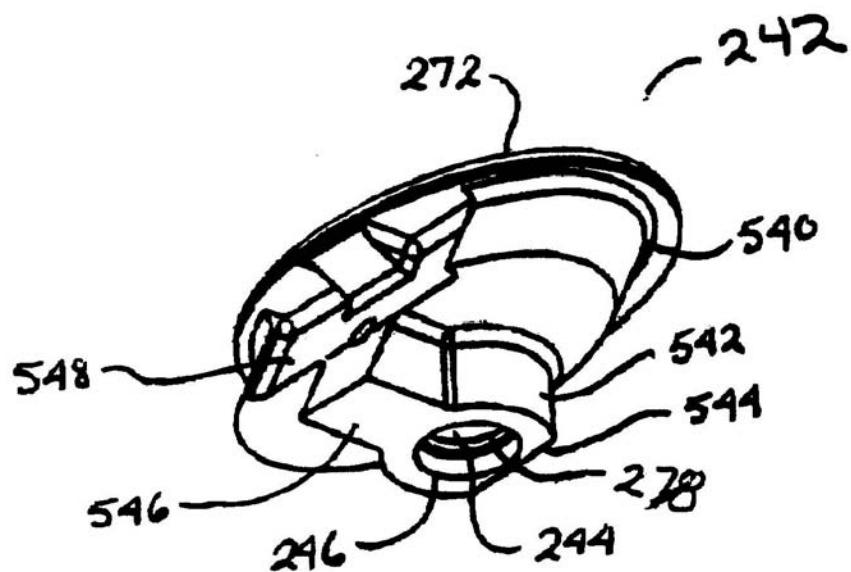

【図10】

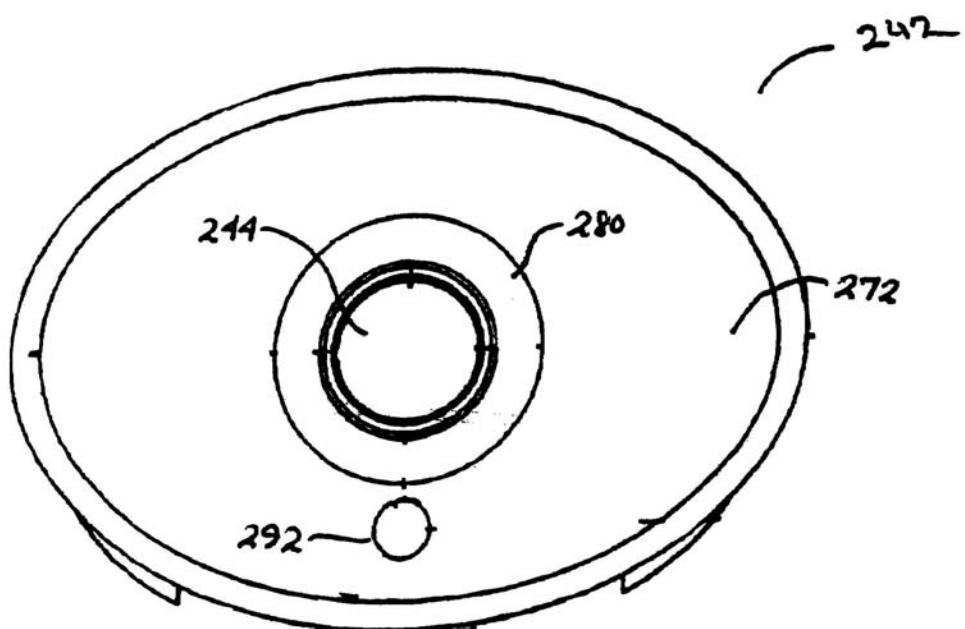

【図11】

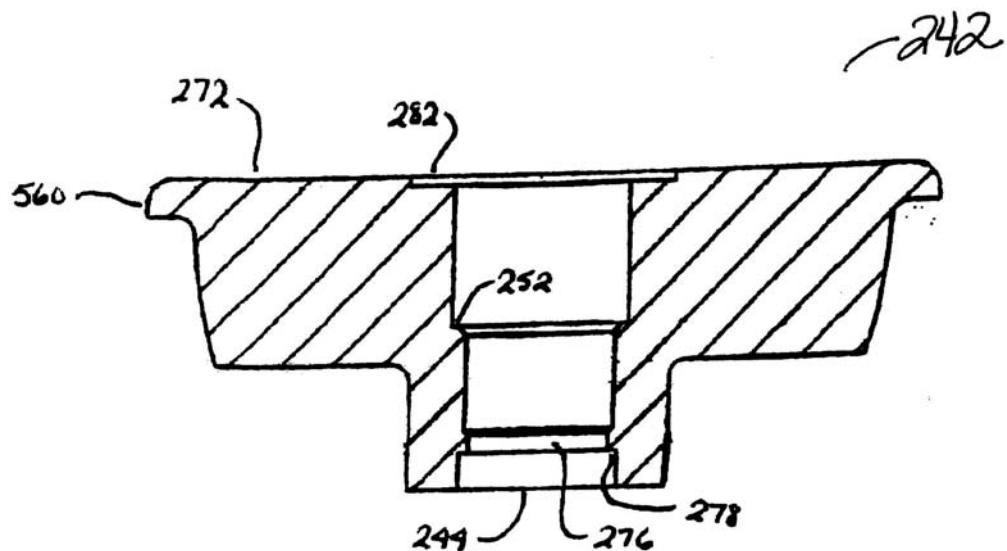

【 図 1 2 】

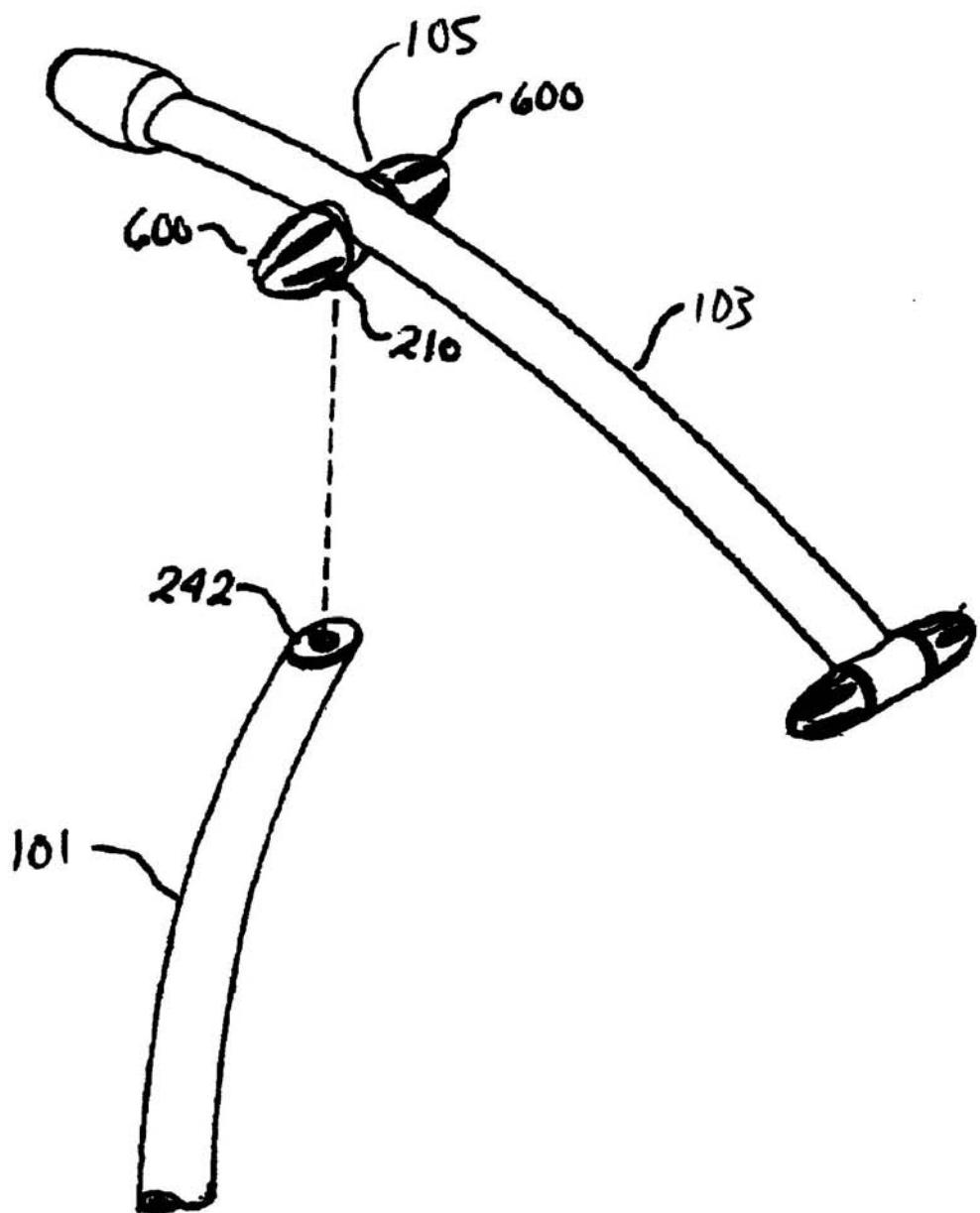

【図 1 3 A】

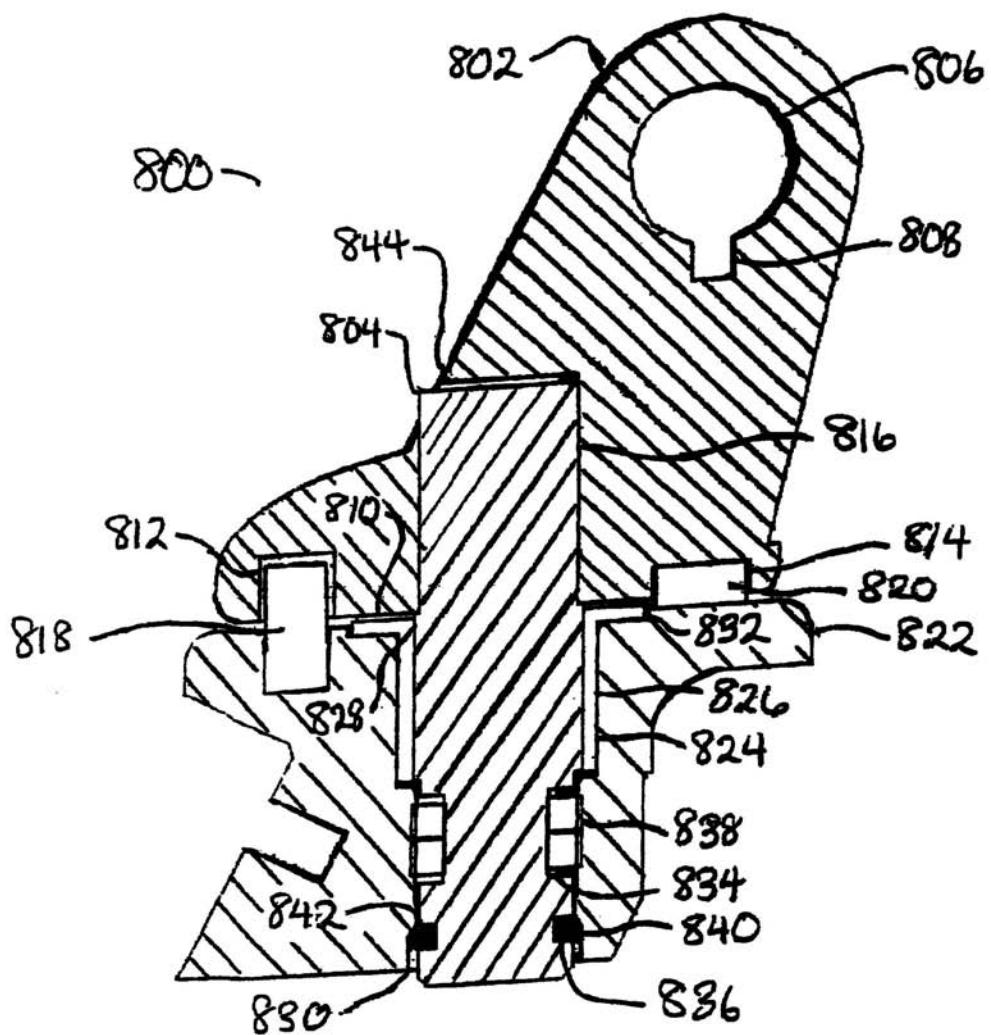

【図13B】

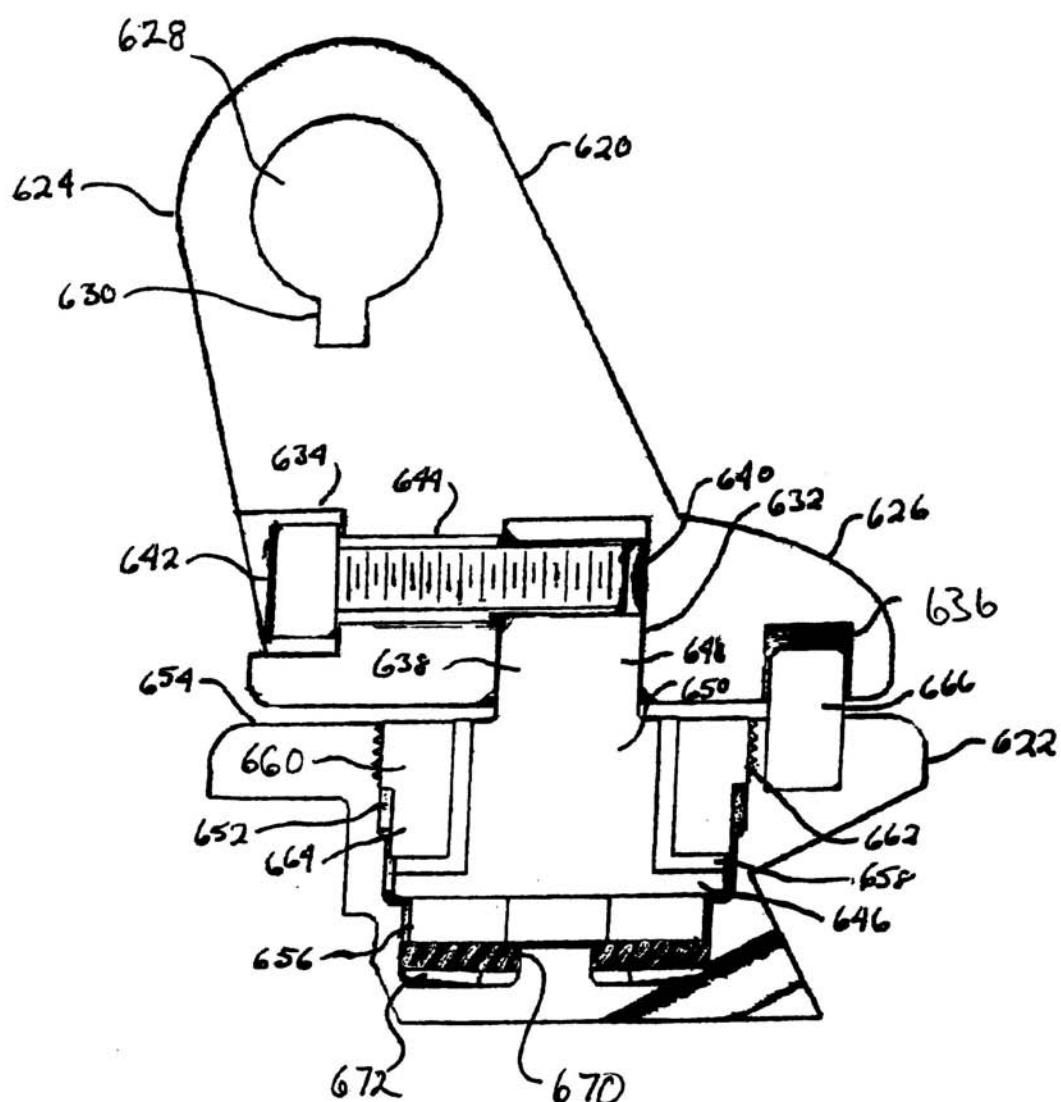

【図14】

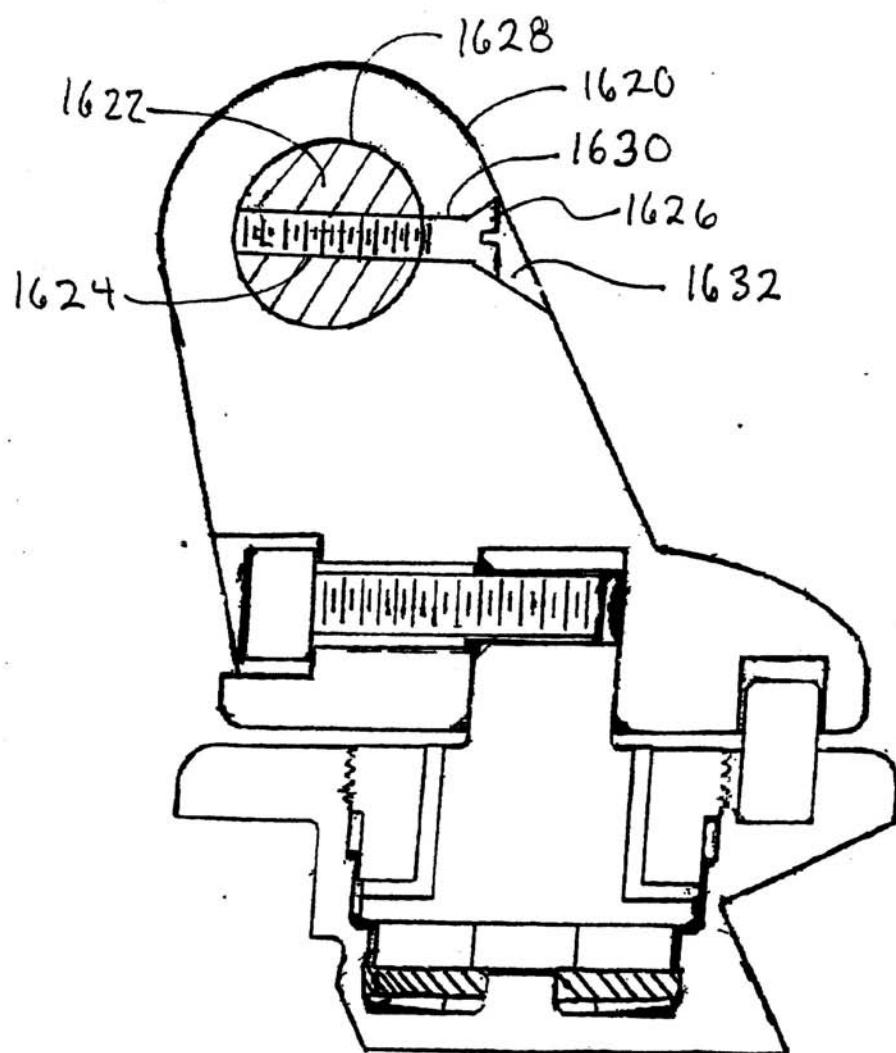

【図15】

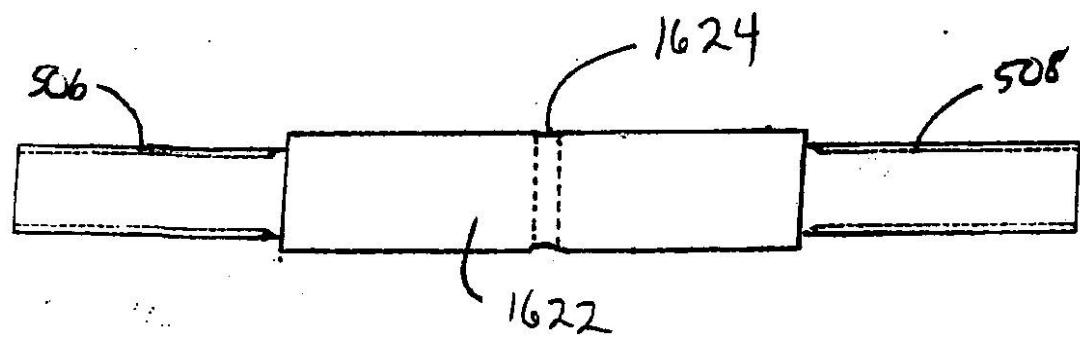

【図16】


【図17】


【図18】


【図19】

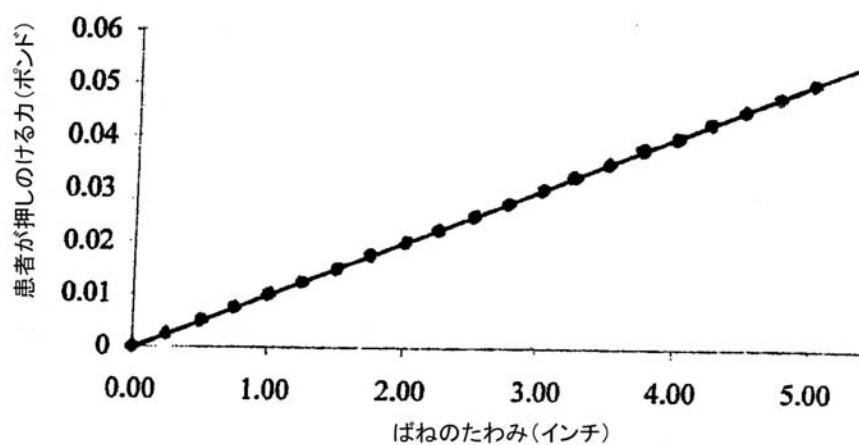

【図20】


【図21】

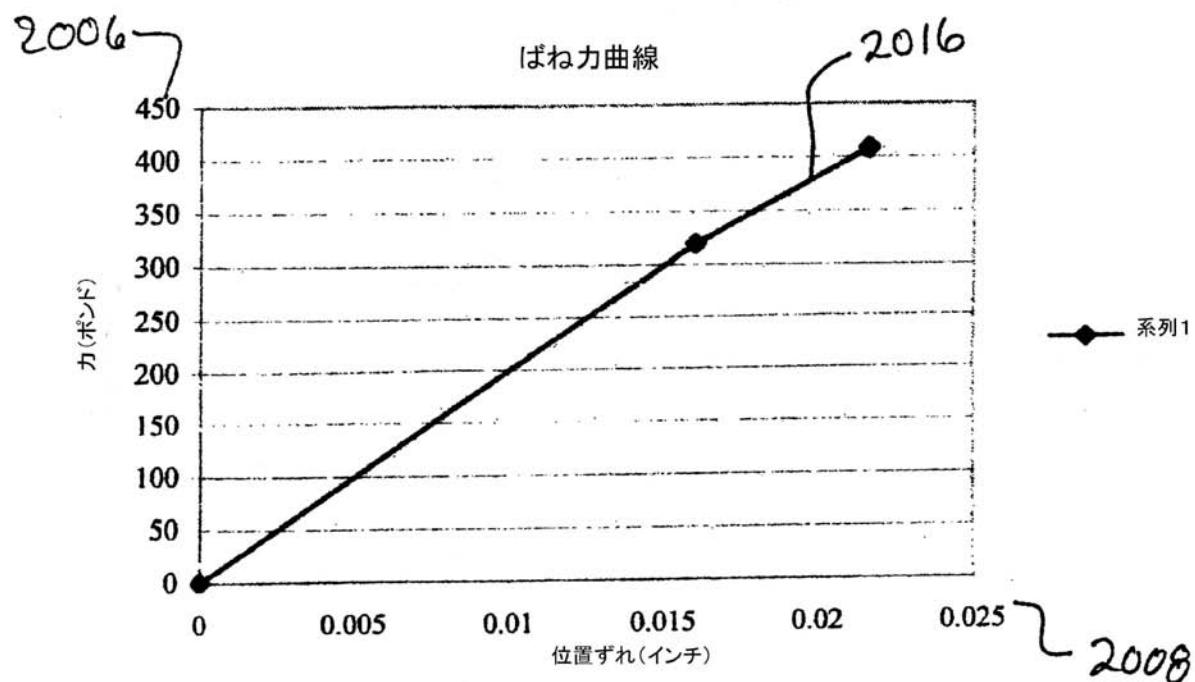
【図22】

【図23】

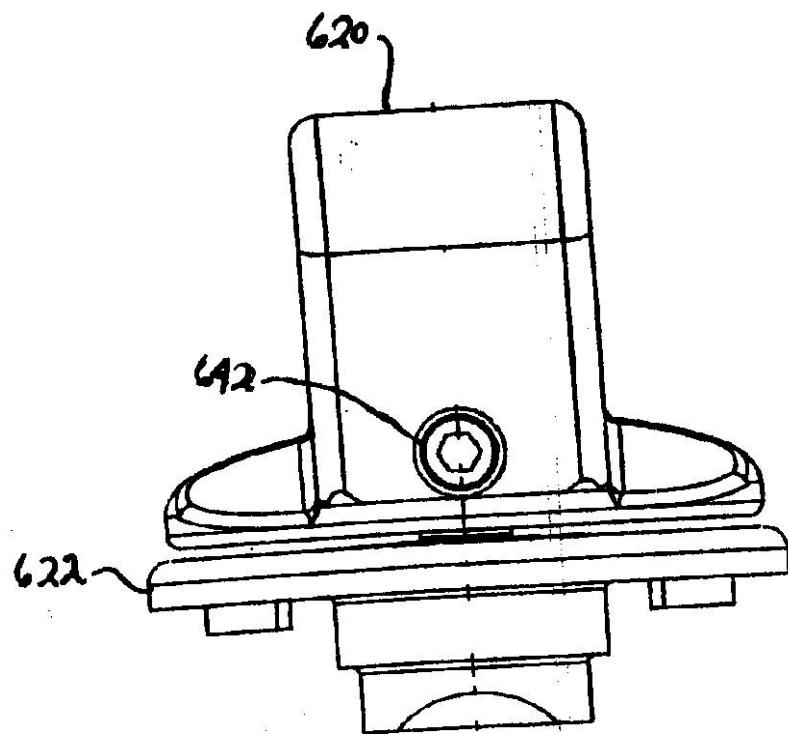
【図24】

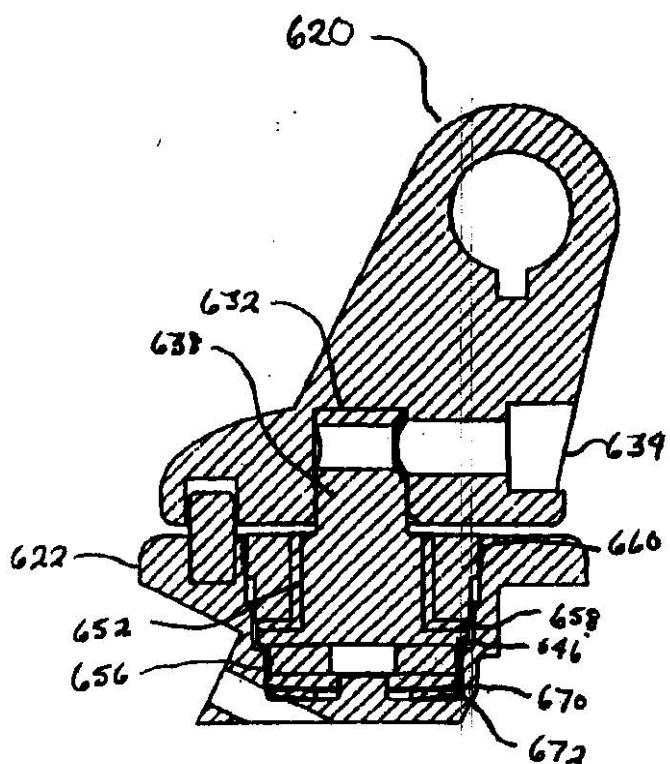

2000 ~

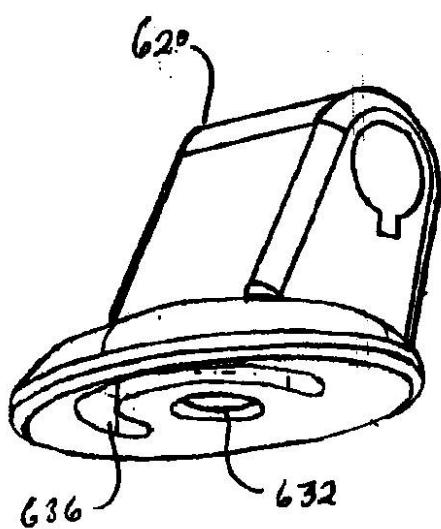
2002 2004 2006 2008

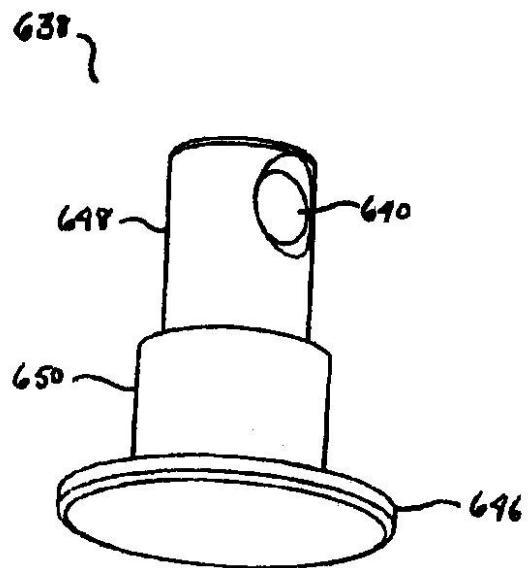

患者が 押しのける力	関節トルク	ばね力	ばねのたわみ
0.00	0.00	0.00	0.000
0.25	6.00	44.38	0.003
0.50	12.00	88.76	0.005
0.75	18.00	133.14	0.008
1.00	24.00	177.51	0.011
1.25	30.00	221.89	0.014
1.50	36.00	266.27	0.016
1.75	42.00	310.65	0.019
2.00	48.00	355.03	0.022
2.25	54.00	399.41	0.025
2.50	60.00	443.79	0.027
2.75	66.00	488.17	0.030
3.00	72.00	532.54	0.033
3.25	78.00	576.92	0.035
3.50	84.00	621.30	0.038
3.75	90.00	665.68	0.041
4.00	96.00	710.06	0.044
4.25	102.00	754.44	0.046
4.50	108.00	798.82	0.049
4.75	114.00	843.20	0.052
5.00	120.00	887.57	0.054

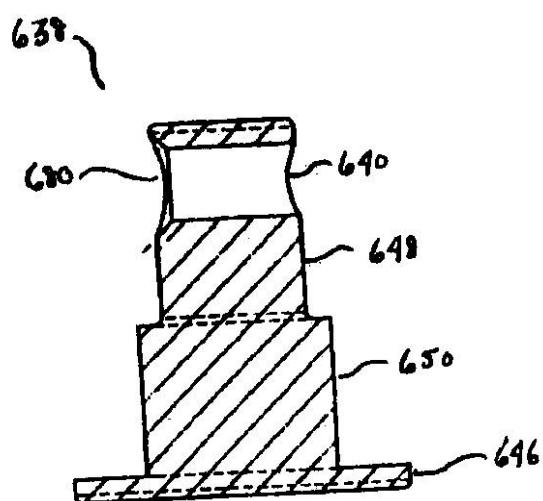
【図25】

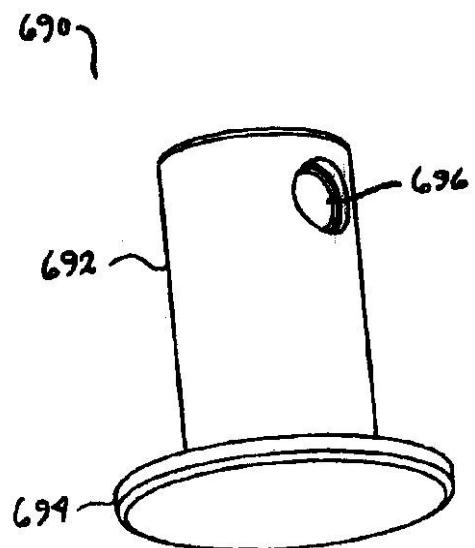

患者が押しのける力 対 ばねのたわみ


【図26】

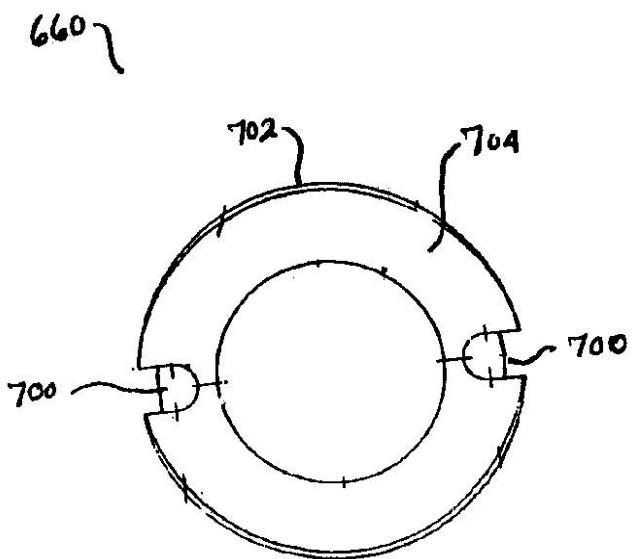

【図27】

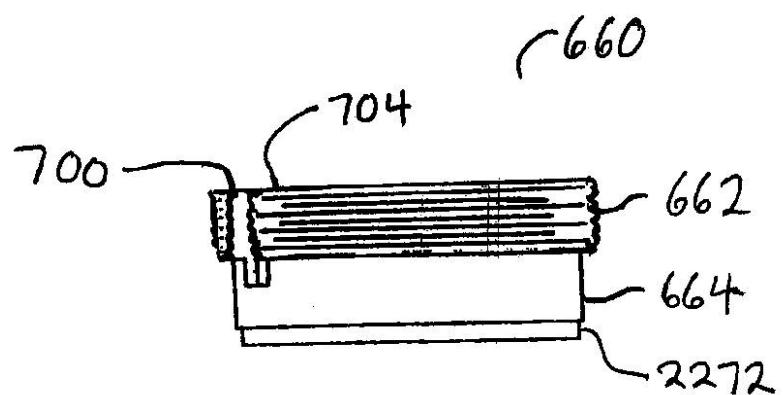

【図28】

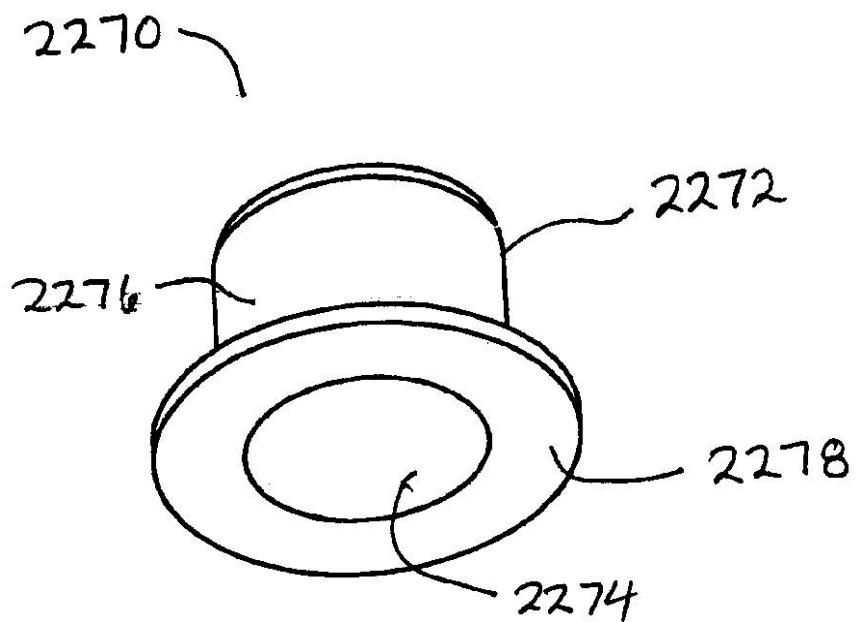

【図29】

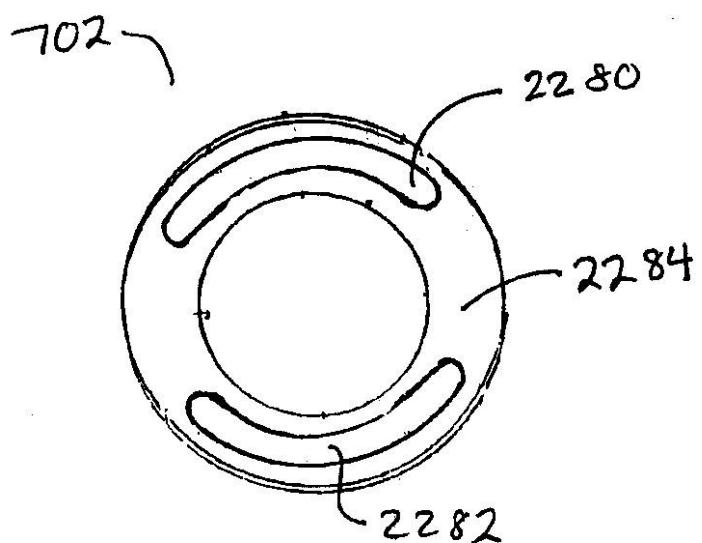

【図30】

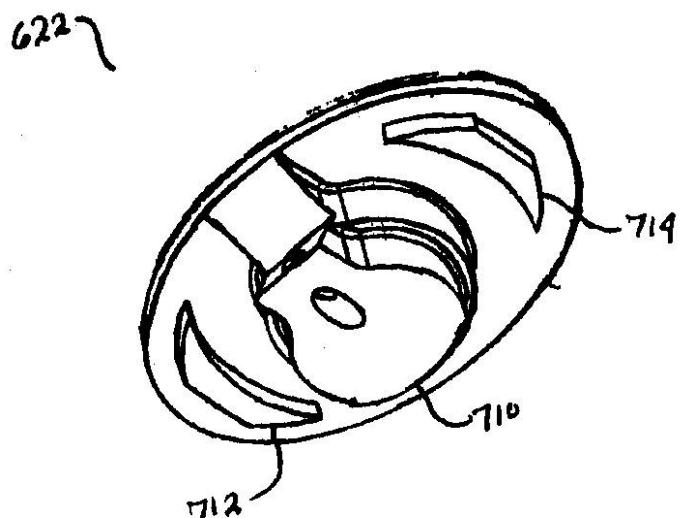

【図31】

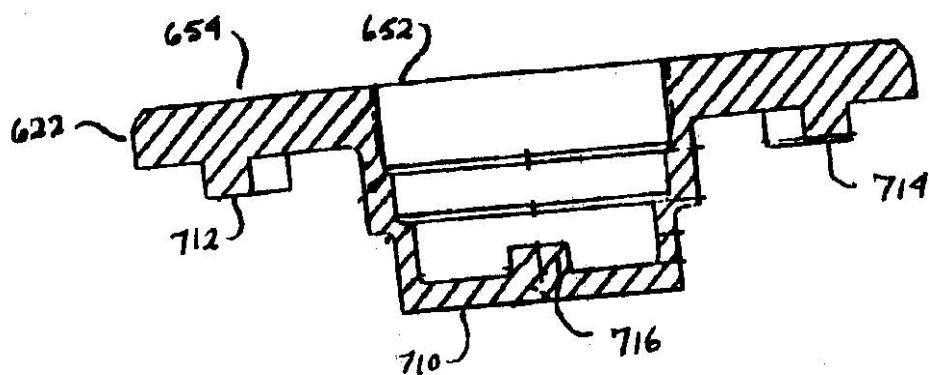

【図32】

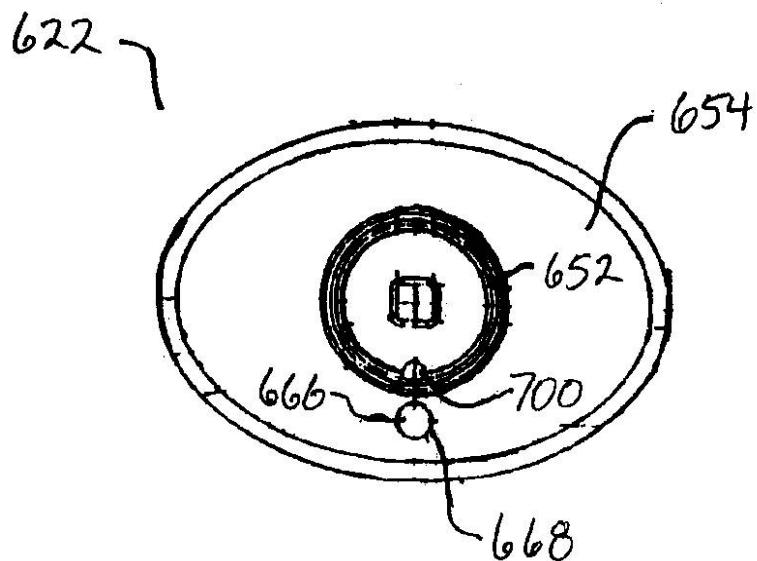

【図33】

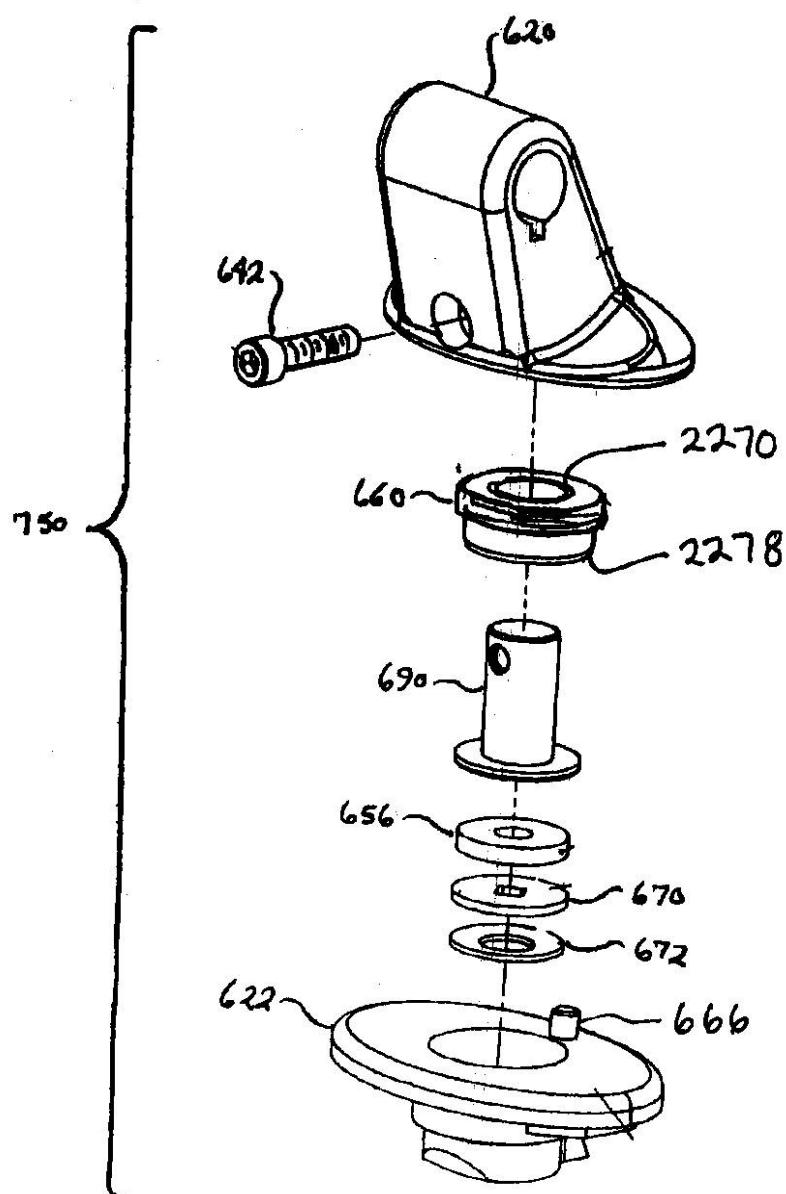

【図3-4】

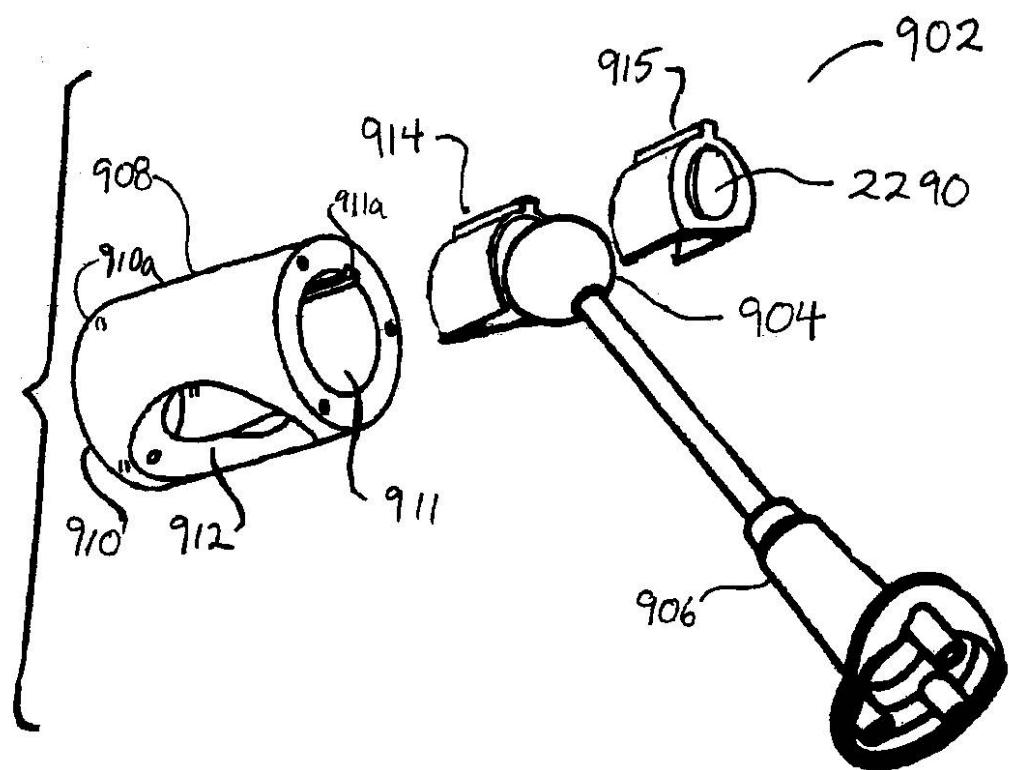

【図3-5】

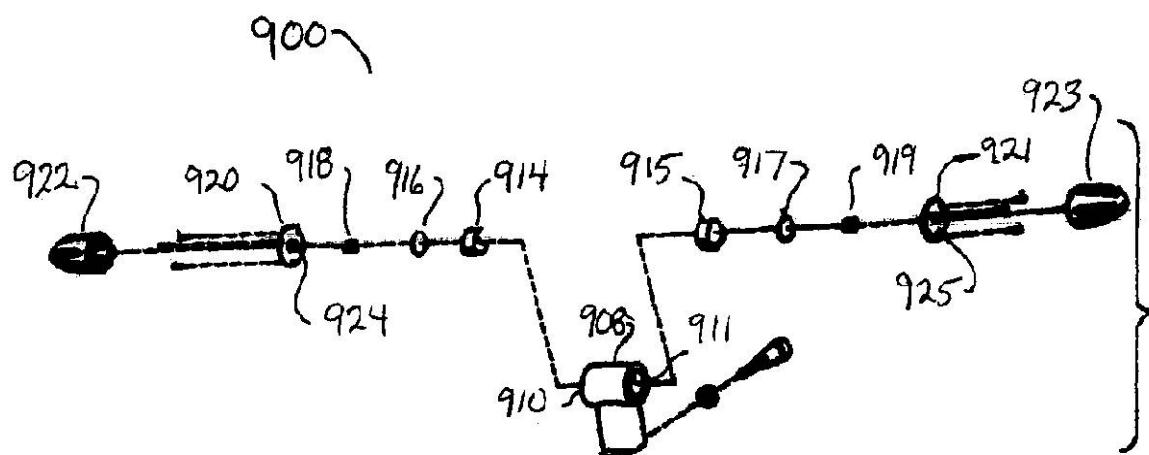

【図36】

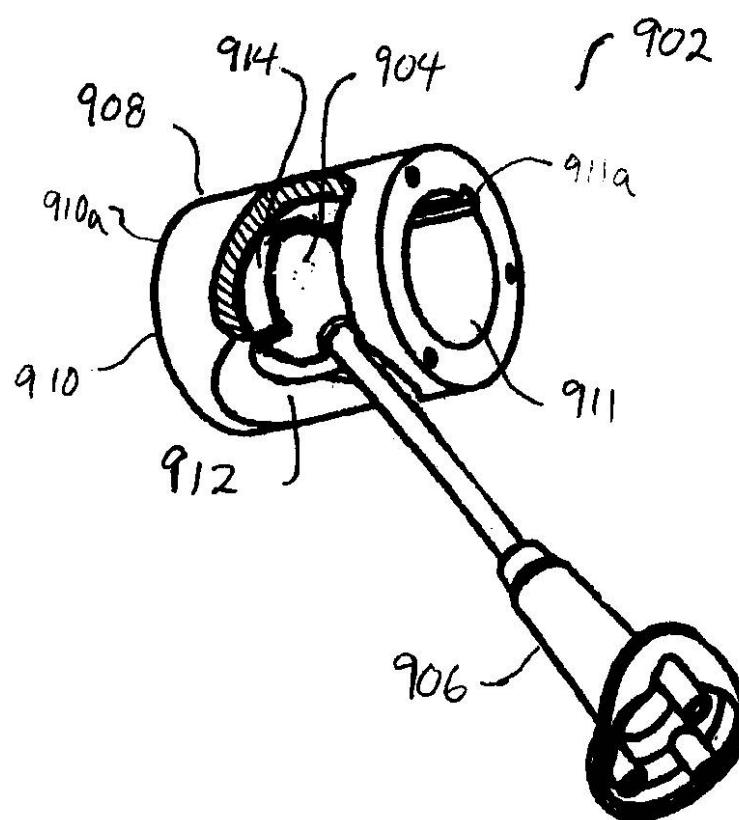

【図37】

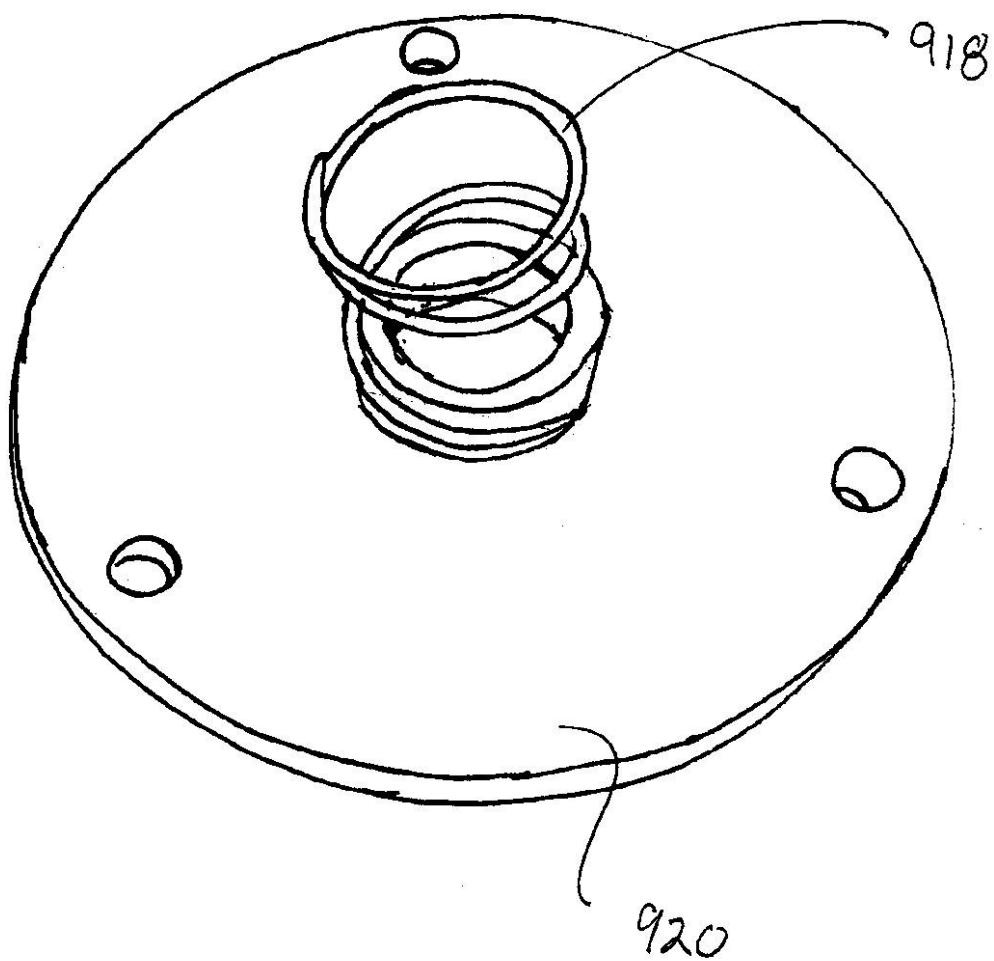

【図38】

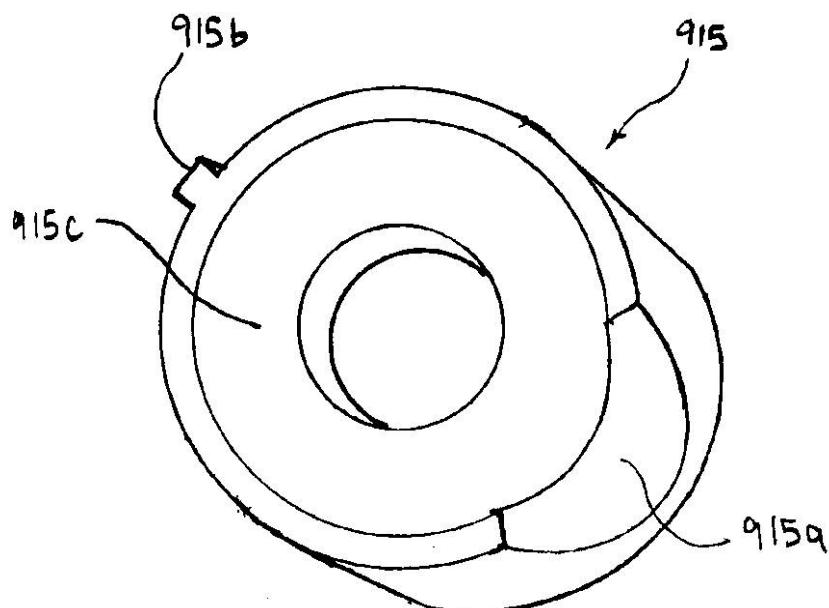

【図39】

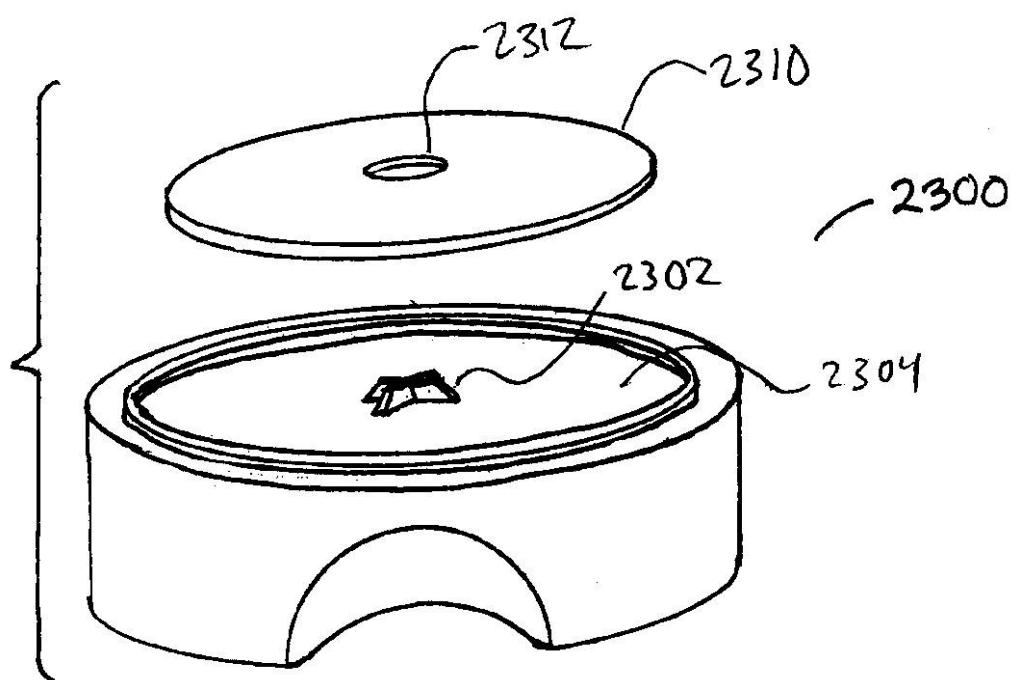

【図40】

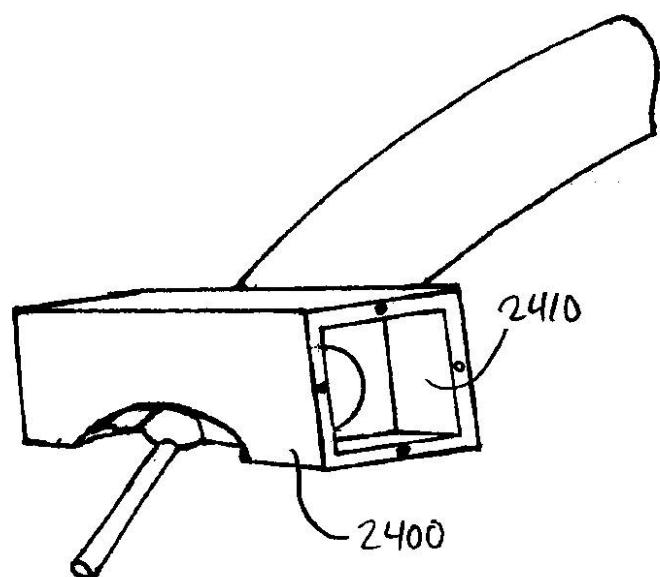

【図41】

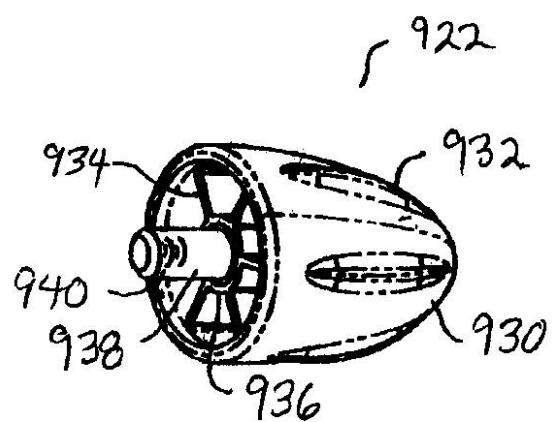

【図42】

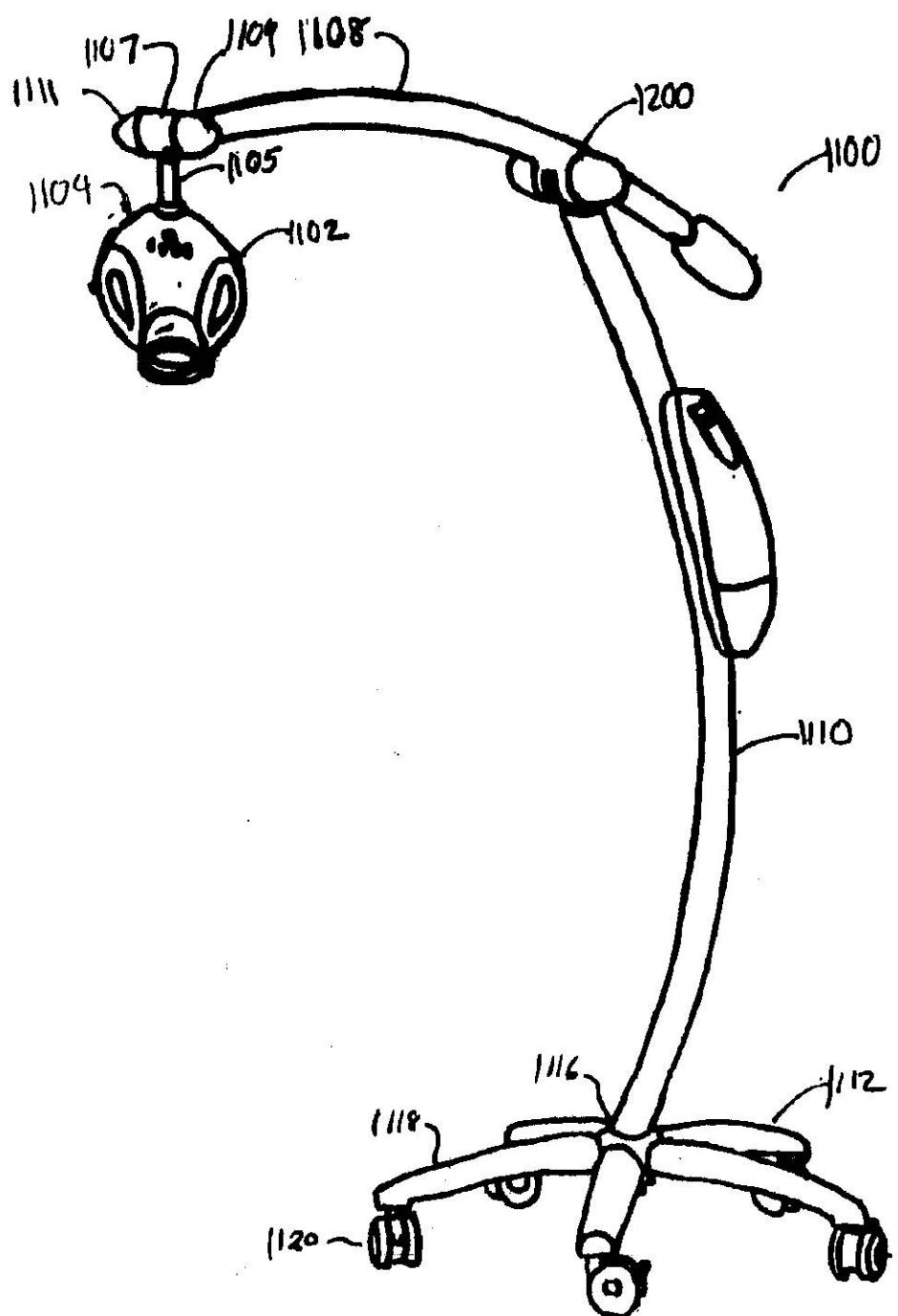

【図43】

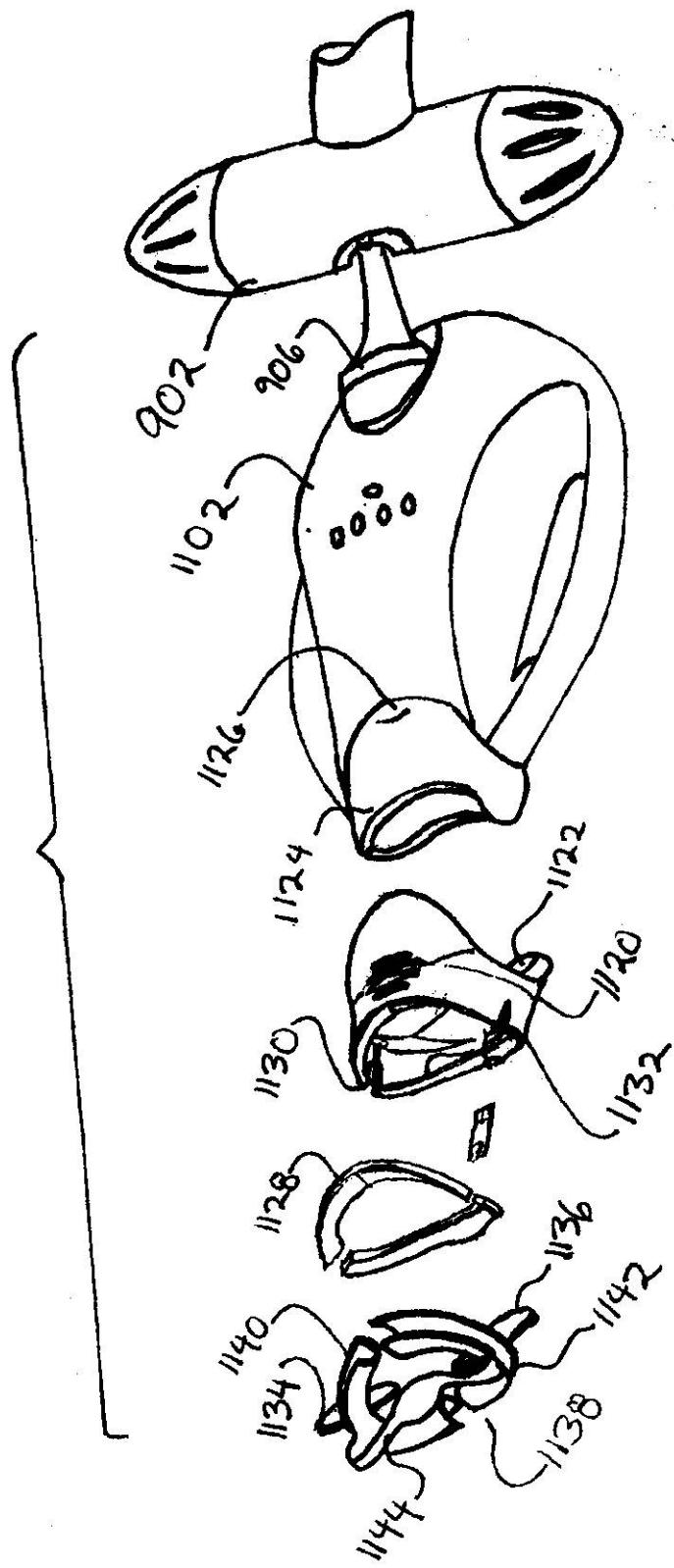

【図44】

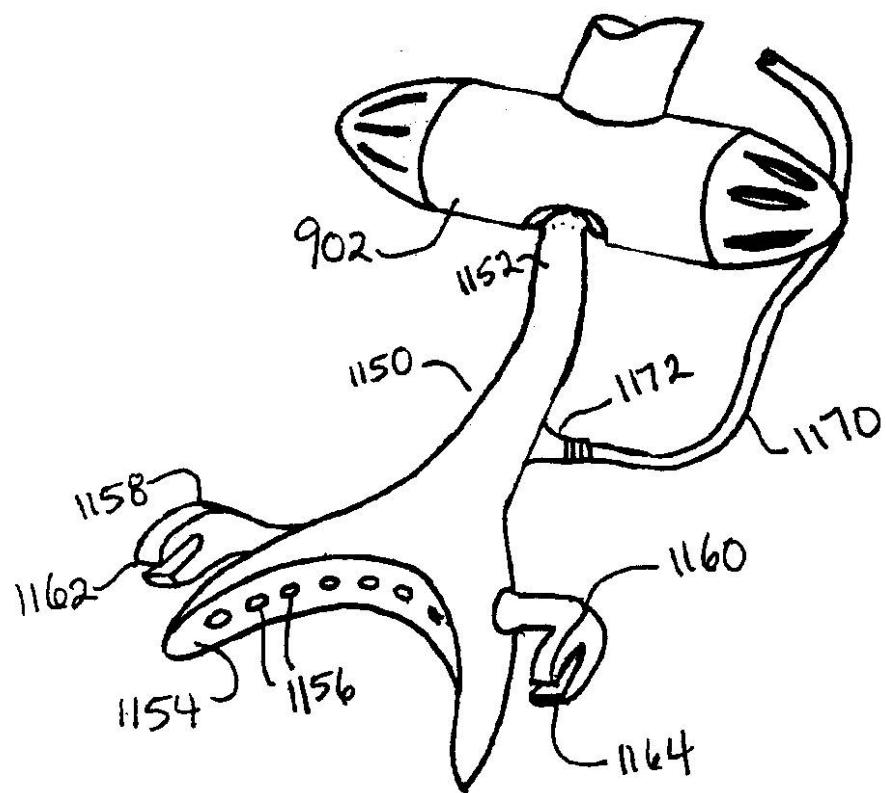

【図45】

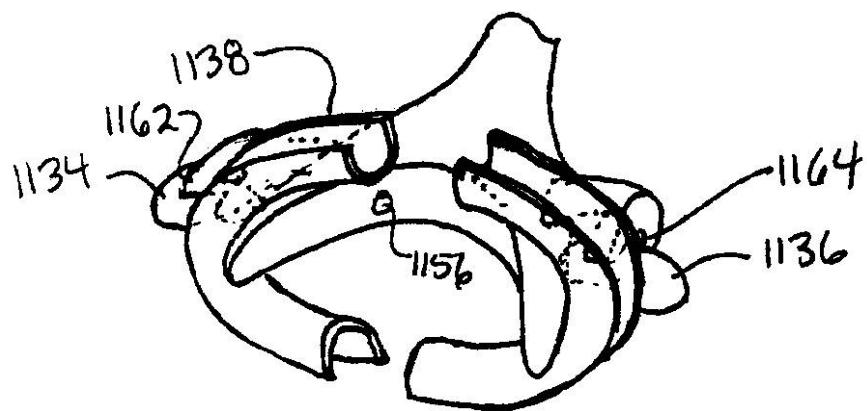

【図46】

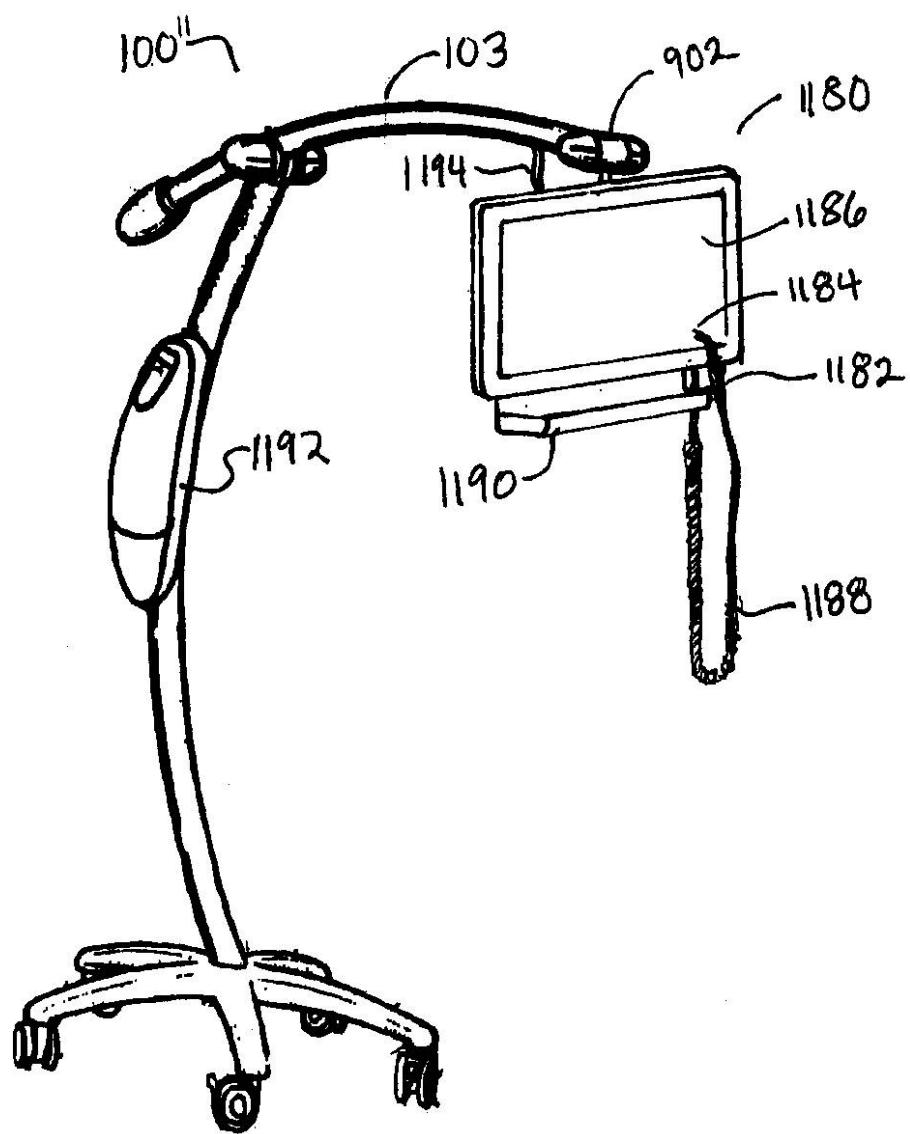

【図47】

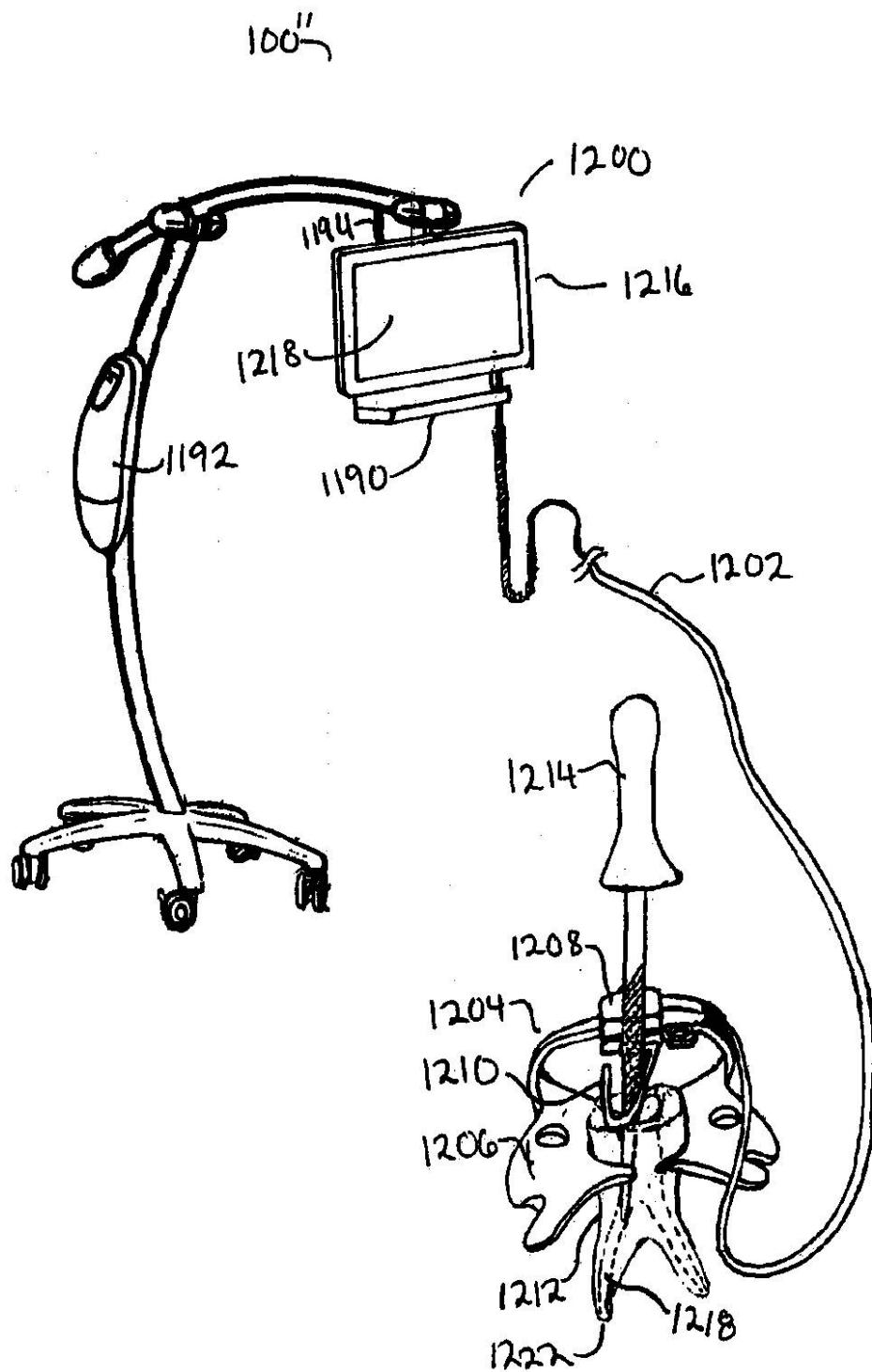

【図48】

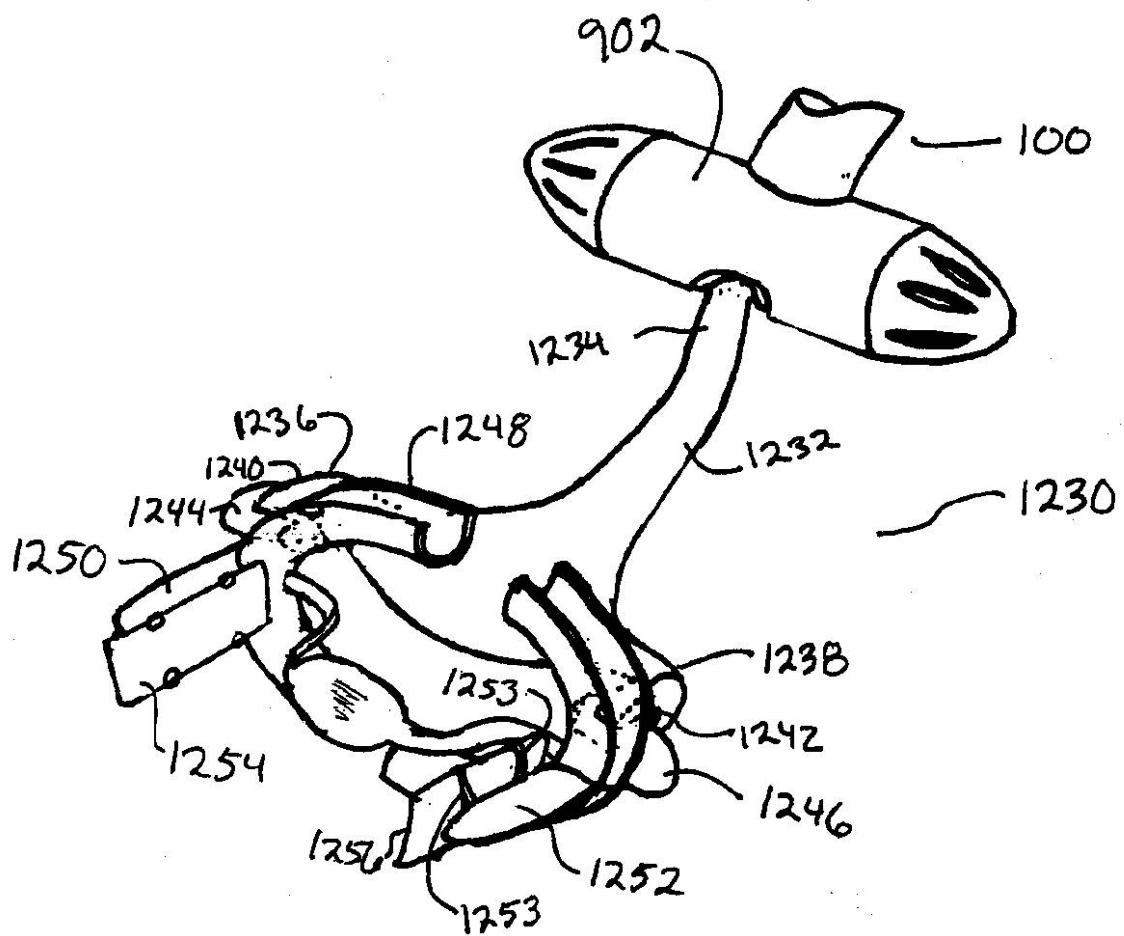

【図49】

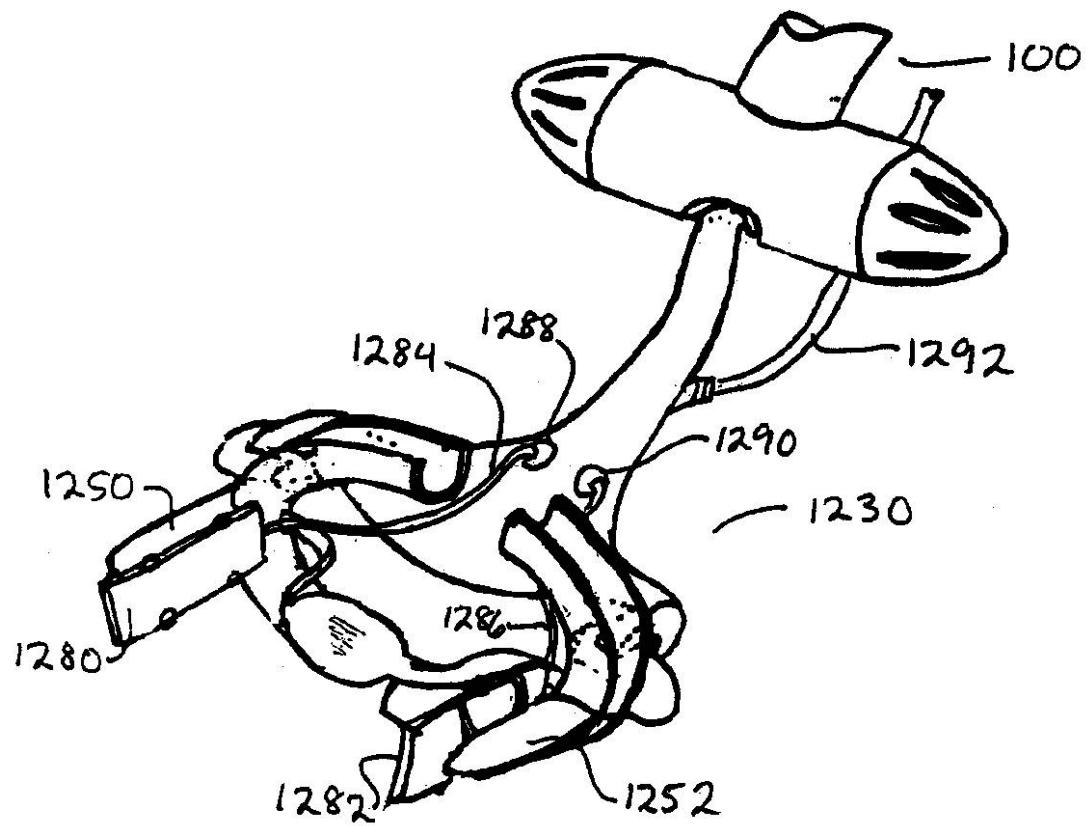

【図50】

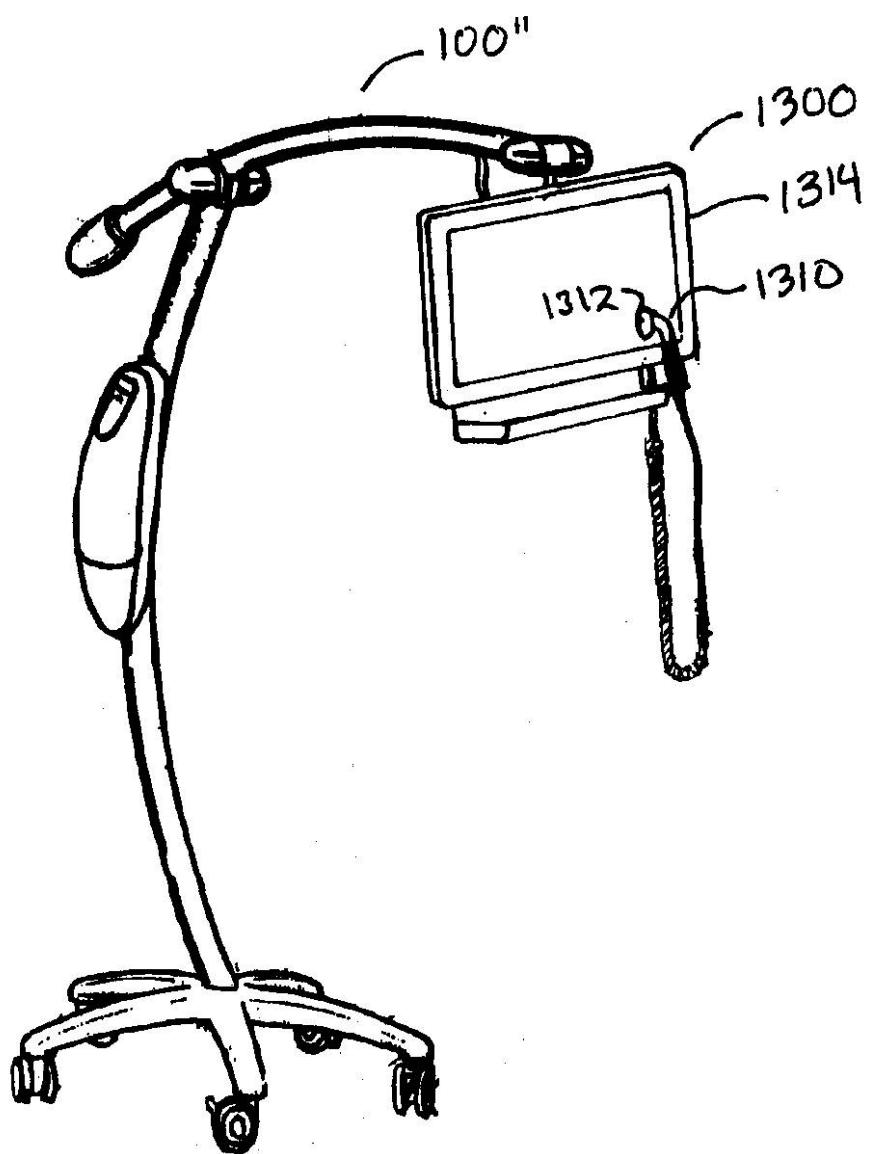

【図51】

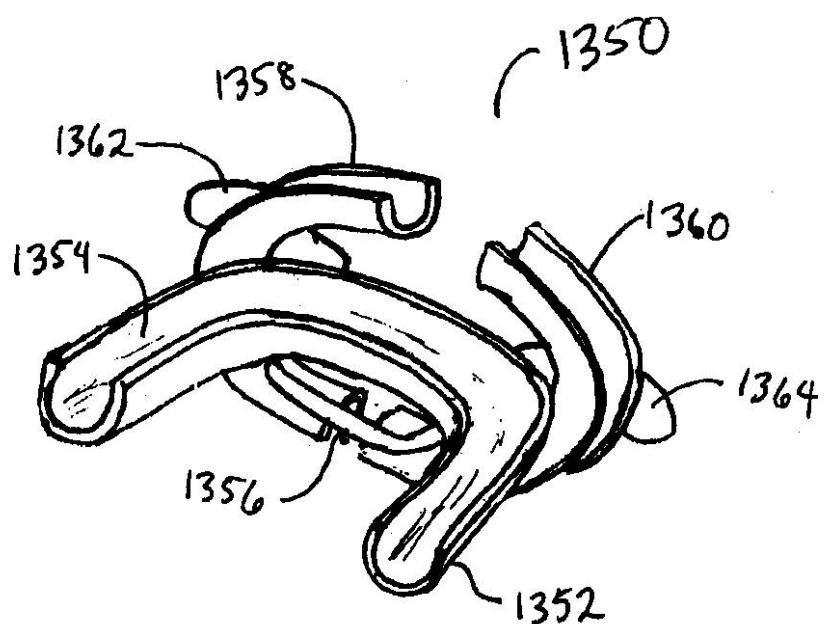

【図52】


【図53】


【図54】


【図55】


【図56】


【図57】

【図58】

【図59】

フロントページの続き

(31) 優先権主張番号 60/658,517
(32) 優先日 平成17年3月3日(2005.3.3)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/641,469
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/647,580
(32) 優先日 平成17年1月26日(2005.1.26)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/641,461
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/641,468
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/647,612
(32) 優先日 平成17年1月26日(2005.1.26)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/647,593
(32) 優先日 平成17年1月26日(2005.1.26)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/604,577
(32) 優先日 平成16年8月25日(2004.8.25)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/594,297
(32) 優先日 平成17年3月25日(2005.3.25)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/631,267
(32) 優先日 平成16年11月26日(2004.11.26)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/594,327
(32) 優先日 平成17年3月30日(2005.3.30)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 60/664,696
(32) 優先日 平成17年3月22日(2005.3.22)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 29/220,642
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 29/220,680
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 29/220,679
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 29/220,712
(32) 優先日 平成17年1月4日(2005.1.4)
(33) 優先権主張国 米国(US)

(31) 優先権主張番号 29/232,670
(32) 優先日 平成17年6月22日(2005.6.22)
(33) 優先権主張国 米国(US)
(31) 優先権主張番号 29/232,671
(32) 優先日 平成17年6月22日(2005.6.22)
(33) 優先権主張国 米国(US)

(72) 発明者 ロバート ヘイマン
アメリカ合衆国, カリフォルニア州 90232, カルバー シティー, ヒグラ ストリー
ト 8550
(72) 発明者 スチュワート カルテン
アメリカ合衆国, カリフォルニア州 90292, マリーナ デル レイ, グレンコー ア
ヴェニュー 4204
(72) 発明者 デニス シュレーダー
アメリカ合衆国, カリフォルニア州 90292, マリーナ デル レイ, グレンコー ア
ヴェニュー 4204
(72) 発明者 スティーブ ピオレック
アメリカ合衆国, カリフォルニア州 90292, マリーナ デル レイ, グレンコー ア
ヴェニュー 4204
(72) 発明者 ダグラス エイチ. グランブッシュ
アメリカ合衆国, カリフォルニア州 92625, コロナ デル マー, シービュー アヴ
エニュー 2530, #4
(72) 発明者 マーク オルロフ
アメリカ合衆国, カリフォルニア州 90232, カルバー シティー, ヒグラ ストリー
ト 8550
(72) 発明者 ナンシー クワン
アメリカ合衆国, カリフォルニア州 90232, カルバー シティー, ヒグラ ストリー
ト 8550

F ターム(参考) 4C052 AA06 FF10 LL05 LL09
4C341 MM11 MP01 MS06 MS14 MS18

【外国語明細書】

SUPPORT SYSTEM FOR DENTISTRY

Cross-Reference to Related Applications

This application claims the benefit of U.S. provisional patent applications Serial No. 60/585,224, filed July 2, 2004, entitled "Dental Light Devices With Phase Change Heat Sink"; 60/641,462, filed January 4, 2005, entitled "Boom Hinge For A Dental Lamp"; 60/647,725, filed January 26, 2005, entitled "Automatic Control for a Dental Whitening Lamp"; 60/647,723, filed January 26, 2005, entitled "Boom Hinge For A Dental Lamp"; 60/658,517, filed March 3, 2005, entitled "Apparatus and Method For Radiation Spectrum Shifting in Dentistry Application"; 60/641,469, filed January 4, 2005, entitled "Lamp For Dentistry Applications"; 60/647,580, filed January 26, 2005, entitled "Light Guide For Dental Whitening Lamp"; 60/641,461, filed January 4, 2005, entitled "Support Structure For A Dental Lamp"; 60/641,468, filed January 4, 2005, entitled "Light Guide For A Dental Whitening Lamp"; 60/647,612, filed January 26, 2005, entitled "Light Path Apparatus For A Dental Lamp"; 60/647,593, filed January 26, 2005, entitled "Support Structure For A Dental Lamp"; U.S. design patent applications serial no. 29/220,642, filed January 4, 2005, entitled "Lamp For Dentistry Applications"; 29/220,680, filed January 4, 2005, entitled "Light Guide For Dentistry Applications"; 29/220,679, filed January 4, 2005, entitled "Power Pack For Dentistry Applications"; 29/220,712, filed January 4, 2005, entitled "Support Structure For A Lamp For Dentistry"; 29/XXX,XXX filed on June 22, 2005 entitled, "Support Structure For Dental Applications"; 29/XXX,XXX filed on June 22, 2005 entitled, "Support Structure for Dental Applications"; U.S. provisional applications Serial No. 60/604,577, filed August 25, 2004, entitled "Lip Retractors"; 60/594,297, filed March 25, 2005, entitled "Curing Light Having A Detachable Tip"; 60/631,267, filed November 26, 2004, entitled "Curing Light Having A Reflector"; 60/594,327, filed on March 30, 2005, entitled, "Curing Light"; and 60/664,696, filed March 22, 2005, entitled "Curing Light Having A Detachable Tip"; the contents of all of which are hereby incorporated by reference.

The present application is a continuation-in-part of the following U.S. design applications No.: 29/220,642, filed January 4, 2005, entitled "Lamp For Dentistry Applications"; 29/220,680, filed January 4, 2005, entitled "Light Guide For Dentistry Applications"; 29/220,679, filed January 4, 2005, entitled "Power Pack For Dentistry Applications"; 29/220,712, filed January 4, 2005, entitled "Support Structure For A Lamp For Dentistry"; 29/XXX,XXX filed on June 22, 2005 entitled, "Support Structure For Dental Applications"; 29/XXX,XXX filed on June 22, 2005 entitled, "Support Structure for Dental Applications"; all of which are incorporated herein by reference.

The present application includes claims that may be related to the claims of co-pending United States patent applications, No. 10/XXX,XXX, to be concurrently filed, entitled "Dental Light Devices Having an Improved Heat Sink"; 10/XXX,XXX, to be concurrently filed, entitled "Voice Alert System for Dentistry Applications"; 10/XXX,XXX, to be concurrently filed, entitled "Retracting Devices"; 10/XXX,XXX, to be concurrently filed, entitled "Curing Light Capable of Multiple Wavelengths"; 10/XXX,XXX, to be concurrently filed, entitled "Curing Light"; 10/XXX,XXX, to be concurrently filed, entitled "Illumination System for Dentistry Appl

ications"; and 10/XXX,XXX, to be concurrently filed, entitled "Light Guide for Dentistry Applications"; 10/XXX,XXX, to be concurrently filed, entitled "Automatic Control For Dental Applications"; the contents of all of which are hereby incorporated by reference.

Field of the Invention

The present invention relates to dental equipment and more particularly to positioning apparatus for dental equipment.

Background

The practice of dentistry remains highly labor-intensive. Moreover, the labor involved is highly skilled. Although some activities can be delegated and others automated, many of the important activities in dentistry must still be performed by a dentist. Whether a dental procedure is performed by a dentist or by other dental professional, the dentist or other dental professional must operate in a time-efficient manner in order to provide desired dental services at a sustainable cost.

This need for efficient operation is reflected in the design of the dental office. An adjustable dental chair allows for positioning of a patient in an orientation that permits easy access to the patient's mouth. Dental instruments are provided in pre-packaged kits adapted for use in particular dental procedures. Storage cabinetry for materials and dental tools are placed in proximity to the patient for ready access by the dentist and/or his or her assistant.

In addition, work trays and shelves for supporting dental instruments and work lights for illuminating the patient's mouth are provided with adjustable support structures that are adapted to keep the instruments within easy reach and the work area well illuminated.

It is known to use a variety of articulated support structures in the context of a dental office. Examples of these structures are shown in United States Patent Numbers 4,013,328 to Wolf, 4,097,919 to Bobrick et al., 4,260,376 to Litel et al., 4,332,557 (reissued as 31548 to Watanabe, 4,437,144 to Guenther, 4,494,177 to Matthews, 4,581,698 to Oram, 4,934,933 to Fuchs, 5,497,295 to Gehly, 5,803,905 to Allred et al., 6,213,671 to Chang et al., 6,361,320 to Yarborough, 6,543,914 to Sander and 6,568,836 to Wahl. The disclosures of the foregoing patents are herewith incorporated by reference in their entirety.

The support structures described in these references include a variety of articulating joints adapted to provide adjustable spatial positioning of a load, such as a lamp or instrument tray. For example, US Patent Number 4,907,919 shows a track-mounted illumination system with a telescoping boom. U.S. Patent Number 6,543,914 shows a boom and strut arrangement mutually coupled to a gas pressure spring for supporting a surgical microscope and lamp. U.S. reissue patent number 31548 shows a dental operatory system in which a dental operatory lamp is suspended from a pivotable bracket, and U.S. Patent Number 4,437,144 shows a height adjustable support arm with a parallelogram linkage.

These afore-mentioned load-supporting systems offer certain characteristics th

at may be beneficial in the context of a particular use. They show by their variety, the importance of the problem of effective load positioning in allowing economically efficient dental activities.

Summary of the Invention

In light of the background discussed above, the present invention is related to improving the efficiency of operations in a dental office.

The present invention includes a support system for dentistry applications adapted to support a variety of dental process equipment and ancillary dental equipment including, for example, a dental whitening system, a dental curing system, a dental examination system, a dental viewing and cleaning instrument; an imaging equipment; an X-ray equipment, a root canal apex locator, or similar, or combinations thereof.

The support system includes a mast and boom system, with the boom being pivotally mounted on a mast about a location spaced away from its ends. The boom includes at least one formation adapted for engaging with at least one corresponding inter-engaging formation towards one end of the mast to form the pivot mount.

In one aspect, the boom includes at least one formation towards one end, adapted for inter-engaging at least one formation of a dental instrument or equipment; and at least one formation towards a second end adapted for engaging a counterbalancing object or weight including at least one correspondingly inter-engaging formation, for counterbalancing the dental instrument or equipment and permitting the dental instrument or equipment to be balanced in a series of varying positions.

In one embodiment, the invention includes a support system adapted to support a plurality of dental instrument or equipment adapted for performing a varying series of dental processes including at least one formation for inter-engaging the corresponding formation on the boom, where the plurality of instrument or equipment may be adapted for interchangeable connection with the support system by varying the counter-balancing object or weight.

In one aspect, the support system may be adapted to cooperate in a novel fashion with novel and/or conventional equipment to establish and maintain respective position of processing equipment and a patient's mouth, through the use of, for example, a reference device and/or a spacer.

In another aspect, the support system provides an integrated system for the support, presentation and operation of various dental processing equipment, individually or concurrently.

In another embodiment, a system according to the invention includes an organized storage system for storing and retaining interchangeable process equipment when not in use.

In a further embodiment, the support system includes an integrated power and control module referred to, for example, as a power pack. The power pack may be a

dapted to provide power such as electrical power to the one or more dental instrument or equipment adapted to be supported by the support system of the present invention. The power pack includes at least one formation for inter-engaging at least one corresponding formation of the mast spaced away from the ends.

In one aspect, the power pack may be adapted to provide control functionality including, for example, operative control communications between the power pack and one or more dental processing apparatus.

In another aspect, the power pack may be adapted to provide intelligent communications with one or more dental processing apparatus such that an operative control communications between the power pack and the dental processing apparatus may be adapted to include communication features appropriate to a particular processing apparatus.

In a further aspect, the power pack may include user interface components adapted to receive control inputs from an operator and provide status and control feedback to the operator.

In other aspects, the features of the support system of the present invention may include desirable ergonomics, transportability, strength, optimal weight, ease of assembly, storability, maintainability, adjustability or positionability, one or more of which may contribute in varying degrees to the efficacy of resulting dental processing.

The present invention also provides a support system that is unobtrusive, enabling an office to be equipped with a number of such support systems, thus improving the efficiency of operations in a dental office.

The present invention further includes a boom hinge for allowing easy adjustment of any dental equipment adapted to be mounted on the support system, for example, a dental whitening illumination source. In various aspects, the boom hinge may be adapted to provide equipment positioning suitable for a wide variety of dental patients and dental professionals. In other aspects, a boom hinge according to the invention may be readily adjusted to allow a particular spatial positioning of any dental equipment, and once positioned, to hold the equipment substantially fixedly in space until a further adjustment of equipment position is desired.

According to one embodiment of the invention, a friction washer used in the invention has an outer diameter of between about 0.50 inches and about 3 inches. In a particular embodiment, the friction washer has an outer diameter of about 0.78 inches. In another embodiment, a friction washer according to the invention has an outer diameter of about 1.91 inches. In still another embodiment, a friction washer according to the invention has a thickness of between about 0.01 inches and about 0.50 inches. In a particular embodiment, a friction washer according to the invention has a thickness of about 0.125 inches. One of skill in the art will appreciate that friction washers of other diameters, thicknesses and configurations will be applicable in various embodiments of the inventions, and fall within the scope of the invention as described herewithin. One of skill in the art will also appreciate that the foregoing measurements and ranges of measurements are intended to be understood as incorporating mechanical tolerances appropriate to the present invention.

In another embodiment, the invention further includes a plug to receive the sha

ft, for the pivot to rotate with respect to the plug.

In another embodiment, the invention includes a device for damping the rotational motion of the pivot. In one aspect, the device for damping may be a friction washer disposed between the pivot and the plug. In another aspect, the device for damping includes a friction pad disposed between the pivot shaft and the plug.

In a further embodiment, a spanner plug may be adapted to push the pivot shaft against the friction pad. In one aspect of this embodiment, the spanner plug may be adjustable thereby providing adjustable damping of the rotational movement of the pivot with respect to the plug. In another aspect of this embodiment, a spring may be adapted to push the friction pad against the shaft.

In yet another embodiment of the invention, the shaft includes a damping device. In one aspect of this embodiment, friction rings may be mounted to the shaft.

These and other advantages and features of the invention will be more readily understood in relation to the following detailed description of the invention, which is provided in conjunction with the accompanying drawings.

Brief Description of the Drawings

FIG. 1 shows, in perspective view, a support structure for dentistry equipment according to one embodiment of the invention;

FIG. 2 shows, in sectional elevation, various aspects of a dentistry support structure;

FIG. 3a-3d show various aspects of a dentistry support structure;

FIG. 4 shows a support structure for dentistry applications according to another embodiment of the invention;

FIG. 5 shows, in perspective view, a base adapted for inclusion in a dentistry support structure;

FIG. 6 shows, in perspective view, a counterweight mounting shaft for a support structure for dentistry equipment;

FIG. 7 shows, in perspective view, a boom joint for a dentistry support structure;

FIG. 8 shows, a boom joint in side elevation;

FIG. 9 shows a cross-sectional view of a boom joint according to one embodiment of the invention;

FIG. 10 shows a perspective view of a boom joint pivot according to one embodiment of the invention;

FIG. 11 shows a perspective view of a boom hinge yoke according to one embodiment of the invention;

FIG. 12 shows a boom joint horizontal shaft according to one embodiment of the invention;

Figs. 13a and 13b show boom joint washers according to respective embodiments of the invention;

FIG. 14 shows, in perspective view, a boom joint knob according to one embodiment of the invention;

FIG. 15 shows, in perspective view, a boom joint according to one embodiment of the invention;

FIG. 16 shows, in ventral perspective view, a mast top plug according to one embodiment of the invention;

FIG. 17 shows a top view of a mast top plug according to one embodiment of the invention;

FIG. 18 shows, in cross-section, a mast top plug according to one embodiment of the invention;

FIG. 19 shows, in assembly view, a mast, boom and boom joint according to one embodiment of the invention;

FIG. 20 shows, in cross-section, a boom joint according to a further embodiment of the invention;

FIG. 21 shows, in cross-section, a boom joint according to a further embodiment of the invention;

FIG. 22 shows, in cross-section, a boom joint according to a further embodiment of the invention;

FIG. 23 shows a boom joint shaft according to one embodiment of the invention;

FIG. 24 shows a table of empirical values illustrating a functional relationship between patient push out force, joint torque, spring force and spring deflection according to one embodiment of the invention;

FIG. 25 shows, in graphical form, a functional relationship between spring deflection and patient push out force according to one embodiment of the invention;

FIG. 26 shows, in graphical form, a functional relationship between spring force and spring displacement according to one embodiment of the invention;

FIG. 27 shows, in elevation, a pivot and mast top plug assembly according to one embodiment of the invention;

FIG. 28 shows, in cross-section, a pivot and mast top plug assembly according to one embodiment of the invention;

FIG. 29 shows, in ventral perspective view, a pivot according to one embodiment of the invention;

FIG. 30 shows, in ventral perspective view, a vertical pivot shaft according to one embodiment of the invention;

FIG. 31 shows, in cross-section, a vertical pivot shaft according to one embodiment of the invention;

FIG. 32 shows, in ventral perspective view, a vertical pivot shaft according to another embodiment of the invention;

FIG. 33 shows, in cross-section, a vertical pivot shaft according to another embodiment of the invention;

FIG. 34 shows, in top view, a spanner nut according to one embodiment of the invention;

FIG. 35 shows, in side view, a spanner nut according to one embodiment of the invention;

FIG. 36 shows, in ventral perspective view, a bushing according to one embodiment of the invention;

FIG. 37 shows, in top view, a spanner nut according to another embodiment of the invention;

FIG. 38 shows, in ventral perspective view, a mast-top plug according to one embodiment of the invention;

FIG. 39 shows, in cross-section, a mast-top plug according to one embodiment of the invention;

FIG. 40 shows, in top view, a mast-top plug according to another embodiment of the invention;

FIG. 41 shows, in assembly view, a mast-top plug and pivot assembly according to another embodiment of the invention;

FIG. 42 shows, in perspective view, various components of a ball joint according to one embodiment of the invention;

FIG. 43 shows, in exploded perspective view, a forward assembly for a dentistry equipment support structure boom;

FIG. 44 shows, in sectional perspective view, components of a ball joint according to one embodiment of the invention;

FIG. 45 shows, in perspective view, a nut plate and spring assembly according to one embodiment of the invention;

FIG. 46 shows, in ventral perspective view, a ball cup according to one embodiment of the invention;

FIG. 47 shows, in perspective view, a ball cup according to another embodiment of the invention;

FIG. 48 shows, in perspective view, a ball joint assembly according to another embodiment of the invention;

FIG. 49 shows, in perspective view, a ball joint knob according to one embodiment of the invention;

FIG. 50 shows a support structure for dentistry equipment including a dental whitening lamp according to one embodiment of the invention;

FIG. 51 shows a support structure for dentistry equipment including a dental whitening lamp according to one embodiment of the invention;

FIG. 52 shows a portion of a support structure for dentistry equipment including a dental whitening lamp according to one embodiment of the invention;

FIG. 53 shows a device for coupling a patient's lips to a dental whitening lamp, and hence to a support structure for dentistry equipment according to one embodiment of the invention;

FIG. 54 shows a support structure for dentistry equipment including an endoscopic device such as an endoscopic tooth planer according to one embodiment of the invention;

FIG. 55 shows a support structure for dentistry equipment including an endodontic apex locator device according to one embodiment of the invention;

FIG. 56 shows a portion of a support structure for dentistry equipment including an x-ray film support structure according to one embodiment of the invention;

FIG. 57 shows a portion of a support structure for dentistry equipment including an electronic x-ray imaging sensor support structure according to one embodiment of the invention;

FIG. 58 shows a support structure for dentistry equipment including an ultrasonic imaging device according to one embodiment of the invention;

FIG. 59 shows a dental composition tray for use with a support structure according to principles of the invention.

Detailed Description of the Invention

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described.

All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the designs and methodologie

s that are described in the publications which might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

The detailed description set forth below is intended as a description of the presently preferred device provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be practiced or utilized. Rather, it is to be understood, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.

The support system of the present invention may be adapted to support a wide variety of equipment for dentistry. For example, the support structure of the present invention is adapted to support Chemical activation equipment such as dental whitening and dental curing radiation sources; dental imaging equipment such as x-ray positioning equipment, x-ray sensing equipment including film and electronic sensors, endoscopic imaging equipment, ultrasonic imaging equipment, and various other imaging equipment such as now exists or may come to exist in the field of dentistry.

The support system includes a boom, a mast, and a base in, for example, a modular form.

The boom includes at least one formation spaced away from its ends, adapted for inter-engaging a corresponding formation towards one end of the mast for pivotally mounting the boom to the mast, when the mast and the boom become apposed.

The boom includes at least one formation towards one end, adapted for inter-engaging a corresponding formation on a dental instrument or equipment, for mounting the dental instrument to the boom, when the boom and the instrument become apposed.

The boom further includes at least one formation towards a second end, adapted for inter-engaging a corresponding formation of a counter-balancing object or weight, when the boom and object become apposed.

The mast includes at least one formation spaced away from its ends, adapted for inter-engaging a corresponding formation on a power pack when the mast and the power become apposed.

The mast includes at least one formation towards a second end, adapted for inter-engaging a corresponding formation of a support base when the mast and the support base become apposed.

The word formation as used herein in relation to the reference device, spacer, the lamp system, the mast, the boom, the power pack, the base and the counter-balance object or weight or any other components of the support system refers to the portion of one component which is shaped to inter-fit with a corresponding part of an adjoining component. It includes portions of the above listed components which may be shaped by molding, casting, machining, or any other appropriate method, or portions which are formed separately and then subsequently assembled.

Suitable inter-engaging formations include, but is not limited to, tongues and grooves, posts and sockets, swingable hooks and sockets, resilient clips and soc

kets, tongue or wing-like members and slots, ball and cavity, ball and socket, screw and washer, depressions and protrusions, channels and rods or cables, and so on, some of which are more specifically exemplified in detail below.

The light system of the present invention may be easily aligned to a subject and is ergonomically compatible for both right-handed and left-handed users. Further, the pieces of the light system are separable and modular, as mentioned above, so that the light system is easy to assemble, disassemble, pack, ship or transport. In addition, individual pieces or modules may be sent in for repair or for updating.

FIG. 1 shows a support structure 100 for dentistry equipment according to one embodiment of the invention. As illustrated, the support structure 100 includes a base 102 and an articulated support member 104. According to one embodiment of the invention, the base includes a body portion 106. The base 102 is adapted to be coupled to the articulated support member 104 by receiving a coupling feature 108 (see FIG. 3a below) of the articulated support member 104. The coupling feature 108 is adapted to substantially fixedly couple the articulated support member 104 to the body portion 106.

In one embodiment, the articulated support member includes a mast 101 and a boom 103. The mast 101 and boom 103 are coupled to one another by a boom joint 105 that includes boom joint knobs 109, 111.

In the embodiment of FIG. 1, an anterior end of the boom 103 includes a formation such as an instrument or apparatus-coupling feature 98. Although a wide variety of apparatus-coupling features are within the scope of the invention, the illustrated apparatus-coupling feature is a ball joint.

In various embodiments, the boom 103 of the support structure 100 includes a second formation, such as a boom-control feature adapted to offset a gravitational torque produced by a load mass being coupled to the apparatus-coupling feature. For example, in the illustrated embodiment, a posterior end of the boom 103 includes a boom counterweight 107. One of skill in the art will appreciate, however, that a wide variety of boom-control features, such as for example torsion springs and tension springs, are applicable to control of the boom 103, and are within the scope of the invention.

In one embodiment, as illustrated, the body portion 106 includes a plurality of beams 110 disposed in a radial orientation with respect to one another, such that a respective plurality of proximal ends 112 of the beams 110 are disposed proximate to the coupling feature 108, and a respective plurality of distal ends 114 of the beams 110 are disposed distal to the coupling feature 108. In various embodiments, the beams 110 and/or the body portion 106 may consist of a single integral member, or may be an assembly of discrete components.

According to one embodiment of the invention, as illustrated, the base 102 includes five beams 110 arranged radially in a substantially symmetrical, substantially coplanar, substantially horizontal orientation. A different number of beams is also envisioned.

In another embodiment of the invention, the body portion 106 may include a component having a disk shape, a hemispherical shape, a truncated hemispherical shape, a hemi-ellipsoid shape, a truncated hemi-ellipsoid shape, a conical shape, a truncated conical shape, and a wide variety of other shapes according to the various requirements, including functional and aesthetic requirements, of a particular embodiment.

In a further aspect, according to one embodiment of the invention, the base 102 includes a bearing device adapted to facilitate motion of the dental equipment support structure 100 with respect to a supporting surface, such as a floor. According to one embodiment, as illustrated, the bearing device includes a plurality of caster wheels 116. In one embodiment, the plurality of caster wheels is disposed at respective ends 114 of the plurality of beams 110. In another embodiment, the caster wheels are disposed adjacent a periphery of a disk shaped base.

In still another embodiment of the invention, the plurality of caster wheels 116 includes a respective plurality of braking devices. In a further aspect, each of the plurality of braking devices includes a discrete activation lever 120.

In another embodiment of the invention, a single, common activation device is adapted to engage each of the plurality of braking devices.

In still another embodiment of the invention, a single common braking device is used. For example, according to one embodiment of the invention, base 102 includes a brake shoe mechanism adapted to urge a break shoe downwardly from adjacent a lower surface of the body 106 towards a floor, such that when the break shoe engages the floor, a frictional force between a lower surface of the break shoe and the floor inhibits lateral motion, with respect to the floor, of the support structure 100.

In a further aspect, according to one embodiment of the invention, the plurality of caster wheels 116 includes a respective plurality of tires 122. In various embodiments, these tires may be formed of various materials used alone or in combination. Such materials include, for example, elastomers such as natural latex rubber, Kraton(r) rubbers such as styrene-butadiene and styrene-isoprene, nitrile rubber, polyurethane, neoprene, polybutadiene, polyisobutylene; thermoplastics and thermosets, such as polypropylene, polyethylene, ultra-high molecular weight polyethylene (UHMWPE), polytetrafluoroethylene (PTFE - Teflon), polyvinylidene fluoride (PVDF), polyamide (Nylon), polyaramid (Kevlar), acetal plastic (Delrin), polystyrene, polyester, bakelite; and reinforced composites including, for example, any of the foregoing along with reinforcing materials such as glass fiber, carbon fiber, cellulose, hemp, and any other reinforcing material such as may be known in the art.

According to particular embodiments of the invention, the tires 122 of the caster wheels 116 may be pneumatic, semi-pneumatic, or solid. In still further embodiments, the caster wheels 116 may be un-tired, and may have circumferential surfaces of metal, or polymer coated metal, such as, for example, epoxy-coated steel.

It should be noted, however, that the bearing device may include no caster wheels at all, but may include an air bearing formed by actively pumping or releasing compressed air through channels and/or apertures in a lower surface of the base and adapted to reduce friction between lower surface of the base and the floor. Other non-caster bearing devices include, according to respective embodiments of the invention, polymer glides formed of, for example reinforced PTFE or of UHMWPE.

FIG. 2 shows, in sectional elevation, an apparatus support 200 for dentistry applications according to one embodiment of the invention. The FIG. 2 illustration presents, in some detail, the components of articulated member 104 of FIG. 1.

In one illustrated aspect, the apparatus support 200 includes a boom having a

formation, for example, a boom joint such as a pivotal boom hinge 202 having at least two degrees of freedom. Specifically, in the illustrated embodiment, the boom hinge 202 has a first degree of freedom including rotational motion about a substantially vertical axis, and a second degree of freedom including rotational motion about a substantially horizontal axis. In the embodiment shown, rotation about the substantially horizontal axis may be effected by including within the boom hinge 202 at least one formation, which may include at least one or all of the following, for example, a boom joint yoke 204 and boom joint pivot 206 as assembly having a hinge shaft 208 disposed between the boom joint yoke 204 and boom joint pivot 206.

Rotation about the substantially vertical axis is effected by including within the boom hinge 202 a boom pivot shaft 210 disposed within a substantially vertical bore of a boom top plug 212. Exemplary embodiments and aspects of boom hinges according to the invention are discussed in additional detail below.

As discussed above, in relation to FIG. 1, the articulated support member includes a mast 101 and a boom 103. In the illustrated embodiment, as is visible in FIG. 2, both the mast and the boom are curved.

According to a further embodiment of the invention, the curve of the boom 103 is a substantially circular curve. According to another embodiment of the invention, the curve of a boom may include a non-circular curve such as, for example, an elliptical curve, an ovoid curve, and a non-monotonic curve such as an "S" curve.

One advantage of the illustrated curvature of the mast and boom is that it optimizes the use of floor space in what may be an otherwise crowded dental examining room. For example, the curvature of the mast 101 may allow a larger portion of the base 102 to be received within a recess 215 under, for example a dental examining chair 150, table, or another piece of dental examining room equipment.

In this way, otherwise usable space outwardly of the recess 215 is conserved. In another aspect, the curvature of the mast 101 and boom 103 may be aesthetically pleasing, and therefore contribute to the decor of the dental office. Nevertheless, the mast, and/or the boom may be substantially straight according to particular embodiments of the invention.

According to one embodiment of the invention, both the mast and the boom may be adapted to support signal devices and/or mass transfer devices. Exemplary signal devices may include filamentary signal carriers such as some metallic, ceramic, or conductive polymer wires, or optical fibers. In addition exemplary signal devices may include non-filamentary signal carriers such as radiofrequency waveguides. Exemplary mass transport devices include, for example, flexible polymer or metallic tubing adapted to the transportation of pressurized air or water.

In the illustrated embodiment, the mast and boom are also adapted to support power wiring for the dental instrument or apparatus.

According to one embodiment, the mast may include a concave side and a convex side, defining a curve in a plane perpendicular to the floor. At least one power pack having at least one formation, such as a mounting cable, may be attached to a formation of the mast, for example, a channel, on a convex side of the curved mast. As illustrated, the power pack includes a controller for controlling the lamp system.

FIG. 3a shows a rear elevation view of an exemplary mast 101 according to one embodiment of the invention. As shown, the mast includes a wire channel 152 disp

osed longitudinally in an external surface of the mast. In the illustrated embodiment, this wire channel 152 may extend from a lower end of the mast 101 to an upper end of the mast 101.

FIG. 3b shows, in cross-section, a mast 101 according to one embodiment of the invention. In FIG. 3b a profile of the wire channel 152 is visible, showing that it includes a recessed cavity disposed inwardly of an otherwise substantially elliptically cylindrical outer surface 154 of the mast 101. The wire channel 152 may include first and second lips 156. The first and second lips 156, according to the illustrated embodiment, may extend substantially along the length of the wire channel 152 from the lower end to the upper end of the mast 101. According to other embodiments, however, the lips 156 may be indented, to form intermittent projections along the length of the wire channel 152.

According to one embodiment of the invention, the mast may be formed of a metal or metallic alloy, such as stainless steel, extruded aluminum, an alloy such as Ni/Ti alloy; any amorphous metals including those available from Liquid Metal, Inc. or similar ones, such as those described in U.S. Patent No. 6,682,611, and U.S. Patent Application No. 2004/0121283, the entire contents of which are incorporated herein by reference.

According to another embodiment of the invention, the mast may be formed of any polymeric material. Suitable polymers include polyethylene, polypropylene, polybutylene, polystyrene, polyester, acrylic polymers, polyvinylchloride, polyamide, or polyetherimide like ULTEM(r); a polymeric alloy such as Xenoy(r) resin, which is a composite of polycarbonate and polybutyleneterephthalate or Lexan(r) plastic, which is a copolymer of polycarbonate and isophthalate terephthalate resorcinol resin (all available from GE Plastics), liquid crystal polymers, such as an aromatic polyester or an aromatic polyester amide containing, as a constituent, at least one compound selected from the group consisting of an aromatic hydroxycarboxylic acid (such as hydroxybenzoate (rigid monomer), hydroxynaphthoate (flexible monomer), an aromatic hydroxyamine and an aromatic diamine, (exemplified in U.S. Patent Nos. 6,242,063, 6,274,242, 6,643,552 and 6,797,198, the contents of which are incorporated herein by reference), polyetherimide anhydrides with terminal anhydride group or lateral anhydrides (exemplified in U.S. Patent No. 6,730,377, the content of which is incorporated herein by reference) or combinations thereof.

In addition, any polymeric composite such as engineering preps or composites, which are polymers filled with pigments, carbon particles, silica, glass fibers, conductive particles such as metal particles or conductive polymers, or mixtures thereof may also be used. For example, a blend of polycarbonate and ABS (Acrylonitrile Butadiene Styrene) may be used for the lamp housing and head.

FIG. 3c shows, in cross section, a channel cover 225 according to one embodiment of the invention. The channel cover of FIG. 3c includes a plate member 226 and first and second projections 227, 236. The first and second projections 227, 236 are disposed substantially perpendicular to a rear surface 238 of the plate member 226. In addition, first and second projections are disposed inwardly of longitudinal edges 239, 241 of the plate member 226. Each projection, 227, 236, includes an angled barb 243, 245 with a respective back surface 249, 251. Consequently, each side of the channel cover 225 includes a respective longitudinal recess 253, 255 adapted to be mechanically coupled to a respective one of the lips 156 of the wire channel 152. This mechanical coupling may result in retentio

n of the channel cover 225 adjacent to the wire channel 152 and effects closure of the wire channel 152.

According to one embodiment of the invention, the channel cover 225 is relatively inflexible, and the closure of the wire channel 152 is substantially permanent. According to another embodiment of the invention, the channel cover 225 is relatively flexible, and the channel cover 225 is therefore easily removable and replaceable subsequent to an initial installation.

In one embodiment of the invention, the channel cover 225 may be formed of a material including an elastomer such as those mentioned above.

According to another embodiment of the invention, the channel cover 225 may be formed of a metallic substance such as, for example, aluminum, steel, stainless steel, or those materials mentioned above in connection with the construction of the mast. According to still other embodiments of the invention, combinations of the foregoing materials, or of other materials, along with or exclusive of the foregoing materials, may be used according to the requirements of a particular embodiment.

In another embodiment of the invention, the boom 103 (as shown in FIG. 2) may also include a wire channel in a manner similar to the embodiment illustrated in FIG. 3b with respect to the mast 101. In such a case, a channel cover 225 like that of FIG. 3c may also be employed to cover the wire channel of the boom 103.

FIG. 3d shows, in cross-section, a boom 103 according to one embodiment of the invention. In the illustrated embodiment of FIG. 3d, the boom 103 does not include a wire channel. Instead, the boom 103 is substantially hollow, having an axial cavity 259 disposed therewithin. According to one embodiment of the invention, wires and/or tubing, for example, may be disposed and supported within the axial cavity 259.

The boom may be formed of one or more of the same materials as mentioned above for the construction of the mast, or of a different material. According to one embodiment of the invention, the boom may be formed of extruded aluminum.

Referring again to FIG. 3a, in accordance with one embodiment of the invention, the mast 101 includes a formation or coupling feature 108. The coupling feature 108 may be adapted to couple the mast 101, at its lower end, to a base 106 (as shown, for example, in FIG. 2). According to one illustrated embodiment of the invention, the coupling feature 108 includes a plug 264. In the illustrated embodiment, the plug 264 includes a substantially cylindrical outer surface, and may be adapted to be received within a formation in the base 106, such as a cavity having a substantially cylindrical inner surface 266 (as shown, for example, in FIG. 2).

According to one embodiment of the invention, the plug 264 may be substantially solid and formed, for example, as an integral casting. According to another embodiment of the invention, the plug 264 may be formed as an assembly of components.

According to still another embodiment of the invention, the coupling feature may include a projecting portion (not shown). The projecting portion may be adapted to be received within the interior cavity 268 of the mast 101. The projecting portion may be retained within the interior cavity 268 by, for example, a frictional force fit or by one or more threaded fasteners, or by spring pins, or other fastening means, according to various embodiments of the invention.

In a further aspect of the invention, according to one embodiment, the coupling feature 108 may include an alignment device 269. In one embodiment of the invention, the alignment device 269 may be a dowel or pin, such as a steel machine pin. In the illustrated embodiment, the pin may be a substantially cylindrical steel pin disposed within a bore and aligned substantially perpendicular to a longitudinal axis of the plug 264. In other embodiments (not illustrated here) the alignment device 269 may be a pin of rectangular cross section, a rectangular key, Woodruff key, roll pin, or other alignment device such as is known to one of skill in the art.

In one aspect of the invention, the alignment device 269 serves to maintain the mast 101 in a particular orientation with respect to the base 102 (as shown in FIG. 1). According to one embodiment, this orientation maintains the plane of curvature of the mast aligned with one of the beams 110 of the base.

In one embodiment, the mast 101 may have a uniform outer dimension along its length, as shown in FIG. 1. In another embodiment, the mast 101 may have a non-uniform outer dimension along its length, as shown in FIG. 4.

FIG. 4 shows a dental equipment support structure according to another embodiment of the invention. As is apparent from the illustration of FIG. 4, the configuration of the mast, and also the boom, need not be strictly tubular. For example, the support structure 100' of FIG. 4 includes a mast 262 that has sides which diverge and subsequently converge with respect to one another as a function of height along the mast. Consequently, as shown in the illustrated embodiment, a cross-sectional area of the mast in a central region 263 is larger than the respective cross sections of the mast at an upper 265 region and a lower region 267.

In FIG. 4, the mid-section of the mast 101 is of a larger dimension than other parts of the mast. In one aspect, this mid-section may coincide with the mounting position of the power pack 261. In another aspect, the wider portion of the mast 101 may be flattened to accommodate a power pack 261. In a third aspect, the wider portion may be sunken or recessed to accommodate a power pack 261 so that the power pack 261 does not protrude far from the general profile of the mast 101.

In one embodiment of the invention, the boom 103 and mast 101 may be positioned such that their footprint does not exceed the footprint of the base 106. Specifically, when the boom 103 is rotated to a minimally vertical angle, whereby the lamp head is at its lowest elevation in proximity to the base, a projection of the lamp system on the floor falls entirely within the circumference of the base 106.

In another embodiment, the boom 103 and mast 101 may be positioned such that their footprint exceeds the footprint of the base 106 with the center of gravity of the dental lamp system falling within the base 106.

In an alternative embodiment of the invention, the outward-most surface of the counterweight 107 does not extend beyond the circumference of the base 107 in any angular position of the boom 103.

In one aspect of the invention, the mast 262 in FIG. 4 includes a cavity, or ho

hollow region, within the central region 263. According to one embodiment of the invention, this hollow region is adapted to receive equipment such as, for example, a control module or power pack therewithin. Thus, according to one aspect of the invention, a streamlined and integrated support structure results. Such a support structure is advantageous in a dental office where projecting edges or equipment can snag clothing or otherwise interfere with professional activities.

FIG. 5 shows a perspective view of a base 106 according to one embodiment of the invention. As shown, the base 106 includes a formation, for example, a cavity having a substantially cylindrical inner surface 266. As noted above, this cavity may be adapted to receive the coupling feature 108 therewithin. In FIG. 5, there is also visible a slot 279 that opens into the cavity within base 106. According to one embodiment of the invention, this slot may be adapted to receive the alignment device 269 that projects from the substantially cylindrical outer surface of the coupling feature 108. According to one embodiment of the invention, as illustrated, a single slot 279 is present in the base. In other embodiments, a plurality of slots may be provided to receive a corresponding plurality of alignment devices 269.

Referring again to FIG. 2, and to the embodiment of the invention of illustrated therein, a counterweight 107 is disposed at a posterior end of the boom 103. In the illustrated embodiment, the counterweight 107 includes an axial bore 306 disposed inwardly from an aperture in an anterior surface of the counterweight.

In the illustrated embodiment, the boom includes an internal bulkhead 299 fixedly coupled to an internal surface 301 of the boom (see FIG. 3d) by, for example, welding or by the use of rivets or threaded fasteners. In other embodiments of the invention, the internal bulkhead is integrally formed as part of an extruded or molded boom structure.

According to one embodiment of the invention, the internal bulkhead 299 includes an internally threaded bore 304 disposed laterally therethrough. In one embodiment, the internally threaded bore 304 is disposed substantially coaxially with a longitudinal axis of a local region of the boom 103.

In the embodiment of FIG. 2, a counterweight shaft 305 is mutually disposed within the bore 306 of the counterweight 107 and within the internally threaded bore 304 of bulkhead 299. As shown, a further internally threaded bore 308 is disposed within the counterweight 107. Internally threaded bore 308 is disposed between respective apertures at bore 306 and outer surface 310 of counterweight 107. The further internally threaded bore 308 is disposed substantially perpendicular to bore 306. According to one embodiment of the invention, an externally threaded setscrew 312 is disposed within bore 308, and is adapted to be advanced inwardly from the surface 310 of the counterweight 107 such that an inward end of the setscrew 312 is disposed against an external surface 314 of the counterweight shaft 305.

FIG. 6 shows the counterweight shaft 305 in additional detail according to one embodiment of the invention. As shown, the counterweight shaft 305 includes a posterior portion 320 adapted to be received within the axial bore 306 of the counterweight 107. The counterweight shaft 305 also includes an anterior portion 322 adapted to be received within the internally threaded bore 304 of bulkhead 299. In the illustrated embodiment, the anterior portion 322 includes a plurality of external threads 324. The plurality of external threads 324 is adapted to b

e threadingly coupled to a corresponding plurality of internal threads of the internally threaded bore 304 of the bulkhead 299.

In a further aspect, according to one embodiment of the invention, the counterweight shaft 305 includes at least one flat 326 disposed on an external surface 328 thereof. The flat 326 is adapted to receive a wrench, or other tool for the application of an axial torque about a longitudinal axis of the counterweight shaft 305. The application of this axial torque effects tightening, and therefore substantially fixed engagement, of the external threads 324 of the counterweight shaft and the internal threads of the internally threaded bore 304 of the bulkhead 299.

As would be understood by one of ordinary skill in the art, the fixed engagement of the external threads 324 of the counterweight shaft with the internally threaded bore of the bulkhead 299 may be further enhanced by the use of, for example, a lock washer, such as a split washer or a crown washer, or a thread locking solution as is known in the art.

In still another aspect, according to the FIG. 6 embodiment, the external surface 328 of the counterweight shaft 305 includes a circumferential groove 330. In one embodiment of the invention, circumferential groove 330 includes at least one side 332 that is disposed at an oblique angle with respect to a longitudinal axis of the counterweight shaft 305. According to one aspect of the invention, a corresponding oblique angle provided on a truncated conical inward end of setscrew 312 (as shown in FIG. 2) is effective to urge the counterweight into a fixed lateral position along a longitudinal axis of the counterweight shaft 305 with respect to, for example the bulkhead 299 as the setscrew 312 is advanced inwardly.

FIG. 7 shows, in perspective view, a boom joint 340 for a dentistry equipment support structure. The boom joint 340 includes a yoke 342 and a pivot 344. In the illustrated boom joint 340, the yoke includes first 346 and second 348 side members, having respective first and second bores disposed substantially horizontally therethrough. In like fashion, the pivot 344 includes third 350 and fourth 352 side members with respective third and fourth bores disposed substantially horizontally therethrough. The first, second, third and fourth bores are adapted to be aligned with an axle such as, for example, a carriage bolt 354 disposed coaxially therethrough. In this way, the yoke 342 and pivot 344 are mutually supported in a pivoting relationship to one another by the axle 354.

The yoke 342 includes, for example, a female coupling feature 356. The female coupling feature 356 is adapted to be coupled to, for example, an upper end of a mast 358, such as the yoke is supported by the mast. As illustrated, the pivot 344 is coupled to a boom 360 by one or more bolts 362.

A first handle 364, has a first lever arm 366 and an internally threaded bore.

The internally threaded bore may be adapted to receive an externally threaded end of the axle 354, whereby rotation of the handle serves to compress or release the side members 346, 348 of the yoke with respect to the corresponding sides 350, 352 of the pivot. A friction washer may be disposed between the side members and sides to modify the friction characteristics between side members and sides.

Compression of the side members 346, 348 serves to inhibit rotation about the axle 354 of the pivot 344 with respect to the yoke 342. Conversely, releasing the side members 346, 348 allows rotation about the axle 354 of the pivot 344 with respect to the yoke 342.

A second handle 368 has a second lever arm 370. Referring now to FIG. 8, one sees handle 368 in additional detail. As illustrated, the handle 368 includes an internally threaded bore adapted to receive an externally threaded bolt such as, for example, a carriage bolt 376. The female coupling 356 includes first 372 and second 374 flanges, each with a respective bore therethrough. The bores in flanges 372 and 374 are substantially aligned with one another, and adapted to receive the bolt 376. As will be clear to one of skill in the art, rotating handle 368 serves to compress and release the flanges 372, 374 with respect to one another. Compression of the flanges 372, 374 serves to inhibit rotation about the mast 358 of the yoke 342 with respect to the mast 358. Conversely, a releasing of flanges 372, 374 permits rotation of the yoke 342 with respect to the mast 358.

One of skill in the art will appreciate that operation of the boom joint of FIG. 6 and 7 over an extended period of time will result in wear on one or more of the outer surface of mast 358, the corresponding formation, for example, the inner surface of female coupling feature 356, the outer surfaces of the third 350 and fourth side members 352 of the pivot 344 and the corresponding inner surfaces of the side members 346, 348 of the yoke 342. As such wear takes place, the frictional forces present at the respective interfaces changes accordingly. Consequently, the damping and resistance to motion response characteristics of the boom joint also change over the life of the support structure in ways that may be unpredictable and/or undesirable. The present invention aims to minimize such changes in such response characteristics. Other solutions are also possible, though some of them may be more, more difficult to produce, or more difficult to maintain in stable condition.

FIG. 9 shows, in cross-section, boom joint 105, according to one embodiment of the invention. As illustrated, the boom joint 105 includes a boom joint pivot 210, and a boom joint yoke 212. The boom joint pivot includes a horizontal bore 214 that is adapted to receive a boom joint shaft 216. The horizontal bore 214 is defined by an internal substantially cylindrical wall 218. According to the present embodiment, the wall 218 includes a slot 220. Referring again to FIG. 2, the slot 220 may be adapted to receive a portion of a fixturing device such as a Woodruff key 222.

The Woodruff key 222 aims to prevent rotation of the shaft 216 about an axis 224 that is common to both the shaft 216 and the bore 214. As will be seen more clearly in relation to further drawings discussed below, the yoke 212 may also include a bore that may be disposed about a portion of the shaft 216. In the embodiment of the invention presently under consideration, the yoke is not fixedly coupled to the Woodruff key 222 during use of the support structure. Consequently, the yoke 212, and the boom 108 that is fixedly coupled to the yoke 212, are rotatably supported by the shaft 216. The shaft 216 may be, in turn, supported by the pivot 210 and shaft 216.

The mast 101 and the boom 108 of the present invention may be made of any polymeric material, preferably a polymer that can be molded or cast; or a metal or metallic alloy. Suitable metal or metallic alloys, polymers and polymeric composite include those mentioned above.

In the illustrated embodiment, the boom joint pivot 210 includes a base portion 230 as well as an upper portion 232. In various embodiments, the base portion 230 and the upper portion 232 may be formed as a single integral unit, or as an assembly of separate components. In the illustrated embodiment, the base portion

230 may include a vertical shaft 234. Again, in various embodiments, the base portion 230 and vertical shaft 234 may include separate components, or they may form a single integral unit.

In one embodiment of the invention, the mast 101 may include a substantially hollow bore or cavity 240. A mast top plug 242 may be disposed, fully or partially, within cavity 240. The mast top plug 242 may include an axial bore 244 defined by a substantially cylindrical internal surface 246. The radial diameter of the axial bore 244 may vary along the length of the bore such that a diameter of the bore is larger at a first location 248 than at a second location 250. Where the diameter of the bore 244 changes along the length of the bore, a ledge 252 exists.

According to one embodiment of the invention, a bushing 254 may be disposed within the axial bore 244. The bushing 254 may include a substantially cylindrical outer surface 256 disposed in substantially coaxial spaced relation to a substantially cylindrical inner surface 258.

In one exemplary embodiment, the bushing 254 may include an oil-filled porous bronze material. In another exemplary embodiment, the bushing 254 may include a polymer having a low coefficient of friction. This polymer may be selected from a variety of materials including, but not limited to, for example, polyethylene, ultrahigh molecular weight polyethylene (UHMWPE), acetyl polymer materials and fiber reinforced acetyl polymer materials (Delrin), polyamide (Nylon), polyvinyl difluoride (PVDF), polytetrafluoroethylene (Teflon), and other polymers of similarly desirable and appropriate characteristics, as well as those polymers, engineering preps and filled polymeric composites mentioned above for the construction of the mast and boom.

In another embodiment of the invention, the bushing 254 may include a material having a relatively high coefficient of friction, or an intermediate coefficient of friction, such that by interaction with outer surface 260 and inner surface 248, the bushing serves to damp and otherwise restrain a rotary motion of the vertical shaft 234 about its longitudinal axis.

As shown, a substantially cylindrical outer surface 260 of the vertical shaft 234 of the boom joint pivot 210 bears on, and is supported by, the substantially cylindrical inner surface 258 of the bushing 254. In addition, a substantially flat portion of a lower surface 270 of the base portion 230 of the boom joint pivot 210 bears on, and is supported by a substantially flat portion of an upper surface 272 of mast top plug 242.

A retaining device 274, such as a split-ring (c-ring) retaining washer may be mutually disposed within a groove 276 of the vertical shaft 234 and against a further ledge 278 of the substantially cylindrical surface of the axial bore 244.

The retaining device 274 retains the vertical shaft 234 within the bore 244, and prevents the boom joint pivot 210 from moving upwardly with respect to the mast top plug 242.

According to this arrangement, the mast top plug 242 supports and retains the boom joint pivot 210 while allowing the boom joint pivot 210 to rotate about a mutual axis of the mast top plug bore 244 and boom joint pivot shaft 234.

In the illustrated embodiment, this rotation may be damped by the frictional action of a friction washer 280 disposed within a substantially circular recess 282 of the upper surface 272 of the mast top plug 242. One of ordinary skill in the art will appreciate that an outer circumference of the friction washer 280 may have any one of a wide variety of shapes including, but not limited to, an el-

liptical shape, a rectangular shape, a square shape, a sinusoidal shape, a toothed shape, and other shapes adapted to reduce rotation of the friction washer with respect to the mast top plug 242.

In various embodiments, the friction washer is formed to include a corresponding variety of materials including, but not limited to polyurethane, polybutylene, latex rubber, or other rubber materials that can be either natural or synthetic rubber. Synthetic rubbers are preferably elastomeric materials and include various copolymers or block copolymers (Kratons(r)) available from Kraton Polymers such as styrene-butadiene rubber or styrene isoprene, EPDM (ethylene propylene diene monomer) rubber, nitrile (acrylonitrile butadiene) rubber and the like, and other elastomers, cork, wood, ceramic materials, and other materials, or in combination, that are appropriate to the function of the friction washer. In addition the friction washer may include fibrous materials such as, for example, ceramic fiber, glass fiber, or mineral fiber materials among others.

In one embodiment of the invention, the damping frictional forces exerted between the friction washer 280, or other friction element, and the mast top plug 242 and the boom joint pivot 210 are sufficient to allow rotation of the boom joint pivot 210 when a force of between about 2 pounds and 5 pounds is exerted laterally against, or in proximity to the supported dental equipment.

In a further aspect of the invention, according to the embodiment illustrated in FIG. 9, a pin 290, such as a substantially cylindrical pin, is disposed mutually within a bore 292 in the upper surface 272 of the mast top plug 242, and within an arcuate slot 294 in the lower surface 270 of the base portion 230 of the boom joint pivot 210.

Turning now to FIG. 10 which shows the boom joint pivot 210 in a lower aspect of a perspective view, the arcuate slot 294 is more clearly visible. In the illustrated embodiment, the arcuate slot 294 includes a substantially vertical inner wall 296 and a substantially vertical outer wall 298. The arcuate slot 294 also includes substantially vertical end walls 300, 302. When viewed in relation to FIG. 9, it will be evident to one of ordinary skill in the art that when the boom joint pivot 210 may be assembled to the mast top plug 242, the boom joint pivot 210 will rotate freely to the extent that the pin 290 is disposed within the arcuate slot 294, away from the end walls 300, 302. When an outer surface of the pin 290 comes into contact with one or the other of the end walls 300, 302, rotation of the boom joint pivot, in a corresponding direction, is arrested.

FIG. 10 also shows a lower surface 270 of the boom joint pivot 210 that is supported by the upper surface 272 of the mast top plug 242. In addition, FIG. 10 shows the location of the slot 294 and the inner wall 296. One of ordinary skill in the art will understand that alternative locations for the slot 294 will also serve. For example, in one embodiment of the invention, an arcuate slot similar to slot 294 may be provided in upper surface 272 of mast top plug 242 (as shown in FIG. 9). Correspondingly, a bore similar to that shown 292 in mast top plug 242 is provided in lower surface 270 of boom joint pivot 210 with a pin 290 disposed therein.

FIG. 11 shows the boom joint yoke 212 in a ventral aspect of a perspective view according to one embodiment of the invention. As shown, the yoke 212 has a substantially cylindrical outer surface 400. An aperture 402 in the outer surface is defined by an edge 404 shaped substantially as a projection of a rectangle on cylindrical surface 400.

The aperture 402 opens upon an internal cavity within the yoke 212. Referring

again to FIGS. 9 and 10, one sees that a rear wall 406 of the cavity 402 is configured to be disposed in spaced relation to an outer surface 408 of boom joint pivot 210.

As shown in FIG. 11, the yoke 212 also includes first 410 and second 412 (not visible) substantially circular end surfaces. According to one embodiment of the invention, the end surfaces 410 and 412 are substantially flat. Each end surface 410, 412 has a respective bore 414, 416 disposed coaxially through the surface and normal thereto.

Each bore 414, 416 is defined by a respective substantially cylindrical wall 418, 420. As is discussed above, in relation to FIG. 9, walls 418 and 420 serve to rotatably support the yoke 212 on shaft 216.

It is noted that, while wall 418 is shown to have a keyway slot 422, and while according to various embodiments, both wall 418 and wall 420 include such a key way slot, the keyway slot is merely to allow the Woodruff key 222 (as shown in FIG. 9) to pass through yoke 212 and into slot 220 of boom joint pivot 210. Accordingly, shaft 216 is rotationally fixed with respect to boom joint pivot 210, but is rotatable with respect to the yoke 212.

FIG. 12 shows the boom joint shaft 216 in a cutaway view. In the illustrated embodiment, the shaft may include two cavities 500, 502 adapted to receive two respective Woodruff keys. In another embodiment, the shaft may include a single Woodruff key cavity and only a single Woodruff key is employed. In still another embodiment of the invention, a slot, adapted to receive a machine screw, runs all or part of the length of the surface 504 of the boom joint shaft 216. One of skill in the art will understand that the use of machine keys or Woodruff keys is merely exemplary of the many ways in which the boom joint shaft 216 may be maintained rotationally fixed with respect to the boom joint pivot 210.

Also shown are external threads 506, 508 on the outer surface of the boom joint shaft 216. These threads are adapted to receive knobs 109 and 111 (as shown in FIG. 1) respectively. According to one embodiment of the invention, the threads 506, 508 are configured with a spacing of, for example, about 20 threads per inch, however any number of standard or non-standard thread sizes may be employed as appropriate.

The shaft 504 of FIG. 12 also may include first 2200 and second 2202 circumferential grooves as illustrated. The circumferential grooves 2200, 2202 may be adapted to receive respective retaining devices therewithin. For example, each groove 2200, 2202 may be adapted to hold a snap ring retainer.

In addition, shaft 504 includes first 2204 and second 2206 flat regions. As will be explained in additional detail below the flat regions 2204, 2206 are adapted to minimize or prevent rotation of boom joint washers with respect to the shaft 504.

FIG. 13a shows a boom joint washer 2208 according to one embodiment of the invention. The boom joint washer 2208 may include an outer surface 2210 and an inner surface (not shown). A hole through the washer may be bordered by an edge having a first substantially circular portion 2212 and a second substantially flat portion 2214. In one embodiment of the invention, a profile of the substantially flat portion 2214 may be adjusted by a depression 2216 in the outer surface of the washer. In the illustrated example, this depression may be formed by the application of a punch to the outer 2210 surface. By thus adjusting the profile of the substantially flat portion, a tight fit to the shaft 504 having minimal play may be achieved.

FIG. 13b shows another boom joint washer 2218 according to another embodiment of the invention. The boom joint washer 2218 includes a hole having an edge with two substantially flat portions 2220, 2222. As will be discussed below, the use of two flats and improved manufacturing tolerances obviates the need to adjust a profile of the flat portions 2220, 2222 according to one embodiment of the invention.

FIG. 14 shows a perspective view of a boom hinge knob 600 according to one embodiment of the invention. According to the illustrated embodiment, the boom hinge knob 600 may include a substantially hemi-ellipsoid outer surface 604. In the embodiment shown, a plurality of projections 602 may be disposed around the outer surface 604 of the boom hinge knob 600. The projections 602 provide a gripping surface for a user of the supported dental equipment, making it easy for the user to turn the knob 600 in order to make adjustments to the boom joint 105. In an alternative embodiment of the boom hinge knob 600, the outer surface 604 is fluted instead which also provides a gripping surface for the dental whitening lamp user. In a further embodiment, a plurality of raised or depressed striations can also be provided on the gripping surface to facilitate gripping.

A plurality of ribs 606 on the inside of the boom hinge knob 600 provide structural reinforcement for the knob 600 and also support a cylinder 608 with internal threads. Each rib 606 may include an outwardly facing surface 606. As will be described in additional detail below, the outwardly facing surface may be adapted to contact the surface (e.g., 2210) of the boom joint washer. The threaded cylinder 608 may be centered inside the boom hinge knob 600 and may be shaped and configured to receive the threaded end 508 of the boom joint shaft 216. This arrangement enables adjustment of the boom joint 105.

According to one embodiment of the invention, the internally threaded cylinder 608 may be coupled to the knob 600 by a frictional press fit. In another embodiment of the invention, the internally threaded cylinder 608 may be coupled to the knob 600 by means of ultrasonic welding during an assembly operation. In still another embodiment of the invention, the knob 600 may be formed of a durable material capable of supporting threads formed directly in an internal surface of the knob.

FIG. 15 shows in perspective view, a portion of a boom joint according to one embodiment of the invention. The boom joint 105 includes a yoke 212 having a substantially flat surface 410 with a substantially circular perimeter 411. Also shown is a friction washer 2250 with a substantially circular perimeter and a boom joint washer 2208 as discussed above in relation to FIG. 13a. A boom joint shaft 216 is shown supporting the yoke 212, friction washer 2250 and boom joint washer 2208. In addition a split ring retainer 2252 is shown disposed within a groove 2202 of the boom joint shaft 216.

The boom joint shaft 216 may include a plurality of external threads 508. The external threads are adapted to receive a boom joint knob 600 such as that described above in relation to FIG. 14.

One of skill in the art will appreciate that the presence of respective retaining devices e.g., 2252 in grooves 2200 and 2202 of the shaft 506 (as shown in FIG. 12) substantially prevents axial motion of the shaft 506 with respect to the yoke 212. Also, rotation of the shaft 506 about its long axis is substantially prevented by the presence of a woodruff key (or other device) coupling the shaft 506 to the boom joint pivot 210.

Rotation of the boom joint washer 2208 with respect to the shaft 216 is prevent

ed by the action of flat surface 2206 of shaft 216 on flat surface 2212 of the joint washer 2208.

Rotation of the boom joint knob 600 may cause the knob to advance axially inwardly with respect to shaft 216. Consequently surfaces 605 of the boom joint knob may impinge on surface 2210 of the boom joint washer 2208. The washer 2208, may thus be urged axially inwardly to compress the friction washer 2250 between the inwardly facing surface 2254 of the boom joint washer and an adjacent face of the friction washer. The friction washer may correspondingly be urged against the surface 410 of the yoke 212.

Friction between the friction washer 2250, surface 410 of the yoke 212 and surface 2254 of the boom joint washer tends to couple the yoke to the boom joint washer. A chain of mechanical coupling is thus established from the boom 103 and yoke 212, which are substantially fixedly coupled to one another, through the friction washer 2250 to the boom joint washer 2208, and, by way of the flat surface 2212 of the washer 2208 and the flat surface 2206 of the shaft 216, through the shaft and woodruff key 222 to the boom joint pivot 210, and thus to the mast 101 which supports the boom joint pivot. In view of the foregoing, one of skill in the art will appreciate that the resistance to relative motion between mast 101 and boom 103 is adjustable by rotation of the boom joint knob 600.

FIG. 16 shows a ventral aspect, in perspective view, of a mast top plug 242. As described above, the mast top plug 242 is adapted to be disposed within a hollow bore 240 of the mast 101. The mast top plug 242 has a generally cylindrically-shaped underside 540 that tapers down to a key-shaped portion 542 that has a first flat 544 and a protrusion. A second flat 548 is located above the protrusion under the upper surface 550 of the mast top plug 242.

In the present embodiment of the mast top plug 242, the mast top plug 242 may be shaped and configured to fit into the hollow bore 240 of the mast 101 in one orientation. The first flat 544, second flat 548 and protrusion 546 may determine an orientation of insertion into the hollow bore 240 of the mast 101.

The mast top plug 242 may include an axial bore 244 defined by a substantially cylindrical internal surface 246. The axial bore 244 receives the shaft 234 of the boom joint pivot 210. The axial bore 244 may include a ledge 278 in the substantially cylindrical surface 246. The retaining device 274 (described in FIG. 9) around the shaft 234 of the boom joint pivot 210 may rest against the ledge 278. As described above with regard to FIG. 2, the retaining device 274 may retain the shaft 234 within the axial bore 244. Accordingly, the mast top plug 242 supports and retains the boom joint pivot 210 while allowing the boom joint pivot 210 to rotate about a mutual axis of the bore 244 and vertical shaft 234.

In one embodiment of the mast top plug 242, the mast top plug 242 may fit snugly to the mast 101. In an alternative embodiment of the mast top plug 242, the upper edge of the mast top plug 242 may have a groove 552 holding an O-ring. The O-ring 554 provides a tight fit in the hollow bore 240 of the mast 101.

FIG. 17 shows a top view of mast top plug 242. The top of the mast top plug 242 may be oval-shaped in the present embodiment of the invention to match the oval configuration of the mast 101. Other general shapes are contemplated within the scope of the invention. The mast 101 and mast top plug 242 are not limited to the shape shown in FIG. 17.

The upper surface 272 of the mast top plug 242 is substantially flat and, as described above, supports the substantially flat surface 270 of base portion 230 of the boom joint pivot 210. According to one embodiment, a friction washer 28

0 is disposed within a recess 282 in the upper surface 22 (seen in FIG. 10). The friction washer 280 damps the rotation of the boom joint pivot 210 in relation to the mast top plug 242. As described above, in one embodiment of the invention, the damping frictional forces exerted between the friction washer 280 and the mast top plug 242 and the boom joint pivot 210 are sufficient to allow rotation of the boom joint pivot 210 only when a force of between about 2 pounds and 5 pounds is exerted laterally against, or in proximity to the payload apparatus.

The mast top plug 242 may include an aperture opening to a bore 292 at the upper surface 272 and extending into the mast top plug 242. The bore 292 may be shaped and configured to receive a pin 290. As shown in FIG. 9, the pin 290 is disposed mutually within a bore 292 in the upper surface 272 of the mast top plug 242, and within an arcuate slot 294 in the lower surface 270 of the base portion 230 of the boom joint pivot 210.

FIG. 18 shows a cross-sectional view of the mast top plug 242, as taken along the long axis of the plug. The mast top plug 242 includes the axial bore 244 shaped so that there are two ledges 252, 278. Ledge 278 bears the retaining device 274 disposed in the groove 276 of the boom joint pivot 210 as seen in FIG. 2.

The recess 282 in the upper surface 272 coaxial with the axial bore 244 may receive the friction washer 280 (shown in FIG. 17). In this embodiment, the mast top plug 242 includes a rim 560 that encircles an upper surface 272 of the mast top plug 242. A lower surface 561 of rim 560 rests on top of the mast 101. The rim 560 may be shaped and configured to match an upper surface of the mast 101 so that the mast top plug 242 fits flush to the mast 101.

FIG. 19 shows an assembly view of a mast 101, boom 103 and boom joint 105 according to one embodiment of the invention. The mast top plug 242 is disposed within the mast 101. The boom joint pivot 210 is shown assembled into the boom 103. A knob 600 on either side of the boom joint 105 serves to fix and release an angular orientation of the boom 103 to be adjusted in angle with respect to the mast 101.

FIG. 20 shows, in cross-section, a mast-top plug and pivot assembly 800 according to another embodiment of the invention. The pivot 802 includes a vertical bore 816 adapted to receive a pivot shaft 804. The pivot may include a horizontal bore 806 that is adapted to receive a boom joint shaft 216 (not shown) in similar fashion to the embodiment of a boom joint 200 shown in FIG. 2. The bore 806 may include a slot 808 adapted to receive a portion of a fixturing device, again, in similar fashion to the embodiment of the boom joint 200 shown in FIG. 2. The pivot 802 has a substantially flat lower surface 810. The lower surface 810 may include a first arcuate slot 812 and a second arcuate slot 814 located in opposition around the vertical bore 816. The first arcuate slot 812 may be adapted to receive a first pin 818. The second arcuate slot 814 may be adapted to receive a second pin 820.

The first pin 818 and second pin 820 are mounted in a mast top plug 822. The mast top plug 822 includes an axial bore 824 defined by a substantially cylindrical internal surface 826. The radial diameter of the axial bore 824 varies along the length of the bore such that a diameter of the bore is larger at a first location 828 than at a second location 830. According to one embodiment of the invention, a bushing 832 is disposed within the axial bore 824. The bushing 832 may include a substantially cylindrical outer surface disposed in substantially coaxial spaced relation to the substantially cylindrical inner surface 826 of the axial bore 824. The bushing may be made from, for example, a material having

a low coefficient of friction. The pivot shaft 804 is disposed within the bushing 832 within the axial bore 824. The pivot shaft 804 has a first groove 834 and a second groove 836. A friction ring 838 is disposed within the first groove 834. The friction ring 838 is, for example, made of rubber. In an alternative embodiment of the invention, there are two or more friction rings disposed within the first groove 834. A retaining device 840, such as a split-ring (c-ring) retaining washer is mutually disposed within the second groove 836 of the pivot shaft 804 and against a ledge 842 of the substantially cylindrical surface of the axial bore 244. The retaining device 840 retains the pivot shaft 804 within the bore 824, and prevents the pivot 802 from moving upwardly with respect to the mast top plug 822. In one embodiment of the invention, the pivot shaft 804 is welded to the pivot 802 at point 844. In another embodiment of the invention, the pivot shaft 804 is retained in the pivot 802 with a screw in a fashion similar to the embodiment described with regard to FIG. 18.

According to this arrangement, the mast top plug 822 supports and retains the pivot 802 while allowing the pivot 802 to rotate about a mutual axis of the mast top plug bore 824 and pivot shaft 804. The rotational movement in this embodiment is limited by the movement allowed by the first pin 818 and second pin 820 within the first arcuate slot 812 and second arcuate slot 814 respectively. The movement is, for example, limited to 180 degrees.

In the illustrated embodiment, the rotational movement is damped by the frictional action of the friction ring 838 disposed within the first groove 834 on the pivot shaft 804 inside the axial bore 824.

FIG. 21 shows, in cross section, a boom joint pivot 620 and mast top plug 622 for a boom joint according to another embodiment of the invention.

The boom joint pivot 620 may include an upper portion 624 and a base portion 626. The upper portion 624 of the boom joint pivot 620 includes a horizontal bore 628 that is adapted to receive the boom joint shaft 216 in similar fashion to the embodiment of a boom joint 105 shown in FIG. 30. The bore 628 includes a slot 630 adapted to receive a portion of a fixturing device, such as a woodruff key in similar fashion to the embodiment of the boom joint 105 shown in FIG. 9.

FIG. 22 shows, in cross section, a further embodiment of a boom joint pivot 1620 according to the invention. As shown in FIG. 20, the pivot 1620 includes a bore formed therethrough. The bore is adapted to receive a boom joint horizontal pivot shaft 1622. The shaft 1622 of the present embodiment does not include a woodruff keyway such as that identified as 502 in the boom joint pivot shaft 216 of FIG. 12. Rather, the shaft 1622 of the present embodiment includes a bore 1624 may be formed within the shaft 1622 and substantially perpendicular to a longitudinal axis of the shaft 1622. According to one embodiment of the invention, the bore 1624 includes an internal surface bearing threads or other feature adapted to retain a fastener within the bore 1624.

In the illustrated embodiment, the fastener is shown as a flat head machine screw 1626. One of skill in the art will appreciate, however, that a wide variety of other fasteners may be substituted for the machine screw 1626. For example, the fastener employed may include one or more of a roll pin, a headless hex screw (set screw) a cap screw, a rivet, and a dowel such as a steel dowel, among others.

FIG. 23 shows the boom joint horizontal pivot shaft 1622 in additional detail. As shown, the shaft includes a through hole 1624 as well as externally threaded ends 506, 508. In various embodiments of the invention, the through hole 1624

may be internally threaded to receive a machine screw or smooth to receive a fastener such as a roll pin.

Referring again to FIG. 22, in one embodiment of the invention, an adhesive material may be disposed at an interface 1628 between an external surface of the shaft 1622 and an inwardly facing surface of the bore within which the shaft 1622 may be disposed. In various embodiments, the adhesive material may include a cyanoacrylate based material such as, for example Loc-Tite™ or Super Glue™, other structural bonding adhesives including an epoxy, one or two part, polyurethane adhesives, one or two parts, or a foam mounting adhesive. The foam mounting adhesive may also aid in shock absorption.

In another embodiment of the invention, the bore within the pivot 1620 that receives the screw 1626 or other fastener may include a recessed region such as, for example, a countersunk region 1632. The recessed region is adapted to receive a head of a fastener, so as to prevent interference between the head of the fastener and a yoke, such as that shown as 212 in FIG. 11. In still another embodiment of the invention, the bore 1630 traverses the shaft 1622 and extends into the pivot 1620 at the far side of the shaft. In a further embodiment of the invention, the bore 1630 extends completely through the pivot 1620.

The base portion 626 of FIG. 21 includes a vertical bore opening 632 and a horizontal bore opening 634. The base portion 626 further includes an arcuate slot 636, which can be seen more clearly in FIG. 29.

Referring again to FIG. 21, a vertical bore opening 632 may be adapted to receive a pivot shaft 638 having a through-hole 640. The horizontal bore opening 634 may be adapted to receive a screw 642. In a first embodiment of the invention, the horizontal bore opening 634 has a threaded portion 644 adapted to mate with threads on the screw 642. In an alternative embodiment, the through-hole 640 of the pivot shaft 638 may be threaded and mates with threads on the screw 642.

The pivot shaft 638 is generally cylindrical in shape and may include the through-hole 640 at one end and a flange 646 at the other end. In one embodiment of the invention, the pivot shaft 638 has a first portion 648 having a smaller diameter and a second portion 650 having a larger diameter.

The mast top plug 622 may include a generally cylindrical opening 652 axially located and extending from the upper surface 654 of the mast top plug 622. The opening 652 may be configured to receive a friction pad 656. The friction pad 656 provides greater friction resistance with increasing compressive force against it. The friction pad 656 may for example, be made of an elastomeric material. The opening 652 may further be configured to receive the pivot shaft 638 where the flange 646 of the pivot shaft 638 contacts the friction pad 656. The opening 652 may partially be threaded near the upper surface 654 of the mast top plug 622. A bushing 658 fits over the pivot shaft 638. The opening 652 may be still further configured to receive a spanner nut 660. The spanner nut 660 has an upper portion 662 that is threaded and a lower portion 664 that is not threaded. The lower portion 664 of the spanner nut 660 contacts the bushing 658 while the threaded portion 662 of the spanner nut 660 screws into the opening 652.

In operation, the boom joint pivot 620 is fixedly joined to the pivot shaft 646 with the screw 642. The pivot shaft 646 rotates within the bushing 658 inside the mast top plug 622. The rotation of the pivot shaft 646 may be damped by the frictional action of the pivot shaft 646 against the friction pad 656. The force needed to rotate the pivot shaft 646 may be adjustable by adjusting the amount of compression of the pivot shaft 646 against the friction pad 656 provided by

y the spanner nut 660.

In one embodiment of the invention, the characteristics of the friction pad 656 may be selected to provide a desirable resistance to rotation of the boom with respect to the mast. Smooth and predictable motion of the boom with respect to the mast is of significant value in the dental practitioner's office. It turns out that a patient's ability to push away dental equipment, such as a whitening lamp head, leads, anecdotally, to surprisingly increased comfort levels for the patient during a dental procedure.

At the same time, it is advantageous that the motion of the boom be sufficiently damped so that the lamp head may remain in a substantially fixed position until its motion is desired by the patient or dental practitioner. For example, a boom hinge embodiment, as illustrated in FIG. 15 shows significantly improved characteristics as compared to other boom hinge arrangements such as, for example, that of FIG. 7 or that found in exemplary published conventional lamp support structures such as that of U.S. patent number 3,031,215 issued April 24, 1962 to Vance, or U.S. patent number 4,671,478 issued June 9, 1987 to Schoenig et al., the disclosures of which are herewith incorporated by reference in their entirety.

Consequently, calculations as to the characteristics of the joint have been performed with respect to one exemplified embodiment. The calculations performed serve to characterize the forces applied to the friction washer 656 by the various components of the boom joint, and the expected performance of the assembly, including projected operative lifetime of the friction washer 656.

Anecdotal evidence suggests that patient push out force is a surprisingly important factor in overall patient comfort and effectiveness of a dental equipment support structure. The optimal support structure must provide sufficient resistance to displacement to effectively support equipment and, in some embodiments, maintain it substantially immobile with respect to the teeth of a patient. At the same time, the support structure may allow the patient to displace the equipment without unreasonable effort when desired. Also, in some embodiments, it is desirable to have sufficient mobility of the support structure to allow the supported equipment to accommodate minor and/or involuntary movements of the patient.

Further, it is desirable that, subject to initial adjustment, the support structure be capable of adjustment by the application of forces near and/or on the supported equipment, such that there is no need for constant referral to portions of the structure that are relatively remote from the equipment, such as the boom joint or caster locks.

This combination of features and functions is surprisingly important to the overall perception of functionality and ease of use by the patient and dental practitioner and is not satisfied by the various conventional support mechanisms known to be available. Furthermore, achieving an optimal combination of characteristics has been found to surprisingly sensitive to aspects of the invention as embodied in particular design features.

For example, an embodiment of the invention including the boom joint of FIG. 19 is found to provide highly linear and stable load bearing characteristics that maintain consistency and repeatability over a large number of operative cycles.

Thus it is found that the application of particular forces at the load (i.e., the equipment being supported by the equipment support structure) results in a load displacement that is surprisingly consistent and repeatable over a large number of operative cycles. In this way, the problem of maintaining effective support and control of an article of dental equipment, while allowing appropriate rep-

ositionability and patient push-out characteristics is solved by application of the present invention in its various aspects.

FIG. 24 shows a table of forces 2000. The table 2000 relates to the force applied at the load end of the boom to produce a responsive motion of the boom with respect to the mast. This applied force, identified as patient push out 2002, represents a force required to patient to, for example, push a whitening lamp head that may be coupled to the boom away from the patient's mouth.

The joint torque corresponding to a particular push out force is shown as 2004.

Also shown are the spring force 2006 (in pounds) applied to the friction washer in one embodiment of the invention, and the corresponding spring deflection (in inches) 2008 for a particular Bellevue washer spring. Thus, for example, in the illustrated embodiment, a spring force of about 355 pounds may produce a spring deflection of about 0.022 inches. The resulting joint torque is 48 pounds which translates into a patient push out force of 2 pounds.

FIG. 25 shows a graphical representation of the relationship 2010 between spring deflection 2012 (in inches) and patient push out force (in pounds) 2014. In the illustrated embodiment, this relationship is substantially linear

Figure 26 shows a graphical representation of a spring force function 2016 characteristic of a boom joint apparatus according to one embodiment of the invention. The vertical axis represents a force 2006 applied to the spring in a substantially axial direction. The horizontal axis represents a displacement 2008 in inches of the spring responsive to the applied force 2006. As shown in figure 26, the displacement of a spring, such as a Bellevue washer, according to the illustrated embodiment, is substantially proportional to the axial force 2006 applied to the spring. Accordingly, the graphical line representing the relationship 2016 is substantially linear. One of skill in the art will appreciate that springs, including integral and composite springs, having other spring force characteristics may be applied in various embodiments of the invention.

FIG. 27 is a side view of an alternative embodiment of the boom joint pivot 620 and an alternative embodiment of the mast top plug 622 shown in FIG. 21. In FIG. 27, the side of the boom joint pivot 620 having the screw 642 is shown. The boom joint pivot 620 may be mounted on the mast top plug 622 as described above.

The screw 642 may attach the boom joint pivot 620 to the pivot shaft 638 (as seen in FIG. 21).

FIG. 28 is a side cross-sectional view of an alternative embodiment boom joint pivot 620 and an alternative embodiment mast top plug 622. The boom joint pivot 620 includes the vertical bore opening 632 and the horizontal bore opening 634. The boom joint pivot 620 further includes the arcuate slot 636 that receives the pin 666 set in the mast top plug 622. The pivot shaft 638 is in position in the vertical bore opening 632. The through-hole 640 in the pivot shaft 638 may be aligned with the horizontal bore opening 634, i.e., in position to receive the screw 642 (not shown).

The mast top plug 622 may be seen in greater detail than in FIG. 21. The generally cylindrical opening 652 axially is shown to be located and extending from the upper surface 654 of the mast top plug 622. The opening 652 may receive elements of the inventive damp that may enable the boom joint pivot 620 to pivot with respect to the mast top plug 622 but may also damp the rotation of the boom joint pivot 620. As can be seen in FIG. 21, the opening 652 may be configured to receive the friction pad 656, the bushing 658, and spanner nut 660. The frict

ion pad 656 may provide greater frictional resistance with increasing compressive force against it. The friction pad 656 may be, for example, made of an elastomeric material, such as those materials suitable for the friction washer, as described above. The bushing 658 may be, for example, made of a material having a low coefficient of friction such as a plastic material including those described above for use in the bushing 254 in FIG. 9. A washer 670 and a spring 672 such as a Belleville washer may be located between the friction pad 656 and the bottom of the opening 652.

As described above, the spanner nut 660 may be screwed down against the bushing 658 which may press down on the flange 646 of the pivot shaft 638. The flange 646 of the pivot shaft 638 contacts the friction pad 656. The spring 672 provides force pressing the friction pad against the flange 646 from below. The pivot shaft 638 is rotatable within the bushing 658 while the friction pad 656 damps the rotation of the pivot shaft 638. The spanner nut 660 enables the damping of the rotation of the pivot shaft 638 to be adjustable as the damping may be increased when the spanner nut 660 is screwed down more tightly on the pivot shaft 638.

FIG. 29 is a perspective view of the alternative boom joint pivot 620. The arcuate slot 636 that receives the pin 666 may be clearly seen as is the vertical bore opening 632.

FIG. 30 is a perspective view of the vertical pivot shaft 638. The vertical pivot shaft includes the first portion 648 having a smaller diameter than the second portion 650. The flange 646 is contiguous to the second portion 650. The through-hole 640 may be a horizontal bore through the first portion 648 of the vertical pivot shaft 638. The vertical pivot shaft 638 also includes a flange 646 contiguous to the second portion 650 of the vertical pivot shaft 638. The vertical pivot shaft 638 is, for example, made of metal or ceramic or polymeric material, including, among others, those suitable for the boom and mast as described above.

FIG. 31 is a cross-sectional view of the pivot shaft 638. The pivot shaft 638 includes the first portion 648 having a smaller diameter than the second portion 650. The flange 646 is contiguous to the second portion 650. The through-hole 640 may be shown having one chamfered end 680. Alternatively, both ends of the through-hole 640 may be chamfered.

FIG. 32 is a perspective view of a pivot shaft according to another embodiment of the invention. The pivot shaft 690 includes a cylindrical portion 692 contiguous with a flange 694. The cylindrical portion 692 includes a through-hole 696. The through-hole 696 is shaped and configured to receive the screw 642 (not shown).

FIG. 33 shows, in cross-section, the pivot shaft 690, as shown in FIG. 32. As described above, the pivot shaft 690 includes the cylindrical portion 692, the flange 694 and through-hole 696. In this view, the through-hole 696 is countersunk and chamfered at both ends 698.

FIG. 34 shows, in top view, the spanner nut 660. The spanner nut 660 may also be referred to as a compression plug. The spanner nut 660 may be substantially circular in shape. In one embodiment, the spanner nut 660 may have two curved notches 700 located symmetrically about the circumference 702 of the spanner nut 660. The notches 700 extend from the upper surface 704 of the spanner nut 660 and end at a point before the bottom surface (not seen in this view). The notches 700 may be shaped and configured to receive pins to prevent the spanner nut

660 from unscrewing from the opening of the mast top plug 622. In an alternate embodiment, the spanner nut 660 may only have one curved notch. In a further alternate embodiment, the spanner nut 660 may have several curved notches, typically symmetrically placed around the circumference of the spanner nut 660.

FIG. 35 shows, in side view, the spanner nut 660 according to principles of the invention. The spanner nut 660 includes the upper threaded portion 662 and the lower unthreaded portion 664. One notch 700 can be seen extending from the upper surface 704 of the spanner nut 660 and ending in the lower unthreaded portion 664.

FIG. 36 shows a bushing 2270. The bushing 2270 may include a tubular member 2272 with inner 2274 and outer 2276 substantially cylindrical surfaces disposed in coaxial spaced relation to one another. The bushing 2270 also may include a flange portion 2278 disposed radially outwardly from outer surface 2276.

FIG. 37 shows a spanner nut 660 according to a further embodiment of the invention. The spanner nut 660 includes first 2280 and second 2282 arcuate slots in a upper surface 2284. The slots 2280, 2282 are adapted to receive a tool for rotation of the spanner nut 660. In contrast to the slots 700 of the spanner nut 660 shown in FIG. 34, slots 2280 and 2282 do not interrupt the threads 700 of the nut. Accordingly, the nut of the FIG. 37 embodiment may be less likely to experience cross-threading or other damage during installation than the spanner nut 660 of FIG. 34.

FIG. 38 is a perspective view of the mast top plug 622 according to principles of the invention. The mast top plug 622 includes a generally cylindrical-shaped structure 710 substantially centered in the mast top plug 622. A first arc-shaped structure 712 and a second arc-shaped structure 714 are disposed on either side of the center structure 710. The center structure is shaped and configured to hold the pivot and friction pad assembly described above. The first and second arc shaped structures 712, 714 serve to align the mast top plug 622 within the hollow bore in the mast 101.

FIG. 39 is a cross-sectional view of the mast top plug 622. The center structure 710 of the mast top plug 622 includes the generally cylindrical opening 652 axially located and extending from the upper surface 654 of the mast top plug 622. The opening 652 is configured to receive the spring 672, washer 670, friction pad 656, pivot shaft 638, bushing 658 and spanner nut 660 as described above.

A protrusion 716 in the bottom of the opening 652 enables alignment of the spring and washer. The opening 652 is threaded near the upper surface 654 to mate with the threads of the spanner nut 660. The mast top plug 622 further includes the first arc-shaped structure and the second arc-shaped structure that are used to align the mast top plug 622 in the mast 101.

FIG. 40 shows a top view of the mast top plug 622 according to principles of the invention. The top of the mast top plug 622 is oval-shaped in the present embodiment of the invention to match the oval configuration of the mast 101. The upper surface 654 of the mast top plug 622 is substantially flat. The mast top plug 622 includes an opening 652 extending from the upper surface 654 of the mast top plug 622. The spanner nut 660 is in position in the opening 652. The spanner nut 660 includes a notch 700. The notch 700 receives a pin (not shown) that prevents the spanner nut 660 from moving once the spanner nut 660 is screwed down into the opening 652 to the desired position. The mast top plug 622 further includes a bore opening 668 including a pin 666.

FIG. 41 shows, in assembly view, a mast-top plug and pivot assembly 750 accord-

ing to another embodiment of the invention. The assembly includes the pivot 620 and the spanner nut 660, the pivot shaft 690, the friction pad 656, the washer 670, the spring 672, the mast top plug 622 and the screw 642. The bushing 658 is located inside the spanner nut 660.

FIG. 42 shows, in perspective view, components of a ball and socket joint according to one embodiment of the invention. The ball and socket joint (also referred to as a ball joint) 902 includes a head tube 908 having a first opening 910 and a second opening 911 at opposite ends of the head tube 908. The openings 910, 911 also include grooves 910a, 911a respectively. A third opening 912 is present in the side of the head tube 908. The ball joint 902 further includes a first ball cup 914 and a second ball cup 915 to be received into the first and second openings 910, 911, respectively. A pivot mount 906 that holds the dental whitening lamp head (not shown) connects to the ball joint 902 by a ball swivel 904. The first and second ball cups 914, 915 are configured to receive the ball swivel 904 through the third opening 912 in the head tube 908. The ball joint 902 will be described in more detail below.

According to one embodiment, each ball cup 915 may include a contact plate 2290. In various embodiments of the invention, the reinforcing plate may be integrally molded with the ball cup 915, or coupled to a surface of the ball cup 915 with an adhesive or an adhesive tape, or by a fastener such as a screw or rivet.

The first and second openings 910, 911 may be adapted to receive the first and second ball cups 914, 915 respectively. A pivot mount 906 that is adapted to hold the dental instrument or equipment connects to the ball joint 902 by a ball swivel 904. The first and second ball cups 914, 915 may be configured to receive the ball swivel 904 through the third opening 912 in the head tube 908. The ball joint 902 will be described in more detail below.

FIG. 44 shows, in sectional perspective view, components of a ball joint (also referred to as a ball joint) according to one embodiment of the invention. The ball joint 902 is shown with a cutaway view of the head tube 908. The first ball cup 914 is in place inside the head tube 908. The ball swivel 904 of the pivot mount 906 is shown inserted through the third opening 912 of the head tube 908.

One of skill in the art will appreciate that a ball joint, such as that illustrated, for example, in above FIGs. 42 and 44, is merely exemplary of the various formations or coupling features which may be used to couple a dental instrument or apparatus or device to an end of the boom 103. For example in an alternative embodiment a flexible member, such as a gooseneck member, is disposed between the payload apparatus and the anterior end of the boom. The support structure of invention may include any flexible coupling device appropriate to a particular application and payload apparatus.

FIG. 43 shows, in exploded perspective view, a forward assembly 900 for a dentistry equipment support structure boom, enabling separable attachment between the instrument (not shown here) and the boom 103. The head tube 908 may be attached to the end of the boom 103. The instrument connector assembly 900 may be a socket joint including a ball joint 902 adapted to receive the ball swivel 904 of pivot mount 906 on the supported equipment as shown, for example, in FIG. 44.

The head tube 908 may be attached to the end of the boom 103. The head tube 90

8 has three openings, the first and the second opening 910, 911 on each end of the tube to receive the pieces that create the ball joint and the third opening 912 at the front of the head tube 908 to receive the ball swivel 904 on the dental equipment to be supported (not shown).

The forward assembly 900 of the present embodiment includes a first and a second ball cup 914, 915, a first and a second spacer 916, 917, a first and a second spring 918, 919, a first and a second nut plate 920, 921 and a first and a second ball joint knob 922, 923. Each ball cup 914, 915 has a curved surface so that when the ball cups 914, 915 are mated at the curved surfaces a substantially spherically-shaped space configured to receive the ball swivel 904 is formed.

To form the ball joint, the ball cups 914, 915 are inserted into the head tube 908 so that the spherically-shaped space aligns with the third opening 912 of the head tube 908. The spacers 916, 917 are inserted into openings 910 and 911 respectively and positioned on either side of the mated ball cups 914, 915. The first and second springs 918, 919 are placed against the first and second spacers 916, 917 respectively.

The nut plates 920, 921 are attached on opposing ends of the head tube 908 over the first and second openings 910, 911. The nut plates 920, 921 each may have a central opening 918, 919 that may be threaded.

According to one embodiment of the invention, each of the knobs 922, 923 may include an ultrasonically welded stud having an externally threaded distal end. The screws of the knobs 922, 923 are screwed through the central openings of the nut plates 920, 921 and press against the springs 918, 919, spacers 916, 917, and ball cups 914, 915 to press the ball cups 914, 915 against the ball swivel 904. When the knobs 922, 923 are tightened down, the received ball swivel 904 may not move inside the mated ball cups 914, 915. When the knobs 922, 923 are loosened, the received ball swivel 904 may move inside the mated ball cups 914, 915.

A first alternative embodiment of the ball socket involves relying on spring strength rather than pressure from a screw to put pressure against the ball cups 914, 915. Further, the springs 918, 919 shown here are coil springs. Alternatives to coil springs include, for example, spring washers, and other mechanisms for applying linear force, as known to those of skill in the art.

FIG. 45 shows, in additional detail, a nut-plate 920, 921 and spring subassembly 918 according to one embodiment of the invention. The spring assembly is adapted for supplying the spring tension for compressing the ball cups 914, 915 in response to the rotations of the absent knobs 922, 923, allowing the freedom of movement of the ball swivel 904 to be varied..

FIG. 46 shows an enlarged view of the ball cup 915, which is a mirror image of the ball cup 914. The ball cup 915 includes an internal space 915c that, when mated with the corresponding space in ball cup 914, forms a substantially spherical space that may retain the ball swivel 904 (as shown in FIG. 44). An aperture 915a allows the shaft connecting to the ball swivel 904 to exit the head tube 908 through opening 912 (as shown in FIG. 44). The ball cup 915 also includes a ridge 915b that restricts the orientation of insertion as well as rotation of the ball cup 915 in the opening 911 of head tube 908 by fitting into groove 911a (as shown in FIG. 42).

FIG. 47 shows another embodiment of a ball cup 2300 according to another embodiment of the invention. During assembly of the assembly 900 (as shown in FIG. 43), the contact plates 2290 must be mounted to the ends of the ball cups 914, 915. This may be achieved by using a double sided adhesive tape or other forms of adhesives. In the embodiment depicted in FIG. 47, the contact plate 2310 includes a central hole 2312. During mounting of the contact plate 2310 to the ball cup 2300, the central hole may come to rest upon the formation 2302 on the mounting surface 2304 of the ball cup 2300. The formation 2302 may be of any shape, such as a cross or other multi-pointed form, but is slightly larger in width than the diameter of the central hole 2312 of the contact plate 2310. To achieve fixture of the contact plate 2310, compression may be used to force the formation 2302 to fit within the confines of the central hole 2312. This fit may be a compression or frictional fit, such that the contact plate 2310 is substantially fixed to the ball cup 2300.

FIG. 47 shows an alternative embodiment of a ball joint according to another embodiment of the invention. The head tube 2400 may serve substantially the same purpose as the head tube 908 of FIG. 42, but is of square, rectangular or other angled shape in cross-section, rather than circular or elliptical as in FIG. 42. The angled shape of the opening 2410 allows a ball cup to be inserted in a similar manner as that depicted in FIG. 42, however a ridge, such as the ridge 915b shown in FIG. 46 and its corresponding groove 911a are not necessary to prevent rotation of the ball cup within the head tube due to the irrotatable nature of angled fits.

One of skill in the art will appreciate that a ball joint, such as that illustrated, for example, in FIGs. 42-44, is merely exemplary of the various coupling features which may be used to couple a dental apparatus or device to an end of the boom 103. For example in an alternative embodiment a flexible member, such as a gooseneck member, is disposed between the payload apparatus and the anterior end of the boom. The support structure of invention may include any flexible coupling device appropriate to a particular application and payload apparatus.

FIG. 49 shows a ball joint knob 922, according to one embodiment, in additional detail. The ball joint knob includes a body having a semi-ovoid external surface 930. The interior of the ball joint knob 922 is partially hollow, and includes a plurality of ribs 934 disposed between an inner cylindrical member 936 and an inner surface of the body. The inner cylindrical member has a first longitudinal axis, and a shaft 938 with a second longitudinal axis is disposed within the inner cylindrical member 936, such that the first and second longitudinal axes are substantially coincident. As illustrated, the shaft includes a substantially cylindrical outer surface bearing a plurality of threads 940 on a portion thereof. The threads 940 are adapted to be coupled to internal threads 924 of a corresponding nut-plate 920, as shown in FIG. 45.

The various inventive embodiments of a dentistry support structures heretofore described will be understood by one skill in the art to be adaptable to the support of a wide variety of conventional and novel dentistry apparatus. The resulting novel combinations provide not only effective dentistry related functionality, but are efficient in that they allow for the interchange of functional modules and reuse of the support structure for a wide variety of procedures and functions.

Thus, one of skill will appreciate that a dentistry support structure accordi

ng to the present invention is used in various embodiments to support a dental whitening lamp, a dental composition during lamp, a dental imaging system for endoscopic imaging as in, for example, endoscopic root planing, an ultrasonic imaging system, and a support system for x-ray film and/or electronic x-ray sensors adapted for use in x-ray imaging of dental x-ray-graphic subjects.

FIG. 50 shows a support structure for dental equipment according to one embodiment of the invention. The illustrated embodiment includes a dental whitening lamp 1100. The dental whitening lamp has a lamp head 1102 with a housing 1104. The lamp head 1102 also has a shaft 1105 that serves to couple the lamp head to a ball joint 1107. The ball joint 1107 is, in turn, coupled to a distal end of a boom 1108. A mast 1110 supports the boom 1108 and lamp head 1102. The mast 1110 is coupled at its upper end to the boom 1108 by a boom joint 1200. The mast 1110 is, in turn, supported at its lower end by a base 1112. In the illustrated embodiment, the base 1112 includes a plurality of arms 1118 extending from a center 1116 where the mast 1110 is attached. A caster wheel 1120 is attached to the end of each of the plurality of arms 1118 away from the center 1116. The caster wheels 1120 contact the floor thereby support the entire dental whitening lamp.

In the illustrated embodiment, the lamp head 1102 is adapted to be removably coupled to the body of a patient. In one exemplary embodiment, a lip retracting device, such as a lip retractor, is connected to a light guide that is in turn coupled to the lamp head 1102. Consequently, the present invention allows the lamp head to be supported in a way that allows its position to be extensively adjusted, so that the lamp head may be properly aligned with the patient for the dentistry process. This alignment will be maintained, even allowing for slight movement of the patient's head. This is possible because the lip retracting device is removably engaged with the light guide, and is positioned but not fixed to allow for this slight movement of the patient's head.

FIG. 51 shows an assembly relationship between the ball joint 902 the lamp head 1102, a light guide 1120, and a lip retractor device 1122 according to one embodiment of the invention. A pivot mount 906 is coupled between the lamp head 1102 and the ball joint 902. The ball joint allows the lamp head to be swiveled in space such that an optical axis of the curing lamp is aligned with the target teeth of a dental whitening subject.

A light guide 1120 is adapted to be coupled to an anterior end of the lamp head 1102. In one embodiment, the light guide 1120 includes an inner surface region 1122 that is adapted to be held in proximity to an outer surface region 1124 of the lamp head 1102. According to one embodiment of the invention, a projecting member, or bump, on inner surface 1122 is adapted to be urged into a recessed region 1126 of outer surface region 1124 so as to maintain the proximity of surface regions 1122 and 1124.

In one embodiment of the invention, the light guide 1120 includes an elastically compressible cushion 1128 at an anterior edge thereof. The elastically compressible cushion 1128 serves to soften an interface between a dental whitening process subject (not shown) and the light guide.

In a further aspect of the invention, as shown in the illustrated embodiment, the light guide includes first and second slots 1130 and 1132. These slots are adapted to receive projecting wings 1134, 1136 of a lip retractor 1138 so as to stabilize a relationship between the dental whitening subject and the lamp head

The lip retractor 1138 includes channels 1140, 1142 adapted to support the lips of a dental whitening subject during the whitening process, and an elastic member 1144. The elastic member 1144 is coupled to the channels 1140, 1142 and adapted to urge the channels outwardly towards the lips, so as to couple the whitening subject to the lip retractor.

When the whitening subject is coupled to the lip retractor 1138, and the lip retractor is coupled to the light guide 1120 by the insertion of wings 1134, 1136 in respective slots 1130, 1132, the whitening subject is spatially stabilized with respect to the lamp head 1102. In this way the support structure serves to support the lamp head in a substantially stable spatial relationship to the whitening subject.

As discussed above, this spatially stabilized relationship between a subject and the support structure of the invention is found in other embodiments of the invention and in relation to various apparatus and processes.

In one embodiment, input/output cables may be used to provide a first electrical connection between the light source to the power pack and power cables to provide a second electrical connection between the power pack and an external power source, such that the input/output cables and the power cables are removably attached to the power pack.

FIG. 52 shows a dental illumination source according to another embodiment of the invention. In the illustrated embodiment, the dental illumination source is a dental whitening illumination source. The reader will appreciate, however, that a dental composition curing source might equally well be shown. In the illustrated embodiment, the ball joint 902 is coupled to a light housing 1150. The light housing 1150 includes a first elongate portion 1152 having at its posterior end the ball of the ball and socket joint 902. An anterior end of the housing 1150 includes, in the illustrated embodiment, an arcuate surface 1154.

Arcuate surface 1154 support a one or more illumination sources 1156. In one embodiment of the invention the one or more illumination sources 1156 includes one or more light emitting diodes (LEDs). In another embodiment of the invention, the one or more illumination sources 1156 includes one or more miniature arc lamps such as, for example, halogen arc lamps. In still other embodiments of the invention, the one or more light sources 1156 includes one or more incandescent lamps such as, for example, halogen incandescent lamps, and in still other embodiments of the invention, the one or more light sources includes one or more optical fibers coupled to a remote light source and/or one or more optical wavelength transformer such as those described in United States patent application number 60/658,517, the disclosure of which is herewith incorporated by reference in its entirety.

In the illustrated embodiment, a signal cable 1170 is coupled at one end to the light housing 1150. The signal cable may include a power cable adapted to provide power for the one or more illumination sources 1156. The single cable may also include an optical light guide such as an optical fiber adapted to transmit light to the one or more illumination sources from a remote light source. In at least one embodiment of the invention, the signal cable 1170 includes a strain-relief feature 1172.

In one embodiment, the power cables may provide a connection from a power source external to the dental instrument and the power pack, and the power cables are substantially contained in the mast, and are removable from the external power

source.

Illustrating another aspect of the invention, the embodiment of FIG. 52 shows first and second wing-coupling members 1158, 1160. Each wing-coupling member 1158, 1160 includes a respective slot 1162, 1164. The slots 1162, 1164 are adapted to receive corresponding wings 1134, 1136 of a lip retractor 1138, as illustrated in FIG. 53.

When the lip retractor 1138 is worn by a dental procedure subject, insertion of the wings 1134, 1136 into the slots 1162, 1164 serves to stabilize a spatial relationship between the subject and the one or more illumination sources 1156.

FIG. 54 illustrates a support structure for dentistry according to another embodiment of the invention. In FIG. 54, the support structure 100" is shown coupled to components of an endoscopic endodontic apparatus 1180. The apparatus 1180 of the illustrated embodiment is an endoscopic root planer. One of skill in the art will appreciate that it is known to perform an endodontic procedure in which the soft gum tissue of a patient is detached and drawn away from the patient's teeth to expose the roots of the teeth. Thereafter, a dental instrument such as a scaler is used to remove deposits of plaque or other material from the exposed roots. Ultimately, the patient's gum tissue is repositioned over the roots, sutured in place, and allowed to heal. Unfortunately, because of the invasive nature of the procedure the healing process tends to be lengthy and painful.

In the embodiment of the present invention illustrated in FIG. 54, the support structure 100" supports an endoscopic root planing system 1180. The endoscopic root planing system 1180 includes a handpiece 1182. The handpiece has a distal end 1184 that includes a root planing tool and an optical device.

The optical device is adapted to illuminate a small spatial region adjacent a tip of the root planing tool and receive reflected light. The reflected light received by the optical device is, in turn, received by a sensor either directly, or by way of an optical waveguide such as an optical fiber.

The sensor converts the received light into a signal that is amplified and displayed as an image on a display screen 1186 of the system. Although the handpiece 1182 is shown coupled to the balance of the root planning system 1180 by an umbilical cable 1180, a wireless handpiece is also within the scope of the invention disclosed herewith.

In one aspect of the invention, the root planing system of the invention is adapted to allow removal of plaque and other detritus from between the gum and root of a patient without surgical removal, and subsequent reattachment, of the gum.

In one aspect of the invention, the root planing system includes a tray 1190 adapted to the convenient storage of various dental instruments and/or materials.

According to one embodiment of the invention, the tray 1190 is readily removable to allow sterilization of the tray as in, for example, an autoclave.

In another aspect of the illustrated embodiment, the monitor screen 1186 of the system is pivotally and/or removably coupled to the boom 103 of the support structure at ball joint 902. In still another aspect of the illustrated embodiment, the endodontic root planing system includes a power pack 1192. According to one embodiment of the invention, the power pack supplies operative electrical power to the balance of the root planing system by way of an electrical cable 1194.

Still further embodiments of the invention include digital processing apparatus such as, for example, a microprocessor within the powerpack 1192. The digital processing apparatus is adapted to control and process signals of the endodontic root planning system.

In the embodiment of the present invention illustrated in FIG. 55, the support structure 100" supports an endodontic apex locator system 1200. The endodontic apex locator system 1200 includes a signal transmission medium such as a coaxial signal wire 1202. The signal wire 1202 is adapted to be coupled to an apex locator fixturing device 1204.

The apex locator fixturing device 1204 includes a support clamp portion 1206, an insulator portion 1208 and a contactor portion 1210. The support clamp portion 1206 is adapted to be removably but firmly coupled to a tooth 1212 of a dental patient. The support clamp portion 1206 is adapted to support the insulator portion 1208 which, in turn, is adapted to support the contactor portion 1210.

During the performance of a root canal procedure, an endodontic file, reamer, or other appropriate tool 1214 is used to excavate a pulp chamber and root of the tooth 1212. A surface of the tool 1214 comes into contact with the contactor 1210 and an electrical signal received from the signal wire 1202 is electrically coupled to the tool 1214.

The signal wire 1214 is coupled at a second end to a processing device 1216 that is adapted to generate the electrical signal and produce a measurement based on, for example, an impedance of the tool 1214 and tooth 1212 system.

In response to the measured impedance, or other signal, the processing system 1216 produces an image on a display screen 1218 of the system. In various embodiments, the image is textural and/or graphical, and represents a spatial location of the tool 1214 with respect to a root canal 1218 of the tooth 1212. Although the apex locator fixturing device 1204 is shown coupled to the balance of the apex locator system 1200 by signal wire 1202, a wireless apex locator fixturing system is also within the scope of the invention disclosed herewith.

In one aspect of the invention, the apex locator system of the invention is adapted to allow excavation and shaping of the root canal 1218 without perforation of the root wall or of the portion of the periodontal membrane located at the apex 1222 of the root.

In one aspect of the invention, the apex locator system includes a tray 1190 adapted to the convenient storage of various dental instruments and/or materials.

According to one embodiment of the invention, the tray 1190 is readily removable to allow sterilization of the tray as in, for example, an autoclave.

In another aspect of the illustrated embodiment, the monitor screen 1218 of the system is pivotally and/or removably coupled to the boom 103 of the support structure at ball joint 902. In still another aspect of the illustrated embodiment, the apex locator system 1200 includes a power pack 1192.

According to one embodiment of the invention, the power pack supplies operative electrical power to the balance of the apex locator system by way of an electrical cable 1194. Still further embodiments of the invention include digital processing apparatus such as, for example, a microprocessor within the power pack 1192. The digital processing apparatus is adapted to control and process signals of the endodontic apex locator system.

In one embodiment the invention includes the combination of a support structure 100" with an endodontic apex locator system such as that disclosed in United States patent application number 60/594,388 the disclosure of which is herewith incorporated by reference in its entirety.

FIG. 56 shows another embodiment of the invention including the dental support structure 100 of FIG. 1 that is adapted to support a dental imaging fixturing system 1230. In the illustrated embodiment, the ball joint 902 is coupled to a su

port member 1232. The support member 1232 includes a first elongate portion 1234 having at its posterior end the ball of the ball and socket joint 902. An anterior end of the support member 1232 includes, in the illustrated embodiment, first and second wing-coupling members 1236, 1238. Each wing-coupling member 1236, 1238 includes a respective slot 1240, 1242. The slots 1240, 1242 are adapted to receive corresponding wings 1244, 1246 of a lip retractor 1248.

When the lip retractor 1248 is worn by a dental procedure subject, insertion of the wings 1244, 1246 into the slots 1240, 1242 serves to stabilize a spatial relationship between the subject and the one or more x-ray sources.

According to one embodiment of the invention, as illustrated, the lip retractor 1248 includes first and second bite members 1250, 1252. Each bite member 1250, 1252 has a respective one or more film support clips 1253 adapted to support a respective x-ray film package.

In operation, at least one x-ray film package is coupled to the one or more film support clips 1253. The x-ray film package, as is known in the art, includes a sheet of chemical x-ray film enclosed in a light-tight package. The lip retractor 1248 is coupled to a dental x-ray subject by placing the lips of the patient into the lip-receiving channels of the lip retractor 1248. The subject then bites down on the bite members to further secure the lip retractor in a stable spatial relationship to the teeth of the subject. By inserting the wings 1244, 1246 into slots 1240, 1242, the lip retractor 1248 is stabilized with respect to the dental support structure 100. This serves to stabilize the teeth of the subject and the x-ray film package 1256 with respect to the floor, and thus with respect to an x-ray source. Consequently, the well-known tendency of x-ray subjects to move during exposure of the x-ray film with a resulting non-uniformity of film exposure is reduced.

FIG. 57 shows a further embodiment of the invention including the dental support structure 100" of FIG. 54 that is adapted to support a dental imaging fixture 1230.

Unlike the embodiment of FIG. 56, the FIG. 57 embodiment includes electronic x-ray sensors 1280, 1282 coupled to the bite members 1250, 1252 respectively. Detecting and imaging x-rays with an electronic image sensor may be preferable to using chemical film because electronic image sensors tend to be more sensitive than chemical film, no chemical developing process is required, and the digital images produced by most electronic image sensors are immediately ready for digital manipulation.

In one embodiment of the invention, electronic image sensors each include a respective signal cable with a removable plug.

FIG. 58 shows the dental equipment support structure 100" of FIG. 54 including an ultrasonic imaging system 1300 according to one embodiment of the invention.

The support structure includes an imaging handle 1310 that supports an ultrasonic transducer 1312, and an imaging screen 1314. The ultrasonic transducer is adapted to be positioned in proximity to a tooth and/or bone region. Ultrasonic vibrations generated and received by the transducer are used by the system 1300 to produce an image of the tooth and/or bone region on the screen 1314.

FIG. 59 shows a dental composition tray 1350 according to one embodiment of the invention. The dental composition tray includes first and second lip receiving channels 1358, 1360. A third tooth receiving channel 1354 is disposed in a substantially normal orientation to the lip receiving channels and adapted to receive, within a concave region thereof, the upper or lower teeth of a patient. Fir

st and second fixturing wings 1362, 1364 are coupled to the first and second lip receiving channels 1358, 1360, respectively. As shown in the illustrated embodiment, a coupling member 1356 is disposed between, and mutually coupled to the first and second lip receiving channels 1358, 1360 and the tooth receiving channel 1352. One of skill in the art will appreciate that, in various embodiments, the dental composition tray includes a pair of tooth receiving channels arranged to receive both upper and lower teeth simultaneously.

In use, the dental composition tray 1350 is adapted to receive a dentistry composition, such as a dental whitening composition or a dental casting composition within the concave region 1354 of the tooth receiving channel 1352.

While exemplified embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Accordingly, the invention is not to be considered as limited by the foregoing description, but is only limited by the scope of the claims appended hereto.

1. A dental support system comprising:

a pivot member comprising at least first and at least second formations, said at least first formation is adapted for inter-engaging at least one corresponding formation of at least a portion of dental instrument, to support said dental instrument when the pivot member and the at least a portion of the dental equipment are apposed; and

a base member comprising at least one formation adapted for inter-engaging said at least second formation of the pivot member;

wherein said pivot member is adapted for rotation about a substantially vertical axis with respect to said base member.

2. The dental support system of claim 1 wherein said pivot member comprises:

a boom comprising at least one formation about a section spaced away from its ends; and

a mast comprising at least one formation towards one end; wherein said formation of said boom is adapted for inter-engaging said formation of said mast such that the boom is in a substantially perpendicular direction to the mast.

3. The dental support system of claim 1 or 2 wherein said formation on said base member comprises a pin, and said first formation comprises an arcuate slot adapted to receive said pin, said pin constrains movement of said pivot member about said axis.

4. The support system of claim 2 wherein said formation of said boom comprises a yoke and said formation of said mast comprises a shaft, said shaft being adapted to be substantially fixedly coupled to said mast.

5. The support system of claim 4 wherein said yoke comprising a first braking surface, said shaft comprising a second braking surface, said first and second braking surfaces being adapted to mutually engage a friction member.

6. The support system of claim 5 wherein said friction member comprises a

friction washer, said friction washer including an internal surface defining a through-hole, said through-hole being adapted to receive a portion of said shaft therethrough.

7. The support system of claim 6 wherein said washer comprises an anti-rotation feature, said anti-rotation feature being adapted to minimize a rotational motion of said washer about a longitudinal axis of said shaft, whereby said washer is substantially rotationally fixed with respect to said mast.

8. The support structure of claim 6 or 7 wherein said anti-rotation feature comprises a first substantially flat region of said internal surface, and said shaft comprises an external surface including a second substantially flat region, said first substantially flat region being adapted to engage said second substantially flat surface.

9. The support system of claim 1, wherein said pivot member comprises:

a shaft, said shaft being mechanically coupled to said base; said shaft being substantially rotationally fixed with respect to said base, said shaft including a first plurality of threads on an external surface thereof, said shaft being adapted to support a yoke, said yoke being adapted to rotate about a longitudinal axis of said shaft, said yoke including a first braking surface;

a washer, said washer being adapted to be supported by said shaft such that said washer is substantially rotationally fixed with respect to said shaft, said washer including a second braking surface;

a friction member, said friction member being adapted to be disposed between said first and second braking surfaces; and

a knob, said knob including a second plurality of threads on an internal surface thereof, said first and second pluralities of threads being adapted to mutually engage one another;

whereby upon rotation of said knob about said longitudinal axis of said shaft in a given direction, said knob urges said first and second braking surfaces towards one another so as to mutually engage said first and second braking surfaces with said friction member.

10. A support system comprising:

a base comprising at least one formation;

a mast comprising at least first and at least second formations spaced apart from each other, said at least first formation is adapted for removably inter-engaging the formation of the base such that the mast is in a substantially perpendicular direction to the base; and

a boom having first and second ends and a central portion, said central portion comprising at least one formation adapted for inter-engaging said at least second formation of the mast for removably attaching to the mast in a substantially perpendicular direction to the mast.

11. The support system of claim 10 wherein said formation on said base member comprises a pin, and said first formation comprises an arcuate slot adapted to receive said pin, said pin constrains movement of said pivot member about said axis.

12. The support system of claim 10 or 11 wherein said mast comprises at least third formation spaced away from the first and second formations, said at least third formation is adapted to inter-engage at least one corresponding formation of a power pack.

13. The support system of claim 12 wherein said first end of the boom comprises at least one formation adapted for removably inter-engaging at least one corresponding formation of a dental instrument.

14. The support system of claim 12 or 13 wherein said first end of the boom comprises at least one formation adapted for removably inter-engaging at least one corresponding formation of a dental instrument.

15. The dental support system of claim 14 further comprising input/output cables to provide an electrical connection between the dental instrument and the power pack, said cables are substantially contained in the mast and the boom, and said cables in the boom are removably attached to the dental instrument and to the cables in the mast.

16. The support system of any of claims 10-15 wherein said formation of said boom comprises a yoke and said formation of said mast comprises a shaft, said shaft being adapted to be substantially fixedly coupled to said mast.

17. The support system of claim 16 wherein said yoke comprising a first braking surface, said shaft comprising a second braking surface, said first and second braking surfaces being adapted to mutually engage a friction member.

18. The support system of claim 17 wherein said friction member comprises a friction washer, said friction washer including an internal surface defining a through-hole, said through-hole being adapted to receive a portion of said shaft therethrough.

19. The support system of claim 18 wherein said washer comprises an anti-rotation feature, said anti-rotation feature being adapted to minimize a rotational motion of said washer about a longitudinal axis of said shaft, whereby said washer is substantially rotationally fixed with respect to said mast.

20. The support structure of claim 18 or 19 wherein said anti-rotation feature comprises a first substantially flat region of said internal surface, and said shaft comprises an external surface including a second substantially flat region, said first substantially flat region being adapted to engage said second substantially flat surface.

21. A dental support system for a dental illumination system comprises:
a rolling base for supporting the illumination system on a surface, the rolling base is adapted to position the illumination system proximate to a workpiece in a wide range of angles, and comprises a locking mechanism to substantially restricted the movement of the illumination system;
a mast attached to the rolling base;
a boom attached substantially perpendicular to the

mast, said boom having rotational and tilt movement with respect to the mast; and

at least one illumination system attached to an end of the boom, said illumination system having rotational and tilt freedom of movement with respect to the end of the boom to facilitate tooth whitening procedure.

22. The dental support system of claim 21 wherein said system may be adapted to be positioned at the right or the left side of any workpiece.

23. The dental support system of claim 21 or 22 wherein the boom is curved

24. The dental support system of claim 21, 22 or 23 further comprising at least one power pack attached to the mast.

25. A dental support system comprising:

a pivot member, said pivot member being adapted to support a dental instrument;

a base member, said base member being adapted to support said pivot member, whereby said pivot member may be rotated about a substantially vertical axis with respect to said base member.

26. The dental support system of claim 25 wherein said base member comprises a pin, and said pivot member comprises an arcuate slot adapted for receiving said pin such that said pin constrains movement of said pivot member about said axis.

27. The dental support system of claim 25 or 26 wherein the base member comprises a braking device, said braking device dampens the movement of said pivot member about said axis.

28. The dental support system of claim 25 or 27 wherein said pivot member comprises a boom and a mast.

29. The dental support system of claim 28 wherein said boom comprises a boom hinge positioning device for angularly positioning the mast with respect to the base member.

30. The dental support system of claim 29 wherein said boom hinge positioning device can be locked to hold the boom in position.

31. The dental support system of claim 29 or 30 wherein said boom hinge in a locked position is adapted to withstand a static load of about fifty pounds against a distal end of a boom connected to said boom hinge.

32. The dental support system of claim 30 or 31 wherein said boom hinge positioning device is adapted to withstand the force of gravity when a dental instrument is coupled to the boom at its distal end.

33. A dental support system comprises:

a pivot;

at least one substantially horizontal shaft supported by said pivot; a yoke member pivotally supported by said shaft, such that said yoke member is adapted to pivot on a substantially horizontal axis; a substantially vertical shaft coupled to said pivot; and a plug member having a bore adapted to receive said substantially vertical shaft and an upper surface adapted to support said pivot.

34. The dental support system of claim 33 further comprising a friction member disposed between a surface of the pivot that moves with respect to a surface of the plug member.

35. The boom hinge of claim 33 or 34 wherein the friction member comprises a washer disposed between an upper substantially flat surface of the plug member and a lower substantially flat surface of the pivot, said flat surfaces are substantially parallel to each other and substantially perpendicular to the vertical shaft and are adapted to rotate with respect to each other about a vertical axis of the vertical shaft.

36. The dental support system of claim 33, 34 or 35 further comprising a friction device disposed between the pivot and the plug member, the friction device being adapted to damp rotational movement of the pivot with regard to the plug member.

37. The dental support system of claim 36 wherein the friction device is adapted for providing a variable amount of damping.

38. The dental support system of claim 36 or 37, wherein the friction device comprises:

a friction pad; and
a compression device to compress a rotational surface of the pivot against the friction pad.

39. The dental support of any of claims 33-38, further comprising a friction member disposed between the shaft and the plug member.

40. The dental support system of claim 39 wherein the friction member comprises of a rubber ring disposed on the shaft.

41. A dental support system comprising:

a first bearing adapted to pivot about a substantially horizontal axis of a yoke;
a second bearing adapted to pivot about a substantially vertical axis of a pivot member; and
a damper adapted to retard pivotal motion about said substantially vertical axis.

42. The dental support system of claim 41 wherein said yoke comprises a boom.

43. The dental support system of claim 41 or 42 wherein said pivot member

comprises a mast.

44. The dental support system of claim 42 wherein said boom comprises at least one formation adapted to inter-engage a corresponding formation on the yoke .

45. The support system of any of claims 41-45 wherein said yoke comprising a first braking surface, said shaft comprising a second braking surface, said first and second braking surfaces being adapted to mutually engage a friction member.

46. The support system of claim 45 wherein said friction member comprises a friction washer, said friction washer including an internal surface defining a through-hole, said through-hole being adapted to receive a portion of said shaft therethrough.

47. The support system of claim 46 wherein said washer comprises an anti-rotation feature, said anti-rotation feature being adapted to minimize a rotational motion of said washer about a longitudinal axis of said shaft, whereby said washer is substantially rotationally fixed with respect to said mast.

48. The support structure of claim 46 or 47 wherein said anti-rotation feature comprises a first substantially flat region of said internal surface, and said shaft comprises an external surface including a second substantially flat region, said first substantially flat region being adapted to engage said second substantially flat surface.

49. A dental support system comprising:
a substantially horizontal shaft rotatably supporting a yoke member;
a substantially vertical shaft rotatably positioning a pivot member; and
a brake device adapted to damp a rotation of said pivot member about said substantially vertical shaft.

50. The dental support system of claim 498 wherein said brake device comprises a frictional member.

51. The dental support system of claim 49 or 50 wherein said frictional member comprises material selected from the group consisting of a synthetic elastomeric polymer, a natural elastomeric polymer, a viscous fluid and combinations thereof.

52. The dental support system of claim 49, 50 or 51 wherein said brake device comprises a compression plug adapted to urge a first friction surface of said frictional member against a second frictional surface.

53. The dental support system of claim 52 wherein said compression plug comprises a substantially cylindrical outer surface bearing a plurality of threads.

54. The dental support system of any of claims 49-53 wherein said brake device

further comprises a spring to urge the first friction surface of said frictional member against the second frictional surface.

55. The dental support system of any claims 1-10, 13-20 and 25-31 wherein said dental instrument comprises a dental whitening system, a dental curing system, a dental examination system, a viewing and cleaning instrument; an imaging equipment; an X-ray equipment, a root canal apex locator, or combinations thereof.

41. A dental support system comprising:

 a first bearing adapted to pivot about a substantially horizontal axis;
 a second bearing adapted to pivot about a substantially vertical axis; and
 a damper adapted to retard pivotal motion about said substantially vertical axis.

42. The dental support system of claim 41 wherein said substantially horizontal axis comprises a boom.

43. The dental support system of claim 41 or 42 wherein said substantially vertical axis comprises a mast.

vertical is adapted to support a dental instrument selected from the group consisting of

45. A dental support system comprising:
 a substantially horizontal shaft rotatably supporting a yoke member;
 a substantially vertical shaft rotatably positioning a pivot member; and
 a brake device adapted to damp a rotation of said pivot member about said substantially vertical shaft.

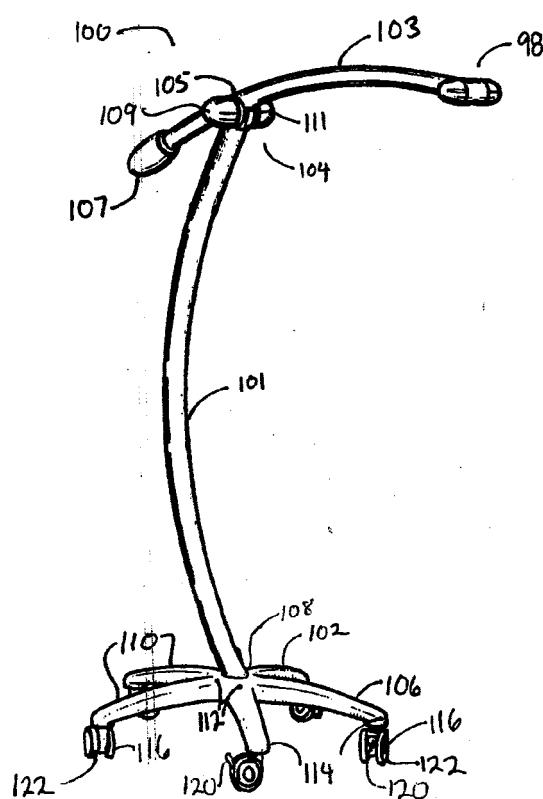
46. The dental support system of claim 45 wherein said brake device comprises a frictional member.

47. The dental support system of claim 46 wherein said frictional member comprises material selected from the group consisting of a synthetic elastomeric polymer, a natural elastomeric polymer, a viscous fluid and combinations thereof.

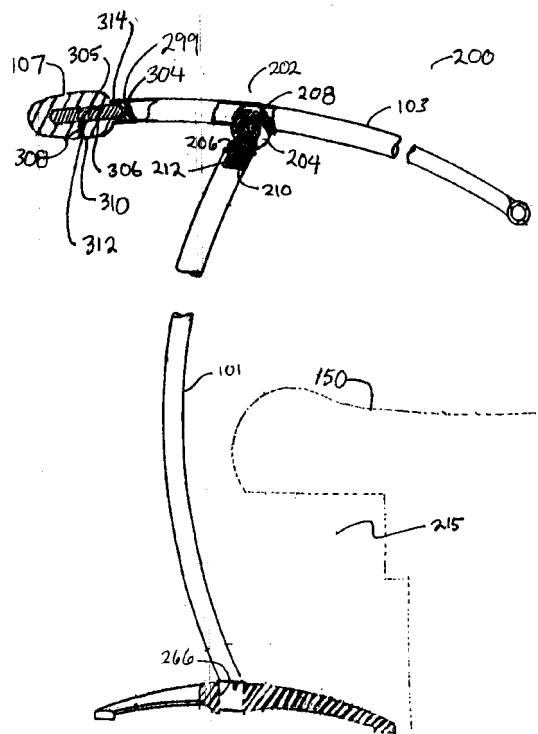
48. The dental support system of claim 45 wherein said brake device comprises a compression plug adapted to urge a first friction surface of said frictional member against a second frictional surface.

49. The dental support system of claim 48 wherein said compression plug comprises a substantially cylindrical outer surface bearing a plurality of threads.

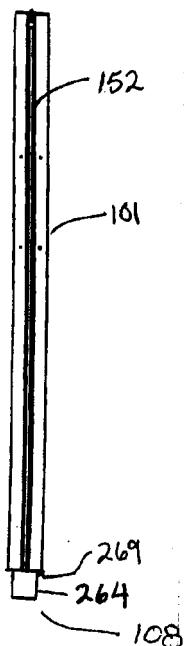
50. The dental support system of claim 45 wherein said brake device further comprises a spring to urge the first friction surface of said frictional member against the second frictional surface.

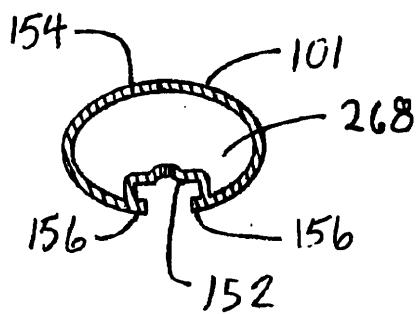

51. The dental support system of claim 1 wherein said dental instrument comprises a dental whitening system, a dental curing system, a dental examination system, a viewing and cleaning instrument; an imaging equipment; an X-ray equipment, a root canal apex locator, or combinations thereof.

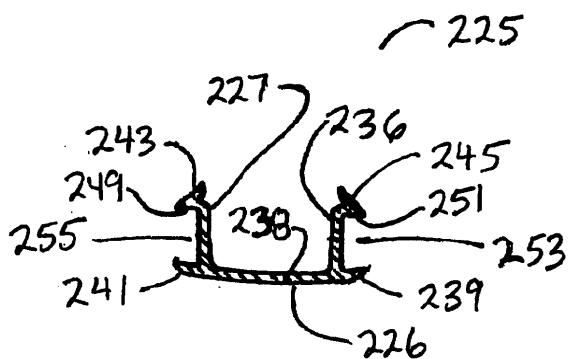
【要約】

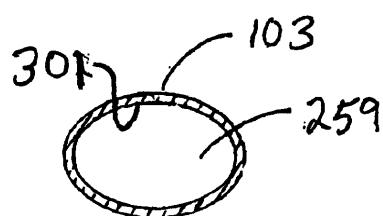

Abstract

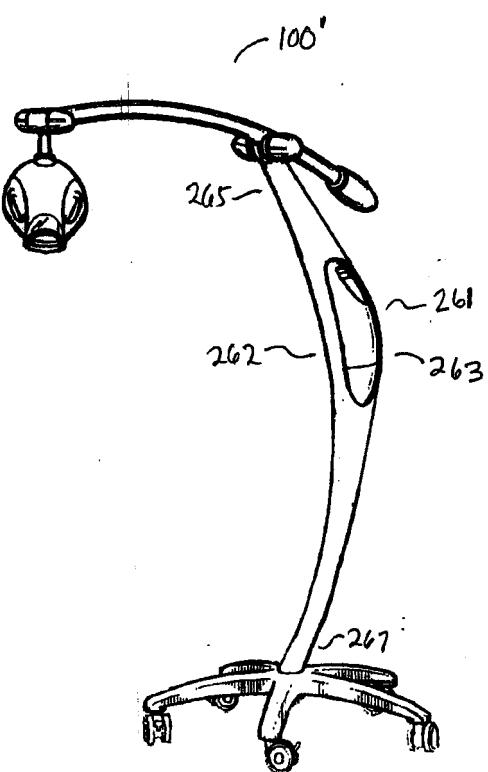
A dental lamp boom hinge includes a pivot supporting a dental lamp head and a base supporting the pivot where the pivot may be rotated about a substantially vertical axis with respect to the base. The rotational movement between the pivot and the base is damped with a damping device. The damping device in one embodiment is adjustable to provide a variable level of damping.

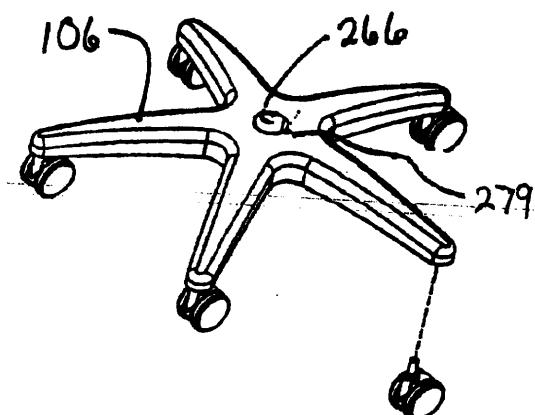

【図1】

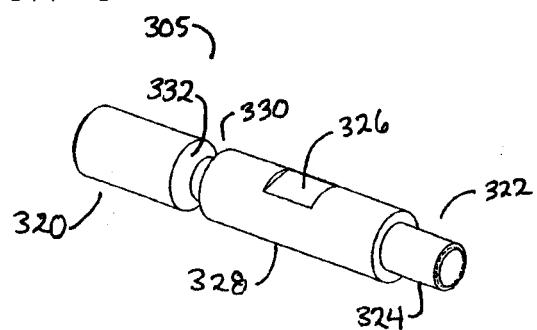

【図2】

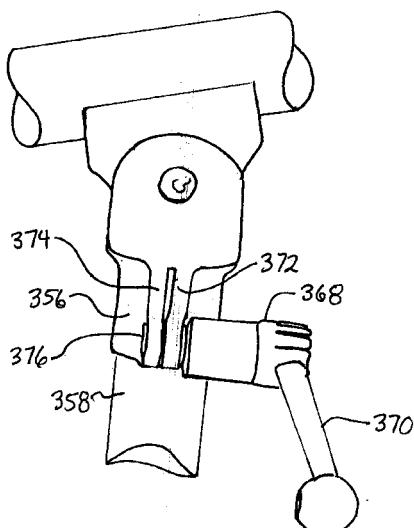

【図3a】

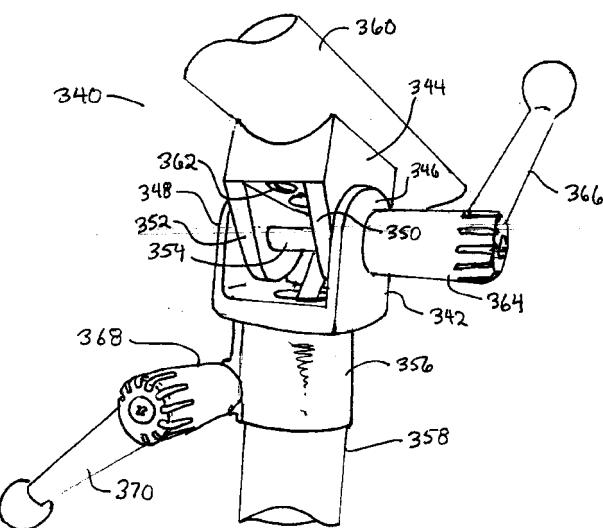

【図3b】

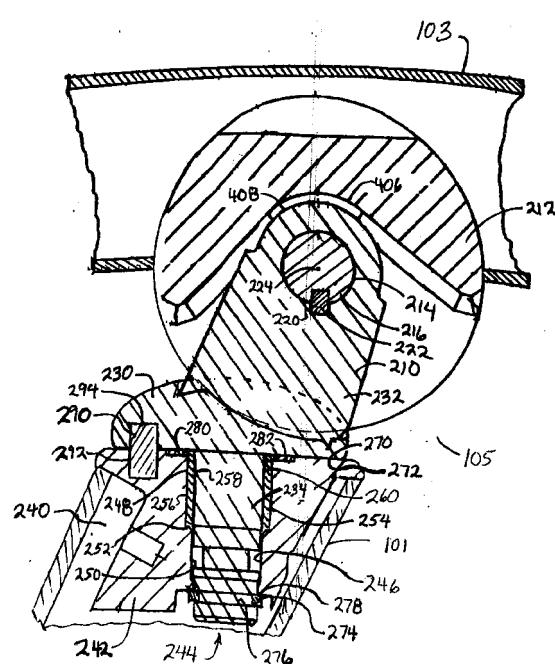

【図3c】

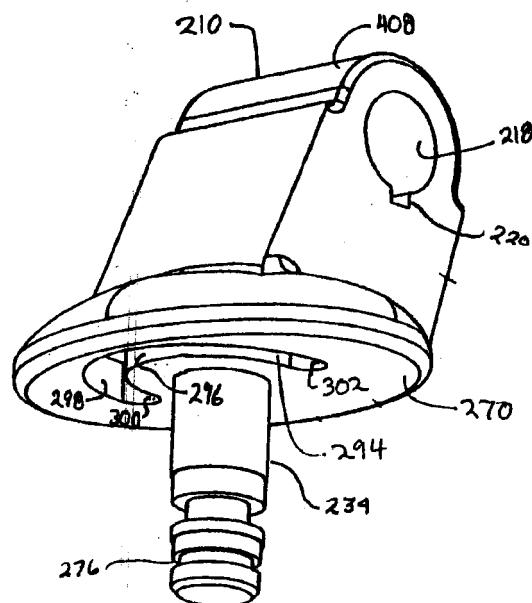

【図3d】

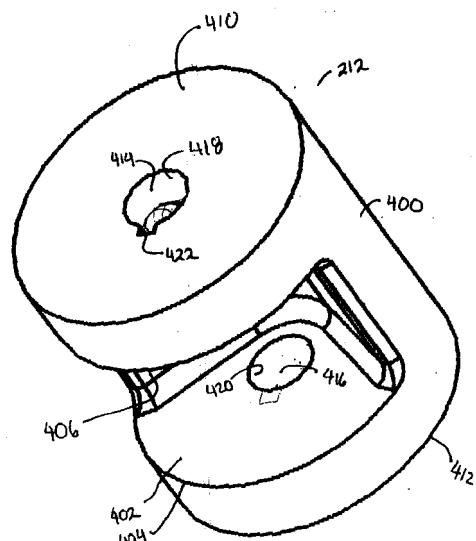

【図4】

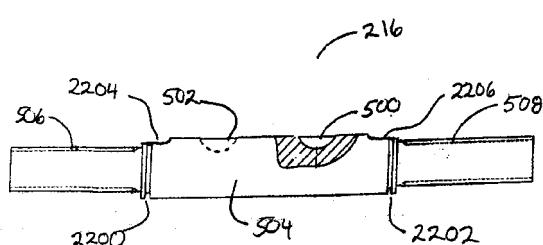

【図5】

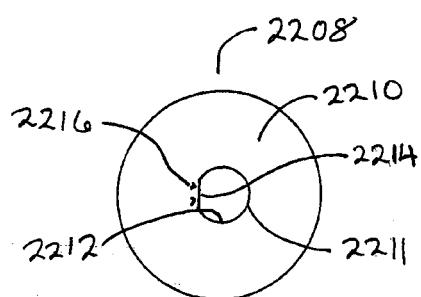

【図6】

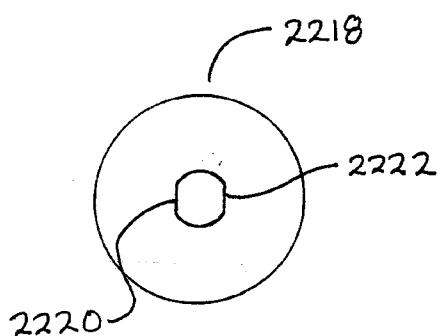

【図8】

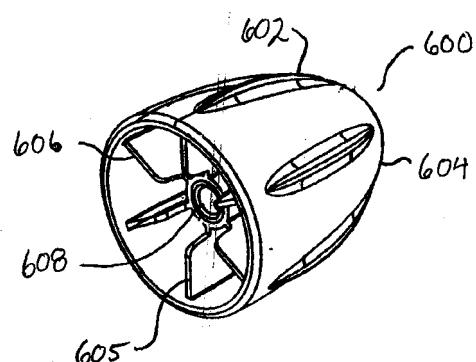

【図17】

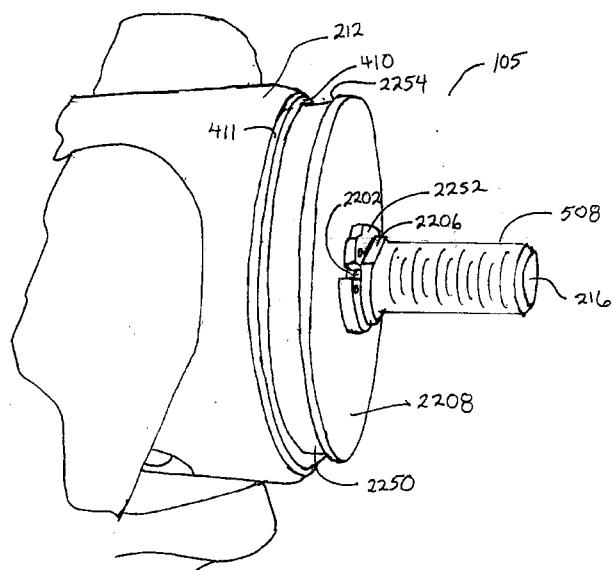

【図9】

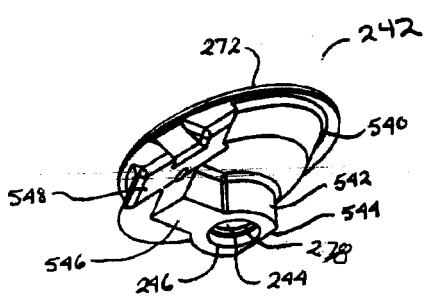

【図10】

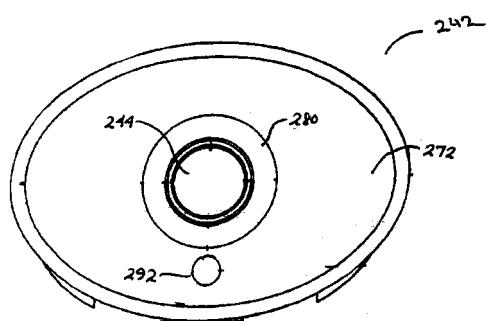

【図11】

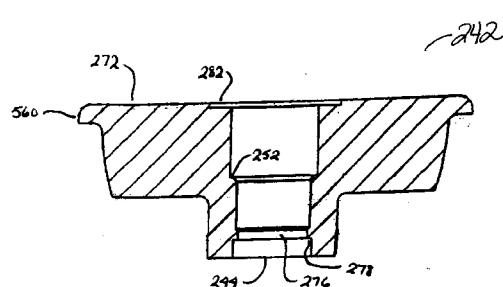

【図12】

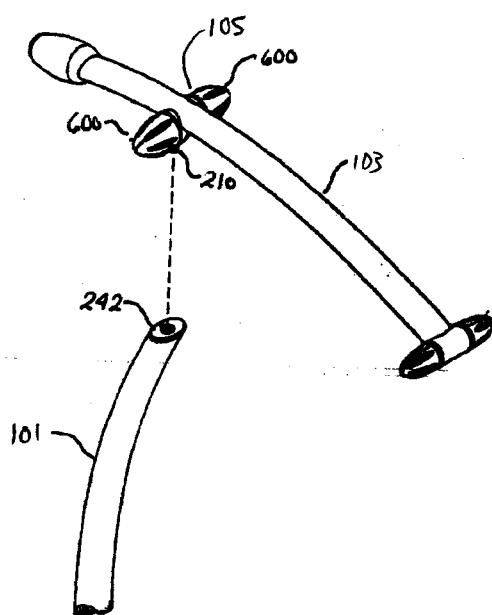

【図13A】

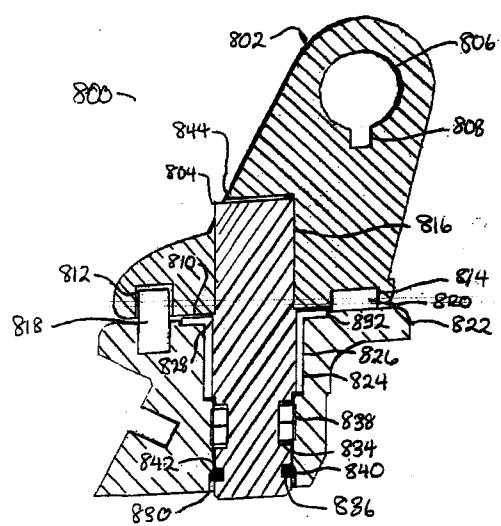

【図13B】

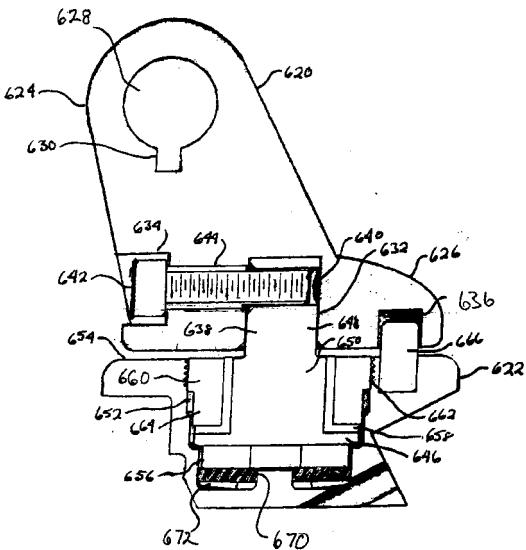

【図14】

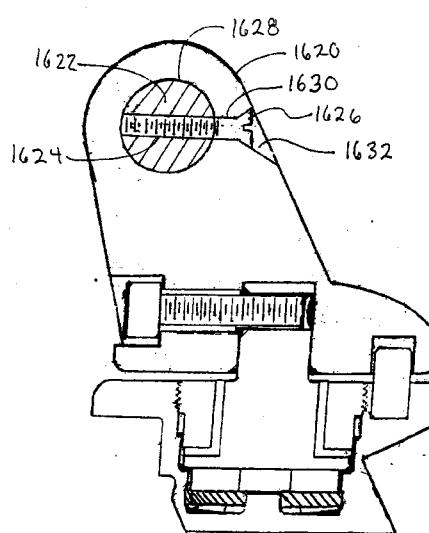

【図15】

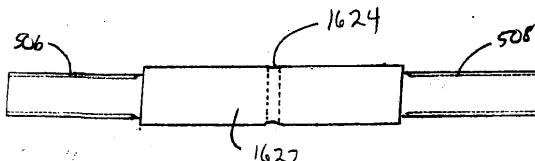

【図16】


【図17】

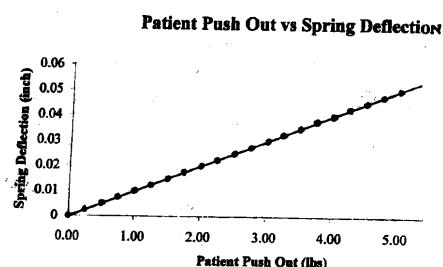

【図18】

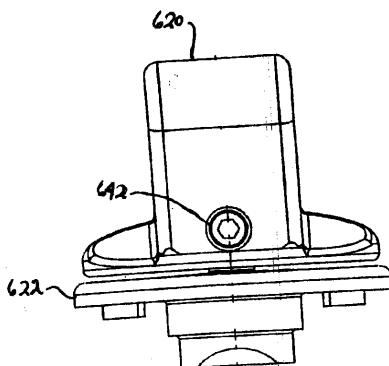

【図19】


【図20】

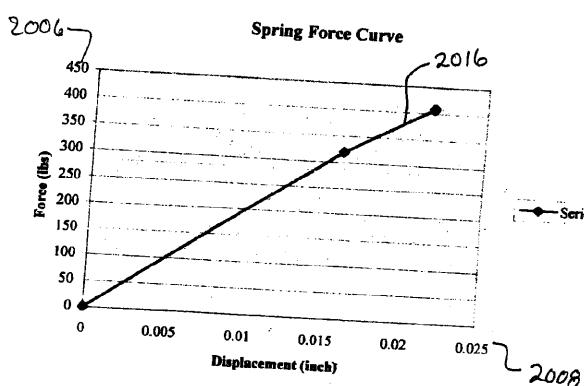

【図21】

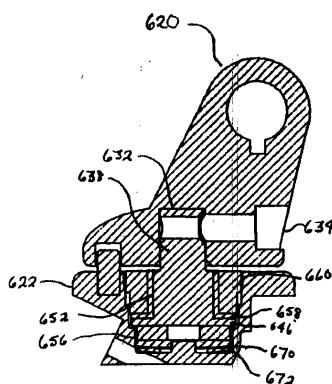
【図22】

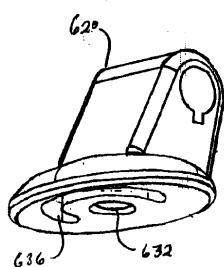

【図23】

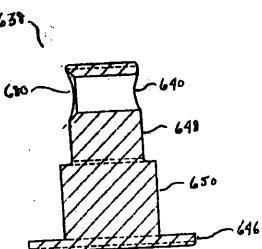

【図24】

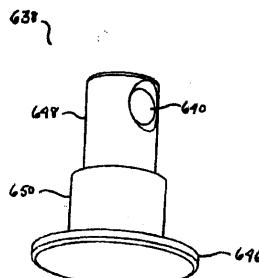
2000	2002	2004	2006	2008
Patient	Joint	Spring	Spring	
Push Out	Torque	Force	Deflection	
0.00	0.00	0.00	0.00	
0.25	6.00	44.38	0.003	
0.50	12.00	88.76	0.005	
0.75	18.00	133.14	0.008	
1.00	24.00	177.51	0.011	
1.25	30.00	221.89	0.014	
1.50	36.00	266.27	0.016	
1.75	42.00	310.65	0.019	
2.00	48.00	355.03	0.022	
2.25	54.00	399.41	0.025	
2.50	60.00	443.79	0.027	
2.75	66.00	488.17	0.030	
3.00	72.00	532.54	0.033	
3.25	78.00	576.92	0.035	
3.50	84.00	621.30	0.038	
3.75	90.00	665.68	0.041	
4.00	96.00	710.06	0.044	
4.25	102.00	754.44	0.046	
4.50	108.00	798.82	0.049	
4.75	114.00	843.20	0.052	
5.00	120.00	887.57	0.054	

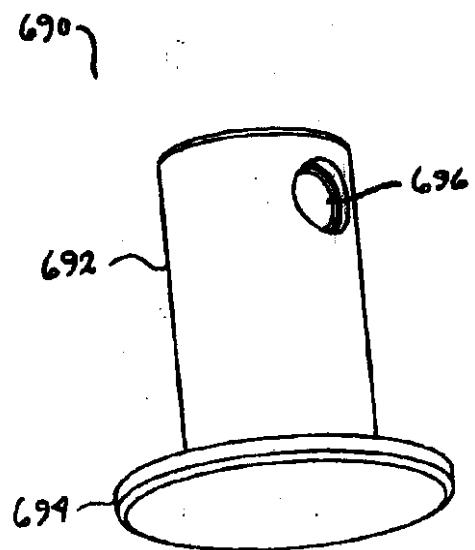

【図25】

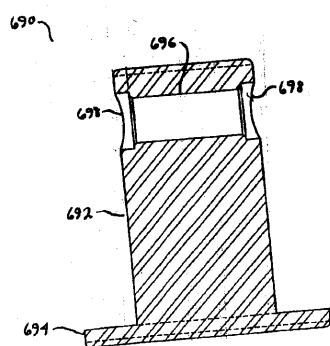

【図27】

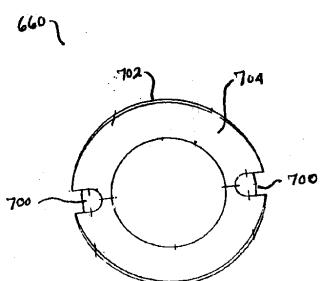

【図26】

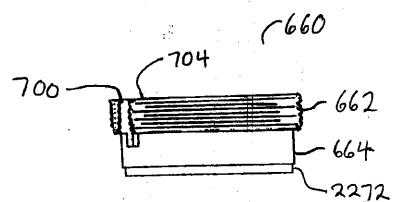

【図28】

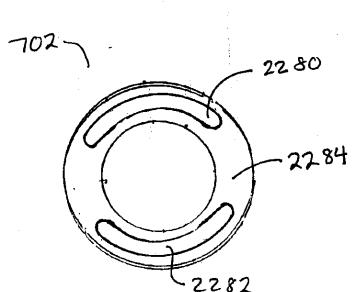

【図29】

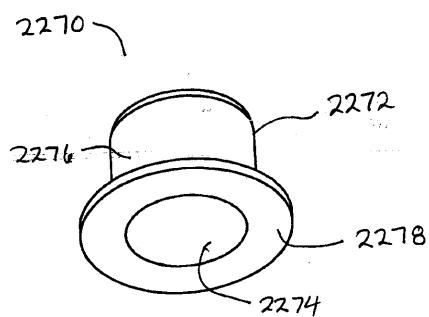

【図31】

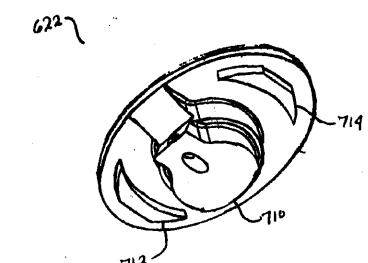

【図30】

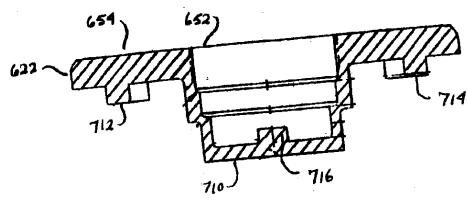

【図32】

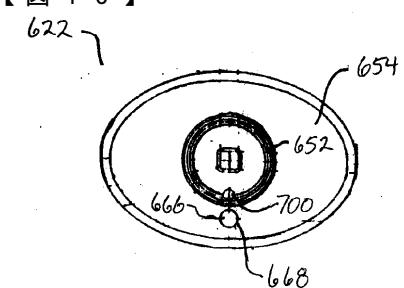

【図33】

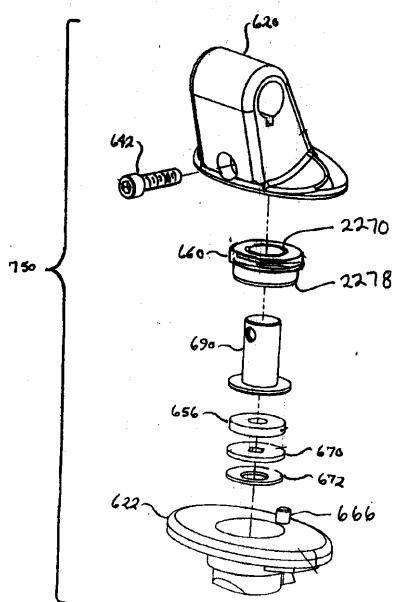

【図34】

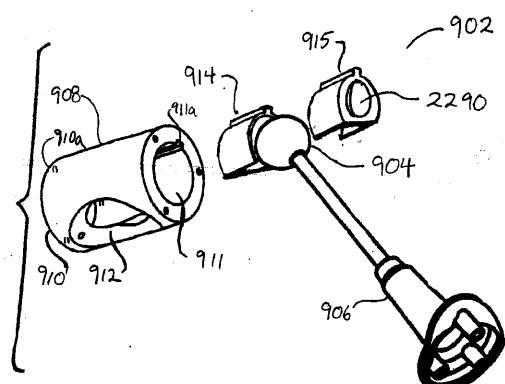

【図35】

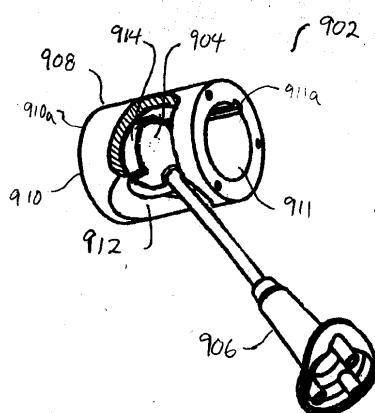

【図37】

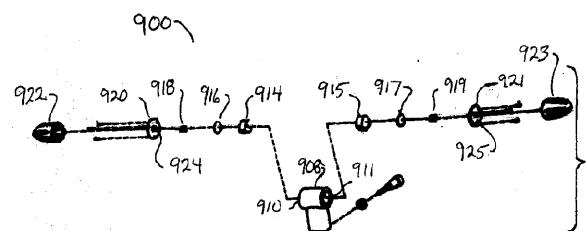

【図36】

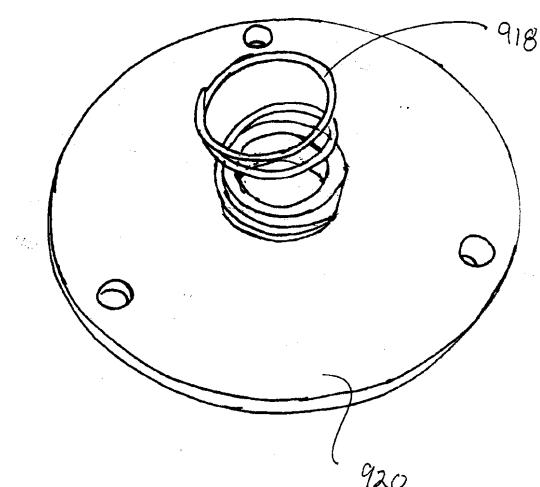

【図38】

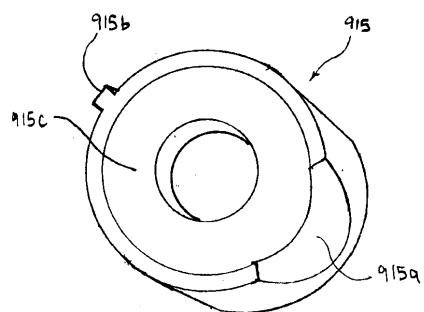

【図39】

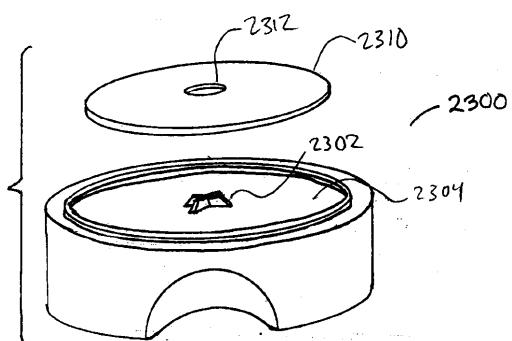

【図40】

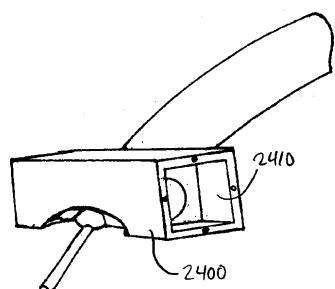

【図41】

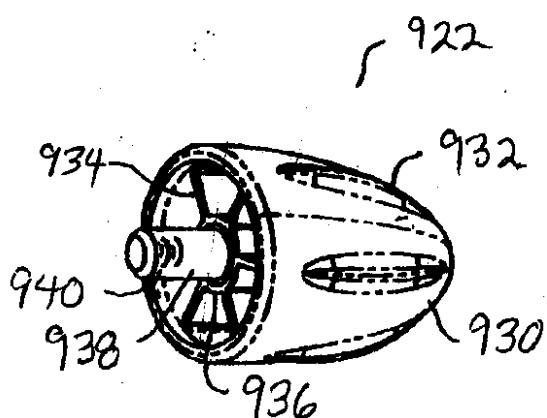

【図42】

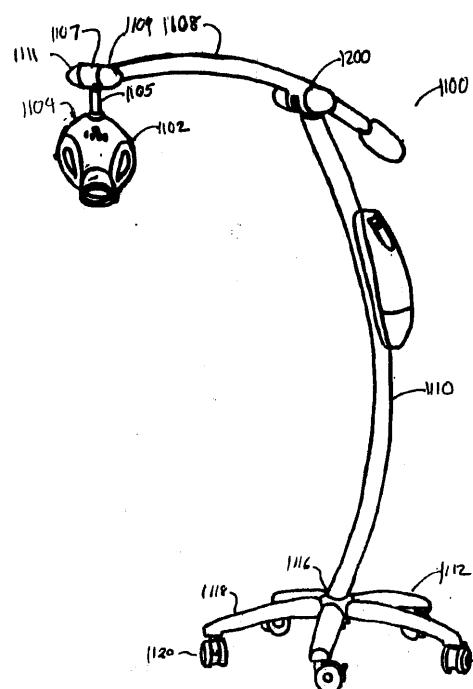

【図44】

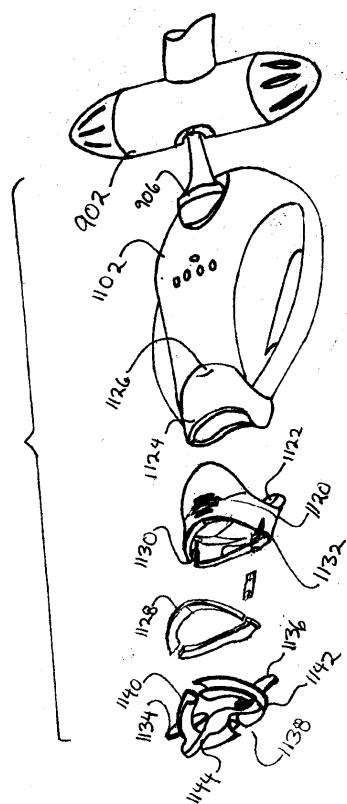

【図43】

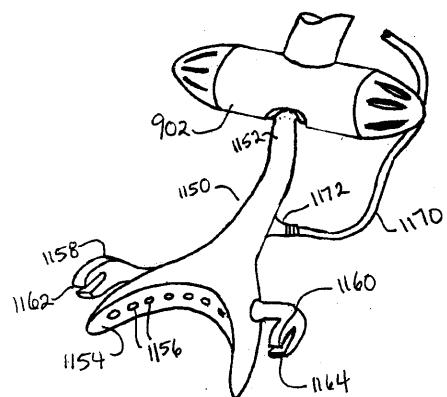

【図45】

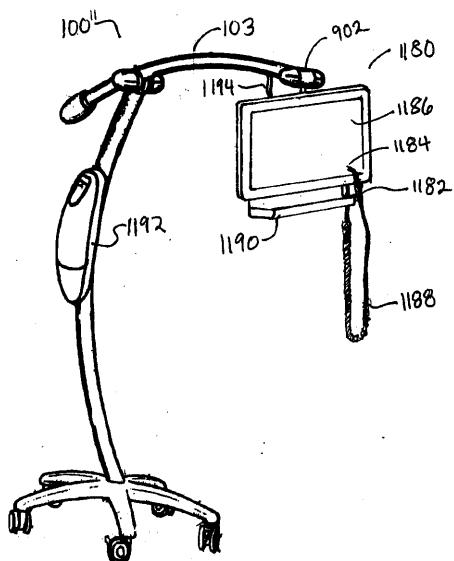

【図46】

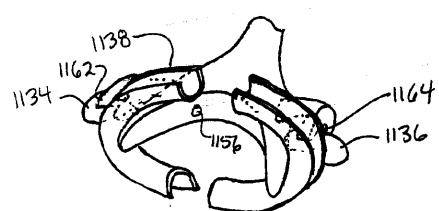

【図47】

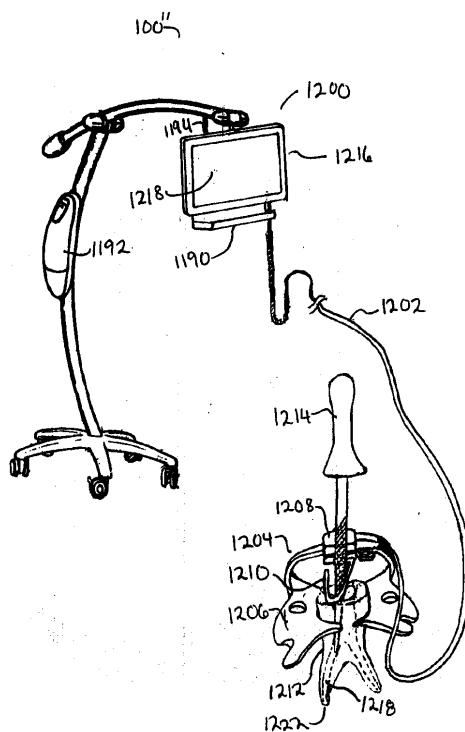

【図48】

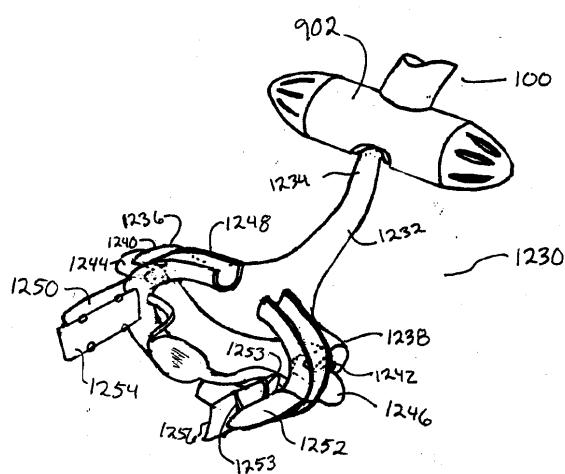

【図49】

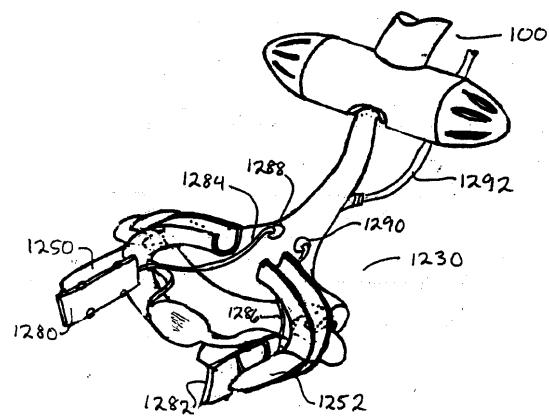

【図50】

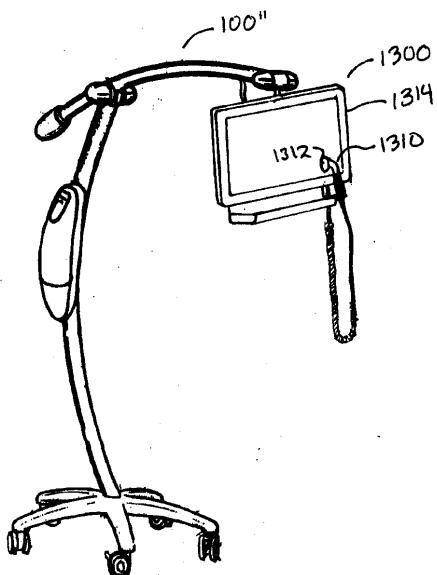

【図51】

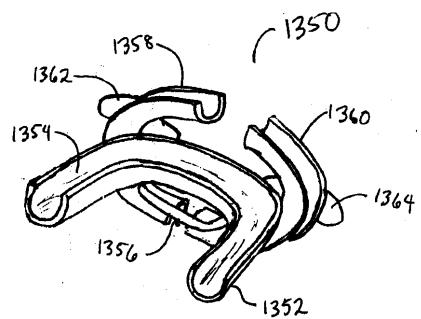

【図52】


【図54】


【図53】


【図55】


【図56】


【図57】

【図58】

【図59】

