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57 ABSTRACT

Methods and apparatuses for compiler-created helper thread
for multi-threading are described herein. In one embodi-
ment, exemplary process includes identifying a region of a
main thread that likely has one or more delinquent loads, the
one or more delinquent loads representing loads which
likely suffer cache misses during an execution of the main
thread, analyzing the region for one or more helper threads
with respect to the main thread, and generating code for the
one or more helper threads, the one or more helper threads

(21) Appl. No.: 10/676,889 being speculatively executed in parallel with the main thread
to perform one or more tasks for the region of the main
(22) Filed: Sep. 30, 2003 thread. Other methods and apparatuses are also described.
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Start 500

Create an internal thread pool to maintain a list of logical thread
contexts which may be used by one or more speculative threads
(e.g., helper threads)

501

Create a new thread team associated with a non-speculative thread
(e.g., a main thread) before the non-speculative thread enters a
precomputation region (e.g., delinquent load region), the new thread
team initially containing only the calling thread
502

Spawn one or more speculative threads from the thread pool once
the non-speculative thread enters the precomputation region, the one
or more speculative threads performing one or more precomputations

(e.g., prefetching) for the non-speculative thread
503

Execute at least a portion of code in the non-speculative thread,
using in part at least a portion of data provided (e.g., prefetched or
precomputed) by the one or more speculative threads (e.g., helper

threads)
504

Terminate the one or more speculative threads associated with the
non-speculative thread and release the logical thread contexts
associated with the terminated speculative threads back to the thread
pool for future use
505
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Identifying delinquent load on a main thread {e.g., non-
speculative thread) including, for example, generating
profiles and analyzing profiles
701

Performing parallelization analysis for helper threads (e.g.,
speculative threads) including, for example, generating
dependent graph, slicing, scheduling, communication, and
synchronization
702

Perform code generation for helper threads including, for
example, generating thread graph, communication, and
synchronization
703

Allocate resources, such as hardware registers or
memory, for each helper threads and the main thread to
avoid resource conflicts
704
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Building a dependent graph that captures both data and control
dependences of the main thread (e.g., non-speculative thread)
801

Perform slicing of the main thread using the dependent graph
802

Perform scheduling across the threads to overlap multiple prefetches
even if one thread stalls
803

Select a communication scheme (e.g., communication-based
scheme or computation-based scheme) for the threads
804

Determine a synchronization period for the threads to synchronize
with each other
805
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void foo_main(LIST *p)
{
{ while (p!'= NUL:L) { 001
do_work1(p->datal, 10);
do_work2(p->data2, 20);
p= p->next; H
} Fig. 9A
}
}
(I) Serial code

void foo_main(LIST *p)

{ mc = X; M=1; _ssp_begin();
_ssp_spawn_helper(... helper_foo, ...p...);
while (p '=NULL) {

do_work 1(p->datal, 10); 002
do_work2(p->data2, 20); -
mc=mc + 1;
if (mc > M*X) {
M++; _ssp_post(helper_tid); .
} Fig. 9B
p= p->next;
}
_ssp_end();
} (II) Main thread code

T-entry foo_helper: captureprivate(p)
{hc=0; H=1; local_p=p;
while (local_p!= NUL:L) {
non_faulting_load(local_p->datal); 903
non_faulting_load(local_p->data2); —
hc=hec +1;
if (hc > H*X && hc > mc)
{ H++; _ssp_wait(main_tid); }
else if (hc <=mc) { H
(he, local_p, H) = catchup(mc, p, M) F'g' 9C
}

local_p = local_p->next;

}
T-ret } (1) Helper thread code
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METHODS AND APPARATUSES FOR
COMPILER-CREATING HELPER THREADS FOR
MULTI-THREADING

FIELD

[0001] Embodiments of the invention relate to information
processing system; and more specifically, to compiler-cre-
ated helper threads for multi-threading.

BACKGROUND

[0002] Memory latency has become the critical bottleneck
to achieving high performance on modern processors. Many
large applications today are memory intensive, because their
memory access patterns are difficult to predict and their
working sets are becoming quite large. Despite continued
advances in cache design and new developments in prefetch-
ing techniques, the memory bottleneck problem still persists.
This problem worsens when executing pointer-intensive
applications, which tend to defy conventional stride-based
prefetching techniques.

[0003] One solution is to overlap memory stalls in one
program with the execution of useful instructions from
another program, thus effectively improving system perfor-
mance in terms of overall throughput. Improving throughput
of multitasking workloads on a single processor has been the
primary motivation behind the emerging simultaneous mul-
tithreading (SMT) techniques. An SMT processor can issue
instructions from multiple hardware contexts, or logical
processors (also referred to as hardware threads), to the
functional units of a super-scalar processor in the same
cycle. SMT achieves higher overall throughput by increas-
ing overall instruction-level parallelism available to the
architecture via the exploitation of the natural parallelism
between independent threads during each cycle.

[0004] SMT can also improve the performance of appli-
cations that are multithreaded. However, SMT does not
directly improve the performance, in terms of reducing
latency, of single-threaded applications. Since the majority
of desktop applications in the traditional PC environment are
still single-threaded, it is important to investigate if and how
SMT resources can be exploited to enhance single-threaded
code performance by reducing its latency.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The invention may best be understood by referring
to the following description and accompanying drawings
that are used to illustrate embodiments of the invention. In
the drawings:

[0006] FIG. 1 illustrates a computer system having multi-
threading capability according to one embodiment.

[0007] FIG. 2 illustrates a computer system having multi-
threading capability according to an alternative embodi-
ment.

[0008] FIG. 3 illustrates a computer system having a
compiler capable of generating a helper thread according to
one embodiment.

[0009] FIG. 4A illustrates a typical symmetric multi-
threading process.
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[0010] FIG. 4B illustrates an asymmetric multi-thread
process according to one embodiment.

[0011] FIG. 5 is flow diagram illustrating an exemplary
process for executing one or more helper threads according
to one embodiment.

[0012] FIG. 6 is a block diagram illustrating exemplary
software architecture of a multi-threading system according
to one embodiment.

[0013] FIG. 7 is a flow diagram illustrating an exemplary
process for generating a helper thread according to one
embodiment.

[0014] FIG. 8 is a flow diagram illustrating an exemplary
process for parallelization analysis according to one embodi-
ment.

[0015] FIGS. 9A-9C show pseudo code for an applica-
tion, a main thread, and a helper thread according to one
embodiment.

[0016] FIG. 10 is a block diagram illustrating an exem-
plary thread configuration according to one embodiment.

[0017] FIG. 11 is a block diagram illustrating an exem-
plary pseudo code for allocating resources for the threads
according to one embodiment.

[0018] FIG. 12 is a block diagram illustrating an exem-
plary resource data structure containing resource informa-
tion for the threads according to one embodiment.

[0019] FIG. 13 is a flow diagram illustrating an exemplary
process for allocating resources for threads according to one
embodiment.

[0020] FIGS. 14A-14D show results of a variety bench-
mark tests using embodiments of techniques.

DETAILED DESCRIPTION

[0021] Methods and apparatuses for compiler-creating
helper threads for multi-threading systems are described.
According to one embodiment, a compiler, also referred to
as AutoHelper, that implements thread-based prefetching
helper threads on a multi-threading system, such as, for
example, the Intel Pentium™ 4 Hyper-Threading systems,
available from Intel Corporation. In one embodiment, the
compiler automates the generation of helper threads for
Hyper-Threading processors. The techniques focus at iden-
tifying and generating helper threads of minimal sizes that
can be executed to achieve timely and effective data
prefetching, while incurring minimal communication over-
head. A runtime system is also implemented to efficiently
manage the helper threads and the synchronization between
threads. Consequently, helper threads are able to issue
timely prefetches for the sequential pointer-intensive appli-
cations.

[0022] In addition, hardware resources such as register
contexts may be managed for helper threads within a com-
piler. Specifically, the register set may be statically or
dynamically partitioned between main thread and helper
threads, and between multiple helper threads. As a result, the
live-in/live-out register copies via memory for threads may
be avoided and the threads may be destroyed at compile-
time, when the compiler runs out of resources, or at runtime
when infrequent cases of certain main thread event occurs.
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[0023] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments of the invention may be practiced without these
specific details. In other instances, well-known circuits,
structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.

[0024] Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

[0025] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the following discussion, it is appre-
ciated that throughout the description, discussions utilizing
terms such as “processing” or “computing” or “calculating”
or “determining” or “displaying” or the like, refer to the
action and processes of a computer system, or similar data
processing device, that manipulates and transforms data
represented as physical (e.g. electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0026] Embodiments of the present invention also relate to
apparatuses for performing the operations described herein.
An apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a computer readable storage medium, such as, but
is not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read-
only memories (ROMs), random access memories (RAMs)
such as Dynamic RAM (DRAM), erasable programmable
ROMs (EPROMSs), electrically erasable programmable
ROMs (EEPROMSs), magnetic or optical cards, or any type
of media suitable for storing electronic instructions, and
each of the above storage components is coupled to a
computer system bus.

[0027] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appa-
ratus to perform the methods. The structure for a variety of
these systems will appear from the description below. In
addition, embodiments of the present invention are not
described with reference to any particular programming
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language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the embodiments of the invention as described herein.

[0028] A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable medium includes read only memory
(“ROM”); random access memory (“RAM”); magnetic disk
storage media; optical storage media; flash memory devices;
electrical, optical, acoustical or other form of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.); ete.

[0029] FIG. 1 is a block diagram of an exemplary com-
puter which may be used with an embodiment. For example,
exemplary system 100 shown in FIG. 1 may perform the
processes shown in FIGS. 5-8. Exemplary system 100 may
be a multi-threading system, such as an Intel Pentium™ 4
Hyper-Threading system. Exemplary system 100 may be a
simultaneous multithreading (SMT) or chip multiprocessing
(CMP) enabled system.

[0030] Note that while FIG. 1 illustrates various compo-
nents of a computer system, it is not intended to represent
any particular architecture or manner of interconnecting the
components, as such details are not germane to the present
invention. It will also be appreciated that network comput-
ers, handheld computers, cell phones, and other data pro-
cessing systems which have fewer components or perhaps
more components may also be used with the present inven-
tion.

[0031] As shown in FIG. 1, the computer system 100,
which is a form of a data processing system, includes a bus
102 which is coupled to a microprocessor 103 and a ROM
107, a volatile RAM 105, and a non-volatile memory 106.
The microprocessor 103, which may be a Pentium processor
from Intel Corporation or a PowerPC processor from
Motorola, Inc., is coupled to cache memory 104 as shown in
the example of FIG. 1. The bus 102 interconnects these
various components together and also interconnects these
components 103, 107, 105, and 106 to a display controller
and display device 108, as well as to input/output (I/O)
devices 110, which may be mice, keyboards, modems,
network interfaces, printers, and other devices which are
well-known in the art. Typically, the input/output devices
110 are coupled to the system through input/output control-
lers 109. The volatile RAM 105 is typically implemented as
dynamic RAM (DRAM) which requires power continuously
in order to refresh or maintain the data in the memory. The
non-volatile memory 106 is typically a magnetic hard drive,
a magnetic optical drive, an optical drive, or a DVD RAM
or other type of memory system which maintains data even
after power is removed from the system. Typically the
non-volatile memory will also be a random access memory,
although this is not required. While FIG. 1 shows that the
non-volatile memory is a local device coupled directly to the
rest of the components in the data processing system, it will
be appreciated that the present invention may utilize a
non-volatile memory which is remote from the system, such
as a network storage device which is coupled to the data
processing system through a network interface such as a
modem or Ethernet interface. The bus 102 may include one
or more buses connected to each other through various
bridges, controllers, and/or adapters, as is well-known in the
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art. In one embodiment, the I/O controller 109 includes a
USB (Universal Serial Bus) adapter for controlling USB
peripherals or a PCI controller for controlling PCI devices,
which may be included in 10 devices 110. In a further
embodiment, I/O controller 109 includes an IEEE-1394
controller for controlling IEEE-1394 devices, also known as
FireWire devices.

[0032] According to one embodiment, processor 103 may
include one or more logical hardware contexts, also referred
to as logical processors, for handling multiple threads simul-
taneously, including a main thread, also referred to as a
non-speculative thread, and one or more helper threads, also
referred to as speculative threads, of an application. Proces-
sor 103 may be a Hyper Threading processor, such as a
Pentium 4 or a Xeon processor capable of performing
multithreading processes from Intel Corporation. During an
execution of an application, the main thread and one or more
helper threads are executed in parallel. The helper threads
are speculatively executed associated with, but somewhat
independent to, the main thread to perform some precom-
putations, such as speculative prefetches of addresses or
data, for the main thread to reduce the memory latency
incurred by the main thread.

[0033] According to one embodiment, the code of the
helper threads (e.g., the source code and the binary execut-
able code) are generated by a compiler, such as AutoHelper
compiler available from Intel Corporation, loaded and
executed in a memory, such as volatile RAM 105, by an
operating system (OS) executed by a processor, such as
processor 103. The operating system running within the
exemplary system 100 may be a Windows operating system
from Microsoft Corporation or a Mac OS from Apple
Computer. Alternatively, the operating system may be a
Linux or Unix operating system. Other operating systems,
such as embedded real-time operating systems, may be
utilized.

[0034] Current Hyper-Threading processors typically pro-
vide two hardware contexts, or logical processors. To
improve the performance of a single-threaded application,
Hyper-Threading technology can utilize its second context
to perform prefetching for the main thread. Having a sepa-
rate context allows the helper threads’ execution to be
decoupled from the control flow of the main thread, unlike
software prefetching. By running far ahead of the main
thread to perform long-range prefetches, the helper threads
can trigger prefetches early, and eliminate or reduce the
cache miss penalties experienced by the main thread.

[0035] With AutoHelper, a compiler is able to automati-
cally generate prefetching helper threads for Hyper-Thread-
ing machines. The helper threads aim at bringing the
latency-hiding benefit of multithreading to sequential work-
loads. Unlike threads produced by the conventional paral-
lelizing compilers, the helper threads only prefetch for the
main thread, which does not reuse the computed results from
the helper threads. According to on embodiment, the pro-
gram correctness is still maintained by the main thread’s
execution, while the helper threads do not affect program
correctness and are used solely for performance improve-
ment. This attribute permits the use of more aggressive
forms of optimization in generating helper threads. For
example, when the main thread does not need help, certain
optimizations may be performed, which are not possible
with conventional throughput threading paradigm.
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[0036] In one embodiment, if it is predicted that a helper
is not needed for a certain period of time, the helper may
terminate and release all the resources associate with the
helper to main thread. According to another embodiment, if
it is predicted that a helper may be needed shortly, the helper
may be in a pause mode, which still consumes some
resources on Hyper-Threading hardware. Exponential back-
off (via halting) will be invoked if the helper stays in the
pause mode too long (e.g., exceeding a programmable
timeout period). According to a further embodiment, if the
compiler cannot predict when the helper thread will be
needed, the helper may be in a snooze mode and may
relinquish the occupied processor resources to the main
thread.

[0037] Furthermore, according to one embodiment, per-
formance monitoring and on-the-fly adjustments are made
possible under helper-threading paradigm, because the
helper thread does not contribute to the semantics of the
main program. When a main thread needs a helper, it will
wake up the main thread. For example, with respect to a
run-away helper or a run-behind thread, one of the processes
described above may be invoked to adjust the run-away
helper thread.

[0038] FIG. 2 is a block diagram illustrating one embodi-
ment of a computing system 200 capable of performing the
disclosed techniques. In one embodiment, the computing
system 200 includes a processor 204 and a memory 202.
Memory 202 may store instructions 210 and data 212 for
controlling the operation of the processor 204. The processor
204 may include a front end 221 that supplies instruction
information to an execution core 230. The front end 221 may
supply the instruction information to the processor core 204
in program order.

[0039] For at least one embodiment, the front end 221
includes a fetch/decode unit 222 that includes logically
independent sequencers 220 for each of a plurality of thread
contexts. The logically independent sequencer(s) 220 may
include marking logic 280 to mark the instruction informa-
tion for speculative threads as being “speculative.” One
skilled in the art will recognize that, for an embodiment
implemented in a multiple processor multithreading envi-
ronment, only one sequencer 220 may be included in the
fetch/decode unit 222.

[0040] As used herein, the term “instruction information”
is meant to refer to instructions that can be understood and
executed by the execution core 230. Instruction information
may be stored in a cache 225. The cache 225 may be
implemented as an execution instruction cache or an execu-
tion trace cache. For embodiments that utilize an execution
instruction cache, “instruction information” includes
instructions that have been fetched from an instruction cache
and decoded. For embodiments that utilize a trace cache, the
term “instruction information” includes traces of decoded
micro-operations. For embodiments that utilize neither an
execution instruction cache nor trace cache, “instruction
information” also includes raw bytes for instructions that
may store in an instruction cache such as I cache 244.

[0041] FIG. 3 is a block diagram illustrating an exemplary
system containing a compiler to generate one or more helper
threads according to one embodiment. Referring to FIG. 3,
exemplary processing system 300 includes a memory sys-
tem 302 and a processor 304. Memory system 302 may store
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instructions 310 and data 312 for controlling the operation of
the processor 304. For example, instructions 310 may
include a compiler program 308 that, when executed, causes
the processor 304 to compile a program that resides in the
memory system 302. Memory 302 holds the program to be
compiled, intermediate forms of the program, and a resulting
compiled program. For at least one embodiment, the com-
piler program 308 includes instructions to generate code for
one or more helper threads with respect to a main thread.

[0042] Memory system 302 is intended as a generalized
representation of memory and may include a variety of
forms of memory, such as a hard drive, CD-ROM, random
access memory (RAM), dynamic random access memory
(DRAM), static random access memory (SRAM) and
related circuitry. Memory system 302 may store instructions
310 and/or data 312 represented by data signals that may be
executed by processor 304. The instructions 310 and/or data
312 may include code for performing any or all of the
techniques discussed herein.

[0043] Specifically, compiler 308 may include a delin-
quent load identifier 320 that, when executed by the pro-
cessor 304, identifies one or more delinquent load regions of
a main thread. The compiler 308 may also include a paral-
lelization analyzer 324 that, when executed by the processor
304, performs one or more parallelization analysis for the
helper threads. Also, the compiler 308 may include a slicer
322 that identifies one or more slices to be executed by a
helper thread in order to perform speculative precomputa-
tion. The compiler 308 may further include a code generator
328 that, when executed by the processor 304, generates the
code (e.g., source and executable code) for the helper
threads.

[0044] Executing helper threads in an SMT machine is a
form of asymmetric multithreading, as shown in FIG. 4B
according to one embodiment. Traditional parallel program-
ming models provide symmetric multithreading, as shown in
FIG. 4A. In contrast, the helper threads, such as helper
threads 451-454 in FIG. 4B execute as user-level threads
(fibers) with lightweight thread invocation and switching.
Furthermore, symmetric multithreading requires well-tuned
data decomposition across symmetric threads, such as
threads 401-404 in FIG. 4A. In the helper thread model,
according to one embodiment, the main thread runs the
sequential code that operates on the entire data set, without
incurring data decomposition overhead. Without decompos-
ing the data, the compiler instead focuses on providing
multiple helpers for timely prefetches for the main thread’s
data.

[0045] FIG. 5 is a flow diagram illustrating an exemplary
process for executing a helper thread according to one
embodiment. Exemplary process 500 may be performed by
a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a
combination of both. In one embodiment, exemplary process
500 includes executing a main thread of an application in a
multi-threading system, and spawning one or more helper
threads from the main thread to perform one or more
computations for the main thread when the main thread
enters a region having one or more delinquent loads, code of
the one or more helper thread being created during a
compilation of the main thread.
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[0046] Referring to FIG. 5, at block 501, the processing
logic creates an internal thread pool to maintain a list of
logical thread contexts which may be used by one or more
helper threads. At block 502, a new thread team may be
created before a main thread enters a delinquent load region
(e.g., precomputation region) which may be identified by a
compiler. In one embodiment, the new thread team initially
contains only the calling thread. According to one embodi-
ment, the compiler may insert a statement, such as
start_helper statement, before the main thread enters the
region to activate one or more helper threads. At block 503,
when the main thread enters the region, the main thread
spawns (via a function call, such as invoke_helper) one or
more helper threads which are created using the resources
from the thread pool to perform one or more precomputa-
tions, such as prefetching addresses and data, for the main
thread. According to one embodiment, if no logical proces-
sor is available for executing the spawned helper threads, the
helper threads may be created and placed in a run queue for
the thread team for subsequent execution. In one embodi-
ment, the run queue may be associated with a time-out. The
request to invoke a helper is simply dropped (e.g., termi-
nated) after the time-out period expires, assuming that the
prefetch will no longer be timely. This is different from
traditional task-queue model for parallel programming,
where each task needs to be executed.

[0047] At block 504, at least a portion of the code within
the region of the main thread is executed using in part the
data (e.g., prefetched or precomputed) provided by the one
or more helper threads. According to one embodiment, the
results computed by a helper thread are not integrated into
the main thread. The benefit of a helper thread lies in its side
effects of prefetching, not in reusing its computation results.
This allows the compiler to aggressively optimize the code
generation for helper threads. The main thread handles the
correctness issue, while the helper threads target the perfor-
mance of a program. This also allows the helper thread
invoking statement, such as invoke_helper, to drop requests
whenever deemed appropriate. Finally, non-faulting instruc-
tions, such as the prefetch instructions, may be used to avoid
disruptions to the main thread if exceptions are signaled in
a helper thread.

[0048] At block 505, the one or more helper threads
associated with the main thread are terminated (via a func-
tion call, such as finish_helper) when the main thread is
about to exit the delinquent load region and the resources,
such as logical thread contexts, associated with the termi-
nated helper threads are released back to the thread pool.
This enables future requests to immediately recycle the
logical thread contexts from the thread pool. Other opera-
tions apparent to those with ordinary skill in the art may be
included.

[0049] Hyper-Threading technology is well suited for sup-
porting the execution of one or more helper threads. Accord-
ing to one embodiment, in each processor cycle, instructions
from either of the logical processors can be scheduled and
executed simultaneously on shared execution resources.
This allows helper threads to issue timely prefetches. In
addition, the entire on-chip cache hierarchy is shared
between the logical processors, which is useful for helper
threads to effectively prefetch for the main thread at all
levels of the cache hierarchy. Furthermore, although the
physical execution resources are shared between the logical
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processors, the architecture state is duplicated in a Hyper-
Threading processor. The execution of helper threads will
not alter the architecture state in the logical processor
executing the main thread.

[0050] However, on Hyper-Threading technology enabled
machines, helper threads can still impact the execution of
main thread due to the writes to memory. Because helper
threads share memory with the main thread, the execution of
helper threads should be guaranteed not to write to the data
structures of the main thread. In one embodiment, the
compiler (e.g., AutoHelper) provides memory protection
between the main thread and the helper threads. The com-
piler removes stores to non-local variables in the helper
threads.

[0051] FIG. 6 is a block diagram illustrating an exemplary
architecture of a compiler according to one embodiment. In
one embodiment, exemplary architecture 600 includes,
among others, a front end module 601, profiler 602, inter-
procedural analysis and optimization module 603, compiler
604, global scalar optimization module 605, and backend
module 606. In one embodiment, front end module 601
provides a common intermediate representation, such as I1.0
representation from Intel Corporation, for source codes
written in a variety of programming languages, such as
C/C++ and Fortran. As a result, the compiler, such as
AutoHelper 604 is applicable irrespective of the source
languages and of the target platforms. Profiler 602 performs
a profiling run to examine the characteristics of the repre-
sentation. Interprocedural analysis module 603 may exposes
optimization opportunities across procedure call boundaries.
Thereafter, the compiler 604 (e.g., AutoHelper) is invoked to
generate code for one or more helper threads. Global scalar
optimization module 605 applies, using partial redundancy
elimination to minimize the number of times an expression
is evaluated. Finally, backend module 606 generates binary
code for the helper threads for a variety of platforms, such
as IA-32 or Itanium platform from Intel Corporation. Other
components apparent to those with ordinary skill in the art
may be included.

[0052] Unlike a conventional approach, AutoHelper (e.g.,
the compiler) eliminates the profile-instrumentation pass to
make the tool easier to use. According to one embodiment,
the compiler can directly analyze the output from profiling
results, such as those generated by Intel’s VTune™ Perfor-
mance Analyzer, which is enabled for Hyper-Threading
technology. Because it is a middle-end pass instead of a
post-pass tool, the compiler is able to utilize several product-
quality analyses, such as array dependence analysis and
global scalar optimization, etc. These analyses, invoked
after the compiler, perform aggressive optimizations on the
helper threads’ code.

[0053] According to one embodiment, the compiler gen-
erates one or more helper threads to precompute and
prefetch the address accessed by a load that misses the cache
frequently, also referred to as a delinquent load. The com-
piler also generates one or more triggers in the main thread
that spawns one or more helper threads. The compiler
implements the trigger as an invoking function, such as the
invoke_helper function call. Once the trigger is reached, the
load is expected to appear later in the instruction stream of
the main thread, hence the speculatively executed helper
threads can reduce the number of cache misses in the main
thread.
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[0054] FIG. 7 is flow diagram illustrating an exemplary
process performed by a compiler, such as AutoHelper,
according to one embodiment. Exemplary process 700 may
be performed by a processing logic that may comprise
hardware (circuitry, dedicated logic, etc.), software (such as
is run on a general purpose computer system or a dedicated
machine), or a combination of both. In one embodiment,
exemplary process 700 starts at block 701, to identifying
delinquent loads using, for example, the VTune tool from
Intel Corporation, to perform parallelization analysis for
helper threads (block 702), to generate code for helper
threads (block 703), and to allocate resources, such as
hardware registers or memories for each helper threads and
the main thread (block 704), which will be described in
details further below.

[0055] According to one embodiment, the compiler iden-
tifies the most delinquent loads in an application source code
using one or more run-time profiles. Traditional compilers
collect the profiles in two steps: profile-instrumentation and
profile-generation. However, because cache miss is not an
architecture feature that is exposed to the compilers, profile-
instrumentation pass does not permit instrumentation of
cache misses for the compiler to identify delinquent loads.
The profiles for each cache hierarchy are collected via a
utility, such as the VTune™ Analyzer from Intel Corpora-
tion. In one embodiment, the application may be executed
with debugging information in a separate profiling run prior
to the compiler. During the profiling run, cache misses are
sampled and the hardware counters are accumulated for each
static load in the application.

[0056] The compiler identifies the candidates for thread-
based prefetching. In a particular embodiment, the VTune™
summarizes the cache behavior on a per-load basis. Because
the binary for the profiling run is compiled with the debug
information (e.g., debug symbols), it is possible to correlate
the profiles back to source line numbers and the statements.
Certain loads that contribute more than a predetermined
threshold may be identified as delinquent loads. In a par-
ticular embodiment, the top loads that contribute to 90% of
cache misses are denoted as delinquent loads.

[0057] In addition to identifying delinquent load instruc-
tions, the compiler generates helper threads that compute the
addresses of delinquent loads accurately. In one embodi-
ment, separate code for helper threads is generated. The
separation between the main thread and the helper thread’s
code prevents transformations on a helper thread’s code
from affecting the main thread. In one embodiment, the
compiler uses multi-entry threading, instead of conventional
out-lining, in the Intel product compiler to generate separate
codes for helper threads.

[0058] Furthermore, according to one embodiment, the
compiler performs multi-entry threading at the granularity of
a compiler-selected code region, denoted as precomputation
region. This region encompasses a set of delinquent loads
and defines the scope for speculative precomputation. In one
embodiment, the implementation usually targets loop
regions, because loops are usually the hot spots in program
execution, and the delinquent loads are the loads that were
executed many times, usually in a loop.

[0059] FIG. 8 is flow diagram illustrating an exemplary
process for parallelization analysis according to one embodi-
ment. Exemplary process 800 may be performed by a
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processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a
combination of both. Referring to FIG. 8, at block 801, the
processing logic builds a dependent graph that captures both
data and control dependencies of the main thread. According
to one embodiment, in order to filter out unrelated code and
thus reduce the size of a helper thread’s code, the compiler
first builds a graph that captures both data and control
dependences. The effectiveness and legality of filtering rely
on the compiler’s ability to accurately disambiguate memory
references. As a result, a memory disambiguation module in
the compiler is invoked to disambiguate pointers to dynami-
cally allocated objects. Because a pointer could be a global
variable or a function parameter, the points-to analysis
performed by the compiler is interprocedural, if the compiler
compiles in the whole-program mode. In one embodiment,
in order to build the dependence graph more accurately, a
series of array dependence tests may be performed, so that
each element in an array is disambiguated in building the
dependence graph, if all the array accesses are finite expres-
sions. Otherwise, approximation is used. Furthermore, each
field in a structure may be disambiguated.

[0060] Referring back to FIG. 8, at block 802, the pro-
cessing logic performs a slicing operation on the main thread
using the dependent graph. During slicing, according to one
embodiment, the compiler first identifies the load addresses
of delinquent loads as slice criteria, which specify the
intermediate slicing results. After building the dependence
graph, the compiler computes the program slices of the
identified slice criteria. The program slices of the slice
criteria are defined as the set of instructions that contribute
to the computation of the addresses for memory prefetches
executed by the one or more helper threads. Slicing can
reduce the code to only the instructions relevant to the
computation of an address, thus allows the helper threads to
run quicker and ahead of the main thread. The compiler only
needs to copy instructions in a slice to the helper thread’s
code.

[0061] According to one embodiment, slicing in the com-
piler extracts a minimal sequence of instructions to produce
the addresses of delinquent loads by transitively traversing
the dependence edges backwards. The leaf nodes on the
dependence graph of the resulting slices can be converted to
prefetch instructions, because no further instructions are
dependent on those leaf nodes. Those prefetch instructions
executed by a processor, such as the Pentium™ 4 from Intel
Corporation, are both non-blocking and non-faulting. Dif-
ferent prefetch instructions exist for bringing data into
different levels of cache in the memory hierarchy.

[0062] According to one embodiment, slicing operations
may be performed with respect to a given code region.
Traversal on the dependence graph in a given region must
terminate when it reaches code outside of that region. Thus,
slicing must be terminated during traversal instead of after
traversal, because the graph traversal may span to the
outside of a region and then back to the inside of a region.
Simply collecting the slices according to regions after the
traversal may lose precision.

[0063] In a further embodiment, the compiler slices each
delinquent loads instruction one by one. To minimize the
duplication of code in helper threads and reduce the over-
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head of thread invocation and synchronization, the compiler
merges slices into one helper thread if they are in the same
precomputation region.

[0064] Referring back to FIG. 8, at block 803, the pro-
cessing logic performs scheduling across the threads to
overlap multiple prefetches. In one embodiment, since
Hyper-Threading processors support out-of-order execution
with large scheduling windows, the processors can look for
independent instructions beyond the current executing
instruction when it waits on a pending cache miss. This
aspect of out-of-order execution can provide substantial
performance gain over an in-order processor and reduce the
need for chaining speculative precomputation. Furthermore,
the compiler selects basic speculative precomputation for
Hyper-Threading processors. Namely, only one helper
thread is scheduled at a time to save the thread spawning and
communication overhead. Another benefit from using basic
speculative precomputation is that it does not inundate the
memory system on our Hyper-Threading processors as fast
as chaining speculative precomputation does. When the
out-of-order processor looks for independent instructions for
execution, those instructions can generate too many load
requests and saturate the memory system. When the helper
threads issue prefetching requests, a large number of out-
standing misses could rapidly fill up the miss buffer and, as
a result, stall the processor. Thus, the compiler needs to be
judicious in spawning helper threads. Finally, to ensure
timely prefetching, the compiler pins down the single helper
thread and the main thread on respective logical processors.

[0065] Referring back to FIG. 8, at block 804, processing
logic selects a communication scheme for the threads. In one
embodiment, the compiler provides a module that computes
live-ness information for any given slice, or any subset of
program. Liveness information provides estimates on the
communication cost. The information is used to select the
precomputation region that provides good trade-off between
communication and computation. The liveness information
may help find triggers or the points at which the backward
slicing ends.

[0066] Because the typical Hyper-Threading processors
issue three micro-ops per processor cycle and use some
hard-partitioned resources, the compiler has to be judicious
as not to let helper threads slow down the main thread’s
execution, especially if the main thread issues three micro-
ops for execution per cycle already. For the loop nest
encompassing delinquent loads, the compiler makes trade-
off between re-computation and communication in choosing
the loop level for performing speculative precomputation.
For each loop level, starting from the innermost one, accord-
ing to one embodiment, the compiler selects one of the
communication-based scheme and computation-based
scheme.

[0067] According to one embodiment, the communica-
tion-based scheme communicates the live-in values from the
main thread to the helper thread in each iteration, so the
helper thread does not need to re-compute the live-in values.
The compiler will select this scheme if there exists an inner
loop encompassing most delinquent loads and if slicing for
the inner loop significantly decreases the size of a helper
thread. However, this scheme will be disabled if the com-
munication cost for the inner loop level is very large. The
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compiler will give smaller estimate of communication cost,
if the live-in values are computed early and the number of
live-ins is small.

[0068] Communication-based scheme will create multiple
communication points between the main thread and its
helper thread at runtime. Communication-based scheme is
important for Hyper-Threading processors, because relying
on only one communication point by re-computing the slice
in the helper thread may create too much resource conten-
tion between threads. This scheme is similar to constructing
a do-across loop in that the main thread initiates the next
iteration after it finishes computing the live-in values for that
iteration. The scheme trades communication for less com-
putation.

[0069] According to one embodiment, the computation-
based scheme assumes only one communication point
between two threads to pass in the live-in values in the
beginning. Afterwards, the helper thread needs to compute
everything it needs to generate accurate prefetch addresses.
The compiler will select this scheme if there is no inner loop,
or if slicing for this loop level does not significantly
increases the size of a helper thread. Computation-based
scheme gives the helper thread more independence in execu-
tion, once the single communication point is reached.

[0070] According to one embodiment, to select the loop
level for speculative precomputation, the compiler selects
the outermost loop that benefits from communication-based
scheme. Hence the scheme-selection algorithm described
above can terminate once it finds a loop with communica-
tion-based scheme. If the compiler does not find any loop
with communication-based scheme, the outermost loop will
be the targeted region for speculative precomputation. After
the compiler selects the precomputation regions and their
communication schemes, locating good trigger points in the
main thread would ensure timely prefetches, while mini-
mizing the communication between the main thread and the
helper threads. Liveness information helps locate triggers,
which are the points at which the backward slicing ends.
Slicing beyond the precomputation region ends when the
number of live-ins increases.

[0071] Referring back to FIG. 8, at block 805, the pro-
cessing logic determines a synchronization period for the
threads to synchronize with each other during the execution.
According to one embodiment, the synchronization period is
used to express the distance between a helper thread and the
main thread. Typically, the helper thread performs all of its
precomputation in units of synchronization period. This both
minimizes communication and limits the possibility of pro-
ducing run-away helpers. Because the compiler computes
the value of synchronization period and generates synchro-
nization code accordingly, special hardware support, such as
Outstanding Slice Counter, is no longer needed.

[0072] If the synchronization period is too large, the
prefetch induced by the helper thread could not only dis-
place temporally important data to be used by the main
thread but also potentially displace earlier prefetched data
that have not been used by the main thread. On the other
hand, if the synchronization period is too small, the prefetch
could be too late to be useful. To decide on the value of
synchronization period, according to one embodiment, the
compiler first computes the difference between the length of
the slice and the length of program schedule in the main
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thread. If the difference is small, the run-ahead distance
induced by the helper thread in one iteration is consequently
small. Multiple iterations may be needed by the helper
thread to maintain enough run-ahead distance. Hence, the
compiler increases the synchronization period if the differ-
ence is small, and vice versa.

[0073] Thereafter, the compiler generates code for the
main thread and the helper thread during a code generation
stage. During the code generation stage, the compiler builds
a thread graph as the interface between the analysis phase
and code generation phase. Each graph node denotes a
sequence of instructions, or a code region. The invocation
edge between the nodes denotes the thread-spawning rela-
tionship, which is important for specifying chaining helper
threads. Having a thread graph enables code reuse because,
according to one embodiment, the compiler also allows the
user to insert pragmas in the source program to specify the
code for helper threads and the live-ins. Both the pragma-
based approach and the automatic approach share the same
graph abstraction. As a result, the helper thread code gen-
eration module may be shared.

[0074] The helper thread code generation leverages multi-
entry threading technology in the compiler to generate
helper thread code. In contrast to the conventional, well-
known outlining, the compiler does not create a separate
compilation unit (or routine) for the helper thread. Instead,
the compiler generates a threaded entry and a threaded
return for in the helper thread code. The compiler keeps all
newly generated helper thread codes intact or inlined within
the same user-defined routine without splitting them into
independent subroutines. This method provides later com-
piler optimizations with more opportunities for performing
optimization on the newly generated helper threads. Fewer
instructions in the helper thread means less resource con-
tention on a hyper-threaded processor. This demonstrates
that using helper threads for hiding latency incurs fewer
instructions and less resource contention than the traditional
symmetric multithreading model, which is important espe-
cially because the hyper-threaded processor issues three
micro-ops per processor cycle and has some hard-partitioned
resources.

[0075] According to one embodiment, the generated codes
for helper threads will be re-ordered and optimized by the
later on phases in the compiler such as partial dead-store
elimination (PDSE), partial redundancy elimination (PRE),
and other scalar optimizations. In that sense, the helper
thread code needs to be optimized to minimize the resource
contention due to the helper thread. However, those further
optimizations may remove prefetching code as well. There-
fore, the leaf delinquent loads may be converted to the
volatile-assign statements in the compiler. The leaf node in
the dependence graph of a slice implies that no further
instructions in the helper thread depend on the loaded value.
Hence, the destination of the volatile-assign statement is
changed to a register temp in the representation to speed up
the resulting code. Using volatile-assign may prevent all
later on compiler global optimizations from removing gen-
erated prefetches for delinquent loads.

[0076] According to one embodiment, the compiler aims
at ensuring the helper thread to run neither too far ahead nor
behind the main thread using a self-counting mechanism.
According to one embodiment, value X is pre-set for run-
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ahead distance control. The X can be modified through a
compiler switch by users, or based on program analysis of
the length of slice (or helper code) and the length of main
code. In one embodiment, the compiler generates mc
(M-counter) with an initial value X for main thread and he
(H-counter) with an initial value O for helper thread, and the
compiler generates the counter M and H for counting the
sync-up periods in main and helper code. The idea is that the
all four counters (me, M, hc, H) perform self-counting. The
helper thread has no inference to main thread. If the helper
thread runs too far ahead of main thread, it will issue a wait,
if the helper thread runs behind main thread, it will perform
a catch-up.

[0077] In a particular embodiment, for every X loop-
iterations, the main thread issues a post to ensure that the
helper is not waiting and can go ahead to perform non_fault-
ing_load. At this point, if the helper thread waits for the main
thread after issuing a number of non_faulting_loads in
chunks of sync-up period, it will wake up to perform
non_faulting_loads. In another particular embodiment, for
every X loop-iterations, the helper thread examines whether
its he counter is greater main thread’s me counter and the he
counter is greater a sync-up period H*X of the helper thread,
if so, the helper will issue a wait and go to sleep. This
prevents the helper thread from running too far ahead of the
main thread. In a further embodiment, before iterating over
another chunk of sync-up period, the helper thread examines
whether its hc counter is smaller than the main thread’s mc
counter. If so, the helper thread has fallen behind, and must
“catch-up and jump ahead” by updating its counter hc and H
and all capture private and live-in variable from the main
thread. FIGS. 9A-9C are diagrams illustrating exemplary
pseudo code of an application, a main thread, and a helper
thread according to one embodiment. Referring to FIGS.
9A-9C, the compiler compiles a source code 901 of an
application and generates code for a main thread 902 and a
helper thread 903 using at least one of the aforementioned
techniques. It will be appreciated that the code 901-903 are
not limited to C/C++. Other programming languages, such
as Fortran or Assembly, may be used.

[0078] After the code for the helper threads have been
created, the compiler may further allocate, statically or
dynamically, resources for each helper thread and the main
thread to ensure that there is no resource conflict between the
main thread and the helper threads, and among the helper
threads. Hardware resources, such as register contexts, may
be managed for helper threads within the compiler. Specifi-
cally, the register set may be statically or dynamically
partitioned between the main thread and the helper threads,
and between multiple helper threads. As a result, the live-
in/live-out register copies via memory for threads may be
avoided and the threads may be destroyed at compile-time,
when the compiler runs out of resources, or at runtime when
infrequent cases of certain main thread event occurs.

[0079] According to one embodiment, the compiler may
“walk through” the helper threads in a bottom-up order and
communicates the resource utilization in a data structure,
such as a resource table shown in FIG. 12. The parent helper
thread, which may be the main thread, utilizes this infor-
mation and ensures that its resources don’t overlap with the
thread resources. When the thread resources penalize the
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main execution thread, for example by forcing the main
thread to spill/fill registers, the compiler can kill previously
created threads.

[0080] FIG. 10 is a block diagram illustrating an exem-
plary configuration of threads according to one embodiment.
In this embodiment, exemplary configuration 1000 includes
a main thread 1001 (e.g., a parent thread) and three helper
threads (e.g., child threads) 1002-1004, which may be
spawned from the main thread 1001, while thread 1003 may
be spawned from thread 1002 (e.g., helper thread 1002 is a
parent thread of helper thread 1003). It will be appreciated
that the helper threads are not limited to three helper threads,
more or less helper threads may be included. The helper
threads may be spawned by a spawn instruction and the
thread execution may resumes after the spawn instruction.

[0081] The threads are created by the compiler during a
thread creation phase, such as those operations shown in
FIGS. 5-8. According to one embodiment, the compiler
creates the threads in the thread creation phase and allocates
resources for the threads in a subsequent thread resource
allocation phase. Dynamically and typically, a helper thread
is spawned when its parent thread stalls. Exemplary con-
figuration 1000 may happen during a page fault or a level 3
(L3) cache miss.

[0082] 1t is crucial that a thread can only share incoming
registers (or resources in general) with a parent thread. For
example, referring to FIG. 10, when main thread 1001 needs
a register, it writes a value to register R10 before it spawns
helper thread 1002 and uses register R10 after the helper
thread 1002 terminates. Neither the helper thread 1002 nor
any of its children (in the example, helper thread 1003 is the
only children of helper thread 1002, and helper threads 1002
and 1004 are children of the main thread 1001) can write to
register R10. Otherwise they would destroy the value in the
main thread 1001. This would result in incorrect program
execution. To avoid this resource conflict, according to one
embodiment, the compiler may partition the resources stati-
cally or dynamically.

[0083] According to one embodiment, the compiler allo-
cates resources for the helper threads and the main thread in
a bottom-up order. FIG. 11 is a block diagram illustrating an
exemplary pseudo code for allocating resources for the
threads according to one embodiment. That is, in the exem-
plary algorithm 1100, the compiler allocates all resources for
the helper threads in a bottom-up order (block 1101) and
thereafter allocates resources for the main thread (block
1102) based on the resources used by the helper threads to
avoid resource conflicts.

[0084] For the purposes of illustration, the resources used
the threads are assumed to be the hardware registers. How-
ever, similar concepts may be applied to other resources
apparent to one with ordinary skill in the art, such as
memory or interrupt. Referring to FIG. 10, the compiler
partitions the registers dynamically by walking bottom up
from the lead thread of a thread chain. In this example,
helper thread 1003 is a leaf thread in the first thread chain
including helper thread 1002. Helper thread 1004 is a leaf
thread in the second thread chain. The compiler records the
register allocation in each helper thread in a data structure,
such as a resource table similar to the exemplary resource
table 1200 of FIG. 12. Then the parent thread reads the
resource allocation of its children thread and does its allo-
cation and reports it in its resource table.
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[0085] FIG. 12 is a block diagram illustrating an exem-
plary resource data structure according to one embodiment.
Exemplary data structure 1200 may be implemented as a
table stored in a memory and accessible by a compiler.
Alternatively, exemplary data structure 1200 may be imple-
mented in a database. In one embodiment, exemplary data
structure 1200 includes, but not limited to, written resources
1202 and live-in resources used by the respective thread
identified via thread ID 1201. Other configurations may
exist.

[0086] Referring to FIGS. 10 and 12, according to one
embodiment, at the beginning, the registers of helper thread
1003 (c.g., the thread having the most bottom order in a
bottom-up scheme) are allocated. The live-in values are V5
and V6 and assuming they are assigned to registers R2 and
R3 respectively. Also, V7 gets register R4 assigned and V9
gets register RS assigned. The resource table for helper
thread 1003 includes live-in=((V5, R2), (V6, R3)) and
register written=(R4, R5), as shown in FIG. 12. In helper
thread 1002, the compiler replaces V5 with R2 and V6 with
R3 during the allocation and marks register R4 and RS
(written in helper thread 1003) as live at the spawn instruc-
tion. This prevents register usage of R4 or R5 across the
spawn point of helper thread 1003 and thus prevents a
resource conflict between helper thread 1002 and helper
thread 1003. For helper thread 1002, the live-in values are
V3 and V4 and are assigned to register R6 and R7 respec-
tively. When V8 and V20 are assigned to registers R8 and R9
respectively, the resource table for helper thread 1002
includes live_in=((V3, R6), (V4, R7)) and written registers=
(R2, R3, R4, R5, RS, RY), as shown in FIG. 12. The written
registers are the live-in registers for helper thread 1003 (e.g.,
R2 and R3), the written registers in helper thread 1003 (e.g.,
R4 and R5) and the registers written in helper thread 1002
(e.g., R8 and RY). Then the compiler allocates the registers
for helper thread 1004. When the registers are allocated for
all the helper threads, it allocates the registers for the main
thread 1001.

[0087] In addition, according to one embodiment, when
the compiler runs out of registers, it can delete one or more
helper threads within the chain. This can happen for
example, when the main thread runs out of registers, because
the helper thread chain is too deep or a single helper thread
needs too many registers and the main thread has to spill/fill
registers. The compiler can apply heuristics to either allow
certain number of spills or delete the entire helper thread
chain or some threads in the thread chain. An alternative to
deleting helper thread is to explicitly configure the weight of
context save/restore, so that upon context switch, the par-
ent’s live registers that could be written by the helper
thread’s execution can be saved automatically by the hard-
ware. Even though this context switch is relatively expen-
sive, potentially such case is infrequent case. Moreover,
such fine-grain context switch is still of much low overhead
compared to full-context switch as used in most OS-enabled
thread switch or a traditional hardware based full-context
thread switch.

[0088] Furthermore, when there is a conflict for live-in
registers, for example, if helper thread 1003 overwrote a
live-in register (e.g., mov v5= . .. ) and this register is also
used in helper thread 1002 after the spawn of helper thread
1003, there would be a resource conflict for the register
assigned to v5 (in this example, register R2). To handle this
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information, the compiler would use availability analysis
and insert compensation code, such as inserting a mov
v5'=v5 instruction before spawning helper thread 1003 and
replacing v5 by v5' after the spawn.

[0089] FIG. 13 is a flow diagram illustrating an exemplary
process for allocating resources for threads according to one
embodiment. Exemplary process 1300 may be performed by
a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as is run on a general
purpose computer system or a dedicated machine), or a
combination of both. In one embodiment, exemplary process
1300 includes selecting, during a compilation of a code
having one or more threads executable in a data processing
system, a current thread having a most bottom order, deter-
mining resources allocated to one or more child threads
spawned from the current thread, and allocating resources
for the current thread in consideration of the resources
allocated to the current thread’s one or more child threads to
avoid resource conflicts between the current thread and its
one or more child threads.

[0090] Referring to FIG. 13, at block 1301, processing
logic identifies one or more threads, including a main thread
and its helper threads, and selects a thread having the most
bottom order as a current thread. The threads may be
identified using a thread dependency graph created during
the thread creation phase of the compilation. At block 1302,
the processing logic retrieves resource information of any
child thread, which may be spawned from the current thread.
The resources information may be obtained from a data
structure corresponding to the child threads, such as resource
table 1200 of FIG. 12. At block 1303, if there is no more
resources available, the processing logic may delete one or
more threads from the chain and restart over again (block
1309). If there is more resource available, at block 1304, the
processing logic allocates resources for the current thread in
consideration of resources used by its child threads without
causing resource conflicts. Thereafter, at block 1305, the
processing logic updates the resources allocated to the
current thread in the associated resource table, such as
resource table 1200. The above processes continue until no
more helper threads (e.g., child threads of the main thread)
remained (blocks 1306 and 1308). Finally, at block 1307, the
processing logic allocates resources for the main thread
(e.g., a parent thread for all helper threads) based on the
resource information of all the helper threads without caus-
ing resource conflicts. Other operations may be included.

[0091] The above described techniques have been tested
against a variety of benchmark tools based on a system
similar to the following configurations:

A Processor with Hyper-Threading Technology

Threading
Trace cache

2 logical processors.
12k micro-ops. 8-way associative.
6 micro-ops per line.
8k bytes. 4-way associative. 64-byte line
size.
2-cycle integer access. 4-cycle FP access.

L1 D cache
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-continued

A Processor with Hyper-Threading Technology

L2 unified 256k bytes. 8-way associative.

cache 128-byte line size. 7-cycle access latency.
Load buffers 48

Store buffers 24

[0092] The variety of benchmark tools include at least one
of the following:

Benchmark Description Input Set
nbody_ walker Traverses nearest bodies 20k bodies
from any node in Nbody
graph
mst Computes Minimal 3k nodes
Spanning Tree for data
clustering
em3d Solves electromagnetic 20k 5-
propagation in 3D degree
nodes
health Hierarchical database 5 levels
modeling health care system
mef Integer programming Lite
algorithm used for bus
scheduling

[0093] FIG. 14A is a chart illustrating an improvement of
performance by the helper thread on nbody_walker bench-
mark utility. FIG. 14B is a chart illustrating a speedup result
of nbody_walker at a given value of synchronization period.
FIG. 14C is a chart illustrating an automatic process versus
a manual process with respect to a variety of benchmark.
FIG. 14D is chart illustrating an improvement of an auto-
matic process over a manual process using nbody_walker at
a given synchronization period.

[0094] Thus, methods and apparatuses for thread manage-
ment for multi-threading have been described. In the fore-
going specification, the invention has been described with
reference to specific exemplary embodiments thereof. It will
be evident that various modifications may be made thereto
without departing from the broader spirit and scope of the
invention as set forth in the following claims. The specifi-
cation and drawings are, accordingly, to be regarded in an
illustrative sense rather than a restrictive sense.

What is claimed is:
1. A method, comprising:

identifying a region of a main thread that likely has one
or more delinquent loads, the one or more delinquent
loads representing loads which likely suffer cache
misses during an execution of the main thread;

analyzing the region for one or more helper threads with
respect to the main thread; and

generating code for the one or more helper threads, the
one or more helper threads being speculatively
executed in parallel with the main thread to perform
one or more tasks for the region of the main thread.
2. The method of claim 1, wherein identifying the region
comprises:
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generating one or more profiles for cache misses of the
region; and

analyzing the one or more profiles to identify one or more
candidates for thread-based prefetch operations.
3. The method of claim 2, wherein generating one or more
profiles comprises:

executing an application associated with the main thread
with debug information; and

sampling cache misses and accumulating hardware
counter for each static load of the region to generate the
one or more profiles for each cache hierarchy.
4. The method of claim 2, wherein analyzing the one or
more profiles comprises:

correlating the one or more profiles with respective source
code based on the debug information; and

identifying top loads that contribute cache misses above a
predetermined level as the delinquent loads.
5. The method of claim 1, wherein analyzing the region
comprises:

building a dependent graph that captures data and control
dependencies of the main thread; and

performing a slicing operation on the main thread based

on the dependent graph to generate the helper threads.

6. The method of claim 5, wherein analyzing the region
further comprises:

performing a scheduling between the main thread and the
helper threads; and

determining a communication scheme between the main

thread and the helper threads.

7. The method of claim 6, wherein analyzing the region
further comprises determining a synchronization period for
the helper threads to synchronize the main thread and the
helper threads, each of the helper threads performing its
tasks within the synchronization period.

8. Amachine-readable medium having executable code to
cause a machine to perform a method, the method compris-
ing:

identifying a region of a main thread that likely has one

or more delinquent loads, the one or more delinquent

loads representing loads which likely suffer cache
misses during an execution of the main thread;

analyzing the region for one or more helper threads with
respect to the main thread; and

generating code for the one or more helper threads, the
one or more helper threads being speculatively
executed in parallel with the main thread to perform
one or more tasks for the region of the main thread.
9. The machine-readable medium of claim 8, wherein
identifying the region comprises:

generating one or more profiles for cache misses of the
region; and

analyzing the one or more profiles to identify one or more
candidates for thread-based prefetch operations.
10. The machine-readable medium of claim 9, wherein
generating one or more profiles comprises:

executing an application associated with the main thread
with debug information; and
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sampling cache misses and accumulating hardware
counter for each static load of the region to generate the
one or more profiles for each cache hierarchy.
11. The machine-readable medium of claim 9, wherein
analyzing the one or more profiles comprises:

correlating the one or more profiles with respective source
code based on the debug information; and

identifying top loads that contribute cache misses above a
predetermined level as the delinquent loads.
12. The machine-readable medium of claim 8, wherein
analyzing the region comprises:

building a dependent graph that captures data and control
dependencies of the main thread; and

performing a slicing operation on the main thread based

on the dependent graph to generate the helper threads.

13. The machine-readable medium of claim 12, wherein
analyzing the region further comprises:

performing a scheduling between the main thread and the
helper threads; and

determining a communication scheme between the main

thread and the helper threads.

14. The machine-readable medium of claim 13, wherein
analyzing the region further comprises determining a syn-
chronization period for the helper threads to synchronize the
main thread and the helper threads, each of the helper
threads performing its respective tasks within the synchro-
nization period.

15. A data processing system, comprising:

a processor capable of performing multi-threading opera-
tions;

a memory coupled to the processor; and

a process executed by the processor from the memory to
cause the processor to

identify a region of a main thread that likely has one or
more delinquent loads, the one or more delinquent
loads representing loads which likely suffer cache
misses during an execution of the main thread,

analyze the region for one or more helper threads with
respect to the main thread, and

generate code for the one or more helper threads, the

one or more helper threads being speculatively

executed in parallel with the main thread to perform

one or more tasks for the region of the main thread.

16. The data processing system of claim 15, wherein the

process is executed by a compiler during a compilation of an

application.

17. A method, comprising:

executing a main thread of an application in a multi-
threading system; and

spawning one or more helper threads from the main
thread to perform one or more computations for the
main thread when the main thread enters a region
having one or more delinquent loads, code of the one
or more helper thread being created during a compila-
tion of the main thread.
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18. The method of claim 17, further comprising:

creating a thread pool to maintain a list of thread contexts;
and

allocating one or more thread contexts from the thread
pool to generate the one or more helper threads.
19. The method of claim 18, further comprising:

terminating the one or more helper threads when the main
thread exits the region; and

releasing the thread contexts associated with the one or

more helper threads back to the thread pool.

20. The method of claim 17, further comprising deter-
mining a time period for each of the helper threads, each of
the helper threads being terminated when the respective time
period expires.

21. The method of claim 20, wherein each of the helper
threads terminates when the time period expires even if the
respective helper thread has not been accessed by the main
thread.

22. The method of claim 17, further comprising discard-
ing results generated by the one or more helper threads when
the main thread exits the region, the results not being reused
by another region of the main thread.

23. A machine-readable medium having executable code
to cause a machine to perform a method, the method
comprising:

executing a main thread of an application in a multi-
threading system; and

spawning one or more helper threads from the main
thread to perform one or more computations for the
main thread when the main thread enters a region
having one or more delinquent loads, code of the one
or more helper thread being created during a compila-
tion of the main thread.

24. The machine-readable medium of claim 23, wherein

the method further comprises:

creating a thread pool to maintain a list of thread contexts;
and

allocating one or more thread contexts from the thread
pool to generate the one or more helper threads.
25. The machine-readable medium of claim 24, wherein
the method further comprises:

terminating the one or more helper threads when the main
thread exits the region; and

releasing the thread contexts associated with the one or

more helper threads back to the thread pool.

26. The machine-readable medium of claim 23, wherein
the method further comprises determining a time period for
each of the helper threads, each of the helper threads being
terminated when the respective time period expires.

27. The machine-readable medium of claim 26, wherein
each of the helper threads terminates when the time period
expires even if the respective helper thread has not been
accessed by the main thread.

28. The machine-readable medium of claim 23, wherein
the method further comprises discarding results generated
by the one or more helper threads when the main thread exits
the region, the results not being reused by another region of
the main thread.
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29. A data processing system, comprising: spawn one or more helper threads from the main thread
. . . to perform one or more computations for the main

a processor capable of performing multi-threading opera- thread when the main thread enters a region having
tions; one or more delinquent loads, code of the one or

a memory coupled to the processor; and more helper th.read being created during a compila-

tion of the main thread.

a process executed by the processor from the memory to 30. The data processing system of claim 29, wherein code
cause the processor to of the one or more helper threads are generated by a

) o ) compiler during a compilation of an application.
execute a main thread of an application in a multi-

threading system, and I T S



