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(57) Abstract: A memory system for digital data communica-
tion with a host device is described to provide data storage ca-
pacity. The system can include a controller and a plurality of
modules, each module including a nonvolatile memory device
wherein the module is configured to perform a management
function with respect to the module at least partially based on
a parameter. The parameter is provided by the controller
and/or the module. The system and modules, in one feature,
can support multiple forms of concurrency with respect to
data accesses involving the modules.
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AT LEAST SEMI-AUTONOMOUS MODULES IN A MEMORY SYSTEM AND
METHODS

[0001] The present invention is related generally to the field of memory systems
using non-volatile memory, such as solid-state drives (“SSDs”) and other storage devices,
and, more particularly, to at least semi-autonomous modules for use in memory systems

and associated methods, as well as related features.

[0002] Prior art solid state drives typically include a controller that can be
interfaced with a standard host device as well as a plurality of flash memory devices. The
flash memory devices are generally each in the form of a memory die. The connection
between the controller and the flash memory devices is typically in the form of a flash-
oriented interface with each memory device being individually connected to the flash-
oriented interface. The controller may have a plurality of flash-oriented interfaces with
each of these interfaces being connected to a plurality of memory devices. Applicants
recognize that there are a number of disadvantages with respect to this prior art
configuration, particularly with respect to larger capacity solid-state drives. For example,
the controller must control a large number of individual memory devices. As another
example, the number of signal connection points that are required on the controller
increase in proportion to the capacity of the drive. In still another example, the controller
is responsible for management functions (e.g., overhead functions, such as wear leveling)
such that the interface between the controller and the memory devices is burdened by
traffic relating to these functions. As yet another example, testing and monitoring of large

numbers of memory devices by the controller is a complex task.

[0003] Applicants also recognize a related concern with respect to the use of non-
volatile memory in the prior art with regard to block-oriented non-volatile memory. It
should be appreciated that the prevailing approach of the prior art with respect to access of
block-oriented non-volatile memory is to allocate user data plus accompanying extra
information exactly onto a physical page. For purposes of the present discussions, the term
“block-oriented” relates to the use of a page based memory that is employed by using user
data blocks that are generally of a length that is equal to the page length. As will be further
discussed, with block-oriented memory, some pages may be partially unused based on a
user data block that is shorter than one page length, but user data blocks are not longer

than the page length. By way of non-limiting example, NAND flash is typically
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configured so as to be of this type of block-oriented memory. This type of inflexible
allocation in block-oriented memory thus produces an exact correspondence between the
stored information and the number of storage cells comprising each physical page and is
customary within the industry for both Single Bit per Cell memory (SBC) and Multi-Bit
per Cell memory (MBC).

[0004] Applicants further recognize that such an approach is inflexible in matching
user data to page-units in a particular memory device. The physical page size is a design
parameter of the memory and cannot be changed. A penalty will be incurred in the event
of a mismatch between the number of storage cells in a physical page and the number of
cells required per block by an application. The penalty can be in the form of insufficient
cells to meet ECC requirements, thus leading to poor reliability of the application; or it can
be in the form of storage inefficiency if there are a more than the needed number of cells
in each physical page. Thus, designers of non-volatile memory devices, e.g., NAND flash,
are challenged with attempting to predict the needed page size before the memory is even
produced. Almost inevitably, a given page size will be not be well-suited to at least some

subset of the applications to which the use of the memory is directed.

[0005] The foregoing examples of the related art and limitations related therewith
are intended to be illustrative and not exclusive. Other limitations of the related art will
become apparent to those of skill in the art upon a reading of the specification and a study

of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Exemplary embodiments are illustrated in referenced figures of the
drawings. It is intended that the embodiments and figures disclosed herein are to be

illustrative rather than limiting.

[0007] FIGURE 1 is a block diagram which illustrates an SSD that is produced
according to an embodiment of the present disclosure, shown here as part of an overall
system.

[0008] FIGURE 2 is a block diagram which illustrates further details of a SSD

according to an embodiment of the present disclosure.
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[0009] FIGURE 3 is a block diagram illustrating an embodiment of a module that
is used in a SSD, such as the SSD of Figures 1 and/or 2.

[0010] FIGURE 4 is a block diagram which illustrates an embodiment of a module

interface for use with a module, such as the module of Figure 3.

[0011] FIGURE 5 is a block diagram which diagrammatically illustrates the
memory devices of a module in conjunction with an example arrangement of memory

sections across those memory devices.

[0012] FIGURE 6 is a block diagram of an embodiment of a function engine that

can be used in a module, such as the module of Figure 3.

[0013] FIGURE 7 is a flow diagram illustrating an embodiment of a wear leveling

function that can be performed using the function engine of Figure 6.

[0014] FIGURE 8 is a flow diagram illustrating an embodiment of a garbage

collection function that can be performed using the function engine of Figure 6.

[0015] FIGURE 9 is a flow diagram illustrating an embodiment of a bit density

configuration function that can be performed using the function engine of Figure 6.

[0016] FIGURE 10 is a flow diagram which illustrates an embodiment of an FTL
(Flash Translation Layer) function that can be performed using the function engine of
Figure 6.

[0017] FIGURE 11 is a flow diagram which illustrates an embodiment of a read

operation that can be performed in cooperation with the function engine of Figure 6.

[0018] FIGURE 12 is a flow diagram which illustrates an embodiment of a write

operation that can be performed in cooperation with the function engine of Figure 6.

[0019] FIGURE 13 is a flow diagram which illustrates an embodiment of an erase

function that can be performed in cooperation with the function engine of Figure 6.

[0020] FIGURE 14 is a diagrammatic illustration of user data blocks of differing
length in relation to the length of a physical page.
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[0021] FIGURE 15 is a block diagram which diagrammatically illustrates a set of
successive physical pages storing a set of user data blocks each of which includes a length

that is less than the length of one physical page.

[0022] FIGURE 16 is a block diagram which diagrammatically illustrates a set of
successive physical pages storing a set of user data blocks each of which includes a length

that is greater than the length of one physical page.

[0023] FIGURE 17 is a flow diagram which illustrates an embodiment of a method
for storing/writing user data blocks in a way which achieves the data structures described
in the context of Figures 15 and 16 and in which the block length and page length can be
different.

[0024] FIGURE 18 is another flow diagram which illustrates an embodiment of a
method for reading user data blocks from the data structures described above in the
context of Figures 15 and 16 and in which the block length and page length can be
different.

DETAILED DESCRIPTION

[0025] The following description is presented to enable one of ordinary skill in the
art to make and use the invention and is provided in the context of a patent application and
its requirements. Various modifications to the described embodiments will be readily
apparent to those skilled in the art and the generic principles taught herein may be applied
to other embodiments. Thus, the present invention is not intended to be limited to the
embodiments shown, but is to be accorded the widest scope consistent with the principles
and features described herein including modifications and equivalents, as defined within
the scope of the appended claims. It is noted that the drawings are not to scale and are
diagrammatic in nature in a way that is thought to best illustrate features of interest.
Descriptive terminology may be adopted for purposes of enhancing the reader's
understanding, with respect to the various views provided in the figures, and is in no way

intended as being limiting.

[0026] Attention is now directed to the figures wherein like items may refer to like
components throughout the various views. Figure 1 is a block diagram of a solid state

drive (SSD) 10, produced according to an embodiment of the present disclosure, forming
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part of an overall system 12 wherein the solid state drive is interfaced with a host 20. In
the example embodiment of Figure 2, storage capacity of the SSD 10 is provided by a total
of 20 modules some of which are designated by the reference number 30. Any suitable
number of modules can be used while remaining within the scope of the teachings herein.
Each module includes a non-volatile memory (“NVM?”) section (e.g., a number of NVM
devices, such as a number of NVM dies) which can be flash memory, but any suitable
memory technology can be used such as, for example, phase change memory (“PCM”)
and other forms of variable resistance memories. It should be appreciated that the module
arrangement of Figure 1 supports the use of “spare” modules, such as to ensure against
loss of use of some portion of the total number of modules. If the total capacity of the
SSD is targeted at one terabyte (1 TB), it can be seen that sixteen modules, each of which
has a capacity of 64 gigabytes (64 GB) satisfies this target. Thus, the total of 20 modules
can provide an excess of 5 modules which can be treated as spares. Including a number of
NVM devices in a single module can reduce the number of individual memory devices
directly connected to the controller during read and write operations by a factor of the

number of NVM die in the memory module.

[0027] As will be seen, communication with a module is provided via a module
interface. The module interface can be a point-to-point interface and an independent
instance of the module interface can be provided for each module in the system. This can
be practical because of a low module pin count. The low pin count can enable many
module interface ports to be provided within conventional pad-ring constraints of SSD
controller in ASIC form, and each port provides an interface to one module. The point-to-
point interconnection of modules and SSD controller ports can enable dedicated allocation
of the resources of a particular module interface to transactions between the SSD
controller and that particular module. When the interconnection established by the module
interface between the main controller and the respective module is dedicated, transactions
between the main controller and the module do not have to share the resources of the
interface with other modules; these transactions can therefore be executed at the full
bandwidth of each module interface. Also, when the connection is dedicated to one
module, arbitration and resource sharing, that would otherwise be necessary if the
interface were connected to more than one module, can be avoided. This can, in turn,
improve system performance by allowing for increased performance in terms of both

numbers of transactions and amount of data transferred over the interface.
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[0028] Still referring to Figure 1, a controller 40 is interfaced with each one of
modules 30 via a module interface 42 (several of which are indicated using reference
numbers) for each module. The controller is, in turn, interfaced to host 20 via a suitable
high-level host interface 44 which can be any of various interfaces for attaching a memory
system to a computer, for instance. By way of example, host interface 44 may be a SATA
(Serial ATA) interface for some systems 12. Other systems 12 may employ the use of a
SAS (Serial Attached SCSI) interface or the interface may be back plane oriented such as,
for example, using PCI Express. In this regard, a suitable form of host interface can be

selected in view of a particular end use.

[0029] A cache 46 can be included, such as to provide a performance enhancement
to the overall SSD system 10. A cache may be realized by attaching any suitable memory
device such as a SDRAM, PCM, fast flash (for example, SBC), and the like. The SSD
controller 40 can have a dedicated interface for communication with one or more cache
devices. Depending on the nature of the cache technology selected for a particular SSD
design, this interface may be dedicated to the cache. If the cache device 46 is a module,

then the cache interface can be the same as or similar to a NVM module interface.

[0030] Controller 40, when compared with controllers for prior art SSDs, can be
viewed as simplified. Because the modules in system 10 can be charged with detailed
management functions yet to be described below, the SSD controller can be relieved of the
burden of many functions that are typically performed by prior art controllers. Non-
limiting examples of functions that are offloaded can at least include (1) wear leveling, (2)
garbage collection, (3) logical to physical address translation, (4) physical page to logical
block abstraction, (5) ECC functions, and (6) memory conditioning and signal processing.
Because many of the functions can be reduced or removed which would require heavy
CPU and other supporting activity in a prior art SSD controller, such as those listed above,
the bandwidth of the SSD controller can be relatively more dedicated to transferring user

data between the host and the connected modules.

[0031] Turning to Figure 2 in conjunction with Figure 1, the former is a block
diagram which illustrates an embodiment of controller 40. The controller includes a
plurality of controller module ports 100, each of which provides a module interface 42 to

communicate with a plurality of storage modules 30 (Figure 1). Each controller module
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port 100 provides one set of associated interface signal connections that are the same from
one controller module port to the next. By way of non-limiting example, controller 40 can
communicate with twenty modules 30 via twenty individual module interfaces 42, as
shown in Figure 1. The number of controller module ports in an SSD controller can vary.
The particular number of controller module ports implemented in a given SSD controller
can depend on design considerations involving the SSD controller itself, as well as on the
SSD system. These design considerations can involve the desired storage capacity of the
SSD, the desired performance, and the desired cost. The benefits of the controller module
interface are provided regardless of the number of controller module ports implemented in

the SSD controller of a particular embodiment.

[0032] Continuing with the description of main controller 40, a data path and
control logic section 120 is configured to perform data transfers between each active
controller module port 100 and the remainder of the SSD controller using bidirectional
data paths, such as bus connections 122, several of which are indicated by reference
numbers. A control bus 124 can provide a data path between a microprocessor 130,
operating using code stored in a memory 132, and registers 134 contained in logic blocks
making up the SSD controller. Each controller module port is connected to bus 124 to
facilitate control by microprocessor 130. Accordingly, microprocessor 130 can read from
and write to registers 136 in each module port and, in doing so, can manage (e.g., set up,
start, stop, and monitor) the operations of each controller module port. A data buffer
section 140 can provide memory for staging blocks of data that flow through the SSD
controller either as read data destined to be transferred to a host through a host interface
port 144 or as write data destined to be transferred to a module through one of controller
module ports 100. A bidirectional data path 146 (several of which are indicated using
reference numbers) can be provided between data path and control section 120 and data
buffer section 140. It should be appreciated that a one-to-one correspondence between the
number of bidirectional data paths 146 and the number of controller module ports 100 is
not required. In this regard, a sufficient number of discrete bidirectional data paths 146 can
be present in order to ensure sufficient total data bandwidth. That is the total number of
bidirectional data paths 146 can be less than the total number of controller module ports,
equal to the total number of module ports, or greater than the total number of controller

module ports.
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[0033] Memory 132 is accessible by microprocessor 130 in order to perform
functions which manage the SSD controller, such as managing errors and exceptions as
might occur during normal operation of the SSD controller, including those occurring
because of errors in data received from one or more of the modules, because of
exceptional conditions in the SSD controller (such as resource conflicts, buffer memory
errors, and the like), and because of unanticipated problems occurring during the course of

otherwise normal operations.

[0034] A high speed data path, such as bus 150, can be used to transfer data
between buffering section 140 and host interface port 144. This bus may be of any
suitable design that supports the SSD system requirements with respect to, for example:
aggregate transfer rate through the host interface; latency between commands issued
through the host interface and response to those commands; and concurrency to support
simultaneous execution of multiple commands. Host interface port 144 is in
communication with microprocessor 130 via control bus 124 such that the microprocessor
can manage (e.g., control and/or monitor) the host interface 44. Although only a single
host interface 44 is depicted in Figure 2, more than one host interface may be present in a
given SSD controller embodiment. For embodiments with multiple host interfaces, each
instance of the host interface can be of the same type of interface (as would be the case
with multiple SAS ports) or different instances may be of different types (such as, for
example, some combination of SAS, SATA, and PCI Express).

[0035] A host to SSD controller interface 44 can be provided by host interface port
144. Such a port 144 includes signal connections and/or circuitry configured to perform
all operations required by the host interface definition. If SAS or SATA interfaces are
provided by host interface port 144, the physical connection can be made up of a
minimum four signal connections organized as two differential pairs. In other
embodiments, for example in the instance where SAS is used and where secondary
interface signal connections are used, additional differential signal pairs can be present.
For the case of SAS, more than one host port may be used: in such an embodiment, two

sets of physical connectors can be present instead of one.

[0036] Attention is now directed to Figure 3 which is a block diagram illustrating a

module 30 (see also, Figure 1) produced in accordance with an embodiment of the present
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disclosure. The module can include a plurality of memory devices 170. A total number of
memory devices can vary from one to eight or more, and memory devices can be based on
any appropriate technology. In some embodiments, the memory technology is NAND
flash, The devices making up the overall memory of a module can be standard
commercially available parts or devices that can be customized for use in a module. A
number of memory devices 170 can be attached to a media port 176, such as to increase
concurrent operation of attached memory devices and/or to increase data throughput in a
SSD. As seen in Figure 3, in some embodiments, each media port 176 can provide an

interface to a group of memory devices.

[0037] Still referring to Figure 3, each media port 176 provides a memory device
interface 180 that can be used to communicate with a plurality of memory devices.
Further, each module 30 can include multiple media ports 176. In some embodiments, the
number of media ports is two or four. Each media port 176 can provide an industry
standard interface such as, for example, ONFI (Open NAND Flash Interface) for
communication with standard NAND flash devices, or each media port can provide a
custom interface intended for communicating with customized memory devices. As noted
above, one or more memory devices 170 can communicate over each memory device
interface 180. In some embodiments, the number can range from one to four. Moreover,
there is no requirement that the same number of memory devices be connected to each
media port. Further, in some instances, a particular media port may not have any memory
devices connected thereto. Such a situation can occur, for example, when a particular

module arrangement does not use all available media ports.

[0038] A data path and control section 190 forms part of module 30 and can be
configured to direct data traffic to and from media ports 176 in a manner that manages
(e.g., coordinates) data traffic to and from the multiple media ports using various system
resources in conjunction with the media ports themselves. Multiple data paths can be
supported in the data flow between each media port 176 and the rest of the module.
Decoder read data paths 200 include data paths to decoders 202; a direct data path 204 to a
data buffer section 210; data paths to read logic 212; and data paths from one media port
(in read mode) to another media port (in write mode) at least flowing through data path
and control unit 190. Write data paths can include data paths from encoders 220; a direct

data path 230 from data buffer section 210; and data paths from write logic 222. It is noted
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that most, if not all, data flows that can take place on these various data paths can be
sustained concurrently with all other data flows. Some of the manners by which the

subject concurrency may be maintained are described, as follows:

a. One media port 176 is used to perform a first write function to one of its
attached memory devices 170. The data path used by the first write function is one of the
available write data paths in the module. At the same time, another media port 176 is used
to perform a second write function to one of its attached memory devices 170. The data
path used in the second write function may be any of the remaining write data paths not
already being used by the first write function. Because two media ports are performing
concurrent write functions, the two memory devices receiving the write mode data are
distinct. It is noted that this scenario is not possible wherein a single memory device is the
target of simultancous commands from two media ports because each memory device

attaches to only one media port.

b. A first media port 176 is used to perform a write function to one of its
attached memory devices 170. The data path used by the write function is one of the
available write data paths in the module. At the same time, a second media port 176 is
used to perform a read function from one of its attached memory devices. The read data

path can be any read data path available to the second media port.

C. A single media port 176 can be used to simultaneously perform more than
one command. This can occur as an active command on each of two or more memory
devices attached to the same media port 176, or as multiple commands on a single
memory device attached to same media port 176. In either situation, the concurrency of
commands requires concurrent data flows over a single media interface 192 provided by a
particular media port 176 and data path and control section 190 of the module. This
concurrency of data flow is different from the cases described in (a) and (b) above in that
there is a temporal constraint imposed by the fact that at any single instant in time, only
one data value can be present on the particular media port interface 192. In order to
sustain multiple data flows, the particular media port interface 192 can operate such that it
is shared over time so that each active command is allowed to transfer data for a limited

amount of time before it must yield to one of the other active commands. A commonly

10
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used term in the data communication arts that refers to this concept is “time domain

multiplexing” which will be familiar to those having ordinary skill in the art.

d. Multiple media ports 176 can be used to cooperatively perform a single
read or write command if a single unit of data (e.g., a block) is partitioned and written
across more than one memory device. Data can be partitioned in various ways in the
context of the present disclosure: one possible partition involves separating a block into
two or more partitions by interleaving. Interleaving can be performed along bit or byte
boundaries, or by using larger units such as, for example, words, double wotds, sectors,
and the like. Interleaving may be performed either before or after encoding on a write
operation. Whether the interleaving step occurs before or after encoding determines a
corresponding order for a decoder. If interleaving is performed before encoding, a
separate encode step is performed for each partition, which can mean that as many
encoders as partitions are necessary to support the function. One advantage of an
interleaving function for writing/reading single blocks across multiple memory devices is
that it results in achieving much higher data throughput than would be possible with a non

interleaved approach.

[0039] Module 30 includes one or more decoders 202. As a data path resource, in
the present embodiment, each decoder 202 can support only one transfer (e.g., of a block
of data or of a partition of data) at a time such that multiple simultaneous decoding of
different transfers can take place when multiple decoders are provided in a module
embodiment such as is illustrated by Figure 3. The presence of multiple decoders provides

the capability for true concurrent decoding of two different transfers.

[0040] The configuration of a decoder can vary according to the way the memory
devices are being used, and so there are multiple variations that may be present in a
module. As one example, if memory devices of a particular module are based on flash
technology, different types of flash memory can be used. Further, within types of available
flash, there may be one or more modes of use for each flash type. For example, if
commercially available flash devices are selected, a memory device (or a portion of a
memory device) may be used in a Single Bit per Cell (SBC) mode or a Multiple Bits per
Cell (MBC) mode. In an embodiment, data can be written which is encoded with an

algebraic error correcting code (“algebraic ECC”) regardless of which mode is being used.

11
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Hence, an appropriate decoder for this case is one which decodes the particular code that
has been applied and corrects errors up to the extent allowed by the particular code. As
another case, a particular algebraic code used by a module for SBC or MBC memory can
further depend on whether the SBC or MBC memory is accessed in units directly
corresponding to the page structure of the memory device or if the module performs an
abstraction service on behalf of the host that removes the page-level details from view (as
well as management responsibility) of the host. Either case can involve a different

decoder embodiment.

[0041] Another example resides in the use of memory devices that offer visibility,
access, and control with respect to the internal functions of the memory device related to
reading, writing, and erasing. A module that is made up of such memory devices can be
written and read with greater precision than standard memories typical of the example
described immediately above. The greater precision can provide not only greater density
of information storage, but also can provide additional information that can be used to
advantage in the decoding function. This additional information can exist in the form of
additional bits of precision in the data written to and read from the flash memory and can
be referred to as “soft bits” which is a term that will be familiar to those of ordinary skill
in the data communications arts. Such a memory also allows for functions that
compensate for read- or write-related distortions in data, and so offers the capability for
configuration (e.g., adaption and/or correction) of read and write functions so as to provide
one or both of higher data storage density (more bits per cell) and greater reliability (often
manifested as increased program/erase cycles in flash memory). Such described

capabilities can, in turn, require different configurations of the decoder(s).

[0042] In view of these examples, if one criterion for an embodiment of a module
is to provide flexibility with respect to the use of different types of memory devices, the
corresponding decoding arrangement in the module can provide a multi-mode function.

Some of the particular variations that can be expected include:

a) BCH (Bose Chaudhuri Hoquenghem) decoding only, with one or more bit

error capacity settings,

b) RS (Reed Solomon) decoding only, with one more symbol error capacity

settings,

12
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) BCH decoding combined with a suitable form of sequential decoding (for

example, convolutional), and
d) RS decoding combined with a suitable form of sequential decoding.

[0043] A module that can be configured to provide more than one decoder
function can operate particular instances of a decoder in particular modes. For example, a
two-decoder module can support true decoding concurrency on two data paths. Part of the
flexibility afforded by multiple decoders in a module accrues from the fact that at a given
time, by way of non-limiting example, one decoder can be configured as a BCH-only
decoder while the other decoder can be configured as a convolutional (Viterbi detector)

decoder combined with a Reed-Solomon decoder.

[0044] With respect to encoders 220 of Figure 3, the discussion immediately above
can be at least generally extended to encoders and the encoding function, as the two
functions are directly analogous. Accordingly, the discussion immediately above with
respect to memory usage, decoder modes, flexibility, and concurrency applies equally to

the encoding case.

[0045] Read logic 212 can be provided as operational support for at least semi-
autonomous capabilities of a module as a storage subsystem. Functions performed by read
logic 212 can include, by way of example, data processing used in conjunction with
calibration or compensation such as, for example, the mean value and array processor
functions described in commonly owned, copending U.S. Patent Application Serial no.
12/888,585, filed on September 23, 2010, entitted MEMORY QUALITY MONITOR
BASED COMPENSATION METHOD AND APPARATUS (hereinafter, the ‘385
Application), for memory devices in which calibration and/or compensation functions
afford specific control over their internal operations. In particular, compensation can
involve signal processing using parameters associated with the physical arrangement of
the memory devices, while calibration can involve a number of metric gathering analysis

functions that can be performed as hardware functions under direct software control.

[0046] With respect to write logic 222, the discussion regarding read logic 212 and
read functions discussed immediately above can also be at least generally extended to the

write logic and write functions. In some cases, there may be a particular reason or
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advantage to perform an operation associated with compensation or adaptation in the write
mode instead of the read mode. With regard to such adaptation, information such as, for
example, signal-to-noise ratio (“SNR™) related data, can be gathered as the basis for
subsequent parameter values. In the instance of bit density configuration and by way of
non-limiting example, a module can utilize the SNR statistics relative to a particular
physical region of the memory that is reclaimed by a garbage collection function in
configuring a bit density of that region when that region is reallocated. This can be the
primary difference between the write and read functions. A module can include any
suitable combination of read and write functions. Accordingly, in a given module, there
can be configurable write functions but no configurable read functions; or there can be
configurable read functions but no configurable write functions. In some embodiments,

both configurable read and write functions can be provided.

[0047] Direct write data path 230 from data buffer section 210 to data path and
control section 190 can provide low latency data communication when necessary, as well
as an alternate data transfer path for transfers not requiring decode functions or read
functions. The direct write path is a write path in that data transfer is to one of media ports

176 and an associated memory device 170.

[0048] Direct read data path 204 is analogous to direct write path 230 and extends
from data path and control section 190 to data buffer section 210, such as to provide low
latency data communication when necessary, as well as an alternate data transfer path for
transfers not requiring encode functions or write functions. The direct read path is a read
path in that data transfer is from one of media ports 176 and an associated memory device

170.

[0049] Data buffer section 210 is connected to a controller port 240 that provides
one instance of a module interface 42 (see Figures 1 and 2). The data buffer section
implements a data buffer function that provides data staging for transfers between the data
buffers and the media ports as well as between the data buffers and the module interface.
Such a data buffer function can provide, for example, speed matching between transfers
into and from the buffers. For instance, any flash read command can involve transfer of
memory device data to the module interface as a combination of (1) discrete transfers that

originate in a memory device 170 and terminate at buffer 210 and (2) subsequent transfers
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that originate at buffer 210 and flow through module interface 42. Conversely, any
function that writes to a memory device can involve a combination of (1) discrete transfers
that enter through module interface 42 and terminate at data buffer 210, and (2)
subsequent transfers that originate at data buffer 210 and terminate at a memory device

170.

[0050] It should be appreciated that data buffer section 210 can include a DMA
portion 242 that is configured to control the flow of data into and out of the data buffers.
In general, a DMA resource is made up of a starting offset, a count, and a sequencing

function is assigned to each possible data path.

[0051] With continuing reference to Figure 3, each module 30 includes an
embedded microprocessor 300 that operates from a program memory 302, and which
microprocessor is connected via a microprocessor bus, which is understood to be present
but which is not shown for purposes of illustrative clarity, to various components which
make up the module. In particular, the microprocessor can access registers in the various
components. Software stored in program memory 302 can vary based on a particular
embodiment. One having ordinary skill in the art will recognize that the extent of
hardware support for given functions can vary. Hence, cooperation between software and
hardware in performing management functions can be configured responsive to variations

in:
a. memory device types.
b. encoding and decoding functions (e.g., algorithms).

c. compensation functions (applies to compensation on read data and to

compensation before writing data).
d. block erase functions for flash memory.
e. module interface support (command execution) functions.

f.  autonomous wear leveling functions, in which the module executes wear

leveling as a self-contained function independent from the main controller).
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g. semi-autonomous wear leveling functions, in which the main controller controls
the wear leveling function by providing related parameters and commands to the module

via the module interface.
h. local autonomous flash translation layer (FTL) implementation.

i. directed flash translation layer (controlled by host) implementation, in which the
main controller controls flash translation operation by providing related parameters and

commands to the module via the module interface.

j. physical memory access directed by the host. The host can access physical
memory in the plurality of modules by issuing appropriate commands to the main
controller, and the main controller can respond to such commands by issuing appropriate

direct-access commands to one of the memory devices attached to a selected module.

k. physical memory access directed by the module, with logical block abstraction

to the host.
1. autonomous garbage collection (usually applies to the local FTL).

m. semi-autonomous garbage collection in which the main controller exerts
control over the garbage collection function in one or more of the modules attached to the
main controller by writing appropriate parameters to the modules in which this control is

to be applied.

n. support for directed garbage collection (such as internal block copy functions)
in which the main controller controls the garbage collection function by writing
appropriate parameters to at least some subset of the plurality of modules via each

module’s module interface.
0. local self test of attached memory devices
p. autonomous power management functions

[0052] It should be appreciated that the foregoing list is provided by way of

example and is not intended to be all inclusive or limiting. Accordingly, the module
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configuration supports selection and reconfiguration of at least the above aspects of

module operation in any suitable combination.

[0053] Still referring to Figure 3, module 30 includes a function engine 320 that
can be used to perform (e.g. represent) any suitable combination of functions provided
through CPU 300 and program memory 302 as resources. Embodiments of function
engine 320 can perform, for example, one or more of the various management functions
described above. For example, wear leveling, FTL, and garbage collection, as well as
other functions that may be desired and/or required, can be provided in an embodiment.
Furthermore, the function engine can receive a set of parameters, provided from controller
40 and/or from the module itself which configures the functions. That is, the management
functions of the module are configurable, at least to some extent, based on parameters that
are provided from either the controller or the module itself. For example, the extent to
which the controller directs a management function can be configured based on
parameters that can be set by the controller. Once the parameters are established, however,
the management function can operate autonomously in an embodiment. Parameter
priority will be discussed in detail at an appropriate point hereinafter. In any case,
however, the function engine is configured to perform a function(s) of interest, as will be
further described. Main controller 40 can determine characteristics of operation with
respect to a given function through a set of configuration parameters that the controller
provides to a shared parameter section 322 of the function engine. The shared parameter
section can be populated, for example, by CPU 300 responsive to controller 40 (Figure 2)
and responsive to module interface 42 of module 30 (Figure 3). These configuration
parameters determine how the function engine will perform (e.g., initialize and/or operate)
cach function such as, for example, wear leveling, garbage collection and bit density
configuration. The configuration defined by the parameters for each function can define
the requirements for activities to be carried out by both the module and the main
controller. For example, at least semi-autonomous wear leveling can be carried out by the
module with minimal related communication from the main controller following original
configuration. Directed wear leveling, on the other hand, can require continuing or
periodic configuration from the controller accompanied by monitoring of the wear-
leveling activity by the controller via some form of reporting from the module. Such
reporting can be accomplished by a module, for example, through updating output

parameter values that are provided via a reporting section that is yet to be described.
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Accordingly, the function engine of each module can be configured to perform a
management function for the nonvolatile memory devices of only that module based at
least partially on one or more module input parameters. The main controller provides for
digital data communication with the host device and provides for module digital data
communication with each module of the plurality of modules such that any data flowing to
and from one of the modules flows through the controller. Further, the controller can be
configured to provide input parameters to each module to configure the at least semi-

autonomous execution of each function of interest.

[0054] An input data path 330 from module interface 42 to data buffers 210
transfers data and control information from the module interface into the buffer section.
This data path can be of a relatively higher speed, for example, relative to at least some
other data paths extending between buffer section 210 and data path and control section
190 since incoming path 330 can serve a plurality of the data paths from data buffer

section 210 to data path and control section 190.

[0055] An output data path 340 extends from data buffer section 210 to controller
port 240 for transfer of data and control information from the buffer section to the module
interface and forms part of an output data path from the module 30 to SSD controller 40
via the module interface 42 provided by controller port 240. Data path 340 can be capable
of higher bandwidth than other data paths to or from buffer section 210 since, like data
path 330, a plurality of other data paths can be served by output data path 340.

[0056] Details with respect to an embodiment of module interface 42 are
illustrated by the block diagram of Figure 4 with the interface connection extending
between module port 100 of controller 40 of Figure 2 and controller port 240 of module
30, as shown in Figure 3. The controller port and module port provide the command and
data connection between each module 30 and controller 40 that makes up each module
interface 42. A data transmit path 400 provides a communication path for transmission of
commands, data, status, and other information from the controller to the module. Of
course, these items can originate from host device 20 (Figure 1). In an embodiment, the
data transmit path can be established by differential signaling, so two physical signals can
make up the data transmit path. The data transmit path can optionally be embodied in the

form of a bi-directional signal pair such that operation in the reverse direction can act as a
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performance enhancement to the data transfer capability of the data receive path which is

yet to be described.

[0057] A data receive path 402 provides a communication path for transmission of
data, status, and other information from the module 30 to controller 40. Like data transmit
path 400, path 402 can be established, in an embodiment, by differential signaling, so two
physical signals make up the data receive path. In an embodiment, the data receive path
can be implemented as a bi-directional signal pair and when operating in the reverse
direction can act as a performance enhancement to the data transfer capacity of the data

transmit path.

[0058] A differential pair of signals can provide a clock 410 over module interface
42, The clock signal that is directed onto the clock pair can be generated in the host and
can also be used by the host for synchronizing data transmission and reception. The
differential clock signal provided over the module interface can be used to synchronize
data transmission and reception in the module. The clock received by the module is
directly related to the clock generated by and used by the host. Because of transmission
delay and other circuit effects, the clock signal received by the module may be out of
phase relative to the signal used by the host, so sampling circuitry in both the host and the
module can be assisted by clock alignment circuitry, such as a DLL or PLL, that can be
dynamically configured (e.g., adapted) in order to achieve optimum alignment between

clock and data signals.

[0059] Using the described interface, significantly fewer pins can be required by
the SSD controller. While each memory module can support 8 flash chips, connection of
the module to the SSD interface can be performed via one reduced pin-count module
interface. In this way, the number of pins needed to control all the flash devices in the
system can be reduced compared with prior art implementations wherein each memory
device connects directly to the controller. The embodiments shown in Figures 1 and 4 can
enable fewer pins by limiting the number of pins required for controller to module
connections. That is, the reduced pin-count module interface of Figure 4 provides
connectivity to the controller with few pins when compared with prior art interfaces such
as, for example, QNFI.. In this way the SSD controller can connect to and control many

modules with few pins on the controller (when compared with alternatives such as ONFI),
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while achieving transaction rates and data throughput rates apprdpriaté for SSD
applications. The module interface described herein provides for abstraction of low-level
flash functions from higher-level SSD functions. Accordingly, the controller can be
unburdened by being configured only with high-level aspects of command execution, for
example. Low-level functions, such as those concerned with physical flash characteristics,
can be carried on at the module level. It should be appreciated that SSD performance can
be enhanced with increasing numbers of attached memory devices though the use of at
least semi-autonomous functionality for managing memory devices. Within a single
hardware configuration (a particular combination of pre-configured modules with a
particular SSD controller) an SSD can be configured in which the modules are at least
semi-autonomous entities wherein the role of the controller resides in accessing logically
addressed data units in the modules. In such a system, the role of the controller with
respect to management can be primarily to manage the storage provided by each module,

as an aggregation of module units, into a single larger volume.

[0060] The module interface can include features and capabilities at the command
and protocol levels which customize its intended application to SSD usage. These features
and capabilities can include support for low latency read and write functions, support for
high data throughput, support for command queuing and concurrently operating
commands, support for out of order transfer of data blocks comprising a multi-block
transfer operation, support for commands at different levels of block abstraction and a
simple, yet advanced high-performance protocol, each of which will be described, in turn,

immediately hereinafter.
Support for low latency read and write functions

[0061] Low latency is supported in module 30 by supporting what can be the
fastest possible response to commands received from controller 40. This can be
accomplished by module interface 42 using embodiments taking at least two approaches:
First, through support for concurrently executing commands, and second, through the
option of short data packets. Through the first approach, a command can be issued to
module 30 from controller 40 and acted upon immediately even though one or more other
commands may already be executing. This allows the command to access a targeted

memory device (if it is not already being accessed by a command to the same memory
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device) immediately, and enables data to begin transferring between controller 40 and a
memory device 170 in the module more quickly than would be possible if a currently
active command were to require completion before another command begins executing.
Interface support for command queuing and for concurrent command execution can enable
such concurrent execution capability. Through the second approach, the data transfer
phase of read or write commands can begin more quickly and therefore complete more
quickly as compared to the use of longer packets. The difference between the second
approach and approaches using longer rather than shorter packets, is that shorter packets
allow lower latencies because of the shorter transfer time of short packets relative to long
packets; hence all concurrently executing transfers are allocated buffer bandwidth on a
low-latency basis. A given command can be presented with a shorter wait time for access
to the interface with short data packets as compared with having to wait potentially longer
if longer data packets are used. Data packet length can be configurable. However, data
packet length for a particular embodiment can be dictated, for example, by a parameter
used at section allocation time that prioritizes for access latency according to packet
length. Hence, a maximum packet length may be determined by controller 40 for a given
module configuration. Also by way of the second approach, the direction switching
function discussed with respect to data transmit path 400 and data receive path 402 of
Figure 4 can be employed. When selected, the direction switching function can enable
faster transmission of all packet sizes, thereby increasing both throughput and latency

performance.
Support of high data throughput

[0062] High throughput and low latency are sometimes conflicting purposes if
larger packets are required for high throughput. While short packet sizes enhance latency
performance, they also tend to degrade throughput performance because the inherent
overhead of the interface is proportionally larger for small data packets than for larger
packets. That is, short packets achieve lower transfer efficiency than long packets, hence
when the demand placed on the interface approaches the bandwidth capacity of the
interface, better data throughput is achieved for long packets than for short packets. As a
configuration option, the ability to select packet size is also an aspect of the support for
high data throughput in order to address the competing interests of high throughput and

low latency.
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Support of command queuing and concurrently operating commands

[0063] A command queuing function can be present in module interface 42, in an
embodiment, as primarily a hardware function. Each command that executes must have
support for all transactions that will be involved in the execution of the command,
including command transfer, data transfers, and status of handshaking transactions. These
transactions, in turn, can use facilities such as DMA resources in proceeding. Such
hardware resources can be provided in the module interface definition to the extent
required to enable the command queuing function. An additional function for command
queuing can be generation and checking of a queue tag. The queue tag is a short binary
value that denotes an integer used to address the aforementioned hardware resources
required for a command. A queue tag is transmitted with each new command code sent
from the host to a device, and remains active as long as the command continues to
execute. After a command terminates, the queue tag is no longer active and so becomes

available for re-assignment when a subsequent command is issued.

Support for out of order transfer of data blocks comprising a multi-block transfer

operation

[0064] The module interface protocol can support a transaction model between the
controller and module that enables out of order transmission of blocks to occur within a
long multi-block transfer. The transaction model can provide that any read or write
command be comprised of one or more “connections”. Each connection is a virtual
construct that allocates addressing and counting control for a portion of a longer transfer.
As such, a connection exists as a temporal entity that exists to sustain some portion of a
command (normally data transfer) and that must terminate due to a time constraint on its
existence. The time constraint exists in order to guarantee that the interface is available to
other commands that may also be active. The constraint may be fixed or variable. A read
or write transfer may only require a single connection or it may require many connections.
The number of connections required for a command, then is a function of the total length
in bytes of the read or write command, and of the size of the time constraint. This
determination of the number of connections can be made by command handling software
running in the module. Connections may be established one at a time such that only one

connection exists within a given command at a given time, or a given command may have
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multiple active connections, with each connection transferring a different portion of the
overall transfer length of the command. Out of order transfer (of blocks) can be
supported, for example, by establishing connections that transfer a block or a few blocks
that may be out of order relative to their offset within the entire range of blocks being

transferred by the command.

[0065] Each connection can be established as part of the execution of an overall
command. A connection exists only long enough to transfer its allotted length of data
which can be a block (as defined relative to a command) or as number of bytes defined by
a count field in a command code. A connection terminates after the defined length of data

is transferred.
Support for commands at different levels of block abstraction

[0066] Controller 40 can utilize different approaches for accessing the memory
devices attached to a module 30. While there can be variations, two embodiments are

prevalent, as will be described immediately hereinafter.

[0067] In the first embodiment, the controller accesses memory devices attached to
a module over a module interface 42 as standard media in which the memory devices
include memory arranged as a hierarchy with pages at the lowest level of the hierarchy,
and erase blocks at a higher level of the hierarchy. A read or write access targets a
particular page with a page having a fixed amount of data and can include additional bits
that are normally used for ECC parity. Another type of access is an erasure, which targets
an erase block. An erase block, in flash memory, is a much larger structure than a page.
In fact, an erasure block contains some integer number of pages, the number of which can
vary. A typical value is 128 pages per erase block. Pages generally must be written as
units, and erasures generally must be performed on entire erase blocks. Pages can be read
from a memory device entirely or in part, but partial page reads can affect ECC encoding
and decoding functions. Some ECC encoding functions may encode entire pages and thus
require that an entire page be read in order for ECC decoding to be performed. Other ECC
encoding functions may be implemented so that the encoding and decoding is performed
on subdivisions of the data in a page: in this case, a partial page read can read one or more
of these subdivisions in order for ECC decoding to be performed. Regardless of whether a

full-page or partial page read, or a full-page write is to be performed, addressing of
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physical pages is performed using physical addresses. The use of physical addresses
requires knowledge in the issuer of the command (controller 40, in this instance) of the

physical arrangement of pages in each memory device attached to the targeted module.

[0068] The first embodiment is supported by encoding, decoding, and data path
hardware in the module. Addressing, read, write, as well as ECC encoding and decoding
can all be supported in the module as a selectable configuration in a manner that has not

been seen heretofore.

[0069] The second embodiment is one in which the memory devices are addressed
and accessed as logical units comprised of logical sectors or logical blocks with logical
(rather than physical) addresses. Data lengths are not constrained by the physical length of
pages in this approach, so the module can manage physical pages and erase blocks such
that the logical structure is mapped onto the physical structure whereby the controller need
only add a logical address to a command in order transfer the desired data. Functions in
the module that support this logical form of access (sometimes called block abstraction)
include various aspects ‘of the encoder and decoder configurations, as discussed with
respect to Figure 3). Other aspects of this support, also discussed with regard to Figure 3,
include data path arrangements, and the miscellaneous read and write functions as related
to compensation and calibration. Software features and functions are an integral part of
this support, as the software provides support for functions that are involved with or
related to the block abstraction capability. A few of these functions are the local Flash
Translation Layer (FTL), control over erasure operations (e.g., garbage collection), wear
leveling, bit density configuration (e.g., encoder/decoder configuration), and the like. Still
further details with respect to block abstraction will be presented with regard to Figure 35,

yet to be described.
Simple, yet high-performance protocol

[0070] By implementing only the most essential functions, the module interface is
able to operate with lower command overhead than would otherwise be possible. Because
the interface takes the form of a point-to-point connection only, the protocol is relieved of
the burden of multi-device support. No device addresses have to be generated, recorded,
or used in order for a host to initiate, execute, and monitor transactions with a device.

Similarly, the point to point physical connections implemented by the module interface are
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dedicated rather than dynamically established (as distinct from the finite-time
logical/virtual connections discussed above as part of command execution). The
configuration of each host/device connection via its own module interface is established at

manufacturing time, so the host has no need to configure its devices at power-on time.

[0071] In addition, the interface supports both true concurrency (simultaneous
independent transfers) and time domain multiplexed concurrency. True concurrency takes
place when one or more read commands and one or more write commands execute
concurrently. The interface concurrency occurs when data transfer phases for both read
and write commands occur together, such that data receive path 402 of the module
interface (Figure 7) is actively transferring data from module 30 to controller 40 at the
same time that data transmit path 400 is actively transferring data from controller 40 to
module 30. It is noted that this type of concurrency occurs only for a configuration or for

command in which the direction switching function discussed above is not engaged.

[0072] The time division multiplexed form of concurrency can frequently be
achieved by the module interface. This occurs, for example, when one or more active
commands have established connections that execute data phase transactions using data
packets over the module interface. Even though multiple active connections may be
established, at most onc packet may be transmitted at any instant along a single data
transmit or data receive signal pair. Time domain concurrency occurs because the active
connections transfer data packets in an alternating fashion, with one connection
transferring a data packet at one instant and another connection transferring a data packet
at another instant. In this way, multiple commands can be transferring data packets
concurrently, but doing so by sharing access to the physical transfer connection. For
example, as seen in Figure 4, packets labeled P1, P2 and P3 are transferred in a serial
manner across data receive path 402 with each packet forming a different portion of an
overall data transfer. Like transfers can also be supported across data transmit path 400. In
an embodiment, such packet transfers can be concurrent on the data transmit path and the

data receive path.

[0073] The SSD can be configured such that the controller provides different
amounts of management oversight for different modules. Such an embodiment can be

referred to as a mixed mode approach to the modules wherein one portion of the modules
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can be managed with at least some interaction with the controller in terms of performing
functions such as, for example, wear leveling, garbage collection and bit density
configuration, and another portion of the modules can operate autonomously with respect

to detailed management of these functions.

[0074] With respect to bit density configuration, each module can include memory
devices capable of high density operation (e.g., greater than 2 bits per cell) and, in an
embodiment, can be configured by the controller to either operate in a high density mode
or to operate in a low density mode (e.g., 2 bits per cell or less) across all the memory
devices included in the module. In some embodiments, a module can be configured by the
controller to operate some memory devices in high density mode (e.g., greater than 2 bits
per cell) and to operate other memory devices in low density mode (e.g., 2 bits per cell or
less). Where a module includes memory devices capable of low density operation (e.g., 1
or 2 bits per cell), that module can be configured by the controller to operate with an
encoding and decoding configuration consistent with the low density operation.
Configuration parameters for this selection can include the data length applied to each
ECC encoding and decoding unit, and the number of parity bits included with each ECC
encoding and decoding unit. Furthermore, if the low density memory is configured as
either one bit or two bit per cell, the module can be configured by the controller to use a

selected low density mode.

[0075] As discussed above, an at least semi-autonomous memory module can
perform various functions in a stand-alone manner. Further considering the function of
wear leveling, it should be appreciated that each memory module can be responsible for
performing wear leveling within its own set of memory chips based on parameters
provided to the module. Distributed wear leveling control removes most of the burden of

having a controller monitor and adjust wear on each individual memory chip.

[0076] Other functions, by way of non-limiting example, can be handled at least
semi-autonomously by a module according to the present disclosure. For example, each
memory module can manage its own power consumption. When a memory module is
inactive or lightly loaded, power management circuits on the memory module can be

activated to reduce power consumption on a per module basis. This results in distributed
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power management without the overhead of a controller having to monitor and control the

power state of each memory module.

[0077] As another example, each memory module can be responsible for
monitoring and refreshing data within its own set of memory chips. This removes the

burden of having the controller monitor the data quality in each memory chip.

[0078] As still another example, each memory module can handle all the error
correction required for its own NVM chips. Such distributed error correction processing
results in a much higher throughput than could be achieved if a controller is made
responsible for all the error correction, as in a conventional SSD. Because the error
correction processing can be distributed within the SSD, the amount of error correction
that can be applied can be much higher than in a conventional SSD, resulting in a higher

data density within the individual memory chips of some embodiments.

[0079] Due to the distributed processing power of the memory modules that have
been brought to light herein, the throughput of an SSD that includes such modules can be
increased many times over the throughput achieved by conventional SSD architectures.
The SSD controller is not burdened (or at least has its burdens reduced) with functions
such as, for example, error correction, data refresh and low-level wear leveling. Each
memory module can handle a high data rate due to being able to control up to, for
example, at least 8 NVM die per memory module. The high data rate can be multiplied by
the fact that there can be multiple memory modules on each bus from the controller. This
can again be multiplied by the fact that there can be several busses running in parallel
between the controller and the memory modules. The overall result is an SSD that can

achieve many times the data rate (throughput) of existing SSDs or hard drives.

[0080] The module interface can enable higher performance than would otherwise
be possible using prior art techniques at least for the reason that the module to controller
interface can be relieved of the need to carry large amounts of data that relate to low level
functions that are now at least semi-autonomously performed by each module in a
distributed manner instead of being the responsibility of the controller. Thus, the
controller is free to operate without the burden of these low level functions, which in turn

provides for simpler, more efficient execution of high-level SSD functions by the SSD
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controller. The result of this separation of processing duties is a more efficient, high-

performance SSD system.

[0081] Referring to Figure 5 in conjunction with Figure 3, the former is a block
diagram which diagrammatically illustrates the multiple memory devices of one memory
module 30 of Figure 3, by way of example, with the module NVM memory collectively
referred to by the reference number 500. In the present example, module NVM memory
includes 8 memory devices that are designated as NVM 1- NVM 8. It should be
appreciated that the use of 8 memory devices is by way of example and not intended as
limiting and that other modules can include different numbers of memory devices that are
organized in different ways while remaining within the scope of the teachings herein.
Accordingly, module NVM memory 500 can be organized by controller 40 (Figure 2) to
be made up of some number of sections. The controller can partition the multiple memory
devices into sections by any of various criteria, as will be described below. Sections can be
allocated among the 8 memory devices in a highly flexible manner. Initially, it should be
appreciated that the section allocations of the memory of one module to the next can be
completely different and independent in terms of both physical region and bit density even
though both modules include the same characteristic type of NVM. As a first example, a
first memory section 502 includes only memory device NVM1. As a second example, a
second memory section 504 includes memory devices NVM2 and NVM4. As a third
example, a third memory section 506 includes a portion of memory device NVM3 and the
entirety of memory device NVMS. As a forth example, a forth memory section 508
includes a portion of memory device NVMS. For purposes of these examples, it can be
assumed that the portions of the memory devices that are shown outside of sections are
unallocated. Thus, any one section can include a portion of an individual memory device
and/or the entirety of one or more memory devices in any desired combination. In
embodiments using NAND flash memory devices, a lower bound on the size of a section
can be the extent of data that can be stored in a single erase block. Accordingly, the
memory devices making up a module can be partitioned for purposes of optimizing the
storage space that is available in a given set of memory devices based on parameters such
as, for example, storage capacity, storage retention, program/erase cycles, data throughput,
or some combination thereof. Partitioning of memory devices can be a dynamic capability
that allows for allocation, de-allocation, and reallocation of particular physical portions of

the memory as required to manage the memory devices over their useful lifetimes. The
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use of sections can enable, for example, optimal use of the memory devices based on the
physical characteristics or type of memory according to the innate characteristics of that

physical extent as well as its wear history.

[0082] Turning to Figure 5, it should be appreciated that block abstraction
generally involves the writing and reading of more than one page in a way that bridges
across page boundaries and may be referred to as page wrapping. In this regard and by
way of non-limiting example, NVM1 is illustrated as containing physically adjacent pages
510a-510d. If a read or write operation includes the hatched second half of page 510a as
well as the first hatched half of page 510b, the read or write operation will involve reading
or writing the entirety of pages 510a and 510b. The hatched areas of these pages, for
example, can represent a codeword that is used by encoders 220 and decoders 202 of
Figure 3. Thus, page wrapping provides encode and decode functions extending across
page boundaries as if there is no physical discontinuity between the pages for the purpose

of the operation.

[0083] Attention is now directed to Figure 6, which is a block diagram illustrating
an embodiment of function engine 320 of module 30, as shown in Figure 3. The
components of the function engine as well as their interconnections are shown. It should
be appreciated that any suitable combination of hardware and software can be utilized for
purposes of achieving the functions of the various components that have been illustrated.
In an embodiment, CPU 300 and program memory 302 can subsume the operation of the
function engine. A common facility (e.g., area) 602 of the function engine can make up a
set of data structures that include parameters (e.g., data tables including parameters) that
are used and modified in a common or shared manner by a wear leveling function 610, a
garbage collection function 612, a bit density configuration function 614, and an FTL
function 616, for example. Each of these functions is configured for executing its assigned
task based at least partially on certain input parameters. It is noted that shared parameter
section 322 (Figure 3) is shown as forming part of common facility 602 and may,
therefore, be referred to with reference to either Figure 3 or Figure 6. Other than the need
for these input parameters, each function can operate autonomously with respect to other
modules or the SDD system and controller, as a whole. Common facility 602 serves as an
information conduit among the functions since, in some cases, the various functions share

information and operate in a cooperative manner. In general, each function accesses up-
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to-date information from the data structures in the common facility in order to complete its
tasks. For example, FTL function 616 uses an up-to-date logical to physical address
translation that can be stored, for example, in a table area 620 in order to provide the
function of returming physical locations of a data unit given the logical address of that data
unit. Further, examples of the information that is maintained in the common facility will
be provided at appropriate points hereinafter. In the present embodiment, the common
facility further includes a reporting section 624 that is configured for reporting one or
more output parameters (e.g., indicating use statistics) that relate to the nonvolatile
memory of the module. The use statistics are available to the function engine itself as well
as the main controller and can be based on a set of read values that are obtained during a
read operation. The use statistics can include, by way of example, at least one of a mean
read-back value for the set of read values that can be generated based on a read-back
operation for a set of read-back values and a standard deviation for the set of read-back
values. The use statistics can also include error correction statistics such as, for example, a
cumulative error count and a per block error count in instances where the read operation
decodes a block error correction code. It should be appreciated that the error correction
statistics can be generated by one or more of decoders 202 (Figure 3) from which the
reporting section obtains the statistical information. Based on the use statistics, the
function engine can set and/or select parameters in view of the health of the memory that
is indicated by the use statistics. For example, if the use statistics indicate degradation of
the memory based on a significant number of program/erase cycles, the bit density for the
memory can be lowered. In an embodiment, the number of program/erase cycles can
exceed a threshold program erase parameter that is specified for the particular nonvolatile

memory that is in use.

[0084] In‘some embodiments, the reporting section of a module of the subset of
modules can be configured to provide a health indication relating to the nonvolatile
memory of that module based on the use statistics. For example, a parameter can specify a
threshold at which the function engine responds by retiring a portion of the memory
previously allocated at higher bit density by copying existing data away from that portion;
erasing the portion; and then re-allocating the portion to a relatively lower bit density so
that further writing to that portion would be at the lower bit-density. This activity can
override at least some controller parameters, for example, those provided in an initial

configuration based on ongoing wear of the memory. In an embodiment, the controller can
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access and monitor the health indication and provide parametric control to instruct the
module to retire some portion of the memory as described above. Of course, these various
activities invoke the use of the functions that are provided by the function engine and

described in detail at appropriate points below.

[0085] In view of the foregoing, it should be appreciated that controller parameters
630 are provided by main controller 40 while module parameters 632 are originated
internal to the module itself. Non-limiting examples of the latter include use statistics
generated by a decoder 202 (Figure 3). The controller parameters and module parameters
are provided to common facility 602, The parameters are primarily used by the four

illustrated functions themselves, and can influence the configuration of each function.

[0086] Still referring to Figure 6, wear leveling function 610 is concerned with
uniformly maximizing the number of use cycles across all memory devices in the module.
One of ordinary skill in the art will be familiar with the underlying principles in the
configuration of a wear leveling function and will appreciate the need for such a function
resides in the fact that certain forms of nonvolatile memory exhibit a limited lifetime in
withstanding a limited number of program/erase cycles. The wear leveling function is

directed to extending the useful life of the memory devices of a particular module.

[0087] Garbage collection function 612 identifies memory units (sections, blocks,
or pages) that have been written with no-longer-needed data and returns this memory to
the pool of memory units available for subsequent writing with new data. Like the wear
leveling function, one of ordinary skill in the art will be familiar with the underlying

principles in the configuration of a garbage collection function.

[0088] Bit density configuration function 614 allocates memory units with bit
density configurations determined as the result of choices made on criteria, yet to be
described, for preferred bit density configurations in each applicable physical portion of
the memory. In an embodiment, the memory units can be sections that are made up of

blocks.

[0089] FTL function 616 provides a physical location of a particular data unit
(section, block or page) based only on the logical address of that unit. Because wear

leveling, garbage collection, and bit density configuration can all be dynamic functions

31



WO 2012/106085 PCT/US2012/021093

that cause on-going updates affecting address translation tables, the FTL and other
functions can cooperate with one another on a real-time basis to maintain up-to-date status

in common facility 602.

[0090] Where like parameters form part of controller parameters 630 and module
parameters 632, in an embodiment, priority is generally given to the controller parameters.
In this regard, parameters may be organized in any suitable and flexible manner. For
example, in some embodiments, the parameters can be organized in subsets wherein one
subset of like parameters provides priority to values from controller 40 and another subset

of like parameters provides priority to values from module 30.

[0091] Turning now to Figure 7, an embodiment of wear leveling function 610 of
Figure 6 is generally indicated by the reference number 700. The wear leveling function
can operate on the basis of parameters available from main controller 40 at 702 and
internal parameters available from the module at 704 as contained by shared parameter
section 322 (Figures 3 and 6) of the function engine. Thus, a great deal of flexibility is
provided with respect to performance of the wear leveling function insofar as the
particular sources of the parameters. Irrespective of the source of the parameters, the wear
leveling function is typically concerned with maximizing the operational life time of the
memory devices of the module when these memory devices are comprised of storage cells

that degrade after some number of program and erase operations.

[0092] Through the selection of parameters provided to shared parameter section
322, main controller 40 (Figure 2) can assert greater or lesser control over the wear
leveling function with regard to wear leveling functions. As discussed above, parameters
established by the main controller can take precedence over parameters provided by the
module. The parameters provided from the controller and module can be characterized in
terms of initialization parameters which are selected at 708 and operational parameters
which are selected at 710 and are applicable to on-going wear leveling following initial
operation. Examples of initialization parameters can include addresses that define initial
extents of the memory capacity of the module in terms of total blocks, and in terms of
what subset of the total number of blocks are to be initially made available for data
storage. Initialization parameters can also include parameters such as section size, section

allocation order, block allocation order, and the like, that serve as directives to the
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sequence by which steps 720, 724, and 730 allocate sections and blocks within the
sections to the initial memory arrangement. It is noted that initialization parameter
selection 708 comprises the beginning of an initialization branch 712 of the overall
process. The initialization parameters are generally provided by the main controller and
establish the configuration of the wear leveling function at the outset of its operation.
Generally, initialization can be performed once in order to establish an original wear
leveling configuration of the module. Operational parameters from the main controller
can be applied to non-initialization aspects of the wear leveling function. In some
embodiments, operational parameters provided by the module can define on-going wear
leveling activity subsequent to initial operation on the basis of the initial parameters from
the main controller. Examples of the kinds of parameters that can be included with respect
to non-initialization aspects of the wear-leveling function include ordering directives for
section and block allocation and reallocation. Other examples include numeric criteria on
how long a block or section may contain static data before it must be reallocated, or other
numeric criteria such as the number of accumulated write/erase cycles, error correction

statistics, and the like, upon which wear-leveling reallocation decisions can be made.

[0093] At 720, initialization branch 712 continues, by performing a section
allocation initialization to allocate an original set of sections among the memory devices
of the module. A block allocation function 724 is then performed to allocate a block set
within each section. Examples of section allocations are shown in Figure 5 and described

above in relation thereto.

[0094] Following 724, an initial configuration has been established, which is
stored at 730, for example, in shared parameter section 322 of the function engine (Figures
3 and 6). Thus, the initial configuration concludes and is available for reference and

updates during an operational branch 740 of the wear leveling function.

[0095] At 744, a retrieve configuration process is performed. Subsequent to
initialization branch 712, an initial configuration can be retrieved as established by the
configuration stored at 730. Thereafter and with ongoing operation, the configuration can
be managed by operational branch 740. During ongoing operation, current FTL table
information can be retrieved via an FTL update path 748, for example, from table area 620

(Figure 6) of the function engine. FTL updates occur as a result of write and erase activity,
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to be described in further detail, where addition or deletion of physical addresses by the
FTL function necessarily affect the wear leveling function. It should be appreciated that
path 748 is bidirectional for purposes of updating the FTL function. The wear leveling
function, likewise, can make changes visible to the FTL function, for example, by editing
an FTL region of table area 620. As one example, prior to a write operation, the FTL
obtains a preferred location for the write from the wear leveling function. This is due to
the role of the wear leveling function in defining the physical location for each new write
operation from within all available locations, as will be described in further detail. An
update from garbage collection function 612 is available on a garbage collection update
path 750. These updates can be in addition to normal FTL and garbage collection updates
for exclusive use by the wear leveling function. Because the wear leveling function has
visibility to the garbage collection function, for example, via table area 620, the wear
leveling function is able to allocate physical addresses for new writes from memory that
has been returned to available status by the garbage collection function. It should be
appreciated that path 750 is bidirectional for purposes of updating the garbage collection

function.

[0096] Each write operation at 760 can interface with retrieve configuration step
744 of the wear leveling function in order to establish the physical location for the write
within the memory configuration. As will be further described, the wear leveling function
normally communicates with both the write function (initiated by a write command from
main controller 40 (Figure 2) and the FTL function, hence paths 748 and 760 arc
bidirectional. When a new write data location is used by the write function, this new
location must be added to the FTL as the physical location corresponding to the logical
address for write data. If an existing logical data unit is being overwritten by the write
command, then the‘ wear leveling function must be aware that the logical overwrife
corresponds (as is applicable to NAND flash) to not only a data write to a new physical
address, but also to deallocation of the current physical location of the data for purposes of

updating the configuration.

[0097] An erase operation, like a write operation, involves a physical operation
that invokes changes which both the wear leveling and FTL functions must accommodate.
Thus, at 770, each write operation can interface with retrieve configuration step 744 to

establish the physical location for the erase within the memory configuration. It should be
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appreciated that path 770 is bidirectional for purposes of updating an erase function. A
logical erase can involve deallocation of an existing physical data unit. A physical erase
corresponds to actual erasure of a physical extent of memory that returns the subject

memory to availability for new writing.

[0098] At 774, a section allocation step examines a current section configuration
over the aggregate memory devices in the module based on the retrieved configuration and
determines whether allocation of new sections is needed. Any section additions to the
current section configuration are updated to the wear leveling configuration. The latter can

be stored, for example, in table area 620 (Figure 6) of the function engine.

[0099] At 776, within each section the block configuration is analyzed to
determine if any currently unallocated blocks require allocation. Any additions result in
additions to the appropriate parts of the wear leveling configuration. Also, changes can be

referred to the FTL and garbage collection functions.

[00100] At 778, sections that have become full of obsolete blocks can be
reallocated. In NAND flash, this would correspond to an erasure step followed by either
addition of the newly erased memory to the set of available sections, or addition of the

newly erased memory to vacant storage awaiting reassignment to a new section.

[00101] At 780, each block within a section can be assessed to determine if the
block requires reallocation. Reallocation normally occurs as the result of a block being
written with obsolete data (written but flagged as no longer valid), in which case the block
can be erased, and the vacant block is then flagged as available for new writes. The
resulting configuration is then stored at 730 and operation branch 740 ends pending the

need for its re-execution.

[00102] Referring to Figure 8, an embodiment of garbage collection function 612 of
Figure 6 is generally indicated by the reference number 800. The garbage collection
function can operate on the basis of a subset of parameters 801 available from main
controller 40 at 804 and internal parameters available from the module at 806 as contained
by shared parameter section 322 (Figure 3) of the function engine. Irrespective of the
source of the parameters, the garbage collection function is concerned with reclaiming

previously written memory locations and making them accessible for subsequent writing
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in cooperation with the wear leveling function. As employed in this disclosure, memory is
allocated for use as a hierarchy of units with pages at the lowest level. A limited number
of pages are aggregated into a block. A page usually consists of a fixed number of
physical storage cells though the amount of data stored in a page can vary according to the
bit density configuration. Sections are made up of a number of blocks, and the number of
blocks in a section may vary from section to section. Each module contains some number
of sections (see Figure 5) which may be allocated across the memory devices of a module

in various ways.

[00103] It should be appreciated that the operation of non-volatile memory is
generally subject to rules that have to do with physical makeup of the memory devices.
For purposes of the present discussion and by way of non-limiting example, rules that are
generally consistent with the behavior of NAND flash memory will be applied, although
the present discussions are readily adaptable by one having ordinary skill in the art with
respect to other non-volatile memory technologies. The generalized rules for reading and

writing memory devices such as, for example, NAND devices, then are as follows:

a. A page is the minimum physical memory extent that may be written at one

time. Writing to partial pages is not allowed.

b. It is desirable (though not always mandatory) to collect enough data to fill
all pages in a block before beginning to write the block; then, to write all the data into the

block as a unit. This accommodates compensation for page-to-page interference

mechanisms.
c. A block is the minimum unit of memory that can be erased at one time.
[00104] The rules above imply block-centric mechanisms for read and write access.

As such, garbage collection steps can be responsible for retrieving storage capacity by
separating obsolete pages from active data pages through consolidation of pages into
blocks containing either all active data pages or all obsolete data pages. Blocks that
contain nothing but obsolete data pages can be erased, and returned to an available status.
It is here noted that the term “obsolete” in the current context refers to a unit of memory (a
page, a block or a section) whose cells have been written with values but which are no

longer recognized as valid by the module. This is in contrast with the alternate case of
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written data which is recognized as valid by the module. This latter case is referred to as
“active” data. A data unit which currently contains no written values other than the

erasure state in its cells is defined as “available™.

[00105] Still referring to Figure 8, subset of parameters 801 obtained from main
controller 40 and module 30, as well as other configuration parameters are applied to the
wear leveling function. Other configuration parameters can include information regarding
the memory configuration and the wear leveling configuration. Memory configuration
includes the arrangement of sections, blocks and pages across allocated portions of the
memory devices of the module, and the wear leveling configuration can include
parameters involving the relationship between the garbage collection and wear leveling

functions.

[00106] Garbage collection involves a set of operations that result in the
identification of obsolete pages, consolidation of obsolete pages into obsolete blocks and
block erasure. The function can also operate at the level of sections, in which obsolete
data units are consolidated into sections which, in turn, are migrated into available sections
by erasure of the constituent blocks of the section. It should be appreciated that the
garbage collection function and the erase function communicate to exchange infdrmation
on updates that affect blocks in the memory. Erase function 802 informs the garbage
collection function of block erasure completions that allow the garbage collection function
to remove such erase blocks from a list of blocks pending erasure. At 803, bi-directional
communication is conducted between garbage collection function 612 and wear leveling
function 800 via parameters 801. For example, the wear leveling function signals both
write completions and erasure completions to the garbage collection function. These
notifications cause the garbage collection function to update configuration information it
maintains regarding blocks pending erasure, as well as blocks being written. The garbage
collection function, in turn, notifies the wear leveling function of these changes, thereby
allowing the wear leveling function to order lists of available physical addresses according

to priority as next locations for writing.

[00107] The garbage collection function begins at start 810 and occurs on a section-
by-section basis with the first step being retrieval of the status of the first section at 812.

At 814, a section criterion is applied to measure the section condition as reflected by the
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section status., The section can: (a) be completely comprised of valid blocks; (b) be
comprised of a mixture of obsolete and valid blocks; or (c) be completely comprised of
obsolete blocks. If case (a) applies, there is no need for wear leveling activity in the
current section, but within the section, there can be a need for garbage collection to be
applied to the component blocks of that section which results in transfer of control to a
block level process which begins with a get block status step 816. If case (b) applies at
814, the section criterion is affirmative and the number of obsolete blocks is compared
with a block threshold parameter 818 that applies for the particular configuration of the
current section. If the number of obsolete blocks is greater than the threshold, then a
process is undertaken to reallocate the section at 820. In an embodiment, the reallocation
can involve allocation of a new section of the same configuration as the current section
and copying any still valid blocks from the current section to the new section; then
designating all blocks in the current section as obsolete. The current section can then be
erased by erasing each of its blocks. After these steps, the current section can return to the
pool of unallocated memory. If case (c) applies at 814, the section criterion is affirmative
and thé number of obsolete blocks will exceed the threshold, since all of the blocks are
obsolete. Reallocation at 820 can erase all of the blocks and return the current section to
the pool of unallocated memory. Operation can then proceed to 822 which determines if
another section is available. If not, the process ends at 824. If another section is available,
operation returns to 812 with that section becoming the current section. The process

repeats until all allocated sections have been handled.

[00108] For sections which enter the block level process at 816, as discussed above,
the block level process operates within a section. In some instances, every section may
require block level processing such that completion of the block level process across the
entire module can perform block-level processing successively in each of the sections of

the module.

[00109] A block criterion decision 830 invokes a page threshold parameter 832 of
the number of obsolete pages within a block that calls for reallocation of the block. The
block level process is analogous to the section level process in cases (a), (b), and (c), as
described above with respect to the section criterion of 814 except that the obsolete units
of concern are pages making up blocks instead of blocks making up sections. At 830, if

more than threshold value 832 of pages are obsolete within the current block,
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corresponding to cases (b) and (c), then a new block is allocated at 836 within the current
section. The new block receives still-active pages from the current block. It is noted that,
in order to fill up the newly allocated block with active pages, this step may be executed
concurrently over multiple current blocks so that the newly-allocated block can contain
active pages from multiple current blocks. The current block (or combination of cutrent
blocks) from which active pages have been moved, can then be erased accompanied by
returning erased blocks to available storage within the section. Thus, a new block or
blocks are allocated within the current section to receive valid pages from blocks targeted

for erasure. Such allocated blocks contain active data pages.

[00110] Upon completion of block reallocation, operation proceeds to 840 which
checks for the last block. If another block is available, operation returns to 816 and assigns
the next block as the current block for purposes of undergoing block level handling. If no
other blocks are available, operation proceeds to 842 which tests for another section. If
another section is available, operation returns to 812. If, on the other hand, another section
is not available, operation ends at 8v24. Accordingly, the block level process executes for
all blocks in a section undergoing block level processing, however, only blocks that
contain some proportion of active data or obsolete pages are examined by the process.
Blocks that contain neither active data pages nor obsolete data pages do not require

examination by this process; they are however available for allocation by the process.

[00111] Completion of the last section at 824 corresponds to completion of one
application of the wear leveling function. Some embodiments can require that the wear
leveling function only be executed by explicit invocation by the module; other
embodiments can utilize the wear-leveling function as a continuously running background
task. In the case of completion of wear leveling, either at the block level or at the section
level, updates 750 (Figure 7) can be applied by the garbage collection function that will be
visible to ahd affect wear leveling function 700 (Figure 7) and the FTL function which is

yet to be described in detail.

[00112] Referring to Figure 9, an embodiment of bit density configuration function
614 of Figure 6 is generally indicated by the reference number 900 and shown as a flow
diagram illustrating a function to configure the bit density of the nonvolatile memory of a

module. The bit density configuration function can operate on the basis of a subset of
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parameters 902 available from main controller 40 at 904 and internal parameters available
from the module at 906 as can also be contained by shared parameter section 322 (Figure
3) of the function engine. In accordance with this embodiment, the function by which
sections are allocated within a module for operation at a particular bit density is shown
subsequent to initial allocation of the sections by the garbage collection function. It should
be appreciated that many different bit densities can be available, and the available bit
densities can be determined, at least in part, based on both memory technology of the
memory devices of a module as well as the encoding/decoding function that is employed
during read and write operations. Bit density configurations can vary from single bit per
cell configurations to multiple-bit per cell configurations. Each bit density value in terms
of bits stored per cell can also have variations that have to do with the encoding and
decoding approach as well as the amount and type of additional overhead used by that
encoding and decoding function. The encoding and decoding approach can involve a
combination of codes as previously described that achieve results as a function of the
amount of applied overhead. Convolutional codes and block codes can both operate at
various levels of overhead, with the specific amount of overhead being determined by
parameters applied to implementing such codes in a controller setting. The amount of
overhead, in turn, is normally specified for optimum performance in the face of SNR and
any other degradation mechanisms characteristic of the memory devices sections at hand.
Bit density can be applied as an attribute which can apply at least down to the level of
block units in NAND flash. Ultimately, the granularity of the bit density configuration
can be a function of the selected encoding and decoding function as well as the memory
technology in the memory devices of a module. In the example given in this disclosure,
bit density configuration is set at the section level so that all blocks within a given section
operate at the bit density selected for that section. It is noted that a section can be
comprised by a single block; this would represent a respect to the use of NAND flash
wherein individual bit density configurations are applied to data holding units as small as a

single block.

[00113] Method 900 includes an initialization branch 910 and an update branch
912. Initialization branch 910 is executed whenever a new section is allocated (or
reallocated, for example, due to garbage collection and memory reconfiguration). Update
branch 912 can be executed periodically during the module lifetime for a bit density

configuration that is applied to a region of physical memory underlying a section. Over
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the lifetime of a memory device, a particular extent of physical memory can belong to
different sections at different times, although at any given time the particular extent can
belong to no more than one section. For a section in active use, the bit density
configuration function can monitor the condition of the physical memory making up the
section. For example, the bit density configuration function monitoring some portion of
physical memory operating at a particular bit density configuration can detect degradation
of the physical memory such that subsequent reallocation of the same physical memory
can require a bit density configuration more tolerant of a lower SNR (signal-to-noise

ratio), as a result of the degradation.

[00114] Parameters from main controller 40 (Figure 2) can take precedence over
those supplied by the module. In some cases, the main controller can customize most or
all of the bit density configuration function performed by the function engine based on the
controller parameters. In other cases, the main controller can delegate management to the
module such that the bit density configuration function is defined by the module
parameters. In still other cases, the governing set of parameters can be a cooperative
combination of controller and module parameters. In any case, however, the actual bit
density configuration function is performed by the module irrespective of the particular
source of the parameters, for example, autonomously once the parameters have been
established. It should be appreciated that parameter values can determine aspects of bit
density with regard to selection of a bit density configuration for each section and with
regard td alternation from one bit density configuration to another, and even with regard to
deallocation of a section from the active memory pool (as in the case of the component
memory having become “worn out” due to exceeding a maximum number of

program/erase cycles).

[00115] It is noted that the subset of parameters 902 is not intended as being
comprehensive. Major parameter categories include targeted use modes, including
capacity, density, and lifetime criteria (e.g., number of program/erase cycles). Other
criteria manifested by the parameters are memory physical properties that are used by the
bit density configuration function to perform allocation, reallocation and deallocation.
Another parameter category defines possible configurations: this includes bit density
configurations at the section level. A number of control directives may be used in

conjunction with parameters defining thresholds that apply to error rates and other metrics
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for decisions on bit density configuration changes. These control directives can instruct the
function engine to take (or not take) some action relative to a threshold criterion. As one
example, when corrected error rates in pages start exceeding some defined threshold, an
associated control directive can cause the garbage collection function to initiate a process

on the affected section of the memory.

[00116] With continuing reference to Figure 9, initialization branch 910 applies to
processes executed at the initial start of module operation. Initialization generally occurs
only once due to the fact that continued bit density configuration depends upon ongoing
maintenance of parameters, such as those arising from various aging and wear
mechanisms during the operational lifetime of the module memory. At 920, information is
gathered in the form of memory capability data to enable decisions with respect to the
capability of the particular memory in the module. Memory capability data can be
organized with respect to localized portions of the memory devices in the module so that
parameters (e.g., metrics) exist for each of these localized portions. The granularity of this
localization can be implementation dependent and can even vary within a single module.
The initial memory capability information can be gained as one result of self-testing or
other function performed by the module or by the main controller for purposes of
determining the capability of the memory with respect to bit density configurations. One
useful parameter is a measure of the SNR (signal to noise ratio) of the memory which
itself is an indicator of the number of bits the cells of the memory are capable of storing.
As use history of the memory devices of a module accumulates, additional parameters
(e.g., use statistics collected during updates to the bit density configuration functions) can
enable subsequent decisions with respect to bit density configuration and reconfiguration
for each physical extent of each memory device. Other use statistics are available, for
example, from decoders 202 (Figure 3). Quality metrics and related use statistics can be
generated for purposes of initialization and operation, for example, as described in the
above incorporated ’585 Application. It should be appreciated that the general term
applied in this disclosure to the parameters (e.g., set of measured information) relating to

memory performance, as described above, is memory capability data.

[00117] After an initial set of memory capability data has been acquired by
initialization branch 910, a set of bit density configuration parameters (e.g., templates)

can be assembled, at 924, which represent a bit density configuration menu for the
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module. The menu selections can be taken directly from or derived from a predefined set
of bit density configurations which represent an overall combination of parameters for use
by the encoding and decoding functions. In the present embodiment, each menu selection
is applicable to a section of the memory, however, in other embodiments, menu selections
can apply at the block level or lower in the memory hierarchy. A wide range of parameters
is possible among the menu selections, but each parameter can define at least the number
of bits in a memory cell, encoding/decoding parameters and an amount of parity to be

employed.

[00118] At 928, a section map is created by applying the bit density configuration
parameters, from 924, in conjunction with other parameters from subset 902. The section
map is a data structure, as diagrammatically seen in Figure 5 that can list locations,
extents, and configurations of each allocated section. The result is a set of sections
mapped across the memory devices of the module (Figure 5) in which each section can at
least potentially be configured with a unique bit density configuration. The application of
bit density configurations to the sections can encompass a wide range of variatidns
extending from the case of every section using the same bit density configuration, for
example, 4 bits per memory cell, to every section using a different bit density

configuration.

[00119] At 930, after the section map has been created, the bit density
configurations are applied as part of section allocation. This can include updates to FTL
tables in shared parameter section 322 (Figure 3) that define the location and extent of
physical memory corresponding to a logical address. In addition, an association can be
made between the bit density configuration (from one of the bit density configuration
templates) and its corresponding section. This association enables subsequent reading,
writing and erasure functions to idéntify not only the correct logical to physical mapping
in order to access commands from the main controller, but also provides for correctly

configuring read/write settings in the module.

[00120] Each section as defined by section allocation 930 is ultimately comprised of
a set of blocks, the number of which must be defined. At 934, block allocation is
performed for each section, for example, by updating table structures in table area 620 to

accommodate the exact number of blocks that will comprise the section.
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[00121] At 936, the section configuration for the module is stored. The section
configuration can include appropriate parameters (e.g., tables and )templates to completely
define the section structure of the module (at least as of the end of the initialization flow),
and to enable operation of the memory cognizant of the various bit density configurations
that may be involved, as well as to enable future updates as may be required by aging and

wear effects arising from continued use.

[00122] Turning now to a description of update branch 912 of the bit density
configuration function, the update branch can run at intervals over the lifetime of the
module in some embodiments. As is the case with the initialization process, parameters
that are applied can be provided by either or both of the main controller and the module
itself. Again, parameters from main controller 40 (Figure 2) can take precedence over
those supplied by the module. The bit density configuration function can be defined by
controller provided parameters, module provided parameters or any suitable combination
thereof. In any case, however, the actual bit dénsity configuration function is performed by
the module, irrespective of the particular source of the parameters. Update branch 912 is
usually performed whenever changes to bit density configurations are required for an
existing section. Examples include the need to deallocate and/or allocate sections due to
wear leveling and garbage collection actions, or due to bit density configuration revisions

necessitated by aging of the memory.

[00123] At 940, the update branch begins by revising the memory capability dé.ta
originally developed by initialization branch 910. Garbage collection and wear leveling
functions provide inputs at 942 and 944, respectively, to step 940 since these functions
affect the memory capability data. As discussed above, the memory capability data is
comprised of parameters which are indicators of the ability of the memory to store and
retain data at various bit densities. With inputs from garbage collection and wear leveling
functions, the memory capability data is revised. In view of the revised memory capability
data, at 946, a reallocation map is determined which reflects any changes in bit density
configuration for current sections as compared to the current allocation for the current
sections. This map establishes which sections are required in the new allocation (from

garbage collection results) and where these sections can be placed (from wear leveling).
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[00124] Using the reallocation map from step 946, step 948 produces an updated
section map by specifying changes from the current allocation to the new allocation
(where the current allocation was determined by either initialize branch 910 or a prior pass
through update branch 912) which changes are added to the current version of the section
map. At 950, the new sections are allocated to the memory as specified by the
new/updated section map. The update can be accomplished, for example, by writing
updates to data structures in table area 620 (Figure 6). Block allocation then proceeds at

934, as described above.

[00125] Referring to Figure 10, an embodiment of flash translation layer (FTL)
function 616 of Figure 6 is generally indicated by the reference number 1000 and shown
as a flow diagram for managing a flash translation layer relating to the nonvolatile
memory of one of the modules of the present disclosure. The FTL function services main
controller commands by finding the physical location for data based on a logical address
provided in the command. In this regard, it noted with reference to Figure 6 that the
activities of wear leveling function 610, garbage collection function 612 and bit density
configuration function 614 cause physical placement of stored data in a module to be
dynamic. Accordingly, the FTL function is more complex than just a logical to physical
address conversion for a static physical placement, but rather uses parameters generated
from the other functions to determine dynamic FTL data structures corresponding to data
placement in sections, blocks, and pages, so that active data units can always be located
based only on their corresponding logical addresses. It is noted that these dynamic data

structures can be stored in table area 620 of Figure 6.

[00126] An FTL parameters section 1002, which can form part of shared parameter
section 322 (Figure 3) of the function engine, receives parameters from the main controller
at 1004 and module parameters from the module at 1006. The values of these parameters
can influence a relative degree of customization of the FTL function by the main
controller as opposed to the amount of customiiation that is exerted by the module. As is
the case with other functions, as discussed above, some parameter values can cause the
main controller to have greater influence on the FTL relative to the module while other
parameters tend to favor influence by the module. Irrespective of the degree of influence
by either the main controller or the module, the function engine can perform the FTL

function, for example, autonomously based only on parameter inputs.
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[00127] FTL parameter section 1002 also receives information produced by: wear
leveling function 700 (Figure 7) at 1010; garbage collection function 800 (Figure 8) at
1012; and bit density configuration function 900 (Figure 9) at 1014. An initialization
branch 1020 of the FTL function executes prior to the first use of the module and before
any access by the main controller in any execution of user data storage operation. At
1024, input 1010 from the wear leveling function and input 1014 from the bit density
configuration function, as reflected by FTL parameter section 1002, allow the construction
of initial data structures starting with the creation of logical table entries. These data
structures can be multi-level in nature so as to provide mappings at the section, block and
page levels. The mappings are also dynamic in nature since it necessarily intended they be
modified as new data is written into the module and as previously written data is either

invalidated due to overwrite or erased.

[00128] At 1028, logical to physical map entries are created for each logical address
such that a physical location corresponds to each logical entry in the data structure.
Because the initialization branch occurs before actual data is written into the module, the
logical entries designate already-allocated, but still empty, areas in the module memory.
Accordingly, the data structures at this point can refer to a set of sections which form a
memory volume that will be accessible to the main controller, which as yet contains no
data. It is a task of subsequent read, writc and erase functions to augment these data
structures with connections between logical data blocks and physical blocks and pages

within the volume.

[00129] Following initialization, at 1030, normal operation is entered wherein the
memory is accessible for storing data. It is noted that read, write and erase operations are
described insofar as their interactions with the FTL function. One of ordinary skill in the
art will be familiar with other aspects of these operations. A read branch 1034 of the
function can execute responsive to a read command whereas at 1036 an erase/write branch
of the function can execute responsive to a write command or an erase command, as will

be further described.

[00130] It should be appreciated that read branch 1034 is not required to update
FTL data structures since read operations do not alter stored data. Thus, at 1038, the read

branch returns a physical address for each logical address submitted to it. Hence, when
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the module receives a read data command from the main controller, the resulting call to
the FTL function involves only a physical address look-up operation. More than one pass
through the read branch can occur responsive to a single read command, because the data
requested in the read command can be comprised of data residing at multiple logical

addresses.

[00131] Erase/Write branch 1036 can be executed either when a previously
unwritten data block is being written, or when the data residing at a currently written
logical address is being overwritten. In the former case, the logical address or addresses
must be assigned to physical locations in the memory; this necessarily requires physical
memory to be designated from within existing sections to specific blocks and pages. As
many passes through the erase/write branch as necessary can be executed in order to
assign all data to be written by the command to corresponding physical locations. At 1040,
physical memory for a write operation can be allocated. At 1042, the FTL tables are
updated to reflect the write operation. If an erase operation is needed, in the latter case,
step 1040 can account for erasure of the subject memory locations in order to invalidate
data previously written to the physical address(es) corresponding to the logical
address(es). Step 1042 can then update the FTL tables to designate the subject memory
locations as containing invalid data preparatory to the write function. The FTL erase
function can be performed in conjunction with a write command or an erase command
from the main controller to the module. The FTL erase function of erase/write branch
1036 does not accomplish physical erasure of the corresponding logical address, but rather
updates table structures to show that the correspondence between the logical address and
physical location is no longer valid. Thus, a first pass through erase/write branch 1036 can
account for the erasure in terms of the FTL structure, while a second pass can account for
a corresponding write operation. Table entries can later be updated by garbage collection
function 612 as it identifies obsolete physical data units, and performs physical block
erasures to return the affected physical data units to availability for subsequent writing.

Normal operation proceeds at 1044.

[00132] Turning now to Figure 11, an embodiment of a read operation is shown in
the form of a block diagram and is generally indicated by the reference number 1100, for
purposes of illustrating the supplemental interaction of the read operation with function

engine 320 (Figure 6). At 1102, the read operation is initiated. It is noted that the
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mechanics of the read operation, insofar as accessing and reading individual memory cells,
will be familiar to one of ordinary skill in the art and a wide variety of suitable processes
can be employed for this purpose. Each read operation has been directed to a logical
address. The logical address may have been obtained externally from a host as part of a
command to perform a read, or it may have been obtained internally to a module. In any
case, at 1104, before actual data can be read, the read operation sends the logical address
to FTL function 616 (Figures 6 and 10). At 1106, FTL function 616, in response to
receiving a logical address from the read operation, returns a physical address to the read
function. Because this is a read operation, updates to FTL tables in table section 620
(Figure 6), as well as the wear leveling and garbage collection functions should not be
required because no changes to the memory are being made. Having obtained a physical
address, at 1108, the read operation executes so as to obtain read data. While Figure 11
appears to refer to the read operation, based on the exchange of a single logical or physical
address for purposes of descriptive clarity, it should be appreciated that a read operation
can involves multiple addresses. Thus, the various steps of the read operation that have
been illustrated can involve multiple logical to physical address translations with a
corresponding read step to each of the physical addresses. At 1110, the read operation is

complete and normal operation resumes.

[00133] Referring to Figure 12, an embodiment of a write operation is shown in the
form of a block diagram and is generally indicated by the reference number 1200, for
purposes of illustrating the supplemental interaction of the write operation with function
engine 320 (Figure 6). At 1202, the write operation is initiated. It is noted that the
mechanics of the write operation, insofar as accessing and writing to individual memory
cells, will be familiar to one of ordinary skill in the art and a wide variety of suitable
processes can be employed for this purpose. A write operation results in some extent of
memory being written. Such an operation can be to a previously unwritten logical address
or it can be to a currently written logical address. In either case, the write operation, at
1204, sends the target logical address to FTL function 616 (Figures 6 and 10). The FTL
function responds, at 1206 by returning a physical address to which write data will be
physically written into the memory. Whether the write is new (to a previously unwritten
logical address) or an over-write (targeting a currently written logical address), the FTL
function returns a physical address to be written. Either case results in an update to the

FTL configuration by the FTL function that will be visible to wear leveling function 610

48



WO 2012/106085 PCT/US2012/021093

(Figures 6 and 7) and garbage collection function 612 (Figures 6 and 8). At 1208,
responsive to the return of a physical address for use by the write operation, the write
operation is executed. It should be appreciated that, while Figure 12 appears to refer to the
write operation based on the exchange of a single logical or physical address for purposes
of descriptive clarity, a write operation can involve multiple addresses. Thus, the various
steps of the write operation that have been illustrated can involve multiple logical to
physical address translations with a corresponding write step for each of the physical
addresses. Likewise, FTL, wear leveling, and garbage collection parameters are updated
to reflect the multiple physical addresses written by the write operation. At 1210, normal

operation resumes.

[00134] Referring to Figure 13, an embodiment of an erase operation is shown in
the form of a block diagram and is generally indicated by the reference number 1300, for
purposes of illustrating the supplemental interaction of the erase operation with function
engine 320 (Figure 6). At 1302, the erasc operation is initiated. It is noted that the
mechanics of the erase operation, insofar as accessing and erasing individual memory
cells, will be familiar to one of ordinary skill in the art and a wide variety of suitable

processes can be employed for this purpose.

[00135] The result of the erase operation that is shown here is the physical erasure
of an extent of memory. As such, this operation differs from a logical erasure as might
result from an erase command sent from the host, although a host erase command
ultimately invokes this operation. Also as such, such a physical erasure is likely to be

directed from within the module rather than from the host.

[00136] Referring to Figures 6 and 13, at 1304, the current garbage collection
configuration parameters are accessed for example from table section 620 of the function
engine (Figure 6) to obtain a physical block location to be erased (if available). The
identification of such physical locations for erasure can be generated by garbage collection
function 612 (Figure 6). At 1306, a determination is made as to whether a block is
available for erasure. If no such block address is currently available, the erase procedure
ends at 1310 with a return to normal operation. If a block address is available, the erase
procedure advances to 1312 for purposes of obtaining the next block address that is

available for erasure as specified by the garbage collection function. At 1314, the erase
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function executes the erase operation to access and erase the block at the physical address
obtained in 1312. After the erasure has been completed, operation moves to 1316 which
provides completion status to garbage collection function 612, for example, via table
section 620. In an embodiment, the completion status can be provided directly to the
garbage connection function which, in turn, enables the garbage collection function to
update its configuration. At 1310, the erase operation ends with a return to normal

operation status.

[00137] Referring to Figures 3 and 6, each module 30 can be configured for
operation in various modes responsive to controller parameters 630. In an embodiment, a
module can operate in a first mode for a selected one of the functions based on a first set
of the module input parameters from the controller and operate in a second mode for the
selected function based on a second set of module input parameters from the controller
with the first set of module input parameters being different from the second set of module
input parameters. The parameter sets can be stored, for example, by shared parameter
section 322. A module can be configured, by way of example, to apply the first mode to a
first portion (e.g., section) of the given nonvolatile memory section of the module and to
apply the second mode to a second portion (e.g., section) of the given nonvolatile memory
section based on the module input parameters with the first portion being different from
the second portion. Thus, in Figure 5, NVM 1 (section 502) can be configured to store data
at a first bit density while NVM 2 and NVM 4 (section 504) can be configured to store
data at a second bit density that is different from the first bit density based on input
parameters. In an embodiment, the portions of the overall nonvolatile memory can be
determined based on controller parameters 630 while the bit densities can be determined
based on onc or more module parameters (e.g., monitored characteristics) of the
nonvolatile memory of the module. In some embodiments, the module parameters can be
error correction statistics that are generated, for example, by a decoder, as will be further

described below.

[00138] In some embodiments, one or more modules can operate in a first mode for
a selected one of the functions based on a first set of the module input parameters from the
controller via shared parameter section 322 (Figures 3 and 6) such that each module, so
configured, performs the function, for example, autonomously with no oversight from or

interaction with the controller and operate in a second mode for the selected function
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based on a second set of module input parameters from shared parameter section 322 with
the first set of module input parameters being different from the second set of module
input parameters such that each module, so configured, performs the function in the
second mode under at least partial control from the controller. For example, in the first
mode, a module can autonomously manage a flash translation layer within table area 620
(Figure 6) independent of the controller such that the local flash translation layer can be
accessed by the controller but not altered while, in the second mode, a module can manage
the module portion of an overall flash translation layer with some contribution from the
controller such as, for example, causing changes in the module portion of the module flash
translation layer since the controller has visibility to the flash translation layers of all the

various modules.

[00139] As discussed above with regard to Figure 5, the present disclosure provides
for block abstraction that can bridge across page boundaries. Further details with respect
to block abstraction will now be provided by taking initial reference to Figure 14. The
latter is a diagrammatic illustration of a physical page 1402 that is provided by a typical
nonvolatile memory in relation to a first user data block 1404 that is shorter than physical
page 1402 as well as a second user data block 1406 that is longer than physical page 1402
wherein length represents an associated amount of data. As discussed above, the prior art
generally imposes an exact match between physical page size and block size. In instances
where a block is shorter than a page, filler bits can be used to fill empty space in an
unfilled page, however, in an instance where a block is longer than the page, the block is
not storable under the conventional constraints of the prior art. For storage under these
circumstances in the prior art, at least some portion of each and every page will be unused
with the size of the unused portion depending on the degree of mismatch between the
block size and the larger page size. Thus, a page-sized unit of user data in the prior art case
is a very specific amount of data. Each of the user data blocks of Figure 14, however, are
different in length than the physical page that is shown. In the case of a user data block
that uses less than the total number of cells in the physical page, the prior art is able to
cope with the situation since the block fits into one physical page, even though there are
unused cells and therefore a loss in storage efficiency. When the user data block exceeds
the extent of the physical page, the prior art is not able to cope with the situation since it is

not possible to fit the user block into a single physical page.
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[00140] The present disclosure, however, sweeps aside the constraints of the prior
art by storing blocks of information in non-volatile memory devices without having to size
each block to fit into a single physical page. For example, user data blocks can be
allocated to physical memory irrespective of how many spare bits each physical page
includes. In this regard, it should be appreciated that each page is generally allocated with
spare bits that can be directed, for example, to parity data, and metadata of various forms,
including but not limited to logical block addresses, and miscellaneous flags, pointers and
counters which can be used by the FTL, wear leveling, and garbage collection functions.
Through the teachings herein, the combined user data bits plus spare bits in each physical
page effectively all become storage space in each page without regard to use as user data,
ECC parity or metadata. Thus, no differentiation is made in the user data blocks of Figure
14 between actual user data and overhead data. A block of user information with
associated overhead, however, can be smaller than physical page 1402, as is the case with
first user data block 1404, or larger than physical page 1402, as is the case with second
user data block 1406. As will be seen, in either case, a multiple user-block sequence can
be fitted to a group of physical pages with no correspondence between the number of user
blocks and the number of physical pages. By way of non-limiting example, a user data
block can be defined as one or more 512-byte units (sectors) with associated overhead;
whether a block is made up of one sector or multiple sectors is not of significance since
the block can be of any desired size. The origin (e.g., starting) point of each block within a
particular page is characterized by an offset which is designated. Tracking of the offset can
be implemented in firmware, hardware, or any suitable combination of both. When a user
block extends beyond one physical page, a remaining portion of the block is allocated to a
subsequent physical page. When this happens, the location of the break within the user
block is tracked by the application in the same way that user block origins are tracked, as

will be discussed in further detail below.

[00141] Attention is now directed to Figure 15 which is a block diagram, generally
indicated by the reference number 1500, diagrammatically illustrating four successive
physical pages PP1-PP4 forming part of a nonvolatile memory. In being successive
physical pages, this set of physical pages can be physically addressed in a successive
manner, for example, by incrementing the physical address by a given amount from one
page to the next. In this example, user data blocks B1-B4 are used, each having a length as

exemplified by first user data block 1404 of Figure 14 wherein the user data block is
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shorter than the physical page. For purposes of illustrative clarity, it is assumed that a
block length BL is equal to 0.75 of a page length PL. As seen, block B1 is completely
contained by physical page PP1. Block B2 includes a first portion 1510 stored in a final
quarter of physical page PP1 at an offset from the beginning of the page that corresponds
to the length of block B1 (i.e., % PL) and a second portion 1512 that is stored in physical
page PP2, starting from the beginning of PP2 so as to fill the first half of PP2 and
representing the final % of block B2. An initial portion 1520 of block B3 is stored in the
second half of physical page PP2 at an offset of 2 PL from the beginning of PP2 while a
final % portion 1522 of block B3 is stored in the first % of physical page PP3. Block B4
fills a remaining portion 1524 of physical page PP3. Block B5 then fills an initial %
portion 1526 of physical page PP4 at an offset of % PL from the beginning of PP4. A final
Y4 portion 1528 of PP4 is shown as empty, however, it can be filled by a portion of a
subsequent block or remain empty. In the present example, five user blocks are stored on
four physical pages. As can be seen, physical pages can be completely utilized even
though the block length is shorter than the page length. Moreover, blocks can be stored in
a manner that bridges page boundaries. Storage, as exemplified by Figure 15, can
continue for an arbitrary number of user data blocks, or until the last user data block in a
sequence is stored. In some cases, the last physical page in a sequence can contain unused
memory cells, but all prior physical pages can be completely utilized with a net increase of

efficiency, as compared to the prior art case.

[00142] Figure 16 is a block diagram, generally indicated by the reference number
1600, diagrammatically illustrating four successive physical pages PP1-PP4 forming part
of a nonvolatile memory. In this example, user data blocks B1-B3 are used, each having a
length as exemplified by second user data block 1406 of Figure 14 wherein the user data
block is longer than the physical page. The prior art, of course, is incapable of storing the
relatively longer blocks. For purposes of illustrative clarity in the present example, it is
assumed that block length BL is equal to 1.25 of page length PL. As seen, an initial block
B1 is partially contained by physical page PP1 with a final portion 1610 (20 percent) of
B1 contained by physical page PP2. An initial portion 1612 of block B2 fills the remainder
of physical page PP2 at an offset of % PL from the beginning of PP2 and a final portion
1614 of block B2 fills the first 50 percent of physical page PP3. An initial portion 1616 of
block B3 fills the final 50 percent of physical page PP3 at an offset of 2 PL from the
beginning of PP3 and a final portion 1618 of block B3 fills an initial 75 percent of
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physical page PP4. The final 25 percent of PP4 is unused if no more blocks arc available
or can be used by a subsequent block. In the present example, three user blocks are stored
on four physical pages. Physical pages can be completely utilized even though the block
length is longer than the page length. Again, blocks can be stored in a manner that bridges
page boundaries. In this regard, any relationship of the user data block size to the physical
page size can be accommodated based on the teachings that have been brought to light
herein. The flexibility that is provided can increase or maximize storage efficiency over
what is possible in the prior art. Such flexibility provides the ability to change user block
sizes such as, for example, to add ECC parity to the user block format without requiring a
corresponding increase in the size of the physical page in a given memory. Storage
efficiency can be optimized by a tendency to fully utilize physical page resources in a

given memory device.

[00143] Figure 17 is a flow diagram, generally indicated by the reference number
1700, which illustrates an embodiment of a method for storing/writing user data blocks in
a way which achieves the data structures described above in the context of Figures 15 and
16. Initially, it is noted that a sequence or series of user data blocks comprising the write
operation is receivable by the process, as illustrated by Figures 15 and 16, wherein the
block length and page length can be different. The method begins at 1702 and moves to
1704 which retr1eves an initial user data block at the outset of the process. At 1706, the
current user data block is mapped onto a physical page at some offset from the beginning
of the physical page which can be a zero or non-zero offset value. The offset can be stored,
for example, as a value in prior block metadata or as an address contained in tables created
and used by the FTL function, At 1710, a determination is made as to whether the current
user data block is the last block in the write transfer. If not, operation proceeds to 1712,
which tests whether the current page is now full. If the current page is full, operation
transfers to 1714 which then writes the page. Operation then returns to 1704. At 1712, if
the page is not full operation returns to 1704. Returning again to 1710, if the last user
block is detected, operation proceeds to 1716 which fills any remaining space in the
current page, if present. At 1718 the last page is written and operation concludes at 1720

pending the next write operation.

[00144] Figure 18 is another flow diagram, generally indicated by the reference

number 1800, which illustrates an embodiment of a method for reading user data blocks
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from the data structures described above in the context of Figures 15 and 16 and in which
the block length and page length can be different. The method begins at 1802 and moves
to 1804 which retrieves an initial physical page at the outset of the process. At 1806, the
retrieved pagé is mapped to user blocks such that the user blocks are recovered. The
mapping, for purposes of retrieving the user blocks can be based, for example, on offsets
created during the write operation (Figure 17) and stored as metadata with a prior block or
as addresses stored in tables created and used by the FTL function. A test is made at
1808 to determine if the recovery of user data blocks is complete. If the recovery is
complete, recovered blocks are transferred at 1810. On the other hand, however, it should
be appreciated that 1808 may identify a user data block is incomplete due to wrapping of
the block from one physical page to the next physical page (see, for example, block B2 in
Figure 15 and block B1 in Figure 16). In this case, operation returns to 1804 for purposes
of reading the next page which will contain the remainder of the incomplete block.
Mapping 1806 will reassemble the incomplete block and pass the now complete block on
to send block 1810. At 1812, a test determines whether the last user block of the current
read operation has been recovered. If not, operation returns to 1804 to read the next page.
If the last user block has been recovered, the current read operation ends at 1816, awaiting

the next read operation.

[00145] In view of the foregoing, a highly flexible read/write arrangement and
associated method are provided for use in accessing at least one solid state memory device
in read/write operations with the memory device being made up of a plurality of memory
cells which memory cells are organized as a set of pages that are physically and
sequentially addressable with each page having a page length such that a page boundary is
defined between successive ones of the pages in said set. The system provides a control
arrangement that is configured for storing and accessing a group of data blocks that is
associated with a given write operation in a successive series of the pages such that at least
an initial page in the series is filled and where each block of the group can include a block
length that is different than the page length.. It should be appreciated that at least one of the
blocks can be stored at an offset from any page boundary. In the instance of a series of
physical pages having an initial group of two or more pages and a final page, the system
can fill at least each page of the initial group of pages based on the group of data blocks.
The final page can be filled or partially filled. If the final page is partially filled, the

available space can be filled by at least a portion of another block. Physical pages can
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contain one or more block boundaries with the start of blocks identified, for example, by
offsets from the beginning of the physical page. Stated in a slightly different way, a
particular block in a group of data blocks can be stored such that a first portion of the
particular block is stored in a first page and a second portion of the particular block is
stored in a second page such that storage of the particular block crosses a page boundary
between the first page and the second page. For purposes of this discussion, the first page
and second page can be any two adjacent physical pages within the data structures of
Figures 15 and 16.

[00146] It should be appreciated that the SSD of the present disclosure and the
associated modules described in detail herein, provide a system with distributed
functionality that decentralizes activity that, in prior art approaches, tends toward being
highly centralized. The attribute of scalability is more easily attained with decentralized
(distributed) functionally than with centralized functionality. That is, distributed
components with decentralized functionality, such as the modules previously described,
provide for limited incremental addition of system overhead as a given system is scaled
up. In contrast, a centralized system must increase the capability of its centralized
controller as additional as system complexity increases with the addition of storage
devices. With centralized embedded microprocessors and embedded software, the ability
to manage resources becomes limited by the constraints of the computational and other
abilities of a central controller. Hence scalability as an attribute is easier to achieve for
systems that add functionality at lower levels of their functional hierarchies as compared

with systems that attempt to add the same functionality as a centralized capability.

[00147] The foregoing description of the invention has been presented for purposes
of illustration and description. It is not intended to be exhaustive or to limit the invenﬁon
to the precise form or forms disclosed, and other modifications and variations may be
possible in light of the above teachings wherein those of skill in the art will recognize

certain modifications, permutations, additions and sub-combinations thereof.
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What is claimed is:

1. A memory system comprising:

a module having a memory device, wherein the module is configured to perform a
management function with respect to that module and at least partially based on a
parameter; and

a controller,

wherein the parameter is provided by the controller and/or the module.

2. The memory system of claim 1, wherein the memory system comprises a solid

state drive.

3. The memory system of claim 1, wherein the memory device comprises a

plurality of memory devices.

4. The memory system of claim 1, wherein the management function comprises a

wear leveling function.

5. The memory system of claim 1, wherein the management function comprises a

garbage collection function.

6. The memory system of claim 1, wherein the management function comprises a

bit density configuration function.

7. The memory system of claim 1, wherein the management function comprises an

address translation function.

8. The memory system of claim 1, wherein the management function comprises an

error detection function.

9. The memory system of claim 1, wherein the management function comprises an

error correction function.

10. The memory system of claim 1, wherein the module comprises a plurality of
modules and wherein the controller provides a respective interface for each module of the

plurality of modules.
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11. The memory system of claim 1, wherein the parameter comprises a plurality of

parameters.

12. The memory system of claim 1, wherein the management function comprises a

data encoding function.

13. The memory system of claim 1, wherein the management function comprises a

data decoding function.

14. The memory system of claim 1, wherein the management function comprises a

calibration function.

15. The memory system of claim 1, wherein the management function comprises a

compensation function.

16. The memory system of claim 1, wherein the management function comprises a

write function.

17. The memory system of claim 1, wherein the management function comprises a

read function.

18. The memory system of claim 1, wherein the module includes a function

engine, wherein the function engine is configured to receive the parameter.

19. The memory system of claim 1, wherein the parameter comprises data packet

length.

20. The memory system of claim 1, wherein the management function comprises

command queuing,

21. The memory system of claim 1, wherein the management function comprises

an erase function.

22. The memory system of claim 1, wherein the management function comprises a

block abstraction function.

23. The memory system of claim 1, wherein the management function comprises a

data path arrangement function.
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24, The memory system of claim 1, wherein the parameter comprises a number of

parity bits.

25. The memory system of claim 1, wherein the management function comprises a

power management function.

26. The memory system of claim 1, wherein the management function comprises a

monitoring function.

27. The memory system of claim 1, wherein the management function comprises a

data refresh function.

28. The memory system of claim 1, wherein the management function comprises a

partition function.

29. The memory system of claim 1, wherein the management function comprises

section allocation.

30. The memory system of claim 1, wherein the parameter comprises a controller

parameter and a module parameter.

31. The memory system of claim 30, wherein the management function gives

priority to the controller parameter.

32. The memory system of claim 1, wherein the management function gives

priority to the module parameter.

33. The memory system of claim 1, wherein the parameter indicates an amount of

control the controller has over the management function.

34. The memory system of claim 1, wherein the parameter is an initialization

parameter.

35. The memory system of claim 1, wherein the parameter is an operational

parameter.

36. The memory system of claim 1, wherein the parameter comprises at least one

of section size, section allocation order, and a block allocation order.
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37. The memory system of claim 1, wherein the parameter comprises a numeric

criterion.

38. The memory system of claim 1, wherein the management function comprises

data flow management.

39. The memory system of claim 1, wherein the parameter indicates whether

interleaving is being performed before or after encoding.

40. The memory system of claim 1, wherein the parameter indicates a

configuration of an encoder of the module.

41. The memory system of claim 1, wherein the parameter indicates a

configuration of a decoder of the module.

42. The memory system of claim 1, wherein the parameter indicates a type of the

memory device.

43, The memory system of claim 1, wherein the parameter indicates a mode of use

of at least a portion of the memory device.

44. The memory system of claim 1, wherein the parameter indicates a particular

error correction code.

45. The memory system of claim 1, wherein the parameter indicates an error

capacity setting.

46. The memory system of claim 1, wherein the memory device comprises a
plurality of memory devices and wherein the parameter is associated with a physical

arrangement of the memory devices.

47. The memory system of claim 1, wherein the management function is a

hardware function of the module.

48. The memory system of claim 1, wherein the management function is a

software function of the module.
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49, The memory system of claim 1, wherein the parameter is associated with SNR

related data.

50. The memory system of claim 1, wherein the management function is a data

buffer function.

51. The memory system of claim 1, wherein the management function is a

sequencing function.

52. The memory system of claim 1, wherein the management function is

configured based on at least the parameter.

53. The memory system of claim 1, wherein the function comprises a data path

direction switching function.
54. The memory system of claim 1, wherein the parameter includes use statistics.

55. The memory system of claim 1, wherein the parameter includes a memory

configuration.

56. The memory system of claim 1, wherein the parameter includes a wear

leveling configuration.

57. The memory system of claim 1, wherein the parameter comprises a number of

obsolete pages within a block that calls for reallocation of the block.

58. The memory system of claim 1, wherein the parameter comprises memory

capability data.

59. The memory system of claim 1 wherein said module includes a plurality of
media ports, each of which is configured to access at least one memory device in
read/write operations and said module is configured to support a first write operation to a
first media port having a first memory device concurrent with a second write operation to

a second media port having a second memory device.

60. The memory system of claim 1 wherein said module includes a plurality of
media ports, each of which is configured to access at least one memory device in

read/write operations and said module is configured to support a write operation to a first
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media port having a first memory device concurrent with a read operation from a second

media port having a second memory device.

61. The memory system of claim 1 wherein said module includes at least one
media port, which is configured to access at least two memory devices in read/write
operations and said media port is configured to support a first read/write operation
defining a first set of data packets accessing a first memory device and a second read/write
operation defining a second set of data packets accessing a second memory device and
having the first set of data packets time division multiplexed with the second set of data

packets.

62. The memory system of claim 1 wherein said module includes a plurality of
media ports, each of which is configured to access at least one memory device in
read/write operations and said module is configured to support at least a selected one of a
write operation and a read operation that partitions a single unit of data into at least two

partitions each of which partitions is associated with a different media port.

63. The memory system of claim 62 wherein said single unit of data is a block
having pages and said block is partitioned to the media ports based on page boundaries

between said pages.

64. A module having a memory device, wherein the module is configured to
perform a management function with respect to that module and at least partially based on

a parameter, wherein the parameter is provided by a controller and/or the module.

65. A memory system for digital data communication with a host device to
provide data storage capacity for the host device, said memory system comprising:

at least one module including a nonvolatile memory section and said module is
configured to independently perform at least one of a wear leveling function, a garbage
collection function and a bit density setting function for the nonvolatile memory section of
only that module based on one or more module input parameters; and

a controller configured for said digital data communication with the host device
and further configured for module digital data communication with the module such that
any data flowing to and from the module passes through the controller and at least said

controller is configured to provide said module input parameters to the module to define
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an independent execution of at least one of said wear leveling function, said garbage

collection function and said bit density function in said module.

66. The memory system of claim 65 wherein said module includes a function

engine that is dedicated for performing said autonomous execution.

67. The memory system of claim 65 wherein said module is configured to operate
at least in a first mode for a selected one of said functions based on a first set of said one
or more module input parameters and for operation in a second mode for the selected one
of the functions based on a second set of said one or more module input parameters with
the first set of module input parameters being different from the second set of module

input parameters.

68. The memory system of claim 67 wherein the module is configured to apply
said first mode to a first portion of the nonvolatile memory section and to apply the second
mode to a second portion of the nonvolatile memory section based on the module input

parameters with the first portion being different from the second portion.

69. The memory system of claim 68 wherein the nonvolatile memory section
includes a plurality of memory cells and the module is configured to program the memory
cells of said first portion at a first bit density and the memory cells of the second portion at

a second bit density that is different from the first bit density.

70. The memory system of claim 69 wherein the module is configured to establish
the first bit density for the first portion of said memory cells and the second bit density for

the second portion of the memory cells based on said module input parameters.

71. The memory system of claim 69 wherein the first bit density for the first
portion of said memory cells and the second bit density for the second portion of the
memory cells for the module are determined by the module based on at least one

monitored characteristic of the nonvolatile memory section of the module.

72. The memory system of claim 71 wherein the monitored characteristic is an

error correction statistic for the nonvolatile memory section of the module.

73. The memory system of claim 67 including a plurality of said modules and a

first one of said modules includes a first nonvolatile memory section and the first module

63



WO 2012/106085 PCT/US2012/021093

is configured to apply said first mode as a particular bit density to at least one portion of
the nonvolatile memory section of the first module and a second one of the modules
includes a second nonvolatile memory section and the second module is configured to
apply the first mode as the particular bit density to another portion of the nonvolatile
memory section of the second module such that the portion of the first module that is
programmed at the particular bit density is different in size from the other portion of the

nonvolatile memory of the second module that is programmed at the particular bit density.

74. The memory system of claim 65 wherein said module is further configured to
independently perform a logical to physical block addressing function for the nonvolatile

memory section of only that module for said digital communication with said controller.

75. The memory system of claim 65 wherein said module includes a function
engine configured to autonomously executing at least one of said wear leveling function,
said garbage collection function and said bit density setting function for the nonvolatile

memory section of only that module with no oversight from the controller.

76. The memory system of claim 65 including a plurality of said modules and
wherein each module is configured to independently execute a separate flash translation

layer for the nonvolatile memory section of that module.

77. The memory system of claim 65 including a plurality of said modules and

wherein each module maintains a module portion of a distributed flash translation layer.

78. The memory system of claim 77 wherein each module is configured to
selectably operate in a first mode such that each module autonomously selectably executes
each module portion of the distributed flash translation layer and to selectably operate in a
second mode under at least partial control by the controller such that each module
selectably executes each module portion of the distributed flash translation layer in

cooperation with the controller.

79. The memory system of claim 65 wherein the nonvolatile memory section the
module is made up of a plurality of memory devices that are distinct from one another and
the module is configured to assign a storage density to each memory device such that one

group of the memory devices is configured to store data at a high storage density and
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another group of the memory devices is configured to store data at a low storage density,

where the high storage density is greater than the low storage density.

80. The memory system of claim 79 wherein each memory device is made up of a
plurality of memory cells and the high storage density is more than two bits per cell while

the low storage density is no more than two bits per cell.

81. The memory system of claim 65 wherein said module further includes a
function engine having a reporting section for reporting one or more use statistics relating
to the nonvolatile memory of the given module such that the use statistics are available to

at least one of the function engine and the controller.

82. The memory system of claim 81 wherein read-back values are generated by
the reporting section responsive to a read operation that is executed by said controller and
wherein said use statistics include at least one of a mean read-back value for at least a set
of read values during a read operation and a standard deviation for read-back values for at
least the set of read values during the read operation and one or more error correction

statistics,

83. The memory system of claim 82 wherein said error correction statistics
include at least one of a cumulative error count and a per block error count where said read

operation decodes a block error correction code.

84. The memory system of claim 82 wherein said reporting section is configured
to provide a health indication relating to the nonvolatile memory based on said use

statistics.

85. The memory system of claim 84 wherein the given module is configured to
program the nonvolatile memory section at a current memory storage density pattern and
to respond to said health indication by changing the current memory storage density
pattern to a modified memory storage density pattern such that at least one portion of the
nonvolatile memory section is programmed at a modified bit density in said modified
memory storage density pattern that is lower than a current bit density for said portion in

said current memory storage density pattern.
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86. The memory system of claim 84 wherein the reporting section of the given
module is configured to provide said health indication as a predicted end-of-life of the

module.

87. Aspartofa membry system for digital data communication with a host device
to provide data storage capacity for the host device, said memory system including a
controller for directly interfacing with the host device to provide said digital data
communication and a plurality of modules that are interfaced with the controller for
module digital communication between the controller and the modules as part of the
digital data communication with the host device, at least one of said modules comprising:

a nonvolatile memory section; and

an arrangement for receiving a plurality of module input parameters from said
controller to define at least one of a wear leveling function, a garbage collection function
and a bit density function and for independently performing the execution of at least one
of said wear leveling function, said garbage collection function and said bit density setting
function for the nonvolatile memory section of only that module based on said module

input parameters.

88. A method comprising:
receiving a parameter in a module having a memory device; and
in the module, performing a management function with respect to that module and

at least partially based on the parameter.

89. A method in a memory system for digital data communication with a host
device to provide data storage capacity for the host device, said method comprising:

providing at least one module, said module including a nonvolatile memory section
and configuring the module to independently perform at least one of a wear leveling
function, a garbage collection function and a bit density setting function for the
nonvolatile memory section of only that module based on one or more module input
parameters; and

arranging a controller for said digital data communication with the host device and
for module digital data communication said module such that any data flowing to and
from the module passes through the controller and configuring at least said controller to

provide said module input parameters to the module to define an independent execution of
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at least one of said wear leveling function, said garbage collection function and said bit

density function in the module.
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