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(57) Abstract: In a low-power signaling system, an integrated circuit device includes an open loop- clock distribution circuit and
a transmit circuit that cooperate to enable high-speed transmission of information-bearing symbols unaccompanied by source-syn-
chronous timing references. The open-loop clock distribution circuit generates a transmit clock signal in response to an externally-
supplied clock signal, and the transmit circuit outputs a sequence of symbols onto an external signal line in response to transitions
of the transmit clock signal. Each of the symbols is valid at the output of the transmit circuit for a symbol time and a phase offset
between the transmit clock signal and the externally-supplied clock signal is permitted to drift by at least the symbol time.



WO 2010/080174 PCT/US2009/050023

MESOCHRONOUS SIGNALING SYSTEM WITH CORE-CLOCK
SYNCHRONIZATION

PRIORITY CLAIM

[0001] This application claims priority to the following U.S. Patent Applications:

(1) U.S. Provisional Patent Application No. 61/144,135, filed January 12, 2009 and entitled
“4.3GB/S Mobile Memory Interface with Power-Efficient Bandwidth Scaling”; and

(i1)  U.S. Provisional Patent Application No. 61/156,872, filed March 2, 2009 and entitled
“Mesochronous Low-Power Signaling System.”

[0002] The above-identified Patent Applications are hereby incorporated by reference in

their entirety.

TECHNICAL FIELD
[0003] The disclosure herein relates to data communications systems generally and more

specifically to high-speed signaling in low-power applications.

BACKGROUND

[0004] Mesochronous clock signals are often used to time signaling operations in
synchronous memory systems. By using the same clock source to provide transmit/receive
timing within both the memory controller and memory devices, frequency drift is avoided,
resulting in a relatively simple, robust timing arrangement. Because the clock reference is
distributed in space between controller and memory, however, the clock domains of the two
chips generally have an arbitrary phase offset with respect to each other that must be
compensated to enable synchronous communication. Complicating matters, the chip-to-chip
phase offset tends to drift substantially with temperature and voltage, in large part due to the
clock buffering circuitry provided within each chip to fan-out the clock to the various transmit
and receive circuits.

[0005] Many modern memory systems manage the chip-to-chip phase drift by
transmitting strobes or other source-synchronous timing signals to control data sampling within
the recipient device, in effect extending the clock domain of the transmitting device into the
receiving device. Unfortunately, this approach suffers a considerable power/cost penalty as
additional signal drivers, pins and precisely routed signal lines (to match the propagation time
between strobe and data lines) are usually required.

[0006] Another approach is to compensate for the drifting phase offset by providing a
phase-locked loop (PLL) or delay-locked loop (DLL) within the memory controller and each
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memory device to maintain alignment between the reference clock and the distributed clock
(i.e., the multiplicity of nominally same-phase clocks distributed to the various receive and
transmit circuits). By this arrangement, a substantially fixed phase relationship may be
maintained between the chips despite environmentally induced drift between their respective
clock-buffer delays.

[0007] While the PLL/DLL approach avoids many of the penalties of source-
synchronous arrangements (especially the consumption of precious pins), PLL and DLL circuits
tend to be power hungry, consuming power even during idle periods (to maintain phase-lock)
and requiring considerable time and additional power to restore phase-lock when awakened
from a disabled, power-saving state. All these disadvantages are particularly problematic in
mobile applications (e.g., cell phones, laptop computers and the like), where performance
demands and bursty transaction profiles make it difficult to disable locked-loop operation and

yet the large idle power of the locked-loop circuits drains precious battery life.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The disclosure herein is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:

[0009] Figures 1A and 1B illustrate a generalized embodiment of a memory system
having a clock-stopped low-power mode;

[0010] Figures 1C and 1D contrast an exemplary power consumption profile in the
pause-able-clock memory device of Figure 1 with an exemplary power-consumption profile for
a continuously-clocked PLL/DLL-based memory device under the same usage scenario;

[0011] Figure 2A illustrates an embodiment of memory-side and controller-side 1/0
circuitry and system clocking architecture in greater detail;

[0012] Figure 2B illustrates the memory-side timing arrangement described in reference
to Figure 2A, showing the system clock signal and data signal as they appear at the pins (or
other interconnection structures) of the memory device, as well as the buffered clock signal as
applied to a memory-side transmitter;

[0013] Figures 3A and 3B illustrate an embodiment and timing diagram of a drift-
compensating deserializer that may be used to implement any of the drift-compensating
deserializers in Figure 2A;

[0014] Figures 3C-3E illustrate an embodiment of a packet-alignment circuit that may be

applied within the drift-compensating deserializer of Figure 3A and manner of adjusting same;
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[0015] Figures 3F and 3G illustrate an embodiment and timing diagram of a drift-
compensating serializer that may be used to implement any of the drift-compensating serializers
shown in Figure 2A;

[0016] Figure 3H illustrates an embodiment of a packet-alignment circuit that may be
applied within the drift-compensating serializer of Figure 3F;

[0017] Figures 4A and 4B illustrate embodiments of deserializer and serializer circuits,
respectively, that may be used to implement the deserializer and serializer circuits within the
memory device of Figure 2A;

[0018] Figure 5A illustrates an exemplary approach to calibrating the receive clock
phases within the drift-compensating deserializers for data links DQO and DQ1 within the
embodiment of Figure 2A;

[0019] Figure 5B illustrates a particular embodiment the intra-bit clock-phase
arrangement of Figure SA without detail regarding the various data selection paths;

[0020] Figure 5C demonstrates an approach for determining a final receive clock phase,
showing an exemplary relationship between a number of clock phases selected by an exemplary
phase selector and pass-fail boundaries relative to a data-eye schmoo;

[0021] Figure 5D illustrates fine and coarse data-eye boundaries and an offset between
the fine-data-eye center and coarse-data-cye fail-boundary that may be used to track drift during
periodic timing calibration operations;

[0022] Figures 6A and 6B illustrate an exemplary bit-alignment (or packet-framing
adjustment) stage of the drift-compensating deserializer calibration;

[0023] Figure 6C illustrates an exemplary packet alignment operation carried out to
determine a word latency value that, when applied to the packet alignment circuits within the
various signaling links of Figure 2A, aligns the packets that form part of the original multi-
packet value retrieved from the memory core for simultaneous transfer into the controller-core
clock domain,;

[0024] Figures 7A, 7B and 8A-8C illustrate exemplary serializer calibration procedures
that rely upon cross-coupled loopback paths between respective pairs of signaling links within
the memory device;

[0025] Figures 9A and 9B illustrate exemplary sequences of operations used to
periodically calibration of the drift-compensating serializers and drift-compensating
deserializers, respectively;

[0026] Figure 10A depicts an embodiment of an alignment counter that corresponds to

the six-bit phase adjustment circuitry described in reference to Figures 3A and 3C;
3-
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[0027] Figures 10B and 10C illustrate an embodiment of periodic timing calibration
circuitry and a corresponding state diagram;

[0028] Figure 11A illustrates an exemplary clocking arrangement used within the
embodiment of Figure 2A, explicitly showing clock stop logic for the controller I/O clock and
for the data-rate system clock forwarded to the memory device;

[0029] Figure 11B is an exemplary timing diagram of the clock-stop (or clock pause)
operation of the Figure 11A clocking architecture;

[0030] Figures 11C and 11D illustrate a more detailed embodiment of a clock-stop logic
circuit and corresponding timing diagram;

[0031] Figures 11E-11G illustrate an alternative clock-stop architecture and
corresponding circuit and timing diagrams;

[0032] Figure 12A is an exemplary timing diagram of clock signals, clock-enable signals
and command/address signals at the memory controller during an interval that includes entry and
exit from a clock-stopped low power mode;

[0033] Figures 12B and 12C illustrate clock-stop mode entry and exit from the
perspective of the memory device;

[0034] Figure 13 illustrates clock-stop entry and exit according to an alternative
embodiment that permits the clock-stop interval to extend over a non-integral number of core
clock cycles;

[0035] Figures 14A-14C relate to an embodiment of a phase-alignment circuit that
enables adjustment of the phase offset between the core clock signals within the memory
controller and memory device;

[0036] Figures 15A and 15B illustrate an exemplary clock-stop operation used to avoid
clock glitches when entering and exiting periodic-timing-calibration mode;

[0037] Figures 16A-16F relate to an alternative manner of performing periodic-timing
calibration that enables glitchless phase jumping without clock-stoppage;

[0038] Figure 17A illustrates an embodiment of a pause-able-clock memory system
having a single controller IC and multiple memory ICs;

[0039] Figure 17B illustrates an embodiment of a pause-able-clock memory system
having a module-mounted buffer IC that implements an interface that corresponds to the
memory-side I/O interface shown in Figure 2A;

[0040] Figure 18A is an exemplary state diagram illustrating tiered power modes that

may be employed within the memory system of Figures 1A and 2A;
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[0041] Figure 18B illustrates a memory system architecture that corresponds to the
embodiment of Figure 2A, but showing additional detail with respect to circuit shut-down in
progressively reduced power modes;

[0042] Figure 18C illustrates an implementation of a differential amplifier having a
biasing circuit that may be disabled in a reduced power mode;

[0043] Figure 18D is a timing diagram illustrating command-based assertion of the
enable-write and enable-read signals (EnW and EnR) in response to incoming memory write and
memory read requests, respectively; and

[0044] Figure 18E is a timing diagram illustrating powerdown mode entry and exit, with

the exit being triggered by a memory write request.

DETAILED DESCRIPTION

[0045] A strobeless synchronous memory system that permits mesochronous transmit
and receive clocks to be stopped and restarted during idle periods between memory access
transactions is disclosed in several embodiments. By this operation, power consumption during
idle periods may be dramatically reduced relative to continuously-clocked designs. Further,
because idle time often far exceeds active memory transaction time (active time) in the
aggregate, particularly in power-sensitive mobile devices, the ability to reduce idle-time power
consumption may yield substantially lower net power consumption.

[0046] Despite the substantial power-saving achieved through idle-time clock-stop (or
clock pause), stopping transmit and receive clocks in a mesochronous signaling system brings a
cascading sequence of challenges. To start, loss of phase-lock in the memory-side PLL presents
an immediate performance problem as the PLL generally requires an intolerably long time to re-
establish phase-lock and even then will generally re-lock in an uncalibrated state that requires
phase calibration to be completed before reliable data-rate signaling may begin. And yet,
removal of the memory-side PLL presents a daunting set of problems, beginning with extensive
environmentally-induced phase drift within the memory-device, as well as loss of critical timing
edges needed within the memory device for transmit and receive clocking. That is, an on-
memory PLL conventionally performs the dual functions of compensating for
temperature/voltage-induced phase drift and providing the timing edges needed for data-rate
signaling by multiplying the frequency (or number of phases) of a relatively low-frequency
system clock.

[0047] Despite these challenges, PLL/DLL circuitry is omitted from the memory-device

clocking architecture in embodiments disclosed herein and the phase of the memory device
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timing domain is permitted to drift freely relative to the memory controller timing domain.
Further, instead of encumbering the memory device with complex drift-compensation circuitry,
the drifting phase offset between the memory-controller and memory-device timing domains is
compensated by circuitry within the memory controller. As discussed below, in absence of an
on-memory PLL, the memory-device phase drift may extend well beyond a unit interval (i.e.,
the time interval allotted to bit or symbol transmission, and the inverse of the data signaling rate
or data rate; unit interval is also referred to herein as a bit time or symbol time), adding
substantial complication to the timing compensation effort and clock start/stop coordination.
[0048] Omission of the memory-side PLL/DLL and concomitant loss of the second of
the conventional on-memory PLL functions — generation of data-rate timing signals from a
relatively low frequency system clock signal — is counteracted by a change in the system
clocking arrangement itself. More specifically, instead of distributing a low frequency system
clock that must then be frequency-multiplied (or phase-distributed) by on-memory PLL/DLL to
provide data-rate timing edges, a data-rate clock signal itself is distributed as the system clock
signal, thereby avoiding the need for a frequency-multiplying (or phase distributing) PLL/DLL
circuit within the memory device. While this approach suffers the potentially higher power
consumption involved in transmission and on-chip distribution of a higher-frequency clock,
omission of the memory-side PLL/DLL obviates loss-of-lock considerations that plague
conventional designs and, when combined with, for example and without limitation, drift
compensation circuitry and clock-stop/start management circuitry as described herein, enables a
clock-stopped low-power mode that may be rapidly entered and exited with negligible
performance penalty. Ultimately, for applications that exhibit bursty memory access profiles
(e.g., frequent idle periods interspersed among relatively brief periods of active memory access,
as in cell phones and other mobile devices), the idle-time power savings tends to vastly
outweigh any increased active-time power consumption; a savings multiplied by the number of
memory devices in the system.

[0049] Figures 1A and 1B illustrate a generalized embodiment of a memory system 100
having a clock-stopped low-power mode. The memory system includes a memory controller
101 and a memory device 103 coupled to one another via signaling links 102 and system clock
link 108. The memory controller itself includes a controller core 105 and an input/output (I/0)
interface 107 (or PHY; physical interface) and the memory device similarly includes a memory
core 131 and I/O interface 133. The I/O interfaces within the memory device and memory
controller (i.e., the “memory-side” and “controller-side” I/O interfaces) include signaling

circuitry (117, 119, 137, 139) to support bi-directional data transfer via one or more data links
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106 and unidirectional command (or request or instruction) transfer via one or more
command/address (CA) links 104. The controller-side I/0 interface additionally includes a
clock generator 115 to generate a system clock signal (system clock, SCK) that is forwarded to
the memory device via clock link 108 and distributed to memory-side signaling circuits 137 and
139 via clock buffer 135 and internal clock path 136. The clock generator also generates a set of
controller-side clocks that are distributed via internal clock path 110 to the controller-side
signaling circuits 117 and 119.

[0050] Referring to the memory device 103, the memory core 131 includes a core
storage array 132 arranged in one or more banks as well as access circuitry 134 for managing
read and write access to the core storage array in response to memory access commands and
addresses from the memory controller. In embodiments described below, the core storage array
is assumed to be a dynamic random access memory (DRAM) that requires occasional refresh to
avoid data loss, but virtually any storage technology may be used in alternative embodiments
including, without limitation, static random access memory (SRAM) and various forms of non-
volatile memory (e.g., flash memory, phase-change memory, etc.). Regardless of the storage
technology used, command and address values (command/address or CA values) conveyed to
the memory device via command links 104 (collectively, the “command path”) are used to carry
out data retrieval (memory read) and data storage (memory write, including non-volatile cell
programming) operations within address-specified regions of the core storage array 132.
Retrieved data is referred to herein as “read data” and is returned to the memory controller via
the data links 106 (collectively, the “data path”) and data to be stored or programmed (“write
data”), conversely, is provided from the memory controller via the data path. In some cases,
data-less commands, such as row-activation commands (instructing data transfer from storage
cells within the core storage array to a latching sense-amplifier bank), refresh commands, erase
commands (e.g., in the case of flash or other electrically-erasable non-volatile memory) and
various configuration commands and/or operating-mode commands may be issued via the
command path.

[0051] Reflecting on the embodiment of Figure 1, a number of features of the memory-
side clocking arrangement bear emphasis. First, the clock signal output from clock buffer 135
(i.e., the buffered clock signal) is a phase-delayed instance of the system clock signal; no
frequency multiplication or multi-phase clock generation occurs within the memory device so
that the frequency of the system clock signal itself establishes the data transmission and
sampling rate within the memory-side 1/O circuitry, and thus the signaling rate over signaling

links 102. Thus, contrary to the conventional approach of distributing a lower frequency system
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clock and providing PLL/DLL circuitry to generate a data-rate clock signal by multiplying the
clock frequency or generating additional clock phases, a data-rate clock signal itself (i.e., a clock
signal that includes a respective timing edge for each symbol transmitted over the data link) is
supplied to the memory device as the system clock signal. One consequence of this approach is
that additional buffer amplifiers may be required in the chain of amplifiers that form the clock
buffer 135 in order to achieve the desired gain (i.e., gain tends to drop with frequency, so that
additional gain stages may be required at the higher clock frequency), thereby requiring
additional power to distribute the data-rate clock signal throughout the memory device as
opposed to distribution of a lower-frequency, multi-phase clock signal. As discussed above,
despite the putative disadvantage of replacing a conventional clock distribution arrangement
with one that may consume more power, the omission of a frequency-multiplying PLL/DLL
makes it possible to rapidly transition between low-power-mode clock-stopped states and active-
mode clocked states without incurring the usual time-delay penalty associated with re-acquiring
phase lock. Consequently, clock-stopped low power modes may be entered even during
relatively brief idle periods (between bursts of memory access activity) with negligible
performance impact. Because aggregate idle time far exceeds aggregate active memory access
time in many applications, substantial power reduction during idle time at the cost of a slight
increase in active-time power may yield a substantial net reduction in power consumption. This
result is illustrated graphically in Figures 1C and 1D, which contrast an exemplary power
consumption profile in the pause-able-clock memory device of Figure 1 with an exemplary
power-consumption profile for a continuously-clocked PLL/DLL-based memory device under
the same usage scenario. As shown, despite the somewhat higher active-time power in the
pause-able clock memory, the substantially reduced idle-time power consumption yields a much
lower net power consumption than in the continuously-clocked memory which suffers from the
large idle power consumption in the on-memory locked-loop employed to anchor the memory-
side timing domain to the phase of the system clock signal.

[0052] Another feature of the memory-side clocking arrangement is that the clock
distribution circuitry is entirely open loop within the memory device; as discussed, there is no
locked-loop circuitry to compensate for the time-varying (i.e., drifting) phase delay between the
system clock signal and the buffered clock signal distributed to the memory-side I/O cells.
Moreover, both the magnitude and environmental sensitivity of the system-clock-to-buffered-
clock phase delay is increased by the additional stages of amplification provided within the
clock buffer to account for the higher-frequency data-rate clock signal. That is, each amplifier

stage within the clock buffer tends to exhibit an environmentally-dependent (e.g., temperature-
-8-



WO 2010/080174 PCT/US2009/050023

dependent and/or voltage-dependent) propagation delay, so that adding an amplifier stage not
only increases the net system-clock-to-buffered-clock timing skew, but increases the rate of
change (i.e., the drift rate) of the timing skew. Because the buffered clock signal is applied
within the memory-side 1/O cells to time sampling and transmission operations, the drifting
phase of the buffered clock signal manifests as a corresponding phase drift of read data signals
transmitted by the memory device (and required change in phase in an incoming write data
signal if such signal is to be accurately received). Finally, because the clock buffer delay may
be on the order of several bit times and the net change in clock buffer delay between temperature
and voltage corners (i.e., between minimum and maximum tolerable voltage and temperature)
may casily exceed a symbol time (or bit time), the transmit or receive clock phase may drift
across one or more bit-time boundaries into an adjacent bit time. This creates additional timing
complexity as the data sampling time may be properly centered between bit boundaries, but off
by one or more whole bit times. As a consequence, data otherwise correctly received may be
improperly framed into parallel sets of data bits (referred to herein as packets) by receiver-side
serialization circuitry.

It should be noted that while the clock distribution arrangement within the memory
device is open loop, a system-wide closed-loop timing compensation structure is nonetheless
effected, through the acquisition of phase, bit and packet alignment information during
calibration operations carried out in view of transmissions between the memory controller and
memory device. Thus, a multi-component (multi-IC) closed loop is effected in the forwarding
of the system clock signal to the memory device, and the acquisition of information indicative of
the memory-side phase of the forwarded clock signal (as applied to memory-side transmit and
receive circuits) through controller-managed timing calibration operations.

Clock-Stop Lower Power Mode

[0053] Still referring to Figure 1A, the controller core 105 includes a transaction queue
109 (or request queue) for queuing memory access requests received via a host interface (e.g.,
from a processor or other memory access requestor), and a power-mode controller 111 that
monitors the state of the transaction queue. When the transaction queue becomes empty, the
power-mode controller prepares to enter a low-power clock-stopped mode, depending on
whether additional transaction requests are received (and queued) prior to the completion of a
final (i.c., last dequeued) transaction. If no additional transaction requests are received before
completion of the final transaction, the power-mode controller deasserts a clock-enable signal
114 (or asserts a pause signal) to suspend toggling of the system clock, and preferably (though

not required) the controller-side signaling clocks. The resulting clock stoppage or clock pause
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yields an immediate power savings within the memory device and memory controller, as all
transmit and receive clocks within the memory-side and controller-side I/O circuits stop toggling
and thus avoid driving clocked circuitry through the power-consuming range between bi-stable
logic states.

[0054] Figure 1B illustrates the clock-stop effect. Assuming that a final memory
transaction is commenced at clock cycle “0”, the power-mode controller notes the empty
transaction queue and begins counting clock cycles until a time at which internal operations of
the memory device and controller-side 1/O circuitry are complete. In this example, that time
occurs 24 system-clock cycles after the transaction is commenced, and thus at system clock
cycle 24. Shortly thereafter, in this case, long enough to ensure transmission of a final no-
operation (NOP) command to the memory device, the system clock and controller I/O clocks are
stopped cleanly and remain in a logic high or low state. At this point, the memory system is idle
and in a clock-stopped low power state. A lower-frequency clock within the controller core
continues to oscillate and thus permit reception of later-submitted transaction requests. In this
example, a transaction is queued sometime shortly before system clock cycle 44. Accordingly,
the power-mode controller, detecting the queued transaction, restarts the signaling clocks (the
system clock and controller-side 1/0O clocks) at clock cycle 44, enabling a no-operation
command to be sent to the memory device, and thereafter permitting the active command
transfer shown, in this example, as an activation command directed to a selected bank (B) of the
core storage array. Thus, the power-mode controller reduces power consumption in the idle
period between memory access transactions by stopping the mesochronous signaling clocks
upon detecting an empty transaction queue and waiting long enough for the final transaction to
complete, and then restarts the signaling clocks upon detecting a newly queued transaction. In
this example, the clock-stop interval extends over what would otherwise be sixteen cycles of the
system clock signal, significantly lowering total system power consumption during that time. In
actual application, stopping the signaling clocks for an idle period of even a few milliseconds
avoids the power consumption otherwise required for millions of clock transitions.
Accumulating that savings over multiple idle periods that, in aggregate, substantially exceed
active memory transaction time, yields substantial power savings with negligible performance
penalty.

Clocking and Drift Compensation

[0055] Figure 2A illustrates an embodiment of memory-side and controller-side 1/0
circuitry and system clocking architecture in greater detail. In the interest of clarity and without

limitation, specific numbers and types of signaling links, clock frequencies and frequency ratios,
-10-



WO 2010/080174 PCT/US2009/050023

and serialization depths are depicted in Figure 2A and related figures that follow. For example,
differential signaling links are provided to implement each of eight data links (DQ[0-7]), two
command/address links (CA[0,1]), a data mask link (DM) and the system clock link (SCK),
while single-ended links are used to implement a pair of relatively low signaling-rate side-band
links (SL[0,1]). Each of the differential links may alternatively be single-ended links (and vice-
versa), and more or fewer links may be used to implement the command path and/or data path,
and the data mask link (which may be considered part of the unidirectional command path) and
associated circuitry may be omitted altogether. The dedicated side-band link may also be
omitted in favor of out-of-band signaling over one of the data or command links.

[0056] With regard to clock frequencies and ratios, the system clocking architecture is
driven by a 400 MHz reference clock signal (REFCK1) which is multiplied by eight within PLL
circuit 161 to generate a phase-distributed set of 3.2 GHz controller-side I/O clock signals
referred to alternately herein as PCKS8 or the controller-side I/O clock (the “8” in “PCK8”
indicating the 8x multiple of the reference clock frequency). In addition to driving the
controller-side 1/0 clock, the 3.2 GHz PLL output is divided by two in divider 165 to generate
the system clock, SCK (also referred to herein as PCK4), and divided by eight in divider 163 to
produce a controller-side core clock signal (PCK1) that is phase aligned to the system clock and
controller-side 1/0 clock, but having a reduced frequency for clocking the core and thus
allowing lower-power logic operation. In all such cases, different clock frequencies and
frequency ratios between core and 1/0 timing domains may be used. Also, while a same-
frequency clocking is employed with respect to each signaling link, different I/O clocking
frequencies may be alternatively be applied to achieve different signaling rates for different
classes of signals (e.g., half-data-rate clocking of command/address signals). Further, in the
implementation shown, the 1.6 GHz system clock frequency is half the 3.2 Gb/s (Gibabit per
second) signaling rate on the data and command links. Though occasionally referred to herein
as a “half bit-rate” or “half symbol-rate” clock signal, the system clock is nonetheless considered
to be a “data-rate” clock signal as the rising and falling edges within each cycle (or two 180°-
offset rising edges of complementary signals in a differential system clock implementation) may
be used to transmit or sample data in respective (1/3.2GHz) data intervals. Though the half-bit-
rate (half-symbol-rate) system clock is carried forward in many of the exemplary embodiments
that follow, a full-bit-rate clock (3.2 GHz in this example) may alternatively be forwarded to the
memory device as the system clock.

[0057] Continuing, eight-to-one-serialization is applied to serialize core-supplied 8-bit-

wide packets of information for bit-serial transmission over each signaling link and
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corresponding one-to-eight deserialization applied to restore serial bit sequences to 8-bit-wide
data for delivery to the counterpart core. For example, eight 8-bit packets of write data
(Wdata[0][0-7] — Wdata[7][0-7]) are serialized during each period of the 400 MHz controller
core clock (PCK1) and transmitted in respective 8-bit sequences at a 3.2Gb/s data rate over each
of the eight data links, DQ[0-7] thus providing an aggregate data bandwidth of 3.2GB/s (3.2
gigabytes per second). At the memory device, each of the eight-bit-long write data packets is
sampled (bit by bit) and converted to a parallel packet during the cycle time of a 400 MHz
memory core clock (MCK1), thus enabling the memory core, like the controller core, to operate
on byte-sized packets of data in a lower frequency domain. Converse serialization within the
memory device and deserialization within the memory controller are carried out in the read data
transmission from the memory device to the memory controller, thus enabling 3.2GB/s data
transfer from the memory core to the controller core over a relatively narrow, 8-link data path,
while enabling both device cores to operate in a relatively low-frequency clock domain (400
MHz in this example). Similar serializing and deserializing operations are carried out
unidirectionally for each of the command/address links and the data mask link. In all such
cases, different serialization depths (i.e., more or fewer bits per packet) may apply for any or all
of the links (including depth = 1; effectively no serialization or deserialization at all), generally
with corresponding changes in core-to-1/0 clocking ratios.

Mesochronous Clocking with Open-Loop Memory-Side Clock Distribution

[0058] Because all system timing edges are derived from a common clock signal (i.e.,
the output of PLL, itself derived from reference clock signal, REFCK1), the various clocks
within the system are mesochronous. That is, the various clocks have the same frequency after
accounting for any multiplication/division, but potentially different phases due to different
propagation times required for the clocks to reach various points of application within the
memory controller and memory device. In general, such propagation times via on-die or inter-
chip conductors remain relatively constant over operating system temperature and voltage
ranges. Propagation times through active components, however, such as buffer amplifiers
provided to drive clock lines within the memory controller and memory device tend to be
significantly influenced by environmental changes (temperature and voltage, at least) and thus
yield environmentally-induced drift between the otherwise relatively steady phase relationship
between the various distributed clocks.

[0059] Referring to the memory-side clocking architecture in particular, the system clock
is received via buffer 223 and driven onto a global clock line 230 by amplifier 229. Because of

the relatively large gain needed to drive the global clock line, amplifier 229 tends to include
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multiple stages, each of which exhibits a substantial environmentally-sensitive propagation
delay. The relatively high frequency of the system clock (i.e., the clock has the same upper
spectral component as a worst-case data signal, as opposed to lower system clock frequency of
on-memory-PLL designs) generally increases this environmental sensitivity as additional
amplifier stages may be necessary to achieve the desired signal gain (i.e., gain generally rolls off
with increased frequency). Consequently, the resulting buffered clock signal, referred to herein
as the memory-side I/O clock, or MCK4, not only exhibits substantial phase delay relative to the
incoming system clock signal, but also exhibits environmental sensitivity that may result in drift
exceeding one or more unit-intervals (bit times) over the temperature and voltage operating
range of the memory device. Further, in contrast to conventional designs that compensate for the
drifting amplifier delay by including the clock buffer in the feedback loop of an on-memory
PLL/DLL, the open-loop distribution of the amplified system clock signal (i.e., the buffered
clock signal, MCK4) means that any phase drift within the clock amplifier translates directly
into phase drift in the memory-side transmit and receive clocks and thus manifests as a
corresponding phase drift of read data signals transmitted by the memory device (and required
change in phase in an incoming write data signal if such signal is to be accurately received).
Finally, because the clock buffer delay (i.c., delay through elements 223, 229) may be on the
order of several bit times and the net change in clock buffer delay between temperature and
voltage corners (i.c., between minimum and maximum tolerable voltage and temperature) may
casily exceed a bit time, the transmit or receive clock phase may drift across one or more bit-
time boundaries into an adjacent bit time. This creates additional timing complexity as the data
sampling time may be properly centered between bit boundaries (edges of the data eye), but off
by an integer number of bit times. As a consequence, data otherwise correctly received may be
improperly framed into parallel packets of data bits (e.g., 8-bit packets, 16-bit packets, etc.) by
memory-side or controller-side deserialization circuitry.

[0060] Figure 2B illustrates the memory-side timing arrangement described above,
showing the system clock signal and data signal as they appear at the pins (or other
interconnection structures) of the memory device of Figure 2A, as well as the buffered, memory
I/O clock, MCK4, as applied to a memory-side serializer 235 (or single-bit transmitter). As
shown, the memory 1/O clock exhibits a time-varying delay relative to the system clock such
that the phase of the memory I/O clock and therefore the phase of the read data signal driven
onto one of the data links (DQ) drifts freely with respect to the system clock signal. More
specifically, a first time delay (or phase offset) between system clock and memory I/0O clock

occurs at a first voltage and temperature point (v0, t0) and, as temperature and voltage drift over
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time to new points (v1, t1) and (v2, t2), the system-clock to memory-1/0-clock phase offset
drifts back (drift-) and forth (drift+) by as much as or more than a bit time. Also, while the
phase drift on a single data link and instance of the memory I/O clock is shown, similar phase
drifts, independent in magnitude and direction from that shown, may inhere in other data links.
For example, the phase drift with respect to the system clock signal may vary from data link to
data link due, for example, to environmentally-sensitive local clock buffers associated with each
signaling link and the potentially different propagation delays they may introduce.

Drift Compensation within Controller-Side Serializer/Deserializer Circuitry

[0061] In the embodiment of Figure 2A, timing compensation circuitry is provided in
conjunction with the controller-side serializer/deserializer circuits to compensate for the freely
drifting transmit and receive clock phases within the memory-side 1/O circuitry. More
specifically, the timing compensation circuitry aligns the controller-side I/0 timing domain with
the drifting memory-side 1/O timing domain on a link by link basis, compensating not only for
intra-bit sampling phase error, but also bit-time misalignment that results when the memory-side
phase drift crosses a bit boundary, and link-to-link packet misalignment caused by different bit-
time misalignments in the various links. In effect, the timing compensation circuitry establishes
a drift-tracking transmit and receive clock phase within each controller-side 1/0 circuit that
compensates for phase drift of the receive and transmit clocks in the counterpart memory-side
I/O circuit, including drift across bit boundaries that might otherwise result in data
serialization/deserialization errors (i.e., framing bits into packets at different bit boundaries on
opposite sides of the signaling link) and domain crossing errors as packets are transferred
between the clock domains of the core and 1/0 circuitry within either the memory controller or
the memory device.

[0062] In the embodiment of Figure 2A, each drift-compensating deserializer includes a
phase-selecting deserializer 192 to compensate for intra-bit phase drift, and a packet/bit
alignment circuit 194 here to compensate for drift across bit boundaries (bit alignment) and to
align packets received via different links for synchronized transfer to the controller-core (packet
alignment). The drift compensating serializers contain similar circuitry to adjust the timing of
information flowing to the memory device, providing intra-bit adjustment (phase-selecting
serializer 191), and bit/packet alignment (193) to pre-skew the outgoing data stream for properly
timed sampling, bit framing and link-to-link packet alignment within the memory device.

[0063] Figures 3A and 3B illustrate an embodiment and timing diagram of a drift-
compensating deserializer 186 that may be used to implement any of the drift-compensating

deserializers shown in Figure 2A. Accordingly, each input signal and output signal that is
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dedicated to a given one of the eight deserializers referenced in Figure 2A is depicted by an
index “[1]” in Figures 3A, 3B to indicate that separate instances of the same signals are input to
or output from the other seven deserializers (i.e.,1=0, 1, 2, ..., 7). Thus, deserializer 186 is
coupled to data link DQYi] to receive a serial data signal and outputs an 8-bit wide data packet
Rdata[i][7:0]. The deserializer additionally receives a 6-bit phase-adjust signal PhAdj[i][5:0]
and a 3-bit bit-adjust signal BitAdj[i][2:0]. The deserializer also receives, along with all other
deserializers, the controller core clock, PCK1, and the multi-phase controller I/O clock, PCKS.
In the embodiment shown, the controller I/O clock is generated by a three-stage ring oscillator,
and thus outputs a set of three differential clock signals that are phase distributed within the
PCKS cycle time. In other words, in the embodiment of Figure 3A, the controller I/0 clock
includes clock phases of 0°, 120° and 240° and their complements of 180°, 300° and 60°, thus
providing a set of six clock phases from which a phase-shifted receive clock, RCK8[i] having
any phase offset (i.c., clock phase or phase angle) within a PCKS8 cycle may be synthesized. In
one implementation, for example, phase interpolator 271 responds to the most significant three
bits (MSBs) of the six-bit phase adjust value by selecting one of six possible pairs of phase-
adjacent clock phases (i.e., 0°/60°, 60°/120°, 120°/180°, 180°/240°, 240°/300° or 300°/0°) and
by interpolating (or mixing) between the selected clock-phase pair in response to the least
significant three bits of the phase adjust value, thus providing a 60°/8 or 7.5° phase step (or
resolution) with each increment or decrement of the phase adjust value. More or fewer clock
phases may be provided in alternative embodiments (with corresponding change in number of
phase selection bits as necessary to meet the number of selectable clock-phase pairs), and/or
finer or coarser phase interpolation may be provided. Also, phase interpolator 271 may itself be
implemented by any type of phase shift circuitry including, for example and without limitation,
amplifiers having inputs coupled respectively to receive the MSB-selected phase vectors,
outputs tied in common and respective drive strengths controlled by complementary instances of
the least-significant three-bits of phase adjust value. More generally, any type of circuitry
capable of providing a selectable phase offset relative to the controller I/O clock, PCK8, may be
used in alternative embodiments. Finally, regardless of the interpolator circuit topology,
interpolator (or phase-shifting) circuitry included within the topology of Figure 1A enables the
interpolated clock RCK&[i] to be glitch-free (i.e., no shortened (runt) pulses or invalid logic
levels) when the source controller I/0 clock, PCKS, is stopped. As an example, in some
embodiments, glitch-free starting and stopping of the interpolated clock is enabled by
distribution of an extra pair of one-cycle-delayed copies of the PCK8[0°] and PCKE[180°]

waveforms to the interpolator circuitry. Similar arrangements may be used to ensure glitch-free
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starting and stopping of the controller-side transmit clock phases discussed in reference to
Figure 3F below.

[0064] As discussed below, the receive clock phase may initially be calibrated by
stepping the phase adjust value through a range of values (or through a binary or other search
pattern) to distinguish resulting clock phases that yield error-free data reception from those that
yield bit errors (i.c., passing clock phases from failing clock phase). In one embodiment, for
example, clock phases that lie on the pass/fail boundaries (i.c., adjacent clock phases that
respectively yield error-free reception and bit error) on opening and closing sides of a data eye
(or on closing side of one data eye and the opening side of a subsequent data eye) are identified,
and the phase centered between those boundaries selected as the calibrated receive clock,
RCKS[i]. Thereafter, the receive clock phase may be periodically (or occasionally) adjusted to
account for memory-side (or system-wide) phase drift by re-testing the boundary phases to
confirm that they yield the same passing (or failing) results, and incrementing or decrementing
the phase-adjust value for the final receive clock phase to counteract any drift indicated by a
change in the pass/fail boundary.

[0065] Flop stages (or latches) 283 form an 8-bit shift register which is serially loaded in
response to transitions of the receive clock signal, RCKS8J[i]. A framing clock signal, RCK1[i]
cycles once for every eight cycles of the receive clock signal, and is used to transfer the contents
of the shift register in parallel into a parallel-output register 285, thereby effecting a 1:8 serial-
to-parallel conversion. Bit alignment circuitry, including modulo-8 counter (formed by 3-bit-
wide register 273 and increment logic 275) to count negative-going edges of the receive clock
(RCKS$]Ji]) and an adder circuit 277 which adds the three-bit bit-adjustment value
(RxBitAdj[2:0]) to the three-bit modulo-8 counter output, provides selectable control over the
alignment between the receive clock signal and the framing clock signal. More specifically, if
the bit-adjustment value is zero (i.e., RxBitAdj[i][2:0] = 000b, ‘b’ designating binary), then each
time the counter value transitions from three to four (011b to 100b), the MSB of the adder
output (278) goes high and triggers, two receive-clock cycles later (owing to flop stages 279 and
281), a corresponding high-going edge of the framing clock (RCK1[i]) signal to load the
contents of the parallel-output register. Each increment of the bit-adjust signal causes the adder
MSB (and therefore RCK1[i]) to go high one bit-time earlier, thus enabling alignment of
RCKI1[i] (or the high-going transition thereof) with the falling edge of any one of every eight
RCKU&[1] cycles and thus allowing serial-to-parallel framing to be shifted to any of the eight
possible packet-framing boundaries within the incoming serial bit stream. In the embodiment

shown, each rising edge of RCK1[i] is aligned with a falling edge of the RCKS§][i] signal, so that
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transfer to the parallel register occurs a half-RCKS][1] cycle after the shift register has been
loaded with a new 8-bit packet (and a half RCK8[1] cycle before the first bit of the subsequent
packet is loaded into the shift register).

[0066] Figure 3B illustrates the timing arrangement described above, starting with the
multi-phase controller I/O clock, PCKS, (of which only the 0° clock phase is shown) and an
instance of the phase-shifted receive clock, RCKS[i], having an arbitrary phase offset 288 with
respect to PCK8[0°] and an exemplary phase offset 291 to effect quadrature (i.c., bit-time-
centered) alignment with the incoming data waveform on line DQ[i]. The most-significant-bit
output of the modulo-8 counter (i.e., RCK1a[i]) cycles once every eight cycles of the receive
clock signal and transitions in alignment with a falling receive-clock edge. As discussed, the
framing clock RCK1[i] transitions N+2 receive-clock cycles after the counter output (due to
serially-coupled flop stages 279, 281) where N ranges from 0 to 7, according to the value of the
bit adjustment value, RxBitAdj[i][2:0]. Thus, if the bit adjustment value is zero (000b), the
framing clock signal transitions two cycles after the raw counter output and, in the figure shown,
a half-cycle after data bit 12 (arbitrarily numbered) is loaded into the back end of the shift
register. Accordingly, with RxBitAdj[i][2:0]=000b, eight bits, numbered 5-12, are transferred in
parallel from the shift register flops 283 to the parallel-output register 285, framing those bits as
a packet on the starting and ending bit boundaries between bits 4 and 5, and 12 and 13,
respectively. Continuing the example, if RxBitAdj =1 (001b), bits 6-13 are framed into a
packet, if RxBitAdj =2 (010b), bits 7-14 are framed into a packet, and so forth to BitAdj =7
(111b), in which case bits 12-19 are framed into a packet.

[0067] Still referring to Figures 3A and 3B, it can be seen that the core clock and
framing clock have an arbitrary phase relative to one another due to the intra-bit phase offset
between the receive clock and controller I/O clock and the bit-wise offset achieved by adding
some number (zero to seven) of whole receive clock cycles to the base framing clock phase
(RCK1aJi]). Consequently, data transfer from the drift-compensating deserializer to the
controller core involves a clock domain crossing from the framing clock domain to controller
core clock domain. This transfer is complicated further by the potentially different framing
clock domains that may exist within each of the eight drift-compensating deserializers.
Moreover, if the memory controller (or multiple same-die or separate-die memory controllers
sharing the same clock generation circuitry) is communicating with two or more memory
devices, the data-timing variability may become even larger than the worst-case for a single
memory device. Thus, in addition to the phase-adjust circuit for intra-bit sampling phase

adjustment and the bit-alignment circuitry to control the packet-framing boundary, a packet-
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alignment circuit is provided to align the collective set of packets received via respective data
links for simultaneous transfer into the controller core domain. That is, even though eight
packets are transferred in alignment from the memory core to the memory-side 1/O circuitry,
phase differences between the various data links may result in time-staggered arrival of the
packets at the memory controller and, consequently, framing of the packets at different bit-
offsets relative to one another (and relative to the controller core clock, MCK1). As a result, one
or more of the originally-aligned packets may be available relative to a latching edge of the core
clock (PCK1) before others meaning that, absent a mechanism for delaying transfer of the
sooner-arriving packets for alignment with the later-arriving (more-latent) packets, the
constituent packets of the original multi-packet memory word retrieved from the memory core
(e.g., 8-byte value in this example) may be temporally dispersed among two or more memory
words upon transfer to the controller core (i.c., the memory-side timing relationship between the
constituent packets may be lost). Accordingly, in one embodiment, circuitry for ensuring that
the memory-core packet alignment is maintained (or restored) in the packet transfer from the
controller I/O circuitry to the controller core. In the embodiment of Figure 3A, for example,
such packet alignment circuitry is implemented by a packet-wide first-in-first-out (FIFO) buffer
287 that is loaded by the framing clock (or a one-bit-time-advanced version thereof referred to
as the FIFO clock, FCK1[i]), unloaded by the controller core clock, PCK1, and deep enough to
hold a number of packets equal to the integer number of core clock cycles spanned by the
interval between the most latent and least-latent packet-framing times under worst-case timing
conditions.

[0068] Figures 3C-3D illustrate an embodiment and corresponding timing diagram of a
FIFO-based packet-alignment circuit 290 that may be used to implement the packet-alignment
circuit 287 of Figure 3A. The packet-alignment circuit 290 includes a four-packet-deep buffer
299, a load circuit 291 and an unload circuit 301. The load circuit 291 includes a modulo-4 load
counter 292 (i.e., count sequence = 0,1,2,3,0,1,..., implemented by increment logic 293 and 2-bit
register 294) to output a 2-bit load count, a 2-bit adder 295 that adds the packet adjust value
RxPktAd;j[i][1:0] to the load count, thereby enabling the load count to be advanced by 0-3
framing clock cycles (i.e., enabling the load count to be adjusted, in effect, to any of the four
possible initial count values), and a 2:4 decoder 297 that decodes the adder-adjusted load count
to select one of the four packet registers within 4-deep buffer 299 to be loaded with an incoming
packet, P[1][7:0] in response to a rising FCK1 edge. In effect, the load circuit 291 implements a
rotating “load pointer” into the 4-deep buffer, selecting one packet register after another in

sequence (wrapping from the last packet register to the first as the adder-adjusted count rolls
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over from 3 (11b) to 0 (00b)) and the adder 295 enables pointer to be advanced to any starting
packet register position according to the packet-adjust value, RxPktAd;[i1][1:0].

[0069] Still referring to Figure 3C, the unload circuit 301 includes a modulo-4 unload
counter 302 (formed by increment logic 303 and 2-bit register 304) to generate a 2-bit count
sequence or “unload count” in response to rising edges of the core clock signal (PCK1), and a
4:1 multiplexer 305 to select, one after another, the four packet-register outputs of the 4-deep
buffer (SELO-SEL3) in response to the unload count. Thus, the load circuit 291 loads the packet
registers in round-robin fashion (i.e., rotating sequentially through the four packet registers of
buffer 299) in response to FCK1, and the unload circuit 301 follows the rotation of the load
circuit, unloading the packet registers in round-robin fashion in response to PCK1. The
incoming packet adjust value enables the rotating pointer implemented by the load circuit to lead
the rotating pointer implemented by the unload circuit by a desired number of PCK1 clock
cycles. As discussed below, calibration operations may be carried out to determine the
minimum latency between FIFO loading and unloading for each link, and then to align all the
links by setting the load-to-unload latency for each link to match the worst-case minimum.
[0070] Figure 3D illustrates the effect of adjusting the packet-adjust value for exemplary
timing data timing patterns on links DQ[0] and DQ[7]. More specifically, using the controller
core clock (PCK1) as a reference, the FIFO-load clock for link DQ[0] is assumed to lag PCK1
by a fraction of a PCK1 cycle, and the FIFO-load clock for link DQ[7] is assumed to lead PCK1
by roughly the same fraction. Additionally, for purposes of explanation, it is assumed that
packet adjust values 00, 01, 10 and 11 result in initial selection of packet register outputs SELO,
SEL1, SEL2 and SEL3, respectively. In actual operation, absent circuitry to initialize the load
counter 292 to a predetermined state, the packet adjust values may yield an initial packet register
output selection that is offset by any of the four possible initial load counter states (00, 01, 10,
11).

[0071] Assuming that a data read operation (or calibration data transmission) yields an
incoming packet sequence of that includes packet ‘i’ (“Pkt 1) on each data link, then the lagging
phase of FCK1[0] will result in the subject packet being received shortly after rising edge N of
PCK1 (marking the start of the Nth PCK1 cycle, for example, since the controller core issued a
request or other transmission that yielded the return of packet ‘1’) and loaded into one of the four
packet registers (flop0, flop1, flop2 or flop3) according to the packet adjust value,
RxPktAdj[0][1:0]. That is, if the packet adjust value is 00, packet ‘i’ is loaded into flop0
(having output SELO0) and remains there for four FCK1 cycles. Similarly, if the packet adjust

-19-



WO 2010/080174 PCT/US2009/050023

value is 01, 10 or 11, packet ‘i’ is loaded into flop1 (SEL1), flop2 (SEL2) or flop3 (SEL3) as
shown.

[0072] Assuming for the sake of example, that the unload pointer is pointed at flop0 (i.e.,
packet register output SELO is selected by multiplexer 305), at sampling (rising) edge N of
PCK1 (and then at flop1, flop2, flop3 at PCK1 edges N+1, N+2, N+3, respectively), and
assuming further that packet ‘i’ is loaded into flop0, it can be seen that, because the packet is
loaded just after PCK1 sampling-edge N (and thus just after flop0 is unloaded into the core
domain), nearly four full PCK1 cycles must transpire between loading packet ‘i’ into flop0 at
rising edge 0 of FCK1[0]) and unloading packet ‘i’ from flop0 at rising edge N+4 of PCK1 (the
unload being shown sampling indicator 312). From the perspective of the core logic, the round-
trip latency from request/command output (from the core domain) to data return (back into the
core domain) required three fewer core clock cycles when the packet adjust value is set to ‘01’
than when set to ‘00’ (i.c., (N+4)-(N+1) = 3). In fact, the minimum round trip latency for link
[0], referred to herein as the minimum link latency, is N+1 clock cycles for packet-adjust =01,
and becomes progressively larger -- N+2, N+3, N+4 -- as the packet-adjust value is incremented
and advances the load pointer further ahead of the unload pointer to packet registers flop2, flop3,
flop0, respectively.

[0073] Still referring to Figure 3D, because the loading edge of FCK1[7] occurs just
prior to the flop0 sampling edge of PCK1, the minimum link latency for link DQ[7] is ‘N’ PCK1
cycles and occurs when the link packet-adjust value (RxPktAdj[7][1:0]) is ‘00°. As the packet
adjust value is incremented to 01, 10, 11, the link latency increases by a corresponding number
of PCK1 cycles to N+1, N+2, N+3.

[0074] As the exemplary timing of diagram of Figure 3D demonstrates, different links
may exhibit different minimum link latencies. And yet, because the i" packets on the respective
data links are constituents of the same multi-packet word retrieved from the memory device core
(or issued from the controller core in a calibration operation), it is important to maintain the
temporal relationship between the i™ packets by transferring them all into the controller core
domain in response to the same sampling edge of the core clock signal. As can be appreciated
from Figure 3D, this “packet-alignment” operation is in effect one of equalizing the link latency
for all the signaling links, despite what their individual minimum latencies may be.

[0075] Figure 3E provides an example of establishing a uniform link latency, referred to
herein as the minimum system latency, across all data links. This operation may generally be

extended to all signaling links, particularly if some signaling links used primarily to convey
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information unidirectionally (e.g., command, data mask) are occasionally used to return
information to the memory controller.

[0076] Initially, the link latency (read data latency in this example) for each data link is
determined for each setting of the packet-adjust value. This may be achieved, for example, by
arranging to receive, on each link, a packet having a predetermined bit pattern (preceded and
succeeded by differently-patterned packets), and then counting the number of PCK1 cycles that
transpire before the packet is received. As an example, in one embodiment (described in further
detail below) the memory device is placed in a data-loop-back mode, looping back data at the
memory-side core interface such that a data packet transmitted by one link (e.g., an odd-
numbered link) is received on another (e.g., a counterpart even-numbered link) and thus
enabling round-trip latency determination for each different packet adjust value. In another
embodiment, a read command requesting return of a deterministic (e.g., previously written or
otherwise predictable) read data pattern is issued to the memory device, thus enabling round-trip
latency determination (from output of the read command from the controller core to the
acquisition of expected data within the controller core) for each link and for each packet adjust
value. However accomplished, a set of link-latency data is obtained, including relative link
latency (read data latency in this example) values (e.g., numbers of core clock cycles) for each
packet adjustment value for each link. In the example shown at 323 of Figure 3E, the link-
latency data reflects the exemplary link latencies shown in Figure 3D for links DQ[0] and
DQJ7], together with similar data for link DQ[1]. As shown, the link latencies for DQ[1] match
those of link DQJ[0] but occur at different packet adjust values (rotated by two PCK1 cycles),
demonstrating that, in at least one embodiment, the initial state of the load counter and unload
counter is entirely arbitrary.

[0077] Continuing with Figure 3E, a processor within the controller core (or
alternatively, the host processor or other upstream controller) may determine the minimum link
latency for each link at 325 (in this example, N+1 PCK1 cycles for the DQ[0], DQ[1] links, and
N PCKI cycles for link [7]), and then determine the minimum system latency based on the
worst-case (i.e., maximum) link latency at 327. In the embodiment shown, for example, the
minimum system latency is determined to be the maximum of the individual link latencies
which, in this case, is N+1 PCK1 cycles. Thereafter, at 329, the packet adjust value for each
link (RxPktAdj[i][1:0]) is programmed (e.g., within a packet alignment counter as described
below) with the value that corresponds to the minimum system latency. Thus, in the particular
example shown, the packet adjust values for links DQ[0], DQ[ 1] and DQ[7] are programmed to

‘017, ‘117 and “01°, respectively, to align those packet-to-core transfers with the minimum
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system latency. Note in particular that despite the opportunity for an even lower latency setting
for DQ[7] (RxPktAdj[7] = ‘00’), that the operation of that link is, in effect, delayed by a PCK 1
cycle to achieve alignment with the slower (more latent) links.

[0078] Having described exemplary phase-alignment, bit-alignment and packet-
alignment circuits that may be used within the drift-compensating deserializer and serializer
circuits, it should be noted that numerous alternative circuit implementations may be used to
achieve the results described without departing from the principles set forth herein. For
example, various types of delay circuits and other types of phase shifting circuits may be used to
generate a desired receive and transmit clock phases. Further, with respect to bit alignment,
instead of the adder circuitry (277 and 345) shown in Figures 3A and 3F, additional shift register
stages may be provided, with multiplexer selection of the outputs at different points within the
shift pipeline (thus effecting a selectable n*tyi; delay, where ‘n’ is the selectable number of
additional shift register stages traversed, and ty is a bit-time interval). Similarly, with respect to
packet alignment, an additional parallel register may be provided along with a multiplexer to
enable selection of different word alignments. More generally, instead of a FIFO buffer
arrangement, a cycle-skip circuit that selects one of multiple PCK1 edges (e.g., N, N+1, N+2,
N+3, N+4 as shown in Figure 3D) to transfer data from a single packet register into the core
domain.

[0079] Figures 3F and 3G illustrate an embodiment and timing diagram of a drift-
compensating serializer 185 that may be used to implement any of the drift-compensating
serializers shown in Figure 2A. Like the drift-compensating deserializer of Figure 3A, the drift-
compensating serializer includes circuitry to perform packet alignment, bit alignment and intra-
bit timing phase adjustment, all in the reverse order relative to the deserializer. In effect, the
drift-compensating serializer pre-skews the packets of each signaling link (packet-alignment)
relative to one another, the bits of each packet (bit-alignment) and the intra-bit phase of the data-
rate transmit clock signal to align the data transmission for each link, thereby enabling the
counterpart memory-side receive circuit to sample each bit at a desired intra-bit instant, frame
cach group of bits into a packets in accordance with the packet-framing intended by the memory
controller, and transfer all packets that form part of the same multi-packet data word into the
memory core domain in synchrony, all without requiring any phase memory-side timing
compensation circuitry. Accordingly, a packet-alignment FIFO 371 is loaded with a sequence of
transmit data packets (Tdata[i][7:0] and thus each an 8-bit packet in this example) in response to
the controller core clock (PCK1) and unloaded (i.¢., packet popped from head of FIFO or queue)

into parallel register 367 in response to a buffer-delayed instance (FCK1[i]) of a de-framing
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clock signal (TCK1[i]), thereby allowing packets from the same multi-packet word from the
controller-core to be loaded into the controller I/O domain at different times as necessary to
compensate for controller-core-to-memory-core propagation time differences over the different
links. The contents of the parallel register 367 are loaded into a serial-output shift register 365
in response to the de-framing clock signal TCK1[i] which is generated in the same manner as
the framing clock signal RCK1[i] within the deserializer of Figure 3A. That is, the de-framing
clock signal is generated by dividing a bit-rate transmit clock signal TCKS][i] by eight in
modulo-8 counter (formed by register 341 and increment logic 343), and adding a 3-bit bit
adjustment value to the counter output in adder 345, thereby enabling the output of the modulo-8
counter to be offset by a value that ranges from 0 to 7 and thus enabling de-framing to occur on
any of the eight possible bit boundaries. The MSB of the adder output, which cycles once every
eight cycles of TCKS][1], after synchronization with a negative going edge of the transmit clock,
TCKS[1] in flop stage 351, forms the de-framing clock, TCK1[i]. The de-framing clock is
shifted through a sequence of three of negative-TCKS[1i]-edge-triggered flip-flops (353,
355,357), with the outputs of the final two flop stages (357, 355) being supplied to inverting and
non-inverting inputs of AND gate 359 to generate a single-TCKS[i]-cycle load pulse, LD[i],
once per de-framing clock cycle. The load pulse is supplied to load-enable inputs of the flop
stages within serial-out shift register 365 so that, when the load pulse goes high, the contents of
parallel register 367 are loaded into serial-out shift register 365 and, half a TCK[§[i] cycle later
(owing to negative-edge-triggered flop stage 361), are shifted bit by bit into output flop 363 and
driven onto the DQJi] link. As in the deserializer of Figure 3A, an interpolator 364 (or other
clock-phase shifter) is provided to enable a calibrated intra-bit (or intra-cycle) timing offset
between the transmit clock signal TCKS[i] and the controller 1/0 clock, PCK8. The calibration
operations applied to establish and adjust this drift-tracking phase offset are described below.
As discussed in reference to the drift-compensating deserializer of Figure 3A, in some
embodiments, glitch-free starting and stopping of the interpolated clock, TCKS][1], is enabled by
distribution of an extra pair of one-cycle-delayed copies of the PCK8[0°] and PCKE[180°]
waveforms to the interpolator circuitry 364, though alternative techniques may be used to ensure
glitch-free operation.

[0080] Figure 3G illustrates the timing relationship between the various clock, control
and data signals described above. More specifically, the arbitrary phase relationship between
the PCK8 and TCK8Ji] domains is shown at 334 (note that only the 0° clock phase of the multi-
phase PCKS clock signal is shown), along with the timing of the load pulse, LD[i] and its

dependence on the bit adjust signal, TxBitAdj[i][2:0], to de-frame a given packet of data for
23



WO 2010/080174 PCT/US2009/050023

transmission at incrementally bit-shifted positions within the serial output stream. More
specifically, the packet of data within the parallel register is transferred to the serial-out register
at different de-framing intervals in accordance with bit adjustment value TxBitAdj[i][2:0], thus
enabling the packet boundary to be bit-wise shifted within the outgoing serial bitstream. That is,
if the bit adjustment value is zero (TxBitAdj[i]=0, or 000b), the packet of data within parallel
register 367 1s loaded into the serial-out shift register 365 at the end of the transmission of bit 19
(an arbitrarily assigned number), and then transmitted as bits 21-28. If TxBitAdj[i]=1, the
packet is loaded into the serial-out shift register one bit time later, at the end of the transmission
of bit 20, and then transmitted as bits 22-29. Continuing, if TxBitAdj[i] =2, 3, 4, ...,7, the
packet from the parallel register is loaded into the serial-out shift register a corresponding
number of bit-times later than if TxBitAdj[i]=0 (i.e., 2, 3, 4, ..., or 7 bit times later), and then
transmitted a corresponding number of bit-times later as bits 23-30, 24-31, 25-32, ..., or 28-35
within the serial bitstream.

[0081] Figure 3H illustrates an embodiment of a FIFO-based packet-alignment circuit
380 that may be used to implement the packet-alignment circuit 371 of Figure 3F. The packet
alignment circuit operates generally as described in reference to Figures 3C-3E, but in the
reverse direction, in effect, establishing mis-alignment between companion packets (i.c., those
belonging to the same outgoing data word or command word) as necessary to ensure aligned
transfer into the memory-side core. Accordingly, the packet alignment circuit 380 includes a 4-
deep FIFO buffer 351 having packet registers flop0-flop3 (designated in Figure 3H by respective
outputs SELO-SEL3) as well as a load circuit 381 (or load pointer) and unload circuit 383 (or
unload pointer) for loading and unloading the FIFO buffer. In the embodiment shown, the load
circuit 381 includes modulo-4 counter 384 (formed by increment logic 385 and register 386) and
2:4 decoder (387) which function generally the same as corresponding elements of load pointer
291 of Figure 3C, but is clocked by PCK1 instead of FCK1[i]. The unload circuit 383 includes
modulo-4 counter 390 (formed by increment logic 391 and register 392) and 4:1 multiplexer 395
which function generally as described in reference to corresponding components of the unload
pointer 301 of Figure 3C, but is clocked by FCK1[i] instead of PCK1 and includes 2-bit adder
393 to enable the load sequence to be advanced by 0, 1, 2 or 3 (zero to three) FCK1 sampling
edges. By this arrangement, the packet registers of the FIFO buffer 382 are loaded in a rotating
sequence in response to successive edges of PCK1 and unloaded in a rotating sequence in
response to successive edges of FCK1[i], with the load-to-unload latency being adjustable via
the TxPktAd;j[i][1:0] value that is added to the output of the modulo-4 unload counter 390.

Accordingly, by retrieving transmitted data (e.g., via loopback or write and read back) via a
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previously calibrated drift-compensating deserializer, latency values corresponding to each
setting of the transmit packet adjust value may be determined for each signaling link; minimum
link latencies may be ascertained and used to establish system link latency for controller-to-
memory signaling. Thereafter, the system link latency value may be used to program or
otherwise establish the transmit packet adjust values for each of the signaling links to ensure
uniform alignment upon serialization and transfer to the memory-side core clock domain.

[0082] Figures 4A and 4B illustrate embodiments of deserializer and serializer circuits,
400 and 415 respectively, that may be used to implement any of the deserializer and serializer
circuits within the memory device of Figure 2A. As shown, the core memory clock, MCK1,
may be used as the packet-framing and de-framing clock without adjustment, and no other
phase-adjustment or bit-adjustment circuitry need be provided. Also, because the MCK4 signal
oscillates at half the data-rate, both rising and falling edges of MCK4 (or rising edges of MCK4
and falling edges of complementary clock, /MCK4 (or vice-versa)) may be used to time data
transmission and reception within the memory-side serializer and deserializer circuits, thus
effecting data-rate timing.

[0083] In the exemplary deserializer 400 embodiment of Figure 4A, the incoming data
signal (which may bear write data, command/address information, calibration information, etc.)
is clocked alternately into even-data flop 401 and odd-data flop 403 in response to rising and
falling edges, respectively, of the memory-side 1/0O clock, MCK4. Thereafter, data captured
within the even-data and odd-data flops are shifted together into even-data shift register 402 and
odd-data shift register 404, with each shift register having, in this 8-bit packet example, four flop
stages. Once every four cycles of the MCK4 signal, after the even and odd shift registers have
been loaded with a complete packet of data, a rising edge of MCK1 is used to latch the packet of
data (available in parallel at the outputs of the shift registers 402, 404) within parallel-out packet
register 405, thus effecting transfer of the packet to the memory core domain interface as receive
data Rdata[i][7:0] (e.g., write data, calibration data, configuration data, command/address
information, data-mask information, etc.).

[0084] In the exemplary serializer 415 of Figure 4B, an eight-bit transmit data packet,
Tdata[i][7:0], is parallel-loaded into a four-stage, 2-bit-wide shift register 416 (which may be
viewed as a pair of single-bit shift registers for even-numbered and odd-numbered bits of the
packet, respectively) in response to a load pulse 430 generated once per MCK1 cycle.
Thereafter, the two bits at the head of the shift register (i.e., in flop stage RO1) are applied to
output driver (and thus driven on to link DQJ[1]) in respective low and high phases of a given

MCKA4 cycle, before the next pair of bits is shifted forward for transmission in the subsequent
25



WO 2010/080174 PCT/US2009/050023

MCK4 cycle. As shown, flip-flop 421 is provided to ensure hold-time for the bit being provided
for output during the high phase of the MCK4 cycle and may be omitted if sufficient hold time
1s otherwise available.

[0085] The load pulse 430 may be generated in any number of ways, but in the
embodiment shown is generated by flop 423 and AND gate 425. More specifically, AND gate
425 receives the output of flop 423 at an inverting input and MCK1 at a non-inverting input and
therefore generates a pulse that extends for the first cycle of MCK4 following each rising edge
of the core clock, MCK1. The pulse from AND gate 425 is buffered in flop 427 to ensure
sufficient hold time before being re-timed a half MCK4 cycle later in negative-MCK4-edge-
triggered flop 429 to yield load pulse 430. The load pulse itself is supplied to multiplexer stages
MO1, M23 and M45, thereby enabling component registers RO1, R23 and R45 of the shift
register to be parallel-loaded with constituent bits of the packet to be serialized (i.e., bits 0, 1
into RO1; bits 2, 3 into R23; and bits 4, 5 into R45) while bits 6 and 7 of the packet are
simultaneously loaded into input-stage register R67.

[0086] In alternative embodiments, various implementation details may be changed
within the serializer and deserializer circuits of Figures 4A and 4B. For example, instead of
clocking shift registers with a data-rate clock (a half-bit-rate clock in the examples shown) to
achieve 8:1 serialization, a sequence of 2:1 multiplexers and flip-flop stages may be provided
select, in successive stages, alternating 4-bit portions of an 8-bit packet in response to high and
low phases of MCK1 (stage 1), alternating 2-bit portions of each 4-bit portion in response to
high and low phases of a divided-by-two instance of MCK4 (stage 2), and alternating single bits
of each 2-bit portion in response to high and low phases of MCK4 in an output stage. A similar
arrangement may be employed to perform 1:8 deserialization, combining individual bits into 2-
bit portions of a packet in an input stage, combining bit pairs into 4-bit portions of a packet in a
second stage, and then combining 4-bit portions of a packet in a third stage. Drift-
compensating serializers and deserializers within the memory controller may similarly be
implemented with successive 2:1 multiplexing (or demultiplexing) stages rather than shift
registers clocked by a data-rate clock. In that case, bit adjustment may be effected by adding
offset values to frequency-divided local clocks.

Calibration

[0087] In the memory system of Figure 2A, calibration of the clock phase, bit alignment
and packet alignment circuitry within each of the drift-compensating deserializers and serializers
is carried out based on data transmitted over the signaling link being calibrated. In one

embodiment, initial calibration operations are carried out to establish reliable operation within
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the drift-compensating deserializers and then within the drift-compensating serializers, and
thereafter a periodic (or occasional) timing calibration operation is carried out to incrementally
adjust the calibration settings frequently enough to track memory-side timing drift (and more
generally, system-wide timing drift). Also, in one embodiment, drift-compensating deserializer
circuitry as shown, for example, in Figure 3A (and counterpart memory-side serializing circuitry
as shown, for example, in Figure 4B), is provided for each of the otherwise unidirectional links
(e.g., control/address and data-mask), thereby permitting an identical calibration procedure to be
carried out for each signaling link. In an alternative embodiment, another return path from the
memory device to the memory controller (e.g., a sideband link) may be used to calibrate a
unidirectional controller-to-memory link. In that case data transmitted from the controller via
the unidirectional link may be switchably routed to the alternative return path for delivery to the
memory controller, thus enabling the memory controller to determine whether the originally
transmitted data was properly received by the memory device.

[0088] The general approach with respect to initial calibration of each drift-
compensating deserializer and serializer is to calibrate the receive/transmit clock phase first
(adjusting RxPhAdj[i] and TxPhAdj[i]) followed by bit alignment (RxBitAdj[i] and
TxBitAdj[i]) and then packet alignment (RxPktAdj, TxPktAdj[i]). Figure 5A, for example,
illustrates a manner of calibrating the receive clock phase within the drift-compensating
deserializers for data links DQO and DQ1 (thereby ensuring reliable memory-to-controller
signaling), though the same procedure should be understood to be carried out simultaneously for
all signaling links. As calibration-support circuitry, the memory controller includes data-
selection (multiplexing) circuitry and match circuitry for each signaling link, as well as sources
of calibration data patterns for intra-bit phase adjustment, bit alignment and word alignment.
The memory device also includes data-selection circuitry and calibration data sources, as well as
loop-back interconnections between paired links to enable data received via one signaling link to
be returned to the memory controller via a paired counterpart link.

[0089] Continuing with Figure 5A, the memory controller issues a calibration command
to the memory device over a side-band link (e.g., the sideband link, SL, shown in Figure 2A) to
select, via data-selectors (multiplexers) 477¢ and 4770, pattern set A from calibration data
source 471 as a source of calibration data to be transmitted to the memory controller over each
the DQ[0] and DQ[1] signaling links. The overall calibration data path for even-numbered link
DQJ0] is illustrated by the shaded data-flow from internal data calibration data path 472, through
multiplexers 477¢ and 473¢ to the memory-side serializer 235¢. The resulting serial bitstream is

transmitted in response to rising and falling edges in the differential memory I/O clock (MCK4)
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which occur at twice the rate of the 1.6 GHz memory I/O clock and thus yield a 3.2Gb/s
transmission on each differential link. Upon arrival at the memory controller, the bit sequence is
provided to the phase-selecting deserializer 192¢ and bit/packet alignment circuitry 194e where
it is sampled and deserialized (framed into a packet) in response to initial phases of the receive
clock, RCKSJi] and framing clock signal, RCK1[i] (e.g., RxPhAdj[i] = 000000b and
RxBitAdj[i] = 000b), and packet-aligned in accordance with an initial packet adjustment value
(RxPktAdj[i] = 00b). In one embodiment, the data sequence that forms pattern set A is
predetermined or at least predictable (e.g., deterministically generated) so that the received data
may be provided to a match circuit 453¢ to determine whether the received data matches the
expected sequence. In one implementation, this evaluation is carried out with respect to the
sequence of bits only, so that the match/mismatch determination is dependent only on whether
the individual bits are sampled without error and without regard to any bit or packet
misalignment. Calibration data flows simultancously within the odd and even numbered
signaling links through parallel calibration paths. Thus, calibration data for the odd-numbered
link shown (DQJ1]) progresses through 1/O circuitry and calibration-support circuitry for the
odd-numbered link (4770, 4730, 2350, 1920, 1940) to arrive at match circuit 4530.

[0090] Figure 5B illustrates a particular embodiment the intra-bit clock-phase
arrangement of Figure SA without detail regarding the various data selection paths. As shown, a
pseudo-random bit-sequence (PRBS) circuit 501 generates, as pattern set A, a deterministic bit
pattern which is serialized (235) for transmission over the signaling link (DQJ1]) and received
within the drift-compensating deserializer 186. A state machine 505 (or bit sequencer or other
control logic) within the match circuit 453 initially asserts a seed-enable signal (“Seed”) to a
controller-side PRBS circuit 503 implemented in the same manner (i.e., calculating the same
PRBS polynomial) as the memory-side PRBS circuit 501, thus enabling the memory-side and
controller-side PRBS circuits to be synchronized. If the incoming data sequence is properly
sampled by the initial receive clock phase, the output of the controller-side PRBS circuit will,
after seeding (i.c., shifting into the PRBS register chain), match the output of the memory-side
PRBS as it appears at the controller-side PRBS input. Accordingly, if data reception is error-
free, the state machine may deassert the seed signal and the now-seeded controller-side PRBS
output will continue to match, bit for bit, the received data sequence corresponding to pattern set
A. By this arrangement, the state machine 505 may assess a pass/fail status for the initial
receive clock phase (e.g., selected by RxPhAdj[i] = 000000b) according to whether the
controller-side PRBS output matches the transmitted data sequence. Thereafter, the receive

clock phase may be advanced (e.g., incrementally or following a binary or other search pattern)
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and proper data reception re-tested at the new clock phase. By determining the pass-fail
boundary (i.c., adjacent clock phases that yield passing and failing test results) at either end of a
data eye or at the close of one data eye and the opening of the succeeding data eye, a final clock
phase may be selected from among a range of passing clock phases, for example as the median
between the two pass-fail boundaries or at a specific offset from one of the boundaries,
potentially selected according to eye width. Figure 5C demonstrates this approach, showing an
exemplary relationship between the 48 clock phases selected by an exemplary phase selector
(i.e., three bits to select two of six clock phases, three bits to interpolate between the selected
clock-phase pair) and pass-fail boundaries relative to a data-eye schmoo (i.c., plot of successive
data eyes overlaid upon one another). In the example shown, failing clock phases for phase-
adjustment settings 0-10 and 38-47, and passing phase-adjustment settings from 11 to 37.
Accordingly, a final receive clock phase may be selected as the average or median of the
pass/fail boundaries, in this case, a phase adjustment value of 24 ((10+38)/2 or (11+37)/2).
Alternatively, the difference between the pass-fail boundaries may be used as a measure of the
unit-interval ((37-11) x7.5° = 202.5°) and thus used to select between a limited number of edge-
to-center offsets, occasionally referred to herein as the half-UI offset (though not necessarily
exactly half the unit-interval). This approach enables rapid switching between clock phases
aligned with the pass/fail boundary and the calibrated sampling point (the nominal data-cye
midpoint). Such “phase jumping” is particularly useful for speeding periodic timing calibration
operations. For example, in one embodiment, discussed below, periodic timing calibration is
carried out by phase-jumping from the receive clock phase to the pass-fail-boundary clock phase
(the “boundary phase”) to determine whether the pass-fail boundary has drifted since the last
timing calibration operation. If so, the boundary phase is incremented or decremented in the
direction of the drift. After updating the boundary phase, a fixed phase jump is performed,
relative to the updated boundary phase, to arrive at a correspondingly updated (incremented or
decremented) receive clock phase, completing the periodic timing calibration with respect to the
receive clock phase.

[0091] In one embodiment, periodic timing calibration is hidden under memory-side
maintenance operations (e.g., DRAM refresh) or carried out in potentially brief idle intervals
and thus involves a relatively brief test pattern transmission to enable detection of drift of the
pass-fail boundary. Because the brief test pattern may include only a limited number of the
spectral components present in a more random data sequence (as represented by a longer
pseudo-random bit sequence), a more open data eye (having different pass/fail boundaries) may

be perceived during periodic timing calibration (PTC) than during initial calibration. In one
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embodiment, the PTC pass-fail boundary is determined after initial calibration of the receive
clock and thereafter used to detect drift (e.g., by retesting the boundary phase). As the PTC
boundary clock phase is incremented and decremented in response to drift, the receive clock
phase is correspondingly incremented and decremented, thereby maintaining the receive clock
phase at a constant offset with respect to the PTC fail boundary and compensating for system
drift. This operation is illustrated conceptually in Figure 5D, which shows the larger data eye
that results from the spectrally-limited PCT test pattern overlaid on the smaller data eye that
results from the more spectrally-complete initial calibration test pattern, and the offset between
the PTC boundary phase and the receive clock phase. A similar operation may be carried out
following transmit phase calibration (described below), determining a PTC boundary phase
together with a finely tuned transmit clock phase and incrementing and decrementing those
clock phases in lock step during periodic transmit timing calibration.

[0092] Figures 6A and 6B illustrate an exemplary bit-alignment (or packet-framing)
stage of the drift-compensating deserializer calibration. As with receive-clock calibration, the
bit-alignment operation begins with a side-band command from the memory controller to the
memory device to begin outputting a predetermined calibration data pattern; in this case, pattern
set B: a framing pattern formed by an 8-bit packet with a solitary ‘1’ bit in a predetermined bit
position. The data transmission path is essentially the same as in Figure 5A (shown by the gray
outline passing through memory-side multiplexer stages, serializer, data link, controller-side
deserializer and bit/packet alignment circuit to arrive at match circuitry 453), but the output of
the match circuit for each link adjusts the bit alignment value (RxBitAdj[i]) delivered to the
bit/packet alignment circuit instead of the interpolated clock phase as in the receive clock
calibration operation of Figure SA. Figure 6B illustrates the overall bit-alignment operation as
performed, for example, by state machine 505 within the match circuitry 453. As shown, the
state machine evaluates the incoming packets at an initial framing value (e.g., BitAdj = 000) to
determine whether the logic ‘1’ bit appears in the intended bit position within the packet. If not,
the state machine determines the bit offset between the actual logic ‘1’ bit position and the
desired ‘1’ bit position, and adjusts the bit adjust value accordingly. In the first of two bit-
misalignment (or packet-framing error) examples shown in Figure 6B, the logic ‘1’ bit is framed
in bit position seven (0000 0001b) instead of bit position zero (1000 0000b) as originally
transmitted. In that case, the finite state machine determines a bit displacement of one bit and
sets the bit adjustment value accordingly to RxBitAdj[i] = 001b, thus effecting a 1-bit right-shift
of the logic ‘1’ within the incoming bit sequence (or a 1-bit left-shift in framing boundary) to

position the logic ‘1’ bit at the correct bit position (bit position zero) and thereby establish the
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intended packet-to-packet framing. In the second of two misalignment examples, the logic ‘1’
appears at bit position two, so that a bit adjustment of six (RxBitAdj[i] = 110) is applied to effect
the intended packet framing boundary.

[0093] Still referring to Figure 6B and Figure 3A, it can be seen that bit alignment is
effected by delaying the framing clock relative to the core clock domain so that, depending on
the bit-shift required (in conjunction with phase-delay used to establish the desired phasing of
the receive clock), a given packet may be ready for transfer to the core clock domain at different
times (i.c., in response to different edges of the core clock signal). Thus, packets that form part
of the same multi-packet value retrieved from the memory core may, without alignment, be
transferred into the core domain in response to different core clock cycles. To avoid this
consequence, the packet alignment operation shown in Figure 6C is carried out to determine a
packet latency value that, when applied to the packet alignment circuits for the various links,
aligns the packets that form part of the original multi-packet value retrieved from the memory
core for simultaneous transfer into the controller-core clock domain. As with phase and bit
alignment, the packet-alignment calibration begins with a command from the memory controller
to the memory device to select a calibration data source (pattern set C) that enables distinction
between each sequence of four packets. For example, in one embodiment, pattern set C is a
four-packet sequence that includes a packet with one or more ‘1’ bits (“P1”), followed by three
zero-valued packets (“P0”). Accordingly, state machine 505 may determine the latency in the
P1 packet receipt relative to those of other links, for example, by outputting the local packet
latency to a logic circuit that receives like signals for the other links and returns a “relative
latency” value indicative of the local packet latency relative to that of the most latent link. The
state machine 505 responds by delaying the I/0-to-core packet transfer time in accordance with
the relative latency indication and thereby match the P1 transfer time of the most latent link
such that P1 packets are transferred to the core domain simultaneously (i.c. in response to the
same PCK1 edge) for all links.

[0094] After calibrating the receive clock phase, bit alignment and packet alignment
within the drift-compensating deserializers, similar operations are carried out to calibrate the
transmit clock phase, bit alignment and packet alignment within the drift-compensating
serializers. In general, these operations are carried out by transmitting calibration data from the
memory controller to the memory device via the drift-compensating serializer being calibrated,
then receiving the transmitted calibration data back from the memory device via a previously
calibrated drift-compensated deserializer. More specifically, in one embodiment, a data

loopback path is provided within the memory device to enable calibration data transmitted by
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the memory controller to be returned to the memory controller without burdening the memory
core. This arrangement speeds the calibration data return and enables timing calibration
operations to be partly or completely hidden under (i.e., carried out concurrently with) memory
refresh or other overhead operations within the memory core. In an alternative embodiment,
write and read-back operations may be used to establish full-loop testing of the data links (thus
avoiding the need for loopback paths), but such arrangement complicates the overall calibration
procedure in that the command path generally needs to be made operational before write and
read operations can be commenced. Though it is possible to establish reliable command path
signaling in advance of data path calibration (e.g., through calibration operations coordinated
over the side-band link; sending commands via the command path and evaluating whether the
commands were properly received), this complication is avoided through the loopback approach.
[0095] Figures 7A, 7B and 8A-8C illustrate exemplary serializer calibration procedures
that rely upon cross-coupled loopback paths between respective pairs of signaling links within
the memory device. In general, the serializer calibration procedure follows the same sequence
as the deserializer calibration, starting with clock phase adjustment, followed by bit alignment
(packet framing) and then finally inter-link packet alignment.

[0096] Figure 7A illustrates calibration data flow during calibration of the transmit clock
phase within a drift-compensating deserializer. Initially, a calibration data source is selected via
multiplexer 451¢ and serialized within drift-compensating serializer (191e, 193¢) using initial
packet-alignment, bit-alignment and transmit-phase values (e.g., all values zero). The data is
conveyed via an even numbered signaling link (DQ[0] in this example), received and packetized
within the counterpart memory-side deserializer 236¢, then routed via loopback path 240 and
multiplexer 4730, to the data transmission circuitry and serializer for the counterpart link of the
even/odd link pair (i.e., DQ[1]). Continuing, the data is received within the previously-
calibrated drift-compensating deserializer (1920, 1940) for the odd-numbered link and provided
to match circuitry 4530 which, in turn, renders a pass-fail determination for the transmit clock
phase under test. Figure 7B illustrates the overall flow of calibration data from source to
destination. More specifically, in the example shown, a calibration data sequence is sourced by
a controller-side PRBS generator 571 and transmitted to the memory device using the transmit
phase adjust setting (TxPhAdj[i]) under test. Upon receipt within the memory device, the
calibration data sequence is looped back to the memory controller through a switchably-formed
loopback path (572), received within the memory controller and then delivered to a controller-
side PRBS checker circuit 503. In the particular embodiment shown, the same PRBS checker

circuit 503 is employed during transmit and receive calibration, though separate (or at least
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differently configured) checker circuits may be used in alternative embodiments. Because the
memory-to-controller transfer has been previously calibrated, the pass or fail result for the
transmit clock phase under test may be assumed to result from improper phase alignment
between the controller-side transmit clock and the uncompensated memory-side receive clock
signal. Accordingly, by incrementing transmit clock phase through a linear (or binary-search or
other search) sequence, pass-fail boundaries for the transmit clock phase may be identified, and
a corresponding transmit clock phase selected as the midpoint between those boundaries, or as a
predetermined offset from one of the boundaries (e.g., based on the range of clock phases
between the pass-fail boundaries). After the transmit clock phase for each of the even numbered
signaling links is completed, the memory controller issues a command via the sideband link to
switch the multiplexing arrangement to enable data transmitted by the odd-numbered signaling
links to be looped back via the even-numbered signaling links (i.¢., including loop back path 242
and multiplexer 473¢), and to enable the match circuitry within the even numbered signaling
links to adjust the phase of the odd-link transmit clocks.

[0097] After the even and odd transmit clock phases have been calibrated, the memory
controller issues another sideband link command to re-establish the memory-side loopback path
between the even-link deserializer 236¢ and the odd-link serializer 2350 in preparation for a bit
alignment and packet alignment operations that correspond to those carried out for the drift-
compensating deserializer. This arrangement is shown in Figures 8A, 8B and 8C showing the
overall data flow path (Figure 8A), and the bit-alignment signals (Figure 8B) and packet-
alignment signals (Figure 8C) provided to the bit/packet alignment circuit within the even loop
signaling path. After bit/packet alignment within the even-numbered signaling links is
completed, the memory-device data multiplexers are switched again (e.g., in response to a
sideband link command from the memory controller) to enable calibration of the bit/packet
alignment within the odd-numbered signaling links.

Periodic Timing Calibration

[0098] After phase, bit and packet alignment operations are completed for the drift-
compensating serializer/deserializer circuits in the initial timing calibration effort, active
memory operations may be commenced with full data-rate data transfer between the memory
device and memory controller. As discussed above, the lack of drift-compensation circuitry
within the memory device means that the initial phase calibrations may relatively quickly drift
away from desired alignments in response to changes in temperature and voltage (or other
environmental factors) and thus require relatively frequent correction. Periodic or occasional

timing calibration operations are carried out to provide this correction.
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[0099] Figures 9A and 9B illustrate exemplary sequences of operations used to
periodically calibrate the drift-compensating serializers and drift-compensating deserializers,
respectively. Referring first to Figure 9A, before transmitting calibration data, the memory
controller issues a loopback-enable command via the now-calibrated command path to establish
looped-back flow from even- to odd-numbered signaling links and also shifts the phase of the
transmit clock in response to a clock selection signal (EdgeClkSel) to match the passing clock
phase recorded for a pass/fail boundary. At this point, the memory controller transmits data
selected from pattern source F, a predictable or predetermined sequence of values that may be
transmitted a limited number of times (e.g., one packet) in response to the boundary-phase
transmit clock signal. The pattern source is received within a counterpart deserializer of the
memory device, looped back to the serializer for the odd-numbered link of the link-pair under
test (occurring in all link pairs simultaneously) and then re-transmitted to the memory controller
where it is received within the drift-compensating deserializer (using the previously calibrated
receive clock phase) and supplied to match circuit 4730 for comparison with the expected value.
If a pattern mismatch is detected at this point, the memory controller may infer that the pass/fail
boundary has drifted in the direction of the passing phase of the pass/fail boundary and thus
increments the clock phase recorded for the pass/fail boundary value in a direction that tracks
the phase drift. Thereafter, by phase-jumping by a predetermined offset relative to the now-
shifted pass/fail boundary, an incremented (adjusted) transmit clock phase is effected,
compensating for the drift. If a pattern match is detected for the previously confirmed pass-
phase of the pass/fail boundary, the previously confirmed fail-phase may be tested (repeating the
transmission of the data pattern F using the decremented boundary phase) to determine if the
controller-to-memory phase has drifted in the opposite direction. If the fail-phase now passes,
drift in the fail-boundary direction is inferred, and the clock phase recorded for the pass/fail
boundary is decremented to track the phase drift. Thereafter, by phase-jumping by a
predetermined offset to the now-decremented pass/fail boundary, a decremented (adjusted)
transmit clock phase is effected, compensating for the drift. If pattern match is detected in the
pass-boundary phase and pattern mismatch is detected in the fail-boundary phase, the pass/fail
boundary is deemed not to have drifted since the last calibration operation and thus no change in
the phase adjust values for the pass/fail boundary or the transmit clock phase is recorded.
[00100] While the above-described calibration approach enables a phase increment,
decrement or hold during each calibration update, in an alternative embodiment, each calibration
operation may decrement or increment (no hold state) the clock phase being calibrated, thus

potentially suffering some clock dithering in return for the benefit of a simpler control circuit
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(e.g., state machine) implementation. In such an embodiment, the results of several calibration
operations may be accumulated and then applied to determine a phase update according to
majority vote. In either case, only a single phase jump need be made between the boundary and
sampling clock phases.

[00101] After the periodic timing calibration of the controller-side transmit clock phases
is completed for the even-numbered signaling links, the memory controller issues a calibration
command via the CA links to reverse the data multiplexing direction and the same sequence of
calibration operations is carried out with respect to the odd numbered links.

[00102] After completion of the periodic timing calibration operations for the even-link
and odd-link transmit clock phases, corresponding periodic timing calibration operations are
carried out as shown in Figure 9B to adjust the even-link and odd-link receive clock phases. In
one embodiment, the receive clock calibration follows on the heels of the transmit clock phase
adjustment so that the memory-side loopback path from odd-link deserializer to even-link
serializer is already established. Otherwise, the memory controller may issue a command via
the command path to establish that loopback path. In either case, once the odd-to-even loopback
path is established, the memory controller begins transmitting pattern F data (or other periodic
timing calibration data) via the odd-numbered signaling link (i.e., via multiplexer 4510, through
packet/bit alignment circuit 1930 and phase-shifting serializer 1910) and receives the looped-
back data via the even-link deserializer. As with the transmit clock, the receive clock phase is
offset to the previously recorded pass/fail boundary during the periodic timing calibration to
determine whether pass/fail boundary has moved and, if so, in which direction. That is, if the
pass-boundary phase still yields a passing result, but the fail-boundary phase now yields a
passing result instead of a failing result, the bit adjustment values for the pass-fail boundary are
shifted in the direction of the fail-boundary phase to counteract the phase drift, yielding a
corresponding shift in the receive clock phase due to the fixed phase offset maintained between
the now-shifted pass/fail boundary and the receive clock. If the pass-boundary phase yields a
failing result, the bit adjustment value for the pass-fail boundary is shifted in the direction of the
pass-boundary phase, yielding a corresponding shift in the receive clock phase to counteract the
phase drift. If there is no movement in the pass/fail boundary, the receive clock phase is left
without change. As discussed in regard to the transmit clock phase, in an alternative
embodiment, the receive clock phase may be incremented or decremented in each update (i.e.,
no hold state). After periodic timing calibration is completed for the even-numbered-link
receive clocks, the memory controller issues a command to the memory device to reverse the

data loopback connection (to enable data transmitted by the even-numbered signaling links to be
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looped back via the odd-numbered signaling links) and thus enable the same periodic timing
calibration sequence to be carried out for the odd-numbered-link receive clocks.

[00103] Still referring to Figures 9A and 9B, in an alternative embodiment, instead of
using a loopback arrangement for transmit timing calibration, memory write and read back
operations (including operations directed to predetermined registers rather than the core storage
array) may be carried out to effect periodic calibration (adjustment) of the transmit clock phase.
Similarly, memory read operations and/or memory-to-controller pattern transmission (i.c., as
described in reference to Figure 6A) may be used to periodically calibrate (adjust) the receive
clock phase. In such embodiments, loopback circuitry may be partly or wholly omitted and all
links may potentially be calibrated simultancously rather than sequentially calibrating the even-
and odd-numbered links of the various link pairs. In either case, the same phase, bit and packet
alignment values to enable link-by-link drift compensation may be maintained within the
controller-side calibration circuitry as described above.

[00104] In one embodiment, the bit adjustment values maintained by the controller-side
calibration circuitry are maintained within an up/down alignment counter to enable overflow (or
underflow) in the phase adjustment value to carry (or borrow) to the bit adjustment value and,
likewise, to enable overflow/underflow in the bit adjustment value to carry to/borrow from the
packet adjustment value. This arrangement is shown in Figure 10A in an alignment-counter
embodiment (551) that corresponds to the six-bit phase adjustment circuitry described in
reference to Figures 3A and 3C. That is, only 48 of the 64 possible phase adjust values are used
(i.e., the upper three phase adjust bits are used to select one of six possible pairs clock phases
thus leaving two phase-selection values unused and therefore sixteen total phase-adjust values
unused) so that circuitry to effect modulo 48 counting (i.c., increment from 47 to 0 and
decrement from 0 to 47) for the phase-adjust field 553 is provided within the phase counter.
Accordingly, when a phase adjust value of 47 is incremented, the resulting rollover produces a
carry to the bit adjust field 555, in effect advancing the phase of the clock from the most latent
edge within a given bit time, to the least latent (most advanced) edge within the more latent bit
time. Similarly, upon advancing the phase to the point that the phase adjust field has reached a
maximum count (47) and the bit adjust field has also reached a maximum count (7), a
subsequent increment in the clock edge crosses a packet boundary, so that the phase adjust value
and bit adjust value are effectively reset to zero and the packet adjust field 557 incremented,
thereby selecting the most advanced clock phase in the first bit time within the more latent

packet interval. Similar underflow occurs, borrowing from (decrementing) the bit adjust value
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in response to an underflowing phase adjust value (decrement from 0 to 47), and borrowing
from the packet adjust value in response to an underflowing bit adjust value.

[00105] Still referring to Figure 10A, the alignment counter 551 includes inputs to receive
an increment/decrement signal (“inc/dec”), load signal (“load”) and an update signal (“update™),
as well as a parallel port to enable an alignment count value (i.e., a 12-bit count value in the
embodiment shown) to be loaded into the counter. In one embodiment, the
increment/decrement signal is applied, during periodic timing calibration and in response to an
triggering edge of the update signal, to increment or decrement the alignment count (the counter
content). The load signal is asserted during initial calibration to enable an alignment value
determined during initial calibration (e.g., a median or other statistical center point between eye
edges determined by a processor or other circuitry within the memory controller core) to be
loaded into the alignment counter.

[00106] Figure 10B illustrates a circuit arrangement that may be employed during
periodic timing calibration to update alignment counters for each of the transmit and receive
clock phases for an odd/even signaling link pair; DQ[0] and DQJ[1] in this example. As shown,
two alignment counters are provided for each of the four clock phases; four alignment counters
per link and therefore eight alignment counters for the link pair (551 1%, 551100, 55 1rx0, 5515Rb0,
551 1x1, 5511b1, 551Rx1, 551Rrb1). Referring to link DQJ[0], for example (link DQ[ 1] is identically
implemented), a transmit-clock alignment counter 5511y is provided to control the transmit
clock phase (including bit and packet alignment), while a transmit-boundary alignment counter
5511w is provided to control (and record) the corresponding PTC boundary phase (i.c., a
transmit clock phase determined to sit at the pass/fail boundary when a spectrally-limited PTC
test pattern is applied). Similarly, a receive-clock alignment counter 551y is provided to
control the receive clock phase, and a receive-boundary alignment counter 551rp is provided to
control (and record) the corresponding PTC boundary phase (i.c., a receive clock phase
determined to sit at the pass/fail boundary when the PTC test pattern is applied).

[00107] In the embodiment shown, each of the alignment counters (collectively, 551) is
initialized during the above-described initial calibration sequence. In one implementation, for
example, the alignment counters for the clock phases are iteratively parallel-loaded by
controller-core circuitry until a final calibrated clock phase is determined for each link.
Thereafter, the alignment counters for the PTC boundary phases may similarly be iteratively
parallel-loaded by controller-core circuitry until a final boundary phase corresponding to a pass-
fail boundary (determined in response to spectrally-limited PTC test pattern) is determined for

each link.
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[00108] Continuing with Figure 10B, a multiplexer is provided in connection with each
clock-phase/boundary-phase pair of alignment counters (as shown at 575) to select the
alignment count from either the clock-phase alignment counter or the boundary-phase alignment
counter to be provided to the corresponding drift-compensating serializer 185,/185; or drift-
compensating deserializer 1864/186,. The calibration-clock select signal (CalClkSel) described
above is provided to control the alignment-count selection. In the particular example shown, the
calibration-clock select signal is a 4-bit signal, with each bit being supplied to a respective one
of the multiplexers 575 for the four pairs of alignment counters, thereby enabling selection of
cither the boundary-phase (for PTC) or the clock-phase (for live data transmission/reception) for
the deserializer and serializer of both data links. As shown, a state machine 571 (which may be
the same, or at least a part of the finite state machines described above in connection with
periodic and/or initial timing calibration) also receives the calibration-clock select signal, as well
as the output of a compare circuit 573 (e.g., part of the match circuits described above).
Referring to Figure 10C (an exemplary state diagram for state machine 571) and Figure 10B, so
long as all the calibration-clock select bits remain deasserted, the state machine remains in an
operational mode 581 and outputs a pair of data select signals to multiplexers 576 (e.g.,
corresponding generally to data selection multiplexers described above in reference to the initial
and periodic timing calibration operations) to select core data lanes, Tdata[0][7:0] and
Tdata[1][7:0], to source the transmit data TxD[0] and TxD[1] delivered to the DQ[0] and DQJ1]
serializers (1850, 185,), respectively. If any one of the calibration-clock select bits is asserted
(i.e., CalClkSel > 0000D), the state machine transitions to a periodic timing calibration (PTC)
mode 583 in which the PTC test pattern is selected (via multiplexers 576) as the source of
transmit data delivered to the link serializers 185,/185; and also issuing a control signal to
multiplexer 574 to select the output of deserializer 186, or deserializer 186, for evaluation,
according to the link under calibration. That is, if either of the two CalClkSel bits corresponding
to link DQJ1] is asserted, the state machine selects data from the DQ[1] deserializer (i.c.,
RxD[1]) to be supplied to the compare circuit 573. Otherwise, data from the DQ[0] deserializer
(RxDI[[0]) is supplied to the compare circuit. After the PTC test pattern has been transmitted by
the link serializer, received by the link deserializer and compared with the expected value within
the compare circuit, the state machine transitions to either a clock-phase increment state 585 or a
clock-phase decrement state 587 according to whether the comparison result indicates a pass or
fail condition, respectively (although the correspondence between increment/decrement and
pass/fail may be inverted as circumstances dictate). In the increment state, the state machine

raises the increment/decrement output, “inc/dec,” to indicate an increment operation and asserts
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the update signal (shown in Figure 10A, but omitted from 10B to avoid obscuring the circuit
elements shown) to enable the corresponding boundary-phase and clock-phase clock counters to
be incremented. Similarly, in the decrement state, the state machine lowers the
increment/decrement output to specify a decrement operation and asserts the update signal to
enable the CalClkSel-selected pair of alignment counters to be decremented. By this operation,
the clock phases and corresponding PTC boundary phases loaded into the alignment counters at
initial calibration are incremented and decremented together, using the timing drift information
indicated by movement of the PTC boundary phase to adjust the sampling and transmit clocks
for each of the signaling links.

Clock-Stopped Low Power Mode

[00109] Figure 11A illustrates an exemplary clocking arrangement used within the
embodiment of Figure 2A, explicitly showing the clock stop logic 601 and clock buffer 603 for
the controller I/0 clock (PCKS) and the clock stop logic 605 and clock buffer 607 for the data-
rate system clock (PCK4) forwarded to the memory device. Referring to detail view 610 of the
PCK4 clock-stop logic 605, a clock-enable signal (ENPCK4) is asserted and deasserted (logic
high and low, respectively, in this example) by power-mode logic within the controller core to
enable and disable (or start and stop) the PCK4 clock. In one embodiment, the power-mode
logic is clocked by the controller core clock, PCK1, so that, when asserted or deasserted, the
clock-enable signal remains asserted or deasserted for an integer number of PCK1 cycles. This
arrangement ensures that, as the clock-enable signal is lowered to establish a clock-stopped low
power mode and then later raised to restart the clock, the phase relationship between the
controller core clock (PCK1) and memory core clock (MCK1) is maintained, thereby preserving
the bit alignment and packet alignment established during initial calibration even through clock
stop and restart. Note that in this particular example, the controller core and memory core are
clocked at the same rate. In alternative embodiments, the controller core and memory core may
be clocked at different rates (and thus drive serialization and deserialization pipelines of
different depth). In that case, the clock stop interval may be limited to an integer number of the
core clock signal having the longest period. For example, if the controller core clock rate is
increased to 800 MHz, but the memory core clock rate remains at 400 MHz, the clock stop
interval may be constrained to be an integer number of memory core clock cycles (2.5 nS in this
example), thus ensuring that the phase between the controller core clock and memory core clock
1S maintained.

[00110] Figure 11B is an exemplary timing diagram of the clock-stop (or clock pause)

operation of the Figure 11A clocking architecture. The waveforms depicted include the memory
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controller and memory device core clocks, PCK1 and MCK1, as well as the system clock,
PCK4, and a version of the system clock that exists internally to the clock generation circuit
PCK4i. Also depicted are the clock-enable signal, ENPCK4 and a re-timed version of the clock-
enable signal, ENPCKA4r.

[00111] In essence, the clock-enable signal is used to gate the internal PCK4i clock and
thus to either enable or disable toggling of the PCK4 system clock. Because the controller core
clock domain and the system clock domain are permitted to have an arbitrary phase offset
relative to one another (and the clock-enable signal may have an arbitrary phase offset relative to
an edge of PCK1), the clock-enable signal may rise or fall during any state of the PCK4i clock
and thus, if applied directly to gate the system clock, may gate the clock off or on during a logic-
high state of the PCK4i clock and thereby yield undesirable runt (i.e., shortened) pulses on the
system clock line. This consequence (runt pulse generation) is avoided within the clock-stop
logic of Figure 11A by including re-timing logic 611 (shown in detail view 610) that re-times
the core-domain clock-enable signal (ENPCK4) into the PCK4i clock domain while maintaining
a fixed phase offset between rising and falling edges of the re-timed clock-enable signal
(ENPCKA4r) and the controller core clock. More specifically, in the embodiment shown, the
system clock is gated on or off only during the logic-low phase of the PCK4i clock so that no
runt pulses are generated, and yet the time interval between deassertion and assertion of the re-
timed clock-enable signal is maintained as an integer-number of core clock cycles, thereby
preserving the calibration-compensated phase relationship between the memory core clock and
controller core clock.

[00112] Continuing with Figures 11A and 11B, the re-timed clock-enable signal is
ANDed with PCK41i in gate 613, and thus, when deasserted, blocks a number of pulses that
correspond to an integer number of cycles of the controller core clock (PCK1) from appearing in
the PCK4 waveform. By this operation, PCK4 is gated-off (suppressed; prevented from
toggling) and therefore stops cleanly and remains stopped for an interval that corresponds to an
integer number of PCK1 cycles (one cycle in this example). Because PCK4 is received within
the memory device and propagated through an open-loop clock driving circuit (e.g., formed by
buffers 223 and 229) to yield (without frequency change) the data-rate clock signal, MCK4, and
ultimately the memory-side transmit and receive clocks, the clean stoppage (or pausing) of
PCK4 yields a correspondingly clean stoppage of those clocks as well, thereby cleanly
suspending operation of the memory-side serializers and deserializers. Operation of the
counterpart controller-side deserializers and serializers is also cleanly suspended by stoppage of

the controller-side 1/0 clock within clock-stop logic 601.
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[00113] In one embodiment, memory-side divider circuit 225 is implemented by a 4-state,
modulo-4 counter (e.g., including increment logic 616 and state register 621 as shown at 614) in
which the most significant bit toggles after every two cycles of the MCK4 clock and thus is
output as the memory-side core clock, MCK1. Noting that the modulo-4 counter may generally
power up in any of the four states shown at the counter output (with MSB outlined), the phase-
relationship between MCKI1 and the controller core clock, PCK1, may thus take on an arbitrary
one of four initial phase offsets that are phase-spaced by a cycle of the MCK4 signal and thus
two bit times. In the embodiment of Figure 2A (and 11A), this initial phase relationship
between PCK1 and MCK4, whatever it may be, is accounted for in the initial calibration of the
bit adjustment and packet adjustment values within the drift-compensating serializers and
deserializers. Because PCK1 continues to toggle during stoppage of the PCK4/MCK4 signal,
any stoppage of PCK4/MCK4 that does not suppress a number of PCK4 pulses equal to the
PCK4-to-PCK1 clock ratio (4 in this example) will change the phase relationship between PCK1
and MCK1 upon clock re-start, and thus result in loss of bit and packet synchronization relative
to the controller-core clock domain. On the other hand, by cleanly stopping PCK4 for an integer
number of PCK1 cycles, the number of suppressed PCK4 (and thus MCK4) pulses is ensured to
equal the PCK4 to PCK1 clock ratio and thus will maintain the PCK1-to-MCK1 phase
relationship to which the initial calibration settings are aligned and thus enable properly framed
and packet-aligned data to be transferred to the controller core domain without error on clock
restart. This result is illustrated in Figure 11B by the state of the modulo-2 counter (00, 01, 10,
11, 00, ...) in conjunction with edges of MCK4 and showing that suppression of N*(PCK4-to-
PCK1 ratio) of PCK4 clock pulses during the clock-stop interval preserves the PCK1 to MCK 1
phase relationship upon clock re-start (‘*’ denoting multiplication).

[00114] Figures 11C and 11D illustrate a more detailed embodiment of the system-clock
clock-stop logic 605 and corresponding timing diagram. The clock-stop logic includes a logic
AND gate 613 that corresponds to gate 613 of Figure 11A, as well as re-timing logic formed by
flip-flops 631, 633, 635, 637, 639, 641, 645 and 647, logic elements 632, 634 and 636, and
multiplexers 638 and 643. As discussed, the re-timing circuitry serves to re-time the clock-
enable signal from the controller core, ENPCK4, into the domain of system clock PCK4. An
initial step in this operation is to sample the clock-enable signal with the core clock signal and
thus align any transition within ENPCK4 with a transition of the core clock signal and ensure
that a signal representative of the clock-enable signal enable signal (i.e., the clock-enable
sample) is held steady for at least one core-clock cycle. Further, a one-time load-skip operation

is performed at system initialization (in response to a load-skip signal (LD-SKIP)) to determine
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the phase of the PCK1 signal with respect to a same-frequency clock signal generated in the
PCK4 domain and referred to as PCK4c. More specifically, when load-skip is raised,
multiplexer 638 passes the PCK4c to the input of flop stage 639, thereby enabling PCK4c¢ to be
sampled by the ensuing rising edge of PCK1. The output of flop stage 639, referred to herein as
the skip signal, is latched by the deassertion of load-skip, and will be logic ‘1’ or ‘0’ depending
on whether PCK4c was high or low, respectively, at the PCK1 rising edge. Because the phase
relationship between PCK4c and PCK1 remains unchanged during system operation, load-skip
need only be asserted once, at power up (or system reset) to resolve the state of the skip signal.
[00115] Continuing, the clock enable signal ENPCK4 is sampled by flop stage 637 in
response to a rising edge of PCK1 to generate a rising-PCK 1-edge-aligned clock-enable signal,
ENPCK4a, that is ensured to remain in the same state for an integer number of PCK1 cycles.
ENPCK4a is itself sampled in flop 641 in response to the succeeding falling PCK1 edge to
generate negative-PCK1-edge aligned clock-enable signal, ENPCK4b, also ensured to remain in
the same state for an integer number of PCK1 cycles. As shown in figure 11D, the two PCK1-
aligned clock-enable signals, ENPCK4a and ENPCK4b, represent instances of a PCK 1-aligned
clock-enable signal that are valid over the same time interval but in alternative circumstances; in
one case when the skip signal is high (ENPCK4a) and in the other case when the skip signal is
low (ENPCK4b). Accordingly, by selecting between the two PCK1-aligned clock-enable
signals in multiplexer 643 according to the state of the skip signal, a PCK1-aligned clock-enable
signal having the same start and stop time is selected and output to re-timing flop stage 645 in
cither case. Further, the selected PCK1-aligned clock-enable signal is ensured to span a rising
edge of a quadrature clock signal PCK4d (i.e., a clock signal having the same frequency as
PCK1 and PCK4c, but a quadrature phase relationship with respect to PCK4c) supplied to the
trigger input of the re-timing flop stage 645. Finally, because ecach edge of PCK4d is generated
in response to a negative going edge of data-rate clock PCK4i (by virtue of flop 631), the rising
edge of PCK4d used to trigger the re-timing flop stage 645 and thus sample the PCK1-aligned
clock-enable signal occurs immediately after PCK4i goes low. By this design, a full (or nearly a
full) PCK4i clock cycle of setup and hold time is provided before the re-timed clock-enable
signal, ENPCKA4c, is sampled in another re-timing flop stage 647 by the next falling edge of
PCK4i to produce the final re-timed clock-enable signal, ENPCK4r, used to gate PCK4 on and
off. As shown in Figure 11D, the net result is that the final re-timed clock-enable signal,
ENPCKA4r, changes state only in response to a low-going edge of PCK4i and only after an
integer number of PCK1 clock cycles have transpired since the last state change. By this

operation, problematic runt pulses on the PCK4 output are avoided and the clock phase
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relationship between PCK1 and PCK4 is maintained through clock stop and re-start, thereby
preserving the calibrated state of the drift-compensating serializer and deserializer circuitry
within the memory controller.

[00116] The techniques and circuitry shown in Figures 11C and 11D may also be applied
within the clock-stop logic for the controller-side I/0 clock, PCKS, thereby avoiding runt pulses
on the PCKS clock line and ensuring that the number of PCKS8 pulses that are disabled (or
suppressed) during clock stop matches, accounting for the 2:1 clock ratio, the number of
disabled PCK4 pulses.

[00117] Figures 11E-11G illustrate an alternative clock-stop architecture 650 and
corresponding circuit and timing diagrams. In contrast to the separate PCK4 and PCKS clock-
stop circuits in the architecture of Figure 11A, the clock-stop architecture 650 includes a single
clock-stop logic circuit 651 that disables toggling of the internal PCKS8 clock phases (PCKS81)
that yield the final PCKS clock phases and, after frequency division, the system clock signal
PCK4. Except for the absence of clock-stop circuits 601 and 605, and the provision of a solitary
clock-enable signal (ENPCKS/4) instead of multiple clock-enable signals, the functional
elements of architecture 650 operate generally as described in reference to their like-numbered
counterparts in Figure 11A. Also, as in the embodiment of Figure 11A, the controller core
clock, PCK1, may continue to toggle after the PCKS8i clock phases (and therefore the PCKS8 and
PCK4 clocks) have been stopped.

[00118] Figure 11F illustrates an embodiment of a clock-stop circuit 670 that may be used
to implement the clock-stop circuit 651 of Figure 11E. As shown, a clock-enable signal
(ENPCKS8/4) from the controller core domain is sampled in response to the baseline PLL output
phase, PLL[0°] (a clock phase having an 8x frequency relative to the core clock) in flip-flop
671, thereby re-timing the clock-enable signal into the PLL-output clock domain as re-timed
enable signal 672. Other re-timing circuits may be used to re-time the clock-enable signal in
alternative embodiments, including a staged re-timing circuit that transfers the clock-enable
signal through a sequence of timing domains before finally retiming into the PLL output clock
domain. The re-timed enable signal 672 is sampled in response to a falling edge of PLL[0°] to
lower a clockO-enable signal (clk0-en) at the start of the logic-low half-cycle of the PLL[0°]
clock signal. A multiplexer 674 (or other selector circuit) responds to the lowered clockO-enable
signal by decoupling the corresponding PCK8i output (PCK&i[0°]) from PLL[0°] and coupling
the PCK&i output to ground to hold the output low and effect a clock stop. The re-timed clock-
enable signal 672 is similarly sampled by the falling edge of PLL[60°] to lower clock1-enable

signal (clk1-en) at the start of the logic-low half cycle of the PLL[60°] clock signal. Multiplexer
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676 responds to the lowered clock1-enable signal by decoupling the PCK8i[60°] output from
PLL[60°] and coupling the output to ground. Finally, a more delayed instance of the re-timed
clock-enable signal 680 (generated, for example, by a buffer-delayed instance of the clock0-
enable signal) is sampled in response to the falling edge of PLL[120°] to lower clock2-enable
signal (clk2-en) at the start of the logic-low half-cycle of the PLL[120°] clock signal.
Multiplexer 678 responds to the lowered clock2-enable signal by decoupling the PCK8i[120°]
output from PLL[120°] and coupling the output to ground. As shown by the shaded clock-stop
region of Figure 11G (showing suppressed clock pulses in dashed outline), the clean stoppage of
the PCKSi clock phases in response to the lowered clock-enable signal yields correspondingly
clean stoppage of the PCKS8[0°, 60°, 120°] clock phases, the PCK4 clock phase and thus the
memory-side clocks, MCK4 (and MCK1, not shown). Clean re-start of all stopped (or paused
or disabled) clocks is similarly achieved by raising the clock-enable signal (ENPCKS/4). That
18, the rising edge of the clock-enable signal (further re-timed as necessary to meet setup and
hold time requirements for each PLL output phase) is sampled in response to the low-going edge
of the PLL clock phase to be re-enabled, switching the multiplexer selection at the start of the
logic-low interval for each PLL clock phase to enable glitchless re-coupling of the PLL clock
phase to the corresponding PCKSi clock node. Although not specifically shown in Figures 11F
and 11G, complementary instances of the 0°, 60° and 120° PLL clocks (180°, 240° and 300°)
may similarly be disabled and enabled according to the state of the clock0O-enable, clock1-enable
and clock2-enable signals, respectively. Also, as in the various embodiments described above,
more or fewer PLL output phases may be generated in alternative embodiments.

Entering and Exiting Clock-Stop Mode — System Operation

[00119] In one embodiment, clock-stop low power mode is entered whenever the memory
controller has completed all requested memory transactions and thus run out of work. In one
embodiment, this idle state is determined by power mode logic within the memory controller
core which monitors a queue of pending transactions (“transaction queue”) and is thus informed
when the transaction queue is emptied. Rather than stop the controller I/O and system clocks
immediately upon emptying the queue, the power mode logic waits at least long enough for the
last transaction pulled from the queue (i.e., the final transaction) to be completed, at least from
the stand point of the memory device and the controller I/O circuitry, and then deasserts the
clock enable signals, ENPCK4 and ENPCKS, to cleanly stop the controller I/O and system clock
signals (PCK8 and PCK4, respectively).

[00120] Figure 12A is an exemplary timing diagram of clock signals, clock-enable signals

and command/address signals at the memory controller during an interval that includes entry and
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exit from a clock-stopped low power mode. The clock signals include the controller core clock
PCK1, the system clock signal, SCK (PCK4 within the memory controller), and the controller
1/0 clock PCKS. Continuing the exemplary embodiments described above, data and commands
are transmitted at 3.2Gb/s; two bits per 0.625nS system clock cycle and eight bits per 2.5 nS
(nanosecond) core clock cycle. By this arrangement, an 8:1 serialization pipeline is established,
with outgoing information presented to each drift-compensating serializer as an 8-bit packet
(i.e., byte) during a given cycle of the core clock signal, while the bits of a previously presented
packet are serially transmitted in respective bit-times (bit-time or tgir = tpcxs (PCKS period))
during that same core clock cycle. Thus, as shown in Figure 12A, tpck1 = texr = 4*tsck = 8*tarT,
where “*’ denotes multiplication. Different transmission frequencies, clock ratios, serialization
ratios and packet sizes may be selected in alternative embodiments.

[00121] Within the memory controller, packets of data and command/address (CA) bits
are supplied to the I/O circuitry via 8-bit wide data lanes and CA lanes, respectively. In one
embodiment, each memory access command and corresponding address are packed into two
eight-bit packets that may thus transmitted over the two CA links (CA[0] and CA[1]) in a single
packet-time. When no packets remain to be sent, “no-operation” commands, depicted as “NOP”
command packets (e.g., zero-filled packets) are transmitted to the memory device via the
command path (CA[0], CA[1]), and the controller core begins a countdown to completion of the
last memory access command transmitted on the command path (the “final command”). During
the countdown, clock-stop mode is said to be pending, and the power-mode logic within the
controller core is in pre-clock-stop state in which all clocks continue to toggle to provide timing
edges necessary for write data to be stored within the memory core in the case of a final write
operation, or for read data to be returned from the memory core, deserialized and presented at
the controller I/O-to-core interface in the case of a final memory read command. If no new
transaction is queued within the transaction queue by the time the all operations associated with
the final command are completed within the memory device and controller I/O circuitry, the
power-mode logic deasserts the clock-enable signals, ENPCK4 and ENPCKS for the system
clock and controller 1/0 clocks, PCK4 (SCK) and PCKS, respectively.

[00122] Within Figure 12A, entry into clock-stop mode begins with transfer (removal or
dequeuing) of the final remaining memory access request from a 16-bit wide transaction queue
(T-Queue[15:0]) to the controller I/O circuitry via 8-bit wide command lanes Cadata[0][7:0] and
Cadata[1][7:0]. The command data lanes themselves may be implemented within the packet-
alignment circuit (i.e., packet alignment FIFO or skip circuit) that enables crossing from the core

clock domain to the framing clock domain for a given signaling link. Thus, each successive
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command, whether a NOP or memory-access command (OP), may be forwarded within the
packet-alignment circuit in response to a falling edge of the core clock (PCK1), transferred into
the framing clock domain a calibrated (and link-specific) number of bit-times later and then
serialized for transmission via the CA[0] and CA[1] links. Thus, a final operation, designated
“OP0,” is transferred from the transaction queue to the command lanes at time 702, forwarded
across the packet-alignment circuit starting at time 704 (in response to a falling PCK1 edge) and
then transferred from the packet-alignment circuit to a serial shift register within the controller-
side deserialization circuitry (e.g., formed by the flop-stages 315 shown Figure 3D) after a
serialization delay, tsgriar, that corresponds to a PCK1 cycle plus the bit-wise offset between the
de-framing clock signal (TCK1[i] in Figure 3D) and PCK1. Thereafter, data is shifted out of the
serial shift register bit by bit to effect serial data transmission over the CA[0]/CA[1] signaling
link.

[00123] The bit-variability between the different signaling links is emphasized in Figure
12A by the 4-bit-time difference between the serialization delays for the CA[0] and CA[1]
signaling links. That is, the bit-wise offset between the core clock and the de-framing clock for
link CA[0] (i.e., between PCK1 and TCK1[i]) is zero, so that the low-order packet of OPO is
transferred to the serial shift register for the CA[0] link one PCK1 cycle (tsgriar = 8 bit-times)
after being transferred from the transaction queue to the CA[0] packet-alignment circuit, and
thus transmitted bit serially over the CA[0] signaling link starting at time 706. Thus, the
serialization delay, tsgriar, 1S one PCK1 cycle or 8 bit-times. By contrast, a four-bit offset exists
between the core clock and de-framing clock for link CA[1] (i.e., between PCK1 and
TCK1[i+1]) so that, following transfer of the high-order packet of OP0 from the transaction
queue to the CA[1] packet-alignment circuit, a 12-bit-time serialization delay elapses (or
transpires) before the packet is transmitted over the CA[1] signaling link (starting at time 708).
Overall, the difference between the 8-bit-time and 12-bit-time serialization delays yields a 4-bit-
time offset (or bit-variability) between controller-side transmission of the low- and high-order
packets of OP0, not counting any sub-bit-time phase offset that may exist between the transmit
clocks for the CA[0] and CA[1] links (i.e., phase offset between TCK&[1] and TCK8[i+1]).
Overall, the bit-variability and sub-bit phase offset result in time-staggered transmission of
associated command/address packets and data packets to enable memory-side data sampling,
deserialization and 1I/O-to-core transfer all without memory-side clock adjustment circuitry.
Though not shown in Figure 12A, a similar bit-variability and sub-bit phase offset is tolerated
within controller-side data deserializers to enable memory-side core-to-1/0O transfer, serialization

and data transmission without memory-side clock adjustment circuitry.
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[00124] Continuing with the clock-stop example in Figure 12A, upon transferring the
final memory access operation (i.c., OP0) from the transaction queue to the command lanes for
links CA[0] and CA[1], the power-mode logic determines that the transaction queue is empty
and thus begins a countdown to deassertion of the clock-enable signals for the system clock and
controller I/O clock. In one embodiment, the countdown time is operation specific and thus
specified as tcacop)-rn, With “OP” indicating the nature of the memory access request (e.g., row
operation such as activate or precharge, or column operation such as memory read or memory
write, though operation times particular to other non-DRAM types of memory storage may
apply, such as program and erase times). Alternatively, a fixed countdown time may be applied,
irrespective of the type of operation being performed. In either case, the goal is to ensure that
sufficient clocking edges are provided to the memory device and the controller I/O circuitry to
complete the last memory access operation. In general, the worst-case latency between
emptying the transaction queue occurs in a memory read operation, which includes the
command serialization time (including worst-case bit variability), propagation over the
command path, the data retrieval and serialization latency of the memory device (referred to
collectively herein as the CAS latency), the read data propagation time on the data path, and
finally the controller-side data deserialization time. In an operation-specific embodiment, the
power-mode logic may index a register bank (or lookup table) based on the final operation and
thereby retrieve a countdown value (e.g., number of core clock cycles to transpire before
deasserting the clock-enable signals). In a fixed-count embodiment, the countdown value may
be programmed at system start-up based run-time or production-time or design-time
measurement of the worst-case time to complete a memory read operation, or by programming a
one-time register at system production time, or even implementing a hard-wired, worst-case
count value.

[00125] However implemented, if a new memory access request is inserted into the
transaction queue (or otherwise received) during the countdown to clock stop (i.e., while the
power mode logic is in a clock-stop-pending mode), the pending clock-stop is aborted and the
power mode logic returns to active mode, continuing to monitor the transaction queue for empty
state. But if no new memory access request is queued within the transaction queue prior to
countdown completion, the power mode logic deasserts the clock-enable signals, ENPCK4 and
ENPCKS, thus triggering a clock-stop operation.

[00126] As described above, ENPCK4 and ENPCKS are generated within the core clock
domain and thus are re-timed within the PCK4 and PCKS8 domains to ensure clean stopping (or

pausing or disabling) of the PCK4 and PCKS clocks. Further, in an embodiment in which the
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PCK4 and PCKS8 domains (i.¢., the system clock and controller I/O clock domains) are permitted
to be phase offset from one another (e.g., as in the embodiment of Figure 2A), the deassertion
times of the re-timed clock-enable signals, ENPCK4r and ENPCKS8r, may be different, thereby
resulting in different clock stop times for the PCK4 and PCKS clocks. In the exemplary timing
diagram of Figure 12A, this variation in clock-stop times is shown by the two bit-time (two
PCKS cycles, one PCK4 cycle) offset between the PCK4 clock-stop time and PCKS8 clock-stop
time. That is, the re-timing delay, tcspr, (or disable latency), in the PCKS clock-stop logic, is
two bit-times longer than the re-timing delay, tcspr, in the PCK4 clock-stop logic. Because both
clocks are stopped for an integer number of PCK1 cycles, the same two-bit-time offset applies at
clock re-start so that the same number of clock pulses are generated, after accounting for any
clock ratio (2:1 in this example), in the PCK8 and PCK4 clock domains.

[00127] One significant challenge in stopping the controller I/O clock is demonstrated by
the bit-variability permitted within the various controller-side serializer/deserializer circuits.
That is, because bit-variability is permitted between the controller-side timing domains for the
different signaling links (in effect staggering those domains as necessary to achieve alignment
with counterpart uncompensated memory-side timing domains), the packet boundaries for the
different links are themselves offset. From a clock-stop perspective, no matter where the
controller I/O clock is stopped, one or more CA packets may be only partly serialized, in effect
fracturing the packet into parts that appear on either side of the clock-stop interval (e.g., 711 and
712). Because PCKS is stopped cleanly for an integer number of PCK1 cycles, however, the
remaining fraction of the packet (712) is properly serialized upon clock re-start, and a new
packet de-framed and transmitted at a packet boundary that reflects the pre-established
relationship between the controller-side de-framing clock and core clock, PCK1. That is, the
bit-wise (and intra-bit phase) offset between the controller core clock (PCK1) and de-framing
clock (e.g., TCKS§[1]) is maintained so that the remaining bits of any clock-stop-fractured packet
are transmitted and a new packet de-framed as though no clock-stop had occurred. Visually, this
may be imagined by slicing the diagram of Figure 12A along the start-clock boundary and
shifting the portion of the diagram that appears after clock re-start left to line up with the clock-
stop boundary. As can be seen, packet framing boundaries are maintained so that all clock-stop-
fractured packets are made whole upon clock re-start.

[00128] Reflecting on the clock-forwarding architecture described thus far, because any
number of system clock pulses may be in flight (i.e., propagating on the clock link) to the
memory device, the specific system clock edge used to enable reception or transmission of a bit

on a given signaling link will generally be offset in time relative to a nominally aligned edge of
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the controller I/O clock. That is, assuming that a controller I/O clock edge and system clock
edge are output simultaneously from the controller-side clock generator, the I/O clock edge will
generally be applied to time a data reception event within the controller-side 1/O circuitry while
the system clock edge is still en-route to the memory device or to the memory device I/O
circuitry. From a clock-stop perspective, this means that even if the system clock and controller
/0 clock are stopped simultaneously at the memory controller, the memory device will
nevertheless experience more clock edges than the controller 1/O circuitry (accounting for clock
ratio), as the longer system clock pipeline takes longer to drain. And similarly, from a clock-
start perspective, if the system clock and controller I/O clock are started simultancously, the
controller I/O circuitry will begin receiving clock pulses before the memory-side 1/O circuitry
due to the longer memory-side clock pipeline. This presents a substantial challenge for
managing fractured packets as any remaining portion of the packet may be transmitted by the
controller I/O circuitry may arrive at the memory device, before (or after) system clock edges
have arrived to sample the incoming data. More generally, bits of any command or data packet
transmitted on clock-restart may be dropped if they arrive at the memory device before clocking
edges are available to time their reception. In one embodiment, this complexity is managed by
(1) transmission of no-operation (NOP or no-op) commands for an interval leading up to clock-
stop and for an interval following clock re-start, and (ii) ensuring that the phase relationship
between the controller-side core clock (PCK1) and memory-side core clock (MCK1) is
maintained through the clock-stop interval. First, no-op transmission immediately before and
after the clock-stop interval insures that no meaningful commands or data is dropped as the
forwarded-clock pipeline fills. That is, because no data is transmitted in conjunction with the
no-op commands, and no memory access commands are specified, loss of bits initially
transmitted upon clock-restart is of no consequence. Second, by maintaining the PCK1 to
MCKI phase relationship, the relationship between the controller-side framing/de-framing clock
signals and the memory-side framing/de-framing clock signals established at initial calibration
are maintained upon clock-restart. That is, when meaningful (i.e., not no-op) commands (CAs)
and data are eventually sent over the command and data paths, the commands and data will be
properly framed by the receiving device, enabling system operation to continue without need to
re-align counter-part framing/de-framing clocks. Further, because of the open-loop clock
distribution architecture within the memory device, the phasing of the memory-side transmit and
receive clocks remains substantially unchanged through clock-stop, so that the phase-

adjustments in place within the controller-side serializer/deserializer circuitry prior to clock-stop
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remain valid after clock re-start, thereby enabling immediate and reliable data and command
transmission upon clock re-start.

[00129] Continuing with Figure 12A, after clock stop, the core clock continues to run
(i.e., oscillate, toggle) so that the controller core may continue to receive and queue host-
requested memory transactions and the power-mode logic may continue to monitor the
transaction queue to determine whether and when a new transaction request is pending. Upon
detecting that a new transaction request is queued, the power mode logic transitions to a clock-
start-pending state and raises (asserts) the clock-enable signals ENPCK4 and ENPCKS at the
succeeding rising PCK1 edge. The clock-stop logic for PCK4 and PCKS8 respond to assertion of
the core-domain clock-enable signals by raising re-timed clock-enable signals ENPCK4r and
ENPCKS&r after respective re-timing delays (or enable-latencies), teqpr and teggr. In the
particular example shown, the deassertion- and re-assertion re-timing delays match (i.e., tcapr =
tearr and tespr, = tespr). This will be the case, so long as the deassertion time of the ENPCK4
and ENPCKS signals is an integer number of PCK1 clock cycles, as in this example. In the
event that the ENPCK4 or ENPCKS deassertion time is not a whole number of PCK1 cycles, the
clock-stop logic will re-time the corresponding clock-enable signal to enforce the integer PCK1
clock-stop interval, though the clock-stop re-timing delay and clock-start timing delay will not
match.

[00130] After the re-timing delay transpires, the PCK4 and PCKS clock-stop circuits raise
the re-timed clock-enable signals, ENPCK4r and ENPCKSr, respectively, thus enabling the
system clock (SCK, PCK4) and controller core clock to begin toggling. As discussed, the
controller core pads the re-start interval with some number of no-op commands to ensure that
the system clock pulses have reached the controller I/O circuitry before transmitting a memory
command corresponding to the newly queued memory transaction request. Thus, the new
transaction request (shown as “OP1”) is not transferred to the command lanes until some
number of core clock cycles after being queued (in this example, after a two-cycle delay), so that
no-op commands are transmitted upon clock-restart. The power-mode logic begins a re-start
countdown upon detecting the newly queued transaction request, OP1, enabling OP1 to be
dequeued one PCK1 cycle before the countdown ends (thus providing time for padding no-ops),
thereby loading OP1 into the command lanes in time for transfer to the serializers at the
conclusion of the restart-countdown. Thereafter (after interval ten.cacop)), the OP1 command is
serialized and transmitted via CA[0] and CA[1] links, maintaining the calibrated alignment
between the de-framing clock edges and core-clock edges (and thus the link-to-link bit

variability) after clock re-start.
-50-



WO 2010/080174 PCT/US2009/050023

[00131] Figures 12B and 12C illustrate clock-stop mode entry and exit from the
perspective of the memory device. Referring first to Figure 12B which illustrates a memory
write operation following clock re-start, a final operation is received and transacted at time 720,
followed by a countdown to a clock stop at time 722. Note that the countdown interval shown is
enforced by the power-mode logic within the controller as described above and is overlaid on
the memory-side timing diagram of Figure 12B simply to show that the clock-stop event is
pending after arrival of the final command, OP0. As shown, a sequence of no-op commands
follows OPO0, thus enabling the memory-side data serialization/deserialization circuitry and core
logic to complete the operation specified by OPO before clock stop occurs. After the countdown
interval transpires, the clock stops as shown, effecting a clock-stop low power operation of the
memory device. Note that while the clock-stop is shown as coinciding with the framing
boundary over the CA links, this is not required under the system operation. Instead, any
number of system clock pulses may be en route to the memory device (depending on the depth
of the wave pipeline over the clock link, and the on-memory clock latency of the open-loop
clock distribution architecture) and thus yield clock stop at an implementation-specific (and/or
device location-specific, if multiple memory devices are present and disposed at disparate
locations from the memory controller) time between framing boundaries. As discussed above,
this consequence is accounted for in one embodiment through the transmission of no-ops to
ensure that no data packets or meaningful command packets are progressing through the
memory-side deserializer/serializer circuitry (i.e., not fractured) when the clock stops. When the
clock re-starts (at system clock cycle 52 in this example), one or more no-op commands are
received, padding the startup sequence so that clock edges are arriving within the memory-side
I/O circuitry before memory access commands and/or data arrive. In the example shown, at
least one full no-op command is received prior to receipt of a write command (WR) and
accompanying bank address (Ba, to select one of multiple memory banks within the memory
core) and column address (Ca, to select one of multiple columns within a page of data resident
within the sense amplifiers of the selected bank). A time, twrp (Write-command-to-data) after
registration of the write command, write data packets and corresponding data mask packets are
received over an interval, tgr, (burst-length or burst time). Overall, a total of 32 bytes and 32
corresponding mask bits are received and transferred to the memory core to be written within the
bank (and starting at the column offset) specified in connection with the write command.
[00132] Figure 12C illustrates essentially the same clock-stop-mode entry/exit as Figure
12B, but in the context of a memory read operation. In this case, a time tcr, (column-address-

strobe (CAS) latency) elapses between registration of a memory read (i.e., command to read data
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from the memory core from bank addresses Ba and column address Ca) and output of 32 bytes
of read data (four serialized packets transmitted on each data link over interval, tBL).

[00133] Figure 13 illustrates clock-stop entry and exit according to an alternative
embodiment that permits the clock-stop interval to extend over a fractional or non-integral
number of core clock cycles. As discussed, constraining the clock-stop interval to an integer
number of core clock cycles ensures that, when the memory-side core clock is restarted after
clock-stop, the phase relationship between the memory-side core-clock (MCK1) and controller
core clock (PCK1) is maintained. Recalling that MCK1 may, at least in the embodiment of
Figure 2A, have one of four phase relationships to PCK1, according to the four possible states of
the divide-by-four circuit used to generate MCK1 from MCKA4, it follows that, if the integral-
core-clock constraint is released, the memory core clock may have one of four possible phase
relationships with respect to the controller core clock on clock re-start. From the standpoint of
the memory-side serializer/deserializer circuitry, this means that, absent knowledge of the clock-
stop interval, any one of four packet-framing/de-framing clocks may apply, each being aligned
with one of four different n*2 bit-time offsets relative to MCKI1 (i.e., offset by 0, 2, 4 or 6 bit
times relative to MCK1). Accordingly, in one embodiment, the memory device includes a 4:1
multiplexer to allow selection of one-of-four packet-framing/de-framing clocks upon clock re-
start. Further, instead of transmitting zero-valued no-operation commands upon clock-restart,
the memory controller transmits a combined no-op, clock-alignment command, shown in Figure
13 as a “NCK” command. As an example, each NCK command may include a single pair of
‘I’s in a predetermined bit position within the NCK packet (e.g., “11 00 00 00”). By framing
the incoming command stream with each of the four possible framing/de-framing clocks upon
clock-start, and comparing the four differently framed packets with the expected NCK packet
value, the framing clock that yielded the expected NCK may be selected as the memory-side
framing/de-framing clock going forward.

Adjusting the chip-to-chip core-clock phase offset

[00134] As discussed in reference to Figure 11A, absent circuitry to force a
predetermined power-on/reset state, the exemplary modulo-4 counter (225, 616) provided to
generate the memory-side core clock, MCK1 (i.e., by dividing the memory-side I/O clock
(MCK4) by four), may power up in any one of four possible states (00, 01, 10, 11) and thus
arbitrarily establish one of four possible phase relationships between MCK1 and the controller-
side core clock (PCK1). Because each MCK4 cycle spans two-bit times, the four possible phase
MCKI1-to-PCK1 phase relationships are spaced in equal 2-bit-time phase offsets from one

another (not counting any phase offset due to propagation over the system clock link or clock
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buffer delays). In one embodiment, the MCK1-to-PCK 1 phase relationship is set at power-up
(or reset) and thereafter accounted for without modification through the calibration of the bit-
alignment and packet-alignment circuitry within the drift-compensating serializer/deserializer
circuits of the memory controller. Because this may result in increased latency in some
circumstances, a latency advantage may be achieved in an alternative embodiment in which the
MCK4 divider 225 is adjusted during initial calibration to a state in which the most latent data
link is advanced in phase relative to the controller-side core clock domain (imagine advancing
the timing of FCK1[0] in Figure 3D by two bit times) and thus reduce the worst-case link timing
and by extension the minimum read latency.

[00135] Figure 14A illustrates an embodiment of clock divider that includes, together
with the modulo-4 counter 614 described in reference to Figure 11A (i.e., formed by increment
logic 616 and 2-bit register 621), a modulo-4 adder 751 that adds a 2-bit core-clock adjustment
value (CoreCkAdj[1:0]) to the count output to produce the clock-divider output. By this
arrangement, the clock-divider output may be shifted from any arbitrary initial value
(determined at power-up/reset of the modulo-4 counter 614), to any of the four possible output
states (00, 01, 10, 11), thereby enabling the phase of MCK1 (i.e., the MSB of the divider output)
to be adjusted relative to PCK1 by 2-bit-time increments (or quadrature steps of PCK1). Figure
14B illustrates this result, showing the four exemplary phases of MCK1 relative to PCK1 for
cach of four settings of the core-clock adjust value (shown as a subscript to MCK1). For ease of
understanding, it is assumed that the modulo-4 counter 614 initially powers up in state ‘00b’ so
that, at an initial rising edge of MCK4 (occurring after some period of delay relative to an initial
rising edge of PCK4 as shown at 655), the divider output transitions from ‘00’ to ‘01°, or from
‘01’ to 10’ or from ‘10’ to ‘11’ or from ‘11’ to ‘00°, depending on the state of the core-clock
adjust value of generates a phase-adjustable MCK1. As shown, the net effect of each increment
in the core-clock adjust value is to advance MCKI1 relative to PCK1 by two bit-times.

[00136] Figure 14C illustrates an exemplary alignment of controller-side packet-framing
boundaries relative to PCK1 edges for each of four settings of the core-clock adjustment value,
CoreCkAdj[1:0]. In the example shown, it is assumed that read data is returned with the least
latency on link DQ[7] and with the most latency on link DQ[0], and further that packets arriving
via DQJ[0] are framed just after a PCK1 sampling edge, while packets arriving via DQ[7] are
framed just prior to the PCK 1 sampling edge. In an embodiment that employs the packet
alignment technique described above in reference to Figures 3C-3E, the system read-latency is
set to the worst-case minimum, and thus to the N+1 latency (N+1 PCK1 cycles) of link DQ[0] as

shown for the MCK 1y case (i.c., CoreCkAdj[1:0] = ‘00’). By advancing the phase of the
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memory-side core clock by two bit-times, however (i.e., as shown at MCKy,), all incoming
packets arrive two bit-times earlier relative to the PCK1 sampling edge, and thus may be
sampled in response to the N™ sampling edge of PCK1 instead of edge N+1, thereby reducing
the system read-latency by one PCK1 clock cycle (i.e., effecting a system read latency of N
PCK1 cycles). A similar result is achieved when MCK1 is advanced by another 2-bit-time
interval (MCK ), providing even more controller-side margin (and thus potentially more drift
tolerance). When MCK1 is further advanced by another 2-bit-time interval, however (shown at
MCK), a PCK1 serializing boundary is missed (i.c., data from the core is not ready for
serialization at such an advanced time), thus resulting in data serialization with respect to a one-
cycle delayed MCKI1 edge and therefore even more latent arrival at the memory controller than
in the MCK 1y, case.

[00137] As Figure 14C demonstrates, a reduced system latency may be achieved with
some, but not all core-clock adjustment settings. Accordingly, in one embodiment, each core-
clock adjustment setting is tested in turn, for example, by executing the bit-alignment and
packet-alignment operations described above, to determine the minimum system latency
achievable with each setting. In the event that more than one setting yields the same minimum
system latency the median setting or other statistical center of those yielding the same minimum
latency may be selected to provide maximum drift tolerance in either direction. In the example
of Figure 14C, because there are two core-clock adjustment settings that yield the same
minimum, additional information may be gathered to determine which of the two settings
provides the greatest drift tolerance (selecting that setting to be the calibration result) or a
predetermined selection may be made (e.g., always select the highest-valued core-clock
adjustment, or the last tested adjustment to yield the minimum latency).

[00138] Referring again to Figure 14A, in one embodiment, the core-clock adjustment
setting (CoreCkAdj[1:0]) is communicated to the memory device via a side-band link, thereby
enabling the setting to be revised at the conclusion of controller-side deserializer calibration and
prior to controller-side serializer calibration. Alternatively, complete calibration may be
performed (deserializer and serializer) followed by core-clock adjustment, iterating as necessary.
[00139] Considering that the memory-side core-clock adjustment shifts the phases of the
memory-side core clock and controller-side core clock relative to one another, it follows that the
same relative phase shift may alternatively be achieved by shifting the phase of the controller-
side core clock rather than the memory-side core clock. In one embodiment, for example,
divide-by-8 circuit 163 of Figure 2A is modified to enable the phase of PCK1 to be advanced to

any of eight divider states and thus to enable PCK1 to be shifted relative to MCK1. In another
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embodiment, divide-by-2 circuit 165 of Figure 2A is modified to enable the phase of PCK4 to
be advanced by half cycle (in effect, inverted). Further, instead of clock phase shifting, an
adjustment mechanism that suppresses some number of (1, 2 or 3) of PCK4 pulses within the
controller-side PCK4 clock stop logic to set the initial phase relationship between MCK1 and
PCK1 to achieve the aforementioned latency advantage. In yet another embodiment, a phase-
shifting circuit (e.g., an interpolator) may be provided at the output of the PLL to enable the
forwarded clock to be phase-stepped with resolution as desired (and practicable) to establish a
reduced system latency with fully calibrated drift tolerance (e.g., stepping or searching through
phase settings to find the boundaries of the minimum latency window and establishing a final
phase centered between the boundaries).

Glitchless Phase Jumping

[00140] In one embodiment, the above-described clock-stop logic is employed at the start
and end of a periodic timing calibration operation to suppress (or mask) glitches that may
otherwise occur in the controller-side receive and transmit clocks during phase jumping. That
18, as shown in Figure 15A, when the phase of the data sampling clock for a given link,
RCK&1], abruptly transitions (i.e., phase-jumps in response to CalClkSel assertion) from the
eye-centered phase used to receive live data (RCKS[1] vg) to the boundary phase used to detect
timing drift (RCKS[i]prc), a runt clock pulse 775 short enough to glitch the deserializer framing
logic may appear on the clock line, as shown by the net clock waveform, RCK8[i]xgr. More
specifically, the runt pulse 775 may be so short in duration as to render indeterminate action
within the packet-framing circuitry (i.e., possibly counted by the counter circuitry used to
generate the framing clock, possibly not) and thus yield packet framing errors upon returning to
live data transfer (i.e., exiting periodic timing calibration). In general, such clock glitches and
resulting logic glitches may be avoided by suppressing the controller-side clock during PTC
phase jumping operations.

[00141] Figure 15B is a timing diagram illustrating a pre-PTC clock-stop operation and
the resulting non-glitching clock waveform that results (RCKS8[i]xgr). In general, a single-core-
clock-cycle clock-stop interval is inserted in each transition between live operation (i.e., run-
time read and write data transfer) and PTC operation. The clock-stop interval enables the
transition between live-mode and PTC-mode clock phase selections to be effected while the
receive clock is disabled, suppressing any potential runt pulses along with all other receive clock
pulses during the clock-stop interval and thus rendering the phase jump transparent to the
deserializer framing logic. Upon clock re-start, receive clock pulses are counted without error

by the framing logic, despite the new (PTC) clock phase. This operation is shown in Figure 15B
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by the ordinally numbered pulses, with pulses 0, 1 and 2 being counted in response to the live-
mode receive clock phase (RCKS[i]uve) and pulses 3, 4, 5, 6, 7, etc. being counted in response
to the PTC-mode receive clock phase (RCKS[i]prc). The suppressed pulses in the live-mode
clock and PTC-mode clock are shown in gray shading 778. Note that the PTC mode clock is
shown as toggling concurrently with the live-mode clock to demonstrate the offset between the
two clock phases. In actuality, only the net clock result RCK8[i]xgT appears on the RCK&[1]
clock line. The net suppressed pulses, including suppressed runt pulse 780, are also shown in
gray at 781. Finally, in order to avoid runt pulses in the return phase jump from PTC-mode to
live-mode, another single-PCK1-cycle clock stop operation is carried out as shown at 782.
[00142] Figures 16A-16F relate to an alternative manner of performing periodic-timing
calibration that enables glitchless phase jumping without clock-stoppage. In general, the
alternative approach involves an altogether different clock-drift detection that obviates arbitrary
phase jumping in favor of one or more half-bit-time (or half-unit-interval(Ul)) phase jumps in
any transition into or out of PTC-mode. As discussed below, by limiting each half-UI phase
jump to a transition to a new clock phase that leads the former clock phase by a half-UlI, all
clock pulses are ensured to be at least a half-UI in duration and thus no shorter than the pulse
width of an RCKS§][i] clock pulse. Finally, in one embodiment, the exit from PTC mode involves
a sequence of three half-UI phase jumps carried out in successive core-clock cycles, and thus
effecting a total controller-side phase advance of two unit intervals (4*0.5UI = 2UI) in the
transitions into and out of PTC mode. Accordingly, to maintain the packet-framing
synchronization with respect to memory-side framing and de-framing logic, the memory
controller delays the framing clock by two unit intervals (two-bit times) upon exit from PTC
mode.

[00143] Figure 16A illustrates a periodic timing calibration based on samples of a
signaling waveform captured at the transitions between data eyes rather than during the eye-
opening itself. In general, an incoming sequence of data values may be sampled in response to a
receive clock signal (RCK) at data-eye midpoints to yield a sequence of data samples (s, Si:1,
Si+2, Si+3, ...) that correspond to the conveyed data values (d;, di 1, di+2, dir3, ...). Further, by
oversampling the signaling waveform, additionally capturing samples at the transitions (edges)
between data eyes or “edge samples” (e, €i+1, €ir2, €it3, ...), phase information may be obtained
whenever the edge sample fails to match either the preceding or succeeding data sample. More
specifically, because a unit interval is, by definition, the time between successive edges in a
signaling waveform, if the waveform is sampled twice per unit interval, once in response to a

sampling clock signal to generate a data sample and again response to a half-Ul-shifted version
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of the sampling clock (or edge clock) to generate an edge sample, disagreement between an edge
sample and its preceding or succeeding data sample is, in effect, an indication that a transition
occurred in the signaling waveform (from ‘1’ to ‘0’ or vice-versa) and that the edge sample was
captured too late or too early, respectively, relative to the ideal edge sampling point. This result
is shown in Figure 16A by two early/late inequalities: if ¢; not equal to s;, the sample was
captured after the transition from s; to s;+; and therefore late; if ¢; is not equal to s;+1, the sample
was captured prior to the transition from s; to si; and therefore early. Accordingly, phase error
information may be generated by determining whether the majority of early/late indications
obtained over a given time interval (or over a predetermined number of edge samples) indicate
that the edge clock (and therefore the sampling clock) is early or late relative to the ideal
sampling point (where early/late indications are in balance) and adjusting the phase of the edge
and sampling clocks accordingly.

[00144] In one embodiment, the above-described early/late determination is effected
during a periodic-timing-calibration (PTC) operation without oversampling and instead by
transmitting a known data pattern and generating corresponding edge samples using a half-Ul-
shifted receive clock (i.e., an edge clock). Figure 16B illustrates an embodiment of a phase-
error detector 801 that compares a set of edge samples (e, €1, ..., €,.1) with known data samples
(do, di, ..., dn1, dn) in exclusive NOR (XNOR) gates 803 and supplying the resulting sample-
carly/sample-late (SE/sL) to voting logic 804. In one embodiment, the voting logic is a
combinatorial logic circuit that generates a phase increment/decrement signal (“Inc/Dec”)
according to whether the early indications or late indicates predominate (constitute the majority
vote) and outputs the increment/decrement signal to update the alignment count of the receive
clock signal.

[00145] Figure 16C illustrates an exemplary sequence of operations carried out to effect a
phase update during periodic timing calibration of a controller-side drift-compensating
deserializer. Starting at 821, the receive clock is phase-advanced by a half UT (0.5UI).
Thereafter, memory-side transmission of a predetermined (or predictable) test data pattern is
initiated. In one implementation, for example, a side-link command is issued to the memory
device to initiate test pattern transmission. Alternatively, the memory device may be placed in
the above-described loopback mode, and the test pattern transmitted from the memory controller
to memory device, then re-transmitted from memory device to memory controller in a loopback
operation. In either case, at 823, the memory controller samples the incoming test pattern with a
half-UI shifted receive clock to generate a sequence of edge samples at 825. The edge samples

are evaluated at decision block 827 to determine whether clock-early indications (¢; <> d;) or
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clock-late indications (e; <> d;+1) predominate. If clock-early indications constitute the majority,
the receive clock is deemed late relative to the desired sampling point, and the corresponding
alignment count is decremented at 828to advance the clock phase. Conversely, if clock-late
indications constitute the majority, the receive clock is deemed early relative to the desired
sampling point, and the corresponding alignment count is incremented at 829 to retard the clock
phase. Thereafter, the receive clock is advanced by 1.5 Ul at 831 to restore the pre-calibration
phase. In one embodiment, this phase advance is effected by a sequence of three 0.5UI phase
advance operations to restore the pre-calibration phase as discussed below in reference to
Figures 16D and 16E. Finally, at 833, two bit-time delay is introduced in the framing clock
generator to compensate for the additional pulses that result from the net 2UI phase advance of
the receive clock. This operation is described in further detail in reference to Figure 16F.
[00146] Figure 16D illustrates an embodiment of a clock-phase-shifting circuit that
provides a glitchless 0.5UI phase advance in response to a phase-advance signal (“Adv0.5UI).
As shown, the circuit includes a ring-coupled pair of differential edge-triggered flip-flops 841,
843 that are clocked by rising and falling (positive and negative) edges of the bit-rate receive
clock (RCKS]Ji]), respectively. The inverting and non-inverting outputs of the positive-edge-
triggered flip-flop 841 are coupled to corresponding inverting and non-inverting inputs of the
negative-edge-triggered flip-flop 843, while the inverting and non-inverting outputs of the
negative-edge-triggered flip-flop 843 are cross-coupled to the non-inverting and inverting inputs
of the positive-edge-triggered flip-flop 841. By this arrangement, the positive (non-inverted)
and negative (inverted) outputs of the positive-edge-triggered flip-flop 841 transition in response
to each rising edge of the bit-rate clock (RCK&Ji]), cycling once every two bit-times, while the
positive and negative outputs of the negative-edge-triggered flip-flop 843 transition in response
to each falling edge of the bit-rate clock, cycling once every two bit-times, but in quadrature
relation (half-Ul-offset) relative to the outputs of the positive-edge-triggered flip-flop 841.
Thus, as shown in Figure 16E, four half-bit-rate clock signals are generated, iCK P and iCK N
(positive and negative “in-phase” clocks) and qCK_P and qCK N (positive and negative
“quadrature” clocks), phase-distributed by half-UI phase-offsets within a 2UI interval (i.c., one
cycle of a half-bit-rate clock cycle). As shown in Figure 16D, the four clock signals are supplied
to input ports of a multiplexer 847 and selected for output in response to the output of a 2-bit
(modulo-4) counter 845. In one embodiment, the counter 845 is implemented as a gray-code
counter (e.g., count sequence = 00,01,11,10,00, ...) to avoid output glitching and is advanced in
response to the phase-advance signal (Adv0.5UI) to select the different clock signals in

sequence to effect phase-jumps from one half-bit-rate clock to the next. By this operation, and
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by limiting each phase jump to a jump from one half-bit-rate clock to a half-Ul-advanced
instance of the half-bit-rate clock (i.e., from iCK_P to qCK N, from qCK N to iCK N, from
1CK N to qCK_P and, finally, from qCK_P back to iCK_P, as shown by arrows 850), the worst-
case (shortest-duration) runt pulse is ensured to be at least 0.5UI in duration as shown at 851 and
853, no matter when the advance signal is incremented. Accordingly, by ensuring that all logic
circuits are capable of deterministic response to 0.5UI-spaced clock edges (i.c., capable of being
clocked by a data-rate frequency clock), determinant, glitchless circuit operation is ensured.
[00147] Still referring to Figure 16D, it can be seen that a return 0.5UI phase jump from a
given half-bit-rate clock to a half-Ul-delayed clock (i.e., as generally desired to restore live
operation after periodic timing calibration is complete) does not yield the same glitchless clock
result. That is, runt pulses of indeterminate duration may be produced depending on when the
phase jump is initiated. In one embodiment, such runt pulses are avoided by effecting the return
to the original (pre-PTC) clock phase by a sequence of three additional half-UI phase jumps —
1.5UI in total -- executed in successive core-clock cycles. Finally, because the net effect of the
four 0.5UI phase advances (one to provide an edge clock during PTC, three to restore the data
sampling clock phase) is to advance the phase of the resultant clock by 2 unit intervals, the
counter circuitry used to generate the bit framing clock is delayed by two unit intervals to
maintain synchronization with respect to memory-side packet framing. This effect is shown
conceptually in Figure 16F which shows that the sequence of four half-UI phase jumps results in
two additional bit-timing edges within the controller-side clock (RCK4) relative to the
counterpart memory-side clock (MCK4). In one embodiment, a framing clock delay circuit is
provided within the deserializer of Figure 3A, to subtract two from the modulo-8 counter used to
generate the framing clock signals, RCK1 and FCK1 upon exit from PTC mode, thus restoring
the proper packet-framing boundary.

[00148] Returning to Figure 16D, it can be seen that one consequence of the phase-
jumping circuitry is to yield a half-bit-rate receive clock, RCK4[i]. In one embodiment, this
consequence is accommodated by revising the controller-side serializer/deserializer circuitry to
clock-in/clock-out data in response to both rising and falling edges of the half-bit-rate clock. In
one embodiment, for example, the half-bit-rate serializer/deserializer circuits of Figures 4A and
4B are implemented within the memory controller, applying the alignment-count-controlled
packet-framing clocks instead of MCKI1.

[00149] Although Figures 16A-16F have been described in reference to controller-side
receive clock timing, counterpart 0.5UI phase jump operations (and transmit-clock generating

circuitry) may be executed to effect periodic timing calibration of the transmit clock phase. For
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example, by phase-advancing the transmit clock phase by 0.5Ul, and then receiving the resulting
memory-side-captured edge samples (e.g., via loopback), the same increment/decrement
decision may be made, in this case advancing the transmit clock phase (i.e., advancing the data
phase and effectively retarding the memory-side sampling instant) if the edge samples indicate
an ecarly memory-side sampling instant and decrementing the transmit clock phase if the edge
samples indicate a late memory-side sampling instant. Similarly, upon exit from PTC, the phase
of the transmit clock may be advanced by 1.5UI in a sequence of 0.5UI phase jumps to restore
the pre-calibration transmit phase (now adjusted according to edge drift). Finally, the controller-
side de-framing clock may be delayed by a count of two to correct for the two additional timing
edges (relative to memory-side timing) that result from the four 0.5UI phase jumps.

System applications of memory system having low-power clock-stop mode

[00150] Memory systems having low-power clock-stop mode have been described thus
far in the context of a memory controller and single memory device. While such tightly-coupled
controller/memory systems may be used in a number of mobile applications, a single memory
controller integrated-circuit (controller IC) may alternatively control multiple memory devices
(memory ICs) disposed in a variety of architectures. Further, multiple memory controller
channels may be implemented in a single IC, each controlling a separate group of one or more
memory ICs and thus permitting a single clock circuit to generate clock signals for multiple
controller-side 1/0O circuits and open-loop memory-side clock distribution circuits.

[00151] Figure 17A illustrates an embodiment of a pause-able-clock memory system 750
having a single controller IC 751 and multiple memory ICs 755¢-755,.1. In the embodiment
shown, the memory devices (collectively, 755) are disposed on a memory module 753
(generally, a circuit board having an edge connector for removable connection to a backplane or
motherboard, and thus permitting memory capacity expansion as additional memory modules
are inserted) and individually include an I/O interface and open-loop clock distribution
arrangement as shown in Figure 2A. In that case, each of the signaling-link groups shown (752)
may include a point-to-point connection between the memory controller and a respective one of
the memory devices and may include dedicated clock, CA and data links (and data-mask, if
needed). Alternatively, some or all the signaling links may be distributed to all the memory
devices of the memory module (e.g., clock link coupled to all memory devices in multi-drop
fashion, and/or command link(s) coupled to all the memory devices in multi-drop fashion).
Additionally, each signaling link may be coupled to multiple memory devices (e.g., data links
being coupled to a slice of memory devices across a number of memory modules, as in data

links [0 to N-1] being coupled to a first memory IC on each of multiple memory modules 753,
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data links [N+1 to 2N] being couple to a second memory IC on each of the memory modules,
etc.) thus establishing multi-drop data and/or command paths. In the latter event, additional
timing compensation values may apply depending on the memory module (or group of memory
devices selected from two or more such groups on the same module) selected for a given
memory access transaction. In that case, packet, bit and phase adjust values may be switched
dynamically, depending on the group of memory devices targeted for a given memory access
transaction, with separate set of alignment registers maintained for each group.

[00152] Figure 17B illustrates another memory system embodiment, in this case having a
module-mounted buffer IC 775 that implements an interface 777 corresponding to the memory-
side /0 interface shown in Figure 2A. By this arrangement, a high-speed signaling system
having clock-stopped low-power mode may be implemented between the memory controller 771
and buffer IC 775, with more conventional interfaces 729 implemented between the buffer IC
and memory devices 781¢-78 1.1, 7820-782x.1 disposed alongside the buffer IC 775 on the
memory module 773. In one embodiment, for example, command/address values include not
only bank, row and column addresses, but also addresses of individual memory devices 781, 782
(or groups of memory devices) to which the buffer IC 775 is to forward the command. The
buffer IC may additionally include a data input/output buffer to queue incoming write data for
eventual distribution to an address-selected memory device (or memory device group), and read
data to be forwarded to the memory controller. As an example, in one embodiment, the buffer
IC-to-memory device interfaces are relatively slow signaling interfaces that do not require on-
memory PLL/DLL to maintain link integrity, or may be implemented using standard strobe-
based signaling.

Tiered Power Modes

[00153] In one embodiment, the mesochronous low-power signaling system described
above supports two other power modes in addition to the active operating mode (active mode)
and clock-stopped low-power mode described above: a powerdown mode in which biasing
current sources within signal transmitter and receiver circuits are shut down, and a deep
powerdown mode in which the controller-side PLL (element 161 of Figure 2A) may be disabled
along with logic circuitry within the controller core. Transition between all the power modes
may be managed by the power-mode logic described above in response to command traffic from
the controller core. The power modes (also referred to herein as power states) may be used to

trade increasing exit latency for decreasing power consumption. The following table (Table 1)
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summarizes memory-controller power state performance in one implementation, showing the

active-mode (P4) as well as the three low-power modes:

Power Mode Exit Latency Controller Interface power vs. peak interface DQ
(PCK1 Cycles) bandwidth
2.7GB/s 3.2GB/s 4.3GB/s
b4 - 80.8 91.6 114.7
(active)
P3
(clock-stop: idle) 0 15.0 15.7 17.4
P2
(powerdown) 10 4.6 52 6.5
P1
(deep powerdown) 130 0.4 0.4 0.4
Table 1
[00154] As shown, in the P4 (active) mode, 4.3GB/s (giga-bytes per second) DQ

bandwidth is provided at 114.7mW (3.3mW/Gb/s). In the P3 mode, the clock distribution is
paused as described above and the DQ output drivers, input amplifiers, and data samplers may
additionally be disabled. In P2 mode, all transceivers are disabled (including the clock
transmitter and receiver circuitry) and only the clock multiplier is active. In P1 mode, only
leakage power is consumed. The entry latency of each power state may be made programmable
(with a minimum of zero parallel (PCK1) clock cycles), providing enhanced flow control of the
state transitions. The fast power-state transition times allow efficient use of burst transfers when
peak bandwidth is not required. Details of the memory access policy and traffic profile may
determine power state utilization and ultimate efficiency. As discussed above, when the
controller-to-memory signaling interface is idle, power is saved by synchronously pausing the
clock distribution at its root, cleanly halting the downstream circuitry in both the memory
controller and memory device and enabling the fast power-state transition times shown in the
table above.

[00155] Transition between the different power modes may be managed by the power
mode logic 111 of Figure 1A based on, for example, the status of the transaction queue 109
(empty or loaded) and/or explicit power-related control signals from a host processor or host
controller. In one embodiment, shown for example in Figure 18A, the power mode logic 111
includes a state machine that transitions to progressively lower power modes — active (P4) to
clock-stopped (P3) to powerdown (P2) to deep powerdown (P1) — as the time without memory
access request increases. Thus, when the transaction queue is first emptied and the last-
dequeued transaction is completed (i.c., all /O operations relating to the transaction are

completed), the power mode logic transitions from the active state to the idle state, deasserting
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clock-enable signal(s) to pause the system clock signal and controller I/O clock signals.
Thereafter, if the transaction queue continues to remain empty for a predetermined or
programmed number of memory access cycles, the power mode logic may transition from the
idle state to the powerdown state, issuing signals to disable transmitters and receivers within the
memory device and memory controller. If the transaction queue remains empty for an extended
time interval (e.g., another programmable time interval) after entering powerdown mode P2, or
if an explicit host command to enter a further-reduced power mode is received, the power mode
logic may enter a deep powerdown state by disabling operation of the controller-side PLL along
with circuitry within the controller-side core (e.g., circuitry for interfacing with a host-side data
path). Note that in an embodiment in which the controller-core clock is generated by the PLL,
an alternate clock source may be switchably provided (e.g., via a multiplexer) to circuitry
required to respond to any memory access request or wake-up/power-up command from the host
processor or host controller. Also, instead of generating the controller core clock by frequency-
dividing the PCKS signal as shown in Figure 2A, the reference clock signal or a recovered
version thereof may be used as the controller-core clock, thus ensuring core-clock clock
availability even after PLL shut down.

[00156] Still referring to Figure 18A, when a memory access request or explicit wake-
up/power-up command is received from the host controller/host processor, the power mode logic
responds by transitioning the memory system from the deep power down state (P1) to power
down state P2 by turning on the controller-side PLL and other disabled controller-core circuitry.
Thereafter, the power mode logic transitions the system from power down state P2 to clock-stop
state P3 by enabling the controller and memory side clock and command/address transmitters
and counter-part memory-side receivers. Finally, the power mode logic transitions the system
from clock-stop (idle) state P3 to active state P4 by enabling the system clock signal and
controller I/O clock signals to toggle.

[00157] Figure 18B illustrates a memory system architecture 790 that corresponds to the
embodiment of Figure 2A, but showing additional detail with respect to circuit shut-down in the
P4, P3 and P2 power modes. Referring first to the memory-side I/O circuitry 793, enable-read
and enable-write signals (EnR and EnW) are provided from the memory core to selectively
enable and disable signal receivers (234) for data and mask links 231, 241 and signal
transmitters 233 for the data links 231 according to the column operation being performed. That
18, during an active-mode (P4) memory read operation in which no write data or write-mask is to
be received, request decoding logic within the memory core logic lowers the enable-write signal

(EnW) to shut-off power-consuming circuitry within the write-data and write-mask receivers,
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thereby reducing power consumption. Similarly, during an active-mode memory write operation
in which no read data is to be transmitted, the memory core logic lowers the enable-read signal
(EnR) to shut off power-consuming circuitry within the read-data transmitters.
[00158] In one embodiment, I/O amplifier shut-down is effected by disabling one or more
bias current source(s) within a differential or single-ended receiver/transmitter provided to
receive/transmit data signals. Figure 18C illustrates an exemplary embodiment of a differential
amplifier 810 that may form part of such a receiver or transmitter. As shown, amplifier 810
includes a passive or active pull-up load 811, differentially coupled input transistors 813a/813b,
biasing current source 815 and shut-down transistor 817. When the enable-write or enable-read
signal (generically, “En”) is raised, the shut-down transistor 817 is switched to a conducting
state to enable flow of a DC bias current within the biasing current source 815 and thus enable
the output nodes of the differential amplifier (outP, outN) to be differentially raised and
lowered according to the differential signal applied at input nodes inP and inN of the amplifier.
When the enable signal is lowered, the shut-down transistor 817 is switched to a substantially
non-conducting state to disable flow of the DC bias current and thus renders the amplifier into a
reduced power state. In alternative embodiments, the shut-down maybe effected by including
the shutdown transistor or other switching element at other locations within the amplifier 810
including, for example and without limitation, within the biasing current source 815.
[00159] It should be noted that the signal receivers 234 and transmitters 233 shown in Figure
18B may do more than amplify incoming and outgoing signals and thus may include circuitry
in addition to (or as an alternative to) the exemplary amplifier of Figure 18C. For example, the
receiver and/or transmitter circuits (“receiver/transmitter’’) may additionally perform level-
shifting operations (e.g., shifting between small-swing signals conveyed on the signaling link
and logic-level signals provided to deserializing circuitry or received from serializing circuitry).
The receiver/transmitter may perform timed sampling/output operations, increase the current
drive with or without voltage amplification/attenuation; provide slew-rate control, supply
voltage regulation, etc. Any or all of these operations may use steady-state (“DC”) current
sources or other power-consuming circuits that may be quickly disabled and enabled (i.e.,
turned off and on) in response to enable signals.
[00160] Figure 18D is a timing diagram illustrating command-based assertion of the
enable-write and enable-read signals (EnW and EnR) in response to incoming memory write and
memory read requests, respectively. The memory-side I/O clock signal (MCK4),
command/address signals, data mask, and read/write data signals all have the general timing

relationships as described above in reference to Figures 12A-12C. In the specific command
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sequence shown, a column write command (WR) including a bank address (Ba) and column
address (Ca) are received within the memory device at time 821, with corresponding write data
to arrive a predetermined time, twrp, later. Request decoding logic responds to the write
command by raising the write-enable signal (EnW) after a write-enable interval (twr-enw)
elapses, thus enabling operation of the data-input receivers (i.e., write-data and data-mask
receivers) in advance of the incoming write data, providing a time tgxw.p for the receivers to
stabilize. After the write data has been received, if no subsequent write request has been
received and thus no immediately-succeeding (i.c., back-to-back) write data reception
scheduled, the request decoding logic may deassert the enable-write signal after time interval tp.
enw to return the data-input receivers to the reduced power state. Note that specific time
intervals are shown for purposes of example only; different twrp, Twr-enw, tenw-p and tp pnw
intervals may be implemented in alternative embodiments.

[00161] Still referring to Figure 18D, a column read command (RD) including a bank
address (Ba) and column address (Ca) are received within the memory device at time 823, with
corresponding read data to be output a predetermined time, tcr, later. The request decoding
logic responds to the read command by raising the read-enable signal (EnR) after a read-enable
interval (trp.pnr) elapses, thus enabling operation of the data-output transmitters (i.e, read-data
transmitters) prior to read-data transmission, providing a time tgnr-g for the transmitters to
stabilize. After the read data has been output, if no subsequent read operation has been received
and thus no immediately-succeeding (i.e., back-to-back) read data transmission scheduled, the
request decoding logic may deassert the enable-read signal after time interval tg gxg to return the
data-output transmitters to the reduced power state. Note that specific time intervals are shown
for purposes of example only; different tcr, trp-pnr, tenr- and tgexg, intervals may be
implemented in alternative embodiments.

[00162] Returning to Figure 18B, a powerdown signal or command (PD) is asserted by
the power-mode logic within the controller core upon determining that the transaction queue
continues to remain empty after transitioning to the clock-stopped low power mode, P3 (i.e., idle
mode). The powerdown signal is forwarded to the memory device via a power mode driver 795,
link (PM[1]), and receiver 797 where it is received within an enable logic circuit 799 which
lowers a command-enable signal, EnCK/CA in response. The command-enable signal is
supplied to input receivers 223a/223b and within the system clock interface 221 and
command/address interface 243, and thus, when lowered, disables the input receivers for the
corresponding clock and command/address links to establish the further-reduced power state,

referred to herein as the powerdown mode, P2.
-65-



WO 2010/080174 PCT/US2009/050023

[00163] Figure 18E is a timing diagram illustrating powerdown mode entry and exit, with
the exit being triggered by a memory write request. As shown, a final command memory access
request (OP) is received starting at time 833 and processed during the interval, tcaor)-ck, that
precedes entry into a clock-stopped low power mode (i.¢., at clock cycle 32). As discussed
above, the tCA(OP)-CK interval may be different for different commands and represents the
time needed to complete (i.e., supply clock edges for completion of) the last memory access
request dequeued from the transaction queue. A memory read operation may require more clock
edges to finish than a row precharge command, for example.

[00164] If the transaction queue continues to remain empty for a predetermined or
programmed time interval (tck.pm) after clock stop, the controller-side power-mode logic asserts
the powerdown signal (PD), which results in deassertion of the command-enable signal,
EnCk/CA a short time later (i.c., after delay tpaipy), thereby disabling the input receivers for the
system-clock and command/address links and establishing the powerdown mode.

[00165] It should be noted that powerdown mode (P2) may alternatively or additionally
entered in response to a command transmitted via the command/address path. Such an
arrangement would permit the powerdown control to be included (e.g., as an embedded bit or
bits) with one or commands indicating other operations while in P4 or P3 modes. After entry
into to the powerdown mode via a command received on the command path, the powerdown
signal may be used to trigger re-enabling of the command path and clock signal receivers and
thus effect transition back to clock-stop mode (P3).

[00166] When a new memory access request is queued within the controller-side
transaction queue, the power mode logic lowers the powerdown signal to enable a transition
from the powerdown mode to the clock-stopped mode (i.e., from P2 to P3). The memory-side
enable logic (799 of Figure 18B) responds to deassertion of the powerdown signal by raising the
command-enable signal a short time later (i.c., after interval tpypy) enabling the input receivers
for the clock and command/address links and thus readying the memory device for return to
active mode. Accordingly, a time interval (tgn.ck) after the command-enable signal is raised, the
system clock is re-started to transition the memory device from clock-stopped mode back to
active mode (P3 to P4). Shortly thereafter, the memory access request which triggered the
return to active mode is received within the memory device via the command path, followed by
corresponding data a predetermined time later. In the particular embodiment shown, the
memory access request is a column write request so that the enable-write signal is asserted to
enable the input amplifiers of the write-data receivers to receive write data at the time shown.

The memory access request may alternatively be a column read request as shown in Figure 18D
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(in which case the enable-read signal will be raised after a time trp.pnr to enable operation of the
read-data amplifiers), or a row access request.

[00167] Reflecting on the power-mode transitions and supporting circuitry described in
reference to Figures 18A-18E, it should be noted that additional refinement in power mode
control may be provided. For example, while the input receivers for the system clock and the
command/address links are shown as being enabled by a single control signal, separate enable
signals may be provided for those links in alternative embodiments, thus enabling one link to be
disabled/enabled before or after the other or to enable links independently of one another.
Further, the signal applied to enable the input receiver for the clock link (or one or more
additional enable signals) may additionally be supplied to clock buffers 229 and 227,
particularly if those buffers are implemented by circuits that draw non-negligible current (e.g.,
current mode logic). Additionally, while the power mode signal is depicted as being supplied
via a dedicated link, the powerdown signal may alternatively be transmitted via a shared link
(e.g., time-multiplexed onto the sideband link shown in Figure 2) to reduce pin count. Logic
circuitry may also be provided within the controller-side circuitry to synchronize the powerdown
signal with the controller-core clock signal or another controller-side timing signal. Further,
while not specifically shown in Figure 18B, additional enable signals may be provided to
selectively enable controller side transmitter and receiver circuits according to the operations
being carried out and the power mode. For example, signals corresponding to the enable-read
and enable-write signals (EnR, EnW) may be provided from the controller core logic to the data
receiver and data/mask transmitter circuits (e.g., elements 188, 187 of figure 18B) to disable the
data/mask transmitters (and enable the data receivers) during memory read operations and to
disable the data receivers (and enable the data/mask transmitters) during memory write
operations. Also, the powerdown signal may be used to selectively enable the command/addess
transmitters within command/address serializers 207and any clock transmitters 175 and on-chip
clock distribution circuits 173, thus enabling a powerdown mode (P2) within the memory
controller and providing a power savings over and above the clock-stop operation itself. The
timing of the controller-side enable-read/enable-write and powerdown signals corresponds
generally to the timing shown for counter-part memory-side signals in Figures 18D and 18E.
[00168] In addition to the foregoing options and alternatives, the tcg pym time interval that
is to transpire before transitioning from clock-stop mode to powerdown mode may be
programmably selected (e.g., programmed into a register within the controller-side power mode

logic) according to system operating policy or application demands. More generally, all the
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timing intervals shown in Figures 18D and 18E are provided for purposes of example only, are
not necessarily to scale, and may vary as necessary to meet operational requirements.
Electronic Representation of Physical Embodiments

[00169] It should be noted that the various integrated circuits, dice and packages disclosed
herein may be described using computer aided design tools and expressed (or represented), as
data and/or instructions embodied in various computer-readable media, in terms of their
behavioral, register transfer, logic component, transistor layout geometries, and/or other
characteristics.

[00170] When received within a computer system via one or more computer-readable
media, such data and/or instruction-based expressions of the above described circuits may be
processed by a processing entity (e.g., one or more processors) within the computer system in
conjunction with execution of one or more other computer programs including, without
limitation, net-list generation programs, place and route programs and the like, to generate a
representation or image of a physical manifestation of such circuits. Such representation or
image may thereafter be used in device fabrication, for example, by enabling generation of one
or more masks that are used to form various components of the circuits in a device fabrication
process.

[00171] In the foregoing description and in the accompanying drawings, specific
terminology and drawing symbols have been set forth to provide a thorough understanding of
the present invention. In some instances, the terminology and symbols may imply specific
details that are not required to practice the invention. For example, any of the specific numbers
of bits, signal path widths, signaling or operating frequencies, component circuits or devices and
the like may be different from those described above in alternative embodiments. In other
instances, well-known circuits and devices are shown in block diagram form to avoid obscuring
the present invention unnecessarily. Additionally, the interconnection between circuit elements
or blocks may be shown as buses or as single signal lines. Each of the buses may alternatively be
a single signal line, and each of the single signal lines may alternatively be buses. Signals and
signaling paths shown or described as being single-ended may also be differential, and vice-
versa. A signal driving circuit is said to “output” a signal to a signal receiving circuit when the
signal driving circuit asserts (or deasserts, if explicitly stated or indicated by context) the signal
on a signal line coupled between the signal driving and signal receiving circuits. The expression
“timing signal” is used herein to refer to a signal that controls the timing of one or more actions
within an integrated circuit device and includes clock signals, strobe signals and the like.

“Clock signal” is used herein to refer to a periodic timing signal used to coordinate actions
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between circuits on one or more integrated circuit devices and includes both free-running and
gated (i.e., pauseable or stop-able) oscillatory signals. “Strobe signal” is used herein to refer to a
timing signal that transitions to mark the presence of data at the input to a device or circuit being
strobed and thus that may exhibit periodicity during a burst data transmission, but otherwise
(except for transition away from a parked condition or other limited pre-amble or post-ample
transition) remains in a steady-state in the absence of data transmission. The term “coupled” is
used herein to express a direct connection as well as a connection through one or more
intervening circuits or structures. Integrated circuit device “programming’ may include, for
example and without limitation, loading a control value into a register or other storage circuit
within the device in response to a host instruction and thus controlling an operational aspect of
the device, establishing a device configuration or controlling an operational aspect of the device
through a one-time programming operation (e.g., blowing fuses within a configuration circuit
during device production), and/or connecting one or more selected pins or other contact
structures of the device to reference voltage lines (also referred to as strapping) to establish a
particular device configuration or operation aspect of the device. The terms “exemplary” and
"embodiment" are used to express an example, not a preference or requirement.

[00172] While the invention has been described with reference to specific embodiments
thereof, it will be evident that various modifications and changes may be made thereto without
departing from the broader spirit and scope. For example, features or aspects of any of the
embodiments may be applied, at least where practicable, in combination with any other of the
embodiments or in place of counterpart features or aspects thereof. Accordingly, the

specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
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CLAIMS

What is claimed is:

1.  An integrated-circuit memory device comprising:

a clock input to receive a first clock signal from an external source;

a signaling circuit to output a data signal from the integrated-circuit memory device in
response to transitions of the first clock signal, wherein the first clock signal
comprises a respective transition for each bit of data conveyed in the data signal;

a clock generating circuit to generate, in response to transitions of the first clock signal, a
second clock signal that cycles once for every N cycles of the first clock signal, N
being an integer greater than one, the clock generating circuit including phase-adjust
circuitry to enable the phase of the second clock signal to be adjusted relative to the

phase of the first clock signal.

2. The integrated-circuit memory device of claim 1 wherein each bit of data conveyed in the
data signal is valid at an output of the integrated-circuit memory device for a respective bit
time, and wherein a phase offset between the data signal and the first timing signal is

permitted to drift by at least the bit time.

3. The integrated-circuit memory device of claim 1 further comprising:
a storage array; and
logic circuitry to access the storage array, the logic circuitry being clocked by the second

clock signal.

4.  The integrated-circuit memory device of claim 1 wherein the phase-adjust circuitry
comprises circuitry to shift the phase of the second clock signal by a selected number of

cycles of the first clock signal.

5. The integrated-circuit memory device of claim 4 wherein the phase-adjust circuitry
comprises a programmable register to store a phase-adjust value that specifies the selected

number of cycles of the first clock signal.

6.  The integrated-circuit memory device of claim 5 wherein the clock generating circuit
comprises a modulo counter to generate a count of transitions of the first clock signal and
wherein the phase-adjust circuitry comprises an adder circuit to add the phase adjust value

to the count.
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The integrated-circuit memory device of claim 6 wherein the most significant bit of the
count value, after the phase adjust value has been added thereto, is output as the second

clock signal.

The integrated-circuit memory device of claim 5 further comprising an interface to an

external signaling path to receive the phase-adjust value.

A memory controller comprising:

a clock generator to generate a first timing signal having frequency that is a multiple of the
frequency of a second timing signal;

phase-adjust circuitry to adjust the phase of the first timing signal relative to the second
timing signal; and

driver circuitry to output the first timing signal to a memory device, the first timing signal
to time transmission of a data signal from the memory device to the memory
controller wherein the first clock signal comprises a respective transition for each bit

of data conveyed in the data signal.

The memory controller of claim 9 wherein each bit of data conveyed in the data signal is
valid at an output of the memory device for a respective bit time, and wherein a phase
offset between the data signal and the first timing signal is permitted to drift by at least the

bit time.

The memory controller of claim 9 wherein the first timing signal comprises a respective
transition for each bit of data conveyed in the data signal transmitted from the memory

device to the memory controller.

The memory controller of claim 9 wherein the clock generating circuit additionally

generates the second timing signal.

The memory controller of claim 12 wherein the phase-adjust circuitry comprises circuitry
to adjust the phase of the first timing signal relative to the second timing signal by

selectively shifting the phase of the second timing signal.

The memory controller of claim 9 wherein the phase-adjust circuitry comprises circuitry to
establish a selected phase relationship between the first and second timing signals, the

memory controller further comprising calibration circuitry to determine a data return
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latency for each of a plurality of phase relationships between the first and second timing
signals and to select, as the selected phase relationship, one of the plurality of phase
relationships that yields a shorter time between issuance of a memory access command and

return of corresponding read data than another of the plurality of phase relationships.
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INTERNATIONAL SEARCH REPORT International application No.
PCT/US2009/050023

A. CLASSIFICATION OF SUBJECT MATTER

G11C 11/407(20006.01)i, HO3K 19/0175(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 G11C; HO4L, HO3L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility Models since 1975
Japanese Utility models and applications for Utility Models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) " signal, clock, cycle, phase, adjust, frequency"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2002-0110212 Al (LYSDAL et al.) 15 August 2002 1-14
See the abstract and the figure 1.

A US 2002-0150189 Al (WARE et al.) 17 October 2002 1-14
See the abstract and the figure 4.

A US 2004-0130366 Al (LIN et al.) 08 July 2004 1-14
See the abstract and the figure 2.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
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