

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-536783
(P2004-536783A)

(43) 公表日 平成16年12月9日(2004.12.9)

(51) Int.Cl.⁷

C07K 19/00
A61K 38/00
A61P 37/02
C07K 7/06
C07K 7/08

F 1

C07K 19/00
A61P 37/02
C07K 7/06
C07K 7/08
A61K 37/02

Z N A

テーマコード(参考)

4 C084
4 H045

審査請求 未請求 予備審査請求 有 (全 263 頁)

(21) 出願番号 特願2002-552127 (P2002-552127)
(86) (22) 出願日 平成13年12月17日 (2001.12.17)
(85) 翻訳文提出日 平成15年6月18日 (2003.6.18)
(86) 國際出願番号 PCT/US2001/048632
(87) 國際公開番号 WO2002/050250
(87) 國際公開日 平成14年6月27日 (2002.6.27)
(31) 優先権主張番号 09/739,466
(32) 優先日 平成12年12月18日 (2000.12.18)
(33) 優先権主張国 米国(US)

(71) 出願人 503220185
ユニバーシティ・オブ・カンザス
アメリカ合衆国カンザス州66044, ロ
ーレンス, アービング・ヒル・ドライブ
2385, ストロング・ホール, ルーム
207
(74) 代理人 100089705
弁理士 杜本 一夫
(74) 代理人 100076691
弁理士 増井 忠式
(74) 代理人 100075270
弁理士 小林 泰
(74) 代理人 100080137
弁理士 千葉 昭男

最終頁に続く

(54) 【発明の名称】シグナルー1／シグナルー2二官能性ペプチド阻害剤

(57) 【要約】

一般式 A B を有する、新規ペプチド配列であって、式中、A および B は各々、アミノ酸残基鎖を示し、そして前記 A 鎖は抗原提示細胞上の主要組織適合複合体と結合可能であり、そして前記 B 鎖は抗原提示細胞上のシグナルー2受容体と結合可能である、前記ペプチド配列。該ペプチド配列の好ましい型は、A 鎖および B 鎖の間に配置される Y 鎖をさらに含む。さらに、好ましい型は、シグナルー1部分と少なくとも約 10 % の配列相同性を有するか、またはシグナルー1部分のペプチド擬似体である A 鎖を含み、前記 B 鎖は、シグナルー2受容体部分と少なくとも 10 % の配列相同性を有するか、前記 B 鎖は、シグナルー2受容体部分のペプチド擬似体であり、そして X 鎖は、少なくとも 1 のアミノ酸残基を有するか、またはアミノ酸残基のペプチド擬似体である。好適に、新規ペプチド配列は、1型免疫反応から 2型免疫反応に、または 2型免疫反応から 1型免疫反応にシフトすることが可能である。

【特許請求の範囲】**【請求項 1】**

第一の部分および第二の部分を含んでなるペプチドであって、前記第一の部分が、T C R エピトープ由来のペプチドと少なくとも約 10 % の配列相同性を有する配列を含み、前記第二の部分が、シグナル - 2 部分由来のペプチドと少なくとも約 10 % の配列相同性を有する配列を含む、前記ペプチド。

【請求項 2】

連結部分をさらに含んでなる、請求項 1 のペプチド。

【請求項 3】

前記連結部分が少なくとも 1 のアミノ酸残基を含んでなる、請求項 2 のペプチド。 10

【請求項 4】

前記アミノ酸が柔軟な非基質アミノ酸である、請求項 3 のペプチド。

【請求項 5】

前記連結部分がアミノ酸残基の配列を含んでなり、前記配列が親水性アミノ酸と交互に非基質アミノ酸を含んでなる、請求項 2 のペプチド。

【請求項 6】

前記連結部分が一般式 (A, B)_x を有する、請求項 2 のペプチドであって、式中、A および B はアミノ酸残基であり、そして前記 A アミノ酸残基は、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および - アラニンからなる群より選択され、そして前記 B アミノ酸残基はグリシンであり、そして X は 1 ~ 100 の範囲である、前記ペプチド。 20

【請求項 7】

前記 A アミノ酸残基がアミノカプロン酸である、請求項 6 のペプチド。

【請求項 8】

前記第一の部分が、配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも約 10 % の配列相同性を有する配列を含む、請求項 1 のペプチド。

【請求項 9】

配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも約 50 % の配列相同性を有する、請求項 8 のペプチド。

【請求項 10】

配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも約 95 % の配列相同性を有する、請求項 9 のペプチド。 30

【請求項 11】

前記第一の部分が、配列番号 1 ~ 25 からなる群より選択されるペプチドのペプチド擬似体 (peptidomimetic) を含んでなる、請求項 1 のペプチド。

【請求項 12】

前記第一の部分が、配列番号 1 ~ 25 からなる群より選択されるペプチドの誘導体を含んでなる、請求項 1 のペプチド。

【請求項 13】

前記 T C R エピトープが既知の疾患状態と相關する、請求項 1 のペプチド。 40

【請求項 14】

前記第一の部分が、抗原提示細胞上の主要組織適合複合体と結合可能である、請求項 1 のペプチド。

【請求項 15】

前記ペプチド : M H C 複合体が、T 細胞上の T 細胞受容体と結合可能である、請求項 14 のペプチド。

【請求項 16】

前記第二の部分が、配列番号 30 ~ 41 からなる群より選択される配列と、少なくとも約 10 % の配列相同性を有する配列を含む、請求項 1 のペプチド。

【請求項 17】

50

配列番号 30～41 からなる群より選択される配列と、少なくとも約 50% の配列相同性を有する、請求項 16 のペプチド。

【請求項 18】

配列番号 30～41 からなる群より選択される配列と、少なくとも約 95% の配列相同性を有する、請求項 17 のペプチド。

【請求項 19】

前記第二の部分が、配列番号 30～41 からなる群より選択されるペプチドのペプチド擬似体を含んでなる、請求項 1 のペプチド。

【請求項 20】

前記第二の部分が、配列番号 30～41 からなる群より選択されるペプチドの誘導体を含んでなる、請求項 1 のペプチド。 10

【請求項 21】

前記第二の部分が、抗原提示細胞上のシグナル-2 リガンドと結合可能である、請求項 1 のペプチド。

【請求項 22】

T 細胞において、二次シグナルを開始可能である、請求項 21 のペプチド。

【請求項 23】

免疫反応を、1 型が優性である反応から 2 型が優性である反応に変更可能である、請求項 1 のペプチド。 20

【請求項 24】

免疫反応を、2 型が優性である反応から 1 型が優性である反応に変更可能である、請求項 1 のペプチド。

【請求項 25】

前記第二の部分が特定の型の免疫反応と関連する、請求項 1 のペプチド。

【請求項 26】

前記連結部分が、前記第一の部分および前記第二の部分の間に配置されている、請求項 2 のペプチド。

【請求項 27】

1 つの連続配列として合成可能である、請求項 1 のペプチド。

【請求項 28】

下記のステップを含む、免疫反応を変更する方法：

(a) 抗原提示細胞をペプチドと接触させるステップ、ここで前記ペプチドは、前記抗原提示細胞上の主要組織適合複合体と結合してペプチド：MHC 複合体を形成する第一の部分と、前記抗原提示細胞上の二次シグナル部分に結合する第二の部分とを含んでなり；

(b) 前記ペプチド：MHC 複合体の形成に反応して、T 細胞において T 細胞受容体の結合を引き起こすステップ；

(c) 前記二次シグナル部分への前記第二の部分の結合に反応して、T 細胞において二次シグナルを遮断または改変するステップ；および

(d) 前記第一および第二のシグナルが、前記ペプチド：MHC 複合体と一般的に関連する免疫反応から外れた免疫反応を生じるステップ。 40

【請求項 29】

前記免疫反応が 1 型免疫反応から外れて 2 型免疫反応となる、請求項 28 の方法。

【請求項 30】

前記免疫反応が 2 型免疫反応から外れて 1 型免疫反応となる、請求項 28 の方法。

【請求項 31】

前記第一の部分が、シグナル-1 部分由来のペプチドと少なくとも 10% の配列相同性を有する、請求項 28 の方法。

【請求項 32】

前記第二の部分が、シグナル-2 受容体部分由来のペプチドと少なくとも 10% の配列相同性を有する、請求項 28 の方法。 50

【請求項 3 3】

一般式 A B を有するペプチドであって、式中、前記 A および B は各々、アミノ酸残基の鎖を示し、そして前記 A 鎖は少なくとも約 5 アミノ酸残基を含んでなり、そしてシグナル - 1 部分と少なくとも約 10 % の配列相同性を有し、そして前記 B 鎖は少なくとも約 4 アミノ酸残基を含んでなり、そしてシグナル - 2 受容体部分由来のペプチドと少なくとも約 10 % の配列相同性を有する、前記ペプチド。

【請求項 3 4】

少なくとも約 1 のアミノ酸残基を含んでなるアミノ酸残基の X 鎖をさらに含んでなる、請求項 3 4 のペプチド。

【請求項 3 5】

前記 X 鎖が前記 A 鎖および前記 B 鎖の間に配置されている、請求項 3 4 のペプチド。

【請求項 3 6】

1 つの連続配列として合成可能である、請求項 3 3 のペプチド。

【請求項 3 7】

前記 X 鎖が、一般式 (Y, Z)_t を有する、可動性の非基質リンカーを含んでなる、請求項 3 4 のペプチドであって、式中、Y および Z はアミノ酸残基であり、そして前記 Y アミノ酸残基は、独立して、それぞれ、非基質アミノ酸からなる群より選択され、そして前記 Z アミノ酸残基が、独立して、それぞれ、親水性アミノ酸からなる群より選択され、そして T が 1 ~ 100 の範囲である、前記ペプチド。

【請求項 3 8】

前記非基質アミノ酸が、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および - アラニンからなる群より選択される、請求項 3 7 のペプチド。

【請求項 3 9】

前記非基質アミノ酸残基がアミノカプロン酸である、請求項 3 8 のペプチド。

【請求項 4 0】

前記親水性アミノ酸がグリシンである、請求項 3 7 のペプチド。

【請求項 4 1】

前記 A 鎖が、配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも約 10 % の配列相同性を有する配列を含む、請求項 3 3 のペプチド。

【請求項 4 2】

前記 A 鎖が、配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも 50 % の配列相同性を有する、請求項 4 1 のペプチド。

【請求項 4 3】

前記 A 鎖が、配列番号 1 ~ 25 からなる群より選択される配列と、少なくとも約 95 % の配列相同性を有する、請求項 4 2 のペプチド。

【請求項 4 4】

前記 A 鎖が、配列番号 1 ~ 25 からなる群より選択されるペプチドのペプチド擬似体を含んでなる、請求項 3 3 のペプチド。

【請求項 4 5】

前記 A 鎖が、配列番号 1 ~ 25 からなる群より選択されるペプチドの誘導体を含んでなる、請求項 3 3 のペプチド。

【請求項 4 6】

前記シグナル - 1 部分が、既知の健康状態と関連する、請求項 3 3 のペプチド。

【請求項 4 7】

抗原提示細胞上の主要組織適合複合体と結合して、ペプチド : MHC 複合体を形成可能である、請求項 3 3 のペプチド。

【請求項 4 8】

前記ペプチド : MHC 複合体が T 細胞と結合可能である、請求項 4 7 のペプチド。

【請求項 4 9】

前記 B 鎖が、配列番号 30 ~ 41 からなる群より選択される配列と、少なくとも約 10 %

10

20

30

40

50

の配列相同性を有する配列を含む、請求項 3 3 のペプチド。

【請求項 5 0】

前記 B 鎖が、配列番号 3 0 ~ 4 1 からなる群より選択される配列と、少なくとも約 5 0 % の配列相同性を有する、請求項 4 9 のペプチド。

【請求項 5 1】

前記 B 鎖が、配列番号 3 0 ~ 4 1 からなる群より選択される配列と、少なくとも約 9 5 % の配列相同性を有する、請求項 5 0 のペプチド。

【請求項 5 2】

前記 B 鎖が、配列番号 3 0 ~ 4 1 からなる群より選択されるペプチドのペプチド擬似体を含んでなる、請求項 3 3 のペプチド。

【請求項 5 3】

前記 B 鎖が、配列番号 3 0 ~ 4 1 からなる群より選択されるペプチドの誘導体を含んでなる、請求項 3 3 のペプチド。

【請求項 5 4】

抗原提示細胞上のシグナル - 2 リガンドと結合可能である、請求項 3 3 のペプチド。

【請求項 5 5】

前記シグナル - 2 部分との結合に際して、T 細胞への二次シグナルを遮断または改変可能である、請求項 5 4 のペプチド。

【請求項 5 6】

免疫反応を、1 型が優性である反応から 2 型が優性である反応に変更可能である、請求項 3 3 のペプチド。

【請求項 5 7】

免疫反応を、2 型が優性である反応から 1 型が優性である反応に変更可能である、請求項 3 3 のペプチド。

【請求項 5 8】

細胞仲介免疫反応を体液性免疫反応にシフトすることが可能である、請求項 3 3 のペプチド。

【請求項 5 9】

体液性免疫反応を細胞仲介反応にシフトすることが可能である、請求項 3 3 のペプチド。

【請求項 6 0】

下記のステップを含む、免疫反応を調節するペプチドを調製する方法：

シグナル - 1 部分由来の配列と少なくとも約 1 0 % の配列相同性を有する、第一のペプチド配列を選択するステップ；

シグナル - 2 受容体部分由来の配列と少なくとも約 1 0 % の配列相同性を有する、第二のペプチド配列を選択するステップ；および

前記第一のペプチド配列と前記第二のペプチド配列とを含む連続ペプチド鎖として、前記ペプチドを合成するステップ。

【請求項 6 1】

少なくとも 1 のアミノ酸残基を含んでなる第三のペプチド配列を選択するステップをさらに含んでなる、請求項 6 0 の方法。

【請求項 6 2】

前記第一のペプチド配列が、既知の健康状態と関連する、請求項 6 0 の方法。

【請求項 6 3】

前記第一のペプチド配列が、抗原提示細胞上の主要組織適合複合体と結合して、ペプチド : M H C 複合体を形成可能である、請求項 6 0 の方法。

【請求項 6 4】

前記第二のペプチド配列が、抗原提示細胞上のシグナル - 2 リガンドと結合可能である、請求項 6 0 の方法。

【請求項 6 5】

抗原提示細胞上の主要組織適合複合体と前記ペプチドを接触させるステップをさらに含ん

10

30

40

50

でなる、請求項 6 0 の方法。

【請求項 6 6】

抗原提示細胞上のシグナル - 2 リガンドと前記ペプチドを接触させるステップをさらに含んでなる、請求項 6 0 の方法。

【請求項 6 7】

下記を含むペプチド：

T 細胞において、一次シグナルを開始可能な第一のペプチド配列；および

T 細胞において、二次シグナルを開始可能な第二のペプチド配列。

【請求項 6 8】

少なくとも 1 のアミノ酸残基を含んでなる連結ペプチド配列をさらに含んでなる、請求項 10 6 7 のペプチド。

【請求項 6 9】

前記第一のペプチド配列がシグナル - 1 部分由来である、請求項 6 7 のペプチド。

【請求項 7 0】

前記第二のペプチド配列がシグナル - 2 受容体部分由来である、請求項 6 7 のペプチド。

【請求項 7 1】

前記第一のペプチド配列が、配列番号 1 ~ 2 5 からなる群より選択されるペプチドと、少なくとも約 10 % の配列相同性を有する、請求項 6 7 のペプチド。

【請求項 7 2】

前記第二のペプチド配列が、配列番号 3 0 ~ 4 1 からなる群より選択されるペプチドと、少なくとも約 10 % の配列相同性を有する、請求項 6 7 のペプチド。

【請求項 7 3】

前記連結ペプチド配列が一般式 (Y, Z)_T を有する、請求項 6 8 のペプチドであって、式中、Y および Z はアミノ酸残基であり、そして T は 1 ~ 1 0 0 の範囲である、前記ペプチド。

【請求項 7 4】

前記 Y アミノ酸残基が、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および - アラニンからなる群より選択される、請求項 7 3 のペプチド。

【請求項 7 5】

前記 Z アミノ酸残基が、独立して、それぞれ、親水性アミノ酸残基からなる群より選択される、請求項 7 3 のペプチド。

【請求項 7 6】

前記親水性アミノ酸残基がグリシンである、請求項 7 5 のペプチド。

【請求項 7 7】

前記 Y アミノ酸残基がアミノカプロン酸である、請求項 7 3 のペプチド。

【請求項 7 8】

下記を含む、BPI を構築する方法：

(a) 既知の健康状態を選択するステップ；

(b) 前記健康状態に特異的な TCR エピトープを同定するステップ；および

(c) 前記 TCR エピトープを BPI に取り込むステップ。

【請求項 7 9】

シグナル - 2 受容体部分を選択し、そして前記シグナル - 2 受容体部分を前記 BPI に取り込むステップをさらに含んでなる、請求項 7 8 の方法。

【請求項 8 0】

前記 TCR エピトープを前記シグナル - 2 受容体部分にコンジュゲート化させるステップをさらに含んでなる、請求項 7 9 の方法。

【請求項 8 1】

前記コンジュゲート化ステップが、前記 TCR エピトープと前記シグナル - 2 受容体部分との間にリンカーを配置することを含む、請求項 8 0 の方法。

【請求項 8 2】

前記リンカーが少なくとも 1 のアミノ酸残基を含んでなる、請求項 8 1 の方法。

【請求項 8 3】

前記リンカーが一般式 (Y, Z),_t を有する、請求項 8 1 の方法であって、式中、Y および Z はアミノ酸残基であり、そして T は 1 ~ 1 0 0 の範囲である、前記方法。

【請求項 8 4】

前記 Y アミノ酸残基が、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および -アラニンからなる群より選択される、請求項 8 3 の方法。

【請求項 8 5】

前記 Z アミノ酸残基が、独立して、それぞれ、親水性アミノ酸残基からなる群より選択される、請求項 8 3 の方法。 10

【請求項 8 6】

前記親水性アミノ酸残基がグリシンである、請求項 8 5 の方法。

【請求項 8 7】

前記 T C R エピトープが、抗原提示細胞上の主要組織適合複合体と結合して、ペプチド : MHC 複合体を形成可能である、請求項 7 8 の方法。

【請求項 8 8】

前記シグナル - 2 受容体部分が、抗原提示細胞上のシグナル - 2 リガンドと結合可能である、請求項 7 9 の方法。

【請求項 8 9】

前記 T C R エピトープが、配列番号 1 ~ 2 5 から選択される配列と、少なくとも約 1 0 % の配列相同性を有する、請求項 7 8 の方法。

【請求項 9 0】

前記シグナル - 2 受容体部分が、配列番号 3 0 ~ 4 1 から選択される配列と、少なくとも約 1 0 % の配列相同性を有する、請求項 7 9 の方法。

【請求項 9 1】

下記の組み合わせ :

抗原提示細胞上の主要組織適合複合体と結合可能な第一のペプチド配列 ; および
抗原提示細胞上のシグナル - 2 リガンドと結合可能な第二のペプチド配列。

【請求項 9 2】

前記第一のペプチド配列と前記第二のペプチド配列との間に配置されたリンカーをさらに含む、請求項 9 1 の組み合わせ。 30

【請求項 9 3】

前記第一のペプチド配列がシグナル - 1 部分由来である、請求項 9 1 の組み合わせ。

【請求項 9 4】

前記第二のペプチド配列がシグナル - 2 受容体部分由来である、請求項 9 1 の組み合わせ。

【請求項 9 5】

前記第一のペプチド配列が、配列番号 1 ~ 2 5 からなる群より選択されるペプチドと、少なくとも約 1 0 % の配列相同性を有する、請求項 9 1 の組み合わせ。

【請求項 9 6】

前記第二のペプチド配列が、配列番号 3 0 ~ 4 1 からなる群より選択されるペプチドと、少なくとも約 1 0 % の配列相同性を有する、請求項 9 1 の組み合わせ。

【請求項 9 7】

前記リンカーが少なくとも 1 のアミノ酸残基を含んでなる、請求項 9 2 の組み合わせ。

【請求項 9 8】

前記リンカーが一般式 (Y, Z),_t を有する、請求項 9 2 の組み合わせであって、式中、Y および Z はアミノ酸残基であり、そして T は 1 ~ 1 0 0 の範囲である、前記組み合わせ。

【請求項 9 9】

20

30

40

50

前記 Y アミノ酸残基が、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および - アラニンからなる群より選択される、請求項 9 8 の組み合わせ。

【請求項 100】

前記 Y アミノ酸残基がアミノカプロン酸である、請求項 9 9 の組み合わせ。

【請求項 101】

前記 Z アミノ酸残基が、独立して、それぞれ、親水性アミノ酸残基からなる群より選択される、請求項 9 8 の組み合わせ。

【請求項 102】

前記 親水性アミノ酸残基がグリシンである、請求項 101 の組み合わせ。

10

【請求項 103】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドと、少なくとも約 10 % の配列相 同性を有するペプチド。

【請求項 104】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドと、少なくとも約 50 % の配列相 同性を有する、請求項 103 のペプチド。

【請求項 105】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドと、少なくとも約 95 % の配列相 同性を有する、請求項 104 のペプチド。

【請求項 106】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドの誘導体。

20

【請求項 107】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドのペプチド擬似体。

【請求項 108】

配列番号 4 2 ~ 4 6 からなる群より選択されるペプチドのペプチド模倣体 (p e p t i d e m i m i c)。

【発明の詳細な説明】

【0001】

(配列表)

印刷した配列表が本出願に付随し、そしてまた、フロッピー (R) ディスクおよび C D R O M 上、コンピュータ読み取り可能 A S C I I ファイルの形でも、同一の内容で提出して いる。

30

【0002】

(発明の背景)

発明の分野

本発明は、T 細胞による抗原提示細胞表面上のペプチド : M H C 複合体の認識によって開始される免疫反応に関する。本発明はまた、シグナル - 2 部分の、抗原提示細胞表面上の相補タンパク質への結合によって開始される免疫反応にも関する。より具体的には、本発明は、T 細胞によるペプチド : M H C の認識によって、そしてシグナル - 2 部分のその相補タンパク質への結合によって開始される免疫反応に関する。さらにより具体的には、本発明は、この結合に反応して、特定の個体が生成する典型的な免疫反応の変更に関する。より具体的には、本発明は、1 型から 2 型、または 2 型から 1 型に、所定の免疫反応を変更するかまたはシフトするため、ペプチド : M H C 複合体のペプチド部分由来のペプチドを、好みしいシグナル - 2 部分にコンジュゲート化することに関する。これは、サブレッサー T 細胞を含む、特定の表現型の制御 T 細胞を含むことが可能である。

40

【0003】

先行技術の説明

自己免疫疾患は、自己抗原に対する T 細胞の活性化に特徴付けられる。これらの T 細胞はその後、これらの抗原を提示する細胞を破壊する。例えば、インスリン依存性糖尿病 (I D D M 、 I 型糖尿病とも呼ばれる) は、膵臓のインスリン産生細胞に対する T 細胞の活性

50

化およびそれに続くこれらのT細胞による破壊に特徴付けられる。自己免疫反応に関連する疾患および異常は、主要組織適合複合体（MHC）クラスI分子と呼ばれる細胞表面タンパク質の特定のサブタイプ（対立遺伝子）と強く関連する。MHC分子は、感染性病原体由来のタンパク質、アレルゲン、および自己タンパク質の断片（ペプチド）に結合し、そしてこのMHC:ペプチド複合体は、T細胞がその受容体（T細胞受容体、またはTCRと呼ばれる）で認識する構造である。MHC:ペプチド複合体は、抗原提示細胞（APC）と呼ばれる免疫系の他の細胞（すなわちB細胞、樹状細胞およびマクロファージ）の表面上に提示される。免疫反応が後に続くためには、免疫系の主要な制御細胞である未分化T細胞は、外来（foreign）侵入物の小さい分解産物（ペプチド）を提示されなければならない。この提示は、APC表面上で起こる。その後、T細胞はAPCと相互作用しなければならず、そしてこの相互作用は、T細胞が分裂し、そして分化して、直接または間接的に、同一のまたは非常に類似のMHC:ペプチド複合体を提示する細胞を攻撃する分子を産生するのを刺激する。MHC分子をコードする遺伝子は、種内で非常に多様であり、そして異なるMHC対立遺伝子が、他のものよりもいくつかのペプチドに結合するのを好むことがよく知られている。他の遺伝的および環境的要因と共に、異なるMHC対立遺伝子の存在は、なぜ種のあるメンバーは例えば自己免疫疾患、アレルギー、喘息、さらには特定の感染性疾患等の状態を呈するのに、他のメンバーは同じ物質に影響を受けないか、または免疫であるままなのかを説明するのに役立つ。他の相違は、ペプチド:MHC複合体と異なる細胞表面タンパク質もまた、T細胞上の特定の受容体に結合しなければならないため、生じる。T細胞およびAPC膜の境界面で、これらの他のタンパク質:タンパク質対は、シグナル-2として知られる同時刺激シグナルを提供し、このシグナルは、MHC:ペプチド複合体のTCR認識によって生じるシグナル（シグナル-1として知られる）と共に、免疫反応を開始する。

10

20

30

40

【0004】

免疫反応を特徴付ける段階は、2つのシグナルの結果としての、CD4⁺ T細胞の1型ヘルパーT細胞（T_H1細胞）または2型ヘルパーT細胞（T_H2細胞）への分化である。T_H細胞のこれらの2つのサブタイプおよびこれらが選択的に活性化する細胞制御ネットワークは、ヒトの健康状態および疾患状態の公知の相関物である。T_H1細胞への分化は、主に細胞仲介免疫を生じ、一方、T_H2細胞への分化は、主に体液性免疫を生じる。これらの免疫型は各々、異なる種類の侵入に対して、体を防御するのを補助する。1型免疫は、細菌などの細胞内病原体に対して体を防御するが、器官特異的自己免疫疾患にも関与する。2型免疫は、細胞外寄生虫に対しての保護に重要であるが、アレルギー性反応にもまた関連する。T_H1細胞の発展は、マクロファージおよび樹状細胞として知られる免疫細胞に産生される、インターロイキン-12と呼ばれるサイトカインによる。インターロイキン-12は、未処置（naive）T細胞（CD4⁺ T細胞）を誘導または刺激して、インターフェロン-（IFN-）およびインターロイキン-2（IL-2）を産生する。これらの2つのサイトカイン（IL-2およびIFN-）は、細胞傷害性Tリンパ球（CTL）のクローン性増殖、マクロファージ活性化、および感作細胞の補体溶解を仲介するIgGアイソタイプへのクラススイッチに関与する。T_H1免疫反応への拘束は、インターロイキン-12（IL-12）受容体の発現を上方制御するが、T_H2細胞の発展を阻害する、IFN-の存在によって増進される。T_H2免疫は、未処置T細胞によるインターロイキン-4（IL-4）産生から生じる。IL-4はT_H2発展、並びにそれに続く、インターロイキン-4（IL-4）、-5（IL-5）、-10（IL-10）、および-13（IL-13）の産生を誘導する。IL-4はまた、発展中の細胞上のIL-12受容体発現を下方制御するよう作用して、それによってT_H1発展を阻害し、そして未分化T細胞がT_H2細胞発展に拘束されるのを補助する。さらに、IL-4およびIL-5は、B細胞を活性化し、そして中和抗体（マウスではIgG1）および即時型過敏の開始因子であるIgEに切り換えることが知られる。

40

【0005】

これらの免疫経路いずれかを活性化するため、T細胞を完全に活性化するのに、2シグナ

50

ルの機構が必要である。シグナル-1 (S-1) は、T細胞抗原受容体 (TCR) が抗原提示細胞 (APC) 表面上のペプチド：MHC-I I複合体を認識した際に生じる。この最初のシグナルは、T細胞受容体を通過して、そしてキナーゼおよびホスファターゼが仲介するチロシンリン酸化 / 脱リン酸化事象のカスケードを開始し、そして Ca^{++} 流束、活性化T細胞の核因子 (NF-AT) およびNF-B転写因子の活性化を導く。これらの因子は、T細胞の核に進入し、そしてエフェクター機能に関する遺伝子のプロモーターに結合する。シグナル-2 (S-2) は、シグナル-2受容体が、APC表面上のリガンドに結合することから生じる。シグナル-2受容体にはCD28およびそのリガンドB7と共にLFA-1およびそのリガンドICAM-1が含まれる。シグナル-2受容体およびそのリガンドが、T細胞およびAPC受容体膜間の境界面で複合体を形成すると、一連のシグナル伝達事象が起こる。これらの事象には、GTPアーゼ活性を持つアダプタータンパク質を活性化する、グアニンヌクレオチド交換因子の活性化と、セリン / スレオニンリン酸化 / 脱リン酸化とが含まれる。これらのシグナル伝達事象は、別個の組の転写因子を活性化する。CD28 : B7複合体を通じて搬送されるシグナルは、ICAM-1 : LFA-1複合体から搬送されるものとは異なり、特に $CD4^+$ T細胞の $T_H 1$ エフェクター集団対 $T_H 2$ エフェクター集団への分化に関しては異なる。

主な結合がLFA-1およびICAM-1の間で起こる場合、 $CD4^+$ T細胞分化は、 $T_H 1$ 細胞を支持し、該細胞はIL-2およびIFN- γ を豊富に産生し、これらは遅延型過敏 (DTH)、細胞内病原体に対する免疫、およびいくつかの自己免疫疾患を含む、炎症性免疫反応の傑出した開始因子である。主な結合がCD28およびB7の間で起こる場合、 $CD4^+$ T細胞は $T_H 2$ 細胞に分化する。 $T_H 1$ 細胞と対照的に、 $T_H 2$ 細胞は、IL-2またはIFN- γ サイトカインを豊富に産生しないが、その代わり、アレルギーおよび喘息などの即時型過敏の仲介因子、すなわち、IL-4、IL-5、IL-10、およびIL-13を放出する。したがって、二次シグナルを提供する複合体の相対的な寄与を操作する能力は、与えられた自己組織抗原に対して引き出される免疫反応の種類に対して、重大な影響を有する。

【0006】

TCRおよびAPC間の会合は、免疫学的シナップスと呼ばれるTCRおよびAPC間の特殊な結合部または境界面で起こる。免疫シナップスを、図1に模式的に示す。この免疫シナップスは、T細胞およびAPC間の境界面で組み立てられる活性化分子の編成された構造と定義可能である。神経系のシナップス同様、免疫シナップスは、細胞膜間の緊密な会合である。免疫反応が後に続くためには、免疫系の主要な制御細胞である未分化T細胞は、外来侵入物の小さい分解産物 (ペプチド) を提示されなければならない。不活性化T細胞において、TCRおよび接着分子は、T細胞膜上で、無作為に分散している。免疫学的シナップスの形成は、T細胞が潜在的な抗原性リガンドを区別するのを可能にする活性でそして動的な機構である。免疫学的シナップスは、接着分子の輪に取り巻かれたT細胞受容体の中央クラスターからなる。免疫シナップスの安定な形成は、内部にTCRそして外部にLFA-1を有するドーナツ様構造を形成するため、LFA-1などの接着分子およびペプチド認識受容体 (TCR) を必要とする。活性化中、TCRおよびLFA-1分子は、ドーナツ様構造形成中に、T細胞脂質二重層内で互いにすれ違う (このプロセスは転位置 (translocation) と呼ばれる)。これらの分子が、免疫シナップス内で転位置しない場合、T細胞シグナルは完全には受け取られず、そしてT細胞内で遺伝子活性の異なるプログラムが後に続く可能性がある。このことは、Tヘルパー細胞が、IFN- γ 放出を導くであろう遺伝子プログラム ($T_H 1$ 細胞および1型免疫) から、最終的にIL-4産生を活性化するプログラム (すなわち $T_H 2$ 細胞および2型免疫) に外れる場合には、特に、免疫反応に劇的な影響を与える可能性がある。

【0007】

さらに詳細には、 $T_H 1$ 優性を導く経路を活性化するには、TCRは、ペプチド : MHC-I I複合体を認識し、そしてシグナル-1をT細胞に送る。さらに、LFA-1がICAM-1に結合し、そしてこれらの分子は、ペプチド : MHC-I I複合体と共に転位置

10

20

30

40

50

して、最終段階の免疫シナプスを形成する。これが、非拘束 T_H 細胞による CD40 リガンド (CD154) の有効な発現を導く。CD40 (抗原提示細胞上に発現される) とリガンドとの相互作用は、炎症性サイトカイン IL-12 の NF-B 上方制御を生じる。その後、IL-12 は未分化 T_H 細胞上の受容体に結合し、そして転写制御因子、Stat4 および Tbet の上方制御を含む、 T_H 1 プログラムを開始する。これは、自己抗原 (例えばグルタミン酸デカルボキシラーゼ、GAD65) に対する T_H 1 優性を導き、これは TCR : ペプチド : MHC - II 複合体の GAD65 ペプチド構成要素に開始された。 T_H 2 優性を導く経路に関しては、TCR は、同一のペプチド : MHC - II 複合体を認識でき、それによってシグナル - 1 を送る。しかし、この場合、シグナル - 1 の強度がより弱くおよび / またはシグナル - 2 部分との間の結合が変わったりまたはブロックされないと、最終段階免疫シナプスが変更された形となることになる。同様に、シグナル - 1 のこのより弱い強度または LFA - 1 二次シグナルの別個の関与が、こうした優性 T_H 2 分化という異なる結果を導く。例えば、変更された免疫シナプスは、CD40 リガンドが発現されずしたがって IL-12 が APC に放出されないことを指示可能である。この経路を図 2 に模式的に示す。ここでは、IL-4 は集積しており、それによって T 細胞内の Stat6 および GATA-3 の上方制御したがって T_H 2 パターンの分化への拘束が導かれる。

【0008】

現代の応用免疫学の主要なゴールは、 T_H 1 優性免疫 (例えば自己免疫疾患および移植拒絶で見られるようなもの) からこれらの同一の組織抗原に対する T_H 2 反応へのスイッチを可能にすることである。他の症例では、弱い T_H 2 免疫を T_H 1 優性に置き換えて、強い T 細胞増殖および細胞傷害性 T 細胞 (CTL) の有効な生成を導くことが非常に有用であろう。これらの症例には、C 型肝炎および AIDS のような慢性ウイルス疾病が含まれる可能性があり; そして黒色腫のような特定の癌が含まれる可能性がある。したがって、当該技術分野で必要なのは、異なるヒト疾患状態または健康状態と戦うために望ましいように、2 型免疫を 1 型免疫に置き換える可能であるか、または 1 型免疫を 2 型免疫に置き換える可能であるような、これらの免疫反応の調節因子である。

【0009】

(発明の概要)

本発明は、先行技術に見られた問題を解決し、そして最先端の明確な進歩をもたらす。簡潔には、本発明は、一端にシグナル - 1 部分の一部を、そして他方の端にシグナル - 2 部分の一部を含むペプチドを含む。これらの二端は、互いに直接連結されているか、または柔軟な非基質リンカーを介して連結されていることが可能である。ペプチド部分の直接のまたはリンカーを介した連続ペプチド鎖へのこのコンジュゲート化は、二官能性ペプチド阻害剤 (BPI) と称する新規種類の免疫療法ペプチドをもたらす。これらの BPI は、T 細胞活性化の 2 シグナルの機構に基づき、そして T 細胞活性化を変更するため、シグナル - 1 およびシグナル - 2 部分を連結する。言い換えると、本発明は、T 細胞の特定の疾患関連集団のみが、本発明の産物に標的とされるような、非常に特定された方式で、T 細胞およびそれに続く免疫を調節する方法を提供する。したがって、本発明は、損なわれていない (intact) 免疫系に必要な構成要素が、その名目上の (nominal) 防御方式で作動するままにしておく。

【0010】

より詳細には、本発明は、目的の TCR エピトープ (シグナル - 1 部分) を一端に、そしてシグナル - 2 を生じるタンパク質 : タンパク質相互作用由来のペプチド (シグナル - 2 部分) を有するペプチド配列を構築することを記載する。これらの 2 つのペプチド配列は、シグナル - 1 部分をシグナル - 2 部分にカップリングする柔軟なリンカーを介して連結可能であるし、または直接共に連結可能である。いくつかの場合、2 つのペプチド配列間の連結は、各部分由来の隣接残基を含むことが可能である。シグナル - 2 部分とカップリングしたシグナル - 1 部分の組み合わせが BPI を構成する。したがって、目的の TCR エピトープをひとたび同定し、そして望ましい免疫反応 (1 型または 2 型) を決定したら

10

20

30

40

50

、本発明にしたがったBPIを生成可能である。

【0011】

上述のように、免疫反応の重要な段階は、1型ヘルパーT細胞($T_H 1$ 細胞)または2型ヘルパーT細胞($T_H 2$ 細胞)いずれかへの $CD4^+$ T細胞の分化である。 $T_H 1$ 細胞への分化は、主に細胞仲介免疫を生じ、一方、 $T_H 2$ 細胞への分化は、主に体液性免疫を生じる。これらの免疫種は各々、異なる種類の侵入に対して体を防御するのを助ける。 $T_H 1$ 細胞は、細菌などの細胞内病原体に対して体を防御し、そしてまた器官特異的自己免疫疾患にも関与する。 $T_H 2$ 細胞は、細胞外寄生虫に対しての防御と共にアレルギー性反応に重要である。 $T_H 1$ 細胞の発生は、免疫細胞(マクロファージおよび樹状細胞として知られる)が产生するインターロイキン-12と呼ばれるサイトカインによって駆動される。インターロイキン-12は、未処置T細胞を誘導または刺激して、インターフェロン-(IFN-)およびインターロイキン-2(IL-2)を产生させる。これらの2つのサイトカイン(IL-2およびIFN-)は、細胞傷害性Tリンパ球(CTL)のクローニング、マクロファージ活性化、および感作細胞の補体溶解を仲介するIgGアイソタイプへのクラススイッチなどの古典的細胞仲介機能に関与する。 $T_H 1$ 免疫反応への拘束は、IFN-(インターロイキン-12(IL-12)受容体の発現を上方制御するが $T_H 2$ 細胞への発展を阻害する)の存在によって増進される。この経路を図3に模式的に示す。

10

20

30

40

50

【0012】

$T_H 2$ 免疫は、未処置T細胞によるインターロイキン-4(IL-4)产生から生じる。IL-4は、 T_H 出現を、そしてそれに続いて、転写制御因子Stat6の活性化を通じて、インターロイキン-4(IL-4)、5(IL-5)および13(IL-13)の产生を誘導する。IL-4はまた、発展中の細胞上のIL-12受容体発現を下方制御するよう作動して、それによって $T_H 1$ への発展を阻害し、そして未分化T細胞が $T_H 2$ 細胞への発展に拘束されるのを助ける。さらに、IL-4およびIL-5は、B細胞を活性化し、そして中和抗体(マウスではIgG1)および即時型過敏の開始因子であるIgEに切り換えることが知られる。このプロセスは図2に模式的に提示される。

【0013】

上述のように、 T_H 細胞を完全に活性化するのに、2シグナルの機構が必要である。シグナル-1は、T細胞抗原受容体(TCR)が抗原提示細胞(APC)表面上のペプチド:MHC-II複合体を認識するかまたは該複合体に結合する際に生じる。この最初のシグナルは、T細胞受容体を通じて伝達され、そしてキナーゼおよびホスファターゼが仲介する、チロシンリン酸化/脱リン酸化事象のカスケードを開始し、そしてCa⁺⁺流束、NF-ATおよびNF-B転写因子の活性化を導く。これらの因子は、T細胞の核に進入し、そしてエフェクター機能に関与する遺伝子のプロモーターに結合する。シグナル-2は、T細胞上のシグナル-2受容体が、APC上のタンパク質リガンドに結合することから生じる。シグナル-2受容体にはCD28およびそのリガンドB7と共にLFA-1およびそのリガンドICAM-1が含まれる。シグナル-2受容体およびそのリガンドが、T細胞の細胞膜とAPC膜との間の境界面で複合体を形成すると、一連のシグナル伝達事象が起これり、これらの事象には、セリン/スレオニンリン酸化/脱リン酸化と共に、GTPアーゼ活性を持つアダプタータンパク質を活性化する、グアニンヌクレオチド交換因子の作動が含まれる。これらのシグナル伝達事象は、別個の組の転写因子を活性化する。CD28:B7複合体を通じて搬送されるシグナルは、ICAM-1:LFA-1複合体から搬送されるものとは異なり、特に $T_H 2$ エフェクター集団と対比して、 $T_H 1$ への $CD4^+$ T細胞の分化に関しては異なる。このシグナル伝達は、本明細書において、図4として模式的に提示する。主な結合がLFA-1およびICAM-1の間で起こる場合、CD4⁺

T細胞は、 $T_H 1$ 細胞に分化する。 $T_H 1$ 分化状態の $CD4^+$ T細胞はIL-2およびIFN- γ を豊富に产生し、この2つのサイトカインは遅延型過敏(DTH)、細胞内病原体に対する免疫、およびいくつかの自己免疫疾患などの、炎症性免疫反応の傑出した開始因子である。主な結合がCD28およびB7の間で起こる(すなわちLFA-1:ICAM-1)

M-1シグナル伝達が減少する)場合、CD4⁺ T細胞はT_H2細胞に分化する。T_H1細胞と対照的に、T_H2細胞は、IL-2およびIFN-サイトカインを産生しないが、その代わり、アレルギーおよび喘息などの即時型過敏の仲介因子、すなわち、IL-4、IL-5、IL-10、およびIL-13を放出する。したがって、シグナル-2を提供する複合体の相対的な寄与を操作する能力は、自己組織抗原に対して惹起される免疫反応の種類に重大な影響を及ぼす。

【0014】

TCRおよびAPC間の会合は、免疫学的シナプス(図1に示す)と呼ばれる特別な結合部で起こる。免疫反応が進行するため、未分化T_H細胞は、APC表面上に外来侵入物のペプチドを提示されなければならない。不活性化T細胞において、TCRおよび接着分子は、T細胞膜上に無作為に分散している。免疫学的シナプスの形成は、T細胞が潜在的な抗原性リガンドを区別するのを可能にする、活性でそして動的な機構である。免疫学的シナプスは、接着分子の輪に取り巻かれたT細胞受容体の中央クラスターからなる。この配置を図1に模式的に示す。この図では、TCR:ペプチド:MHC-II複合体は、黒い円の中心であり、これは、シグナル-2受容体およびシグナル-2リガンドを構成するタンパク質:タンパク質対を示す。免疫シナプスの安定な形成は、内部にペプチド認識受容体(TCR)そして外部にLFA-1などの接着分子を有するドーナツ様構造を形成するため、LFA-1等およびTCRを必要とする。活性化中、TCRおよびLFA-1分子は、実際にT細胞脂質二重層内で互いを通り越して転位置する。これらの分子が免疫シナプス内で転位置しない場合、T細胞シグナルは完全には受け取られず、そしてT細胞内で遺伝子活性の異なるプログラムが起こる可能性がある。これは、Tヘルパー細胞(T_H)が、T_H1免疫反応を導く遺伝子プログラムから、T_H2免疫反応を活性化するプログラムに外れることを引き起こす場合は特に、免疫反応に劇的な影響を与える可能性がある。図2に示すように、BPI機構の解釈によって、BPIがMHC-IIおよび二次シグナルリガンド両方に結合することが示唆される。これは、MHC-II:ペプチドおよびICAM-1分子を有効に束縛し、それによって免疫シナプス形成の転位置ステップを妨げる。

【0015】

本発明の1つの側面において、既知のTCRエピトープをBPIの第一のペプチド部分として用いる。この方式では、免疫原としての能力のある最小ペプチド配列を利用する。これらの最小ペプチド配列(例えば抗原性ペプチド)は、目的の免疫反応(すなわち自己免疫疾患、感染性疾患、アレルギー、癌など)に関与するTCRと効果的に結合する。すでに多くの既知の興味深いTCRエピトープ(シグナル-1部分)があり、そしてその配列は文献に定義されてきている。いくつかの代表的なシグナル-1部分のリストの一部を表1に示す。シグナル-1部分は何千もありえるから、このリストはいかなる意味でも包括的ではない。

【0016】

本発明の別の側面において、BPIの第一の部分が合成可能であるように、目的のTCRエピトープを同定する。この側面では、これらの優性TCRエピトープは、先行技術によってそう決定されてきており、そして配列は文献中に開示されている。あるT細胞反応の焦点となるペプチド(例えば糖尿病関連抗原GAD65に対する反応)は、大部分のエフェクターT細胞が抗原のこの部分に反応し、そして他の部分に反応しないという事実によって同定される。マウスモデル系において、動物を全タンパク質抗原で免疫する。次に、抗原が免疫系をプライミングした後、T細胞を除去する。これらのT細胞は、抗原の短い重複ペプチドと共に、別個に培養中に入れる。反応の大部分は、単一のペプチドに対するものであろうし、そしてこれは優性TCRエピトープである。ヒトにおいて、T細胞をまず、患者からクローニングする。これらのクローニングしたT細胞を、重複するペプチド(関与する抗原の個々の部分、例えばHIV-1、p24(配列番号8)に相当する)と共に、別個に培養中に入れる。再び、大部分のT細胞クローンが反応するペプチドは、優性TCRエピトープである。前述の内容は、Schountzら、MHC遺伝子型は、

10

20

30

40

50

リガンド密度の容量を調節して、*in vivo*でTヘルパー(T h) - 1 / T h - 2 プライミングを切り換える、157 The Journal of Immunology 3893 - 3901 (1996) に記載され、この文献の解説および内容は、本明細書に援用される。

【0017】

本発明の別の側面において、シグナル-2受容体由来のペプチドを用いて、T細胞上の名目上の受容体およびAPC表面上の相補リガンド間の相互作用を変更する。表3は、いくつかの既知のシグナル-2受容体部分の代表的なリストを含む。もちろん、このリストは代表であり、そしてすべてを含んではいないため、一般的の当業者は、該表に列挙されていない他のシグナル-2部分を同定可能であろう。

10

【0018】

本発明の別の側面は、生じる免疫反応を変更するため、TCRエピトープ(すなわちシグナル-1部分)をシグナル-2受容体ペプチド模倣体(peptide mimetic)(すなわちシグナル-2部分)に連結することである。この連結は、シグナル-1部分およびシグナル-2部分間に直接にまたは隣接残基を介して存在できる。あるいは、この連結は、シグナル-1部分およびシグナル-2部分間に配置されるリンカーを介して行うことも可能である。リンカーは、天然存在アミノ酸または化学合成アミノ酸を含む、いかなるアミノ酸であることも可能である。好ましくは、プロテアーゼ攻撃に耐性であるため、非基質アミノ酸を使用するであろう。さらにより好ましくは、リンカーは、小アミノ酸または親水性アミノ酸と交互に非基質アミノ酸を含んでなるであろう。さらにより好ましくは、リンカーは、リンカーの各端に隣接するシグナル-1部分およびシグナル-2部分と共に、1つの連続配列として合成可能である。さらにより好ましくは、リンカーは、一般式(A, B)_xを有し、式中、AおよびBはアミノ酸残基であり、そしてAアミノ酸残基は、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および-アラニンからなる群より選択され、そしてBアミノ酸残基は小または親水性アミノ酸である。この式において、Xが1~100の範囲であることが可能である。特に代表的なB残基はグリシンである。この態様において、リンカーは、潜在的に、グリシン残基(G)と交互にアミノカプロン酸(Ac)、アミノヘキサン酸(Ahx)、アミノドデカン酸(Ado)、および-アラニン(-A)を有することが可能である(例えばAc-G-Ahx-Ado-G-A)。リンカーを構築するのに用いる残基の選択は、リンカーの望ましい長さとともに静電妨害に関する考慮に基づくことができる。1つの好ましいリンカーは、交互に現れるAc残基およびG残基を含んでなる。このリンカーは、選択する他アミノ酸残基(Ahx、Ado、-A)を含むことによって、長くすることもまたは短くすることも可能である。いくつかの代表的なリンカーが、配列番号26~29として表2に含まれる。

20

【0019】

およそ10⁹の異なるTCRが、大量の感染性病原体に対する防御免疫の原因となり、そしてこのTCRは、自己免疫疾患において、自己に背く可能性があるTCRのレパートリーを含有する。さらに、TCRはまた、潜在的な腫瘍抗原および環境中の無数のアレルギー性物質にも特異的である。所定のBPIのTCRエピトープを変化させることによって、我々はBPIの免疫調節能力を、選択したTCR群に向ける。言い換えると、BPIに取り込むTCRエピトープの選択は、非常に特異的な様式で、特定のヒト疾患に関するT細胞を標的とする。例えば、GAD65エピトープをBPIに取り込むと、1型糖尿病の誘導に関する自己攻撃T細胞が標的とされる。特定のTCRのこうした標的化によって、感染性病原体または癌に対する免疫に必要なT細胞が顕著な影響を及ぼされることはないだろう。したがって、BPIは、T細胞免疫を1つの抗原に特異的に調節する一方、感染性病原体および癌発症に対する防御免疫に必要なT細胞レパートリーには影響を与えないでおく可能性をもたらす。

30

【0020】

上述のように、本発明のシグナル-1部分は、好ましくは、TCRエピトープに由来し、

40

50

そして既知の代表的なエピトープのリストを表1に示し、これらの既知のエピトープは、配列番号1～25として示す。TCRエピトープの誘導体(derivative)を用いてBPIを構築する場合、好ましくは、選択するTCRエピトープは、既知の健康状態または疾患状態と相關するであろう。BPIを構築するのに、表1に示す代表的なペプチドの1つを用いる際、該ペプチドが、配列番号1～25からなる群より選択される配列と、少なくとも約10%の配列相同性を有する配列を含むことが好ましい。より好ましくは、ペプチドは、配列番号1～25からなる群より選択される配列と、少なくとも30%の配列相同性を有するであろう。より好ましくは、ペプチドは、配列番号1～25からなる群より選択される配列と、少なくとも50%の配列相同性を有するであろう。さらにより好ましくは、ペプチドは、配列番号1～25からなる群より選択される配列と、少なくとも70%の配列相同性を有するであろう。最も好ましくは、ペプチドは、配列番号1～25からなる群より選択される配列と、少なくとも約95%の配列相同性を有するであろう。もちろん、TCRエピトープ由来のペプチドと同様の機能を有する部分を構築するための、ペプチド擬似体(peptidomimetic)の使用もまた、当該技術分野にはよく知られている。これに関連して、*Falcionil*, 自己免疫疾患関連クラスII主要組織適合分子による抗原提示を阻害する、ペプチド擬似体化合物, 17 *Nature Biotechnology*, 562-567 (1999) の解説が本明細書に援用される。したがって、BPIのこのシグナル-1部分ポーションのすべてまたは一部を、こうしたペプチド擬似体に含むことが可能である。好ましくは、ペプチド擬似体は、配列番号1～25からなる群より選択されるペプチドの擬似体であろう。あるいは、シグナル-1部分は、配列番号1～25からなる群より選択されるTCRエピトープまたはペプチドの誘導体であろう。いずれにしても、BPIのこの第一の部分(または一次シグナルを開始するのに関与する部分)が抗原提示細胞(APC)上の主要組織適合複合体(MHC)と結合可能であることが望ましい。さらに、この生じたペプチド:MHC複合体が、重要なTCRと結合し、そしてT細胞へのいくつかの型のシグナルを開始可能であることが好ましい。

【0021】

上述のように、リンカーの、シグナル-1部分と反対側に用いるペプチドは、好ましくは、シグナル-2受容体由来である。BPIのこの第二の部分は、直接またはリンカーを介して、第一の部分に連結される。好ましい型において、第二の部分は、配列番号30～41からなる群より選択される配列と、少なくとも約10%の配列相同性を有する配列を含む。より好ましくは、第二の部分のペプチドは、配列番号30～41からなる群より選択される配列と、少なくとも約30%の配列相同性を有する。さらにより好ましくは、第二の部分のペプチドは、配列番号30～41からなる群より選択される配列と、少なくとも約50%の配列相同性を有する。さらにより好ましくは、第二の部分のペプチドは、配列番号30～41からなる群より選択される配列と、少なくとも約70%の配列相同性を有する。最も好ましくは、第二の部分のペプチドは、配列番号30～41からなる群より選択される配列と、少なくとも約95%の配列相同性を有する配列を含む。第一の部分の場合のように、第二の部分のアミノ酸残基のすべてまたはいくつかの代わりに、ペプチド擬似体が使用可能である。好ましい型において、第二の部分のペプチド擬似体は、配列番号30～41からなる群より選択されるペプチドの模倣体であろう。あるいは、BPIの第二の部分は、配列番号30～41からなる群より選択されるペプチドの誘導体を含んでなるであろう。第一の部分同様、第二の部分が、抗原提示細胞上の相補リガンド(例えばシグナル-2リガンド)と結合可能であることが好ましい。例えば、LFA-1由来のペプチドを、BPIのこのシグナル-2部分として用いる場合、APC表面上のICAM-1に結合するべきである。さらに、APC上のシグナル-2リガンドとのこの結合が、この部分の親受容体(T細胞上)のこの同一のAPCリガンドへの結合を阻害するかまたは改変することが好ましい。

【0022】

上に説明するように、免疫反応はシグナル2つの機構を伴い、そして本発明の目的は、所

10

20

30

40

50

定の免疫反応を、例えば1型免疫から2型免疫に、または2型免疫から1型免疫に変更することである。免疫反応表現型のこの変更またはシフトは、本発明にしたがったBPIによって達成される。いくつかの場合、BPIが、免疫反応を、 $T_H 1$ 優性または細胞溶解免疫反応から、 $T_H 2$ 優性反応に変更することが好ましく；そして、他の場合、BPIが、免疫反応を、 $T_H 2$ 優性反応から、 $T_H 1$ または細胞溶解優性反応に変更することが好ましい。ある場合、BPIは、非常に特異的なT細胞表現型、例えばペプチド特異的サプレッサーT細胞の活性化を介して作動する可能性がある。抗原が $T_H 1$ 反応に向かう系を刺激する名目上の状況と対照的に（図2に示す）、GAD 65 - CD11a BPIに類似したBPIが免疫シナプスに導入される際に生じる反応は非常に異なり、反応を1型から2型にシフトするよう作動する。この状況を図2に模式的に示す。この方式で、シグナル-1部分、柔軟な非基質リンカー、およびシグナル-2部分を含んでなるBPIを形成し、そして免疫シナプスに導入する。TCRがAPC上のペプチド：MHC複合体を認識し、そして一次シグナルを開始する。しかし、BPIの第二の部分（シグナル-2部分）が、LFA-1 / ICAM-1（または他のBPI：CTLA-4 / B7、またはCD40L / CD40、またはFasL : Fas）間で典型的なシグナル-2相互作用が生じるのを遮断し、そして中央クラスターへのTCRの転位置を遮断する。LFA-1 / ICAM-1またはCTLA-4 / B7相互作用が、特定のBPI構築物に標的とされるのかどうかに応じて、おそらくMHC-II：ペプチド複合体を二次シグナルリガンドに束縛することによって、シグナルは、異なる分化方向に改変されるであろう。例えば、BPIのシグナル-2ペプチド部分がLFA-1由来である場合、このことはCD40リガンド発現の減少、したがってIL-12放出を欠如させるように助けるであろう。対照的に、最初のT細胞活性化中に放出されるIL-4は、シナプス周囲に、より高いレベルで集積するであろう。IL-4のこの集積は、未処置T細胞におけるStat6およびGATA-3上方制御を導き、そして最終的に、2型パターンへの拘束を導く。あるいは、BPIのシグナル-2部分のペプチド部分がCTLA-4由来である場合、CTLA-4およびCD-28のB7リガンドへの通常の結合が影響を受け、そしてしたがってより多くのCD40リガンドが発現され（すなわち高親和性LFA-1 : ICAM-1のより大きい役割が、B7受容体を遮断することによって決定づけられる）；したがって、IL-12の放出が増加する。インターロイキン-12は、未処置T細胞がより多くのIFN- γ およびIL-2を産生するよう誘導または刺激し、こうして1型免疫に向かう正のフィードバックをもたらす。これらの2つのサイトカイン（IL-2およびIFN- γ ）は、細胞傷害性Tリンパ球（CTL）のクローン性増殖、マクロファージ活性化、および感作細胞の補体溶解を仲介するIgGアイソタイプへのクラススイッチなどの古典的細胞仲介機能に関与する。こうした反応は、ヒトウイルス疾患に対する防御免疫の顕著な特徴である。これはまた、TCRエピトープをFasの受容体に連結するのにも作動するであろう。Fas : FasL相互作用はアポトーシスを支配するため、アポトーシス事象を遮断することによって、特定のTCRを持つ細胞の頻度を増加させることもできるであろう。これは、HIV、HPV、HCV、および癌に対するBPI設計に重要であろう。

【0023】

したがって、本発明の重要な側面は、特定のTCRエピトープをシグナル-2受容体ペプチド模倣体に束縛すると、これらの受容体のみを持つT細胞および/またはこれらのペプチド特異的サブセットに間接的に結び付けられるT細胞集団が関与するT細胞分化の改変が導かれることである。所定の免疫優性ペプチド抗原に対するT細胞反応を遮断するかまたは改変する能力は、免疫病理学的状態に対する非常に正確な処置を提供するであろう。現在の免疫療法の主な欠点は、広い特異性範囲のT細胞が影響を受けるため、宿主を感染および癌により罹りやすいままですることである。本発明のBPIは、所望のT細胞集団およびこれらの初期T細胞に依存して起こる反応だけを遮断および/または改変するはずである。また、BPIは、所望のエフェクター機能へと活性化させるために、特定のTCRを有する集団を標的とするであろう。

【0024】

10

20

30

40

50

本発明の別の側面において、T細胞 - APC相互作用によって生じるシグナルの相対強度は、最終的な免疫反応が1型または2型反応であるかどうかに影響を及ぼす。これに関連して、*Murrray, MHCはどのようにT_H1 / T_H2免疫を選択するか, 19 Immunology Today 157 - 163 (1998)*の解説が本明細書に援用される。

【 0 0 2 5 】

本発明の別の側面において、APC上のMHCおよびシグナル-2リガンドに結合可能なペプチドとAPCとを接触させ、そしてT細胞に伝達されるシグナルの改変を引き起こすことによって、免疫反応を変更する。こうして、免疫反応は、免疫原ペプチドやその対応する抗原（すなわち感染性病原体、自己タンパク質、またはアレルゲン）と一般的に関連する免疫反応から外れていく。

【 0 0 2 6 】

本発明の別の側面において、一般式 $A \times B$ を有するペプチドを提供する。A、X、およびBは、アミノ酸残基の鎖を表し、A鎖は、少なくとも約5残基を、そしてTCRエピトープと少なくとも約10%の配列相同性を有し、B鎖は、少なくとも4残基を、そしてシグナル-2部分由来のペプチドと少なくとも約10%の配列相同性を有し、そしてX鎖はリンカーである。リンカーは、天然存在アミノ酸または化学合成アミノ酸を含む、いかなるアミノ酸であってもよい。さらに、X鎖は少なくとも1残基を有する。Xを伴わず、AをBに直接連結することもまた可能であるが、APC表面上のMHC-IIおよび二次シグナルリガンド間の距離を補うため、ある程度の大きさのリンカーが好ましい。上述のように、好ましくは、プロテアーゼ攻撃に耐性であるため、非基質アミノ酸を用いるであろう。さらにより好ましくは、リンカーは、小アミノ酸または親水性アミノ酸と交互に非基質アミノ酸を含んでなるであろう。さらにより好ましくは、リンカーは、リンカーの各端に隣接するシグナル-1部分およびシグナル-2部分と共に、1つの連續配列として合成可能である。さらにより好ましくは、リンカーは、一般式(A, B)_xを有し、式中、AおよびBはアミノ酸残基であり、そしてAアミノ酸残基は、独立して、それぞれ、アミノカプロン酸、アミノヘキサン酸、アミノドデカン酸、および-アラニンからなる群より選択され、そしてBアミノ酸残基は小アミノ酸または親水性アミノ酸である。この式において、Xが1~100の範囲であることが可能である。特に代表的なB残基はグリシンである。この態様において、リンカーは、潜在的に、グリシン残基(G)と交互にアミノカプロン酸(Ac)、アミノヘキサン酸(Ahx)、アミノドデカン酸(Ado)、および-アラニン(A)を有することが可能である(例えばAc-G-Ahx-G-Ado-G-A)。リンカーを構築するのに用いる残基の選択は、リンカーの所望の長さとともに静電妨害に関する考慮、疎水性、電荷などに基づくことが可能である。1つの好ましいリンカーは、交互に現れるAcおよびG残基を含んでなる。このリンカーは、他のアミノ酸残基(Ahx、Ado、A)を選択して含むことによって、長くすることもまたは短くすることも可能である。いくつかの代表的なリンカーが、配列番号26~29として表2に含まれる。さらに、X鎖は、A鎖およびB鎖の間に配置され、そして全ペプチドは、1つの連續配列として合成可能である。いくつかの好ましい配列は、配列番号1~25のいずれか1つと少なくとも約10%の配列相同性を有するA鎖、配列番号26~29のいずれか1つと少なくとも約2%の配列相同性を有するX鎖、および配列番号30~41のいずれか1つと少なくとも約10%の配列相同性を有するB鎖、を有するであろう。ペプチドは、1型反応から2型反応へ、またはその逆のシフトを行うことが可能であることが好ましい。もちろん、ペプチド擬似体を合成して、リンカーを含む、BPIのいかなる部分も模倣することが可能である。好ましくは、A鎖はAPC上のMHCに結合して、ペプチド:MHC複合体を形成する。この複合体は、決定的なT細胞集団上にあるTCRに結合可能である。さらにより好ましくは、B鎖は、ペプチド:MHC複合体の形成と同時に、APC上のシグナル-2リガンドに結合可能である。このAPCへの結合の組み合わせは、T細胞に搬送されるシグナルを改変可能であるはずである。一次シグナルおよび二次シグナルの組み合わせは、T細胞を完全に活性化可能であり、そしてA鎖に用いるペプチドは、1型反応から2型反応へ、またはその逆のシフトを行うことが可能であることが好ましい。

10

20

30

40

50

チドおよびB鎖に用いるペプチドを選択することによって、免疫反応を通常の進行から外れさせることができる。正常に活性化された、 $T_H 1$ 細胞の上方制御を導く1型反応の場合には、この反応を、 $T_H 2$ 細胞の上方制御を導く2型反応を生じるよう改変可能である。正常に活性化された、 $T_H 2$ 細胞の上方制御を導く2型反応の場合には、この反応を、 $T_H 1$ 細胞の上方制御を導く1型反応を生じるよう、改変可能である。A鎖は、その配列と通常関連する健康状態に基づいて、選択可能である（例えば表4を参照されたい）。

【0027】

本発明の別の側面において、免疫反応を調節するペプチドを調製する方法を提供する。この方法は、TCRエピトープ由来の配列と少なくとも約10%の配列相同性を有する第一のペプチド配列を選択し、シグナル-2受容体部分由来の配列と少なくとも約10%の配列相同性を有する第二のペプチド配列を選択し、柔軟な非基質リンカーである第三のペプチド配列を選択し、そしてこれらのペプチドを連続ペプチド鎖として合成するステップを含んでなる。好ましくは、リンカーは、TCRエピトープ由来のペプチドと一端で隣接し、そしてシグナル-2部分由来のペプチドと他方の端で隣接する。好ましくは、第一のペプチド配列は、既知の健康状態と関連し、そしてAPC上のMHCと結合可能であるべきである。同様に、第二のペプチド配列が、APC上のシグナル-2リガンド部分と結合可能であることが好ましい。この方法は、TCRと名目上のペプチド免疫原を接触させ、それによって第一のペプチド配列をMHCに結合させ、そして第二のペプチド配列をシグナル-2リガンドに結合させ、それによって、一次シグナルリガンドおよび改変/遮断された二次シグナルリガンド（これらのシグナルリガンドは所望の免疫反応を活性化する強力なものである）を所持するAPCを生じるステップをさらに含んでなることが可能である。

【0028】

BPI設計に固有なのは抗原特異的部分であるが、この抗原特異的部分は、所定のT細胞集団が活性化されてそれに対して反応し（すなわちTCRエピトープ）、最終的に防御またはある場合は病的免疫反応を生じる免疫反応のカスケードを導く。これらのエピトープは、抗原提示細胞（APC）表面上の主要組織適合複合体（MHC）分子に結合した際、T細胞活性化の2シグナルの機構のシグナル-1を提供する。したがって、重要な考慮は、MHC分子に対する所定のペプチドの親和性である。マウスおよびヒトにおいて、この親和性は、ビオチン化ペプチドを、T細胞にペプチド：MHC複合体を提示する細胞に結合させることによって、直接試験した。可能性のあるペプチドエピトープに対するT細胞クローンを生成し、T細胞機能を特異的に刺激するある反応の免疫優性TCRへの結合に関して、ELISPOTアッセイによってin vitroで試験した。TCRに実際に接触するペプチド残基の変更は、BPI開発の一部であるため、MHC分子に結合するエピトープの既知の結晶構造が利用可能であることもまた、好ましい。これによって、特定のアミノ酸置換または擬似体が、発展中のT細胞が遭遇する実際の構造にどのように影響を与えるかを正確に三次元予測することが可能になる。しかし、既知の結晶構造なしでも、他のペプチド：MHC構造の入手可能な座標に基づき、仮説的なペプチド：MHC構造の形状を予測することが可能である。この予測可能性は、部分的には、確立されたペプチド結合モチーフに負うものであり、これが、エピトープのどの残基が、与えられたMHC対立遺伝子の特定の結合ポケットに、最も容易に適合するかの予測を可能にする。これらの予測は、コラーゲンペプチドに結合する2つの異なる対立遺伝子（I-A^aおよびI-A^b）結合を用いて達成される（I-A分子の各多型位をこれらの位で既知のアミノ酸で置換した）。全体の構造は、異なるペプチドに結合する参照対立遺伝子I-A^kの公表された座標に基づいた。したがって、特定の疾患関連エピトープの3D構造が知られていない場合でも、同様の対立遺伝子置換およびモデリングアプローチによって、TCRがペプチドに接触する場所を予測する構造をもたらすことができる。これらのTCR接触位を同定する（または少なくとも予測する）ことが重要である。TCR接触位に対するある種の改変は、免疫の経過を決定可能な $T_H 1$ または $T_H 2$ 型へのT細胞の機能的分化を変化可能であることがよく知られている（Murrayら、主要組織適合複合体（MHC）クラ

10

20

30

40

50

ス I I 分子は、 $T_H 1$ または $T_H 2$ 反応において、同一の免疫原ペプチドの反対側に T C R 特異性を向ける（未公表原稿、 2000 ）；および Murray ; 19 Immunology Today 157 - 163 (1998) 、この文献の解説は本明細書に援用される）。

【 0029 】

特に、ペプチドが生存 A P C 上の M H C 分子に結合することが確認された。簡潔には、脾臓細胞密度勾配分画（マウス由来）、または P B L 、または A P C 株（ヒト由来）を、増加する濃度の個々のビオチン化ペプチドと共に、丸底 96 ウェルプレート中で、 37 、 5 % C O₂ で 16 時間インキュベーションした。 A P C への B P I の結合後、アビジン - F I T C を、細胞と氷上で 30 分間インキュベーションし、その後、ビオチン化抗アビジンと 1 時間インキュベーションし、その後、再びアビジン - F I T C とインキュベーションした。 B P I 力価測定 (titration) には、滅菌 0.5 % B S A - P B S 中の 0.1 - 100 μ M へ増加する濃度のビオチン化誘導体を、上述のように、 A P C と 16 時間インキュベーションした。図 5 に示すように、予測されるとおり、 G A D 65 B P I は N O D A P C に優先的に結合する。 L F A - 1 部分または G A D 65 部分は、糖尿病系統の A P C へ対するこのような増加した結合を示さなかった。三色解析は、商業的に入手可能な、 A P C の既知の表面マーカーに対する C y - クロムまたは P E - コンジュゲート化抗体を用いた。結合ペプチドのアビジン - F I T C およびビオチン化抗アビジン検出は、 Murray ら , 24 Eur. J. Immunol. 2337 - 2344 (1994) ; Murray ; 19 Immunology Today 157 - 163 ; および Schountz ら , 157 The Journal of Immunology 3893 - 3901 (1996) に先に記載されるとおりであった。この方法のわずかな変更を用いて、生存 A P C 表面上で直接に M H C および I C A M 分子の同時キャッピングおよびペプチド阻害（すなわちペプチド親和性）を試験した。まず、 M H C または I C A M 分子に対するモノクローナル抗体 (m A b) は B P I 結合を遮断し、したがって、 B P I がこれらの分子に結合することが示された（図 6 ）。非標識ペプチドを競合アッセイで用いて、 A P C に対する B P I の相対親和性を得て、そして B P I が A P C 上の M H C および I C A M 分子を架橋する能力は、 I C A M を抗 M H C m A b で同時キャッピングすることによって調べた。ここでは、細胞を B P I とインキュベーションした。次に、抗 M H C m A b を添加した。 37 で 30 分間処理した後、細胞を氷上に移し、そして P E 標識抗 I C A M で染色した（図 7 ）。

【 0030 】

次に、 B P I で後に使用するための、 T C R エピトープを決定するため、 T 細胞クローニングを生成した。これらの実験は、先に記載する方法 (Murray ら , 24 Eur. J. Immunol. 2337 - 2344 (1994) ; Murray ; 19 Immunology Today 157 - 163 ; および Schountz ら , 157 The Journal of Immunology 3893 - 3901 (1996)) を用いて、予測される T C R エピトープに対して免疫した、ヒトまたはマウス由来の C D 4 + または C D 8 + T 細胞クローニングを用いた。これらのクローニングは、照射組織適合リンパ球、ペプチド、および組換え I L 2 で隔週、再刺激することによって維持した。所定の T C R エピトープが、サイトカイン合成の活性化に有効であるか決定するため、 E L I S P O T アッセイを用いた。もちろん、他のサイトカインアッセイもまた使用可能である。解析のためには、予測される T C R 接触位で置換した B P I を用いて、これらの B P I 变異体のうちどれが、上で解析するような、増殖、および個々のクローニングからのサイトカイン放出の阻害に最も有効であるかを決定するであろう。分子モデリングによってもたらされた構造において、予測される位を、異なるアミノ酸または擬似体でスキャンして、 T C R との相互作用を改変するであろう。

【 0031 】

次に、分子動力学 / エネルギー最小化 (M D E M) を用いて、ペプチドコンホーメーションを研究するであろう。 M D シミュレーションを結晶データと組み合わせて用いて、 B P I

10

20

30

40

50

の溶液コンホーメーションを予測するであろう。MDEMシミュレーションは、柔軟度、並びにBPIのMHC-IIおよびICAM-1への結合中のコンホーメーション変化を予測可能である。これらのモデル研究によってまず予測されるように、両受容体への同時結合を助けるため、シグナル-1部分および/またはシグナル-2部分にアミノ酸置換を導入することも可能である。I-A⁹⁷:BPI:D1構造(図8を参照されたい)は、疾患関連ペプチド:MHC構造(I-A⁹⁷:GAD65ペプチド)の結晶構造座標を用いる例である。この図では、InsightII(MSI/Biosym)を用いて、Silicon Graphic Octaneワークステーション上でドッキング研究を行った。LFA-1-ICAM-1構造は、既知の回折座標から取り、そしてI-A⁹⁷:GAD65ペプチドは既知の座標由来であった。もちろん、マウスおよびヒトの多様なMHC分子に結合するため、類似の方法を用いて、表1、2、3および4に列挙するBPIをモデリングすることが可能である。

10

【0032】

BPIプロセスの第二の段階は、T細胞の機能的分化に関与する、確立された二次シグナル受容体分子のペプチド模倣体の選択である。これらの構造を決定するため、結晶構造およびその生理学的リガンドに結合する二次シグナル受容体の入手可能なモデルを用いて、リガンドと接触する受容体の領域を予測するであろう。このアプローチを用いて

【0033】

【化1】

(EIAPVFVLLE)-(AcGAcGAc)-(ITDGEATDSG)

20

GAD65(208-217) リンカー LFA-1(237-247)

【0034】

と示すことが可能なEGAD-BPIを設計した。

これらの相互作用はまた、二次シグナル分子に部位特異的変化を作成して、そしてこうした突然変異体分子がなお、問題のリガンドに結合するかどうか決定することによって、経験的に決定可能である。しかし、これらの研究の多くは、LFA-1、CD28/CTLA4、CD40L、およびCD95Lを含む、既知の二次シグナル受容体を用いて行われてきた。分子モデリング研究を上述のように用いて、これらの二次シグナル部分とそのリガンドの相互作用を別個に、そして該部分がBPI構造の一部である場合、モデリングするであろう。

30

【0035】

MHCおよび二次シグナルリガンドに有効に結合して、そしてin vitroでT細胞機能を改変する、候補BPI部分をひとたび同定したら、これらの部分を、相対的に短い合成ペプチドの反対側で合成し、多様な長さの非タンパク質分解基質リンカーによってこれらを連結した。原型的なEGAD-BPIに記載されるように、シグナル-1部分(すなわち疾患関連TCRエピトープ)は、この柔軟なリンカーによって、シグナル-2受容体模倣ペプチド(すなわちT_H1/T_H2分化に関与すると考えられる二次シグナル受容体)に連結した。これらの合成ペプチドは、ペプチド合成の従来法によって生成した。いくつかの場合、BPIは、単離MHCおよび二次シグナルリガンドへの結合に関して試験し、そしてNMR、分子モデリングおよび結晶学を用いて、その正確な3D構造を決定する。最後に、与えられたBPIがin vivoで生物学的に活性であるかどうかを決定した。マウスをBPIで処置し、そして免疫細胞を単離し、そしてELISPOTによってサイトカイン産生に関して試験した(図9および10を参照されたい)。もちろん、他のサイトカインアッセイが一般的の当業者によく知られているであろうし、そしてELISPOTの代わりに使用可能である。NOD.Scidモデルと同様のin vivoモデル(すなわちヒトScid、トランスジェニックノックアウト系統など)を、BPI有効性のより厳密な試験として用いた(調べる各疾患に必要な変更を行ったが)。例えば、HIV-1 p24 TCRエピトープの場合、養子移植実験に、ヒト-Scidマウスを用

40

50

いる。この実験においては、患者由来のT細胞をまず、従来法によってクローニングし、そして *in vitro* で、BPIで刺激するであろう。次にこれらの細胞をヒト-Scidマウスに移植し、そしてNOD.Scid養子移植実験においてEGAD-BPIのように解析するであろう。これらの実験の結果は、図11～13に示す。

【0036】

BPIを合成するため、クロロトリチル樹脂上のFmoc化学反応を用いた。保護アミノ酸は、8倍過剰で1時間、二重カップリングした。樹脂をDMFとMeOHで洗浄し、そして試薬R:TFA、EDTA、チオアニソール、アニソール中で切断した。溶液中にペプチドを含有するTFA混合物は、エーテル中で沈殿させ、そして徹底的に洗浄した。ペプチドの調製用HPLCは、0.1%TFA中の0-80%アセトニトリルの勾配によって達成した。多様な分画の凍結乾燥およびVoyager質量分析計(PerSeptive、カリフォルニア州フォスター・シティー)を用いたMALDI-TOFによる確認によって、TFA塩として、合成ペプチドを得た。上述のようなモデリング、結晶学および結合についての研究を用いて、予測されるBPI複合体構造を作り出した。

【0037】

糖尿病BPIを *in vivo* で試験する別の例において、1500万の疾患関連リンパ球(すなわち患者T細胞、または疾患過程に関連するT細胞集団)を、(*in vivo* または *in vitro* で) BPI化合物を投与したT細胞を含みまたは含まずに注入し、そして組換えIL-2中、24時間増殖させた。いくつかの実験では、養子移植の前に、CD154、CD25、CD62L、CD152などに対するmAbおよび磁気粒子を用いてT細胞の特定のサブセットを枯渇させるであろう。BPIの個々の部分で処理したT細胞(マウスまたはヒト由来)が、生理食塩水のみで処置したマウス由来のCD4+細胞と共に、陰性対照として用いられるであろう(図9)。自発的糖尿病をブロックするため、5つの群の10匹のメスNODマウス(12週齢)を用いて、標準的糖計測装置(AccuChek-complete、Roche Diagnostics)を用いて、非糖尿病性血液グルコースレベルをモニターした。各マウスを標識し、そして実験の経過中、毎週、それぞれの血液グルコースレベルをモニターした。この5群には、(a)8週齢でBPIの静脈内(i.v.)注射(100μg、100μl内毒素不含生理食塩水/注射液中)、(b)同用量のGAD65(208-217)エピトープのみ、(c)同用量のCD11a(237-247)ペプチドのみ、または(d)生理食塩水のみ、のいずれかを投与した。他の系に関しては、異なるシグナル-1ペプチド、シグナル-2ペプチド、BPIを伴う同様の処置群を用いるであろう。マウスは、問題の特定のBPIに応じて、適切な感染性病原体または抗原での攻撃によって試験されるであろう。

【0038】

免疫組織学によって疾患過程を評価するため(例えば図12A～Dを参照されたい)、脾臓、臍臓、または他の標的器官(例えばMBPペプチドBPIに関してはCNS、またはRSVペプチドBPIに関しては肺)を、各群の安樂死させたマウスから除去し、そして中性緩衝ホルマリン中で固定しパラフィン中に包埋することによって組織像用に調製するか、またはO.C.T.培地中で瞬間凍結した。炎症をスコア化するため、各マウスから最小5切片を用いて、与えられたBPIのブロッキング効果を評価した。細胞浸潤上の標準的T細胞マーカーを性質決定するため、多様な細胞表面抗原に対するビオチン化mAbをクリオスタッフ切片とそれぞれインキュベーションし(2時間)、その後、アビジン-アルカリホスファターゼ(Vector laboratories)とインキュベーションするであろう。あるいは、細胞サブセットは、Murrayら、24 Eur.J. Immunol. 2337-2344(1994); Murray; 19 Immunology Today 157-163; およびSchountzら、157 The Journal of Immunology 3893-3901(1996)に記載されるような標準的フローサイトメトリー法によって表現型決定されるであろう。最後に、スチューデントt-検定またはANOVAを用いて、群および個々のマウス間に観察される統計学的有意差を推定するであろう。

10

20

30

40

50

【0039】

リンカーを介して共に連結されるシグナル - 1 部分およびシグナル - 2 受容体部分からなる、組み立てられたBPIのいくつかの代表を、配列番号42～46として、表4に示す。これらの代表的なBPIは、1型から2型反応に、そしてその逆に、特定の免疫反応をシフトするよう作動可能である。都合よいことには、他の抗原性ペプチドに対する他の免疫反応は、好ましくは影響を受けないであろう。

【0040】

(好ましい態様の詳細な説明)

本出願において、以下の定義が適用されるであろう：「配列同一性」は、当該技術分野に知られるように、2以上のポリペプチド配列または2以上のポリヌクレオチド配列、すなわち参照配列と与えられた配列（参照配列と比較しようとする配列）との関係を指す。配列同一性は、こうした一連の配列間のマッチによって決定されるような、最高の度合いの配列類似性を生じるように配列を最適に並列した後、参照配列に所定の配列を比較することによって決定する。こうした並列に際して、配列同一性は、位対位に基づいて確かめ、例えば、特定の位で、ヌクレオチドまたはアミノ酸残基が同一であるならば、配列はその位で「同一」である。その後、こうした位同一性の総数を、参照配列におけるヌクレオチドまたは残基の総数で割って、%配列同一性を得る。配列同一性は、限定されるわけではないが、Computational Molecular Biology, Lesk, A.N.監修, Oxford University Press, ニューヨーク(1988), Biocomputing: Informatics and Genome Projects, Smith, D.W.監修, Academic Press, ニューヨーク(1993); Computer Analysis of Sequences Data, Part I, Griffin, A.M.およびGriffin, H.G.監修, Humana Press, ニュージャージー(1994); Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press(1987); Sequence Analysis Primer, Gribskov, M.ら監修, M. Stockton Press, ニューヨーク(1991);およびCarillo, H.ら, Applied Math., 48:1073(1988)に記載されるものなどを含む、既知の方法によって、容易に計算可能であり、これらの文献の解説は、本明細書に援用される。配列同一性を決定するのに好ましい方法を設計して、試験する配列間の最大マッチを得る。配列同一性を決定する方法は、与えられた配列間の配列同一性を決定する、公共に入手可能なコンピュータプログラムに体系化されている。こうしたプログラムの例には、限定されるわけではないが、GCGプログラムパッケージ(Devereux, J.ら, Nucleic Acids Research, 12(1):387(1984))、BLASTP、BLASTNおよびFASTA(Altschul, S.F.ら, J. Molec. Biol., 215:403-410(1990))が含まれる。BLASTXプログラムはNCBIおよび他の供給源から公共に入手可能である(BLASTマニュアル, Altschul, S.ら, NCVI NLM NIH Bethesda, MD 20894, Altschul, S.F.ら, J. Molec. Biol., 215:403-410(1990))、これらの文献の解説は、本明細書に援用される)。これらのプログラムは、与えられた配列および参照配列間に最高レベルの配列同一性を生じるため、デフォルトギャップ加重を用いて、配列を最適に並列する。例えば、参照ヌクレオチド配列に、少なくとも例えは95%の「配列同一性」を有するヌクレオチド配列を有するポリヌクレオチドによっては、与えられたポリヌクレオチド配列のヌクレオチド配列が、参照ヌクレオチド配列の各100ヌクレオチドあたり5までの点突然変異を含むことが可能であること以外は、参照配列と同一であることを意図する。言い換えると、参照ヌクレオチド配列に比較して、少なくとも95%の同一性を有するヌクレオチド配列を有するポリヌクレオチドにおいて、参照配列中の5%までのヌクレオチドが、欠失しているかまたは別の

10

20

30

40

50

ヌクレオチドで置換されていることが可能であり、あるいは、参照配列の総ヌクレオチドの 5 %までの数のヌクレオチドが、参照配列に挿入されていることが可能である。参照配列のこれらの突然変異は、参照ヌクレオチド配列の 5' または 3' 末端位で、あるいはこれらの末端位の間のどこかで、参照配列のヌクレオチドの間に個々に分散しているかまたは参照配列内の 1 以上の隣接基で、生じることが可能である。同様に、参照アミノ酸配列に、少なくとも、例えば 95 %の配列同一性を有する所定のアミノ酸配列を有するポリペプチドによって、このポリペプチドの所定のアミノ酸配列が、参照アミノ酸配列の各 100 アミノ酸あたり 5 アミノ酸までの改変を含むことが可能であること以外は、参照配列に同一であることを意図する。言い換えると、参照アミノ酸配列に比較して、少なくとも 95 %の配列同一性を有する所定のポリペプチド配列を得るには、参照配列中の 5 %までのアミノ酸残基が、欠失しているかまたは別のアミノ酸で置換されていることが可能であり、あるいは、参照配列のアミノ酸残基総数の 5 %までの数のアミノ酸が、参照配列に挿入されていることが可能である。参照配列のこれらの改変は、参照アミノ酸配列のアミノまたはカルボキシ末端位で、あるいはこれらの末端位の間のどこかで、参照配列の残基の間に個々に分散しているか、または参照配列内の 1 以上の隣接基で、生じることが可能である。同一でない残基位は、保存的アミノ酸置換によって異なることが好ましい。しかし、保存的置換は、配列同一性を決定する際のマッチには含まれない。

【 0 0 4 1 】

同様に、「配列相同性」もまた、本願において、2 つの配列の関連性を決定する方法を指す。配列相同性を決定するため、2 以上の配列を上述のように最適に並列し、そして必要な場合、ギャップを導入する。しかし、「配列同一性」と対照的に、保存的アミノ酸置換は、配列相同性を決定する際のマッチに数える。言い換えると、参照配列と 95 %の配列相同性を有するポリペプチドまたはポリヌクレオチドを得るには、参照配列中のアミノ酸残基またはヌクレオチドの 95 %は、別のアミノ酸またはヌクレオチドとマッチするか、またはそれらとの保存的置換を含んでならなければならず、あるいは、参照配列において、保存的置換を含まない、総アミノ酸残基または総ヌクレオチドの 5 %までの数のアミノ酸またはヌクレオチドが、参照配列に挿入されることが可能である。

【 0 0 4 2 】

「保存的置換」は、アミノ酸残基またはヌクレオチドの置換であって、全体の機能性が顕著に変化しないように、同様の特徴または特性（サイズ、荷電、疎水性など）を有する別のアミノ酸残基またはヌクレオチドでの、アミノ酸残基またはヌクレオチドの置換を指す。

【 0 0 4 3 】

「単離」は、「人の手によって」天然状態から改変されること、すなわち天然に生じる場合、その元来の環境から変化したかまたは除去されているか、あるいは両方であることを意味する。例えば、生存生物に天然に存在するポリヌクレオチドまたはポリペプチドは、「単離」されていないが、該用語を本明細書において使用する際、天然状態の同時存在物質から分離されている、同じポリヌクレオチドまたはポリペプチドは、「単離」されている。最後に、本明細書に明らかには援用されていない、本明細書に引用する参考文献および解説はすべて、本明細書に援用される。

【 0 0 4 4 】

配列番号 1 ~ 46 のいずれか 1 つと少なくとも約 10 %の配列同一性を有する配列を含むかまたは有し、かつ A P C への同様の結合特性または 2 つのペプチド配列間の連結特性を示す配列が、本発明の範囲内である。好ましくは、こうした配列は、配列番号 1 ~ 46 のいずれか 1 つと、少なくとも約 30 %の配列同一性、さらにより好ましくは、少なくとも約 50 %の配列同一性、さらにより好ましくは、少なくとも約 70 %の配列同一性、そして最も好ましくは、少なくとも約 95 %の配列同一性を有するであろう。あるいは、配列番号 1 ~ 46 のいずれか 1 つと少なくとも約 10 %の配列相同性を有する配列を含むかまたは有し、かつ A P C への同様の結合特性または 2 つの隣接ペプチド配列間の連結特性を示す配列が、本発明に含まれる。より好ましくは、こうした配列は、配列番号 1 ~ 46 の

10

20

30

40

50

いずれか1つと、少なくとも約30%の配列相同性、さらにより好ましくは、少なくとも約50%の配列相同性、さらにより好ましくは、少なくとも約70%の配列相同性、そして最も好ましくは、少なくとも約95%の配列相同性を有するであろう。さらに、突然変異事象、一連の突然変異事象、または化学的誘導体化により、配列番号1～46のいずれか1つと異なってはいるが、なお、望ましい特性を示す配列もまた、本発明に含まれる。こうした突然変異事象または誘導体化には、限定されるわけではないが、点突然変異、欠失、挿入、再編成、ペプチド擬似体、および他の化学的修飾が含まれる。

【0045】

「リンカー」は、天然存在アミノ酸または化学合成アミノ酸を含む、いずれかのアミノ酸と定義する。好ましくは、「リンカー」は、タンパク質分解性分解に耐性であるアミノ酸残基の柔軟な非基質配列であり、シグナル-1部分をシグナル-2部分にコンジュゲート化および/またはカップリングするのに使用可能である。

【0046】

「シグナル-1部分」は、ペプチドエピトープ、すなわち、重要なT C Rが結合する、抗原のペプチド部分および/またはこれらの抗原性ペプチドの擬似体と定義する。

「シグナル-2部分」または「シグナル-2受容体部分」は、A P C上の相補リガンドに結合するおよび/または受容体がA P C上のその相補リガンドに結合するのに影響を及ぼす、二次シグナル受容体のペプチド部分と定義する。これは、目的の受容体/リガンド構造のペプチド模倣体および擬似体を含むことが可能である。

【0047】

「シグナル-2リガンド」は、受容体部分および/またはシグナル-2受容体部分が顕著な親和性を有しそして結合する、A P C上のシグナル-2受容体部分の相補タンパク質である。

【0048】

本明細書において、「誘導体」は、ペプチドに関しては、アミノ酸付加、欠失、交換、置換、および/または修飾によって生じる変化；組換えおよび/またはD N Aシャッフルリングによって生じる突然変異体；および部分的に、ペプチドの塩、溶媒和物、および他の化学合成/修飾型であって単離天然ペプチドの活性を保持するものを指す。

【0049】

B P Iは、標準法によって、F m o cアミノ酸化学反応を使用する、ロボット多重ペプチド合成装置による自動化ペプチド合成を用いて生成した。W a n g樹脂(p-ベンジルオキシベンジルアルコールポリスチレン)を固体支持体として用いた。ペプチドは、逆相H P L Cおよびエレクトロスプレー質量分析によって性質決定した。メリフィールドペプチド合成と呼ばれるこの合成は、ペプチド鎖を長くしながら支持体構造に付着させるように、固体支持体上で行う伝統的有機化学反応を利用する。ペプチドは、T F Aを用いて樹脂から切断し、そして逆相H P L Cによって精製し、そして質量分析によって解析するであろう。あるいは、これらの反応は、より多い量のペプチドが望まれる場合、溶液中で行うことが可能である。もちろん、本発明のペプチドは、当該技術分野によく知られたいいくつかの技術によって合成するかまたは調製することが可能である。例えば、本明細書に完全に援用される、C r e i g h t o n , 1 9 8 3 , P r o t e i n s : S t r u c t u r e s a n d M o l e c u l a r P r i n c i p l e s , W . H . F r e e m a n a n d C o . , ニューヨークを参照されたい。例えば、短いペプチドは、固体支持体上で、または溶液中で、合成可能である。より長いペプチドは、組換えD N A技術を用いて作成可能である。ここで、一般的な当業者に公知の技術にしたがって、本発明のペプチドをコードするヌクレオチド配列を合成、および/またはクローニングし、そして発現させることが可能である。例えば、S a m b r o o k ら , 1 9 8 9 , M o l e c u l a r C l o n i n g , A n i s L a b o r a t o r y M a n u a l , V o l s . 1 - 3 , C o l d S p r i n g H a r b o r P r e s s , ニューヨークを参照されたい。

【0050】

10

20

30

40

50

あるいは、本発明のペプチドは、ペプチドのアミノ酸残基を連結する1以上の結合が非ペプチド結合であるように、合成可能である。これらの代替の非ペプチド結合は、当業者に公知の反応を利用することによって形成可能であり、そして限定されるわけではないが、いくつかのみを挙げると、アミノ、エステル、ヒドラジド、セミカルバジド、およびアゾ結合を含むことが可能である。本発明のさらに別の態様において、上述の配列を含んでなるペプチドは、例えば、ペプチドの安定性、生物学的利用能、および/または阻害活性を増進させるように、アミノおよび/またはカルボキシ末端に存在するさらなる化学基を含んで合成することが可能である。例えば、カルボベンゾキシル、ダンシル、または t -ブチルオキシカルボニル基などの疎水性基をペプチドのアミノ末端に付加することが可能である。同様に、アセチル基または9-フルオレニルメトキシ-カルボニル基をペプチドのアミノ末端に置くことが可能である。さらに、疎水性基、 t -ブチルオキシカルボニル、またはアミド基をペプチドのカルボキシ末端に付加することが可能である。

10

20

30

40

50

【0051】

あらかじめ形成されたペプチドが商業的なペプチド合成実験室から容易に購入可能であるため、これらを購入することによって、25アミノ酸以下を有するペプチドの別の代替供給源が提供される。後の合成スキームにおいて、ペプチド擬似体化合物を、ペプチド部分の代わりに合成し、そして同じ化学反応によって連結することが可能である。ペプチド擬似体の設計は、確立された技術であり、そしてペプチドの重要なアミノ酸の既知の相關物を、先に公表された方法によって、合成可能である。さらに、当該技術分野によく知られているように、本明細書に詳細に記載する好ましいペプチドと同じ調節特性を有するペプチド擬似体を開発可能である。これらのペプチド擬似体は、常用的な当該技術分野の技術以上のものを必要とすることなく作り出せるため、こうしたペプチド擬似体は、本出願に含まれる。特に、これらのペプチド擬似体の側鎖は本明細書の好ましいペプチドの側鎖と構造が非常に類似であろうが、そのペプチド主鎖は非常に異なるかまたはまったく似ていなくてもよい。*in vivo*での分解に対する耐性またはより大きいコンホーメーション安定性が望ましい場合、本発明のペプチドは、いかなる公知の方法によって、環化することも可能である。1つのこうした方法は、NおよびC末端にペニシラミン(Pen)およびシステイン(Cys)残基を付加して、PenおよびCys残基間のジスルフィド結合を介した環状ペプチドを形成する。この環状ペプチドの形成は、ペプチドコンホーメーションを制限して、コンホーメーション安定性を生じ、それによって、その直鎖対応物よりも、細胞表面受容体に対する、より優れた選択性を提供する。

【0052】

シグナル-1部分およびシグナル-2部分間に渡るBPIの部分をリンカーと称する。上述のように、リンカーは、BPIを形成するのに必須ではない。しかし、リンカーを用いる場合、リンカーは、いかなる天然存在アミノ酸または化学合成アミノ酸であることも可能である。好ましくは、リンカーは、プロテアーゼ攻撃を妨げるのを補助する非基質アミノ酸残基鎖である。特に好ましいリンカーは、非天然アミノ酸であるアミノカプロン酸(Ac)、およびアミノ酸グリシン(G)の反復鎖である(例えばAc-G-Ac-G-Ac)。リンカーにもっと短い長さが必要である場合、1以上のAc残基をベータ-アラニン残基(A1a)で置き換えることが可能である。リンカーにもっと長い鎖が必要である場合、1以上のAc残基をアミノ-ドデカン酸残基(Add)で置き換えることが可能である。当該技術分野によく知られているように、これらのリンカーアミノ酸のペプチド擬似体もまた、合成してBPI構造に挿入することが可能である。

【0053】

以下の実施例は、本発明の好ましい態様を示す。しかし、これらの実施例は、例示のためにのみ提供するものであり、実施例中のいずれも本発明の全体の範囲に対する限定とみなしてはならないことを理解すべきである。

【0054】

(実施例1)

本実施例は、BPIを作り出す方法を記載する。

材料および方法：

ペプチド合成は、クロロトリチル樹脂上の F m o c を介した。保護アミノ酸は、8倍過剰で1時間、二重カップリングした。樹脂を、ジメチルホルムアミド(DMF)とメタノール(MeOH)で洗浄し、そして試薬 R：トリフルオロ酢酸(TFA)、エチレンジアミン四酢酸(EDTA)、チオアニソール、アニソール中で切断した。溶液中にペプチドを含有する TFA 混合物は、エーテル中で沈殿させ、そして徹底的に洗浄した。ペプチドの調製用 HPLC は、0.1% TFA 中の 0 ~ 80% アセトニトリルの勾配によって達成した。多様な分画の凍結乾燥および質量分析による確認によって、TFA 塩として、合成ペプチドを得た。モデリング、結晶学および結合についての研究は上述のとおりである。

【0055】

10

結果：

本実施例で作り出したペプチドを表 1 に示し、配列番号 1 ~ 46 としても列挙する。これらのペプチドには、シグナル-1 部分、シグナル-2 部分およびこれら 2 つの部分間の非基質リンカーが含まれる。BPI を作り出すために、上述のペプチド合成を用いて、いかなるシグナル-1 部分を、いかなるシグナル-2 部分に、いかなるリンカーを介して、連結することも可能である。言い換えると、BPI は、シグナル-1 ペプチド配列、続いてリンカー配列、続いてシグナル-2 ペプチド配列を含んでなる 1 つの連続ペプチド鎖として作り出される。さらに、いくつかの代表的な BPI を、後に実験で使用するためにつくった。これらの BPI は、本明細書において、表 4 に含まれる。しかし、これらの BPI は代表(表 1 - 4 に列挙される各 BPI 部分も同様)であり、そしてまったく包括的でないことに注目することが重要である。

【0056】

20

表 1. シグナル-1 ペプチド

【0057】

【表 1】

配列番号	配列	名称、供給源	生物	健康障害
1	EIAPIVFFVLLIE	GAD65 (208-217)	ヒト (Homo sapiens)	1型糖尿病
2	EIAPIVFFVLLIE	GAD67 (217-226)	マウス (Mus musculus)	1型糖尿病
3	QYMRAADQAAGGLR	コラーゲンII (1168-1180)	ヒト	慢性腸筋リウマチ
4	RVVTKNKTDTII	エルシニア HSP (322-333)	腸炎エルシニア (Yersinia enterocolitica)	反応性腸筋炎
5	ENPVVHFFKNIVTPR	ミエリシンBP (84-98)	ヒト	多発性硬化症
6	GYKVLVLNPSVAAT	HCV, NS3 (1248-61)	C型肝炎ウイルス	肝炎
7	GSDTITLPCRIKQFINMWQE	HIV, gp120 (410-429)	HIV-1	AIDS
8	PIVQNLQGQMVHQAIISRTL	HIV, p24 (133-152)	HIV-1	AIDS
9	STPESANL	STV, Tat (28-35)	サル免疫不全ウイルス	サル AIDS
10	AICKRUPNKKPGKKT	RSV, G (183-197)	呼吸器合胞体ウイルス	喘息
11	VYRDGNPYA	HPV 16, E6 (60-68)	ヒトペピローマウイルス (HPV)	子宮頸癌
12	DRAHYNI	HPV 16, E7 (48-54)	HPV	子宮頸癌
13	YMLDLQPETT	HPV 16, E7(11-20)	HPV	子宮頸癌
14	ASDLRITQQQLMGTV	HPV 33, E7 (73-87)	HPV	子宮頸癌
15	AELYHFLLYKXRAR	MAGE (3114-3126)	ヒト	黒色腫
16	LLKYRAREPVTKAE	MAGE (3120-3133)	ヒト	黒色腫
17	EQVAQYKALPVVLENA	Fel d 1 (22-37)	ネコ (Felis domesticus)	ネコアレルギー
18	KALPVVLENARILKNCV	Fel d 1(28-44)	ネコ	ネコアレルギー
19	LVPVCAWAGNVCGEKRAYCCS	Amb a 5 (1-20)	アンブロジア・アルテニシーフデイ (Ambrosia artemisiifolia) アンブロジア・トリフィダ (Ambrosia trifida)	アブタクサアレルギー
20	PIGKYCVCYDSKALCNKNT	Amb t 5 (21-40)	トリフィダ (Ambrosia trifida)	アブタクサアレルギー
21	KSMKVTVAFNQFGPN	Cry j 1 (211-225)	スギ (Cryptomeria japonica)	スギアレルギー
22	IDIFASKNFHQKNTIGTG	Cry j 2 (182-200)	スギ	スギアレルギー
23	YFVGKMYFNLIDTKYK	ホスホリパーゼ2 (81-97)	セイヨウミツバチ (Apis mellifera)	ハチアレルギー
24	ASEQETADATPEKEEPTAAP	Rev b 5 (37-56)	バラゴムノキ (Hedera brasiliensis)	ラテックス
25	FGISNYCQIYPPNANK1	Der p 1 (111-127)	ヤケヒヨウダニ (Dermatophagoides pteronyssinus)	チリダニ

【 0 0 5 8 】
表2. リンカー
【 0 0 5 9 】
【 表 2 】

配列番号	配列
26	Ac-G-Ac-G-Ac
27	Ac-G- β Ala-G-Ac
28	Ac-G-Adod-G-Ac
29	Ahx-G-Ahx-G-Ahx

【 0 0 6 0 】

10

表 3 . シグナル - 2 ペプチド

【 0 0 6 1 】

20

【 表 3 】

配列番号	配列	供給源	生物	免疫シフト
30	ITDGEATDSG	CD11a (237-247)	ヒト	1型→2型
31	TDGEATDSGN	CD11a (238-248)	ヒト	1型→2型
32	ASPGKATEVR	CTLA4 (24-33)	ヒト	2型→1型
33	SPSHNTDEVR	CTLA4 (24-33)	マウス	2型→1型
34	KVELMYPPPYYL	CTLA4 (93-104)	ヒト	2型→1型
35	KVELMYPPPYFV	CTLA4 (93-104)	マウス	2型→1型
36	ITDGEATDSG	CD11a (237-247)	マウス	1型→2型
37	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	ヒト	1型→2型
38	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	マウス	1型→2型
39	YMRNSKYRAGGAYGP G	Fas リガンド (CD95L) (143- 155)	ヒト	2型→1型
40	YMRNSKYRAGGAYGP G	Fas リガンド (CD95L) (143- 155)	マウス	2型→1型
41	TDGEATDSGN	CD11a (238-248)	マウス	1型→2型

30

40

【 0 0 6 2 】

表 4 . いくつかの代表的な B P I

【 0 0 6 3 】

【 表 4 】

TCRエピトープ	リンカー	シグナル-2 受容体部分	完全BPI配列	配列番号	効果
(GAD65) 糖尿病： ELAPVFVILE	AcGAcGAc (CD11a) ITDGEATDSG	(Fa s-リガンド) YMRNSKYRAGGAYGPG	ELAPVFVILEAcGAcGAcITDGEATD SG	42	1型→2型
(tat) AIDS: STPESANL	AcGAddoGAc	(Fa s-リガンド) YMRNSKYRAGGAYGPG	STPESANLAcGAddoGAc YMRNSKYRAGGAYGPG	43	1 CTL
(p24)	AcGAcGAc (CTLA4)	KVELMYPPPYFV	PIVQNLQQQMVKHQAIISPRTLAcGAc GACKVELMYPPPYFV	44	1 1型
PIVQNLQQQMVKHQAIISPRTL (コラーゲン I I) 慢性関節リウマチ： QYMRADQAAGGLR	AcGA1nxGAc (CD40L)	KGYYTMSNNLVTL	QYMRADQAAGGLRAcGA1nxGAcKG YYTMSNNLVTL	45	1型→2型
(HPVE7) 子宮頸癌 YMLDLQPETT	AcGAcGAc	(Fa s-リガンド) YMRNSKYRAGGAYGPG	YMLDLQPETTAcGAcGAcYMRNSK YRAGGAYGPG	46	1 CTL

【0064】

考證：

リンカー、シグナル-1部分、およびシグナル-2部分をひとつび選択したら、上述の方法を用いて、完全なBPIが合成可能である。本発明と組み合わせて使用可能な、潜在的なシグナル-1部分は数千ある。これらの部分は各々、別個の免疫学的反応または疾患状態と関連する可能性がある。エピトープ構造および配列をひとつび決定したら、適切なり

ンカーを選択し、そして BPI の他の部分、すなわち二次シグナル部分を選択することが可能である。これらの配列すべてを決定したら、ペプチド配列自体、ペプチド擬似体、または 2 つの組み合わせを用いて、BPI を設計することが可能である。適切なペプチド擬似体の構築は、その内容および解説が本明細書に援用される、*Falcionil, 17 Nature Biotechnology, 562-567 (1999)* に詳述される。

【0065】

図 8 は、本発明の方法によって產生した、CD11a (237-247) 二次シグナル部分に連結した TCR エピトープ、GAD65 (208-217) の構造を例示する。これは、I-A⁹⁷ の溝および ICAM-1 の D1 ドメインに結合することが示される。I-A⁹⁷ : GAD65 ペプチド構造をモデリングするため、Insight II ソフトウェア (MSI / Biosym) を用いて、Silicon Graphic Octane ワークステーション上でドッキング研究を行った。LFA-1 ペプチド : ICAM-1 ドメイン構造は、その解説および開示が本明細書に援用される、*Edwards, C. P. ら, J. Biol. Chem. 273: 28937 (1998)* のドッキングモデルに基づく。I-A⁹⁷ のアルファ炭素リボンはピンクで示し；ICAM-1 の D1 は明るい青で示し；BPI は、原子によって、炭素は緑、酸素は赤、そして窒素は青で示す。この構造は、GAD65 (208-217) - [Ac-G-Ac-G-Ac] - CD11a (237-247) と命名可能である。好都合には、リンカーの長さは、シグナル - 1 部分とシグナル - 2 部分との間を最適な長さにつなぐため、必要に応じてまたは得られた実験データいすれかに示されるように、変更可能である。

【0066】

これらの構造は、模式的に (図 2 および 3)、および構造モデル (図 8) に示す予備的機構によって例示する。用いたリンカーは配列 - [Ac-G-Ac-G-Ac] - を有する。リンカーを長くするため、アミノドデカン酸の代わりに 1 以上のアミノカプロン酸 (Ac) 残基が使用可能である。リンカーを短くするため、アミノカプロン酸の代替物としてベータ - 2 アラニンが使用可能である。

【0067】

もちろん、一般の当業者の 1 人が、BPI と類似の活性を有するであろういかなる数のペプチド擬似体または誘導体を產生することも可能であり、そしてこうした修飾は、上により詳細に記載されるように、本発明に含まれる。

【0068】

(実施例 2)

本実施例は、ビオチン化 BPI を用いて、非標識ペプチドまたは生存 APC 上の MHC - II および ICAM-1 に対するモノクローナル抗体による BPI 結合の競合的阻害について試験し、そして生存 APC に対する抗原性ペプチド結合を確める。さらに、MHC - II または ICAM-1 に対するモノクローナル抗体が、糖尿病 BPI (GAD65 (208-217) - [Ac-G-Ac-G-Ac] - CD11a (237-247)) (以後、EGAD - BPI と称する) の NOD 脾臓細胞への結合を有效地に遮断することを示した。

【0069】

材料および方法 :

ビオチン化 BPI を得るため、合成した EGAD BPI を、*Murrray ら, 24 Eur. J. Immunol. 2337-2344 (1994)* に記載されるように、NHS - ビオチンでビオチン化した。正常 (非免疫) NOD、BALB/c および他の MHC コンジェニック系統由来の脾臓細胞密度勾配分画を、増加する濃度の個々のビオチン化ペプチドと共に、丸底 96 ウェルプレート中、37 °C、5% CO₂ で 16 時間インキュベーションした。BPI の APC への結合後、アビジン - FITC を、氷上で細胞と 30 分間インキュベーションし、その後、ビオチン化抗アビジンと 1 時間、その後、再びアビジン - FITC とインキュベーションした。BPI 力価測定のため、滅菌 0.5% B

10

20

30

40

50

S A - P B S 中の 0 . 1 - 1 0 0 μ M へ増加する濃度のビオチン化誘導体を、上述のように、A P C と 16 時間インキュベーションした。三色解析は、C y - クロムまたはP E - コンジュゲート化抗B 2 2 0 (m A b R A 3 - 6 B 2 (C D 4 5 R B 細胞マーカー))、抗M H C クラスI I (K H 7 4 または 1 0 - 3 . 6 2 m A b)、または抗I C A M - 1 (3 E 2 m A b)を用いた；(すべてPh a r M i n g e n、カリフォルニア州サンディエゴから購入)。結合ペプチドは、前方 / 側方散乱解析によってゲート処理された生存細胞上で、アビシン - F I T C / ビオチン化抗アビシン / アビシン - F I T C で検出した。対照はビオチン化ペプチド以外のすべての検出試薬を含有した；各ヒストグラムについて、F A C S c a n (B e c t o n - D i c k i n s o n) フローサイトメーターで、2 0 , 0 0 0 の事象を解析した。

10

【0070】

非標識ペプチドまたは生存A P C 上のM H C - I I およびI C A M - 1 に対するモノクローナル抗体でのB P I 結合の競合的阻害について試験するため、単離したばかりの新鮮脾臓細胞分画を、あらかじめビオチン化しておいたB P I とインキュベーションした。しかし、実験のこの部分については、実験ウェルは、多様な非標識ペプチド(例えば抗原性ペプチドまたはL F A - 1 ペプチド)および / またはモノクローナル抗体(例えば抗M H C - I I または抗I C A M - 1 m A b)阻害剤を含有した。磁気粒子にコンジュゲート化したモノクローナル抗体を用いたネガティブ選択法を用いて、B 細胞、マクロファージまたは樹状細胞について脾臓細胞分画を濃縮すると共に、これらの異なる集団へのB P I 結合の相違を調べた。これらの方法は、S c h o u n t z r a , 1 5 7 T h e J o u r n a l o f I m m u n o l o g y 3 8 9 3 - 3 9 0 1 (1 9 9 6) に詳述され、該文献の解説および内容は、本明細書、上記に援用される。

20

【0071】

生存A P C への抗原性ペプチド結合を確かめるため、最初のE G A D - B P I を、N O D (I - A^{g7}) A P C への選択的結合についてスクリーニングし、そして生存A P C を用いたフローサイトメトリー法によって、M H C - I I またはI C A M - 1 いずれかに対するモノクローナル抗体を用いた同時結合についてアッセイした(M u r r a y r a , 2 4 E u r . J . I m m u n o l . 2 3 3 7 - 2 3 4 4 (1 9 9 4) ; M u r r a y ; 1 9 I m m u n o l o g y T o d a y 1 5 7 - 1 6 3 ; およびS c h o u n t z r a , 1 5 7 T h e J o u r n a l o f I m m u n o l o g y 3 8 9 3 - 3 9 0 1 (1 9 9 6))。このアッセイでは、増加する濃度のビオチン化 - B P I 、 - C D 1 1 a (2 3 7 - 2 4 7) もしくは - G A D 6 5 (2 0 8 - 2 1 7) ペプチドを、各近交系由来の脾臓細胞と一晩インキュベーションした。結合ペプチドは、ビオチン化抗アビシン試薬の使用によって、アビシン - F I T C 蛍光の増幅、その後、二周期目のアビシン - F I T C 結合で検出した。ビオチン化ペプチドは、5 0 μ M のペプチド濃度で、1 0⁶ 生存細胞とインキュベーションした。結合ペプチドは、アビシン - F I T C / ビオチン化抗アビシン - F I T C で検出した。解析のため、前方 / 側方散乱ゲートを生存リンパ球上にセッティし、そしてこのゲートで、2 0 , 0 0 0 の事象を収集した。バックグラウンド蛍光(検出試薬のみ)を、5 0 μ M バイオ - ペプチドヒストグラム(ペプチド - 蛍光強度 = F L 1)と共に、図5 a ~ 5 c の各パネルに示す。陽性細胞(M 2)の割合は、C E L L Q u e s tTM プログラム(B e c t o n - D i c k i n s o n)によって決定し、そしてM 2 集団の中央値チャネル蛍光(M C F)と共に、各パネルに示す(すべてのデータは、A p p l e G 3 コンピュータ上で作動させたC E L L Q u e s tTM プログラムの直接出力である)。

30

【0072】

M H C - I I またはI C A M - 1 に対するモノクローナル抗体が、N O D 脾臓細胞への糖尿病B P I (E G A D - B P I)の結合を有効に遮断することを明らかにするため、図5 a ~ 5 c に用いたのと同一のアッセイを用いた。しかし、精製1 0 - 3 . 6 2 (抗M H C - I I) または3 E 2 (抗I C A M - 1) いずれかを脾臓細胞とビオチン化B P I の一晩インキュベーションに含ませた。両抗体は、Ph a r M i n g e n から購入し、そして5

40

50

$\mu\text{g}/\text{mL}$ 最終濃度で用いた。モノクローナル抗体をまったく添加しない対照も、試験した。解析は、生存リンパ球に関して、前方 / 側方散乱ドットプロット上でゲート処理し、そして各ヒストグラムに関して、20,000事象を解析した。この例の結果を図6a～6cに示す。

【0073】

結果および考察：

図5a～5cに提供するデータに例示するように、NOD脾臓細胞は、BALB/c、A.SW、またはA.BYからまったく同じに精製した脾臓細胞より高い密度で、糖尿病BPI(EGAD-BPI)に結合する。先のデータは、リンパ球分離培地(LSM)密度勾配遠心分離によって単離したこれらの脾臓細胞調製において、B細胞が主な抗原性ペプチド結合細胞であることを示した(Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994); Murray; 19 Immunology Today 157-163; およびSchoountzら, 157 The Journal of Immunology 3893-3901 (1996))。高密度結合細胞の割合には、30%(NOD)から6%(A.BY)までの顕著な相違があった。対照的に、シグナル-1(GAD65ペプチド)部分およびシグナル-2(CD11aペプチド)部分が別々では、優先的にNOD APCに結合しなかった。これを支持するデータを図5bおよび5cに示す。図5bは、図5aに示すものと同一の脾臓細胞調製への、ビオチン化LFA-1(CD11a 237-247)ペプチドの直接結合を例示する。このシグナル-2部分がすべての系統の脾臓細胞に同様に結合したことに注目されたい。図5cは、図5aおよび5bに示すのと同一の脾臓細胞調製への、ビオチン化GAD65(208-217)ペプチドの直接結合を例示する。これらのデータは、その各解説が本明細書に援用される、Corperら, I-A⁹⁷および自己免疫糖尿病間の関連を解読するための構造的フレームワーク, 288 Science 505-511 (2000)、およびDessennら, ヒトコラーゲンII由来のペプチドと複合体化したHLA-DR4(DRA⁰¹⁰¹、DRB⁰⁴⁰¹)のX線結晶構造, 7 Immunity 473-481 (1997)に論じられるように、BPIを操作して、特定のMHCペプチド結合モチーフに適合させることができることを示す。

【0074】

さらに、図6a～6cに例示するように、他の研究は、MHC-IIおよびICAM-1に対するモノクローナル抗体が、NOD脾臓細胞へのペプチド結合を遮断することを示した。これらのデータは、糖尿病BPIが、APC表面上の両受容体に結合することを示す。したがって、MHC-IIまたはICAM-1に対するモノクローナル抗体は、糖尿病BPI(EGAD-BPI)のNOD脾臓細胞への結合を有効に遮断する。事実上、BPIの予測される二官能性の性質は、これらの結果によって明らかにされ、そしてBPIがAPC表面上で、MHC-IIをICAM-1に連結するであろうことが示唆される。この機構は、同時キャッピング実験によって、さらに明らかにされた。

【0075】

(実施例3)

本実施例は、同時キャッピング実験を利用して、BPIがMHC-IIおよびICAM-1分子へ同時結合することを明らかにする。

【0076】

材料および方法：

BPIがMHC-IIおよびICAM-1分子に同時結合する、さらなる裏付けを、ビオチン化mAb 10-3.62およびストレプトアビジンを用いてBPIの存在下または非存在下でMHC-IIをキャッピングする同時キャッピング実験で観察した。BPIペプチドが、APC表面上のMHC-IIおよびICAM-1分子を連結する能力を試験するため、我々は、同時キャッピング実験(もともとはモノクローナル抗体に関して記載されたもの)を変更して行った。簡潔には、あらかじめ所定のBPI変異体または生理食塩水の静脈内(i.v.)注射によって処置したNODマウスから新たに単離したAPCと、

MHC-IIに対するビオチン化モノクローナル抗体(10-3.62)とをインキュベーションする。その後、抗体結合細胞を streptavidin とインキュベーションして(37 × 15分間)、APC表面上のMHC-II分子をキャッピングする。細胞を氷上に移し、そして ICAM-1に対する蛍光(PE)モノクローナル抗体(3E2)で標識した。細胞を蒔き、そして所定のBPIがICAM-1をMHC-IIキャップに連結する証拠を、標準的蛍光顕微鏡法および画像解析によって観察する。1つの実験において、16時間前にEGAD-BPI(i.v.)で処置したマウス由来のT枯渇脾臓細胞は、バイオ-10-3.62/ストレプトアビシンの存在下、MHC-IIとICAM-1の同時キャッピングを示した。他の実験において、16時間前に生理食塩水のみで処置したマウス由来のT枯渇脾臓細胞は、同時キャッピングを示さなかった。これらの実験の結果は、図7に示す。

10

【0077】

結果：

図7の上部パネルは、16時間前にEGAD-BPI(i.v.)で処置したマウス由来のT枯渇脾臓細胞の結果を例示し、ここで、ICAM-1は、バイオ-10-3.62/ストレプトアビシンの存在下、MHC-IIと同時キャッピングした。図7の下部パネルは、生理食塩水のみで処置したマウスの結果を例示し、ここでは同時キャッピングは示されない。これは、ICAM-1の残りがB細胞膜上に分散したことによって立証される。示されるように、16時間前に40ナノモルのEGAD-BPIまたは生理食塩水(PBS)のみいずれかのi.v.注射によって処置したNODマウスから単離したB細胞は、氷上のPE標識化3E2(抗ICAM-1)で染色することによって測定するように、ICAM-1発現の2つの別個のパターンを示した。BPI処置マウス由来の細胞上では、ICAM-1は、MHC-II分子と同時キャッピングされているようである(上部パネルのICAM-1赤色蛍光の単一の濃縮された点に注目されたい)。対照的に、ICAM-1の名目上の分散した密度は、PBS処置NODマウスから単離した細胞上に観察される(下部パネルの全表面の赤色蛍光染色に注目されたい)。

20

【0078】

したがって、BPIが生存APC表面上のMHC-IIおよびICAM-1構造に同時に結合する能力を有し、そしてしたがってTH1/TH2分化に必要な経路を伴うシグナル改変を提供する可能性があることが明らかなるようである。TH1/TH2免疫逸脱に対するBPIの影響を直接調べるために、EGAD-BPIを注射したマウス由来のT細胞を、サイトカイン解析によって調べた。

30

【0079】

(実施例4)

本実施例は、ELISPOTを用いて、BPI注射によって改変されるような、TH1/TH2頻度を決定した。

【0080】

材料および方法：

3~5のNODマウスの群を、尾の付け根で、CFA中のGAD65ペプチド(40ナノモル/マウス)を用いて皮下(s.c.)免疫した。EGAD-BPI、その単一のTCRエピトープ(シグナル-1部分)、またはそのCD11aペプチド(シグナル-2部分)いずれかを、それぞれ異なる群にi.v.(すべて40ナノモル/マウス)で投与した。6~8日後、もう一度同一物の40ナノモル注射を各マウスに行い、そして翌日、s.c.注射部位の領域リンパ節を、培養のため単一細胞懸濁物にした。同一の一次培養を96時間インキュベーションし；その後、生存T細胞を密度勾配遠心分離によって回収した。これらの細胞100万を、PBS中、10μg/mlの濃度の、マウスIFN(クローンR4-6A2)またはマウスIL-4(クローンBVD4-1D11)いずれかに対するmAbであらかじめコーティングした(50μl/ウェル)ニトロセルロース底96ウェルプレート(Millipore-HA、Millipore、マサチューセッツ州ベッドフォード)中で合わせた。3つ組培養の群を、コンカナバリン-A(2μg/ml

40

50

1)あるいは20U / ml組換えIL-2 (R & D Systems)を加えたシグナル-1ペプチド部分のいずれかとインキュベーションした。37および5%CO₂で72-96時間培養した後、プレートをPBS-0.05%Tween-20で3回洗浄した。適切なウェルに、1μg / mlの濃度で、ビオチン化抗IFN（クローンXMG1.2）またはビオチン化抗IL-4（クローンBVD6-24G2）を添加して、そして室温で1時間インキュベーションする。陽性対照ウェルには、正常T細胞の代わりに、既知のT_H1またはT_H2クローンを入れる。IL12、IL10、およびIL2に対するmAb対もまた入手可能であり、そしてこれを用いて、同一アッセイにおいてこれらのサイトカインに関して試験するであろう。すべてのmAbおよび組換え対照は、PharMingen（カリフォルニア州サンディエゴ）から購入する。最後に、プレートをPBS-Tweenで3回洗浄し、そしてその後、1:2000希釈のストレプトアビシン・アルカリホスファターゼ（Jackson ImmunoResearch、ペンシルバニア州ウェストグローブ）100μlに1時間曝露し、そして前と同様に洗浄した。サイトカイン產生細胞は、BCIP/NBT基質キット（BioRad Labs、カリフォルニア州リッチモンド）を用いて膜を現像し、その後、デジタルカメラおよびNIH画像ソフトウェアと連結した標準的立体顕微鏡を用いて、画像捕捉し、そして解析することによって数えた（Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994); Murray; 19 Immunology Today 157-163; およびSchoountzら, 157 The Journal of Immunology 3893-3901 (1996)）。先に記載する方法によって、GAD65 (208-217)ペプチドで免疫したNODマウス由来のCD4+ T細胞クローンを、別個の実験において、同一アッセイで使用することが可能である。クローンは、Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994)に記載する方法を用いて生成し、該文献の解説は本明細書に援用される。これらのクローンは、照射NODリンパ球、GADペプチド、および組換えIL-2で、隔週で再刺激することによって維持されるであろう。予測されるTCR接触位で置換したBPIは、増殖および個々のクローンからのサイトカイン放出の阻害（上記のように解析される）において、これらのBPI変異体のいずれが最も有効であるかを決定するさらなる解析のために用いられるであろう。システインを除くすべてのアミノ酸でスキャンされるであろう、予測される位は、アミノ酸208、213、および216である。これらの残基は、最近解明された、I-A⁹⁷に結合するGAD65ペプチドの結晶構造において、TCRに面している（Corperら, 288 Science 505-511 (2000)および図8を参照されたい）。

【0081】

結果：

重要なことに、本実施例は、与えられたBPIの機能的免疫反応を調節する能力を示す。このBPIで処置したマウスが豊富なIL-4を产生し、一方、対照マウスがこのサイトカインを产生しないことがわかる（図9aおよび9cに例示する）。IL-4は、2型免疫の代表的なサイトカインであるため、本実施例は、BPIが、優性1型免疫からT_H2分化および2型反応に切り換える能力を有することを示す。さらに、我々は、このin vivoアッセイ系を発展させて、与えられたBPIの免疫制御効果の比較的迅速な検査を提供した。T_H1/T_H2調節が、本実施例におけるように確認されたら、その後、研究は、以下に記載するような養子移植を用いた、BPI効果のより厳密な試験へと移ることが可能である。

【0082】

図9aおよび9cに示すように、IL-4产生は、T細胞がin vitroで分裂促進因子を用いて刺激したBPI処置動物由来である場合、およそ10倍増加する。IFN-产生もまた増加するが、より少ない度合いである（図9bおよび9dを参照されたい）。

【0083】

10

20

30

40

50

(実施例 5)

本実施例は、B P I がN O D マウスにおいて脾臓島のリンパ球浸潤を阻害する能力を試験した。リンパ球浸潤は、脾島炎および1型糖尿病発症の顕著な特徴である。

【 0 0 8 4 】

材料および方法 :

これらの研究は、免疫優性G A D 6 5 T C Rエピトープ (E G A D - B P I) を含有するB P I がi n v i v o で生物学的に活性であり、そして脾臓炎症の発症を阻害することを確認するのが目的であった。3匹の正常血糖のN O D オス (8 週齢) の群を、実施例4に記載するように、C F A 中のG A D 6 5 (2 0 8 - 2 1 7) ペプチドで免疫した。対照群にはP B S を投与し、そして別個の実験群には、E G A D - B P I 、G A D ペプチドのみ (すなわちT 細胞受容体エピトープ) 、またはC D 1 1 a ペプチドのみ (すなわち二次シグナル受容体部分) いずれかを、実施例4に記載するような2回の静脈内注射によって、投与した。第10日、脾臓を除去して10%P B S 緩衝ホルマリンに入れ、パラフィンに包埋し、そしてその全体が本明細書に援用される、Y o o n l a , 細胞におけるG A D 発現または抑制による、N O D マウスにおける自己免疫糖尿病の調節, 2 8 4 S c i e n c e 1 1 8 3 - 1 1 8 7 (1 9 9 9) に先に記載されるように、単核細胞浸潤に関して、5ミクロン連続切片を組織学的に検査した。

10

【 0 0 8 5 】

結果 :

この実験の結果は、図11および12に示す。図11は、この解析の累積的データを示し、ここで、島浸潤の重症度をスコア化し、そして調べた島の割合としてプロットした。5より多い組織切片で、各群から100を超える島を、3人の独立の観察者によって解析した。図11に示すように、単核細胞浸潤 (脾島炎) に対するE G A D - B P I 処置の明らかな阻害効果があった。B P I 処置動物の95%を超える島が損なわれておらず、そして浸潤を示さなかつた (すなわち等級0の島) 。他の群はすべて、疾患のこの初期の段階であってさえ、脾島炎の何らかの徴候を示した。特に、G A D ペプチド処置動物は、最大の脾島炎を示した (等級0の島は62%に減少し、そして37.5%の島は等級2以上にスコア付けされた) 。これを、C D 1 1 a ペプチド処置群の66.7%の正常な島およびP B S 処置動物の71.4%の正常な島に比較した。したがって、P B S 対照と比較すると、E G A D - B P I 処置は、脾島炎の84%の阻害を提供した [%島@等級1 - 4 (P B S R x) から%島@等級1 - 4 (E G A D - B P I R x) を減じ、%島@等級1 - 4 (P B S R x) で除して100を乗じたものとして計算] 。実験の各群の代表的な島を、ヘマトキシリソおよびエオジンで染色したものとして、以下、図12a ~ 12dに示す。図12bおよび12dでは、単一のシグナル-1部分またはシグナル-2部分で処置した群で重度のリンパ球浸潤が観察されたが、一方、E G A D - B P I 処置マウスの島は、損なわれていないものが優勢であったことに注目されたい (図12cを参照されたい) 。総合すると、これらのデータは、これらのシグナル-1ペプチド部分およびシグナル-2ペプチド部分を含有する糖尿病B P I での処置が、1型糖尿病のこの動物モデルでは、脾臓島へのリンパ球の浸潤を有意に阻害することを強く示す。したがって、B P I は、脾臓自己抗原に対する自己寛容の通常の瓦解に関与する機構を介して作動する、と予測される。これらのデータは、B P I が免疫逸脱を通じて作動し、脾臓抗原に対する自己免疫反応を遮断可能であることを示す。この理論をさらに試験するため、我々は、E G A D - B P I の存在下でプライミングしたT 細胞を、糖尿病発症が遺伝的にプログラミングされたN O D . S c i d マウスに移植した。

20

30

40

【 0 0 8 6 】

(実施例 6)

本実施例は、免疫学的に再構成したN O D . S c i d マウスの、よく説明されている、損なわれていない免疫系において、糖尿病発症のB P I 遮断を試験して、糖尿病進行を研究した。

【 0 0 8 7 】

50

材料および方法：

NODマウスマodelにおいて、T細胞主導型の糖尿病の進行をブロックするための既知の免疫優性ペプチドGAD65に対する T_H1/T_H2 反応の調節に関して活性であることが証明されたBPIを試験した。NOD.Scid養子移植モデル(CD25枯渇NOD脾臓細胞が、養子移植後2~4週間程度の早期に糖尿病を誘導することが観察されている)をこの目的に用いた。NOD.Scid養子移植は、その内容が本明細書に援用される、Solomonら、「自己免疫糖尿病を調節するCD4⁺CD25免疫制御T細胞の恒常性に、B7/CD28同時刺激が必須である」12 Immunity 431-440(2000)に記載するプロトコルを変更して行った。8週齢(非糖尿病)メスのNOD脾臓細胞を用いて、精製モノクローナル抗体(mAb 7D4、PharMingen)、その後、低毒性(low-tox)ウサギ補体(Cedarlane)での処理によって、CD25-/CTLA4-枯渇集団を濃縮した(PET標識UC10-4F10-11 mAbでのフロー解析による、CTLA4+細胞の80%枯渇；未提示)。これらの誘導細胞(15×10^6 /マウス)を、EGAD-BPIで処置したマウスあるいはEGAD-BPIの代わりにPBSを用いたこと以外は同一に処置したマウスのいずれか由来の 3×10^6 CD4+ T細胞と共に、6週齢NOD.Scidメス(Jacks on Labs)に注射した(i.v.)。in vitroクローニング増殖は、ELISPOT実験に関して記載するように、組換えIL-2(R&D systems)またはConAいずれかを用いた。動物および細胞の操作はすべて、ラミナフローフード中で行い、そして動物は、オートクレーブした餌および水を与えて、ラミナフローバリアの後ろのマイクロアイソレーターケージ中でずっと飼育した。いくつかの実験は、養子移植前に、CD154、CD25、CD62L、CD152などに対するmAbおよび磁気粒子を用いて、CD4+細胞の特定のサブセットを枯渇させるであろう。BPIの個々の部分で処置したマウス由来のCD4+細胞は、生理食塩水のみで処置したマウス由来のCD4+細胞と共に、陰性対照として使用可能である。所定のBPIで処置した、マッチしたNODマウスから濃縮したCD4+T細胞の同時移植は、BPI処置により糖尿病の開始を遅延させることが可能な制御T細胞が導かれる事を示す。さらに、表1に列挙する他の疾患を、この同じ方式で(すなわち制御T細胞の養子移植によって)試験することが可能である。

【0088】

30

結果：

重要なことに、我々は、現在、2つの実験群間で、高血糖症および糖尿病の発症に、明らかな相違があることを見出した。図13でわかるように、養子移植7週後、ビヒクリル(PBS)を投与したマウスの80%が、高血糖症および糖尿病を発症した。対照的に、EGAD-BPIで処置したマウスのわずか40%しか、高血糖症と糖尿病への進行とを示さなかった。したがって、これらのデータは、BPI処置に仲介されるものとして、糖尿病進行のブロックを示す。BPI構造へのさらなる変更は、このモデルにおいて、そして1型糖尿病の治療において、その有効性を増進させる可能性がある。これらのデータは、糖尿病発症を抑制可能であるT細胞が、BPIの存在下に生成され、そしてin vivoで作動して、NOD.Scidマウスの損なわれていない系内で糖尿病進行を阻害したことを示す。したがって、同様の制御T細胞が、他の疾患関連抗原のTCRエピトープを含有するBPIによって活性化されると予期されるであろう。例えば、コラーゲン-IIペプチドエピトープは、慢性関節リウマチに関するサブレッサーT細胞を惹起することができる。さらに、 T_H1 集団を拡大するであろう制御T細胞が、CTLA4二次シグナル部分を含有するBPIによって生成される可能性があり、そしてこれらは、HIV1感染または他の慢性ウイルス疾患などの疾患に使用可能である。NODモデルは、ヒト疾患の有意な代表と認識されているため、この実施例から臨床試験への推定は容易なはずである(例えばAtkinsonおよびLeiter, 1型糖尿病のNODマウスマodel:これ以上よくならない? 5 Nature Medicine, 601-604(1999)を参照されたい)。

40

50

【0089】

(実施例7)

ここで、他の自己免疫疾患のBPIの予測される例を、簡潔に詳述する。具体的には、コラーゲン誘導関節炎(CIA)およびミエリン塩基性タンパク質誘導実験アレルギー性脳脊髄炎(EAE)の免疫優性TCRエピトープを含有するBPIが論じられるだろう。また、CD40シグナルを遮断すると、IL12産生が減少すると予測されるため、CD40Lペプチド模倣体は、TH2免疫を助けると予測される(Ruedlら, 抗原用量は、CD40リガンドの制御によって、Tヘルパーサブセット発展を決定する, 30 Eur. J. Immunol. 2056-2064 (2000))。したがって、これらの自己免疫モデルにおいて、そしてNODモデルにおいて、適切なTCRエピトープをCD40Lペプチド模倣体と共に、糖尿病阻害で用いるCD11a模倣体に連結することによって、TH2免疫を助けることを試みるであろう。このループペプチドにおける突然変異は、CD40Lの結合および機能に影響を及ぼすことが示された。

【0090】

材料および方法:

異なる交差反応性免疫優性エピトープ、異なるマウス系統、および解析する組織を使用する、いくつかの自己免疫モデルがある。これらの種類のモデルは、EGAD-BPIを試験するのに我々が設計した糖尿病発展の短期モデルに非常に似ている。CIAに関しては: Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994)に記載するようなCFA注射プロトコルにおいて、単一ペプチドによって疾患を誘導するであろう。NOD系と同様、これらのマウスには、BPI、PBS、または単一ペプチド部分いずれかを投与するであろう。最小免疫優性コラーゲンIIエピトープは上に列挙され、そしてBPIへの変更は、この複合体のX線構造に基づくであろう(Desseinら, 7 Immunology 473-481 (1997))。EAEに関しては、疾患は、Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994)の方法によって誘導する。この方法はまた、我々のNOD系において記載するのと似た方法によって、CFA中の単一ペプチド(ミエリン塩基性タンパク質(MBP)ペプチド、85-101)注射を用いる。

【0091】

結果:

コラーゲンおよびMBPで構築したBPIは、これらの抗原に対する免疫をTH2優性パターンに調節する際に有効であろうと予期される。これらの疾患は、主なTH1免疫病理(上記参考文献を参照されたい)を伴うと考えられるため、こうしたスイッチは、これらのマウスの疾患を表面上遅延させるかまたは治癒させるであろう(Murrayら, 24 Eur. J. Immunol. 2337-2344 (1994); Murray; 19 Immunology Today 157-163; およびSchoountzら, 157 The Journal of Immunology 3893-3901 (1996))。NODマウスにおけるように、こうした結果は、これらの種類の免疫反応が臨床的に観察される、慢性関節リウマチおよび多発性硬化症のヒト疾患において使用するための類似の化合物の開発を標的とするであろう。最も重要なことには、BPIは、自己免疫T細胞反応を遮断する能力を提供しつつ、感染性病原体および癌発症に対する宿主免疫を維持する。

【0092】

(実施例8)

本実施例は、感染性疾患および特定の癌の予測されるBPIを記載する。具体的には、特定のヒト病原体の免疫優性TCRエピトープを含有する所定のBPIを試験する一般的なプロトコルを、HIV-1 p24エピトープの例を用いて記載するであろう(Harcourtら, HIV-1変異は、CD4 Tリンパ球認識を減少させる, 188 J. Exp. Med., 1785-1793 (1998)) (配列番号8)。

【0093】

10

20

30

40

50

材料および方法：

先の実験例と対照的に、これらのBPIは、主に、ヒト患者由来の長期T細胞クローンに対する影響によって試験するであろう。簡潔には、末梢血単核細胞(PBMC)を患者および対照全血から調製し、そして磁気粒子を用いたネガティブ選択プロトコルによって、CD8+細胞を除去する。これらの細胞は、1ml中、 4×10^6 細胞で、組織培地中、20μMのp24ペプチドの存在下、6日間増殖させ、そして密度勾配遠心分離によって芽球を単離する。これらの細胞の二次培養は、組換えヒトIL-2(20U/ml)を含有し、そして最大10~14日間続ける。組織適合ドナー由来の照射APCと共にp24ペプチドを含む再培養過程およびIL-2中でのT細胞芽球の増殖を反復することによって、株を増殖させた。クローンは、照射APC、ペプチドおよびIL-2(50U/ml)を含有する新鮮なプレートにおいて、限界希釈クローニングを行うことによって、調製した(Murrayら, 24 Eur. J. Immunol. 2337-2344(1994); Murray; 19 Immunology Today 157-163; およびSchountzら, 157 The Journal of Immunology 3893-3901(1996))。Schountzら、ペプチド配列における非自己位の自己置換によって明らかになった、ペプチド抗原の正確な自己相関物のユニークなT細胞アンタゴニスト特性, 168 Cellular Immunology 193-200(1996)に記載される、我々の詳細な方法によって、ヒトT細胞のこれらの樹立株の増殖およびサイトカイン放出をBPIが阻害する能力に関して試験するであろう。ここで、我々は、重要なTCR接触残基でアミノ酸置換によって変化したペプチドが、クローン化されたT細胞の増殖およびサイトカイン放出を改変することを示す。与えられたBPIが、p24ペプチド特異的クローンへのサイトカイン放出を、顕著に阻害するかまたは改変するならば、このことにより、このBPIはより厳密なin vivo試験の対象となるだろう。マウスモデルを用いて、感染性疾患に関する候補BPIを試験することが可能である。これらの研究は、GAD65 BPIに関して記載するように、GAD65 TCRエピトープペプチドに対する感染性病原体の免疫優性ペプチドの置換を伴って、行うであろう。これらのin vivo研究における肯定的な結果は、生存病原体を使った動物研究を具体化するであろう。ヒト組織がScidマウスに養子移植される、Scid-ヒトマウスモデルを用いて、HIV(Jenkinsら, Blood(1998)8:2672)、C型肝炎ウイルス(HCV)(Bronowicki, J.ら, Hepatology(1998)28:211)、ヒトパピローマウイルス(HPV)(Tewariら, Gynecol. Oncol.(2000)77:137)、および呼吸器合胞体ウイルス(RSV)(Nadalら, Clin. Exp. Immunol. 85:358)感染に対する防御免疫を調べることが可能である。

【0094】

結果：

二次シグナル部分として、CD28/CTLA4ペプチドまたはFasリガンドペプチドを取り込むと、T_H1サブセットの方に免疫がシフトし、そしてCTL反応が誘導または増進されるであろうと仮定される(Padrid, P.ら, Am. J. Respir. Cell. Mol. Biol.(1998)18:453)。CTLA4は、T細胞活性化のネガティブ制御因子であり、そしてCD28を通じたシグナル伝達は、T_H2分化と結び付けられてきている(Rulifson, I.ら, J. Immunol.(1997)158:658)。LFA-1シグナルがT_H2分化に阻害性であり、そしてCD28シグナル伝達がT_H2分化を助ける証拠を考慮し、この選択的分化パラダイムを用いて、BPI設計をさらに変更して、これらの研究を進めるであろう。同様に、証拠は、CD95(Fasとも呼ばれる)とCD95リガンド(FasL)との相互作用がT_H1分化を助けることを示唆する(Chattergoonら, Nature Biotech.(2000)18:974)。FasLのY218ループ由来のFasL(T細胞:APC境界面でFasと相互作用すると予測される)のペプチド模倣体を

持つ BPI は、 $T_H 1$ 活性化と慢性 $T_H 2$ - 優性疾患に対する CTL 反応とを助けるのに使用されるだろう。

【0095】

(実施例9)

ここで、我々は、記載されるアレルゲン配列（予測される CD28 / CTLA4 ペプチド模倣体および / または予測される FasL ペプチド模倣体に合成的に連結されている）の TCR エピトープを含有する、いくつかの可能性のある BPI を記載する。

【0096】

材料および方法：

これらの研究は再び、ヒトクローニング T 細胞株、およびこれらの公知のアレルギー剤に対するアレルギーの動物モデルを用いた解析の組み合わせを用いるであろう。アレルギーは、ヒトの非常に多数の集団に影響を及ぼし、多くのアレルギーおよび喘息の概算は、そうでなければ健康な個体の 10 % に達する。我々は、先に記載した 7 ~ 10 日プロトコルを用いて、表に記載するアレルゲンペプチドに対する免疫反応の BPI 調節を調べるであろう。先に記載されるように、このプロトコルは、第 1 日、 CFA 中のアレルゲンペプチドの注射、その後、第 1 日および第 6、7、8 または 9 日の BPI の注射を伴う。第 7、8、9 または 10 日、領域リンパ節を培養し、そして ELISPOT によって $T_H 1$ 対 $T_H 2$ サイトカインを比較する（詳細な方法に関しては実施例 4 を参照されたい）。所定のアレルゲンの候補 BPI が、この比較的短期の実験によって同定されたら、アトピー患者からクローニングした株を用いて、 CD4 T 細胞反応の改変に関して、これらの BPI を試験するであろう。簡潔には、 CD4 T 細胞クローニングは、実施例 8 に記載するように、患者末梢血リンパ球から樹立するであろう。先に記載するような ELISPOT を用いて、所定の BPI が、これらの細胞によるサイトカイン放出を阻害または改変する能力を試験するであろう。最後に、所定の BPI の検査を、ヒト MHC (HLA) トランスジェニックマウスにおいてこれらの特定のアレルゲンを用いて、同一に記載される方法を用いる臨床試験に移すであろう (Svetlana, P.ら, J. Immunol. (1998) 161: 2032)。これらのマウスは、ヒト MHC 分子を有する利点を提供し、そしてしたがって、 BPI 結合は、このモデルにおいてヒトアレルギー状態と非常に類似であろう。所定の BPI が、天然アレルゲンに対して、これらのマウスにおいて、 $T_H 2$ 活性化を遮断するならば、ヒト Sciid マウスでの養子移植研究（実施例 8 で用いるのと類似）を、ヒト臨床試験の前置きとして用いることが可能である。

【0097】

結果：

LFA-1 シグナル伝達を優先する CTLA4 / CD28 経路を遮断すると、 BPI の存在下、これらのアレルゲンに対する $T_H 1$ 分化が助けられるであろう。また、 FasL 部分を持つ BPI は、 1 型免疫を助けるはずである。注射によって与えられるアレルゲンでアトピー患者を「脱感作」するのは長く続けられている実務であり、そして脱感作は、特定のアレルゲンに対する $T_H 1$ 反応へのシフトを介して作動すると考えられる (Holt ら, Nature (1999) 402: 6760 suppl: B12-17)。したがって、慢性 $T_H 2$ 関連感染性疾患の症例におけるように、我々の作業仮説は、この結果を達成するため、 LFA-1 シグナル伝達が $T_H 1$ を促進する能力と共に、 CTLA4 / CD28 分子を介して $T_H 2$ シグナル伝達を阻害する可能性を用いることである。また、 APC 内の Fas および抗原の二重発現が $T_H 1$ 免疫および CTL 誘導を助長することが示されているため、 Fas ペプチド模倣体に連結したアレルゲンエピトープの影響もまた調べるであろう (Chattergoon, M.ら, Nat. Biotech. (2000) 18: 974)。アレルギーおよび喘息において、アレルゲンエピトープを提示する APC の細胞死を誘導し、それによって RSV 誘起小児期および老年期細気管支炎を含む、 $T_H 2$ 型制御細胞の活性化を制限することが可能である可能性がある。

【図面の簡単な説明】

【0098】

10

20

30

40

50

本特許のファイルは、少なくとも1つのカラーで作成した図を含有する。カラー図(類)を含むこの特許のコピーは、要望し、そして必要な料金を支払うと、特許商標庁(Patent and Trademark Office)に提供されるであろう。

【図1】図1は、T細胞およびAPC間の免疫シナップスの模式的提示であり、TCR:ペプチド:MHC位のドーナツ構造を例示する。

【図2】図2は、代表的なBPIがどのようにTH1優性免疫反応を導く分化を遮断し、そして免疫をTH2優性免疫反応にシフトするか、模式的に提示する。

【図3】図3は、免疫シナップス内の細胞表面タンパク質間の相互作用を通じた、1型免疫反応の名目上の活性化の模式的提示である。

【図4】図4は、T細胞活性化の2シグナルの機構の、単純化した模式的提示である。 10

【図5-a】図5aは、異なるマウス系統への代表的BPIの結合を比較する、フローサイトメトリー解析の結果を示すグラフである。

【図5-b】図5bは、異なるマウス系統への代表的BPI部分の結合を比較する、フローサイトメトリー解析の結果を示すグラフである。

【図5-c】図5cは、異なるマウス系統への代表的BPI部分の結合を比較する、フローサイトメトリー解析の結果を示すグラフである。

【図6-a】図6aは、MHC-IIまたはICAM-1に対する抗体を含まない、マウス系統のAPCに結合する代表的BPI結合のフローサイトメトリー解析の結果を例示するグラフである。

【図6-b】図6bは、ICAM-1に対する抗体が存在した場合の、マウス系統のAPCに結合する代表的BPI結合のフローサイトメトリー解析の結果を例示するグラフである。 20

【図6-c】図6cは、MHC-IIに対する抗体が存在した場合の、マウス系統のAPCに結合する代表的BPI結合のフローサイトメトリー解析の結果を例示するグラフである。

【図7】図7は、MHC-IIに対する抗体で同時キャッピングすることによって、NOD APC上のMHC-IIおよびICAM-1構造に同時に結合する代表的BPIの蛍光顕微鏡解析の結果を示すカラー写真であり、上部パネルは、代表的なBPIで処置したマウスAPC由来であり、そして下部パネルは、生理食塩水ビヒクルのみで処置している。 30

【図8】図8は、NODマウスのMHC-II(I-A⁹⁷)およびICAM-1のD1ドメインへの代表的BPI結合の分子モデルのカラー写真であり、MHC-IIはピンクで表し、ICAM-1は明るい青色であり、BPIは原子によって、炭素は緑、酸素は赤、そして窒素は青で示す。

【図9-a】図9aは、EGAD-BPIまたは生理食塩水対照で処置したNODマウスから採取したT細胞による、IL-4サイトカイン放出のELISPOT解析を示すグラフである。

【図9-b】図9bは、EGAD-BPIまたは生理食塩水対照で処置したNODマウスから採取したT細胞による、IFN-サイトカイン放出のELISPOT解析を示すグラフである。 40

【図9-c】図9cは、AGAD-BPIまたは生理食塩水対照で処置したNODマウスから採取したT細胞による、IL-4サイトカイン放出のELISPOT解析を示すグラフである。

【図9-d】図9dは、AGAD-BPIまたは生理食塩水対照で処置したNODマウスから採取したT細胞による、IFN-サイトカイン放出のELISPOT解析を示すグラフである。

【図10】図10は、図9a~9dのグラフに用いたELISPOT解析の生データの代表的な写真である。

【図11】図11は、EGAD-BPI、EGAD-BPIの別個の部分、そして生理食塩水による、膵島炎の阻害の示標としての、島浸潤の重症度のグラフである。 50

【図12】図12aは、生理食塩水対照で処置したNODマウスにおける、単核細胞による脾臓浸潤の組織学的解析の代表的なカラー写真である。

図12bは、GADペプチドで処置したNODマウスにおける、単核細胞による脾臓浸潤の組織学的解析の代表的なカラー写真である。

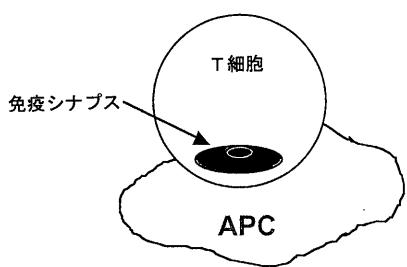
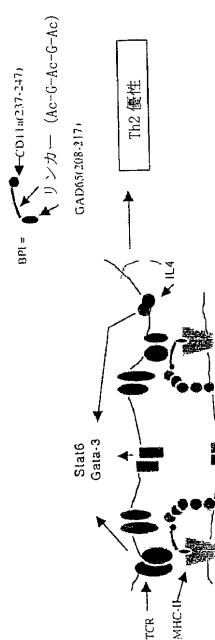
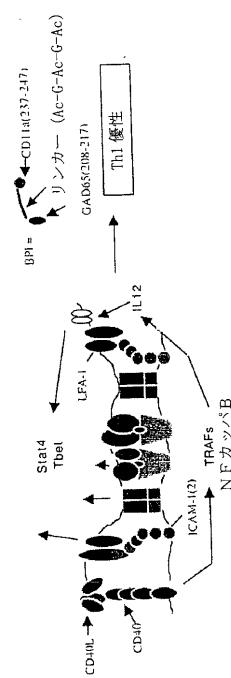
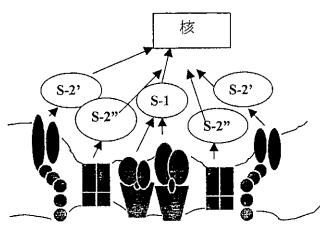

図12cは、EGAD-BPIで処置したNODマウスにおける、単核細胞による脾臓浸潤の組織学的解析の代表的なカラー写真である。

図12dは、CD11aペプチドで処置したNODマウスにおける、単核細胞による脾臓浸潤の組織学的解析の代表的なカラー写真である。

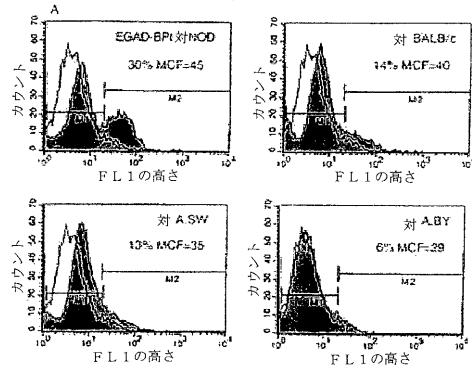

【図13】図13は、CD25ネガティブ糖尿病誘導細胞と共に、EGAD-BPIまたは生理食塩水いずれかを注射したNODマウス由来のT細胞を投与したNOD.Scidマウスにおける血液グルコースレベルの10週間のモニター結果を例示するグラフである。

。

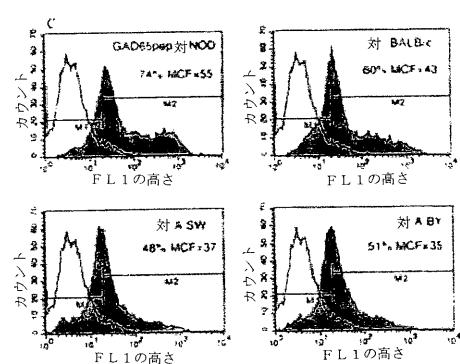

【図1】


【図2】

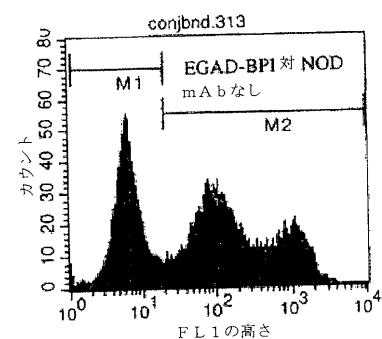
【図3】

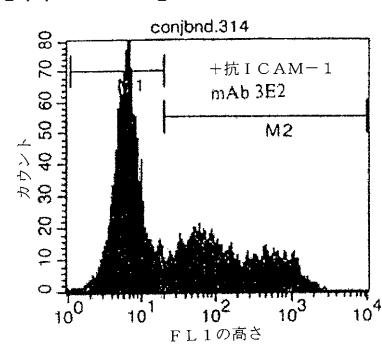


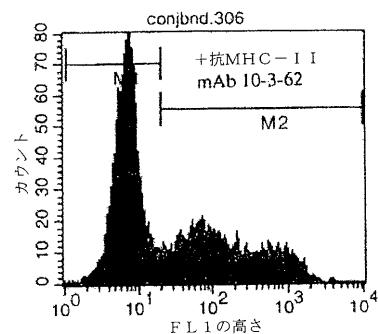
【図4】

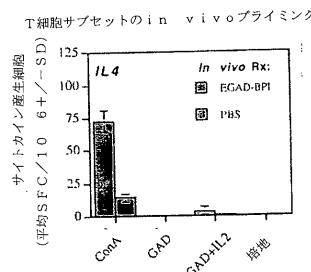


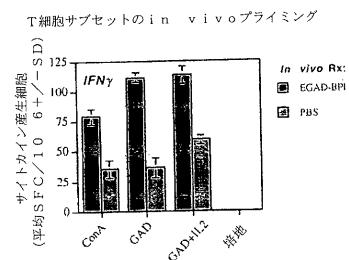
【図5-a】

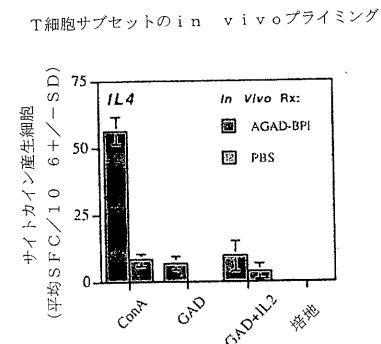

【図5-a】

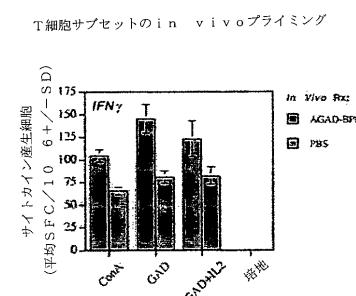

【図5-c】

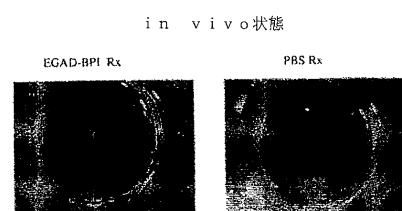

【図6-a】

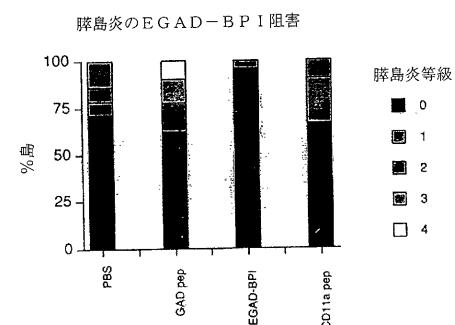

【図6-b】

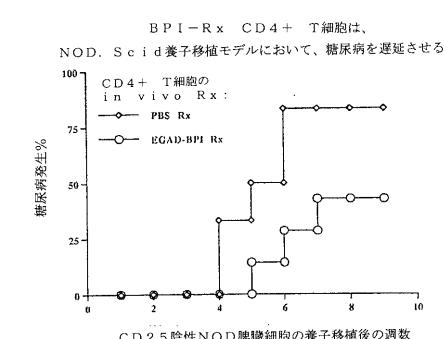

【図 6 - c】


【図 9 - a】


【図 9 - b】


【図 9 - c】


【図 9 - d】


【図 10】

【図 11】

【図 13】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
27 June 2002 (27.06.2002)

PCT

(10) International Publication Number
WO 02/50250 A2(51) International Patent Classification⁷: C12N

(74) Agent: TRUITT, Tracey, S.; Hovey, Williams, Timmons & Collins, 2405 Grand Boulevard, Suite 400, Kansas City, MO 64108 (US)

(21) International Application Number: PCT/US01/48632

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date:
17 December 2001 (17.12.2001)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

without international search report and to be republished upon receipt of that report

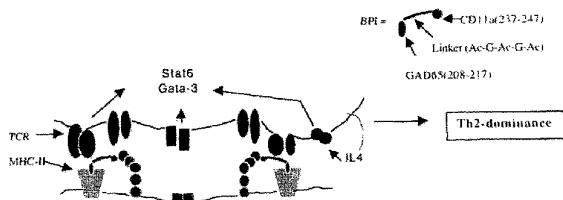
[Continued on next page]

(30) Priority Data:
09/739,466 18 December 2000 (18.12.2000) US

(71) Applicant (for all designated States except US): UNIVERSITY OF KANSAS [US/US]; Strong Hall, Room 207, 2385 Irving Hill Drive, Lawrence, KS 66044 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): MURRAY, Joseph, S. [US/US]; 1829 S.W. Collins, Topeka, KS 66054 (US), SIAHAAN, Teruna, J. [US/US]; 2912 Iris Lane, Lawrence, KS 66047 (US), HU, Yougho [US/US]; 22 Stouffer Place, Apt. 11, Lawrence, KS 66044 (US).


(54) Title: SIGNAL-1/SIGNAL-2 BIFUNCTIONAL PEPTIDE INHIBITORS

A2

WO 02/50250

(57) Abstract: A novel peptide sequence having the general formula AB wherein each of A and B represent a chain of amino acid residues and wherein said A chain is capable of binding with a major histocompatibility complex on an antigen presenting cell, and wherein said B chain is capable of binding with a Signal-2 receptor on an antigen presenting cell. Preferred forms of the peptide sequence further include and Y chain positioned intermediate the A chain and the B chain. Moreover, preferred forms include and A chain which has at least about 10% sequence homology with a Signal-1 moiety, or is a peptidomimetic of a Signal-1 moiety, said B chain has at least 10% sequence homology with a Signal-2 receptor moiety, or is a peptidomimetic of a Signal-2 receptor moiety, and wherein the X chain has at least one amino acid residue, or is a peptidomimetic of that amino acid residue. Advantageously, the novel peptide sequence is capable of shifting a type-1 immune response to a type-2 immune response or from a type-2 immune response to a type-1 immune response.

WO 02/50250 A2

— *with sequence listing part of description published separately in electronic form and available upon request from the International Bureau*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/50250

PCT/US01/48632

SIGNAL-1/SIGNAL-2 BIFUNCTIONAL PEPTIDE INHIBITORS

5

SEQUENCE LISTING

A printed Sequence Listing accompanies this application, and has also been submitted with identical contents in the form of a computer-readable ASCII file on a floppy diskette and a CDROM.

10

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention concerns immune responses initiated by the recognition of a peptide:MHC complex on the surface of antigen presenting cells by T-cells. The present invention also concerns immune responses initiated by the binding of a Signal-2 moiety to its complement protein on the surface of an antigen presenting cell. More particularly, the present invention concerns the immune responses initiated by the recognition of the peptide:MHC by the T-cell and by the binding of a Signal-2 moiety to its complement protein. Still more particularly, the present invention concerns the modification of the typical immune response generated by a particular individual in response to this binding. Most particularly, the present invention concerns the conjugation of peptides derived from the peptide portion of the peptide:MHC complex to the preferred Signal-2 moiety in order to modify or shift a given immune response from type-1 to type-2 or from type-2 to type-1. This may include specific phenotypes of regulatory T-cells including suppressor T-cells.

25

Description of the Prior Art

Autoimmune diseases are characterized by the activation of T-cells against self-antigens. These T-cells then destroy cells presenting these antigens. For example, insulin-dependent diabetes mellitus (IDDM, also called Type-I diabetes) is characterized by the activation of T-cells against the insulin-producing cells of the pancreas and their subsequent destruction by these T-cells. The diseases and conditions associated with autoimmune responses are strongly associated with specific subtypes (alleles) of cell surface proteins

5 called major histocompatibility complex (MHC) class II molecules. MHC molecules bind fragments (peptides) of proteins from infectious agents, allergens, and self proteins, and this MHC:peptide complex is the structure that T-cells recognize with their receptor (called the T-cell receptor, or TCR). The MHC:peptide complex is displayed on the surfaces of other cells of the immune system (i.e., B cells, dendritic cells and macrophages) which are called 10 antigen presenting cells (APC). In order for an immune response to ensue, the major regulatory cell of the immune system, the undifferentiated T-cell, must be presented with small breakdown products (peptides) of the foreign invader. This presentation occurs on the surface of the APC. The T-cell must then interact with the APC, and this interaction stimulates the T-cell to divide and differentiate to produce molecules that attack, either directly or indirectly, cells displaying the same or highly similar MHC:peptide complex. It is well known that the genes that encode the MHC molecules are extremely variable within 15 the species, and the different MHC alleles prefer to bind some peptides over others. Along with other genetic and environmental factors, the existence of different MHC alleles helps to explain why some members of a species develop conditions such as autoimmune diseases, allergies, asthma, and even certain infectious diseases, while others remain seemingly unaffected, or immune, to the same substances. Other differences arise because cell surface proteins distinct from the peptide:MHC complex must also bind to specific 20 receptors on the T-cell. These other protein:protein pairs at the interface of the T-cell and APC membranes provide a costimulatory signal, known as Signal-2 which, along with the signal generated by the TCR recognition of the MHC:peptide complex (known as Signal-1), initiates an immune response.

25 A defining stage of the immune response is the differentiation of CD4⁺ T-cells into either type-1 helper T-cells (T_H1 cells) or type-2 helper T-cells (T_H2 cells) as a result of the two signals. These two subtypes of T_H cells and the regulatory network of cells that they selectively activate are well-known correlates of human health conditions and disease states. Differentiation into T_H1 cells results in predominantly cell-mediated immunity while 30 differentiation into T_H2 cells results in predominantly humoral immunity. Each of these immunity types helps to protect the body against different types of invasion. Type-1 immunity protects the body against intracellular pathogens such as bacteria, but is also implicated in organ-specific autoimmune diseases. Type-2 immunity is important for

protection against extracellular parasites, but is associated with allergic reactions as well. Development of $T_{H}1$ cells is driven by a cytokine called interleukin-12, which is produced by immune cells known as macrophages and dendritic cells. Interleukin-12 induces or stimulates the naive T-cell (CD4 $^{+}$ T-cells) to produce interferon- γ (IFN- γ) and interleukin-2 (IL-2). These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Commitment to a $T_{H}1$ immune response is enhanced by the presence of IFN- γ which up-regulates expression of the interleukin-12 (IL-12) receptor while inhibiting the development of $T_{H}2$ cells. $T_{H}2$ immunity results from the production of interleukin-4 (IL-4) by the naive T-cell. IL-4 induces $T_{H}2$ development and the subsequent production of interleukins-4 (IL-4), -5 (IL-5), -10 (IL-10), and -13 (IL-13). IL-4 also operates to down-regulate expression of the IL-12 receptor on developing cells, thereby inhibiting $T_{H}1$ development and helping undifferentiated T-cells to commit to $T_{H}2$ cell development. Additionally, IL-4 and IL-5 are known to activate B cells and switch to neutralizing antibody (IgG1 in the mouse) and IgE, the initiator of immediate hypersensitivity.

In order for either of these immune pathways to be activated, a two-signal mechanism is required to fully activate the T-cell. Signal-1 (S-1) occurs when the T-cell antigen receptor (TCR) recognizes the peptide:MHC-II complex on the surface of an antigen presenting cell (APC). This first signal passes through the T-cell receptor and initiates a cascade of tyrosine phosphorylation/dephosphorylation events mediated by kinases and phosphatases and leads to the activation of Ca $^{++}$ flux, nuclear factor of activated T cells (NF-AT) and NF κ B transcription factors. These factors enter the nucleus of the T-cell and bind to promoters of genes responsible for effector functions. Signal-2 (S-2) arises from the binding of Signal-2 receptors to their ligands on the surface of an APC. Signal-2 receptors include CD28 and its ligand B7 as well as LFA-1 and its ligand ICAM-1. When a Signal-2 receptor and its ligand form a complex at the interface between the T-cell and APC receptor membranes, a series of signaling events occur. These events include serine/threonine phosphorylation/dephosphorylation and activation of guanine nucleotide exchange factors that activate adapter proteins with GTPase activity. These signaling events activate a separate set of transcription factors. The signal delivered through the CD28:B7 complex is

5 distinct from that delivered from the ICAM-1:LFA-1 complex, particularly with respect to the differentiation of CD4⁺ T-cells into T_H1 versus T_H2 effector populations. When the predominant binding occurs between LFA-1 and ICAM-1, the CD4⁺ T-cell differentiation favors T_H1 cells which are abundant producers of IL-2 and IFN γ , the preeminent initiators of inflammatory immune responses including delayed-type hypersensitivity (DTH), immunity to intracellular pathogens, and several autoimmune diseases. When the predominant binding occurs between CD28 and B7, the CD4⁺ T-cells differentiate into T_H2 cells. In contrast to T_H1 cells, T_H2 cells do not produce abundant IL-2 or IFN γ cytokines, but instead release the mediators of immediate-type hypersensitivity such as allergy and 10 asthma, i.e., IL-4, IL-5, IL-10, and IL-13. Thus, the ability to manipulate the relative contribution of the complex providing the second signal has a profound effect on the type of immune response that is elicited against a given self-tissue antigen.

15 The associations between the TCR and APC occur at a specialized junction or interface between the TCR and the APC called the immunological synapse. An immune synapse is depicted schematically in Fig. 1. This immune synapse can be defined as the organized structure of activation molecules that assemble at the interface between the T-cell and the APC. Like a synapse in the nervous system, the immune synapse is a close association between cellular membranes. In order for an immune response to ensue, the major regulatory cell of the immune system, the undifferentiated T-cell must be presented 20 with small breakdown products (peptides) of the foreign invader. In an unactivated T-cell, TCR and adhesion molecules are dispersed randomly on the T-cell membrane. The formation of the immunological synapse is an active and dynamic mechanism that allows T-cells to distinguish potential antigenic ligands. The immunological synapse consists of a central cluster of T-cell receptors surrounded by a ring of adhesion molecules. The stable 25 formation of the immune synapse requires adhesion molecules such as LFA-1 and the peptide-recognition receptor (TCR) to form a doughnut-like structure with the TCR on the inside and LFA-1 on the outside. During activation, the TCR and LFA-1 molecules pass by each other within the T-cell lipid bilayer during the formation of the doughnut-like structure (this process is called translocation). If these molecules do not translocate within the 30 immune synapse then the T-cell signal is not fully received and a different program of gene activity may ensue within the T-cell. This can drastically effect the immune response,

especially if the T helper cell deviates from a gene program that would lead to IFN γ release (T_H1 cells and type-1 immunity) to a program that ultimately activates IL-4 production (i.e., T_H2 cells and type-2 immunity).

In more detail, to activate the pathway leading to T_H1 dominance, the TCR recognizes the peptide:MHC-II complex and sends Signal-1 to the T-cell. Additionally, LFA-1 binds to ICAM-1, and these molecules, along with the peptide:MHC-II complex, translocate to form the end-stage immune synapse. This leads to the effective expression of the CD40 ligand (CD154) by the uncommitted T_H cell. CD40 interaction (expressed on the antigen presenting cell) with its ligand generates NF κ B up-regulation of the inflammatory cytokine, IL-12. IL-12 then binds to its receptor on the undifferentiated T_H cell and initiates the T_H1 program, including the up-regulation of the transcription regulators, Stat4 and Tbet. This leads to T_H1 dominance against the autoantigen (e.g., glutamic acid decarboxylase, GAD65), which was initiated by the GAD65 peptide component of the TCR:peptide:MHC-II complex. For the pathway leading to T_H2 dominance, the TCR can recognize the same peptide:MHC-II complex, thereby sending Signal-1. However, in this case, a weaker strength of Signal-1 and/or altered or blocked binding between Signal-2 moieties leads to an altered form of the end-stage immune synapse. Likely, this lower strength of Signal-1 or distinct participation of the LFA-1 second signal leads to this different result, i.e., dominant T_H2 differentiation. For example, the altered immune synapse can dictate that the CD40 ligand is not expressed and IL-12 is therefore not released by the APC. This pathway is schematically represented in Fig. 2. Here, IL-4 appears to accumulate, thereby leading to the up-regulation of Stat6 and GATA-3 within the T-cell and hence commitment to a T_H2 pattern of differentiation.

A major goal of modern applied immunology is to be able to switch from T_H1-dominant immunity (e.g., as seen in autoimmune diseases and transplant rejection) to T_H2 responses against these same tissue antigens. In other cases, it would be extremely valuable to replace weak T_H2 immunity with T_H1 dominance leading to strong T-cell proliferation and the effective generation of cytotoxic T-cells (CTL). These cases may include chronic viral illnesses, like hepatitis-C and AIDS; and could include certain cancers like melanoma. Accordingly, what is needed in the art is modifiers of these immune responses so that type-2 immunity can be replaced with type-1 immunity or type-1 immunity can be replaced with

type-2 immunity, as desired in order to combat different human disease states or health conditions.

SUMMARY OF THE INVENTION

The present invention solves the problems found in the prior art and provides a distinct advance in the state of the art. Briefly, the present invention embraces a peptide which includes a portion of a Signal-1 moiety at one end and a portion of a Signal-2 moiety at the other end. These two ends can be directly connected to each other or connected via a flexible, non-substrate linker. This conjugation of the peptide portions directly and via a linker into a continuous peptide chain produces a new class of immunotherapeutic peptides termed bifunctional peptide inhibitors (BPI). These BPI are based upon the two signal mechanism of T-cell activation and link Signal-1 and Signal-2 moieties in order to alter T-cell activation. In other words, the present invention provides a method of modulating T-cells and subsequent immunity in a very specified manner such that only specific disease-associated populations of these cells are targeted by the products of the present invention. Thus, the present invention leaves necessary components of the intact immune system to operate in their nominal protective manner.

In more detail, the present invention describes constructing a peptide sequence having a TCR epitope of interest (a Signal-1 moiety) at one end and a peptide derived from the protein:protein interaction (the Signal-2 moiety) which generates Signal-2. These two peptide sequences can be connected via a flexible linker which couples the Signal-1 moiety to the Signal-2 moiety or can be directly linked together. In some cases, the linkage between the two peptides sequences may include flanking residues from each portion. The combination of the Signal-1 moiety coupled with the Signal-2 moiety constitutes a BPI. Accordingly, once a TCR epitope of interest is identified and the desired immune response (type-1 or type-2) determined, a BPI according to the present invention, can be generated.

As noted above, an important stage of the immune response is the differentiation of CD4⁺ T-cells into either type-1 helper T-cells (T_H1 cells) or type-2 helper T-cells (T_H2 cells). Differentiation into T_H1 cells results in predominantly cell-mediated immunity while differentiation into T_H2 cells results in predominantly humoral immunity. Each of these immunity types help to protect the body against different types of invasion. T_H1 cells protect the body against intracellular pathogens such as bacteria, and are also implicated in organ-

specific autoimmune diseases. T_{H2} cells are important for protection against extracellular parasites as well as allergic reactions. Development of T_{H1} cells is driven by a cytokine called interleukin-12, which is produced by immune cells known as macrophages and dendritic cells. Interleukin-12 induces or stimulates the naive T-cell to produce interferon- γ (IFN- γ) and interleukin-2 (IL-2). These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Commitment to a T_{H1} immune response is enhanced by the presence of IFN- γ which up-regulates expression of the interleukin-12 (IL-12) receptor while inhibiting the development of T_{H2} cells. This pathway is shown schematically in Fig. 3.

T_{H2} immunity results from the production of interleukin-4 (IL-4) by the naive T-cell. IL-4 induces T_{H2} development and the subsequent production of interleukins 4 (IL-4), 5 (IL-5) and 13 (IL-13), through activation of the transcription regulator Stat6. IL-4 also operates to down-regulate expression of the IL-12 receptor on developing cells, thereby inhibiting T_{H1} development and helping undifferentiated T-cells to commit to T_{H2} cell development. Additionally, IL-4 and IL-5 are known to activate B cells and switch to neutralizing antibody (IgG1 in the mouse) and IgE, the initiator of immediate hypersensitivity. Again, a schematic representation of this process is depicted in Fig. 2.

As noted above, a two-signal mechanism is required to fully activate the T_H cell. Signal-1 occurs when the T-cell antigen receptor (TCR) recognizes or engages the peptide:MHC-II complex on the surface of an antigen presenting cell (APC). This first signal is transmitted through the T-cell receptor and initiates a cascade of tyrosine phosphorylation/dephosphorylation events mediated by kinases and phosphatases and leads to the activation of Ca^{2+} flux, NF-AT and NF κ B transcription factors. These factors enter the nucleus of the T-cell and bind to promoters of genes responsible for effector functions. Signal-2 arises from the binding of a Signal-2 receptor on the T-cell to its protein ligand on the APC. Signal-2 receptors include CD28 and its ligand B7 as well as LFA-1 and its ligand ICAM-1. When a Signal-2 receptor and its ligand form a complex at the interface between the T-cell and APC membranes, a series of signaling events occurs including serine/threonine phosphorylation/dephosphorylation along with actuation of guanine nucleotide exchange factors that activate adapter proteins with GTPase activity. These

signaling events activate a separate set of transcription factors. The signal delivered through the CD28:B7 complex is distinct from that delivered from the ICAM-1:LFA-1 complex, particularly with respect to the differentiation of CD4⁺ T-cells into T_H1 versus T_H2 effector populations. A schematic representation of this signaling is provided herein as Fig. 4.

5 When the predominant binding occurs between LFA-1 and ICAM-1, the CD4⁺ T-cells differentiate into T_H1 cells. The CD4⁺ T-cells of the T_H1 differentiation state are abundant producers of IL-2 and IFN γ , two cytokines that are the preeminent initiators of inflammatory immune responses, such as delayed-type hypersensitivity (DTH), immunity to intracellular pathogens, and several autoimmune diseases. When the predominant binding occurs

10 between CD28 and B7 (i.e., decreased LFA-1:ICAM-1 signaling), the CD4⁺ T-cells differentiate into T_H2 cells. In contrast to T_H1 cells, T_H2 cells do not produce IL-2 and IFN γ cytokines, but instead release the mediators of immediate-type hypersensitivity such as

15 allergy and asthma, i.e., IL-4, IL-5, IL-10, and IL-13. Thus, the ability to manipulate the relative contribution of the complex providing Signal-2 has a profound effect on the type of immune response that is elicited against a given self-tissue antigen.

The associations between the TCR and APC occur at a specialized junction called the immunological synapse (shown in Fig. 1). In order for the immune response to proceed, the undifferentiated T_H cell, must be presented with peptides of the foreign invader on the surface of the APC. In an unactivated T-cell, TCR and adhesion molecules are dispersed

20 randomly on the T-cell membrane. The formation of the immunological synapse is an active and dynamic mechanism that allows T-cells to distinguish potential antigenic ligands. The immunological synapse consists of a central cluster of T-cell receptors surrounded by a ring of adhesion molecules. This arrangement is depicted schematically in Fig. 1. In this figure, the TCR:peptide:MHC-II complex is in the center of the dark circle which represents the

25 protein:protein pair constituting the Signal-2 receptor and the Signal-2 ligand. The stable formation of the immune synapse requires adhesion molecules such as LFA-1 and the peptide-recognition receptor (TCR) to form a doughnut-like structure with the TCR on the inside and LFA-1 on the outside. During activation, the TCR and LFA-1 molecules actually

30 translocate past one another within the T-cell lipid bilayer. If these molecules do not translocate within the immune synapse then the T-cell signal is not fully received and a different program of gene activity may occur within the T-cell. This can drastically effect

the immune response, especially if this causes the T helper cell (T_{h1}) to deviate from a gene program leading to a T_{h1} immune response to a program that activates a T_{h2} immune response. As shown in Fig. 2, an interpretation of the BPI mechanism suggests that BPI bind to both the MHC-II and second signal ligands. This effectively tethers the MHC-II:peptide and ICAM-1 molecules thereby preventing the translocation step of immune synapse formation.

5 In one aspect of the present invention, known TCR epitopes are used as the first peptide portion of the BPI. In this manner, minimal peptide sequences that are potent immunogens are utilized. These minimal peptide sequences (e.g. antigenic peptides) 10 effectively engage the TCR involved in immune responses of interest (i.e. autoimmune diseases, infectious diseases, allergies, cancers, etc). There are already many known TCR epitopes of interest (Signal-1 moieties) and their sequences have been defined in the literature. A partial list of some representative Signal-1 moieties is provided in Table 1. This list is by no means exhaustive as there are potentially thousands of Signal-1 moieties.

15 In another aspect of the present invention, TCR epitopes of interest are identified so that the first portion of the BPI can be synthesized. In this aspect, these dominant TCR epitopes have been so determined by previous art and the sequences are available in the literature. The peptide to which a given T-cell response is focused upon, (e.g., the response against the diabetes-associated antigen GAD65) is identified by the fact that most effector 20 T-cells respond to this portion of the antigen and not other portions. In mouse model systems, animals are immunized with the whole protein antigen. Next, T-cells are removed after the antigen has primed the immune system. These T-cells are placed separately in cultures with short overlapping peptides of the antigen. Most of the response will be to a single peptide and this is the dominant TCR epitope. In humans, T-cells are first cloned 25 from patients. These cloned T-cells are placed separately in cultures with overlapping peptides (again, representing individual portions of the antigen involved, e.g., HIV-1, p24 (SEQ ID No. 8)). Again, the peptide to which most T-cell clones respond is the dominant TCR epitope. The foregoing is described by Schountz et al., *MHC Genotype Controls the Capacity of Ligand Density to Switch T Helper (Th)-1/Th-2 Priming In Vivo*, 157 The 30 Journal of Immunology 3893-3901 (1996), the teachings and content of which are hereby incorporated by reference herein.

-10-

5 In another aspect of the present invention, peptides derived from Signal-2 receptors are used to alter interactions between the nominal receptors on T-cells and their complementary ligands on the APC surface. Table 3 includes a representative list of some known Signal-2 receptor moieties. Of course, those of ordinary skill in the art will be able to identify other Signal-2 moieties not listed therein, as this list is representative and not all-inclusive.

10 Another aspect of the present invention is the linking of the TCR epitope (i.e. the Signal-1 moiety) to a Signal-2 receptor peptide mimic (i.e., the Signal-2 moiety) in order to modify the resultant immune response. This linkage can be between the Signal-1 moiety and the Signal-2 moiety directly, or through flanking residues. Alternatively, this linking can be done via a linker which is positioned between the Signal-1 moiety and the Signal-2 moiety. The linker could be any amino acid including naturally occurring or chemically synthesized amino acids. Preferably, non-substrate amino acids will be used due to their resistance to protease attack. Still more preferably, the linker will comprise a non-substrate amino acid 15 alternating with a small or hydrophilic amino acid. Even more preferably, the linker is synthesizable as one continuous sequence along with the Signal-1 and Signal-2 moieties, which flank the linker at each respective end. Still more preferably, the linker has the general formula (A,B)_X, wherein A and B are amino acid residues, and the A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine, and the B amino acid residue is a small or hydrophilic amino acid. In this formula, X can range from 1 to 100. A particularly representative B residue is glycine. In this embodiment, a linker could potentially have aminocaproic acid (Ac), aminohexanoic acid (Ahx), aminododecanoic acid (Ado), and β -alanine (β A) alternating with glycine residues (G) (e.g., Ac-G-Ahx-G-Ado-G-20 β A). The choice of the residues used to construct the linker can be based upon the desired length of the linker as well as steric hindrance considerations. One preferred linker comprises alternating Ac and G residues. This linker can be lengthened or shortened by the inclusion of the other amino acid residue choices (Ahx, Ado, β A). Some representative linkers are included in Table 2 as SEQ ID Nos. 26-29.

25 30 Approximately 10^9 different TCR account for protective immunity to the universe of infectious agents and contain the repertoire of TCR that may turn against self in

-11-

autoimmune diseases. Moreover, the TCR are also specific for potential tumor antigens and the myriad of allergenic substances in the environment. By changing the TCR epitope of a given BPI we direct the immunomodulating capacity of the BPI to a select group of TCR. In other words, the selection of a TCR epitope to incorporate into the BPI targets T-cells that are involved in a particular human disease in a highly specific fashion. For example, incorporating the GAD65 epitope into a BPI targets autoaggressive T-cells involved in the induction of type-1 diabetes. This targeting to specific TCR allows that T-cells necessary for immunity to infectious agents or cancers will not be significantly compromised. Thus, BPI offer the possibility to specifically modulate T-cell immunity to one antigen while leaving intact the T-cell repertoire necessary for protective immunity to infectious agents and developing cancers.

As noted above, the Signal-1 moieties of the present invention are preferably derived from TCR epitopes and a list of representative known epitopes is provided in Table 1 wherein these known epitopes are presented as SEQ ID Nos. 1-25. When a derivative of a TCR epitope is used to construct the BPI, preferably, the TCR epitope selected will be correlated with a known health condition or disease state. When using one of the representative peptides shown in Table 1 to construct the BPI, it is preferred that the peptides include a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. More preferably, the peptide will have at least 30% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. More preferably, the peptide will have at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Even more preferably, the peptide will have at least 70% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Most preferably, the peptide will have at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Of course, it is also well known in the art to use peptidomimetics to construct moieties having similar functions as the peptides derived from the TCR epitopes. In this respect, the teachings of Falcioni et al. in *Peptidomimetic Compounds That Inhibit Antigen Presentation by Autoimmune Disease-Associated Class II Major Histocompatibility Molecules*, 17 Nature Biotechnology, 562-567 (1999), are incorporated by reference herein. Accordingly, all or part of this Signal-1 moiety portion of the BPI can include such

-12-

peptidomimetics. Preferably, the peptidomimetic will be a mimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25. Alternatively, the Signal-1 moiety will be a derivative of a TCR epitope or a peptide selected from the group consisting of SEQ ID Nos. 1-25. At any rate, it is desired that this first portion of the BPI (or the portion 5 responsible for initiating the first signal) be capable of binding with a major histocompatibility complex (MHC) on an antigen presenting cell (APC). Furthermore, it is preferred that this resulting peptide:MHC complex be capable of engaging important TCR and initiating some form of the signal to the T-cell.

As noted above, the peptides used on the side of the linker opposite the Signal-1 10 moiety are preferably derived from Signal-2 receptors. This second portion of the BPI is connected to the first portion either directly or via the linker. In preferred forms, the second portion includes a sequence having at least about 10% sequence homology with a sequence selected from a group consisting of SEQ ID Nos. 30-41. More preferably, the second portion peptide has at least about 30% sequence homology with a sequence selected from the group 15 consisting of SEQ ID Nos. 30-41. Still more preferably, the second portion peptide has at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41. Even more preferably, the second portion peptide has at least about 70% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41. Most preferably, the second portion peptide includes a sequence having 20 at least about 95% sequence homology with a sequence selected from the group of SEQ ID Nos. 30-41. As with the first portion, peptidomimetics can be used in place of all or some of the amino acid residues of the second portion. In preferred forms the peptidomimetic of the second portion will be a mimic of a peptide selected from the group consisting of SEQ ID Nos. 30-41. Alternatively, the second portion of the BPI will comprise a derivative of 25 a peptide selected from the group consisting of SEQ ID Nos. 30-41. Similar to the first portion, it is preferred that the second portion be capable of binding with a complementary ligand (e.g. the Signal-2 ligand) on an antigen presenting cell. For example, when a peptide derived from LFA-1 is used as this Signal-2 moiety of the BPI, it should bind to ICAM-1 on the surface of the APC. Additionally, it is preferred that this binding with the Signal-2 30 ligand on the APC inhibits or alters the binding of the moiety's parent receptor (on the T-cell) to this same APC ligand.

As explained above, the immune response involves a two signal mechanism and the purpose of the present invention is to modify a given immune response, e.g., from type-1 immunity to type-2 immunity or from type-2 immunity to type-1 immunity. This modification or shifting of immune response phenotype is brought about by BPI according to the present invention. It is preferred in some cases for the BPI to modify an immune response from a T_{H1} dominated or cytolytic immune response to a T_{H2} dominated response; and, in other cases, it is preferred for the BPI to modify an immune response from a T_{H2} dominated response to a T_{H1} or cytolytic dominated response. In some cases, BPI may operate via the activation of very specific T-cell phenotypes, e.g., peptide-specific suppressor T-cells. In contrast to the nominal situation where an antigen stimulates the system toward a T_{H1} response (depicted in Fig. 2), the response generated when a BPI similar to the GAD 65-CD11a BPI is introduced into the immune synapse is quite different and operates to shift the response from type-1 to type-2. This situation is depicted schematically in Fig. 2. In this manner, a BPI comprising a Signal-1 moiety, a flexible, non-substrate linker, and a Signal-2 moiety is formed and introduced into the immune synapse. The TCR recognizes the peptide:MHC complex on the APC and initiates the first signal. However, the second portion of the BPI (the Signal-2 moiety) blocks the typical Signal-2 interaction occurring between LFA-1/ICAM-1, (or for other BPI:CTLA-4/B7, or CD40L/CD40, or FasL/Fas) and the translocation of the TCR into the central cluster. Depending on whether the LFA-1/ICAM-1 or CTLA-4/B7 interaction is targeted by the specific BPI construction, perhaps by tethering the MHC-II:peptide complex to the second signal ligand, the signal will be altered in a different direction of differentiation. For example, when the Signal-2 peptide portion of the BPI is derived from LFA-1, this would favor a decrease in CD40-ligand expression and hence, a lack of IL-12 release. By contrast, IL-4 released during the initial T-cell activation will accumulate to higher levels surrounding the synapse. This accumulation of IL-4 leads to Stat6 and GATA-3 up-regulation in the naive T-cell and ultimately to commitment to a type-2 pattern. Alternatively, when the Signal-2 moiety peptide portion of the BPI is derived from CTLA-4, the normal binding of CTLA-4 and CD-28 to B7 ligands is affected and thus more CD40 ligand is expressed (i.e., a greater role for high affinity LFA-1:ICAM-1 is dictated by blocking the B7 receptors); hence, the release of IL-12 increases. Interleukin-12 induces or stimulates the naive T-cell to produce more IFN- γ

-14-

5 and IL-2, thus providing a positive feedback toward type-1 immunity. These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Such responses are hallmarks of protective immunity against human viral diseases. It will also operate to link TCR epitopes to the receptor for Fas. Since Fas:FasL interaction governs apoptosis, it will be possible to increase the frequency of specific TCR-bearing cells by blocking the apoptotic event. This will be important for BPI design against HIV, HPV, HCV, and cancers.

10 Thus, an important aspect of the present invention is that tethering a specific TCR epitope to a Signal-2 receptor peptide mimic leads to alteration of T-cell differentiation involving T-cells bearing only these receptors and/or T-cell populations indirectly linked to these peptide specific subsets. The ability to block or alter T-cell responses to a given immunodominant peptide antigen would offer extremely precise treatments for immunopathological conditions. A major drawback to current immunotherapies is that 15 broad specificities of T-cells are affected leaving the host more susceptible to infections and cancers. The BPI of the present invention should block and/or alter only the desired T-cell population and subsequent responses that depend on these initial T-cells. Also, BPI will target a specific TCR-bearing population for activation toward a desired effector function.

20 In another aspect of this invention, the relative strength of signal generated by the T-cell-APC interaction has an affect on whether the ultimate immune response is a type-1 or a type-2 response. In this regard, the teachings of Murray in *How the MHC Selects T_H1/T_H2 Immunity*, 19 Immunology Today 157-163 (1998) are hereby incorporated by reference.

25 In another aspect of the present invention, an immune response is modified by contacting an APC with a peptide capable of binding to an MHC and to a Signal-2 ligand on the APC and causing an altered signal to be transmitted to the T-cell. Thus, the immune response is deviated from the immune response generally associated with the immunogenic peptide and its corresponding antigen (i.e., infectious agent, self protein, or allergen).

30 In another aspect of the present invention, a peptide having the general formula AXB is provided. The A, X, and B represent a chain of amino acid residues wherein the A chain has at least about five residues and at least about 10% sequence homology with a TCR

epitope, the B chain has at least four residues and at least about 10% sequence homology with a peptide derived from a Signal-2 moiety, and the X chain is a linker. The linker could be any amino acid including naturally occurring or chemically synthesized amino acids. Additionally, the X chain has at least one residue. It is possible to link A to B directly without X as well, although a linker of some size is preferred in order to span the distance between the MHC-II and second signal ligands on the APC surface. As noted above, preferably, non-substrate amino acids will be used due to their resistance to protease attack. Still more preferably, the linker will comprise a non-substrate amino acid alternating with a small or hydrophilic amino acid. Even more preferably, the linker is synthesizable as one continuous sequence along with the Signal-1 and Signal-2 moieties, which flank the linker at each respective end. Still more preferably, the linker has the general formula (A,B)_X, wherein A and B are amino acid residues, and the A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine, and the B amino acid residue is a small or hydrophilic amino acid. In this formula, X can range from 1 to 100. A particularly representative B residue is glycine. In this embodiment, a linker could potentially have aminocaproic acid (Ac), aminohexanoic acid (Ahx), aminododecanoic acid (Ado), and β -alanine (β A) alternating with glycine residues (G) (e.g., Ac-G-Ahx-G-Ado-G- β A). The choice of the residues used to construct the linker can be based upon the desired length of the linker as well as steric hindrance considerations, hydrophobicity, charge, etc. One preferred linker comprises alternating Ac and G residues. This linker can be lengthened or shortened by the inclusion of the other amino acid residue choices (Ahx, Ado, β A). Some representative linkers are included in Table 2 as SEQ ID Nos. 26-29. Additionally, the X chain is positioned between the A chain and the B chain and the entire peptide can be synthesized as one continuous sequence. Some preferred sequences will have an A chain having at least about 10% sequence homology with any one of SEQ ID Nos. 1-25, an X chain having at least about 2% sequence homology with any one of SEQ ID Nos. 26-29, and a B chain having at least about 10% sequence homology with any one of SEQ ID Nos. 30-41. Preferably, the peptide is capable of shifting a type-1 response to a type-2 response, or vice versa. Of course, peptidomimetics may be synthesized to mimic any part of the BPI, including the linker. Preferably, the A chain binds to the MHC on an APC to form a

peptide:MHC complex. This complex is capable of engaging the TCR on critical T-cell populations. Still more preferably, the B chain is capable of binding to a Signal-2 ligand on the APC at the same time as the formation of the peptide:MHC complex. This combined binding to the APC should be capable of altering the signal delivered to the T-cell. The 5 combination of the first signal and the second signal are capable of fully activating a T-cell and by selecting the peptide used for the A chain and the peptide used for the B chain, the immune response can be deviated from its normal progression. In the case of a normally activated type-1 response leading to the up-regulation of T_{H1} cells, the response can be altered to give a type-2 response leading to the up-regulation of T_{H2} cells. In the case of a 10 normally activated type-2 response leading to the up-regulation of T_{H2} cells, the response can be altered to give a type-1 response leading to the up-regulation of T_{H1} cells. Again, the A chain can be chosen based on the health condition normally associated with the sequence (for example, see Table 4).

In another aspect of the present invention, a method is provided for preparing a 15 peptide for modulating immune responses. This method comprises the steps of selecting a first peptide sequence which has at least about 10% sequence homology with a sequence derived from a TCR epitope, selecting a second peptide sequence which has at least about 10% sequence homology with a sequence derived from a Signal-2 receptor moiety, selecting a third peptide sequence which is a flexible, non-substrate linker, and synthesizing the 20 peptides as a continuous peptide chain. Preferably, the linker is flanked on one end with the peptide derived from the TCR epitope and flanked on the other end with the peptide derived from the Signal-2 moiety. Preferably, the first peptide sequence should be associated with a known health condition and be capable of binding with an MHC on an APC. Similarly, it is preferred that the second peptide sequence be capable of binding with a Signal-2 ligand 25 moiety on the APC. The method can further comprise the step of contacting the nominal peptide immunogen with the TCR, thereby binding the first peptide sequence to the MHC and the second peptide sequence to the Signal-2 ligand, thereby generating APC bearing potent first and altered/blocked second signal ligands which activate a desired immune response.

30 Inherent in the BPI design is the antigen-specific moiety that a given T-cell population is activated to respond against (i.e., the TCR epitope), ultimately leading to the

cascade of immune reactions that generate protective or in some cases pathologic immune responses. These epitopes when bound to major histocompatibility complex (MHC) molecules on the antigen presenting cell (APC) surface provide the Signal-1 of the two-signal mechanism of T-cell activation. Thus, an important consideration is the affinity of a given peptide for MHC molecules. This affinity was directly tested by the binding of biotinylated peptide to the cells that present the peptide:MHC complex to the T-cells in mouse and man. T-cell clones to possible peptide epitopes were generated and tested for binding to the immunodominant TCR of a response and specifically stimulate T-cell functions in vitro by the ELISPOT assay. Because modifications in the peptide residues that actually contact the TCR are part of the BPI development, it is also preferable that known crystallographic structures of the epitope bound to MHC molecules are available. This allows for precise three-dimensional predictions of how a particular amino acid substitution or mimetic will affect the actual structure encountered by the developing T-cells. However, in the absence of known crystal structures, it is possible to predict the shape of a hypothetical peptide:MHC structure based upon the available coordinates of other peptide:MHC structures. This predictability is partially due to established peptide binding motifs, that allow for prediction of which residues of the epitope fit most readily into the particular binding pockets of a given MHC allele. These predictions have been accomplished using two different alleles (I-A^a and I-A^b) binding a collagen peptide wherein each polymorphic position of the I-A molecules were substituted with the known amino acids at these positions. The overall structure was based upon the published coordinates of a reference allele I-A^k binding a different peptide. Thus, in cases where the 3D structure of a particular disease-associated epitope is not known, a structure for predicting where the TCR contacts the peptide by a similar allelic-substitution and modeling approach can still be generated. It is important to identify (or at least predict) these TCR contact positions. It is well-known that certain alterations to TCR-contact positions can change the functional differentiation of T-cells into the T_H1 or T_H2 types that can determine the course of immunity (see Murray, et al., Major Histocompatibility Complex (MHC) Class II Molecules Direct TCR-Specificity for Opposite Ends of the Same Immunogenic Peptide in T_H1 or T_H2 responses (unpublished manuscript, 2000); and Murray; 19 *Immunology Today* 157-163 (1998), the teachings of which are hereby incorporated by reference.

Specifically, it was verified that the peptide binds to MHC molecules on live APC. Briefly, spleen cell density-gradient fractions (from mice), or PBL, or APC lines (from humans) were incubated in round bottom 96-well plates with increasing concentrations of individual biotinylated peptides at 37°C, 5% CO₂ for 16 hours. Following binding of the BPI to the APC, Avidin-FITC was incubated with the cells on ice for 30 minutes, followed by biotinylated anti-Avidin for 1 hour, then again with Avidin-FITC. For BPI titrations, increasing concentrations (0.1-100 µM) of the biotinylated derivatives in sterile 0.5% BSA-PBS were incubated with the APC for 16 hours as above. As shown in Fig. 5, the GAD 65 BPI binds preferentially to NOD APC as predicted. The LFA-1 moiety or the GAD 65 moiety did not display this increased binding to the diabetes strain's APC. Three-color analyses used Cy-Chrome or PE-conjugated antibodies to known surface markers of APC that were commercially available. Avidin-FITC and biotinylated anti-Avidin detection of the bound peptide was as previously described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). Slight modifications of this method were used to test peptide inhibition (i.e., peptide affinity) and co-capping to the MHC and ICAM molecules directly on the live APC surface. First, monoclonal antibodies (mAb) against MHC or ICAM molecules blocked BPI binding, therefore showing that the BPI binds to these molecules (Fig. 6). Unlabeled peptide was used in a competition assay to derive the relative affinity of the BPI for the APC and the ability of the BPI to crosslink the MHC and ICAM molecules on the APC was examined by cocapping ICAM with an anti-MHC mAb. Here, cells were incubated with the BPI. Next, an anti-MHC mAb was added. After 30 minutes at 37°C, the cells were transferred to ice and stained with PE-labeled anti-ICAM (Fig. 7).

Next, T-cell clones were generated for determination of TCR epitopes for later use in BPI. These experiments utilized CD4+ or CD8+ T-cell clones from humans or mice immunized against predicted TCR epitopes using previously described methods (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). These clones were maintained by biweekly restimulation with irradiated histocompatible lymphocytes, the peptide, and recombinant IL2. To determine if a given TCR-epitope is effective for the activation to cytokine synthesis, an ELISPOT assay was used. Of course, other cytokine

-19-

assays could also be used. For analysis, BPI that have been substituted at predicted TCR-contact positions will be used to determine which of these BPI variants are most effective in the inhibition of proliferation and cytokine release from individual clones as analyzed above. Predicted positions will be scanned with different amino acids or mimetics to alter the interaction with the TCR in the structures generated by molecular modeling.

5 Next, Molecular Dynamics/Energy Minimizations (MDEM) will be used to study the peptide conformations. MD simulations will be used in conjunction with crystallographic data to predict the solution conformations of the BPI. MDEM simulations can predict flexibility and conformational changes during binding of BPI to MHC-II and ICAM-1. Amino acid substitutions can also be introduced into the Signal-1 and/or Signal-2 10 moieties in order to favor simultaneous binding to both receptors, as first predicted by these model studies. The I-A^{g7}:BPI:D1 structure (see Fig. 8) is an example of using the crystal structure coordinates of a disease-associated peptide:MHC structure (I-A^{g7}:GAD65 peptide). For this figure, docking studies were performed on a Silicon Graphic Octane workstation 15 using InSight II (MSI/Biosym). The LFA-1-ICAM-1 structure was taken from known diffraction coordinates and the I-A^{g7}:GAD65 peptide was from known coordinates. Of course, analogous methods can be used to model the BPI listed in Tables 1, 2, 3 and 4 for binding to the various MHC molecules of mouse and man.

20 The second stage in the BPI process is selection of peptide mimics of established second signal receptor molecules involved in the functional differentiation of T-cells. To determine these structures, the crystallographic structures and available models of the second signal receptors bound to their physiological ligands will be used to predict the regions of the receptors that make contact with the ligand. This approach was used to design the EGAD-BPI which can be depicted as

25

(EIAPVFVLL)-(AcGAcGAc)-(ITDGEATDSG)
GAD65(208-217) linker LFA-1(237-247)

30 These interactions can also be determined empirically by making site-directed changes in the second signal molecules and determining whether such mutant molecules still bind to the ligand in question. However, many of these studies have been performed with

-20-

known second signal receptors, including LFA-1, CD28/CTLA4, CD40L, and CD95L. Molecular modeling studies will be used as above to model the interactions of these second signal moieties with their ligands separately and when the moiety is part of the BPI structure.

Once candidate BPI moieties that bind effectively to the MHC and second signal ligands and that alter T-cell functions *in vitro* were identified, these moieties were synthesized at opposite ends of relatively short synthetic peptides, connecting them by a non-proteolytic substrate linker of variable length. As described by the prototypical EGAD-BPI, the Signal-1 moiety (i.e., the disease-associated TCR epitope) was linked by this flexible linker to the Signal-2 receptor mimetic peptide (i.e., a second signal receptor thought to be involved in $T_{H}1/T_{H}2$ differentiation). These synthetic peptides were generated by conventional methods of peptide synthesis. In some cases, BPI are tested for binding to isolated MHC and second signal ligands, and NMR, molecular modeling and crystallography are used to determine their exact 3D structures. Finally, it was determined whether a given BPI was biologically active *in vivo*. Mice were treated with the BPI and immune cells isolated and tested for cytokine production by ELISPOT (see Figs. 9 & 10). Of course other cytokine assays will be well known to those of ordinary skill in the art and can be used in place of ELISPOT. *In vivo* models similar to the NOD.Scid model (i.e., human Scid, transgenic knockout strains, etc.) were used, with modifications necessary for each disease being examined, as a more stringent test of BPI efficacy. For example, in the case of the HIV-1 p24 TCR-epitope, human-Scid mice are used for the adoptive transfer experiments. In this experiment, T-cells from patients will first be cloned by conventional methods and stimulated with the BPI *in vitro*. Next, these cells will be transferred into the human-Scid mice and analyzed as with the EGAD-BPI in the NOD.Scid adoptive transfer experiment. Results from these experiments are given in Figs. 11-13.

To synthesize the BPI, Fmoc chemistry on chlorotriyl resins was used. Protected amino acids were double coupled at 8-fold excess for 1 hour. Resins were DMF and MeOH washed and cleaved in Reagent R: TFA, EDTA, Thioanisole, Anisole. The TFA mixture containing the peptide in solution was precipitated in ether and washed extensively. Preparative HPLC of peptides was accomplished by a gradient of 0-80% acetonitrile in 0.1% TFA. Lyophilization of the various fractions and verification by MALDI-TOF using a Voyager mass spec (PerSeptive, Foster City, CA) yielded the synthetic peptide as a TFA salt.

Modeling, crystallography and binding studies, as described above, were used to generate the predicted BPI complex structure.

In another example which tested the diabetes BPI *in vivo*, 15 million disease-linked lymphocytes (i.e., patient T-cells, or T-cell populations linked to the disease process) were injected with or without T-cells that received the BPI compound (*in vivo* or *in vitro*) and were expanded for 24 hours in recombinant IL-2. Some experiments will deplete specific subsets of the T-cells using mAb to CD154, CD25, CD62L, CD152, etc. and magnetic particles prior to adoptive transfer. T-cells (from mice or humans) treated with the individual moieties of the BPI will be used as negative controls along with CD4+ cells from mice treated with saline alone (Fig. 9). For blocking spontaneous diabetes, five groups of ten female NOD mice (12 weeks of age) were used and monitored for nondiabetic blood glucose levels with a standard glucometer (AccuChek-complete, Roche Diagnostic). Each mouse was labeled and individually monitored for blood glucose levels weekly for the course of the experiment. The five groups received either (a) intravenous (i.v.) injection of the BPI (100 µg in 100 µl endotoxin-free saline/injection) at 8 weeks of age, (b) same dose GAD65 (208-217) epitope alone, (c) same dose CD11a (237-247) peptide alone, or (d) saline alone. For other systems, similar treatment groups involving the different Signal-1 and Signal-2 peptides and BPI will be used. Mice will be tested by challenging with the appropriate infectious agent or antigen depending upon the particular BPI in question.

To evaluate the disease process by immunohistology (*see, e.g.*, Fig. 12A-D), spleen, pancreas, or other target organs, *e.g.*, the CNS for the MBP peptide BPI, or lung for the RSV peptide BPI, were removed from euthanized mice of each group and prepared for histology by fixing in neutral buffered formalin and embedding in paraffin, or snap frozen in O.C.T. medium. For scoring inflammation, minimums of five sections from each mouse were used to assess the blocking affect of a given BPI. For characterization of standard T-cell markers on cellular infiltrates, biotinylated mAb to various cell surface antigens will be incubated individually with the Cryostat sections (2 hours), followed by avidin-alkaline phosphatase (Vector laboratories). Alternatively, cell subsets will be phenotyped by standard flow cytometry methods as described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray; 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). Finally, the students t-test or ANOVA will be used to

-22-

estimate the statistical significance of differences observed between groups and individual mice.

A few representative assembled BPI consisting of a Signal-1 moiety and a Signal-2 receptor moiety joined together via a linker are provided in Table 4 as SEQ ID Nos. 42-46.

5 These representative BPI are operable for shifting specific immune responses from a type-1 to a type-2 response and vice-versa. Advantageously, other immune responses to other antigenic peptides will be preferably unaffected.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

Figure 1 is a schematic representation of an immune synapse between a T cell and an APC illustrating the doughnut structure of the TCR:peptide:MHC location;

15 Fig. 2 is a schematic representation of how a representative BPI blocks differentiation leading to a T_{H1} dominated immune response and shifts immunity to T_{H2} dominated immune response;

Fig. 3 is a schematic representation of nominal activation of a type-1 immune response through the interactions between cell surface proteins within the immune synapse;

20 Fig. 4 is a simplified schematic representation of the two signal mechanism of T-cell activation;

Fig. 5a is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI to different mouse strains;

25 Fig. 5b is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI portion to different mouse strains;

Fig. 5c is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI portion to different mouse strains;

30 Fig. 6a is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, without antibodies to MHC-II or ICAM-1;

-23-

Fig. 6b is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, when antibodies to ICAM-1 are present;

5 Fig. 6c is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, when antibodies to MHC-II are present;

10 Fig. 7 is a color photograph representing the results of a fluorescent microscopy analysis of a representative BPI simultaneously binding to MHC-II and ICAM-1 structures on the NOD APC by co-capping with antibodies to MHC-II, the top panels are from mice APC treated with a representative BPI and the bottom panels are treated with just the saline vehicle;

15 Fig. 8 is a color photograph of the molecular model of a representative BPI binding to the NOD mouse's MHC-II (I-A^{g7}) and the D1 domain of ICAM-1, MHC-II is shown in pink, ICAM-1 is in light blue, the BPI is shown by atom with the carbon in green, oxygen in red, and nitrogen in blue;

Fig. 9a is a graph representing the ELISPOT analysis of IL-4 cytokine release by T-cells taken from NOD mice treated with the EGAD-BPI or the saline control;

Fig. 9b is a graph representing the ELISPOT analysis of IFN- γ cytokine release by T-cells taken from NOD mice treated with the EGAD-BPI or the saline control;

20 Fig. 9c is a graph representing the ELISPOT analysis of IL-4 cytokine release by T-cells taken from NOD mice treated with the AGAD-BPI or the saline control;

Fig. 9d is a graph representing the ELISPOT analysis of IFN- γ cytokine release by T-cells taken from NOD mice treated with the AGAD-BPI or the saline control;

25 Fig. 10 are representative photographs of the raw data of the ELISPOT analysis used for the graphs in Figs. 9a-9d;

Fig. 11 is a graph of the severity of islet infiltration as an indicator of the inhibition of insulitis by the EGAD-BPI, separate portions of the EGAD-BPI, and saline;

Fig. 12a is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the saline control;

30 Fig. 12b is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the GAD peptide;

-24-

Fig. 12c is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the EGAD-BPI;

Fig. 12d is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the CD11a peptide; and

5 Fig. 13 is a graph illustrating the results of a 10 week monitoring of blood glucose levels in NOD.Scid mice which received CD25-negative diabetes-inducer cells together with T-cells from NOD mice injected with either the EGAD-BPI or saline.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

10 As used herein, the following definitions will apply: "Sequence Identity" as it is known in the art refers to a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, namely a reference sequence and a given sequence to be compared with the reference sequence. Sequence identity is determined by comparing the given sequence to the reference sequence after the sequences have been optimally aligned to produce the highest degree of sequence similarity, as determined by the match between 15 strings of such sequences. Upon such alignment, sequence identity is ascertained on a position-by-position basis, e.g., the sequences are "identical" at a particular position if at that position, the nucleotides or amino acid residues are identical. The total number of such position identities is then divided by the total number of nucleotides or residues in the reference sequence to give % sequence identity. Sequence identity can be readily calculated by known methods, including but not limited to, those described in Computational Molecular Biology, Lesk, A. N., ed., Oxford University Press, New York (1988), Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H. G., 20 eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. et al., eds., M. Stockton Press, New York (1991); and Carillo, H., et al. Applied Math., 48:1073 (1988), the teachings of which are incorporated herein by reference. Preferred methods to determine the sequence identity are designed to give the largest match between the sequences tested. 25 Methods to determine sequence identity are codified in publicly available computer programs which determine sequence identity between given sequences. Examples of such

programs include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research, 12(1):387 (1984)), BLASTP, BLASTN and FASTA (Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S. et al., NCVI NLM NIH Bethesda, MD 20894, Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990), the teachings of which are incorporated herein by reference). These programs optimally align sequences using default gap weights in order to produce the highest level of sequence identity between the given and reference sequences. As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "sequence identity" to a reference nucleotide sequence, it is intended that the nucleotide sequence of the given polynucleotide is identical to the reference sequence except that the given polynucleotide sequence may include up to 5 point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, in a polynucleotide having a nucleotide sequence having at least 95% identity relative to the reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously, by a polypeptide having a given amino acid sequence having at least, for example, 95% sequence identity to a reference amino acid sequence, it is intended that the given amino acid sequence of the polypeptide is identical to the reference sequence except that the given polypeptide sequence may include up to 5 amino acid alterations per each 100 amino acids of the reference amino acid sequence. In other words, to obtain a given polypeptide sequence having at least 95% sequence identity with a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total number of amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or the carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal

WO 02/50250

PCT/US01/48632

-26-

positions, interspersed either individually among residues in the reference sequence or in the one or more contiguous groups within the reference sequence. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. However, conservative substitutions are not included as a match when determining sequence identity.

5 Similarly, "sequence homology", as used herein, also refers to a method of determining the relatedness of two sequences. To determine sequence homology, two or more sequences are optimally aligned as described above, and gaps are introduced if necessary. However, in contrast to "sequence identity", conservative amino acid substitutions are counted as a match when determining sequence homology. In other words, 10 to obtain a polypeptide or polynucleotide having 95% sequence homology with a reference sequence, 95% of the amino acid residues or nucleotides in the reference sequence must match or comprise a conservative substitution with another amino acid or nucleotide, or a number of amino acids or nucleotides up to 5% of the total amino acid residues or nucleotides, not including conservative substitutions, in the reference sequence may be 15 inserted into the reference sequence.

16 A "conservative substitution" refers to the substitution of an amino acid residue or nucleotide with another amino acid residue or nucleotide having similar characteristics or properties including size, charge, hydrophobicity, etc., such that the overall functionality does not change significantly.

20 "Isolated" means altered "by the hand of man" from its natural state., i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Finally, all 25 references and teachings cited herein which have not been expressly incorporated by reference are hereby incorporated by reference.

26 Sequences including or having a sequence which has at least about 10% sequence identity with any one of SEQ ID Nos. 1-46 and which exhibit similar binding properties to APC or linking properties between two peptide sequences are within the scope of the present 30 invention. Preferably, such sequences will have at least about 30% sequence identity with any one of SEQ ID Nos. 1-46, still more preferably at least about 50% sequence identity,

even more preferably, at least about 70% sequence identity, and most preferably at least about 95% sequence identity. Alternatively, sequences including or having a sequence which has at least about 10% sequence homology with any one of SEQ ID Nos. 1-46 and which exhibit similar binding properties to APC or linking properties between the two adjacent peptide sequences are embraced in the present invention. More preferably, such sequences will have at least about 30% sequence homology with any one of SEQ ID Nos. 1-46, still more preferably at least about 50% sequence homology, even more preferably at least about 70% sequence homology, and most preferably at least about 95% sequence homology. Additionally, sequences which differ from any one of SEQ ID Nos. 1-46 due to a mutation event, a series of mutation events, or chemical derivatization but which still exhibit desired properties are also embraced in the present invention. Such mutation events or derivatizations include but are not limited to point mutations, deletions, insertions, rearrangements, peptidomimetics, and other chemical modifications.

15 A "linker" is defined as any amino acid including naturally occurring or chemically synthesized amino acids. Preferably, a "linker" is a flexible, non-substrate sequence of amino acid residues resistant to proteolytic degradation which can be used to conjugate and/or couple a Signal-1 moiety to a Signal-2 moiety.

20 A "Signal-1 moiety" is defined as a peptide epitope, i.e., the peptide portion of an antigen and/or mimetics of these antigenic peptides to which important TCRs bind.

25 A "Signal-2 moiety" or a "Signal-2 receptor moiety" is defined as a peptide portion of a second signal receptor known to bind to and/or affect binding of the receptor to its complimentary ligand on the APC. This can include peptide mimics and mimetics of the receptor/ligand structure of interest.

30 A "Signal-2 ligand" is the complementary protein of the Signal-2 receptor moiety on the APC to which the receptor portion and/or the Signal-2 receptor moiety has significant affinity and binds.

As used herein "derivative" with respect to peptides refers to changes produced by amino acid addition, deletion, replacement, substitution, and/or modification; mutants produced by recombinant and/or DNA shuffling; and salts, solvates, and other chemically synthesized/modified forms of the peptide that retain in part the activity of the isolated native peptide.

BPI were generated using automated peptide synthesis by a robotic multiple peptide synthesizer employing Fmoc amino acid chemistry by standard methods. Wang resin (*p*-benzylxybenzyl alcohol polystyrene) was used as the solid support. Peptides were characterized by reversed-phase HPLC and electrospray mass-spectrometry. This synthesis, referred to as Merrifield peptide synthesis, utilizes traditional organic chemical reactions carried out on a solid material so that the peptide chain is lengthened while attached to the support structure. The peptides will be cleaved from the resin using TFA, and purified by reverse-phase HPLC and analyzed by mass spectroscopy. Alternatively, these reactions can be carried out in solution when larger amounts of the peptides are desired. Of course, the peptides of the invention may be synthesized or prepared by a number of techniques which are well known in the art. See, for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W. H. Freeman and Co., New York, which is incorporated herein by reference in its entirety. Short peptides, for example, can be synthesized on a solid support or in solution. Longer peptides may be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides of the invention may be synthesized, and/or cloned, and expressed according to techniques well known to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Vols. 1-3, Cold Spring Harbor Press, New York.

Alternatively, the peptides of the invention may be synthesized such that one or more of the bonds which link the amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to amino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is enhanced. For example, hydrophobic groups such as carbobenzoyl, dansyl, or t-butyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini.

Purchasing preformed peptides provides another alternative source of peptides having 25 amino acids or less as these are easily purchased from commercial peptide synthesis laboratories. In later synthesis schemes, peptide mimetic compounds may be synthesized in place of the peptide moieties and linked by the same chemistry. The design of peptidomimetics is an established technique and known correlates of key amino acids of the peptide can be synthesized by previously published methods. Furthermore, as it is well known in the art, peptidomimetics may be developed which have the same modulation properties as the preferred peptides detailed herein. As these peptidomimetics require no more than routine skill in the art to produce, such peptidomimetics are embraced within the present application. Notably, the side chains of these peptidomimetics will be very similar in structure to the side chains of the preferred peptides herein, however, their peptide backbone ~~may~~ be very different or even entirely dissimilar. If resistance to degradation *in vivo* or greater conformational stability were desired, the peptides of the present invention could be cyclized by any well known method. One such method adds Penicillamine (Pen) and cysteine (Cys) residues to the N- and C-termini to form cyclic peptides via a disulfide bond between the Pen and Cys residues. The formation of this cyclic peptide restricts the peptide conformation to produce a conformational stability, thereby providing better selectivity for cell surface receptors than its linear counterpart.

The portion of the BPI which spans between the Signal-1 moiety and the Signal-2 moiety is referred to as a linker. As noted above, the linker is not essential in forming a BPI. However, when a linker is used, the linker can be any naturally occurring or chemically synthesized amino acid. Preferably, the linker is a non-substrate amino acid residue chain which helps to prevent protease attack. A particularly preferred linker is a repeating chain of the non-natural amino acid, aminocaproic acid (Ac), and the amino acid glycine (G) (e.g. Ac-G-Ac-G-Ac). If a shorter length was needed for the linker, beta-alanine residues (β Ala) could be substituted for one or more of the Ac residues. If a longer chain was needed for the linker, amino-dodecanoic acid residues (Adod) could be substituted for one or more of the Ac residues. As is well known in the art, peptide mimetics of these linker amino acids may also be synthesized and inserted into the BPI structure.

-30-

The following examples set forth preferred embodiments of the present invention. It is to be understood, however, that these examples are provided by way of illustration and nothing therein should be taken as a limitation upon the overall scope of the invention.

5

EXAMPLE 1

This example describes the methods used to generate the BPI.

Materials and Methods:

Synthesis of peptides was via Fmoc on chlorotriity resins. Protected amino acids were double coupled at 8-fold excess for one hour. Resins were dimethylformamide (DMF) and methanol (MeOH) washed and cleaved in Reagent R: trifluorolacetic acid (TFA), ethylene diamine tetraacetic acid (EDTA), Thioanisole, Anisole. The TFA mixture containing the peptide in solution is precipitated in ether and washed extensively. Preparative HPLC of peptides was accomplished by a gradient of 0-80% acetonitrile in 0.1% 10 TFA. Lyophilization of the various fractions and verification by mass spectroscopy yielded the synthetic peptides as a TFA salt. Modeling, crystallography and binding studies are as 15 described above.

Results:

The peptides produced in this example are provided in Table 1 and are also listed as SEQ ID Nos. 1-46. These peptides include the Signal-1 moiety, the Signal-2 moiety and the non-substrate linker between the two moieties. To produce the BPI, any Signal-1 moiety 5 could be linked with any Signal-2 moiety via any linker using the peptide synthesis described above. In other words, the BPI are generated as one continuous peptide chain comprising a Signal-1 peptide sequence followed by a linker sequence followed by a Signal-2 peptide sequence. Additionally, some representative BPI were generated for later use in the experiments. These BPI are included herein in Table 4. However, it is important to note 10 that these BPI are representative (as are each of the BPI portions listed in Tables 1-4) and not all inclusive.

TABLE 1. Signal-1 Peptides

SEQ ID No.	Sequence	Name, Source	Organism	Health Condition
1	EIAPIFVILIE	GAD65 (208-217)	<i>Homo sapiens</i>	type-1 diabetes
2	EIAPIFVILIE	GAD67 (217-226)	<i>Mus musculus</i>	type-1 diabetes
3	QYNRADQAAAGGLR	Collagen II (1168-1180)	<i>Homo sapiens</i>	rheumatoid arthritis
4	RVVTKNDITIII	Yersinia ISP (322-333)	<i>Yersinia enterocolitica</i>	reactive arthritis
5	ENPVVHIFR-NIVTER	Myelin BP (84-98)	<i>Homo sapiens</i>	multiple sclerosis
6	GYKVLVNTPSVAAT	HCV, NSS (1248-61)	Hepatitis C virus	hepatitis
7	GSDTILIPCRKQFQINNMWQE	HTLV, gp120 (410-429)	HIV-1	AIDS
8	PIVQNLQGGMVHOAISPRIL	HIV, p24 (133-152)	HIV-1	AIDS
9	STPESANL	SIV, Tat (28-35)	Simian immunodeficiency virus	simian AIDS
10	AICKRPNKCPGKKT	RSV, G (113-197)	Respiratory syncytial virus	asthma
11	VYRDGNTVY A	HPV 16, E6 (60-68)	Human papillomavirus (HPV)	cervical cancer
12	DRAHYNI	HPV 16, E7 (48-54)	HPV	cervical cancer
13	YMLDQPFETT	HPV 16, E7(11-20)	HPV	cervical cancer
14	ASDURITQQLMGTIV	HPV 33, E7 (73-87)	HPV	cervical cancer
20	AELYHFLKLYRAR	MAGE (3114-3126)	<i>Homo sapiens</i>	melanoma

16	LLKRYRAREPVTKAE	MAGE (3120-3133	Homo sapiens	melanoma
17	EQV/AQYKA LPVVIENA	Fel d 1 (22-37)	Felis domesticus	cat allergy
18	KALPVVLENHARULKNCV	Fel d 1 (28-44)	Felis domesticus	cat allergy
19	LVP/CAWAGNYCGEKRAYCCS	Amb a 1 (1-20)	Ambrosia artemisiifolia	ragweed allergy
20	PIGK/YCVCYDSKAICNKNCT	Amb 1 5 (21-40)	Ambrosia trifida	ragweed allergy
21	KSMKVKVTVAFNQFGPN	Cry j 1 (211-225)	Crypomena japonica	cedar allergy
22	IDIFASKNHFHQKNTIGTG	Cry j 2 (182-200)	Crypomena japonica	cedar allergy
23	YFGKAMYFNLIDTKCYK	Phospholipase 2 (81-97)	Apis mellifera	bee allergy
24	ASEQETADATPEKEEPTAAAP	Hev b 5 (37-56)	Hevia brasiliensis	latex
25	FGISNYCQTPPNANK I	Der p 1 (111-127)	Dermatophagoides pteronyssinus	dust mites

-34-

TABLE 2. Linkers

SEQ ID No.	Sequence
26	Ac-G-Ac-G-Ac
27	Ac-G- β Ala-G-Ac
28	Ac-G-Adod-G-Ac
29	Ahx-G-Ahx-G-Ahx

TABLE 3. Signal-2 Peptides

SEQ ID No.	Sequence	Source	Organism	Shift in Immunity
30	ITDGEATDSG	CD11a (237-247)	Homo sapiens	type-1 \rightarrow type-2
31	TDGEATDSGN	CD11a (238-248)	Homo sapiens	type-1 \rightarrow type-2
32	ASPGKATEVR	CTLA4 (24-33)	Homo sapiens	type-2 \rightarrow type-1
33	SPSHNTDEVR	CTLA4 (24-33)	Mus musculus	type-2 \rightarrow type-1
34	KVELMYPPYYVL	CTLA4 (93-104)	Homo sapiens	type-2 \rightarrow type-1
35	KVELMYPPPYFV	CTLA4 (93-104)	Mus musculus	type-2 \rightarrow type-1
36	ITDGEATDSG	CD11a (237-247)	Mus musculus	type-1 \rightarrow type-2
37	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	Homo sapiens	type-1 \rightarrow type-2
38	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	Mus musculus	type-1 \rightarrow type-2
39	YMRNSKYRAGGAYGP G	Fas-ligand (CD95L) (143-155)	Homo sapiens	type-2 \rightarrow type-1
40	YMRNSKYRAGGAYGP G	Fas-ligand (CD95L) (143-155)	Mus musculus	type-2 \rightarrow type-1
41	TDGEATDSGN	CD11a (238-248)	Mus musculus	type-1 \rightarrow type-2

Table 4. Some Representative BPI

	TCR Epitope	Linker	Signal-2 Receptor Moiety	Complete BPI Sequence	SEQ ID No.	Effect
5	(GAD65) Diabetes: ELAPVFLLE	AcGAcGAc	(CD11a) ITDGEATDSG	ELAPVFLLEAcGAcGAcITDGEATDSG	42	type-1 - type-2
	(tat) AIDS: STPESANL	AcGAddGAc	(Fas-ligand) YMRNSKYRAGGAYGPG	STPESANLAcGAddGAcYMRNSKYRAGGAYGPG	43	1 CTL
	(p24)	AcGAcGAc	(CTLA-4)	PIVQNLQGQMYHQALSPRTLAcGAc	44	1 type-1
	PIVQNLQGQMYHQALSPRTL		K'VELMYPPPPYTV	GACKVELMYPPPPYTV		
10	(collagen-1) Rheumatoid Arthritis: QYMRAQAAAGGLR	AcGAbhGAc	(CD40L) KGYYTMSNNLVTL	QYMRAQAAAGGLRAcGAbhGAcKGYYTMSNNLVTL	45	type-1 - type-2
	(HPV-18) Cervical Cancer: YMLDLQPEETT	AcGAcGAc	(Fas-ligand) YMRNSKYRAGGAYGPG	YMLDLQPEETTAcGAcYMRNSKYRAGGAYGPG	46	1 CTL

Discussion:

Once the linker, the Signal-1 moiety, and the Signal-2 moiety are chosen, the entire BPI can be synthesized using the above-described methods. There are thousands of potential Signal-1 moieties which could be used in connection with the present invention. Each of these moieties may be associated with a distinct immunological response or disease state. Once the epitope structure and sequence are determined, an appropriate linker could be selected and the other portion of the BPI, i.e., the second signal moiety, can be chosen. Once all of these sequences have been determined, BPI can be designed using the peptide sequences themselves, peptidomimetics, or combinations of the two. Construction of appropriate peptidomimetics is detailed by Falcioni, et al, 17 *Nature Biotechnology*, 562-567 (1999), the content and teachings of which are hereby incorporated by reference herein.

Fig. 8 illustrates the structure of the GAD65 (208-217), TCR epitope linked to the CD11a (237-247) second signal moiety produced by the present methods. It is shown bound to the groove of I-A^{g7} and the D1 domain of ICAM-1. For modeling the I-A^{g7}:GAD65 peptide structure, docking studies were performed on a Silicon Graphic Octane work station using InSight II software (MSI/Biosym). The LFA-1 peptide:ICAM-1 domain structure is based on the docking model of Edwards, C.P. et al. *J. Biol. Chem.* 273:28937 (1998), the teachings and disclosure of which is incorporated by reference herein. The alpha carbon ribbon of I-A^{g7} is shown in pink; D1 of ICAM-1 is in light-blue; the BPI is shown by atom, carbon in green, oxygen in red, and nitrogen in blue. This structure can be denominated as GAD65 (208-217) -[Ac-G-Ac-G-Ac]- CD11a (237-247). Advantageously, the length of the linker may be modified as needed or as indicated by any experimental data obtained in order to span between the Signal-1 and Signal-2 moieties at an optimum length.

These structures are illustrated by the preliminary mechanism depicted schematically (Figs. 2 and 3), and the structural model (Fig. 8). The linker used has the sequence -[Ac-G-Ac-G-Ac]-. To lengthen the linker, one or more aminocaproic acid (Ac) residues can be substituted with aminododecanoic acid. To shorten the linker, beta-2 alanine can be used as a substitute for aminocaproic acid.

Of course, it is possible that one of ordinary skill in the art could produce any number of peptidomimetics or derivatives which would have similar activity to the BPI, and such modifications are encompassed by the present invention as described in more detail above.

-37-

EXAMPLE 2

This example uses biotinylated BPI to test for competitive inhibition of BPI binding by unlabeled peptides or monoclonal antibodies to MHC-II and ICAM-1 on live APC, and to verify antigenic peptide binding to live APC. Additionally, it was shown that monoclonal antibodies to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (GAD65 5 (208-217) - [Ac-G-Ac-G-Ac] - CD11a (237-247)) (hereinafter referred to as EGAD-BPI) to NOD spleenocytes.

5

Materials and Methods:

10

To obtain biotinylated BPI, the synthesized EGAD BPI was biotinylated with NHS-Biotin as described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). Spleen cell density-gradient fractions from normal (unimmunized) NOD, BALB/c and other MHC congenic strains were incubated in round bottom 96-well plates with increasing concentrations of individual biotinylated peptides at 37°C, 5% CO₂ for 16 hours. Following 15 binding of the BPI to the APC, Avidin-FITC was incubated with the cells on ice for 30 minutes, followed by biotinylated anti-Avidin for 1 hour, then again with Avidin-FITC. For BPI titrations, increasing concentrations (0.1-100 µM) of the biotinylated derivatives in sterile 0.5% BSA-PBS were incubated with the APC for 16 hours as above. Three-color analyses used Cy-Chrome or PE-conjugated anti-B220 (mAb RA3-6B2 (CD45R B-cell marker), anti-MHC class II (KH74 or 10-3.62 mAb), or anti-ICAM-1 (3E2 mAb); (all purchased from PharMingen, San Diego, CA). Bound peptide was detected with avidin-FITC/biotinylated anti-avidin/avidin-FITC on live cells gated by forward/side scatter analysis. Controls contained all detecting reagents in absence of the biotinylated peptide; 20,000 events were analyzed for each histogram with a FACScan (Becton-Dickinson) flow 20 25 cytometer.

20

To test for competitive inhibition of BPI binding with unlabeled peptides or monoclonal antibodies to MHC-II and ICAM-1 on live APC, freshly isolated fractions of spleen cells were incubated with the previously biotinylated BPI. However, for this portion 25 30 of the experiment, the experimental wells contained various unlabeled peptides (e.g., antigenic peptides or LFA-1 peptides), and/or monoclonal antibody (e.g., anti-MHC-II or anti-ICAM-1 mAb) inhibitors. Negative selection methods with monoclonal antibodies

-38-

conjugated to magnetic particles were used to enrich the spleen cell fractions for B cells, macrophages, or dendritic cells as well as to examine differences in BPI binding to these different populations. These methods are detailed in Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996), the teachings and content of which were incorporated by reference above.

5 To verify antigenic peptide binding to live APC, initial EGAD-BPI were screened for selective binding to NOD (I-A^e) APC and assayed for simultaneous binding using monoclonal antibodies against either MHC-II or ICAM-1 by flow cytometry methods using live APC (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)).
10 In this assay, increasing concentrations of the biotinylated-BPI, -CD11a(237-247) or -GAD65(208-217) peptide were incubated overnight with spleenocytes from each inbred strain. Bound peptide was detected with amplification of avidin-FITC fluorescence by the use of a biotinylated anti-avidin reagent, followed by a second round of avidin-FITC binding. Biotinylated peptide was incubated with 10⁶ viable cells at a peptide concentrations
15 of 50 μ M. Bound peptide was detected with avidin-FITC/biotinylated anti-avidin-FITC. For analysis, a forward/side scatter gate was set on live lymphocytes and 20,000 events were collected in this gate. Background fluorescence (detection reagents only) is shown in each panel of Figs. 5a-5c along with the 50 μ M bio-peptide histogram (peptide-fluorescence
20 intensity = FL1). The percentage of positive cells (M2) were determined by the CELLQuestTM program (Becton-Dickinson) and are displayed in each panel along with the median channel fluorescence (MCF) of the M2 population (all data are the direct output of the CELLQuestTM program running on an Apple G3 computer).

25 To demonstrate that monoclonal antibodies to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (EGAD-BPI) to NOD spleenocytes, an assay identical to that used for Figs. 5a-5c was used. However, either purified 10-3.62 (anti-MHC-II) or 3E2 (anti-ICAM-1) were included in the overnight incubation of the spleen cells with the biotinylated BPI. Both antibodies were purchased from PharMingen and used at 5 μ g/ml final concentration. A control containing no added monoclonal antibody was also tested.
30 Analyses were gated on forward/side scatter dotplots for live lymphocytes and 20,000 events were analyzed for each histogram. Results for this example are given in Figs. 6a-6c.

Results and Discussion:

As illustrated by the data provided in Figs. 5a-5c, NOD spleen cells bind the diabetes BPI (EGAD-BPI) at a higher density than spleenocytes identically purified from BALB/c, A.SW, or A.BY. Previous data has shown that B cells are the major antigenic peptide binding cells in these spleen cell preparations isolated by lymphocyte separation media (LSM) density gradient centrifugation (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray; 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). There was a significant difference in the percentage of high-density binding cells, from 30% (NOD) to 6% (A.BY). In contrast, the separate 5 Signal-1 (GAD65 peptide) and Signal-2 (CD11a peptide) moieties did not bind preferentially to NOD APC. Supporting data is given in Figs. 5b and 5c. Fig. 5b illustrates direct binding of biotinylated LFA-1 (CD11a 237-247) peptide to the same spleenocyte preparations as those shown in Fig. 5a. Note that this Signal-2 moiety bound similarly to all strain spleenocytes. Fig. 5c illustrates direct binding of biotinylated GAD65 (208-217) peptide to the same spleenocyte preparations as those depicted in Figs. 5a and 5b. These 10 data indicate that BPI could be engineered to fit particular MHC peptide binding motifs as discussed by Corper et al. in *A Structural Framework for Deciphering the Link Between I-A^{g7} and Autoimmune Diabetes*, 288 *Science* 505-511 (2000), and by Dessen et al. in *X-ray Crystal Structure of HLA-DR4 (DRA*0101, DRB*0401) Complexed With a Peptide From Human Collagen II*, 7 *Immunity* 473-481 (1997), the respective teachings of which are 15 incorporated by reference herein.

Additionally, as illustrated in Figs. 6a-6c, other studies have shown that monoclonal antibodies to MHC-II and ICAM-1 block peptide binding to NOD spleen cells. These data indicate that the diabetes BPI bind to both receptors on the APC surface. Thus, Monoclonal 20 antibody to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (EGAD-BPI) to NOD spleenocytes. In effect the predicted bifunctional nature of the BPI is demonstrated by these results and suggests that the BPI will link MHC-II to ICAM-1 on the APC surface. This mechanism was further demonstrated by co-capping experiments.

-40-

EXAMPLE 3

This example utilizes co-capping experiments to demonstrate simultaneous binding of the BPI to MHC-II and ICAM-1 molecules.

5 *Materials and Methods:*

Further support for simultaneous binding of the BPI to MHC-II and ICAM-1 molecules has been observed in co-capping experiments using biotinylated mAb10-3.62 and streptavidin to cap MHC-II in the presence or absence of the BPI. To test the ability of the BPI peptide to link MHC-II and ICAM-1 molecules on the APC surface, we used a modification of a co-capping experiment originally described for monoclonal antibodies. Briefly, biotinylated monoclonal antibody to MHC-II (10-3.62) is incubated with freshly-isolated APC from NOD mice previously treated by intravenous (i.v.) injection of a given BPI variant or saline. Antibody-bound cells are then incubated with streptavidin (37°C x 15 min.) to cap the MHC-II molecules on the APC surface. The cells were transferred to ice and labeled with a fluorescent (PE) monoclonal antibody to ICAM-1 (3E2). The cells are plated and observed for evidence that a given BPI links ICAM-1 into the MHC-II cap, i.e., by standard fluorescence microscopy and image analysis. In one experiment, T-depleted spleenocytes from mice treated 16 hours previously with EGAD-BPI (i.v.) exhibited co-capping of ICAM-1 with MHC-II in the presence of bio-10-3.62/streptavidin. In the other experiment, T-depleted spleenocytes from mice treated 16 hours previously with saline only did not exhibit co-capping. The results for these experiments are given in Fig. 7.

Results:

25 The top panels of Fig. 7 illustrate the results from the T-depleted spleenocytes from mice treated 16 hours previously with EGAD-BPI (i.v.), wherein ICAM-1 was co-capped with MHC-II in the presence of bio-10-3.62/streptavidin. The bottom panels of Fig. 7 illustrate the results from the mice treated with saline only wherein co-capping is not exhibited. This is evidenced by having ICAM-1 remain dispersed on the B-cell membranes. As is shown, B cells isolated from NOD mice treated 16 hours previously by i.v. injection 30 of either 40 nanomoles of EGAD-BPI or saline (PBS) alone displayed two distinct patterns of ICAM-1 expression, as measured by staining with PE-labeled 3E2 (anti-ICAM-1) on ice.

WO 02/50250

PCT/US01/48632

-41-

On cells from BPI-treated mice, ICAM-1 appears to have co-capped with the MHC-II molecules (note single concentrated spot of ICAM-1 red fluorescence in top panels). By contrast, the nominal dispersed density of ICAM-1 is observed on cells isolated from PBS-treated NOD mice (note entire surface red fluorescence staining in bottom panels).

5 Therefore, it appears evident that BPI have the capacity to bind simultaneously to MHC-II and ICAM-1 structures on the surface of live APC and therefore may provide signal alterations involving pathways necessary for T_{H1}/T_{H2} differentiation. To directly examine the effects of BPI on T_{H1}/T_{H2} immune deviation, T-cells from mice injected with EGAD-BPI were examined for cytokine analysis.

10

EXAMPLE 4

This example used an ELISPOT to determine T_{H1}/T_{H2} frequency as altered by BPI injection.

15 *Materials and Methods:*

Groups of 3-5 NOD mice were immunized subcutaneously (s.c.) with the GAD 65 peptide in CFA (40 nanomoles/mouse) at the tail base. Different groups received either the EGAD-BPI, its single TCR epitope (Signal-1 moiety), or its CD11a peptide (Signal-2 moiety) i.v. (all 40 nanomoles/mouse). After 6-8 days, another identical 40 nanomole 20 injection was given to each mouse, and the next day lymph nodes draining the site of the s.c. injection were made into single cell suspensions for culture. Identical primary cultures were incubated for 96 hours; then, viable T-cells were recovered by density gradient centrifugation. One million of these cells were combined in nitrocellulose-bottomed 96-well plates (Millititer-HA, Millipore, Bedford, MA), previously coated (50 μ l/well) with mAb to either mouse IFN γ (clone R4-6A2), or mouse IL-4 (clone BVD4-1D11) at a concentration 25 of 10 μ g/ml in PBS. Groups of triplicate cultures were incubated with either Concanavalin-A (2 μ g/ml), or the Signal-1 peptide moiety plus 20 U/ml recombinant IL2 (R & D Systems). After 72-96 hours of culture at 37°C and 5% CO₂, plates were washed three times with PBS-0.05% Tween-20. In appropriate wells are added biotinylated anti-IFN γ (clone XMG1.2) or 30 biotinylated anti-IL-4 (clone BVD6-24G2) at a concentration of 1 μ g/ml and incubated for 1 hour at room temperature. Positive control wells receive known T_{H1} or T_{H2} clones in

-42-

place of normal T-cells. MAb pairs to IL12, IL10, and IL2 are also available and will be used to test for these cytokines in the same assay. All mAb and recombinant controls are purchased from PharMingen (San Diego, CA). Finally, plates were washed three times with PBS-Tween, and then exposed to 100 μ l of a 1:2000 dilution of streptavidin alkaline phosphatase (Jackson ImmunoResearch, West Grove, PA) for 1 h and washed as before. Cytokine-producing cells were enumerated by development of the membrane with BCIP/NBT substrate kit (BioRad Labs, Richmond, CA), followed by image capture and analysis using a standard stereomicroscope connected with a digital camera and NIH image software (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray; 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). In separate experiments, CD4+ T-cell clones from NOD mice immunized with the GAD65(208-217) peptide by our previously described methods can be used in the same assay. The clones were generated using the methods described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994), the teachings of which are hereby incorporated by reference. These clones will be maintained by biweekly restimulation with irradiated NOD lymphocytes, the GAD peptide, and recombinant IL-2. For further analysis, BPI that have been substituted at predicted TCR-contact positions will be used to determine which of these BPI variants are most effective in the inhibition of proliferation and cytokine release from individual clones as analyzed above. Predicted positions that will be scanned with all amino acids except cysteine are amino acids 208, 213, and 216. These residues point toward the TCR in the recently solved crystal structure of the GAD65 peptide bound to I-A^{g7} (Corper et al., 288 *Science* 505-511 (2000) and see Fig. 8).

Results:

Importantly, this example shows the ability of a given BPI to modulate a functional immune response. It can be seen that mice treated with the BPI produce abundant IL-4, whereas the control mice did not produce this cytokine (illustrated in Figs. 9a and 9c). Since IL-4 is the signature cytokine of type-2 immunity, this example shows that the BPI have the capacity to switch dominant type-1 immunity toward T_H2 differentiation and a type-2 response. Moreover, we have developed this *in vivo* assay system to provide a relatively quick examination of a given BPI's immunoregulatory efficacy. Once T_H1/T_H2 modulation

-43-

is confirmed as in the present example, studies can then move on to the more stringent tests of BPI efficacy using adoptive transfer experiments as described below.

As shown in Fig. 9a and 9c, IL-4 production increases by approximately 10-fold when T-cells are from the BPI treated animals stimulated in vitro with mitogen. IFN- γ production also increased, although to a lesser extent (see Figs. 9b and 9d).

EXAMPLE 5

This example tested the capacity of the BPI to inhibit lymphocytic infiltration of pancreatic islets in NOD mice. Lymphocytic infiltration is a hallmark of insulitis and the development of type-1 diabetes.

Materials and Methods:

These studies sought to confirm that the BPI containing the immunodominant GAD65 TCR epitope (EGAD-BPI) was biologically active *in vivo* and inhibited the development of pancreatic inflammation. Groups of three normal glycemic NOD males (8 weeks old) were immunized with the GAD65 (208-217) peptide in CFA as described in Example 4. The control group received PBS, and separate experimental groups received either the EGAD-BPI, the GAD peptide alone (i.e., the T-cell receptor epitope), or the CD11a peptide alone (i.e., the second signal receptor moiety) by two intravenous injections as described in Example 4. On day 10, the pancreata were removed to 10% PBS-buffered formalin, embedded in paraffin, and five-micron serial sections were examined histologically for mononuclear cell infiltration as previously described by Yoon, et al., *Control of Autoimmune Diabetes in NOD Mice by GAD Expression or Suppression in β Cells*, 284 Science 1183-1187 (1999), the entirety of which is hereby incorporated by reference.

Results:

The results for this experiment are given in Figs. 11 and 12. Fig. 11 represents the cumulative data of this analysis wherein the severity of islet infiltration is scored and plotted as the percentage of islets examined. Over 100 islets from each group in greater than 5 tissue sections were analyzed by three independent observers. As shown in Fig. 11, there

-44-

was a clear inhibitory effect of the EGAD-BPI treatment on mononuclear cell infiltration (insulitis). Over 95% of the islets from the BPI treated animals were intact and did not show infiltration (i.e., grade-0 islets). All of the other groups showed some signs of insulitis even at this early stage of the disease. Notably, the GAD peptide treated animals showed the most insulitis (grade-0 islets reduced to 62% and 37.5% of islets scored grade 2 or above. This compared with 66.7% normal islets in the CD11a peptide treated group and 71.4% normal islets in PBS treated animals. Thus, compared to the PBS control, EGAD-BPI treatment provided an 84% *inhibition of insulitis* [calc. as: % islets @grade 1-4 (PBS Rx) minus % islets @grade 1-4 (EGAD-BPI Rx) divided by % islets @grade 1-4 (PBS Rx) multiplied by 100]. Representative islets from each group of the experiment are shown below in Figs. 12a-12d, as stained with hematoxylin and eosin. Note severe lymphocytic infiltration in Figs. 12b and 12d which was observed in groups treated with the single Signal-1 or Signal-2 moieties while the islets from the EGAD-BPI treated mice were predominately intact (see Fig. 12c). Taken together, these data strongly indicate that treatment with the diabetes BPI containing these Signal-1 and Signal-2 peptide moieties significantly inhibits the infiltration of lymphocytes into the pancreatic islets in this animal model of type-1 diabetes. Therefore, we would predict that BPI operate via a mechanism involved in the normal breakdown of self tolerance to pancreatic autoantigens. These data indicate that BPI may operate through immune deviation to block the autoimmune response to pancreatic antigen. To further test this theory, we transferred T-cells primed in the presence of the EGAD-BPI into NOD.Scid mice genetically programmed for diabetes development.

EXAMPLE 6

This example tested BPI blocking of diabetes development in the well described intact immune system of immunologically reconstituted NOD.Scid mice to study diabetes progression.

Materials and Methods:

BPI proven active for modulation of T_{H1}/T_{H2} responses against known immunodominant peptides of GAD65 for blocking T-cell initiated diabetes progression in a NOD mouse model was tested. The NOD.Scid adoptive transfer model, wherein CD25-

-45-

depleted NOD spleen cells have been observed to induce diabetes as early as 2-4 weeks post adoptive transfer was used for this purpose. NOD.Scid adoptive transfers were performed by a modification of a protocol described by Solomon et al. in *B7/CD28 Costimulation is Essential for the Homeostasis of the CD4⁺ CD25⁺ Immunoregulatory T-cells That Control Autoimmune Diabetes*, 12 *Immunity* 431-440 (2000), the content of which is incorporated herein by reference. NOD spleen cells from 8 week (non-diabetic) females were used to enrich a CD25⁻/CTLA4⁻ depleted population by treatment with purified monoclonal antibody (mAb 7D4, PharMingen) followed by low-tox rabbit complement (Cedarlane) (80% depletion of CTLA4⁺ cells by flow analysis with PE-labeled UC10-4F10-11 mAb; not shown). These inducer cells (15×10^6 per mouse) were injected (i.v.) into 6 week NOD.Scid females (Jackson Labs) together with 3×10^6 CD4⁺ T-cells from mice either treated with the EGAD-BPI or treated identically except with PBS in place of the EGAD-BPI. In vitro clonal expansion was with either recombinant IL-2 (R&D systems), or ConA, as described for the ELISPOT experiments. All manipulations of animals and cells were performed in laminar flow hoods, and animals were maintained continuously behind laminar flow barriers on autoclaved food and water in microisolator cages. Some experiments will deplete specific subsets of the CD4⁺ cells using mAb to CD154, CD25, CD62L, CD152, etc. and magnetic particles prior to adoptive transfer. CD4⁺ cells from mice treated with the individual moieties of the BPI can be used as negative controls along with CD4⁺ cells from mice treated with saline alone. Co-transfer of CD4⁺ T-cells enriched from matched NOD mice treated with a given BPI demonstrates that BPI treatment leads to regulatory T-cells capable of delaying the onset of diabetes. Moreover, other diseases listed in Table 1 can be tested in this same manner (i.e., by adoptive transfer of regulatory T-cells).

25 *Results:*

Significantly, we have now seen a clear difference in the development of hyperglycemia and diabetes between the two experimental groups. As can be seen in Fig. 13, at 7 weeks post adoptive transfer, 80% of mice which received the vehicle, (PBS) developed hyperglycemia and diabetes. By contrast only 40% of mice treated with the EGAD-BPI showed hyperglycemia and progression to diabetes. Therefore, these data demonstrate the blocking of diabetes progression as mediated by the BPI treatment. Further

-46-

5 modifications to the BPI structure may enhance their effectiveness in this model and in the treatment of type-1 diabetes. These data indicate that T-cells capable of suppressing diabetes development were generated in the presence of the BPI and operated *in vivo* to inhibit diabetes progression within the intact system of the NOD.Scid mouse. Thus we would anticipate similar regulatory T-cells to become activated by BPI containing TCR epitopes of other disease associated antigens. For example, collagen-II peptide epitopes may 10 initiate suppressor T-cells involved in rheumatoid arthritis. Moreover, regulatory T-cells that would expand T_H1 populations may be generated by BPI containing CTLA4 second signal moieties and these could be used in diseases such as HIV1 infection or other chronic 15 viral diseases. Extrapolation of this example to clinical trial should be straightforward, as the NOD model is recognized as a significant representation of the human disease. (See e.g., Atkinson and Leiter, The NOD Mouse Model of Type-1 Diabetes: As Good as it Gets?, 5 *Nature Medicine*, 601-604 (1999).

15 EXAMPLE 7

Here, the predicted examples of BPI for other autoimmune diseases are briefly 20 detailed. Specifically, BPI containing immunodominant TCR epitopes for collagen-induced arthritis (CIA) and myelin basic protein-induced experimental allergic encephalomyelitis (EAE) will be discussed. Also, the CD40L peptide mimic is predicted to favor T_H2 25 immunity, as blocking the CD40 signal would be expected to decrease IL12 production (Ruedl, et al., *The Antigen Dose Determines T Helper Subset Development by Regulation of CD40 Ligand*, 30 Eur. J. Immunol. 2056-2064 (2000)). Therefore, in these autoimmune models and in the NOD model, we will attempt to favor T_H2 immunity by linking the appropriate TCR epitopes to the CD40L peptide mimic as well as the CD11a mimic used in diabetes inhibition. Mutations in this loop peptide have been shown to affect binding and function of CD40L.

Materials and Methods:

30 There are several autoimmune models which employ different cross-reactive immunodominant epitopes, different mouse strains, and tissues of analysis. These types of models are highly similar to our short-term model of diabetes development that we designed

-47-

to test the EGAD-BPI. For CIA: We will induce the disease by a single peptide in CFA injection protocol as described by Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). As in the NOD system, these mice will receive either the BPI, PBS, or the single peptide moieties. The minimal immunodominant collagen-II epitope is listed above, and modifications to the BPI will be based upon the x-ray structure of this complex (Dessen et al., 7 *Immunity* 473-481 (1997). For EAE, the disease is induced by the method of Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). This method also uses a single peptide (the myelin basic protein (MBP) peptide, 85-101) injection in CFA, by methods analogous to those described in our NOD system.

10

Results:

We would anticipate that the BPI constructed with collagen and MBP would be effective in modulating immunity to these antigens to a $T_{H}2$ -dominated pattern. Since these diseases are thought to involve predominant $T_{H}1$ immunopathology (see above references), such a switch would ostensibly delay or cure the disease in these mice (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). As in the NOD model, such results would target the development of analogous compounds for use in the human diseases of rheumatoid arthritis and multiple sclerosis, where these types of immune responses are clinically observed. Most importantly, BPI offer the capability of blocking autoimmune T-cell responses while maintaining host immunity to infectious agents and developing cancers.

15

20

EXAMPLE 8

This example describes predicted BPI for infectious diseases and certain cancers. Specifically, a general protocol for the testing of a given BPI containing immunodominant TCR epitopes of a specific human pathogen will be described using the example of HIV-1 p24 epitope (Harcourt, et. al., *HIV-1 Variation Diminishes CD4 T Lymphocyte Recognition*, 188 *J. Exp. Med.*, 1785-1793 (1998)) (SEQ ID No. 8).

25

30

Materials and Methods:

By contrast to the previous experimental examples, these BPI will be primarily tested by their effects on long-term T-cell clones derived from human patients. Briefly, peripheral blood mononuclear cells (PBMCs) are prepared from patient and control whole blood, and CD8+ cells removed by the negative selection protocol with magnetic particles. These cells 5 are grown in tissue culture medium at 4×10^6 cells in 1 ml for 6 days in the presence of 20 μ M of the p24 peptide, and blast cells isolated by density gradient centrifugation. Secondary cultures of these cells contained recombinant human IL-2 (20 U/ml) and are continued for a maximum of 10-14 days. Lines were expanded by repeating the process of re-culturing with irradiated APC from histocompatible donors together with the p24 peptide and 10 expansion of the T-cell blasts in IL-2. Clones were prepared by limiting dilution cloning in fresh plates containing irradiated APC, peptide and IL-2 (50 U/ml) (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray; 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). BPI will be tested for their ability to inhibit the proliferation and cytokine release of these established lines of human T-cells 15 by our detailed methods described in Schountz et al., *Unique T Cell Antagonist Properties of the Exact Self-Correlate of a Peptide Antigen Revealed by Self-Substitution of Non-Self-Positions in the Peptide Sequence*, 168 *Cellular Immunology* 193-200 (1996). Here, we show that peptides changed by amino acid substitutions at key TCR-contact residues alter the proliferation and cytokine release of cloned T-cells. If a given BPI significantly inhibits 20 or alters cytokine release to p24 peptide-specific clones, this will target the BPI for more stringent testing *in vivo*. Mouse models can be used to test candidate BPI for infectious diseases. These studies will be performed as described for the GAD65 BPI with the substitution of immunodominant peptides of the infectious agents for the GAD65 TCR epitope peptide. Positive results in these *in vivo* studies would substantiate animal studies 25 with live pathogens. The Scid-human mouse model in which human tissues are adoptively transferred to the Scid mouse could be used to examine protective immunity to HIV (Jenkins, et al., *Blood* (1998) 8:2672, hepatitis-C virus (HCV) (Bronowicki, J., et al. *Hepatology* (1998)28:211), human papilloma virus (HPV) (Tewari, et al. *Gynecol. Oncol.* (2000)77:137, and respiratory syncytial virus (RSV) (Nadal, et al. *Clin. Exp. 30 Immunol.*85:358) infections.

Results:

It is hypothesized that incorporation of the CD28/CTLA4 peptide or the Fas-ligand peptide as the second signal moiety will shift immunity toward the T_{H1} subset and induce or enhance CTL responses. (Padrid, P., et al. Am. J. Respir. Cell. Mol. Biol. (1998)18:453).
5 CTLA4 is a negative regulator of T-cell activation and signaling through CD28 has been linked to T_{H2} differentiation (Rulifson, J., et al. J. Immunol. (1997)158:658). Given the evidence that the LFA-1 signal is inhibitory to T_{H2} differentiation and that CD28 signaling favors T_{H2} differentiation, we will proceed with these studies using this selective differentiation paradigm to further modify BPI design. Similarly, the evidence suggests that
10 CD95 (also called Fas) interaction with the CD95-ligand (FasL) favors T_{H1} differentiation (Chattergoon, et al. Nature Biotech. (2000)18:974). BPI with the peptide mimic of the FasL, which is from the Y218 loop of FasL, predicted to interact with Fas at the T-cell:APC interface, will be used to favor T_{H1} activation and CTL responses against chronic T_{H2} -dominated diseases.

15

EXAMPLE 9

Here we describe several possible BPI that contain the TCR epitopes of described allergen sequences synthetically linked to the predicted CD28/CTLA4 peptide mimic and/or the predicted FasL peptide mimic.

20

Materials and Methods:

These studies will again use a combination of analyses using human cloned T-cell lines and animal models of allergy to these well-known allergic agents. Allergies affect a very large population of humans, with estimates of many allergies and asthma reaching 10% of otherwise healthy individuals. We will use our previously described 7-10 day protocol to investigate BPI modulation of the immune response to the allergen peptides described in the table. As previously described, this protocol involves the injection of the allergen peptide in CFA on day 1, followed by i.v. injection of the BPI on day 1 and on day 6, 7, 8 or 9. On day 7, 8, 9 or 10, the draining lymph nodes are cultured and compared for T_{H1} versus T_{H2} cytokines by ELISPOT (see Example 4 for detailed methods). Once candidate BPI for a given allergen have been identified by this relatively short-term experiment, we
25
30

-50-

will test these BPI for the alteration of CD4 T-cell response using cloned lines from atopic patients. Briefly, CD4 T-cell clones will be established from patient peripheral blood lymphocytes as described under Example 8. We will test the capacity of a given BPI to inhibit or alter cytokine release by these cells using the ELISPOT as described previously.

5 Finally, we will move the examination of a given BPI toward clinical testing using identically described procedures with these specific allergens in human MHC (HLA) transgenic mice (Svetlana, P. et al. J. Immunol. (1998)161:2032). These mice offer the advantage of having the human MHC molecules and thus, BPI binding will be very similar in this model as in the human allergic condition. If a given BPI blocks T_{H2} activation in

10 these mice against the native allergen, then adoptive transfer studies with human Scid mice (similar to those used in Example 8) can be used as a precursor to human clinical trials.

WO 02/50250

PCT/US01/48632

-51-

Results:

Blocking the CTLA4/CD28 pathway in preference for LFA-1 signaling will favor T_H1 differentiation against these allergens in the presence of the BPI. Also, BPI with the FasL moiety should favor type-1 immunity. It has been a long-held practice to "desensitize" atopic patients with allergens given by injection and desensitization is thought to operate via a shift toward T_H1 responses to the specific allergens (Holt, et al., Nature (1999) 402:6760 suppl:B12-17). Therefore, as in the case of the chronic T_H2-linked infectious diseases, our working hypothesis is to use the T_H1-promoting capacity of LFA-1 signaling together with the possibility to inhibit T_H2 signaling via the CTLA4/CD28 molecules to effect this result. We will also examine the effects of allergen epitopes linked to the Fas peptide mimic, as dual expression of Fas and antigen within APC has been shown to favor T_H1 immunity and CTL induction (Chattergoon, M., et. al. Nat. Biotech. (2000)18:974) . It may be possible to induce cell death of APC presenting allergen epitopes, thereby limiting the activation of T_H2-type regulatory cells in allergy and asthma, including RSV-precipitated childhood and geriatric bronchiolitis.

WO 02/50250

PCT/US01/48632

-52-

We claim:

1. A peptide comprising a first portion and a second portion, said first portion including a sequence having at least about 10% sequence homology with a peptide derived from a TCR epitope, said second portion including a sequence having at least about 10% sequence homology with a peptide derived from a Signal-2 moiety.
5
2. The peptide of claim 1, further comprising a linking portion.
10
3. The peptide of claim 2, said linking portion comprising at least one amino acid residue.
15
4. The peptide of claim 3, said amino acid being a flexible, non-substrate amino acid.
20
5. The peptide of claim 2, said linking portion comprising a sequence of amino acid residues, said sequence comprising a non-substrate amino acid alternating with a hydrophilic amino acid.
25
6. The peptide of claim 2, said linking portion having the general formula $(A,B)_X$, wherein A and B are amino acid residues, and said A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine, and said B amino acid residue is glycine, and wherein X ranges from 1 to 100.
30
7. The peptide of claim 6, said A amino acid residue being aminocaproic acid.
8. The peptide of claim 1, said first portion including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

WO 02/50250

PCT/US01/48632

-53-

9. The peptide of claim 8, said peptide having at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

10. The peptide of claim 9, said peptide having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

11. The peptide of claim 1, said first portion comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

12. The peptide of claim 1, said first portion comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

13. The peptide of claim 1, said TCR epitope being correlated with a known disease state.

14. The peptide of claim 1, said first portion capable of binding with a major histocompatibility complex on an antigen presenting cell.

15. The peptide of claim 14, said peptide:MHC complex capable of engaging a T-cell receptor on a T-cell.

16. The peptide of claim 1, said second portion including a sequence having at least about 10% sequence homology with a sequence selected from a group consisting of SEQ ID Nos.30-41.

17. The peptide of claim 16, said peptide having at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

30

-54-

18. The peptide of claim 17, said peptide having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

5 19. The peptide of claim 1, said second portion comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

20. The peptide of claim 1, said second portion comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

10 21. The peptide of claim 1, said second portion capable of binding with a Signal-2 ligand on an antigen presenting cell.

15 22. The peptide of claim 21, said peptide capable of initiating a second signal in a T-cell.

23. The peptide of claim 1, said peptide capable of modifying an immune response from a type-1 dominated response to a type-2 dominated response.

20 24. The peptide of claim 1, said peptide capable of modifying an immune response from a type-2 dominated response to a type-1 dominated response.

25 25. The peptide of claim 1, said second portion being associated with a particular type of immune response.

26. The peptide of claim 2, said linking portion being positioned intermediate said first portion and said second portion.

30 27. The peptide of claim 1, said peptide being synthesizable as one continuous sequence.

-55-

28. A method of modifying an immune response comprising the steps of:
(a) contacting an antigen presenting cell with a peptide, said peptide comprising a first portion binding to a major histocompatibility complex on said antigen presenting cell to form a peptide:MHC complex, and a second portion binding to a second signal moiety on said antigen presenting cell; (b) causing engagement of the T-cell receptor in a T-cell in response to the formation of said peptide:MHC complex; (c) blocking or altering a second signal in a T-cell in response to the binding of said second portion to said second signal moiety; and (d) said first and second signals generating an immune response which deviates from the immune response generally associated with said peptide:MHC complex.

10

29. The method of claim 28, said immune response deviating from a type-1 immune response to a type-2 immune response.

15

30. The method of claim 28, said immune response deviating from a type-2 immune response to a type-1 immune response.

31. The method of claim 28, said first portion having at least 10% sequence homology with a peptide derived from a Signal-1 moiety.

20

32. The method of claim 28, said second portion having at least 10% sequence homology with a peptide derived from a Signal-2 receptor moiety.

25

33. A peptide having the general formula AB wherein each of said A and B represent a chain of amino acid residues, and wherein said A chain comprises at least about 5 amino acid residues and has at least about 10% sequence homology with a Signal-1 moiety, and said B chain comprises at least about 4 amino acid residues and has at least about 10% sequence homology with a peptide derived from a Signal-2 receptor moiety.

30

34. The peptide of claim 34, further comprising an X chain of amino acid residues, said X chain comprising at least about 1 amino acid residue.

WO 02/50250

PCT/US01/48632

-56-

35. The peptide of claim 34, said X chain being positioned intermediate said A chain and said B chain.

5 36. The peptide of claim 33, said peptide being synthesizable as one continuous sequence.

10 37. The peptide of claim 34, said X chain comprising a flexible, non-substrate linker having the general formula (Y,Z)_T, wherein Y and Z are amino acid residues, and said Y amino acid residue is individually and respectively selected from the group consisting of non-substrate amino acids, and said Z amino acid residue is individually and respectively selected from the group consisting of hydrophilic amino acids, and wherein T ranges from 1 to 100.

15 38. The peptide of claim 37, said non-substrate amino acids being selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

20 39. The peptide of claim 38, said non-substrate amino acid residue being aminocaproic acid.

40. The peptide of claim 37, said hydrophilic amino acid being glycine.

25 41. The peptide of claim 33, said A chain including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

42. The peptide of claim 41, said A chain having at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

43. The peptide of claim 42, said A chain having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

5 44. The peptide of claim 33, said A chain comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

45. The peptide of claim 33, said A chain comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

10 46. The peptide of claim 33, said Signal-1 moiety being associated with a known health condition.

15 47. The peptide of claim 33, said peptide capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

48. The peptide of claim 47, said peptide:MHC complex capable of engaging a T-cell.

20 49. The peptide of claim 33, said B chain including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

25 50. The peptide of claim 49, said B chain having at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

30 51. The peptide of claim 50, said B chain having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

-58-

52. The peptide of claim 33, said B chain comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

5 53. The peptide of claim 33, said B chain comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

54. The peptide of claim 33, said peptide capable of binding with a Signal-2 ligand on an antigen presenting cell.

10 55. The peptide of claim 54, said peptide capable of blocking or altering a second signal to a T-cell upon binding with said Signal-2 moiety.

15 56. The peptide of claim 33, said peptide capable of modifying an immune response from a type-1 dominated response to a type-2 dominated response.

57. The peptide of claim 33, said peptide capable of modifying an immune response from a type-2 dominated response to a type-1 dominated response.

20 58. The peptide of claim 33, said peptide capable of shifting a cell-mediated immune response to a humoral immune response.

59. The peptide of claim 33, said peptide capable of shifting a humoral immune response to a cell-mediated response.

25

30

-59-

60. A method of preparing a peptide for modulating immune response, comprising the steps of:

5 selecting a first peptide sequence, said first peptide sequence having at least about 10% sequence homology with a sequence derived from a Signal-1 moiety; selecting a second peptide sequence, said second peptide sequence having at least about 10% sequence homology with a sequence derived from a Signal-2 receptor moiety; and synthesizing said peptide as a continuous peptide chain comprising said first peptide sequence and said second peptide sequence.

10

61. The method of claim 60, further comprising the step of selecting a third peptide sequence, said third peptide comprising at least one amino acid residue.

15

62. The method of claim 60, said first peptide sequence being associated with a known health condition.

20 63. The method of claim 60, said first peptide sequence being capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

25

64. The method of claim 60, said second peptide sequence being capable of binding with a Signal-2 ligand on an antigen presenting cell.

30

65. The method of claim 60, further comprising the step of contacting said peptide with a major histocompatibility complex on an antigen presenting cell.

66. The method of claim 60, further comprising the step of contacting said peptide with a Signal-2 ligand on an antigen presenting cell.

-60-

67. A peptide comprising:

a first peptide sequence capable of initiating a first signal in a T-cell; and
a second peptide sequence capable of initiating a second signal in a T-cell.

5 68. The peptide of claim 67, further comprising a linking peptide sequence, said linking peptide sequence comprising at least one amino acid residue.

69. The peptide of claim 67, said first peptide sequence being derived from a Signal-1 moiety.

10 70. The peptide of claim 67, said second peptide sequence being derived from a Signal-2 receptor moiety.

15 71. The peptide of claim 67, said first peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 1-25.

20 72. The peptide of claim 67, said second peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 30-41.

73. The peptide of claim 68, said linking peptide sequence having the general formula of (Y,Z), wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

25 74. The peptide of claim 73, said Y amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

30 75. The peptide of claim 73, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

76. The peptide of claim 75, wherein said hydrophilic amino acid residue is glycine.

5 77. The peptide of claim 73, said Y amino acid residue being aminocaproic acid.

10 78. A method of constructing a BPI comprising the steps of: (a) selecting a known health condition; (b) identifying a TCR epitope specific for said health condition; and (c) incorporating said TCR epitope into a BPI.

79. The method of claim 78, further comprising the step of selecting a Signal-2 receptor moiety and incorporating said Signal-2 receptor moiety into said BPI.

15 80. The method of claim 79, further comprising the step of conjugating said TCR epitope with said Signal-2 receptor moiety.

81. The method of claim 80, said conjugating step including positioning a linker intermediate said TCR epitope and said Signal-2 receptor moiety.

20 82. The method of claim 81, said linker comprising at least one amino acid residue.

25 83. The method of claim 81, said linker having the general formula of (Y,Z), wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

. 84. The method of claim 83, said Y amino acid residue being individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

30

-62-

85. The method of claim 83, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

5 86. The method of claim 85, wherein said hydrophilic amino acid residue is glycine.

10 87. The method of claim 78, said TCR epitope being capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

15 88. The method of claim 79, said Signal-2 receptor moiety being capable of binding with a Signal-2 ligand on an antigen presenting cell.

89. The method of claim 78, said TCR epitope having at least about 10% sequence homology with a sequence selected from SEQ ID Nos. 1-25.

90. The method of claim 79, said Signal-2 receptor moiety having at least about 10% sequence homology with a sequence selected from SEQ ID Nos. 30-41.

20 91. In combination:
a first peptide sequence capable of binding with a major histocompatibility complex on an antigen presenting cell; and
a second peptide sequence capable of binding with a Signal-2 ligand on an antigen presenting cell.

25 92. The combination of claim 91, further including a linker positioned intermediate said first peptide sequence and said second peptide sequence.

93. The combination of claim 91, said first peptide sequence being derived from a Signal-1 moiety.

WO 02/50250

PCT/US01/48632

-63-

94. The combination of claim 91, said second peptide sequence being derived from a Signal-2 receptor moiety.

5 95. The combination of claim 91, said first peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 1-25.

10 96. The combination of claim 91, said second peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 30-41.

97. The combination of claim 92, said linker comprising at least one amino acid residue.

15 98. The combination of claim 92, said linker having the general formula of $(Y,Z)_n$, wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

20 99. The combination of claim 98, wherein said Y amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

100. The combination of claim 99, said Y amino acid residue being aminocaproic acid.

25 101. The combination of claim 98, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

30 102. The combination of claim 101, wherein said hydrophilic amino acid residue is glycine.

WO 02/50250

PCT/US01/48632

-64-

103. A peptide having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

5 104. The peptide of claim 103, said peptide having at least about 50% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

10 105. The peptide of claim 104, said peptide having at least about 95% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

106. A derivative of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

15 107. A peptidomimetic of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

108. A peptide mimic of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

20

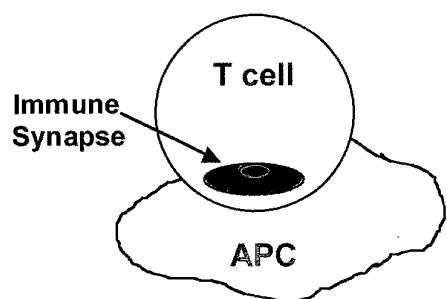


Fig. 1

2/23

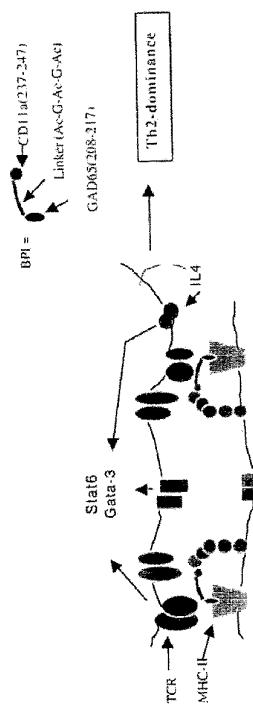


Fig. 2

3/23

Fig. 3

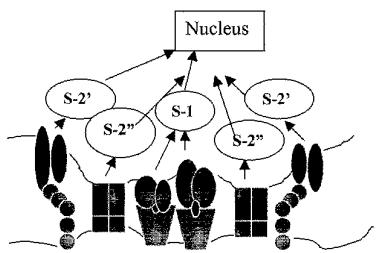


Fig. 4

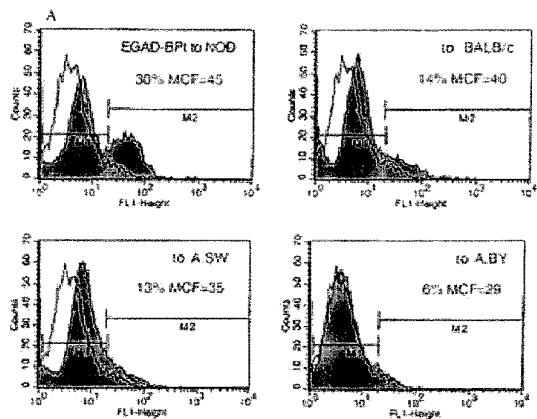


Fig. 5a

6/23

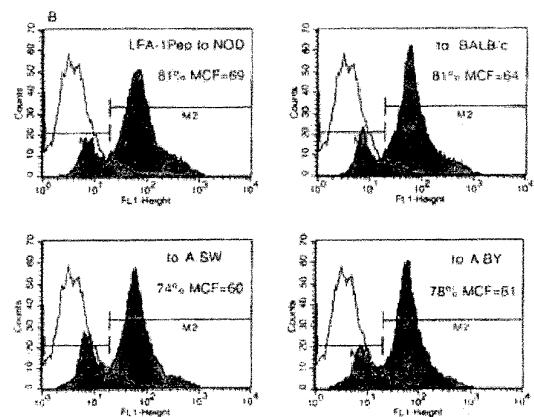


Fig. 5b

7/23

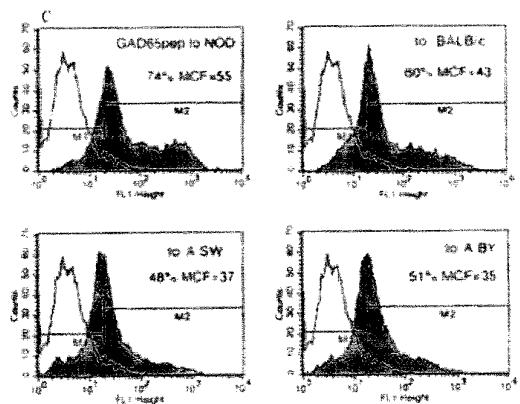


Fig. 5c

8/23

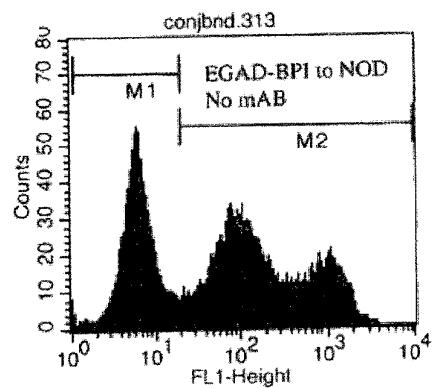


Fig. 6a

9/23

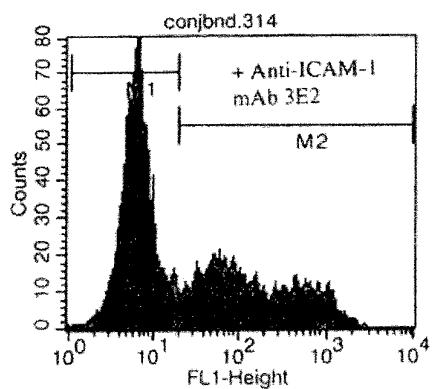


Fig. 6b

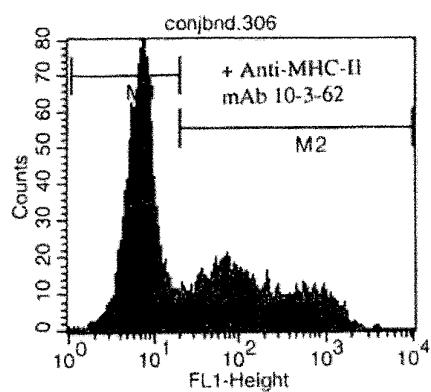

10/23

Fig. 6c

WO 02/50250

PCT/US01/48632

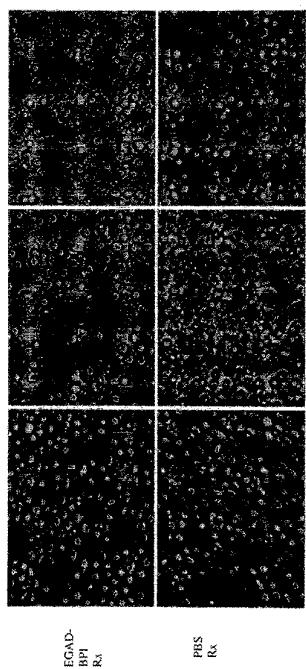

11/23

Fig. 7

Fig. 8

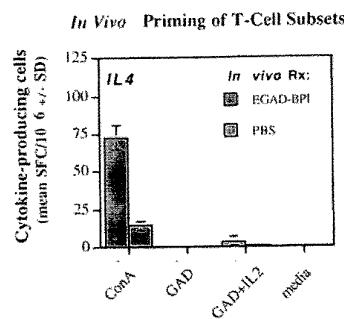


Fig. 9a

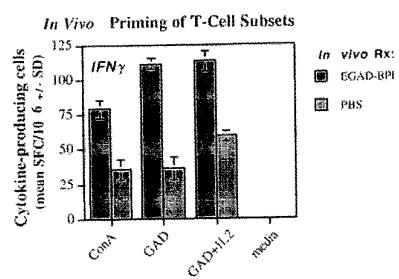


Fig. 9b

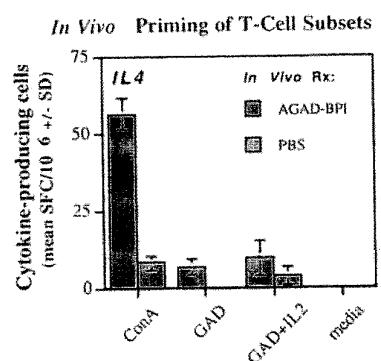


Fig. 9c

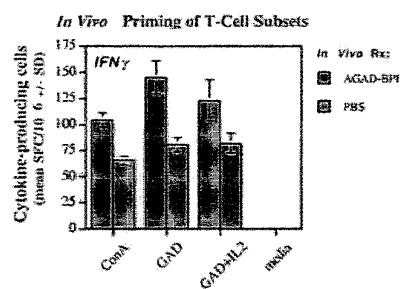


Fig. 9d

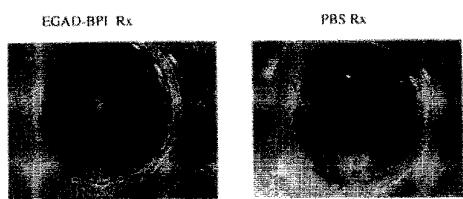

In vitro conditions

Fig. 10

18/23

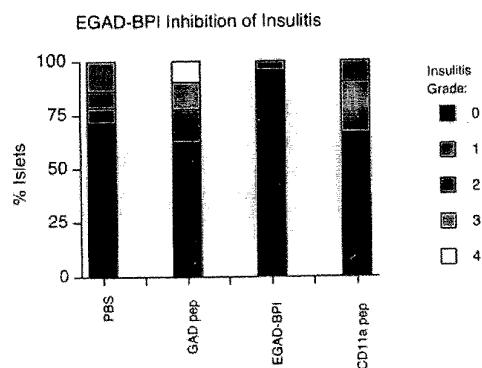


Fig. 11

PBS



Fig. 12a

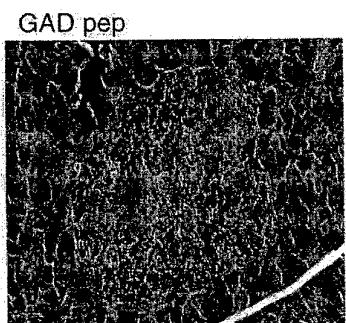


Fig. 12b

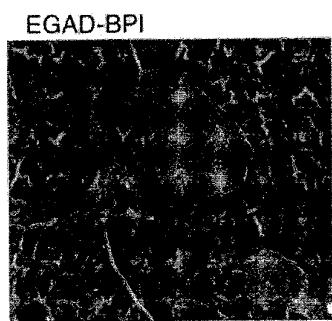


Fig. 12c

CD11a pep

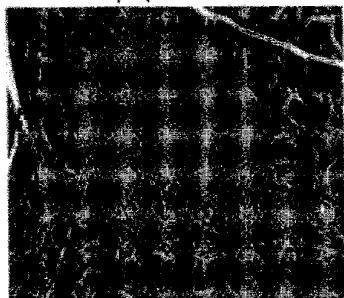


Fig. 12d

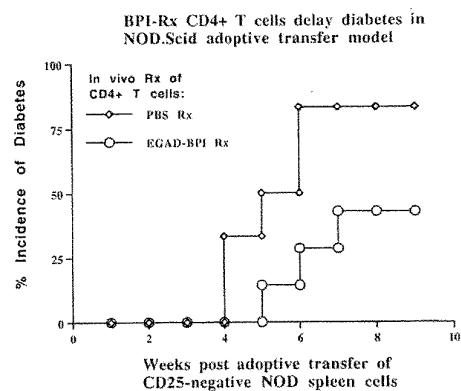


Fig. 13

WO 02/50250

PCT/US01/48632

30805 Murray.st25.txt
SEQUENCE LISTING

<110> Murray, Joseph S
Sahaan, Teruna J
Hu, Yongbo

<120> signal-1/Signal-2 Bifunctional Peptide Inhibitors

<130> 30805 Murray

<140> US 09/739,466
<141> 2000-12-18

<160> 46

<170> PatentIn version 3.1

<210> 1
<211> 10
<212> PRT
<213> Homo sapiens

<400> 1
Glu Ile Ala Pro Val Phe Val Leu Leu Glu
1 5 10

<210> 2
<211> 10
<212> PRT
<213> Mus musculus

<400> 2
Glu Ile Ala Pro Val Phe Val Leu Leu Glu
Page 1

WO 02/50250

PCT/US01/48632

1 5 30805 Murray.ST25.txt
10<210> 3
<211> 13
<212> PRT
<213> Homo sapiens<400> 3
Gln Tyr Met Arg Ala Asp Gln Ala Ala Gly Gly Leu Arg
1 5 10<210> 4
<211> 12
<212> PRT
<213> Yersinia enterocolitica<400> 4
Arg Val Val Ile Asn Lys Asp Thr Thr Ile Ile Ile
1 5 10<210> 5
<211> 15
<212> PRT
<213> Homo sapiens<400> 5
Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg
1 5 10 15<210> 6
<211> 14
<212> PRT
<213> Hepatitis C virus

<400> 6

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt
Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr
1 5 10

```
<210> 7
<211> 20
<212> PRT
<213> Human immunodeficiency virus type 1
```

<400> 7
Gly Ser Asp Thr Ile Thr Leu Pro Cys Arg Ile Lys Gln Phe Ile Asn
1 5 10 15

Met Trp Gln Glu
20

<210> 8
<211> 20
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 8
Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser
1 5 10 15

Pro Arg Thr Leu
20

<210> 9
<211> 8
<212> PRT
<213> Sjian immunodeficiency virus

<400> 9
Ser Thr Pro Glu Ser Ala Asn Leu
1 5

ε2103 10

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<212> PRT

<213> respiratory syncytial virus

<400> 10

Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro Gly Lys Lys Thr
1 5 10 15

<210> 11

<211> 9

<212> PRT

<213> Human papillomavirus

<400> 11

Val Tyr Arg Asp Gly Asn Pro Tyr Ala
1 5

<210> 12

<211> 7

<212> PRT

<213> Human papillomavirus

<400> 12

Asp Arg Ala His Tyr Asn Ile
1 5

<210> 13

<211> 10

<212> PRT

<213> Human papillomavirus

<400> 13

Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr
1 5 10

<210> 14

WO 02/50250

PCT/US01/48632

<211> 15
<212> PRT
<213> Human papillomavirus<400> 14
Ala Ser Asp Leu Arg Thr Ile Gln Gln Leu Leu Met Gly Thr Val
1 5 10 15<210> 15
<211> 13
<212> PRT
<213> Homo sapiens<400> 15
Ala Glu Leu Tyr His Phe Leu Leu Lys Tyr Arg Ala Arg
1 5 10<210> 16
<211> 14
<212> PRT
<213> Homo sapiens<400> 16
Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu
1 5 10<210> 17
<211> 16
<212> PRT
<213> Felis sp.<400> 17
Glu Gln Val Ala Gln Tyr Lys Ala Leu Pro Val Val Leu Glu Asn Ala
1 5 10 15<210> 18
Page 5

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<211> 17
<212> PRT
<213> *Felis* sp.

<400> 18
Lys Ala Leu Pro Val Val Leu Glu Asn Ala Arg Ile Leu Lys Asn Cys
1 5 10 15

Val

<210> 19
<211> 20
<212> PRT
<213> *Ambrosia artemisiifolia*

<400> 19
Leu Val Pro Cys Ala Trp Ala Gly Asn Val Cys Gly Glu Lys Arg Ala
1 5 10 15

Tyr Cys Cys Ser
20

<210> 20
<211> 20
<212> PRT
<213> *Ambrosia trifida*

<400> 20
Pro Ile Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys Ala Ile Cys Asn
1 5 10 15

Lys Asn Cys Thr
20

<210> 21
<211> 15

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<212> PRT

<213> *Cryptomeria japonica*

<400> 21

Lys Ser Met Lys Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asn
1 5 10 15

<210> 22

<211> 19

<212> PRT

<213> *Cryptomeria japonica*

<400> 22

Ile Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln Lys Asn Thr Ile
1 5 10 15

Gly Thr Gly

<210> 23

<211> 17

<212> PRT

<213> *Apis mellifera*

<400> 23

Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
1 5 10 15

Lys

<210> 24

<211> 20

<212> PRT

<213> *Hevea brasiliensis*

<400> 24

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

Ala Ser Glu Gln Glu Thr Ala Asp Ala Thr Pro Glu Lys Glu Pro
1 5 10 15

Thr Ala Ala Pro
20

<210> 25

<211> 17

<212> PRT

<213> Dermatophagoides pteronyssinus

<400> 25

Phe Gly Ile Ser Asn Tyr Cys Gln Ile Tyr Pro Pro Asn Ala Asn Lys
1 5 10 15

Ile

<210> 26

<211> 5

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (1)..(1)

<223> X is aminocaproic acid at position 1

<220>

<221> misc_feature

<222> (3)..(3)

<223> X is aminocaproic acid at position 3

<220>

<221> misc_feature

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt
<222> (5)..(5)
<223> X is aminocaproic acid at position 5

<400> 26
Xaa Gly Xaa Gly Xaa
1 5

<210> 27
<211> 5
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (1)..(1)
<223> X is aminocaproic acid

<220>
<221> misc_feature
<222> (3)..(3)
<223> X is beta-alanine

<220>
<221> misc_feature
<222> (5)..(5)
<223> X is aminocaproic acid

<400> 27
Xaa Gly Xaa Gly Xaa
1 5

<210> 28
<211> 5
<212> PRT

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<213> Artificial

<220>

<221> misc_feature

<222> (1)..(1)

<223> The first X is aminocaproic acid.

<220>

<221> misc_feature

<222> (3)..(3)

<223> The second X is aminododecanoic acid.

<220>

<221> misc_feature

<222> (5)..(5)

<223> The third X is aminocaproic acid.

<400> 28

Xaa Gly Xaa Gly Xaa
1 5

<210> 29

<211> 5

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (1)..(1)

<223> X is aminohexanoic acid

<220>

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<221> misc_feature
<222> (3)..(3)
<223> X is aminohexanoic acid

<220>
<221> misc_feature
<222> (5)..(5)
<223> X is aminohexanoic acid

<400> 29
Xaa Gly Xaa Gly Xaa
1 5

<210> 30
<211> 10
<212> PRT
<213> Homo sapiens

<400> 30
Ile Thr Asp Gly Glu Ala Thr Asp Ser Gly
1 5 10

<210> 31
<211> 10
<212> PRT
<213> Homo sapiens

<400> 31
Thr Asp Gly Glu Ala Thr Asp Ser Gly Asn
1 5 10

<210> 32
<211> 10
<212> PRT
<213> Homo sapiens

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<400> 32
Ala Ser Pro Gly Lys Ala Thr Glu Val Arg
1 5 10

<210> 33
<211> 10
<212> PRT
<213> Mus musculus

<400> 33
Ser Pro Ser His Asn Thr Asp Glu Val Arg
1 5 10

<210> 34
<211> 12
<212> PRT
<213> Homo sapiens

<400> 34
Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu
1 5 10

<210> 35
<211> 12
<212> PRT
<213> Mus musculus

<400> 35
Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Phe Val
1 5 10

<210> 36
<211> 10
<212> PRT

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<213> Mus musculus

<400> 36

Ile Thr Asp Gly Glu Ala Thr Asp Ser Gly
1 5 10

<210> 37

<211> 13

<212> PRT

<213> Homo sapiens

<400> 37

Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu
1 5 10

<210> 38

<211> 13

<212> PRT

<213> Mus musculus

<400> 38

Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu
1 5 10

<210> 39

<211> 16

<212> PRT

<213> Homo sapiens

<400> 39

Tyr Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
1 5 10 15

<210> 40

<211> 16

<212> PRT

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<213> *Mus musculus*

<400> 40

Tyr Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
1 5 10 15

<210> 41

<211> 10

<212> PRT

<213> *Mus musculus*

<400> 41

Thr Asp Gly Glu Ala Ala Thr Asp Ser Gly Asn
1 5 10

<210> 42

<211> 25

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (11)..(11)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (13)..(13)

<223> X is aminocaproic acid

<220>

<221> MISC_FEATURE

<223> The artificial sequence includes the GAD65 peptide sequence from

homo sapiens and the CD11a peptide sequence from homo sapiens in

Page 14

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt
ked by a series of alternating aminocaproic acid and glycine resi
dues

<220>
<221> misc_feature
<222> (15)..(15)
<223> X is aminocaproic acid

<400> 42
Glu Ile Ala Pro Val Phe Val Leu Leu Glu Xaa Gly Xaa Gly Xaa Ile
1 5 10 15
Thr Asp Gly Glu Ala Thr Asp Ser Gly
20 25

<210> 43
<211> 29
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (9)..(9)
<223> The first X is aminocaproic acid.

<220>
<221> misc_feature
<222> (11)..(11)
<223> X is aminododecanoic acid.

<220>
<221> misc_feature
<222> (13)..(13)
<223> X is aminocaproic acid.

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<220>
<221> misc_feature
<223> The artificial sequence includes the Tat peptide from simian immunodeficiency virus, a linker consisting of aminocaproic, aminododecanoic, and glycine residues and the CTLA4 (93-104) peptide sequence from *mus musculus*

<400> 43
Ser Thr Pro Glu Ser Ala Asn Leu Xaa Gly Xaa Gly Xaa Tyr Met Arg
1 5 10 15
Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
20 25

<210> 44
<211> 37
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (21)..(21)
<223> X is aminocaproic acid

<220>
<221> misc_feature
<222> (23)..(23)
<223> X is aminocaproic acid.

<220>
<221> misc_feature
<222> (25)..(25)
<223> X is aminocaproic acid.

WO 02/50250

PCT/US01/48632

30805 Murray.st25.txt
<220>
<221> misc_feature
<223> The artificial sequence includes the p24 peptide from HIV-1, a series of alternating aminocaproic acid and glycine residues, and the FAS-ligand from homo sapiens

<400> 44
Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser
1 5 10 15
Pro Arg Thr Leu Xaa Gly Xaa Gly Lys Val Glu Leu Met Tyr Pro
20 25 30
Pro Pro Tyr Phe Val
35

<210> 45
<211> 30
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (14)..(14)
<223> X is aminocaproic acid.

<220>
<221> misc_feature
<222> (16)..(16)
<223> X is aminoaminohexanoic acid.

<220>
<221> misc_feature
<223> The artificial sequence includes a collagen II (1168-1180) peptide sequence, a sequence including aminocaproic acid, aminohexanoic acid and glycine and CD40L (93-104) from homo sapiens

WO 02/50250

PCT/US01/48632

30805 Murray.st25.txt

<400> 45
Gln Tyr Met Arg Ala Asp Gln Ala Ala Gly Gly Leu Arg Xaa Gly Xaa
1 5 10 15

Gly Lys Gly Tyr Tyr Met Ser Asn Asn Leu Val Thr Leu
20 25 30

<210> 46

<211> 31

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (11)..(11)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (13)..(13)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (15)..(15)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<223> The artificial sequence includes the HPV E7 peptide sequence from human papilloma virus, a series of alternating aminocaproic acid and glycine residues, and the CD95 (143-155) peptide sequence of the FAS-ligand from homo sapiens

<400> 46

Page 18

WO 02/50250

PCT/US01/48632

30805 Murray.st25.txt

Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr Xaa Gly Xaa Gly Tyr
1 5 10 15

Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
20 25 30

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
27 June 2002 (27.06.2002)

PCT

(10) International Publication Number
WO 2002/050250 A3

(51) International Patent Classification? A61K 39/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US2001/048632

(22) International Filing Date: 17 December 2001 (17.12.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/739,466 18 December 2000 (18.12.2000) US

(71) Applicant (for all designated States except US): UNIVERSITY OF KANSAS [US/US]; Strong Hall, Room 207, 2385 Irving Hill Drive, Lawrence, KS 66044 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MURRAY, Joseph, S. [US/US]; 1829 S.W. Collins, Topeka, KS 66604 (US); SIAHAAN, Teruna, J. [US/US]; 2912 Iris Lane, Lawrence, KS 66047 (US); HU, Yongbo [US/US]; 22 Stouffer Place, Apt. 11, Lawrence, KS 66044 (US).

Published:

— with international search report

(88) Date of publication of the international search report: 8 January 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

(54) Title: SIGNAL-1/SIGNAL-2 BIFUNCTIONAL PEPTIDE INHIBITORS

(57) Abstract: A novel peptide sequence having the general formula AB wherein each of A and B represent a chain of amino acid residues and wherein said A chain is capable of binding with a major histocompatibility complex on an antigen presenting cell, and wherein said B chain is capable of binding with a Signal-2 receptor on an antigen presenting cell. Preferred forms of the peptide sequence further include and Y chain positioned intermediate the A chain and the B chain. Moreover, preferred forms include and A chain which has at least about 10% sequence homology with a Signal-1 moiety, or is a peptidomimetic of a Signal-1 moiety, said B chain has at least 10% sequence homology with a Signal-2 receptor moiety, said B chain has at least 10% sequence homology with a Signal-2 receptor moiety, or is a peptidomimetic of a Signal-2 receptor moiety, and wherein the X chain has at least one amino acid residue, or is a peptidomimetic of that amino acid residue. Advantageously, the novel peptide sequence is capable of shifting a type-1 immune response to a type-2 immune response or from a type-2 immune response to a type-1 immune response.

WO 2002/050250 A3

【国際公開パンフレット（コレクトバージョン）】

60450070022

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau60450070022
(43) International Publication Date
27 June 2002 (27.06.2002)

PCT

(10) International Publication Number
WO 02/50250 A2(51) International Patent Classification⁵: C12N

(74) Agent: TRUITT, Tracey, S.; Hovey, Williams, Timmons & Collins, 2405 Grand Boulevard, Suite 400, Kansas City, MO 64108 (US).

(21) International Application Number: PCT/US01/48632

(22) International Filing Date:
17 December 2001 (17.12.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GB, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

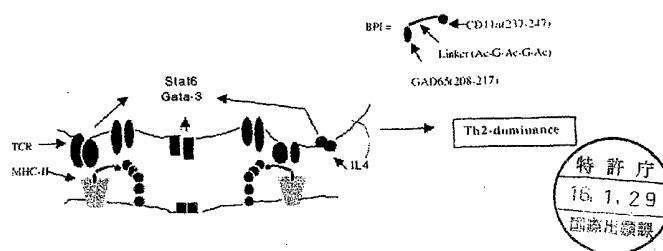
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
09/739,466 18 December 2000 (18.12.2000) US(85) Published:
without international search report and to be republished upon receipt of that report

[Continued on next page]

(71) Applicant (for all designated States except US): UNIVERSITY OF KANSAS [US/US]; Strong Hall, Room 207, 2385 Irving Hill Drive, Lawrence, KS 66044 (US).


(72) Inventors: and
(75) Inventors/Applicants (for US only): MURRAY, Joseph, S. [US/US]; 1829 S.W. Collins, Topeka, KS 66604 (US); SIAHAAN, Teruna, J. [US/US]; 2912 Iris Lane, Lawrence, KS 66044 (US); HU, Yongbo [US/US]; 22 Stouffer Place, Apt. 11, Lawrence, KS 66044 (US).

(54) Title: SIGNAL-1/SIGNAL-2 BIFUNCTIONAL PEPTIDE INHIBITORS

WO 02/50250 A2

(57) Abstract: A novel peptide sequence having the general formula AB wherein each of A and B represent a chain of amino acid residues and wherein said A chain is capable of binding with a major histocompatibility complex on an antigen presenting cell, and wherein said B chain is capable of binding with a Signal-2 receptor on an antigen presenting cell. Preferred forms of the peptide sequence further include and Y chain positioned intermediate the A chain and the B chain. Moreover, preferred forms include and A chain which has at least about 10% sequence homology with a Signal-1 moiety, or is a peptidomimetic of a Signal-1 moiety, and said B chain has at least 10% sequence homology with a Signal-2 receptor moiety, said B chain has at least 10% sequence homology with a Signal-2 receptor moiety, or is a peptidomimetic of a Signal-2 receptor moiety, and wherein the X chain has at least one amino acid residue, or is a peptidomimetic of that amino acid residue. Advantageously, the novel peptide sequence is capable of shifting a type-1 immune response to a type-2 immune response or from a type-2 immune response to a type-1 immune response.

2

WO 02/50250 A2

— with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

SIGNAL-1/SIGNAL-2 BIFUNCTIONAL PEPTIDE INHIBITORS

5

SEQUENCE LISTING

A printed Sequence Listing accompanies this application, and has also been submitted with identical contents in the form of a computer-readable ASCII file on a floppy diskette and a CDROM.

10

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention concerns immune responses initiated by the recognition of a peptide:MHC complex on the surface of antigen presenting cells by T-cells. The present invention also concerns immune responses initiated by the binding of a Signal-2 moiety to its complement protein on the surface of an antigen presenting cell. More particularly, the present invention concerns the immune responses initiated by the recognition of the peptide:MHC by the T-cell and by the binding of a Signal-2 moiety to its complement protein. Still more particularly, the present invention concerns the modification of the typical immune response generated by a particular individual in response to this binding. Most particularly, the present invention concerns the conjugation of peptides derived from the peptide portion of the peptide:MHC complex to the preferred Signal-2 moiety in order to modify or shift a given immune response from type-1 to type-2 or from type-2 to type-1. This may include specific phenotypes of regulatory T-cells including suppressor T-cells.

25

Description of the Prior Art

Autoimmune diseases are characterized by the activation of T-cells against self-antigens. These T-cells then destroy cells presenting these antigens. For example, insulin-dependent diabetes mellitus (IDDM, also called Type-I diabetes) is characterized by the activation of T-cells against the insulin-producing cells of the pancreas and their subsequent destruction by these T-cells. The diseases and conditions associated with autoimmune responses are strongly associated with specific subtypes (alleles) of cell surface proteins

-2-

called major histocompatibility complex (MHC) class II molecules. MHC molecules bind fragments (peptides) of proteins from infectious agents, allergens, and self proteins, and this MHC:peptide complex is the structure that T-cells recognize with their receptor (called the T-cell receptor, or TCR). The MHC:peptide complex is displayed on the surfaces of other cells of the immune system (i.e., B cells, dendritic cells and macrophages) which are called antigen presenting cells (APC). In order for an immune response to ensue, the major regulatory cell of the immune system, the undifferentiated T-cell, must be presented with small breakdown products (peptides) of the foreign invader. This presentation occurs on the surface of the APC. The T-cell must then interact with the APC, and this interaction stimulates the T-cell to divide and differentiate to produce molecules that attack, either directly or indirectly, cells displaying the same or highly similar MHC:peptide complex. It is well known that the genes that encode the MHC molecules are extremely variable within the species, and the different MHC alleles prefer to bind some peptides over others. Along with other genetic and environmental factors, the existence of different MHC alleles helps to explain why some members of a species develop conditions such as autoimmune diseases, allergies, asthma, and even certain infectious diseases, while others remain seemingly unaffected, or immune, to the same substances. Other differences arise because cell surface proteins distinct from the peptide:MHC complex must also bind to specific receptors on the T-cell. These other protein:protein pairs at the interface of the T-cell and APC membranes provide a costimulatory signal, known as Signal-2 which, along with the signal generated by the TCR recognition of the MHC:peptide complex (known as Signal-1), initiates an immune response.

A defining stage of the immune response is the differentiation of CD4⁺ T-cells into either type-1 helper T-cells (T_{H1} cells) or type-2 helper T-cells (T_{H2} cells) as a result of the two signals. These two subtypes of T_H cells and the regulatory network of cells that they selectively activate are well-known correlates of human health conditions and disease states. Differentiation into T_{H1} cells results in predominantly cell-mediated immunity while differentiation into T_{H2} cells results in predominantly humoral immunity. Each of these immunity types helps to protect the body against different types of invasion. Type-1 immunity protects the body against intracellular pathogens such as bacteria, but is also implicated in organ-specific autoimmune diseases. Type-2 immunity is important for

WO 02/50250

PCT/US01/48632

-3-

protection against extracellular parasites, but is associated with allergic reactions as well. Development of T_{H1} cells is driven by a cytokine called interleukin-12, which is produced by immune cells known as macrophages and dendritic cells. Interleukin-12 induces or stimulates the naive T-cell (CD4 $^{+}$ T-cells) to produce interferon- γ (IFN- γ) and interleukin-2 (IL-2). These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Commitment to a T_{H1} immune response is enhanced by the presence of IFN- γ which up-regulates expression of the interleukin-12 (IL-12) receptor while inhibiting the development of T_{H2} cells. T_{H2} immunity results from the production of interleukin-4 (IL-4) by the naive T-cell. IL-4 induces T_{H2} development and the subsequent production of interleukins-4 (IL-4), -5 (IL-5), -10 (IL-10), and -13 (IL-13). IL-4 also operates to down-regulate expression of the IL-12 receptor on developing cells, thereby inhibiting T_{H1} development and helping undifferentiated T-cells to commit to T_{H2} cell development. Additionally, IL-4 and IL-5 are known to activate B cells and switch to neutralizing antibody (IgG1 in the mouse) and IgE, the initiator of immediate hypersensitivity.

In order for either of these immune pathways to be activated, a two-signal mechanism is required to fully activate the T-cell. Signal-1 (S-1) occurs when the T-cell antigen receptor (TCR) recognizes the peptide:MHC-II complex on the surface of an antigen presenting cell (APC). This first signal passes through the T-cell receptor and initiates a cascade of tyrosine phosphorylation/dephosphorylation events mediated by kinases and phosphatases and leads to the activation of Ca $^{++}$ flux, nuclear factor of activated T cells (NF-AT) and NF κ B transcription factors. These factors enter the nucleus of the T-cell and bind to promoters of genes responsible for effector functions. Signal-2 (S-2) arises from the binding of Signal-2 receptors to their ligands on the surface of an APC. Signal-2 receptors include CD28 and its ligand B7 as well as LFA-1 and its ligand ICAM-1. When a Signal-2 receptor and its ligand form a complex at the interface between the T-cell and APC receptor membranes, a series of signaling events occur. These events include serine/threonine phosphorylation/dephosphorylation and activation of guanine nucleotide exchange factors that activate adapter proteins with GTPase activity. These signaling events activate a separate set of transcription factors. The signal delivered through the CD28:B7 complex is

-4-

5 distinct from that delivered from the ICAM-1:LFA-1 complex, particularly with respect to the differentiation of CD4⁺ T-cells into T_H1 versus T_H2 effector populations. When the predominant binding occurs between LFA-1 and ICAM-1, the CD4⁺ T-cell differentiation favors T_H1 cells which are abundant producers of IL-2 and IFN γ , the preeminent initiators 10 of inflammatory immune responses including delayed-type hypersensitivity (DTH), immunity to intracellular pathogens, and several autoimmune diseases. When the predominant binding occurs between CD28 and B7, the CD4⁺ T-cells differentiate into T_H2 cells. In contrast to T_H1 cells, T_H2 cells do not produce abundant IL-2 or IFN γ cytokines, but instead release the mediators of immediate-type hypersensitivity such as allergy and 15 asthma, i.e., IL-4, IL-5, IL-10, and IL-13. Thus, the ability to manipulate the relative contribution of the complex providing the second signal has a profound effect on the type of immune response that is elicited against a given self-tissue antigen.

15 The associations between the TCR and APC occur at a specialized junction or interface between the TCR and the APC called the immunological synapse. An immune synapse is depicted schematically in Fig. 1. This immune synapse can be defined as the organized structure of activation molecules that assemble at the interface between the T-cell and the APC. Like a synapse in the nervous system, the immune synapse is a close association between cellular membranes. In order for an immune response to ensue, the major regulatory cell of the immune system, the undifferentiated T-cell must be presented 20 with small breakdown products (peptides) of the foreign invader. In an unactivated T-cell, TCR and adhesion molecules are dispersed randomly on the T-cell membrane. The formation of the immunological synapse is an active and dynamic mechanism that allows T-cells to distinguish potential antigenic ligands. The immunological synapse consists of a central cluster of T-cell receptors surrounded by a ring of adhesion molecules. The stable 25 formation of the immune synapse requires adhesion molecules such as LFA-1 and the peptide-recognition receptor (TCR) to form a doughnut-like structure with the TCR on the inside and LFA-1 on the outside. During activation, the TCR and LFA-1 molecules pass by each other within the T-cell lipid bilayer during the formation of the doughnut-like structure (this process is called translocation). If these molecules do not translocate within the 30 immune synapse then the T-cell signal is not fully received and a different program of gene activity may ensue within the T-cell. This can drastically effect the immune response,

especially if the T helper cell deviates from a gene program that would lead to IFN γ release (T h 1 cells and type-1 immunity) to a program that ultimately activates IL-4 production (i.e., T h 2 cells and type-2 immunity).

In more detail, to activate the pathway leading to T h 1 dominance, the TCR 5 recognizes the peptide:MHC-II complex and sends Signal-1 to the T-cell. Additionally, LFA-1 binds to ICAM-1, and these molecules, along with the peptide:MHC-II complex, translocate to form the end-stage immune synapse. This leads to the effective expression of the CD40 ligand (CD154) by the uncommitted T h cell. CD40 interaction (expressed on the antigen presenting cell) with its ligand generates NF κ B up-regulation of the 10 inflammatory cytokine, IL-12. IL-12 then binds to its receptor on the undifferentiated T h cell and initiates the T h 1 program, including the up-regulation of the transcription regulators, Stat4 and Tbet. This leads to T h 1 dominance against the autoantigen (e.g., glutamic acid 15 decarboxylase, GAD65), which was initiated by the GAD65 peptide component of the TCR:peptide:MHC-II complex. For the pathway leading to T h 2 dominance, the TCR can recognize the same peptide:MHC-II complex, thereby sending Signal-1. However, in this 20 case, a weaker strength of Signal-1 and/or altered or blocked binding between Signal-2 moieties leads to an altered form of the end-stage immune synapse. Likely, this lower strength of Signal-1 or distinct participation of the LFA-1 second signal leads to this different result, i.e., dominant T h 2 differentiation. For example, the altered immune synapse can dictate that the CD40 ligand is not expressed and IL-12 is therefore not released by the 25 APC. This pathway is schematically represented in Fig. 2. Here, IL-4 appears to accumulate, thereby leading to the up-regulation of Stat6 and GATA-3 within the T-cell and hence commitment to a T h 2 pattern of differentiation.

A major goal of modern applied immunology is to be able to switch from T h 1- 30 dominant immunity (e.g., as seen in autoimmune diseases and transplant rejection) to T h 2 responses against these same tissue antigens. In other cases, it would be extremely valuable to replace weak T h 2 immunity with T h 1 dominance leading to strong T-cell proliferation and the effective generation of cytotoxic T-cells (CTL). These cases may include chronic viral illnesses, like hepatitis-C and AIDS; and could include certain cancers like melanoma. Accordingly, what is needed in the art is modifiers of these immune responses so that type-2 immunity can be replaced with type-1 immunity or type-1 immunity can be replaced with

type-2 immunity, as desired in order to combat different human disease states or health conditions.

SUMMARY OF THE INVENTION

The present invention solves the problems found in the prior art and provides a distinct advance in the state of the art. Briefly, the present invention embraces a peptide which includes a portion of a Signal-1 moiety at one end and a portion of a Signal-2 moiety at the other end. These two ends can be directly connected to each other or connected via a flexible, non-substrate linker. This conjugation of the peptide portions directly and via a linker into a continuous peptide chain produces a new class of immunotherapeutic peptides termed bifunctional peptide inhibitors (BPI). These BPI are based upon the two signal mechanism of T-cell activation and link Signal-1 and Signal-2 moieties in order to alter T-cell activation. In other words, the present invention provides a method of modulating T-cells and subsequent immunity in a very specified manner such that only specific disease-associated populations of these cells are targeted by the products of the present invention. Thus, the present invention leaves necessary components of the intact immune system to operate in their nominal protective manner.

In more detail, the present invention describes constructing a peptide sequence having a TCR epitope of interest (a Signal-1 moiety) at one end and a peptide derived from the protein:protein interaction (the Signal-2 moiety) which generates Signal-2. These two peptide sequences can be connected via a flexible linker which couples the Signal-1 moiety to the Signal-2 moiety or can be directly linked together. In some cases, the linkage between the two peptides sequences may include flanking residues from each portion. The combination of the Signal-1 moiety coupled with the Signal-2 moiety constitutes a BPI. Accordingly, once a TCR epitope of interest is identified and the desired immune response (type-1 or type-2) determined, a BPI according to the present invention, can be generated.

As noted above, an important stage of the immune response is the differentiation of CD4⁺ T-cells into either type-1 helper T-cells (T_H1 cells) or type-2 helper T-cells (T_H2 cells). Differentiation into T_H1 cells results in predominantly cell-mediated immunity while differentiation into T_H2 cells results in predominantly humoral immunity. Each of these immunity types help to protect the body against different types of invasion. T_H1 cells protect the body against intracellular pathogens such as bacteria, and are also implicated in organ-

WO 02/50250

PCT/US01/48632

-7-

specific autoimmune diseases. T_{H2} cells are important for protection against extracellular parasites as well as allergic reactions. Development of T_{H1} cells is driven by a cytokine called interleukin-12, which is produced by immune cells known as macrophages and dendritic cells. Interleukin-12 induces or stimulates the naïve T-cell to produce interferon- γ (IFN- γ) and interleukin-2 (IL-2). These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Commitment to a T_{H1} immune response is enhanced by the presence of IFN- γ which up-regulates expression of the interleukin-12 (IL-12) receptor while inhibiting the development of T_{H2} cells. This pathway is shown schematically in Fig. 3.

10 T_{H2} immunity results from the production of interleukin-4 (IL-4) by the naïve T-cell. IL-4 induces T_{H2} development and the subsequent production of interleukins 4 (IL-4), 5 (IL-5) and 13 (IL-13), through activation of the transcription regulator Stat6. IL-4 also operates to down-regulate expression of the IL-12 receptor on developing cells, thereby inhibiting 15 T_{H1} development and helping undifferentiated T-cells to commit to T_{H2} cell development. Additionally, IL-4 and IL-5 are known to activate B cells and switch to neutralizing antibody (IgG1 in the mouse) and IgE, the initiator of immediate hypersensitivity. Again, a schematic representation of this process is depicted in Fig. 2.

12 As noted above, a two-signal mechanism is required to fully activate the T_H cell. 20 Signal-1 occurs when the T-cell antigen receptor (TCR) recognizes or engages the peptide:MHC-II complex on the surface of an antigen presenting cell (APC). This first signal is transmitted through the T-cell receptor and initiates a cascade of tyrosine phosphorylation/dephosphorylation events mediated by kinases and phosphatases and leads to the activation of Ca^{++} flux, NF-AT and NF κ B transcription factors. These factors enter 25 the nucleus of the T-cell and bind to promoters of genes responsible for effector functions. Signal-2 arises from the binding of a Signal-2 receptor on the T-cell to its protein ligand on the APC. Signal-2 receptors include CD28 and its ligand B7 as well as LFA-1 and its ligand ICAM-1. When a Signal-2 receptor and its ligand form a complex at the interface between 30 the T-cell and APC membranes, a series of signaling events occurs including serine/threonine phosphorylation/dephosphorylation along with actuation of guanine nucleotide exchange factors that activate adapter proteins with GTPase activity. These

signaling events activate a separate set of transcription factors. The signal delivered through the CD28:B7 complex is distinct from that delivered from the ICAM-1:LFA-1 complex, particularly with respect to the differentiation of CD4⁺ T-cells into T_H1 versus T_H2 effector populations. A schematic representation of this signaling is provided herein as Fig. 4.

5 When the predominant binding occurs between LFA-1 and ICAM-1, the CD4⁺ T-cells differentiate into T_H1 cells. The CD4⁺ T-cells of the T_H1 differentiation state are abundant producers of IL-2 and IFN γ , two cytokines that are the preeminent initiators of inflammatory immune responses, such as delayed-type hypersensitivity (DTH), immunity to intracellular pathogens, and several autoimmune diseases. When the predominant binding occurs
10 between CD28 and B7 (i.e., decreased LFA-1:ICAM-1 signaling), the CD4⁺ T-cells differentiate into T_H2 cells. In contrast to T_H1 cells, T_H2 cells do not produce IL-2 and IFN γ cytokines, but instead release the mediators of immediate-type hypersensitivity such as
15 allergy and asthma, i.e., IL-4, IL-5, IL-10, and IL-13. Thus, the ability to manipulate the relative contribution of the complex providing Signal-2 has a profound effect on the type of immune response that is elicited against a given self-tissue antigen.

The associations between the TCR and APC occur at a specialized junction called the immunological synapse (shown in Fig. 1). In order for the immune response to proceed, the undifferentiated T_H cell, must be presented with peptides of the foreign invader on the surface of the APC. In an unactivated T-cell, TCR and adhesion molecules are dispersed
20 randomly on the T-cell membrane. The formation of the immunological synapse is an active and dynamic mechanism that allows T-cells to distinguish potential antigenic ligands. The immunological synapse consists of a central cluster of T-cell receptors surrounded by a ring
25 of adhesion molecules. This arrangement is depicted schematically in Fig. 1. In this figure, the TCR:peptide:MHC-II complex is in the center of the dark circle which represents the protein:protein pair constituting the Signal-2 receptor and the Signal-2 ligand. The stable formation of the immune synapse requires adhesion molecules such as LFA-1 and the peptide-recognition receptor (TCR) to form a doughnut-like structure with the TCR on the inside and LFA-1 on the outside. During activation, the TCR and LFA-1 molecules actually
30 translocate past one another within the T-cell lipid bilayer. If these molecules do not translocate within the immune synapse then the T-cell signal is not fully received and a different program of gene activity may occur within the T-cell. This can drastically effect

the immune response, especially if this causes the T helper cell (T_h) to deviate from a gene program leading to a T_{h1} immune response to a program that activates a T_{h2} immune response. As shown in Fig. 2, an interpretation of the BPI mechanism suggests that BPI binds to both the MHC-II and second signal ligands. This effectively tethers the MHC-II:peptide and ICAM-1 molecules thereby preventing the translocation step of immune synapse formation.

In one aspect of the present invention, known TCR epitopes are used as the first peptide portion of the BPI. In this manner, minimal peptide sequences that are potent immunogens are utilized. These minimal peptide sequences (e.g. antigenic peptides) effectively engage the TCR involved in immune responses of interest (i.e. autoimmune diseases, infectious diseases, allergies, cancers, etc). There are already many known TCR epitopes of interest (Signal-1 moieties) and their sequences have been defined in the literature. A partial list of some representative Signal-1 moieties is provided in Table 1. This list is by no means exhaustive as there are potentially thousands of Signal-1 moieties.

In another aspect of the present invention, TCR epitopes of interest are identified so that the first portion of the BPI can be synthesized. In this aspect, these dominant TCR epitopes have been so determined by previous art and the sequences are available in the literature. The peptide to which a given T-cell response is focused upon, (e.g., the response against the diabetes-associated antigen GAD65) is identified by the fact that most effector T-cells respond to this portion of the antigen and not other portions. In mouse model systems, animals are immunized with the whole protein antigen. Next, T-cells are removed after the antigen has primed the immune system. These T-cells are placed separately in cultures with short overlapping peptides of the antigen. Most of the response will be to a single peptide and this is the dominant TCR epitope. In humans, T-cells are first cloned from patients. These cloned T-cells are placed separately in cultures with overlapping peptides (again, representing individual portions of the antigen involved, e.g., HIV-1, p24 (SEQ ID No. 8)). Again, the peptide to which most T-cell clones respond is the dominant TCR epitope. The foregoing is described by Schountz et al., *MHC Genotype Controls the Capacity of Ligand Density to Switch T Helper (Th)-1/Th-2 Priming In Vivo*, 157 The Journal of Immunology 3893-3901 (1996), the teachings and content of which are hereby incorporated by reference herein.

-10-

In another aspect of the present invention, peptides derived from Signal-2 receptors are used to alter interactions between the nominal receptors on T-cells and their complementary ligands on the APC surface. Table 3 includes a representative list of some known Signal-2 receptor moieties. Of course, those of ordinary skill in the art will be able 5 to identify other Signal-2 moieties not listed therein, as this list is representative and not all-inclusive.

Another aspect of the present invention is the linking of the TCR epitope (i.e. the Signal-1 moiety) to a Signal-2 receptor peptide mimic (i.e., the Signal-2 moiety) in order to 10 modify the resultant immune response. This linkage can be between the Signal-1 moiety and the Signal-2 moiety directly, or through flanking residues. Alternatively, this linking can be done via a linker which is positioned between the Signal-1 moiety and the Signal-2 moiety. The linker could be any amino acid including naturally occurring or chemically synthesized 15 amino acids. Preferably, non-substrate amino acids will be used due to their resistance to protease attack. Still more preferably, the linker will comprise a non-substrate amino acid alternating with a small or hydrophilic amino acid. Even more preferably, the linker is synthesizable as one continuous sequence along with the Signal-1 and Signal-2 moieties, which flank the linker at each respective end. Still more preferably, the linker has the 20 general formula $(A,B)_X$, wherein A and B are amino acid residues, and the A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine, and the B amino acid residue is a small or hydrophilic amino acid. In this formula, X can range from 1 to 100. A particularly representative B residue is glycine. In this embodiment, a linker could 25 potentially have aminocaproic acid (Ac), aminohexanoic acid (Ahx), aminododecanoic acid (Ado), and β -alanine (β A) alternating with glycine residues (G) (e.g., Ac-G-Ahx-G-Ado-G- β A). The choice of the residues used to construct the linker can be based upon the desired length of the linker as well as steric hindrance considerations. One preferred linker comprises alternating Ac and G residues. This linker can be lengthened or shortened by the inclusion of the other amino acid residue choices (Ahx, Ado, β A). Some representative linkers are included in Table 2 as SEQ ID Nos. 26-29.

30 Approximately 10^9 different TCR account for protective immunity to the universe of infectious agents and contain the repertoire of TCR that may turn against self in

-11-

autoimmune diseases. Moreover, the TCR are also specific for potential tumor antigens and the myriad of allergenic substances in the environment. By changing the TCR epitope of a given BPI we direct the immunomodulating capacity of the BPI to a select group of TCR. In other words, the selection of a TCR epitope to incorporate into the BPI targets T-cells that are involved in a particular human disease in a highly specific fashion. For example, incorporating the GAD65 epitope into a BPI targets autoaggressive T-cells involved in the induction of type-1 diabetes. This targeting to specific TCR allows that T-cells necessary for immunity to infectious agents or cancers will not be significantly compromised. Thus, BPI offer the possibility to specifically modulate T-cell immunity to one antigen while leaving intact the T-cell repertoire necessary for protective immunity to infectious agents and developing cancers.

As noted above, the Signal-1 moieties of the present invention are preferably derived from TCR epitopes and a list of representative known epitopes is provided in Table 1 wherein these known epitopes are presented as SEQ ID Nos. 1-25. When a derivative of a TCR epitope is used to construct the BPI, preferably, the TCR epitope selected will be correlated with a known health condition or disease state. When using one of the representative peptides shown in Table 1 to construct the BPI, it is preferred that the peptides include a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. More preferably, the peptide will have at least 30% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. More preferably, the peptide will have at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Even more preferably, the peptide will have at least 70% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Most preferably, the peptide will have at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25. Of course, it is also well known in the art to use peptidomimetics to construct moieties having similar functions as the peptides derived from the TCR epitopes. In this respect, the teachings of Falcioni et al. in *Peptidomimetic Compounds That Inhibit Antigen Presentation by Autoimmune Disease-Associated Class II Major Histocompatibility Molecules*, 17 Nature Biotechnology, 562-567 (1999), are incorporated by reference herein. Accordingly, all or part of this Signal-1 moiety portion of the BPI can include such

-12-

peptidomimetics. Preferably, the peptidomimetic will be a mimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25. Alternatively, the Signal-1 moiety will be a derivative of a TCR epitope or a peptide selected from the group consisting of SEQ ID Nos. 1-25. At any rate, it is desired that this first portion of the BPI (or the portion 5 responsible for initiating the first signal) be capable of binding with a major histocompatibility complex (MHC) on an antigen presenting cell (APC). Furthermore, it is preferred that this resulting peptide:MHC complex be capable of engaging important TCR and initiating some form of the signal to the T-cell.

As noted above, the peptides used on the side of the linker opposite the Signal-1 10 moiety are preferably derived from Signal-2 receptors. This second portion of the BPI is connected to the first portion either directly or via the linker. In preferred forms, the second portion includes a sequence having at least about 10% sequence homology with a sequence selected from a group consisting of SEQ ID Nos. 30-41. More preferably, the second portion peptide has at least about 30% sequence homology with a sequence selected from the group 15 consisting of SEQ ID Nos. 30-41. Still more preferably, the second portion peptide has at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41. Even more preferably, the second portion peptide has at least about 70% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41. Most preferably, the second portion peptide includes a sequence having 20 at least about 95% sequence homology with a sequence selected from the group of SEQ ID Nos. 30-41. As with the first portion, peptidomimetics can be used in place of all or some of the amino acid residues of the second portion. In preferred forms the peptidomimetic of the second portion will be a mimic of a peptide selected from the group consisting of SEQ 25 ID Nos. 30-41. Alternatively, the second portion of the BPI will comprise a derivative of a peptide selected from the group consisting of SEQ ID Nos. 30-41. Similar to the first portion, it is preferred that the second portion be capable of binding with a complementary ligand (e.g. the Signal-2 ligand) on an antigen presenting cell. For example, when a peptide derived from LFA-1 is used as this Signal-2 moiety of the BPI, it should bind to ICAM-1 30 on the surface of the APC. Additionally, it is preferred that this binding with the Signal-2 ligand on the APC inhibits or alters the binding of the moiety's parent receptor (on the T-cell) to this same APC ligand.

-13-

As explained above, the immune response involves a two signal mechanism and the purpose of the present invention is to modify a given immune response, e.g., from type-1 immunity to type-2 immunity or from type-2 immunity to type-1 immunity. This modification or shifting of immune response phenotype is brought about by BPI according to the present invention. It is preferred in some cases for the BPI to modify an immune response from a T_H1 dominated or cytolytic immune response to a T_H2 dominated response; and, in other cases, it is preferred for the BPI to modify an immune response from a T_H2 dominated response to a T_H1 or cytolytic dominated response. In some cases, BPI may operate via the activation of very specific T-cell phenotypes, e.g., peptide-specific suppressor T-cells. In contrast to the nominal situation where an antigen stimulates the system toward a T_H1 response (depicted in Fig. 2), the response generated when a BPI similar to the GAD 65-CD11 α BPI is introduced into the immune synapse is quite different and operates to shift the response from type-1 to type-2. This situation is depicted schematically in Fig. 2. In this manner, a BPI comprising a Signal-1 moiety, a flexible, non-substrate linker, and a Signal-2 moiety is formed and introduced into the immune synapse. The TCR recognizes the peptide:MHC complex on the APC and initiates the first signal. However, the second portion of the BPI (the Signal-2 moiety) blocks the typical Signal-2 interaction occurring between LFA-1/ICAM-1, (or for other BPI:CTLA-4/B7, or CD40L/CD40, or FasL:Fas) and the translocation of the TCR into the central cluster. Depending on whether the LFA-1/ICAM-1 or CTLA-4/B7 interaction is targeted by the specific BPI construction, perhaps by tethering the MHC-II:peptide complex to the second signal ligand, the signal will be altered in a different direction of differentiation. For example, when the Signal-2 peptide portion of the BPI is derived from LFA-1, this would favor a decrease in CD40-ligand expression and hence, a lack of IL-12 release. By contrast, IL-4 released during the initial T-cell activation will accumulate to higher levels surrounding the synapse. This accumulation of IL-4 leads to Stat6 and GATA-3 up-regulation in the naive T-cell and ultimately to commitment to a type-2 pattern. Alternatively, when the Signal-2 moiety peptide portion of the BPI is derived from CTLA-4, the normal binding of CTLA-4 and CD-28 to B7 ligands is affected and thus more CD40 ligand is expressed (i.e., a greater role for high affinity LFA-1:ICAM-1 is dictated by blocking the B7 receptors); hence, the release of IL-12 increases. Interleukin-12 induces or stimulates the naive T-cell to produce more IFN- γ

-14-

and IL-2, thus providing a positive feedback toward type-1 immunity. These two cytokines (IL-2 and IFN- γ) are involved in classic cell-mediated functions such as clonal expansion of cytotoxic T-lymphocytes (CTLs), macrophage activation, and class switching to IgG isotypes that mediate complement lysis of sensitized cells. Such responses are hallmarks of protective immunity against human viral diseases. It will also operate to link TCR epitopes to the receptor for Fas. Since Fas:FasL interaction governs apoptosis, it will be possible to increase the frequency of specific TCR-bearing cells by blocking the apoptotic event. This will be important for BPI design against HIV, HPV, HCV, and cancers.

Thus, an important aspect of the present invention is that tethering a specific TCR epitope to a Signal-2 receptor peptide mimic leads to alteration of T-cell differentiation involving T-cells bearing only these receptors and/or T-cell populations indirectly linked to these peptide specific subsets. The ability to block or alter T-cell responses to a given immunodominant peptide antigen would offer extremely precise treatments for immunopathological conditions. A major drawback to current immunotherapies is that broad specificities of T-cells are affected leaving the host more susceptible to infections and cancers. The BPI of the present invention should block and/or alter only the desired T-cell population and subsequent responses that depend on these initial T-cells. Also, BPI will target a specific TCR-bearing population for activation toward a desired effector function.

In another aspect of this invention, the relative strength of signal generated by the T-cell-APC interaction has an affect on whether the ultimate immune response is a type-1 or a type-2 response. In this regard, the teachings of Murray in *How the MHC Selects T_H1/T_H2 Immunity*, 19 Immunology Today 157-163 (1998) are hereby incorporated by reference.

In another aspect of the present invention, an immune response is modified by contacting an APC with a peptide capable of binding to an MHC and to a Signal-2 ligand on the APC and causing an altered signal to be transmitted to the T-cell. Thus, the immune response is deviated from the immune response generally associated with the immunogenic peptide and its corresponding antigen (i.e., infectious agent, self protein, or allergen).

In another aspect of the present invention, a peptide having the general formula AXB is provided. The A, X, and B represent a chain of amino acid residues wherein the A chain has at least about five residues and at least about 10% sequence homology with a TCR

-15-

epitope, the B chain has at least four residues and at least about 10% sequence homology with a peptide derived from a Signal-2 moiety, and the X chain is a linker. The linker could be any amino acid including naturally occurring or chemically synthesized amino acids. Additionally, the X chain has at least one residue. It is possible to link A to B directly without X as well, although a linker of some size is preferred in order to span the distance between the MHC-II and second signal ligands on the APC surface. As noted above, preferably, non-substrate amino acids will be used due to their resistance to protease attack. Still more preferably, the linker will comprise a non-substrate amino acid alternating with a small or hydrophilic amino acid. Even more preferably, the linker is synthesizable as one continuous sequence along with the Signal-1 and Signal-2 moieties, which flank the linker at each respective end. Still more preferably, the linker has the general formula $(A_xB)_x$, wherein A and B are amino acid residues, and the A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine, and the B amino acid residue is a small or hydrophilic amino acid. In this formula, X can range from 1 to 100. A particularly representative B residue is glycine. In this embodiment, a linker could potentially have aminocaproic acid (Ac), aminohexanoic acid (Ahx), aminododecanoic acid (Ado), and β -alanine (β A) alternating with glycine residues (G) (e.g., Ac-G-Ahx-G-Ado-G- β A). The choice of the residues used to construct the linker can be based upon the desired length of the linker as well as steric hindrance considerations, hydrophobicity, charge, etc. One preferred linker comprises alternating Ac and G residues. This linker can be lengthened or shortened by the inclusion of the other amino acid residue choices (Ahx, Ado, β A). Some representative linkers are included in Table 2 as SEQ ID Nos. 26-29. Additionally, the X chain is positioned between the A chain and the B chain and the entire peptide can be synthesized as one continuous sequence. Some preferred sequences will have an A chain having at least about 10% sequence homology with any one of SEQ ID Nos. 1-25, an X chain having at least about 2% sequence homology with any one of SEQ ID Nos. 26-29, and a B chain having at least about 10% sequence homology with any one of SEQ ID Nos. 30-41. Preferably, the peptide is capable of shifting a type-1 response to a type-2 response, or vice versa. Of course, peptidomimetics may be synthesized to mimic any part of the EPI, including the linker. Preferably, the A chain binds to the MHC on an APC to form a

-16-

peptide:MHC complex. This complex is capable of engaging the TCR on critical T-cell populations. Still more preferably, the B chain is capable of binding to a Signal-2 ligand on the APC at the same time as the formation of the peptide:MHC complex. This combined binding to the APC should be capable of altering the signal delivered to the T-cell. The 5 combination of the first signal and the second signal are capable of fully activating a T-cell and by selecting the peptide used for the A chain and the peptide used for the B chain, the immune response can be deviated from its normal progression. In the case of a normally activated type-1 response leading to the up-regulation of T_{H1} cells, the response can be altered to give a type-2 response leading to the up-regulation of T_{H2} cells. In the case of a 10 normally activated type-2 response leading to the up-regulation of T_{H2} cells, the response can be altered to give a type-1 response leading to the up-regulation of T_{H1} cells. Again, the A chain can be chosen based on the health condition normally associated with the sequence (for example, see Table 4).

In another aspect of the present invention, a method is provided for preparing a 15 peptide for modulating immune responses. This method comprises the steps of selecting a first peptide sequence which has at least about 10% sequence homology with a sequence derived from a TCR epitope, selecting a second peptide sequence which has at least about 10% sequence homology with a sequence derived from a Signal-2 receptor moiety, selecting a third peptide sequence which is a flexible, non-substrate linker, and synthesizing the 20 peptides as a continuous peptide chain. Preferably, the linker is flanked on one end with the peptide derived from the TCR epitope and flanked on the other end with the peptide derived from the Signal-2 moiety. Preferably, the first peptide sequence should be associated with a known health condition and be capable of binding with an MHC on an APC. Similarly, it is preferred that the second peptide sequence be capable of binding with a Signal-2 ligand 25 moiety on the APC. The method can further comprise the step of contacting the nominal peptide immunogen with the TCR, thereby binding the first peptide sequence to the MHC and the second peptide sequence to the Signal-2 ligand, thereby generating APC bearing potent first and altered/blocked second signal ligands which activate a desired immune response.

30 Inherent in the BPI design is the antigen-specific moiety that a given T-cell population is activated to respond against (i.e., the TCR epitope), ultimately leading to the

-17-

cascade of immune reactions that generate protective or in some cases pathologic immune responses. These epitopes when bound to major histocompatibility complex (MHC) molecules on the antigen presenting cell (APC) surface provide the Signal-1 of the two-signal mechanism of T-cell activation. Thus, an important consideration is the affinity of a given peptide for MHC molecules. This affinity was directly tested by the binding of biotinylated peptide to the cells that present the peptide:MHC complex to the T-cells in mouse and man. T-cell clones to possible peptide epitopes were generated and tested for binding to the immunodominant TCR of a response and specifically stimulate T-cell functions *in vitro* by the ELISPOT assay. Because modifications in the peptide residues that actually contact the TCR are part of the BPI development, it is also preferable that known crystallographic structures of the epitope bound to MHC molecules are available. This allows for precise three-dimensional predictions of how a particular amino acid substitution or mimetic will affect the actual structure encountered by the developing T-cells. However, in the absence of known crystal structures, it is possible to predict the shape of a hypothetical peptide:MHC structure based upon the available coordinates of other peptide:MHC structures. This predictability is partially due to established peptide binding motifs, that allow for prediction of which residues of the epitope fit most readily into the particular binding pockets of a given MHC allele. These predictions have been accomplished using two different alleles (I-A^a and I-A^b) binding a collagen peptide wherein each polymorphic position of the I-A molecules were substituted with the known amino acids at these positions. The overall structure was based upon the published coordinates of a reference allele I-A^k binding a different peptide. Thus, in cases where the 3D structure of a particular disease-associated epitope is not known, a structure for predicting where the TCR contacts the peptide by a similar allelic-substitution and modeling approach can still be generated. It is important to identify (or at least predict) these TCR contact positions. It is well-known that certain alterations to TCR-contact positions can change the functional differentiation of T-cells into the T_H1 or T_H2 types that can determine the course of immunity (see Murray, et al., Major Histocompatibility Complex (MHC) Class II Molecules Direct TCR-Specificity for Opposite Ends of the Same Immunogenic Peptide in T_H1 or T_H2 responses (unpublished manuscript, 2000); and Murray, 19 *Immunology Today* 157-163 (1998), the teachings of which are hereby incorporated by reference.

-18-

Specifically, it was verified that the peptide binds to MHC molecules on live APC.

Briefly, spleen cell density-gradient fractions (from mice), or PBL, or APC lines (from humans) were incubated in round bottom 96-well plates with increasing concentrations of individual biotinylated peptides at 37°C, 5% CO₂ for 16 hours. Following binding of the BPI to the APC, Avidin-FITC was incubated with the cells on ice for 30 minutes, followed by biotinylated anti-Avidin for 1 hour, then again with Avidin-FITC. For BPI titrations, increasing concentrations (0.1-100 µM) of the biotinylated derivatives in sterile 0.5% BSA-PBS were incubated with the APC for 16 hours as above. As shown in Fig. 5, the GAD 65 BPI binds preferentially to NOD APC as predicted. The LFA-1 moiety or the GAD 65 moiety did not display this increased binding to the diabetes strain's APC. Three-color analyses used Cy-Chrome or PE-conjugated antibodies to known surface markers of APC that were commercially available. Avidin-FITC and biotinylated anti-Avidin detection of the bound peptide was as previously described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). Slight modifications of this method were used to test peptide inhibition (i.e., peptide affinity) and co-capping to the MHC and ICAM molecules directly on the live APC surface. First, monoclonal antibodies (mAb) against MHC or ICAM molecules blocked BPI binding, therefore showing that the BPI binds to these molecules (Fig. 6). Unlabeled peptide was used in a competition assay to derive the relative affinity of the BPI for the APC and the ability of the BPI to crosslink the MHC and ICAM molecules on the APC was examined by cocapping ICAM with an anti-MHC mAb. Here, cells were incubated with the BPI. Next, an anti-MHC mAb was added. After 30 minutes at 37°C, the cells were transferred to ice and stained with PE-labeled anti-ICAM (Fig. 7).

Next, T-cell clones were generated for determination of TCR epitopes for later use in BPI. These experiments utilized CD4+ or CD8+ T-cell clones from humans or mice immunized against predicted TCR epitopes using previously described methods (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). These clones were maintained by biweekly restimulation with irradiated histocompatible lymphocytes, the peptide, and recombinant IL2. To determine if a given TCR-epitope is effective for the activation to cytokine synthesis, an ELISPOT assay was used. Of course, other cytokine

-19-

assays could also be used. For analysis, BPI that have been substituted at predicted TCR-contact positions will be used to determine which of these BPI variants are most effective in the inhibition of proliferation and cytokine release from individual clones as analyzed above. Predicted positions will be scanned with different amino acids or mimetics to alter the interaction with the TCR in the structures generated by molecular modeling.

Next, Molecular Dynamics/Energy Minimizations (MD/EM) will be used to study the peptide conformations. MD simulations will be used in conjunction with crystallographic data to predict the solution conformations of the BPI. MD/EM simulations can predict flexibility and conformational changes during binding of BPI to MHC-II and ICAM-1. Amino acid substitutions can also be introduced into the Signal-1 and/or Signal-2 moieties in order to favor simultaneous binding to both receptors, as first predicted by these model studies. The I-A^{v7}:BPI:D1 structure (see Fig. 8) is an example of using the crystal structure coordinates of a disease-associated peptide:MHC structure (I-A^{v7}:GAD65 peptide). For this figure, docking studies were performed on a Silicon Graphic Octane workstation using InSight II (MSI/Biosym). The LFA-1-ICAM-1 structure was taken from known diffraction coordinates and the I-A^{v7}:GAD65 peptide was from known coordinates. Of course, analogous methods can be used to model the BPI listed in Tables 1, 2, 3 and 4 for binding to the various MHC molecules of mouse and man.

The second stage in the BPI process is selection of peptide mimics of established second signal receptor molecules involved in the functional differentiation of T-cells. To determine these structures, the crystallographic structures and available models of the second signal receptors bound to their physiological ligands will be used to predict the regions of the receptors that make contact with the ligand. This approach was used to design the EGAD-BPI which can be depicted as

25

(EIA[PVFVLLE]-(AcGAcGAc)-(ITDGEATDSG)
GAD65(208-217) linker LFA-1(237-247)

These interactions can also be determined empirically by making site-directed changes in the second signal molecules and determining whether such mutant molecules still bind to the ligand in question. However, many of these studies have been performed with

-20-

known second signal receptors, including LFA-1, CD28/CTLA4, CD40L, and CD95L. Molecular modeling studies will be used as above to model the interactions of these second signal moieties with their ligands separately and when the moiety is part of the BPI structure.

Once candidate BPI moieties that bind effectively to the MHC and second signal ligands and that alter T-cell functions *in vitro* were identified, these moieties were synthesized at opposite ends of relatively short synthetic peptides, connecting them by a non-proteolytic substrate linker of variable length. As described by the prototypical EGAD-BPI, the Signal-1 moiety (i.e., the disease-associated TCR epitope) was linked by this flexible linker to the Signal-2 receptor mimetic peptide (i.e., a second signal receptor thought to be involved in $T_{H}1/T_{H}2$ differentiation). These synthetic peptides were generated by conventional methods of peptide synthesis. In some cases, BPI are tested for binding to isolated MHC and second signal ligands, and NMR, molecular modeling and crystallography are used to determine their exact 3D structures. Finally, it was determined whether a given BPI was biologically active *in vivo*. Mice were treated with the BPI and immune cells isolated and tested for cytokine production by ELISPOT (see Figs. 9 & 10). Of course other cytokine assays will be well known to those of ordinary skill in the art and can be used in place of ELISPOT. *In vivo* models similar to the NOD.Scid model (i.e., human Scid, transgenic knockout strains, etc.) were used, with modifications necessary for each disease being examined, as a more stringent test of BPI efficacy. For example, in the case of the HIV-1 p24 TCR-epitope, human-Scid mice are used for the adoptive transfer experiments. In this experiment, T-cells from patients will first be cloned by conventional methods and stimulated with the BPI *in vitro*. Next, these cells will be transferred into the human-Scid mice and analyzed as with the EGAD-BPI in the NOD.Scid adoptive transfer experiment. Results from these experiments are given in Figs. 11-13.

To synthesize the BPI, Fmoc chemistry on chlorotriptyl resins was used. Protected amino acids were double coupled at 8-fold excess for 1 hour. Resins were DMF and MeOH washed and cleaved in Reagent R: TFA, EDTA, Thioanisole, Anisole. The TFA mixture containing the peptide in solution was precipitated in ether and washed extensively. Preparative HPLC of peptides was accomplished by a gradient of 0-80% acetonitrile in 0.1% TFA. Lyophilization of the various fractions and verification by MALDI-TOF using a Voyager mass spec (PerSeptive, Foster City, CA) yielded the synthetic peptide as a TFA salt.

-21-

Modeling, crystallography and binding studies, as described above, were used to generate the predicted BPI complex structure.

In another example which tested the diabetes BPI *in vivo*, 15 million disease-linked lymphocytes (i.e., patient T-cells, or T-cell populations linked to the disease process) were 5 injected with or without T-cells that received the BPI compound (in vivo or *in vitro*) and were expanded for 24 hours in recombinant IL-2. Some experiments will deplete specific subsets of the T-cells using mAb to CD154, CD25, CD62L, CD152, etc. and magnetic particles prior to adoptive transfer. T-cells (from mice or humans) treated with the individual moieties of the BPI will be used as negative controls along with CD4+ cells from 10 mice treated with saline alone (Fig. 9). For blocking spontaneous diabetes, five groups of ten female NOD mice (12 weeks of age) were used and monitored for nondiabetic blood glucose levels with a standard glucometer (AccuChek-complete, Roche Diagnostic). Each mouse was labeled and individually monitored for blood glucose levels weekly for the course of the experiment. The five groups received either (a) intravenous (i.v.) injection of 15 the BPI (100 µg in 100 µl endotoxin-free saline/injection) at 8 weeks of age, (b) same dose GAD65 (208-217) epitope alone, (c) same dose CD11a (237-247) peptide alone, or (d) saline alone. For other systems, similar treatment groups involving the different Signal-1 and Signal-2 peptides and BPI will be used. Mice will be tested by challenging with the appropriate infectious agent or antigen depending upon the particular BPI in question.

20 To evaluate the disease process by immunohistology (see, e.g., Fig. 12A-D), spleen, pancreas, or other target organs, e.g., the CNS for the MBP peptide BPI, or lung for the RSV peptide BPI, were removed from euthanized mice of each group and prepared for histology by fixing in neutral buffered formalin and embedding in paraffin, or snap frozen in O.C.T. 25 medium. For scoring inflammation, minimums of five sections from each mouse were used to assess the blocking affect of a given BPI. For characterization of standard T-cell markers on cellular infiltrates, biotinylated mAb to various cell surface antigens will be incubated individually with the Cryostat sections (2 hours), followed by avidin-alkaline phosphatase (Vector laboratories). Alternatively, cell subsets will be phenotyped by standard flow cytometry methods as described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); 30 Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). Finally, the students t-test or ANOVA will be used to

WO 02/50250

PCT/US01/48632

24

-22-

estimate the statistical significance of differences observed between groups and individual mice.

A few representative assembled BPI consisting of a Signal-1 moiety and a Signal-2 receptor moiety joined together via a linker are provided in Table 4 as SEQ ID Nos. 42-46.

5 These representative BPI are operable for shifting specific immune responses from a type-1 to a type-2 response and vice-versa. Advantageously, other immune responses to other antigenic peptides will be preferably unaffected.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

Figure 1 is a schematic representation of an immune synapse between a T cell and an APC illustrating the doughnut structure of the TCR:peptide:MHC location;

15 Fig. 2 is a schematic representation of how a representative BPI blocks differentiation leading to a T_{H1} dominated immune response and shifts immunity to T_{H2} dominated immune response;

Fig. 3 is a schematic representation of nominal activation of a type-1 immune response through the interactions between cell surface proteins within the immune synapse;

20 Fig. 4 is a simplified schematic representation of the two signal mechanism of T-cell activation;

Fig. 5a is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI to different mouse strains;

25 Fig. 5b is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI portion to different mouse strains;

Fig. 5c is a graph representing the results of a flow cytometry analysis comparing the binding of a representative BPI portion to different mouse strains;

30 Fig. 6a is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, without antibodies to MHC-II or ICAM-1;

-23-

Fig. 6b is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, when antibodies to ICAM-1 are present;

5 Fig. 6c is a graph illustrating the results of a flow cytometry analysis of a representative BPI binding to the APC of a mouse strain, when antibodies to MHC-II are present;

10 Fig. 7 is a color photograph representing the results of a fluorescent microscopy analysis of a representative BPI simultaneously binding to MHC-II and ICAM-1 structures on the NOD APC by co-capping with antibodies to MHC-II, the top panels are from mice APC treated with a representative BPI and the bottom panels are treated with just the saline vehicle;

15 Fig. 8 is a color photograph of the molecular model of a representative BPI binding to the NOD mouse's MHC-II (I-A^{v7}) and the D1 domain of ICAM-1, MHC-II is shown in pink, ICAM-1 is in light blue, the BPI is shown by atom with the carbon in green, oxygen in red, and nitrogen in blue;

Fig. 9a is a graph representing the ELISPOT analysis of IL-4 cytokine release by T-cells taken from NOD mice treated with the EGAD-BPI or the saline control;

Fig. 9b is a graph representing the ELISPOT analysis of IFN- γ cytokine release by T-cells taken from NOD mice treated with the EGAD-BPI or the saline control;

20 Fig. 9c is a graph representing the ELISPOT analysis of IL-4 cytokine release by T-cells taken from NOD mice treated with the AGAD-BPI or the saline control;

Fig. 9d is a graph representing the ELISPOT analysis of IFN- γ cytokine release by T-cells taken from NOD mice treated with the AGAD-BPI or the saline control;

25 Fig. 10 are representative photographs of the raw data of the ELISPOT analysis used for the graphs in Figs. 9a-9d;

Fig. 11 is a graph of the severity of islet infiltration as an indicator of the inhibition of insulitis by the EGAD-BPI, separate portions of the EGAD-BPI, and saline;

Fig. 12a is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the saline control;

30 Fig. 12b is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the GAD peptide;

-24-

Fig. 12c is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the EGAD-BPI;

Fig. 12d is a representative color photograph of the histological analysis of pancreata infiltration by mononuclear cells in NOD mice treated with the CD11a peptide; and

5 Fig. 13 is a graph illustrating the results of a 10 week monitoring of blood glucose levels in NOD.Scid mice which received CD25-negative diabetes-inducer cells together with T-cells from NOD mice injected with either the EGAD-BPI or saline.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

10 As used herein, the following definitions will apply: "Sequence Identity" as it is known in the art refers to a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, namely a reference sequence and a given sequence to be compared with the reference sequence. Sequence identity is determined by comparing the given sequence to the reference sequence after the sequences have been optimally aligned to produce the highest degree of sequence similarity, as determined by the match between 15 strings of such sequences. Upon such alignment, sequence identity is ascertained on a position-by-position basis, e.g., the sequences are "identical" at a particular position if at that position, the nucleotides or amino acid residues are identical. The total number of such position identities is then divided by the total number of nucleotides or residues in the reference sequence to give % sequence identity. Sequence identity can be readily calculated by known methods, including but not limited to, those described in Computational Molecular Biology, Lesk, A. N., ed., Oxford University Press, New York (1988), Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H. G., 20 eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. et al., eds., M. Stockton Press, New York (1991); and Carillo, H., et al. Applied Math., 48:1073 (1988), the teachings of which are incorporated herein by reference. Preferred methods to determine the sequence identity are designed to give the largest match between the sequences tested.

25 Methods to determine sequence identity are codified in publicly available computer programs which determine sequence identity between given sequences. Examples of such

-25-

programs include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research, 12(1):387 (1984)), BLASTP, BLASTN and FASTA (Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S. et al., NCVI NLM NIH Bethesda, MD 20894, Altschul, S. F. et al., J. Molec. Biol., 215:403-410 (1990), the teachings of which are incorporated herein by reference). These programs optimally align sequences using default gap weights in order to produce the highest level of sequence identity between the given and reference sequences. As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "sequence identity" to a reference nucleotide sequence, it is intended that the nucleotide sequence of the given polynucleotide is identical to the reference sequence except that the given polynucleotide sequence may include up to 5 point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, in a polynucleotide having a nucleotide sequence having at least 95% identity relative to the reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously, by a polypeptide having a given amino acid sequence having at least, for example, 95% sequence identity to a reference amino acid sequence, it is intended that the given amino acid sequence of the polypeptide is identical to the reference sequence except that the given polypeptide sequence may include up to 5 amino acid alterations per each 100 amino acids of the reference amino acid sequence. In other words, to obtain a given polypeptide sequence having at least 95% sequence identity with a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total number of amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or the carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal

-26-

positions, interspersed either individually among residues in the reference sequence or in the one or more contiguous groups within the reference sequence. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. However, conservative substitutions are not included as a match when determining sequence identity.

5 Similarly, "sequence homology", as used herein, also refers to a method of determining the relatedness of two sequences. To determine sequence homology, two or more sequences are optimally aligned as described above, and gaps are introduced if necessary. However, in contrast to "sequence identity", conservative amino acid substitutions are counted as a match when determining sequence homology. In other words, 10 to obtain a polypeptide or polynucleotide having 95% sequence homology with a reference sequence, 95% of the amino acid residues or nucleotides in the reference sequence must match or comprise a conservative substitution with another amino acid or nucleotide, or a number of amino acids or nucleotides up to 5% of the total amino acid residues or nucleotides, not including conservative substitutions, in the reference sequence may be 15 inserted into the reference sequence.

A "conservative substitution" refers to the substitution of an amino acid residue or nucleotide with another amino acid residue or nucleotide having similar characteristics or properties including size, charge, hydrophobicity, etc., such that the overall functionality does not change significantly.

20 "Isolated" means altered "by the hand of man" from its natural state., i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Finally, all 25 references and teachings cited herein which have not been expressly incorporated by reference are hereby incorporated by reference.

Sequences including or having a sequence which has at least about 10% sequence 30 identity with any one of SEQ ID Nos. 1-46 and which exhibit similar binding properties to APC or linking properties between two peptide sequences are within the scope of the present invention. Preferably, such sequences will have at least about 30% sequence identity with any one of SEQ ID Nos. 1-46, still more preferably at least about 50% sequence identity,

-27-

even more preferably, at least about 70% sequence identity, and most preferably at least about 95% sequence identity. Alternatively, sequences including or having a sequence which has at least about 10% sequence homology with any one of SEQ ID Nos. 1-46 and which exhibit similar binding properties to APC or linking properties between the two adjacent peptide sequences are embraced in the present invention. More preferably, such sequences will have at least about 30% sequence homology with any one of SEQ ID Nos. 1-46, still more preferably at least about 50% sequence homology, even more preferably at least about 70% sequence homology, and most preferably at least about 95% sequence homology. Additionally, sequences which differ from any one of SEQ ID Nos. 1-46 due to a mutation event, a series of mutation events, or chemical derivatization but which still exhibit desired properties are also embraced in the present invention. Such mutation events or derivatizations include but are not limited to point mutations, deletions, insertions, rearrangements, peptidomimetics, and other chemical modifications.

A "linker" is defined as any amino acid including naturally occurring or chemically synthesized amino acids. Preferably, a "linker" is a flexible, non-substrate sequence of amino acid residues resistant to proteolytic degradation which can be used to conjugate and/or couple a Signal-1 moiety to a Signal-2 moiety.

A "Signal-1 moiety" is defined as a peptide epitope, i.e., the peptide portion of an antigen and/or mimetics of these antigenic peptides to which important TCRs bind.

A "Signal-2 moiety" or a "Signal-2 receptor moiety" is defined as a peptide portion of a second signal receptor known to bind to and/or affect binding of the receptor to its complementary ligand on the APC. This can include peptide mimics and mimetics of the receptor/ligand structure of interest.

A "Signal-2 ligand" is the complementary protein of the Signal-2 receptor moiety on the APC to which the receptor portion and/or the Signal-2 receptor moiety has significant affinity and binds.

As used herein "derivative" with respect to peptides refers to changes produced by amino acid addition, deletion, replacement, substitution, and/or modification; mutants produced by recombinant and/or DNA shuffling; and salts, solvates, and other chemically synthesized/modified forms of the peptide that retain in part the activity of the isolated native peptide.

-28-

BPI were generated using automated peptide synthesis by a robotic multiple peptide synthesizer employing Fmoc amino acid chemistry by standard methods. Wang resin (*p*-benzyloxybenzyl alcohol polystyrene) was used as the solid support. Peptides were characterized by reversed-phase HPLC and electrospray mass-spectrometry. This synthesis, referred to as Merrifield peptide synthesis, utilizes traditional organic chemical reactions carried out on a solid material so that the peptide chain is lengthened while attached to the support structure. The peptides will be cleaved from the resin using TFA, and purified by reverse-phase HPLC and analyzed by mass spectroscopy. Alternatively, these reactions can be carried out in solution when larger amounts of the peptides are desired. Of course, the peptides of the invention may be synthesized or prepared by a number of techniques which are well known in the art. See, for example, Creighton, 1983, *Proteins: Structures and Molecular Principles*, W. H. Freeman and Co., New York, which is incorporated herein by reference in its entirety. Short peptides, for example, can be synthesized on a solid support or in solution. Longer peptides may be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides of the invention may be synthesized, and/or cloned, and expressed according to techniques well known to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, *Molecular Cloning, A Laboratory Manual*, Vols. 1-3, Cold Spring Harbor Press, New York.

Alternatively, the peptides of the invention may be synthesized such that one or more of the bonds which link the amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to amino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is enhanced. For example, hydrophobic groups such as carbobenzoyl, dansyl, or t-butyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini.

-29-

Purchasing preformed peptides provides another alternative source of peptides having 25 amino acids or less as these are easily purchased from commercial peptide synthesis laboratories. In later synthesis schemes, peptide mimetic compounds may be synthesized in place of the peptide moieties and linked by the same chemistry. The design of peptidomimetics is an established technique and known correlates of key amino acids of the peptide can be synthesized by previously published methods. Furthermore, as it is well known in the art, peptidomimetics may be developed which have the same modulation properties as the preferred peptides detailed herein. As these peptidomimetics require no more than routine skill in the art to produce, such peptidomimetics are embraced within the present application. Notably, the side chains of these peptidomimetics will be very similar in structure to the side chains of the preferred peptides herein, however, their peptide backbone may be very different or even entirely dissimilar. If resistance to degradation *in vivo* or greater conformational stability were desired, the peptides of the present invention could be cyclized by any well known method. One such method adds Penicillamine (Pen) and cysteine (Cys) residues to the N- and C-termini to form cyclic peptides via a disulfide bond between the Pen and Cys residues. The formation of this cyclic peptide restricts the peptide conformation to produce a conformational stability, thereby providing better selectivity for cell surface receptors than its linear counterpart.

The portion of the BPI which spans between the Signal-1 moiety and the Signal-2 moiety is referred to as a linker. As noted above, the linker is not essential in forming a BPI. However, when a linker is used, the linker can be any naturally occurring or chemically synthesized amino acid. Preferably, the linker is a non-substrate amino acid residue chain which helps to prevent protease attack. A particularly preferred linker is a repeating chain of the non-natural amino acid, aminocaproic acid (Ac), and the amino acid glycine (G) (e.g. Ac-G-Ac-G-Ac). If a shorter length was needed for the linker, beta-alanine residues (β Ala) could be substituted for one or more of the Ac residues. If a longer chain was needed for the linker, amino-dodecanoic acid residues (Adod) could be substituted for one or more of the Ac residues. As is well known in the art, peptide mimetics of these linker amino acids may also be synthesized and inserted into the BPI structure.

-30-

The following examples set forth preferred embodiments of the present invention. It is to be understood, however, that these examples are provided by way of illustration and nothing therein should be taken as a limitation upon the overall scope of the invention.

5

EXAMPLE 1

This example describes the methods used to generate the BPI.

Materials and Methods:

Synthesis of peptides was via Fmoc on chlorotriptyrity resins. Protected amino acids were double coupled at 8-fold excess for one hour. Resins were dimethylformamide (DMF) and methanol (MeOH) washed and cleaved in Reagent R: trifluorolacetic acid (TFA), ethylene diamine tetraacetic acid (EDTA), Thioanisole, Anisole. The TFA mixture containing the peptide in solution is precipitated in ether and washed extensively. Preparative HPLC of peptides was accomplished by a gradient of 0-80% acetonitrile in 0.1% TFA. Lyophilization of the various fractions and verification by mass spectroscopy yielded the synthetic peptides as a TFA salt. Modeling, crystallography and binding studies are as described above.

Results:

The peptides produced in this example are provided in Table 1 and are also listed as SEQ ID Nos. 1- 46. These peptides include the Signal-1 moiety, the Signal-2 moiety and the non-substrate linker between the two moieties. To produce the BPI, any Signal-1 moiety 5 could be linked with any Signal-2 moiety via any linker using the peptide synthesis described above. In other words, the BPI are generated as one continuous peptide chain comprising a Signal-1 peptide sequence followed by a linker sequence followed by a Signal-2 peptide sequence. Additionally, some representative BPI were generated for later use in the experiments. These BPI are included herein in Table 4. However, it is important to note 10 that these BPI are representative (as are each of the BPI portions listed in Tables 1-4) and not all inclusive.

TABLE 1. Signal-1 Peptides

SEQ ID No.	Sequence	Name, Source	Organism	Health Condition
1	EIAPYEVILLE	GAD65 (208-217)	<i>Homo sapiens</i>	type-1 diabetes
2	EIAPYEVILLE	GAD67 (217-226)	<i>Mus musculus</i>	type-1 diabetes
3	QYMRADQAAAGGLR	Collagen II (1168-1180)	<i>Homo sapiens</i>	degenerative arthritis
4	RVVINKDOTTII	Yersinia HSP (322-333)	<i>Yersinia enterocolitica</i>	reactive arthritis
5	ENPVVHFHKAVTPR	Myelin BP (84-98)	<i>Homo sapiens</i>	multiple sclerosis
6	GYKVLVLMNPVAAAT	HCV, NS3 (1248-61)	<i>Hepatitis C, <i>C. virus</i></i>	hepatitis
7	GSDTITLPERKIQTINMWQE	HTV, gp 120 (410-429)	HIV-1	AIDS
8	PHQONLQGQNAWHDQKISPRTL	HTV, gp41 (13-52)	HIV-1	AIDS
9	STPESANL	SV40, Tat (28-35)	Simian immunodeficiency virus	simian AIDS
10	AUCKRPNNEKPKPKKT	RSV, G (113-197)	Respiratory syncytial virus	asthma
11	YVRDGmP7A	HPV 6, 18 (60-63)	Human papillomavirus (HPV)	cervical cancer
12	DRAHYNI	HPV 16, E7 (48-54)	HPV	cervical cancer
13	YMLDLQPFIT	HPV 16, E7(1-20)	HPV	cervical cancer
14	ASDLRITQOLLmGTIV	HPV 33, E7 (73-87)	HPV	cervical cancer
15	AELVHFLKLYRAR	MAGE (3114-3126)	<i>Homo sapiens</i>	melanoma
20				

				melanoma
16	LKVKRAREPVTKAE	MAGE (G120-3133	Homo sapiens	
17	EQAQYKALPVLENA	Fel d (22-37)	Felis domesticus	cat allergy
18	KALPVLENAARILKNCV	Fel d (28-44)	Felis domesticus	cat allergy
19	LVPCAWAGNVGGEKRAYCCS	Amb 1 5 (1-20)	Ambrosia artimisiifolia	ragweed allergy
5	PIGKYCVCTDSKAIGNKNT	Amb 1 5 (21-40)	Ambrosia trifida	ragweed allergy
20				
21	KSMKYTVAFNGFGEN	Cry j (21-225)	Cryptomeria japonica	cedar allergy
22	IDIFASKNFIHQKNTIGTG	Cry j 2 (182-200)	Cryptomeria japonica	cedar allergy
23	YFVGKMYFNLLIDYKCYK	Phospholipase 2 (81-97)	Apis mellifera	bee allergy
24	ASBQETADATPEREEPTAAAP	Hev b 5 (37-56)	Hevia brasiliensis	latex
10	FGISNYCQIYPPNANKI	Der p 1 (11-127)	Dermatophagoides farinosus	dust mites
25				

TABLE 2. Linkers

SEQ ID No.	Sequence
26	Ac-G-Ac-G-Ac
27	Ac-G- β Ala-G-Ac
28	Ac-G-Adod-G-Ac
29	Ahx-G-Ahx-G-Ahx

TABLE 3. Signal-2 Peptides

SEQ ID No.	Sequence	Source	Organism	Shift in Immunity
30	ITDGEATDSG	CD11a (237-247)	Homo sapiens	type-1 \rightarrow type-2
31	TDGEATDSGN	CD11a (238-248)	Homo sapiens	type-1 \rightarrow type-2
32	ASPGKATEVR	CTLA4 (24-33)	Homo sapiens	type-2 \rightarrow type-1
33	SPSHNTDEVR	CTLA4 (24-33)	Mus musculus	type-2 \rightarrow type-1
34	KVELMYPPPYYL	CTLA4 (93-104)	Homo sapiens	type-2 \rightarrow type-1
35	KVELMYPPPYFV	CTLA4 (93-104)	Mus musculus	type-2 \rightarrow type-1
36	ITDGEATDSG	CD11a (237-247)	Mus musculus	type-1 \rightarrow type-2
37	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	Homo sapiens	type-1 \rightarrow type-2
38	KGYYTMSNNLVTL	CD154 (CD40L) (93-104)	Mus musculus	type-1 \rightarrow type-2
39	YMRNSKYRAGGAYGP G	Fas-ligand (CD95L) (143-155)	Homo sapiens	type-2 \rightarrow type-1
40	YMRNSKYRAGGAYGP G	Fas-ligand (CD95L) (143-155)	Mus musculus	type-2 \rightarrow type-1
41	TDGEATDSGN	CD11a (238-248)	Mus musculus	type-1 \rightarrow type-2

Table 4. Some Representative BPI

	TCR Epitope	Linker	Signal-2 Receptor Moiety	Complete BPI Sequence	SEQ ID No.	Effect
(GAD65) Diabetes:	AcGAAcGAc	(CD1a)		ELAPVFLLEAcGacActTDGEATD	42	type-1
ELAPVFLLE		TDGEATDSG		SG		- type-2
(bt) AIDS:	AcGAAcGAc	(Fas-Ligand)		STPESANLAcGadGac	43	1 CTL
STPESANL				YMRNSKYYRAGGAYGFG		
(p24)	AcGAAcGAc	(CTLAA)		HIVQNLQGQMYHQANSPRTLAcGac	44	1 type-1
				GA&KVELMYPFPYFV		
PIVQNLQGOMVHQASPRTL		KVELMYPFPYFV		QYMRADQAAAGGLRAcGAdGacG	45	type-1
(collagen-II) Rheumatoid Arthritis:	AcGAAcGAc	(CD40L)		YVTMASNLLVTL		- type-2
QYMRADQAAAGGLR				KGYTYTMSNNLVTL		
(HPV18) Cervical Cancer:	AcGAAcGAc	(Fas-Ligand)		YMLD1QPETTAcGacGacYMRNSK	46	1 CTL
YMLD1QPETT				YRAGGAYGFG		

5

10

Discussion:

Once the linker, the Signal-1 moiety, and the Signal-2 moiety are chosen, the entire BPI can be synthesized using the above-described methods. There are thousands of potential Signal-1 moieties which could be used in connection with the present invention. Each of 5 these moieties may be associated with a distinct immunological response or disease state. Once the epitope structure and sequence are determined, an appropriate linker could be selected and the other portion of the BPI, i.e., the second signal moiety, can be chosen. Once all of these sequences have been determined, BPI can be designed using the peptide sequences themselves, peptidomimetics, or combinations of the two. Construction of 10 appropriate peptidomimetics is detailed by Falcioni, et al, 17 *Nature Biotechnology*, 562-567 (1999), the content and teachings of which are hereby incorporated by reference herein.

Fig. 8 illustrates the structure of the GAD65 (208-217), TCR epitope linked to the CD11a (237-247) second signal moiety produced by the present methods. It is shown bound to the groove of I-A^{g7} and the D1 domain of ICAM-1. For modeling the I-A^{g7}:GAD65 15 peptide structure, docking studies were performed on a Silicon Graphic Octane work station using InSight II software (MSI/Biosym). The LFA-1 peptide:ICAM-1 domain structure is based on the docking model of Edwards, C.P. et al. *J. Biol. Chem.* 273:28937 (1998), the teachings and disclosure of which is incorporated by reference herein. The alpha carbon ribbon of I-A^{g7} is shown in pink; D1 of ICAM-1 is in light-blue; the BPI is shown 20 by atom, carbon in green, oxygen in red, and nitrogen in blue. This structure can be denominated as GAD65 (208-217) - [Ac-G-Ac-G-Ac] - CD11a (237-247). Advantageously, the length of the linker may be modified as needed or as indicated by any experimental data obtained in order to span between the Signal-1 and Signal-2 moieties at an optimum length.

These structures are illustrated by the preliminary mechanism depicted schematically 25 (Figs. 2 and 3), and the structural model (Fig. 8). The linker used has the sequence -[Ac-G-Ac-G-Ac]-. To lengthen the linker, one or more aminocaproic acid (Ac) residues can be substituted with aminododecanoic acid. To shorten the linker, beta-2 alanine can be used 30 as a substitute for aminocaproic acid.

Of course, it is possible that one of ordinary skill in the art could produce any number of peptidomimetics or derivatives which would have similar activity to the BPI, and such modifications are encompassed by the present invention as described in more detail above.

-37-

EXAMPLE 2

This example uses biotinylated BPI to test for competitive inhibition of BPI binding by unlabeled peptides or monoclonal antibodies to MHC-II and ICAM-1 on live APC, and to verify antigenic peptide binding to live APC. Additionally, it was shown that monoclonal antibodies to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (GAD65 5 (208-217) - [Ac-G-Ac-G-Ac] - CD11a (237-247)) (hereinafter referred to as EGAD-BPI) to NOD spleenocytes.

Materials and Methods:

10 To obtain biotinylated BPI, the synthesized EGAD BPI was biotinylated with NHS-Biotin as described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). Spleen cell density-gradient fractions from normal (unimmunized) NOD, BALB/c and other MHC congenic strains were incubated in round bottom 96-well plates with increasing concentrations of individual biotinylated peptides at 37°C, 5% CO₂ for 16 hours. Following 15 binding of the BPI to the APC, Avidin-FITC was incubated with the cells on ice for 30 minutes, followed by biotinylated anti-Avidin for 1 hour, then again with Avidin-FITC. For BPI titrations, increasing concentrations (0.1-100 µM) of the biotinylated derivatives in sterile 0.5% BSA-PBS were incubated with the APC for 16 hours as above. Three-color 20 analyses used Cy-Chrome or PE-conjugated anti-B220 (mAb RA3-6B2 (CD45R B-cell marker), anti-MHC class II (KH74 or 10-3.62 mAb), or anti-ICAM-1 (3E2 mAb); (all purchased from PharMingen, San Diego, CA). Bound peptide was detected with avidin-FITC/biotinylated anti-avidin/avidin-FITC on live cells gated by forward/side scatter analysis. Controls contained all detecting reagents in absence of the biotinylated peptide; 25 20,000 events were analyzed for each histogram with a FACScan (Becton-Dickinson) flow cytometer.

To test for competitive inhibition of BPI binding with unlabeled peptides or 30 monoclonal antibodies to MHC-II and ICAM-1 on live APC, freshly isolated fractions of spleen cells were incubated with the previously biotinylated BPI. However, for this portion of the experiment, the experimental wells contained various unlabeled peptides (e.g., antigenic peptides or LFA-1 peptides), and/or monoclonal antibody (e.g., anti-MHC-II or anti-ICAM-1 mAb) inhibitors. Negative selection methods with monoclonal antibodies

-38-

conjugated to magnetic particles were used to enrich the spleen cell fractions for B cells, macrophages, or dendritic cells as well as to examine differences in BPI binding to these different populations. These methods are detailed in Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996), the teachings and content of which were incorporated by reference above.

5 To verify antigenic peptide binding to live APC, initial EGAD-BPI were screened for selective binding to NOD (I-A^d) APC and assayed for simultaneous binding using monoclonal antibodies against either MHC-II or ICAM-1 by flow cytometry methods using live APC (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)).
10 In this assay, increasing concentrations of the biotinylated-BPI, -CD11a(237-247) or -GAD65(208-217) peptide were incubated overnight with spleenocytes from each inbred strain. Bound peptide was detected with amplification of avidin-FITC fluorescence by the use of a biotinylated anti-avidin reagent, followed by a second round of avidin-FITC binding. Biotinylated peptide was incubated with 10⁶ viable cells at a peptide concentrations
15 of 50 μ M. Bound peptide was detected with avidin-FITC/biotinylated anti-avidin-FITC. For analysis, a forward/side scatter gate was set on live lymphocytes and 20,000 events were collected in this gate. Background fluorescence (detection reagents only) is shown in each panel of Figs. 5a-5c along with the 50 μ M bio-peptide histogram (peptide-fluorescence intensity = FL1). The percentage of positive cells (M2) were determined by the
20 CELLQuestTM program (Becton-Dickinson) and are displayed in each panel along with the median channel fluorescence (MCF) of the M2 population (all data are the direct output of the CELLQuestTM program running on an Apple G3 computer).

25 To demonstrate that monoclonal antibodies to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (EGAD-BPI) to NOD spleenocytes, an assay identical to that used for Figs. 5a-5c was used. However, either purified 10-3.62 (anti-MHC-II) or 3E2 (anti-ICAM-1) were included in the overnight incubation of the spleen cells with the biotinylated BPI. Both antibodies were purchased from PharMingen and used at 5 μ g/ml final concentration. A control containing no added monoclonal antibody was also tested.
30 Analyses were gated on forward/side scatter dotplots for live lymphocytes and 20,000 events were analyzed for each histogram. Results for this example are given in Figs. 6a-6c.

Results and Discussion:

As illustrated by the data provided in Figs. 5a-5c, NOD spleen cells bind the diabetes BPI (BGAD-BPI) at a higher density than spleenocytes identically purified from BALB/c, A.SW, or A.BY. Previous data has shown that B cells are the major antigenic peptide binding cells in these spleen cell preparations isolated by lymphocyte separation media (LSM) density gradient centrifugation (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). There was a significant difference in the percentage of high-density binding cells, from 30% (NOD) to 6% (A.BY). In contrast, the separate 5 Signal-1 (GAD65 peptide) and Signal-2 (CD11a peptide) moieties did not bind preferentially to NOD APC. Supporting data is given in Figs. 5b and 5c. Fig. 5b illustrates direct binding of biotinylated LFA-1 (CD11a 237-247) peptide to the same spleenocyte preparations as those shown in Fig. 5a. Note that this Signal-2 moiety bound similarly to all strain spleenocytes. Fig. 5c illustrates direct binding of biotinylated GAD65 (208-217) 10 peptide to the same spleenocyte preparations as those depicted in Figs. 5a and 5b. These data indicate that BPI could be engineered to fit particular MHC peptide binding motifs as discussed by Corper et al. in *A Structural Framework for Deciphering the Link Between I-A^g and Autoimmune Diabetes*, 288 *Science* 505-511 (2000), and by Dessen et al. in *X-ray Crystal Structure of HLA-DR4 (DRA*0101, DRB*0401) Complexed With a Peptide From Human Collagen II*, 7 *Immunity* 473-481 (1997), the respective teachings of which are 15 incorporated by reference herein.

Additionally, as illustrated in Figs. 6a-6c, other studies have shown that monoclonal antibodies to MHC-II and ICAM-1 block peptide binding to NOD spleen cells. These data indicate that the diabetes BPI bind to both receptors on the APC surface. Thus, Monoclonal 20 antibody to MHC-II or ICAM-1 effectively block binding of the diabetes BPI (EGAD-BPI) to NOD spleenocytes. In effect the predicted bi-functional nature of the BPI is demonstrated by these results and suggests that the BPI will link MHC-II to ICAM-1 on the APC surface. This mechanism was further demonstrated by co-capping experiments.

-40-

EXAMPLE 3

This example utilizes co-capping experiments to demonstrate simultaneous binding of the BPI to MHC-II and ICAM-1 molecules.

5 *Materials and Methods:*

Further support for simultaneous binding of the BPI to MHC-II and ICAM-1 molecules has been observed in co-capping experiments using biotinylated mAb10-3.62 and streptavidin to cap MHC-II in the presence or absence of the BPI. To test the ability of the BPI peptide to link MHC-II and ICAM-1 molecules on the APC surface, we used a 10 modification of a co-capping experiment originally described for monoclonal antibodies. Briefly, biotinylated monoclonal antibody to MHC-II (10-3.62) is incubated with freshly-isolated APC from NOD mice previously treated by intravenous (i.v.) injection of a given BPI variant or saline. Antibody-bound cells are then incubated with streptavidin (37°C x 15 15 min.) to cap the MHC-II molecules on the APC surface. The cells were transferred to ice and labeled with a fluorescent (PE) monoclonal antibody to ICAM-1 (3E2). The cells are plated and observed for evidence that a given BPI links ICAM-1 into the MHC-II cap, i.e., by standard fluorescence microscopy and image analysis. In one experiment, T-depleted spleenocytes from mice treated 16 hours previously with EGAD-BPI (i.v.) exhibited co-capping of ICAM-1 with MHC-II in the presence of bio-10-3.62/streptavidin. In the other 20 experiment, T-depleted spleenocytes from mice treated 16 hours previously with saline only did not exhibit co-capping. The results for these experiments are given in Fig. 7.

Results:

25 The top panels of Fig. 7 illustrate the results from the T-depleted spleenocytes from mice treated 16 hours previously with EGAD-BPI (i.v.), wherein ICAM-1 was co-capped with MHC-II in the presence of bio-10-3.62/streptavidin. The bottom panels of Fig. 7 illustrate the results from the mice treated with saline only wherein co-capping is not exhibited. This is evidenced by having ICAM-1 remain dispersed on the B-cell membranes. 30 As is shown, B cells isolated from NOD mice treated 16 hours previously by i.v. injection of either 40 nanomoles of EGAD-BPI or saline (PBS) alone displayed two distinct patterns of ICAM-1 expression, as measured by staining with PE-labeled 3E2 (anti-ICAM-1) on ice.

WO 02/50250

PCT/US01/48632

43

-41-

On cells from BPI-treated mice, ICAM-1 appears to have co-capped with the MHC-II molecules (note single concentrated spot of ICAM-1 red fluorescence in top panels). By contrast, the nominal dispersed density of ICAM-1 is observed on cells isolated from PBS-treated NOD mice (note entire surface red fluorescence staining in bottom panels).

5 Therefore, it appears evident that BPI have the capacity to bind simultaneously to MHC-II and ICAM-1 structures on the surface of live APC and therefore may provide signal alterations involving pathways necessary for T_{H1}/T_{H2} differentiation. To directly examine the effects of BPI on T_{H1}/T_{H2} immune deviation, T-cells from mice injected with EGAD-BPI were examined for cytokine analysis.

10

EXAMPLE 4

This example used an ELISPOT to determine T_{H1}/T_{H2} frequency as altered by BPI injection.

15 *Materials and Methods:*

Groups of 3-5 NOD mice were immunized subcutaneously (s.c.) with the GAD 65 peptide in CFA (40 nanomoles/mouse) at the tail base. Different groups received either the EGAD-BPI, its single TCR epitope (Signal-1 moiety), or its CD11a peptide (Signal-2 moiety) i.v. (all 40 nanomoles/mouse). After 6-8 days, another identical 40 nanomole injection was given to each mouse, and the next day lymph nodes draining the site of the s.c. injection were made into single cell suspensions for culture. Identical primary cultures were incubated for 96 hours; then, viable T-cells were recovered by density gradient centrifugation. One million of these cells were combined in nitrocellulose-bottomed 96-well plates (Millititer-HA, Millipore, Bedford, MA), previously coated (50 μ l/well) with mAb to either mouse IFN γ (clone R4-6A2), or mouse IL-4 (clone BVD4-1D11) at a concentration of 10 μ g/ml in PBS. Groups of triplicate cultures were incubated with either Concanavalin-A (2 μ g/ml), or the Signal-1 peptide moiety plus 20 U/ml recombinant IL2 (R & D Systems). After 72-96 hours of culture at 37°C and 5% CO₂, plates were washed three times with PBS-0.05% Tween-20. In appropriate wells are added biotinylated anti-IFN γ (clone XMG1.2) or biotinylated anti-IL-4 (clone BVD6-24G2) at a concentration of 1 μ g/ml and incubated for 1 hour at room temperature. Positive control wells receive known T_{H1} or T_{H2} clones in

-42-

place of normal T-cells. MAb pairs to IL12, IL10, and IL2 are also available and will be used to test for these cytokines in the same assay. All mAb and recombinant controls are purchased from PharMingen (San Diego, CA). Finally, plates were washed three times with PBS-Tween, and then exposed to 100 μ l of a 1:2000 dilution of streptavidin alkaline phosphatase (Jackson ImmunoResearch, West Grove, PA) for 1 h and washed as before. Cytokine-producing cells were enumerated by development of the membrane with BCIP/NBT substrate kit (BioRad Labs, Richmond, CA), followed by image capture and analysis using a standard stereomicroscope connected with a digital camera and NIH image software (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray; 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). In separate experiments, CD4+ T-cell clones from NOD mice immunized with the GAD65(208-217) peptide by our previously described methods can be used in the same assay. The clones were generated using the methods described in Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994), the teachings of which are hereby incorporated by reference. These clones will be maintained by biweekly restimulation with irradiated NOD lymphocytes, the GAD peptide, and recombinant IL-2. For further analysis, BPI that have been substituted at predicted TCR-contact positions will be used to determine which of these BPI variants are most effective in the inhibition of proliferation and cytokine release from individual clones as analyzed above. Predicted positions that will be scanned with all amino acids except cysteine are amino acids 208, 213, and 216. These residues point toward the TCR in the recently solved crystal structure of the GAD65 peptide bound to I-A^{g7} (Corper et al., 288 *Science* 505-511 (2000) and see Fig. 8).

Results:

Importantly, this example shows the ability of a given BPI to modulate a functional immune response. It can be seen that mice treated with the BPI produce abundant IL-4, whereas the control mice did not produce this cytokine (illustrated in Figs. 9a and 9c). Since IL-4 is the signature cytokine of type-2 immunity, this example shows that the BPI have the capacity to switch dominant type-1 immunity toward T_H2 differentiation and a type-2 response. Moreover, we have developed this *in vivo* assay system to provide a relatively quick examination of a given BPI's immunoregulatory efficacy. Once T_H1/T_H2 modulation

-43-

is confirmed as in the present example, studies can then move on to the more stringent tests of BPI efficacy using adoptive transfer experiments as described below.

As shown in Fig. 9a and 9c, IL-4 production increases by approximately 10-fold when T-cells are from the BPI treated animals stimulated *in vitro* with mitogen. IFN- γ production also increased, although to a lesser extent (see Figs. 9b and 9d).

EXAMPLE 5

This example tested the capacity of the BPI to inhibit lymphocytic infiltration of pancreatic islets in NOD mice. Lymphocytic infiltration is a hallmark of insulitis and the development of type-1 diabetes.

Materials and Methods:

These studies sought to confirm that the BPI containing the immunodominant GAD65 TCR epitope (EGAD-BPI) was biologically active *in vivo* and inhibited the development of pancreatic inflammation. Groups of three normal glycemic NOD males (8 weeks old) were immunized with the GAD65 (208-217) peptide in CFA as described in Example 4. The control group received PBS, and separate experimental groups received either the EGAD-BPI, the GAD peptide alone (i.e., the T-cell receptor epitope), or the CD11a peptide alone (i.e., the second signal receptor moiety) by two intravenous injections as described in Example 4. On day 10, the pancreata were removed to 10% PBS-buffered formalin, embedded in paraffin, and five-micron serial sections were examined histologically for mononuclear cell infiltration as previously described by Yoon, et al., *Control of Autoimmune Diabetes in NOD Mice by GAD Expression or Suppression in β Cells*, 284 Science 1183-1187 (1999), the entirety of which is hereby incorporated by reference.

Results:

The results for this experiment are given in Figs. 11 and 12. Fig. 11 represents the cumulative data of this analysis wherein the severity of islet infiltration is scored and plotted as the percentage of islets examined. Over 100 islets from each group in greater than 5 tissue sections were analyzed by three independent observers. As shown in Fig. 11, there

-44-

was a clear inhibitory effect of the EGAD-BPI treatment on mononuclear cell infiltration (insulitis). Over 95% of the islets from the BPI treated animals were intact and did not show infiltration (i.e., grade-0 islets). All of the other groups showed some signs of insulitis even at this early stage of the disease. Notably, the GAD peptide treated animals showed the most 5 insulitis (grade-0 islets reduced to 62% and 37.5% of islets scored grade 2 or above. This compared with 66.7% normal islets in the CD11a peptide treated group and 71.4% normal islets in PBS treated animals. Thus, compared to the PBS control, EGAD-BPI treatment provided an 84% *inhibition of insulitis* [calc. as: % islets @grade 1-4 (PBS Rx) minus % islets @grade 1-4 (EGAD-BPI Rx) divided by % islets @grade 1-4 (PBS Rx) multiplied by 100]. Representative islets from each group of the experiment are shown below in Figs. 10 12a-12d, as stained with hematoxylin and eosin. Note severe lymphocytic infiltration in Figs. 12b and 12d which was observed in groups treated with the single Signal-1 or Signal-2 moieties while the islets from the EGAD-BPI treated mice were predominately intact (see Fig. 12c). Taken together, these data strongly indicate that treatment with the diabetes BPI 15 containing these Signal-1 and Signal-2 peptide moieties significantly inhibits the infiltration of lymphocytes into the pancreatic islets in this animal model of type-1 diabetes. Therefore, we would predict that BPI operate via a mechanism involved in the normal breakdown of self tolerance to pancreatic autoantigens. These data indicate that BPI may operate through immune deviation to block the autoimmune response to pancreatic antigen. To further test 20 this theory, we transferred T-cells primed in the presence of the EGAD-BPI into NOD.Scid mice genetically programmed for diabetes development.

EXAMPLE 6

This example tested BPI blocking of diabetes development in the well described 25 intact immune system of immunologically reconstituted NOD.Scid mice to study diabetes progression.

Materials and Methods:

BPI proven active for modulation of $T_{H}1/T_{H}2$ responses against known 30 immunodominant peptides of GAD65 for blocking T-cell initiated diabetes progression in a NOD mouse model was tested. The NOD.Scid adoptive transfer model, wherein CD25-

-45-

depleted NOD spleen cells have been observed to induce diabetes as early as 2-4 weeks post adoptive transfer was used for this purpose. NOD.Scid adoptive transfers were performed by a modification of a protocol described by Solomon et al. in *B7/CD28 Costimulation is Essential for the Homeostasis of the CD4⁺ CD25⁺ Immunoregulatory T-cells That Control Autoimmune Diabetes*, 12 *Immunity* 431-440 (2000), the content of which is incorporated herein by reference. NOD spleen cells from 8 week (non-diabetic) females were used to enrich a CD25-/CTLA4-depleted population by treatment with purified monoclonal antibody (mAb 7D4, PharMingen) followed by low-tox rabbit complement (Cedarlane) (80% depletion of CTLA4⁺ cells by flow analysis with PE-labeled UC10-4F10-11 mAb; not shown). These inducer cells (15×10^6 per mouse) were injected (i.v.) into 6 week NOD.Scid females (Jackson Labs) together with 3×10^6 CD4⁺ T-cells from mice either treated with the EGAD-BPI or treated identically except with PBS in place of the EGAD-BPI. In vitro clonal expansion was with either recombinant IL-2 (R&D systems), or ConA, as described for the ELISPOT experiments. All manipulations of animals and cells were performed in laminar flow hoods, and animals were maintained continuously behind laminar flow barriers on autoclaved food and water in microisolator cages. Some experiments will deplete specific subsets of the CD4⁺ cells using mAb to CD154, CD25, CD62L, CD152, etc. and magnetic particles prior to adoptive transfer. CD4⁺ cells from mice treated with the individual moieties of the BPI can be used as negative controls along with CD4⁺ cells from mice treated with saline alone. Co-transfer of CD4⁺ T-cells enriched from matched NOD mice treated with a given BPI demonstrates that BPI treatment leads to regulatory T-cells capable of delaying the onset of diabetes. Moreover, other diseases listed in Table 1 can be tested in this same manner (i.e., by adoptive transfer of regulatory T-cells).

25 *Results:*

Significantly, we have now seen a clear difference in the development of hyperglycemia and diabetes between the two experimental groups. As can be seen in Fig. 13, at 7 weeks post adoptive transfer, 80% of mice which received the vehicle, (PBS) developed hyperglycemia and diabetes. By contrast only 40% of mice treated with the EGAD-BPI showed hyperglycemia and progression to diabetes. Therefore, these data demonstrate the blocking of diabetes progression as mediated by the BPI treatment. Further

-46-

modifications to the BPI structure may enhance their effectiveness in this model and in the treatment of type-1 diabetes. These data indicate that T-cells capable of suppressing diabetes development were generated in the presence of the BPI and operated *in vivo* to inhibit diabetes progression within the intact system of the NOD.Scid mouse. Thus we 5 would anticipate similar regulatory T-cells to become activated by BPI containing TCR epitopes of other disease associated antigens. For example, collagen-II peptide epitopes may initiate suppressor T-cells involved in rheumatoid arthritis. Moreover, regulatory T-cells that would expand T_H1 populations may be generated by BPI containing CTLA4 second 10 signal moieties and these could be used in diseases such as HIV1 infection or other chronic viral diseases. Extrapolation of this example to clinical trial should be straightforward, as the NOD model is recognized as a significant representation of the human disease. (See e.g., Atkinson and Leiter, *The NOD Mouse Model of Type-1 Diabetes: As Good as it Gets?*, 5 *Nature Medicine*, 601-604 (1999).

15

EXAMPLE 7

Here, the predicted examples of BPI for other autoimmune diseases are briefly detailed. Specifically, BPI containing immunodominant TCR epitopes for collagen-induced 20 arthritis (CIA) and myelin basic protein-induced experimental allergic encephalomyelitis (EAE) will be discussed. Also, the CD40L peptide mimic is predicted to favor T_H2 immunity, as blocking the CD40 signal would be expected to decrease IL12 production 25 (Ruedl, et al., *The Antigen Dose Determines T Helper Subset Development by Regulation of CD40 Ligand*, 30 Eur. J. Immunol. 2056-2064 (2000)). Therefore, in these autoimmune models and in the NOD model, we will attempt to favor T_H2 immunity by linking the appropriate TCR epitopes to the CD40L peptide mimic as well as the CD11a mimic used in diabetes inhibition. Mutations in this loop peptide have been shown to affect binding and function of CD40L.

30

Materials and Methods:

There are several autoimmune models which employ different cross-reactive immunodominant epitopes, different mouse strains, and tissues of analysis. These types of models are highly similar to our short-term model of diabetes development that we designed

-47-

to test the EGAD-BPI. For CIA: We will induce the disease by a single peptide in CFA injection protocol as described by Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). As in the NOD system, these mice will receive either the BPI, PBS, or the single peptide moieties. The minimal immunodominant collagen-II epitope is listed above, and modifications to the BPI will be based upon the x-ray structure of this complex (Dessen et al., 7 *Immunity* 473-481 (1997). For EAE, the disease is induced by the method of Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994). This method also uses a single peptide (the myelin basic protein (MBP) peptide, 85-101) injection in CFA, by methods analogous to those described in our NOD system.

10

Results:

We would anticipate that the BPI constructed with collagen and MBP would be effective in modulating immunity to these antigens to a T_H2-dominated pattern. Since these diseases are thought to involve predominant T_H1 immunopathology (see above references), 15 such a switch would ostensibly delay or cure the disease in these mice (Murray et al., 24 *Eur. J. Immunol.* 2337-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996). As in the NOD model, such results would target the development of analogous compounds for use in the human diseases of rheumatoid arthritis and multiple sclerosis, where these types of immune responses are 20 clinically observed. Most importantly, BPI offer the capability of blocking autoimmune T-cell responses while maintaining host immunity to infectious agents and developing cancers.

EXAMPLE 8

This example describes predicted BPI for infectious diseases and certain cancers. 25 Specifically, a general protocol for the testing of a given BPI containing immunodominant TCR epitopes of a specific human pathogen will be described using the example of HIV-1 p24 epitope (Harcourt, et. al., *HIV-1 Variation Diminishes CD4 T Lymphocyte Recognition*, 188 *J. Exp. Med.*, 1785-1793 (1998)) (SEQ ID No. 8).

30 *Materials and Methods:*

By contrast to the previous experimental examples, these BPI will be primarily tested by their effects on long-term T-cell clones derived from human patients. Briefly, peripheral blood mononuclear cells (PBMCs) are prepared from patient and control whole blood, and CD8+ cells removed by the negative selection protocol with magnetic particles. These cells are grown in tissue culture medium at 4×10^6 cells in 1 ml for 6 days in the presence of 20 μ M of the p24 peptide, and blast cells isolated by density gradient centrifugation. Secondary cultures of these cells contained recombinant human IL-2 (20 U/ml) and are continued for a maximum of 10-14 days. Lines were expanded by repeating the process of re-culturing with irradiated APC from histocompatible donors together with the p24 peptide and expansion of the T-cell blasts in IL-2. Clones were prepared by limiting dilution cloning in fresh plates containing irradiated APC, peptide and IL-2 (50 U/ml) (Murray et al., 24 *Eur. J. Immunol.* 23:37-2344 (1994); Murray, 19 *Immunology Today* 157-163; and Schountz et al., 157 *The Journal of Immunology* 3893-3901 (1996)). BPI will be tested for their ability to inhibit the proliferation and cytokine release of these established lines of human T-cells by our detailed methods described in Schountz et al., *Unique T Cell Antagonist Properties of the Exact Self-Correlate of a Peptide Antigen Revealed by Self-Substitution of Non-Self-Positions in the Peptide Sequence*, 168 *Cellular Immunology* 193-200 (1996). Here, we show that peptides changed by amino acid substitutions at key TCR-contact residues alter the proliferation and cytokine release of cloned T-cells. If a given BPI significantly inhibits or alters cytokine release to p24 peptide-specific clones, this will target the BPI for more stringent testing *in vivo*. Mouse models can be used to test candidate BPI for infectious diseases. These studies will be performed as described for the GAD65 BPI with the substitution of immunodominant peptides of the infectious agents for the GAD65 TCR epitope peptide. Positive results in these *in vivo* studies would substantiate animal studies with live pathogens. The Scid-human mouse model in which human tissues are adoptively transferred to the Scid mouse could be used to examine protective immunity to HIV (Jenkins, et al., *Blood* (1998) 8:2672, hepatitis-C virus (HCV) (Bronowicki, J., et al. *Hepatology* (1998)28:211), human papilloma virus (HPV) (Tewari, et al. *Gynecol. Oncol.* (2000)77:137, and respiratory syncytial virus (RSV) (Nadal, et al. *Clin. Exp. Immunol.* 85:358) infections.

WO 02/50250

PCT/US01/48632

5/

-49-

Results:

It is hypothesized that incorporation of the CD28/CTLA4 peptide or the Fas-ligand peptide as the second signal moiety will shift immunity toward the T_{H1} subset and induce or enhance CTL responses. (Padrid, P., et al. Am. J. Respir. Cell. Mol. Biol. (1998)18:453).

5 CTLA4 is a negative regulator of T-cell activation and signaling through CD28 has been linked to T_{H2} differentiation (Rulifson, I., et al. J. Immunol. (1997)158:658). Given the evidence that the LFA-1 signal is inhibitory to T_{H2} differentiation and that CD28 signaling favors T_{H2} differentiation, we will proceed with these studies using this selective differentiation paradigm to further modify BPI design. Similarly, the evidence suggests that
10 CD95 (also called Fas) interaction with the CD95-ligand (FasL) favors T_{H1} differentiation (Chattergoon, et al. Nature Biotech. (2000)18:974). BPI with the peptide mimic of the FasL, which is from the Y218 loop of FasL, predicted to interact with Fas at the T-cell:APC interface, will be used to favor T_{H1} activation and CTL responses against chronic T_{H2} -dominated diseases.

15

EXAMPLE 9

Here we describe several possible BPI that contain the TCR epitopes of described allergen sequences synthetically linked to the predicted CD28/CTLA4 peptide mimic and/or the predicted FasL peptide mimic.

20

Materials and Methods:

These studies will again use a combination of analyses using human cloned T-cell lines and animal models of allergy to these well-known allergic agents. Allergies affect a very large population of humans, with estimates of many allergies and asthma reaching 10% of otherwise healthy individuals. We will use our previously described 7-10 day protocol to investigate BPI modulation of the immune response to the allergen peptides described in the table. As previously described, this protocol involves the injection of the allergen peptide in CFA on day 1, followed by i.v. injection of the BPI on day 1 and on day 6, 7, 8 or 9. On day 7, 8, 9 or 10, the draining lymph nodes are cultured and compared for T_{H1} versus T_{H2} cytokines by ELISPOT (see Example 4 for detailed methods). Once candidate BPI for a given allergen have been identified by this relatively short-term experiment, we
25
30

WO 02/50250

PCT/US01/48632

-50-

will test these BPI for the alteration of CD4 T-cell response using cloned lines from atopic patients. Briefly, CD4 T-cell clones will be established from patient peripheral blood lymphocytes as described under Example 8. We will test the capacity of a given BPI to inhibit or alter cytokine release by these cells using the ELISPOT as described previously.

5 Finally, we will move the examination of a given BPI toward clinical testing using identically described procedures with these specific allergens in human MHC (HLA) transgenic mice (Svetlana, P. et al. J. Immunol. (1998)161:2032). These mice offer the advantage of having the human MHC molecules and thus, BPI binding will be very similar in this model as in the human allergic condition. If a given BPI blocks T_H2 activation in

10 these mice against the native allergen, then adoptive transfer studies with human Scid mice (similar to those used in Example 8) can be used as a precursor to human clinical trials.

53

WO 02/50250

PCT/US01/48632

-51-

Results:

Blocking the CTLA4/CD28 pathway in preference for LFA-1 signaling will favor T_H1 differentiation against these allergens in the presence of the BPI. Also, BPI with the FasL moiety should favor type-1 immunity. It has been a long-held practice to "desensitize" 5 atopic patients with allergens given by injection and desensitization is thought to operate via a shift toward T_H1 responses to the specific allergens (Holt, et al., *Nature* (1999) 402:6760 suppl:B12-17). Therefore, as in the case of the chronic T_H2-linked infectious diseases, our working hypothesis is to use the T_H1-promoting capacity of LFA-1 signaling together with the possibility to inhibit T_H2 signaling via the CTLA4/CD28 molecules to effect this result. 10 We will also examine the effects of allergen epitopes linked to the Fas peptide mimic, as dual expression of Fas and antigen within APC has been shown to favor T_H1 immunity and CTL induction (Chattergoon, M., et. al. *Nat. Biotech.* (2000) 18:974). It may be possible to induce cell death of APC presenting allergen epitopes, thereby limiting the activation of T_H2-type 15 regulatory cells in allergy and asthma, including RSV-precipitated childhood and geriatric bronchiolitis.

We claim:

1. A peptide comprising a first portion and a second portion, said first portion including a sequence having at least about 10% sequence homology with a peptide derived from a TCR epitope, said second portion including a sequence having at least about 10% sequence homology with a peptide derived from a Signal-2 moiety.
5
2. The peptide of claim 1, further comprising a linking portion.
3. The peptide of claim 2, said linking portion comprising at least one 10 amino acid residue.
4. The peptide of claim 3, said amino acid being a flexible, non-substrate amino acid.
- 15 5. The peptide of claim 2, said linking portion comprising a sequence of amino acid residues, said sequence comprising a non-substrate amino acid alternating with a hydrophilic amino acid.
6. The peptide of claim 2, said linking portion having the general 20 formula $(A,B)_X$, wherein A and B are amino acid residues, and said A amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminoheanoic acid, aminododecanoic acid, and β -alanine, and said B amino acid residue is glycine, and wherein X ranges from 1 to 100.
- 25 7. The peptide of claim 6, said A amino acid residue being aminocaproic acid.
8. The peptide of claim 1, said first portion including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting 30 of SEQ ID Nos. 1-25.

55

WO 02/50250

PCT/US01/48632

-53-

9. The peptide of claim 8, said peptide having at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

10. The peptide of claim 9, said peptide having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

11. The peptide of claim 1, said first portion comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

12. The peptide of claim 1, said first portion comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

13. The peptide of claim 1, said TCR epitope being correlated with a known disease state.

14. The peptide of claim 1, said first portion capable of binding with a major histocompatibility complex on an antigen presenting cell.

15. The peptide of claim 14, said peptide:MHC complex capable of engaging a T-cell receptor on a T-cell.

16. The peptide of claim 1, said second portion including a sequence having at least about 10% sequence homology with a sequence selected from a group consisting of SEQ ID Nos. 30-41.

17. The peptide of claim 16, said peptide having at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

30

-54-

18. The peptide of claim 17, said peptide having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

5 19. The peptide of claim 1, said second portion comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

20. The peptide of claim 1, said second portion comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

10 21. The peptide of claim 1, said second portion capable of binding with a Signal-2 ligand on an antigen presenting cell.

15 22. The peptide of claim 21, said peptide capable of initiating a second signal in a T-cell.

23. The peptide of claim 1, said peptide capable of modifying an immune response from a type-1 dominated response to a type-2 dominated response.

20 24. The peptide of claim 1, said peptide capable of modifying an immune response from a type-2 dominated response to a type-1 dominated response.

25 25. The peptide of claim 1, said second portion being associated with a particular type of immune response.

26. The peptide of claim 2, said linking portion being positioned intermediate said first portion and said second portion.

27. The peptide of claim 1, said peptide being synthesizable as one continuous sequence.

-55-

28. A method of modifying an immune response comprising the steps of:

(a) contacting an antigen presenting cell with a peptide, said peptide comprising a first portion binding to a major histocompatibility complex on said antigen presenting cell to form a peptide:MHC complex, and a second portion binding to a second signal moiety on said antigen presenting cell; (b) causing engagement of the T-cell receptor in a T-cell in response to the formation of said peptide:MHC complex; (c) blocking or altering a second signal in a T-cell in response to the binding of said second portion to said second signal moiety; and (d) said first and second signals generating an immune response which deviates from the immune response generally associated with said peptide:MHC complex.

10

29. The method of claim 28, said immune response deviating from a type-1 immune response to a type-2 immune response.

15

30. The method of claim 28, said immune response deviating from a type-2 immune response to a type-1 immune response.

31. The method of claim 28, said first portion having at least 10% sequence homology with a peptide derived from a Signal-1 moiety.

20

32. The method of claim 28, said second portion having at least 10% sequence homology with a peptide derived from a Signal-2 receptor moiety.

25

33. A peptide having the general formula AB wherein each of said A and B represent a chain of amino acid residues, and wherein said A chain comprises at least about 5 amino acid residues and has at least about 10% sequence homology with a Signal-1 moiety, and said B chain comprises at least about 4 amino acid residues and has at least about 10% sequence homology with a peptide derived from a Signal-2 receptor moiety.

30

34. The peptide of claim 33, further comprising an X chain of amino acid residues, said X chain comprising at least about 1 amino acid residue.

WO 02/50250

PCT/US01/48632

58

-56-

35. The peptide of claim 34, said X chain being positioned intermediate said A chain and said B chain.

5 36. The peptide of claim 33, said peptide being synthesizable as one continuous sequence.

10 37. The peptide of claim 34, said X chain comprising a flexible, non-substrate linker having the general formula (Y_TZ)_T, wherein Y and Z are amino acid residues, and said Y amino acid residue is individually and respectively selected from the group consisting of non-substrate amino acids, and said Z amino acid residue is individually and respectively selected from the group consisting of hydrophilic amino acids, and wherein T ranges from 1 to 100.

15 38. The peptide of claim 37, said non-substrate amino acids being selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

20 39. The peptide of claim 38, said non-substrate amino acid residue being aminocaproic acid.

40. The peptide of claim 37, said hydrophilic amino acid being glycine.

25 41. The peptide of claim 33, said A chain including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

42. The peptide of claim 41, said A chain having at least 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

-57-

43. The peptide of claim 42, said A chain having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 1-25.

5 44. The peptide of claim 33, said A chain comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

45. The peptide of claim 33, said A chain comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 1-25.

10 46. The peptide of claim 33, said Signal-1 moiety being associated with a known health condition.

15 47. The peptide of claim 33, said peptide capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

48. The peptide of claim 47, said peptide:MHC complex capable of engaging a T-cell.

20 49. The peptide of claim 33, said B chain including a sequence having at least about 10% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

25 50. The peptide of claim 49, said B chain having at least about 50% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

30 51. The peptide of claim 50, said B chain having at least about 95% sequence homology with a sequence selected from the group consisting of SEQ ID Nos. 30-41.

-58-

52. The peptide of claim 33, said B chain comprising a peptidomimetic of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

53. The peptide of claim 33, said B chain comprising a derivative of a peptide selected from the group consisting of SEQ ID Nos. 30-41.

54. The peptide of claim 33, said peptide capable of binding with a Signal-2 ligand on an antigen presenting cell.

10 55. The peptide of claim 54, said peptide capable of blocking or altering a second signal to a T-cell upon binding with said Signal-2 moiety.

15 56. The peptide of claim 33, said peptide capable of modifying an immune response from a type-1 dominated response to a type-2 dominated response.

57. The peptide of claim 33, said peptide capable of modifying an immune response from a type-2 dominated response to a type-1 dominated response.

20 58. The peptide of claim 33, said peptide capable of shifting a cell-mediated immune response to a humoral immune response.

59. The peptide of claim 33, said peptide capable of shifting a humoral immune response to a cell-mediated response.

25

30

-59-

60. A method of preparing a peptide for modulating immune response, comprising the steps of:

selecting a first peptide sequence, said first peptide sequence having at least about 10% sequence homology with a sequence derived from a Signal-1 moiety;

5 selecting a second peptide sequence, said second peptide sequence having at least about 10% sequence homology with a sequence derived from a Signal-2 receptor moiety; and

synthesizing said peptide as a continuous peptide chain comprising said first peptide sequence and said second peptide sequence.

10

61. The method of claim 60, further comprising the step of selecting a third peptide sequence, said third peptide comprising at least one amino acid residue.

15

62. The method of claim 60, said first peptide sequence being associated with a known health condition.

63. The method of claim 60, said first peptide sequence being capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

20

64. The method of claim 60, said second peptide sequence being capable of binding with a Signal-2 ligand on an antigen presenting cell.

25

65. The method of claim 60, further comprising the step of contacting said peptide with a major histocompatibility complex on an antigen presenting cell.

66. The method of claim 60, further comprising the step of contacting said peptide with a Signal-2 ligand on an antigen presenting cell.

30

b1

62

WO 02/50250

PCT/US01/48632

-60-

67. A peptide comprising:

a first peptide sequence capable of initiating a first signal in a T-cell; and
a second peptide sequence capable of initiating a second signal in a T-cell.

5 68. The peptide of claim 67, further comprising a linking peptide sequence, said linking peptide sequence comprising at least one amino acid residue.

69. The peptide of claim 67, said first peptide sequence being derived from a Signal-1 moiety.

10 70. The peptide of claim 67, said second peptide sequence being derived from a Signal-2 receptor moiety.

15 71. The peptide of claim 67, said first peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 1-25.

20 72. The peptide of claim 67, said second peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 30-41.

73. The peptide of claim 68, said linking peptide sequence having the general formula of $(Y, Z)_T$, wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

25 74. The peptide of claim 73, said Y amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

30 75. The peptide of claim 73, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

WO 02/50250

PCT/US01/48632

63

-61-

76. The peptide of claim 75, wherein said hydrophilic amino acid residue is glycine.

5 77. The peptide of claim 73, said Y amino acid residue being aminocaproic acid.

10 78. A method of constructing a BPI comprising the steps of: (a) selecting a known health condition; (b) identifying a TCR epitope specific for said health condition; and (c) incorporating said TCR epitope into a BPI.

79. The method of claim 78, further comprising the step of selecting a Signal-2 receptor moiety and incorporating said Signal-2 receptor moiety into said BPI.

15 80. The method of claim 79, further comprising the step of conjugating said TCR epitope with said Signal-2 receptor moiety.

20 81. The method of claim 80, said conjugating step including positioning a linker intermediate said TCR epitope and said Signal-2 receptor moiety.

25 82. The method of claim 81, said linker comprising at least one amino acid residue.

83. The method of claim 81, said linker having the general formula of (Y_nZ)_T, wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

25 84. The method of claim 83, said Y amino acid residue being individually and respectively selected from the group consisting of aminocaproic acid, amino hexanoic acid, aminododecanoic acid, and β -alanine.

30

-62-

85. The method of claim 83, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

86. The method of claim 85, wherein said hydrophilic amino acid residue
5 is glycine.

87. The method of claim 78, said TCR epitope being capable of binding with a major histocompatibility complex on an antigen presenting cell to form a peptide:MHC complex.

10 88. The method of claim 79, said Signal-2 receptor moiety being capable of binding with a Signal-2 ligand on an antigen presenting cell.

15 89. The method of claim 78, said TCR epitope having at least about 10% sequence homology with a sequence selected from SEQ ID Nos. 1-25.

90. The method of claim 79, said Signal-2 receptor moiety having at least about 10% sequence homology with a sequence selected from SEQ ID Nos. 30-41.

20 91. In combination:
a first peptide sequence capable of binding with a major histocompatibility complex
on an antigen presenting cell; and
a second peptide sequence capable of binding with a Signal-2 ligand on an antigen
presenting cell.

25 92. The combination of claim 91, further including a linker positioned
intermediate said first peptide sequence and said second peptide sequence.

30 93. The combination of claim 91, said first peptide sequence being
derived from a Signal-1 moiety.

WO 02/50250

PCT/US01/48632

65

-63-

94. The combination of claim 91, said second peptide sequence being derived from a Signal-2 receptor moiety.

5 95. The combination of claim 91, said first peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 1-25.

10 96. The combination of claim 91, said second peptide sequence having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 30-41.

97. The combination of claim 92, said linker comprising at least one amino acid residue.

15 98. The combination of claim 92, said linker having the general formula of $(Y.Z)_n$, wherein Y and Z are amino acid residues, and wherein T ranges from 1 to 100.

20 99. The combination of claim 98, wherein said Y amino acid residue is individually and respectively selected from the group consisting of aminocaproic acid, aminohexanoic acid, aminododecanoic acid, and β -alanine.

100. The combination of claim 99, said Y amino acid residue being aminocaproic acid.

25 101. The combination of claim 98, said Z amino acid residue being individually and respectively selected from the group consisting of hydrophilic amino acid residues.

30 102. The combination of claim 101, wherein said hydrophilic amino acid residue is glycine.

-64-

103. A peptide having at least about 10% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

104. The peptide of claim 103, said peptide having at least about 50% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

105. The peptide of claim 104, said peptide having at least about 95% sequence homology with a peptide selected from the group consisting of SEQ ID Nos. 42-46.

106. A derivative of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

107. A peptidomimetic of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

108. A peptide mimic of a peptide, said peptide being selected from the group consisting of SEQ ID Nos. 42-46.

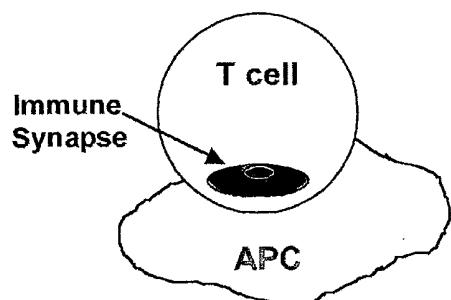


Fig. 1

2/23

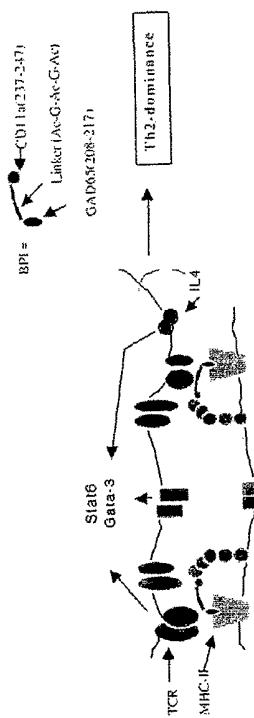


Fig. 2

3/23

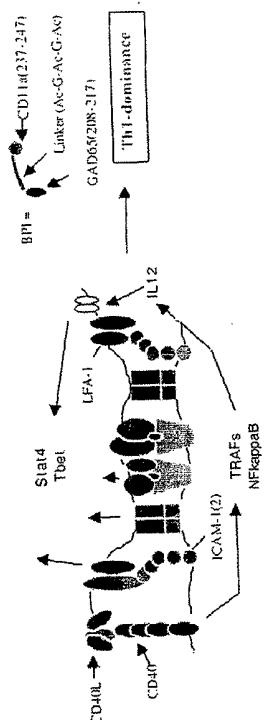


Fig. 3

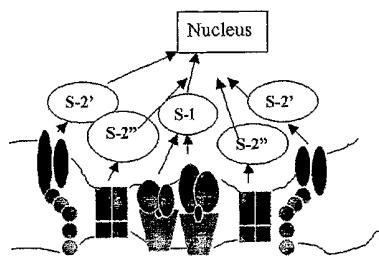


Fig. 4

5/23

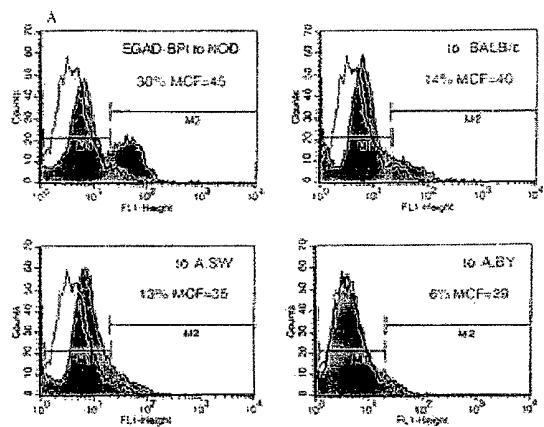


Fig. 5a

6/23

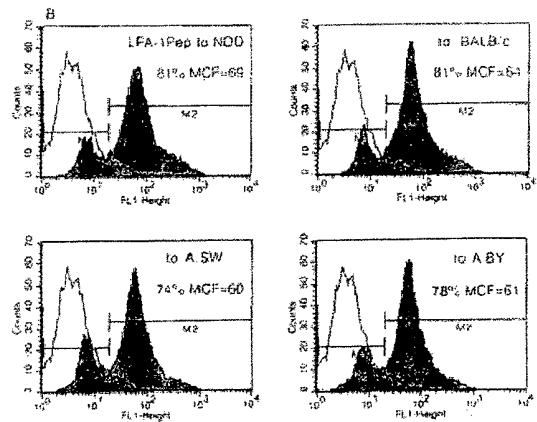


Fig. 5b

7/23

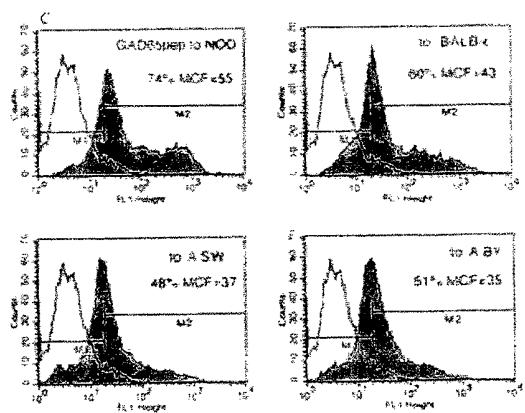


Fig. 5c

8/23

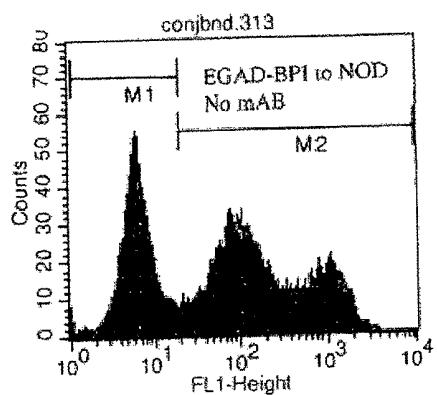


Fig. 6a

9/23

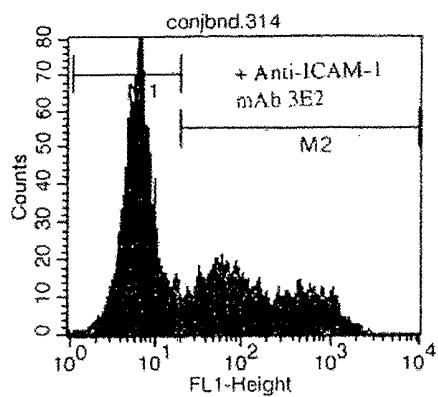


Fig. 6b

10/23

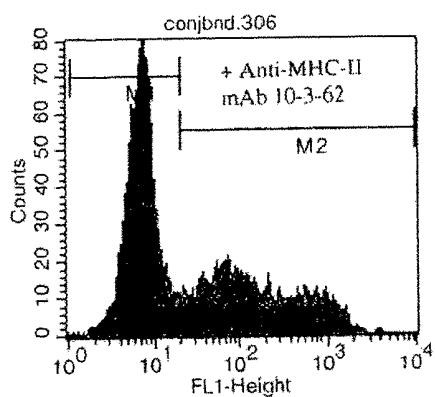


Fig. 6c

WO 02/50250

PCT/US01/48632

77

11/23

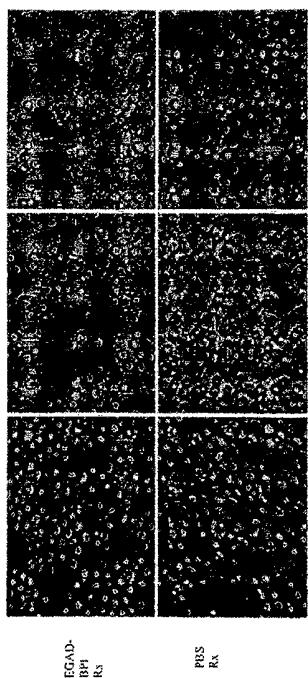


Fig. 7

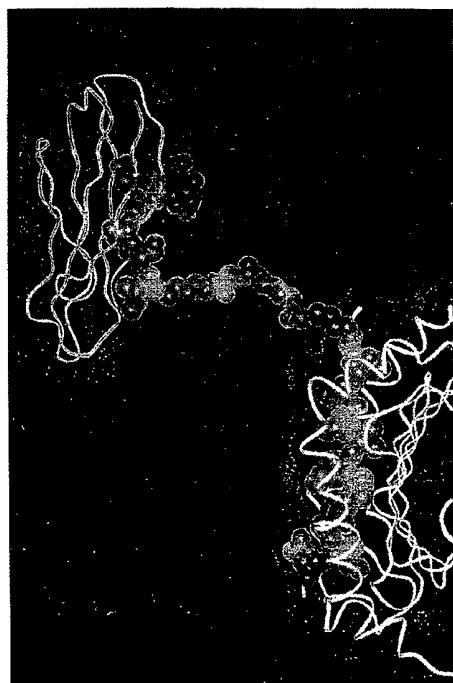


Fig. 8

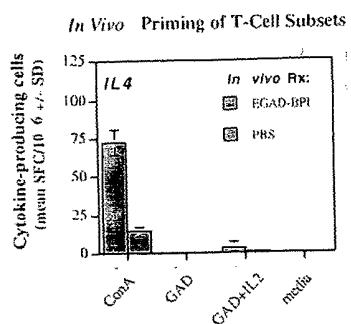


Fig. 9a

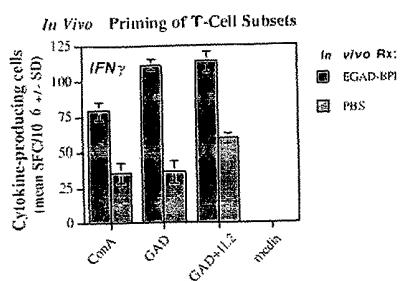


Fig. 9b

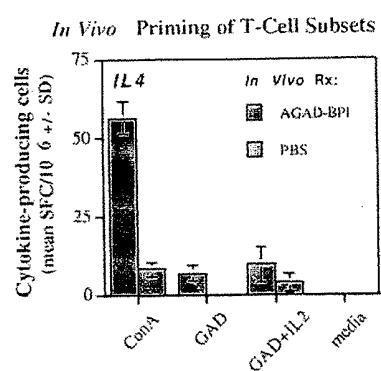


Fig. 9c

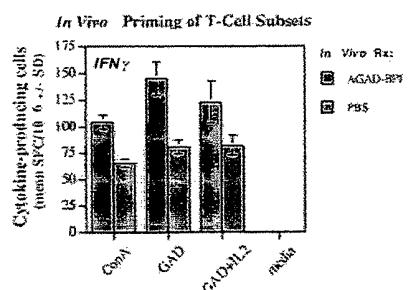


Fig. 9d

WO 02/50250

PCT/US01/48632

83

17/23

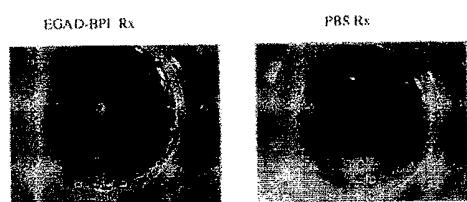

In vitro conditions

Fig. 10

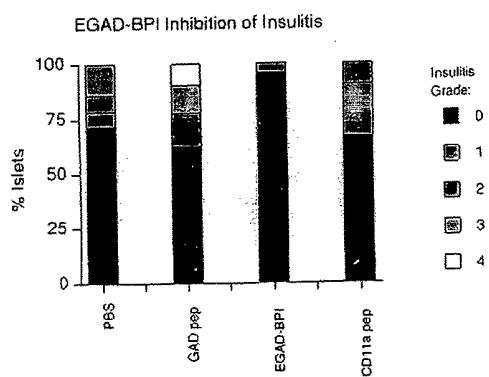


Fig. 11

WO 02/50250

PCT/US01/48632

85

19/23

PBS

Fig. 12a

WO 02/50250

PCT/US01/48632

86

20/23

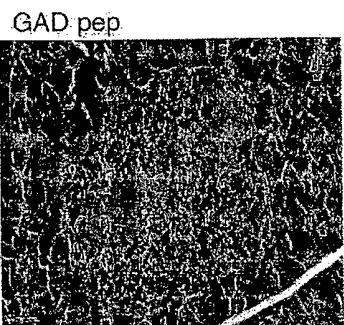


Fig. 12b

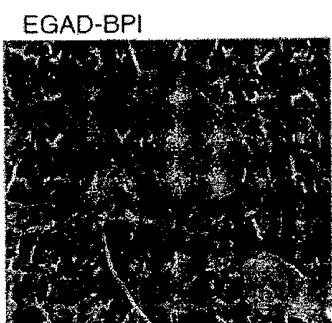


Fig. 12c

CD11a pep

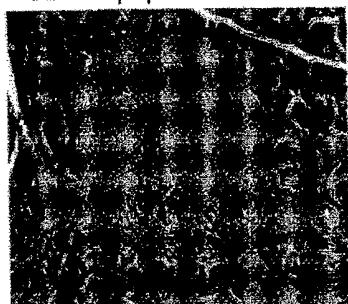


Fig. 12d

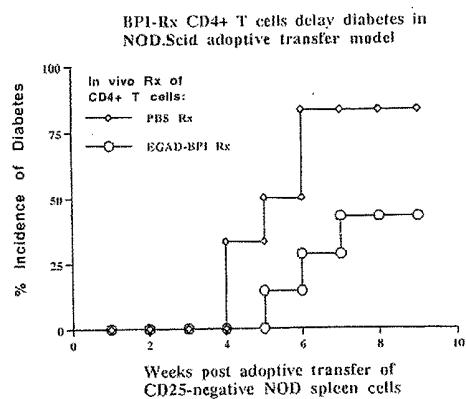


Fig. 13

WO 02/50250

PCT/US01/48632

90

30805 Murray.ST25.txt
SEQUENCE LISTING

<110> Murray, Joseph S
Siahaan, Teruna J
Hu, Yongbo

<120> Signal-1/Signal-2 Bifunctional Peptide Inhibitors

<130> 30805 Murray

<140> US 09/739,466
<141> 2000-12-18

<160> 46

<170> PatentIn version 3.1

<210> 1
<211> 10
<212> PRT
<213> Homo sapiens

<400> 1
Glu Ile Ala Pro Val Phe Val Leu Leu Glu
1 5 10

<210> 2
<211> 10
<212> PRT
<213> Mus musculus

<400> 2
Glu Ile Ala Pro Val Phe Val Leu Leu Glu
Page 1

WO 02/50250

PCT/US01/48632

91

30805_Murray.ST25.txt
1 5 10<210> 3
<211> 13
<212> PRT
<213> Homo sapiens<400> 3
Gln Tyr Met Arg Ala Asp Gln Ala Ala Gly Gly Leu Arg
1 5 10<210> 4
<211> 12
<212> PRT
<213> Yersinia enterocolitica<400> 4
Arg Val Val Ile Asn Lys Asp Thr Thr Ile Ile Ile
1 5 10<210> 5
<211> 15
<212> PRT
<213> Homo sapiens<400> 5
Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg
1 5 10 15<210> 6
<211> 14
<212> PRT
<213> Hepatitis C virus

<400> 6

WO 02/50250

PCT/US01/48632

92

30805 Murray.ST25.txt
Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr
1 5 10

<210> 7
<211> 20
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 7
Gly Ser Asp Thr Ile Thr Leu Pro Cys Arg Ile Lys Gln Phe Ile Asn
1 5 10 15

Met Trp Gln Glu
20

<210> 8
<211> 20
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 8
Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser
1 5 10 15

Pro Arg Thr Leu
20

<210> 9
<211> 8
<212> PRT
<213> Simian immunodeficiency virus

<400> 9
Ser Thr Pro Glu Ser Ala Asn Leu
1 5

<210> 10
<211> 15

WO 02/50250

PCT/US01/48632

93

30805 Murray.ST25.txt

<212> PRT

<213> respiratory syncytial virus

<400> 10

Ala Ile Cys Lys Arg Ile Pro Asn Lys Lys Pro Gly Lys Lys Thr
1 5 10 15

<210> 11

<211> 9

<212> PRT

<213> Human papillomavirus

<400> 11

Val Tyr Arg Asp Gly Asn Pro Tyr Ala
1 5

<210> 12

<211> 7

<212> PRT

<213> Human papillomavirus

<400> 12

Asp Arg Ala His Tyr Asn Ile
1 5

<210> 13

<211> 10

<212> PRT

<213> Human papillomavirus

<400> 13

Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr
1 5 10

<210> 14

WO 02/50250

PCT/US01/48632

94

30805 Murray.ST25.txt

<211> 15

<212> PRT

<213> Human papillomavirus

<400> 14

Ala Ser Asp Leu Arg Thr Ile Gln Gln Leu Leu Met Gly Thr Val
1 5 10 15

<210> 15

<211> 13

<212> PRT

<213> Homo sapiens

<400> 15

Ala Glu Leu Tyr His Phe Leu Leu Lys Tyr Arg Ala Arg
1 5 10

<210> 16

<211> 14

<212> PRT

<213> Homo sapiens

<400> 16

Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu
1 5 10

<210> 17

<211> 16

<212> PRT

<213> Felis sp.

<400> 17

Glu Gln Val Ala Gln Tyr Lys Ala Leu Pro Val Val Leu Glu Asn Ala
1 5 10 15

<210> 18

WO 02/50250

PCT/US01/48632

95

30805 Murray.ST25.txt

<211> 17

<212> PRT

<213> *Felis* sp.

<400> 18

Lys Ala Leu Pro Val Val Leu Glu Asn Ala Arg Ile Leu Lys Asn Cys
1 5 10 15

Val

<210> 19

<211> 20

<212> PRT

<213> *Ambrosia artemisiifolia*

<400> 19

Leu Val Pro Cys Ala Trp Ala Gly Asn Val Cys Gly Glu Lys Arg Ala
1 5 10 15Tyr Cys Cys Ser
20

<210> 20

<211> 20

<212> PRT

<213> *Ambrosia trifida*

<400> 20

Pro Ile Gly Lys Tyr Cys Val Cys Tyr Asp Ser Lys Ala Ile Cys Asn
1 5 10 15Lys Asn Cys Thr
20

<210> 21

<211> 15

96

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<212> PRT

<213> *Cryptomeria japonica*

<400> 21

Lys Ser Met Lys Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asn
1 5 10 15

<210> 22

<211> 19

<212> PRT

<213> *Cryptomeria japonica*

<400> 22

Ile Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln Lys Asn Thr Ile
1 5 10 15

Gly Thr Gly

<210> 23

<211> 17

<212> PRT

<213> *Apis mellifera*

<400> 23

Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
1 5 10 15

Lys

<210> 24

<211> 20

<212> PRT

<213> *Hevea brasiliensis*

<400> 24

97

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

Ala Ser Glu Gln Glu Thr Ala Asp Ala Thr Pro Glu Lys Glu Glu Pro
1 5 10 15

Thr Ala Ala Pro
20

<210> 25

<211> 17

<212> PRT

<213> Dermatophagoides pteronyssinus

<400> 25

Phe Gly Ile Ser Asn Tyr Cys Gln Ile Tyr Pro Pro Asn Ala Asn Lys
1 5 10 15

Ile

<210> 26

<211> 5

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (1)..(1)

<223> X is aminocaproic acid at position 1

<220>

<221> misc_feature

<222> (3)..(3)

<223> X is aminocaproic acid at position 3

<220>

<221> misc_feature

WO 02/30250

98

PCT/US01/48632

30805 Murray.ST25.txt

<222> (5)..(5)

<223> X is aminocaproic acid at position 5

<400> 26

Xaa Gly Xaa Gly Xaa
1 5

<210> 27

<211> 5

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (1)..(1)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (3)..(3)

<223> X is beta-alanine

<220>

<221> misc_feature

<222> (5)..(5)

<223> X is aminocaproic acid

<400> 27

Xaa Gly Xaa Gly Xaa
1 5

<210> 28

<211> 5

<212> PRT

WO 02/50250

99

PCT/US01/48632

30805 Murray.ST25.txt

<213> Artificial

<220>
<221> misc_feature

<222> (1)..(1)

<223> The first X is aminocaproic acid.

<220>
<221> misc_feature
<222> (3)..(3)

<223> The second X is aminododecanoic acid.

<220>
<221> misc_feature
<222> (5)..(5)

<223> The third X is aminocaproic acid.

<400> 28
Xaa Gly xaa Gly xaa
1 5<210> 29
<211> 5
<212> PRT
<213> Artificial<220>
<221> misc_feature
<222> (1)..(1)

<223> X is aminohexanoic acid

<220>

100

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<221> misc_feature

<222> (3)..(3)

<223> X is aminohexanoic acid

<220>

<221> misc_feature

<222> (5)..(5)

<223> X is aminohexanoic acid

<400> 29

Xaa Gly Xaa Gly Xaa

1

5

<210> 30

<211> 10

<212> PRT

<213> Homo sapiens

<400> 30

Ile Thr Asp Gly Glu Ala Thr Asp Ser Gly

1

5

10

<210> 31

<211> 10

<212> PRT

<213> Homo sapiens

<400> 31

Thr Asp Gly Glu Ala Thr Asp Ser Gly Asn

1

5

10

<210> 32

<211> 10

<212> PRT

<213> Homo sapiens

WO 02/50250

10/

PCT/US01/48632

30805 Murray.ST25.txt

<400> 32
Ala Ser Pro Gly Lys Ala Thr Glu Val Arg
1 5 10

<210> 33
<211> 10
<212> PRT
<213> Mus musculus

<400> 33
Ser Pro Ser His Asn Thr Asp Glu Val Arg
1 5 10

<210> 34
<211> 12
<212> PRT
<213> Homo sapiens

<400> 34
Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu
1 5 10

<210> 35
<211> 12
<212> PRT
<213> Mus musculus

<400> 35
Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Phe Val
1 5 10

<210> 36
<211> 10
<212> PRT

WO 02/50250

102

PCT/US01/48632

30805 Murray.ST25.txt

<213> Mus musculus

<400> 36

Ile Thr Asp Gly Glu Ala Thr Asp Ser Gly
1 5 10

<210> 37

<211> 13

<212> PRT

<213> Homo sapiens

<400> 37

Lys Gly Tyr Tyr Met Ser Asn Asn Leu Val Thr Leu
1 5 10

<210> 38

<211> 13

<212> PRT

<213> Mus musculus

<400> 38

Lys Gly Tyr Tyr Met Ser Asn Asn Leu Val Thr Leu
1 5 10

<210> 39

<211> 16

<212> PRT

<213> Homo sapiens

<400> 39

Tyr Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
1 5 10 15

<210> 40

<211> 16

<212> PRT

WO 02/50250

103

PCT/US01/48632

30805 Murray.st25.txt

<213> Mus musculus

<400> 40

Tyr Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
1 5 10 15

<210> 41

<211> 10

<212> PRT

<213> Mus musculus

<400> 41

Thr Asp Gly Glu Ala Thr Asp Ser Gly Asn
1 5 10

<210> 42

<211> 25

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (11)..(11)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (13)..(13)

<223> X is aminocaproic acid

<220>

<221> MISC_FEATURE

<223> The artificial sequence includes the GAD65 peptide sequence from
homo sapiens and the cb11a peptide sequence from homo sapiens lin
Page 14

WO 02/50250

PCT/US01/48632

104

30805 Murray.ST25.txt
ked by a series of alternating aminocaproic acid and glycine resi
dues

<220>
<221> misc_feature
<222> (15)..(15)
<223> x is aminocaproic acid

<400> 42
Glu Ile Ala Pro Val Phe Val Leu Leu Glu Xaa Gly Xaa Gly Ile
1 5 10 15
Thr Asp Gly Glu Ala Thr Asp Ser Gly
20 25

<210> 43
<211> 29
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (9)..(9)
<223> The first x is aminocaproic acid.

<220>
<221> misc_feature
<222> (11)..(11)
<223> x is aminododecanoic acid.

<220>
<221> misc_feature
<222> (13)..(13)
<223> x is aminocaproic acid.

105

WO 02/50250

PCT/US01/48632

30805 Murray.ST25.txt

<220>
<221> misc_feature
<223> The artificial sequence includes the rat peptide from simian immuno deficiency virus, a linker consisting of aminocaproic, aminododecanoic, and glycine residues and the CTLA4 (93-104) peptide sequence from *mus musculus*

<400> 43
Ser Thr Pro Glu Ser Ala Asn Leu Xaa Gly Xaa Gly Xaa Tyr Met Arg
1 5 10 15

Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
20 25

<210> 44
<211> 37
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (21)..(21)
<223> X is aminocaproic acid

<220>
<221> misc_feature
<222> (23)..(23)
<223> X is aminocaproic acid.

<220>
<221> misc_feature
<222> (25)..(25)
<223> X is aminocaproic acid.

WO 02/50250

PCT/US01/48632

106

30805 Murray.ST25.txt

<220>
<221> misc_feature
<222> The artificial sequence includes the p24 peptide from HIV-1, a series of alternating aminocaproic acid and glycine residues, and the FAS-ligand from homo sapiens

<400> 44
Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser
1 5 10 15
Pro Arg Thr Leu Xaa Gly Xaa Gly Lys Val Glu Leu Met Tyr Pro
20 25 30
Pro Pro Tyr Phe Val
35

<210> 45
<211> 30
<212> PRT
<213> Artificial

<220>
<221> misc_feature
<222> (14)..(14)
<223> X is aminocaproic acid.

<220>
<221> misc_feature
<222> (16)..(16)
<223> X is aminoaminohexanoic acid.

<220>
<221> misc_feature
<222> The artificial sequence includes a collagen II (1168-1180) peptide sequence, a sequence including aminocaproic acid, amino hexanoic acid and glycine and CD40L (93-104) from homo sapiens

WO 02/50250

PCT/US01/48632

107

30805 Murray.ST25.txt

<400> 45
Gin Tyr Met Arg Ala Asp Gln Ala Ala Gly Gly Leu Arg Xaa Gly Xaa
1 5 10 15

Gly Lys Gly Tyr Tyr Met Ser Asn Asn Leu Val Thr Leu
20 25 30

<210> 46

<211> 31

<212> PRT

<213> Artificial

<220>

<221> misc_feature

<222> (11)..(11)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (13)..(13)

<223> X is aminocaproic acid

<220>

<221> misc_feature

<222> (15)..(15)

<223> X is aminocaproic acid

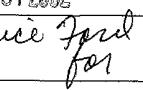
<220>

<221> misc_feature

<223> The artificial sequence includes the HPV E7 peptide sequence from human papilloma virus, a series of alternating aminocaproic acid and glycine residues, and the CD95 (143-155) peptide sequence of the FAS-ligand from homo sapiens

<400> 46

WO 02/50250


PCT/US01/48632

108

30805 Murray.ST25.txt

Tyr Met Leu Asp Leu Gln Pro Glu Thr Thr Xaa Gly xaa Gly Xaa Tyr
1 5 10 15Met Arg Asn Ser Lys Tyr Arg Ala Gly Gly Ala Tyr Gly Pro Gly
20 25 30

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/US01/48632
A. CLASSIFICATION OF SUBJECT MATTER		
IPC(7) : A61K 39/00 US CL : 424/192.1		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) U.S. : 424/192.1		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN/CAS: Medline, Caplus, Embase, Biosis, WEST		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BOYLE et al. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature. March, 1998, Vol. 392, pages 408-411.	1-7, 13-15, 21-40, 46-48, 54-88, 91-94 and 97-102
Y	HUANG et al. Enhanced antitumor immunity by fusion of CTLA-4 to a self tumor antigen. Blood. 01 December 2000, Vol. 96, No. 12, pages 3663-3670.	1-7, 13-15, 21-40, 46-48, 54-88, 91-94 and 97-102
Y	US 5,540,926 A (ARUFFO et al.) 30 July 1996 (30.07.1996)	1-7, 13-15, 21-40, 46-48, 54-88, 91-94, 97-102
Y	WO 98/044129 (THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH) 08 October 1998 (08.10.1998)	1-7, 13-15, 21-40, 46-48, 54-88, 91-94 and 97-102
<input type="checkbox"/> Further documents are listed in the continuation of Box C.		<input type="checkbox"/> See patent family annex.
<p>* Special categories of cited documents:</p> <p>*A* document defining the general state of the art which is not considered to be of particular relevance</p> <p>*B* earlier application or patent published on or after the international filing date</p> <p>*L* document which may throw doubt on priority claimed or which is cited to establish the publication date of another citation of claim(s) relied on</p> <p>*O* document referring to an oral disclosure, use, exhibition or other means</p> <p>*P* document published prior to the international filing date but later than the priority date claimed</p> <p>*T* later document published after the international filing date or priority date which conflict with the application but cited to understand the principles or the state of the art relating to the invention</p> <p>*X* document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the document is taken alone</p> <p>*Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>*&* document member of the same patent family</p>		
Date of the actual completion of the international search 06 September 2002 (06.09.2002)	Date of mailing of the international search report 02 OCT 2002	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20531 Facsimile No. (703)305-3230	Authorized officer Amy DeCloux Telephone No. 703 308-0196	

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT	
International application No. PCT/US01/48632	
Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)	
<p>This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</p> <p>1. <input type="checkbox"/> Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:</p> <p>2. <input checked="" type="checkbox"/> Claim Nos.: 8-12,16-20,41-45 and 49-53 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: These claims contain SEQ ID NOs: but no sequence CRF has been entered.</p> <p>3. <input type="checkbox"/> Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</p>	
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
<p>This International Searching Authority found multiple inventions in this international application, as follows:</p> <p>1. <input type="checkbox"/> As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</p> <p>2. <input type="checkbox"/> As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</p> <p>3. <input type="checkbox"/> As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</p> <p>4. <input type="checkbox"/> No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</p>	
<p>Remark on Protest</p> <p><input type="checkbox"/> The additional search fees were accompanied by the applicant's protest.</p> <p><input type="checkbox"/> No protest accompanied the payment of additional search fees.</p>	

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZW

(74)代理人 100096013

弁理士 富田 博行

(74)代理人 100111420

弁理士 金本 恵子

(72)発明者 マーレイ, ジョセフ・エス

アメリカ合衆国カンザス州 66604, トペカ, サウス・ウエスト・コリンズ 1829

(72)発明者 シャハーン, テルーナ・ジェイ

アメリカ合衆国カンザス州 66047, ローレンス, アイリス・レーン 2912

(72)発明者 ヒュー, ヨンボ

アメリカ合衆国カンザス州 66044, ローレンス, ストッファー・ブレイス 22, アパートメント 11

F ターム(参考) 4C084 AA02 AA06 AA07 BA01 BA02 BA18 BA19 BA20 BA21 BA22

CA53 DA01 ZB072

4H045 AA11 BA14 BA15 BA16 BA17 BA41 DA86 EA20