

付記公開番号: 国際公開番号 WO 2014/157185 A1

代理人格 (条約第2 1条(3))
- 明細書の別の部分として表した配列リスト (規則5.2(a))

要約: 本発明の課題は、有機溶剤存在下で反応性が低下する野生型酵素を改良し、有機溶剤存在下での反応性が野生型酵素よりも向上した変異型カルボニル還元酵素および/または該酵素を生産する形質転換体を提供することである。本発明者らは、野生型酵素遺伝子にランダムに変異を導入して作製した変異型酵素ライブラリーの中から、有機溶剤存在下での反応性が野生型酵素よりも向上した変異型カルボニル還元酵素を見出し、本発明を完成するために至った。
明細書
発明の名称：改変型カルボニル還元酵素およびその遺伝子
技術分野
[0001]本発明は、改変型カルボニル還元酵素、その遺伝子、その遺伝子を含むベクターおよびそのベクターで形質転換された形質転換体に関する。
背景技術
[0002]医薬品や農薬の合成原料および中間体として有用な光学活性アルコールの製造方法の一つとして、カルボニル化合物のカルボニル基を微生物や酵素により不斉還元する方法が知られている。カルボニル化合物を還元する不斉酵素（以下、カルボニル還元酵素）は各種光学活性アルコールの製造において有用である。
[0003]カルボニル還元酵素を用いた不斉還元反応では、基質や生成物、pH調整に使用する酸やアルカリ、反応液性を改善するために添加される界面活性剤や有機溶剤などにより、酵素が失活されることや、酵素反応が阻害されることがある。したがって、有機溶剤等による酵素の失活や反応阻害を回避できるカルボニル還元酵素は、反応時間の短縮や反応収率の向上につながり、光学活性アルコールを工業的に生産する上でさらに有用となる。
[0004]例えば、ランダム変異導入による有機溶剤耐性の獲得が試みられており、2-プロパノールやジメチルスルホキシドに対する耐性を有する還元酵素が報告されている（特許文献1、非特許文献1）。
[0005]一方、工業的に有用性の高い有機溶剤である、ジメチルホルムアミドに対して耐性を有する酵素は少なく、実用レベルにジメチルホルムアミド耐性を獲得した還元酵素は報告されていないのが現状である。
先行技術文献
特許文献
[0006]特許文献1：特開2009－225773号公報
発明の概要
発明が解決しようとする課題
例えばエゼチミブやモンテルカスト等、医薬品中間体の多くは、2_プロパノールやジメチルスルホキシドよりもジメチルホルムアミドへの溶解度が高
い。このような化合物の生産にジメチルホルムアミド耐性酵素を用いることがで
きれば、反応液性を改善でき、他の有機溶剤を使用した場合よりも高い生産性を期待できる。
そこで、本発明の課題は、ジメチルホルムアミド存在下で反応性が低下する
野生型酵素を改変して、有機溶剤存在下での反応性が野生型酵素よりも向上
した改変型カルボニル還元酵素および/または該酵素を生産する形質転換体
を提供することである。
課題を解決するための手段
本発明者らは、野生型酵素遺伝子にランダムに変異を導入して作製した変異
型酵素ライブラリーの中から、有機溶剤存在下での反応性が野生型酵素より
も向上した改変型カルボニル還元酵素を見出し、本発明を完成するに至った。
すなわち、本発明は、以下の (a) ～ (c)
（a）配列表の配列番号 1 に記載のアミノ酸配列と 78 % 以上の配列同一性を有し、
(b) 2_ペンタノールを還元して 2_ペンタノールを生成し、かつ、
(c) 配列表の配列番号 1 に記載のアミノ酸配列からなるカルボニル還元酵素と比
較して、有機溶剤存在下でカルボニル化合物に対する反応性が高い、
および/または熱安定性が高い、
の性質を示すポリペプチドに関する。
前記有機溶剤がジメチルホルムアミドであることが好ましい。
配列表の配列番号 1 に記載のアミノ酸配列において次の群；
2番目、22番目、25番目、39番目、42番目、45番目、51番目、
56番目、71番目、87番目、90番目、102番目、109番目、124番目、135番目、138番目、155番目、159番目、175番目、177番目、183番目、190番目、195番目、212番目、220番目、226番目、228番目、236番目、238番目、250番目、254番目、257番目、259番目、265番目、267番目、270番目、279番目、298番目、300番目、301番目、および331番目から選択される1つ以上のアミノ酸に、アミノ酸置換が導入されていることが好ましい。

[0014] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において次の群；
2番目がイソロイシン、22番目がアルギニン、25番目がフェニルアラニン、39番目がアルギニン、42番目がアルギニン、45番目がフェニルアラニン、51番目がアルギニン、56番目がグリシン、71番目がアルギニンもしくはアルギニン、87番目がイソロイシン、90番目がグリシン、102番目がイソロイシン、109番目がグリシン、124番目がロイシン、135番目がアルギニン、138番目がフェニルアラニン、155番目がロイシンもしくはアルギニン、159番目がフェニルアラニン、175番目がフェニルアラニン、177番目がフェニルアラニン、183番目がスレオニン、190番目がセリン、195番目がロイシン、212番目がフェニルアラニン、スレオニンもしくはチロシン、220番目がパリン、226番目がグリシン、228番目がパリン、236番目がアルギニン、238番目がイソロイシン、250番目がプロリン、254番目がアルギニン、257番目がセリン、259番目がグルタミン酸、265番目がグリシン、267番目がプロリン、270番目がメチオニン、279番目がアルギニン、298番目がプロリン、300番目がアルギニン、301番目がシステイン、および、331番目がフェニルアラニンに置換されるアミノ酸置換、から選択される1つ以上のアミノ酸置換であることが好ましい。

[0015] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において次の群
2番目がイソロイシン、4番目がアスパラギン酸、7番目がアスパラギンもしくはアルギニン、10番目がイソロイシン、12番目がロイシン、17番目がアスパラギン酸、177番目がフェニルアラニン、183番目がシレオニン、195番目がロイシン、220番目がパリン、226番目がグリシン、236番目がアスパラギン、238番目がイソロイシン、257番目がセリン、259番目がグルタミン酸、265番目がグリシン、267番目がプロリン、270番目がメチオニン、300番目がアスパラギン酸、および、301番目がシスティンに置換されるアミノ酸置換、
から選択される1つ以上のアミノ酸置換であり、
配列表の配列番号1に記載のアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶媒に対する安定性が向上していることが好ましい。

[0016] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において下記の
(1) ～ (35)；
(1) 71番目がアスパラギン、195番目がロイシン、
(2) 71番目がアルギニン、259番目がグルタミン酸、
(3) 71番目がアルギニン、270番目がメチオニン、
(4) 71番目がアルギニン、300番目がアスパラギン酸、
(5) 102番目がイソロイシン、270番目がメチオニン、
(6) 177番目がフェニルアラニン、220番目がパリン、
(7) 226番目がグリシン、270番目がメチオニン、
(8) 257番目がセリン、259番目がグルタミン酸、
(9) 257番目がセリン、270番目がメチオニン、
(10) 259番目がグルタミン酸、270番目がメチオニン、
(11) 259番目がグルタミン酸、300番目がアスパラギン酸、
(12) 267番目がプロリン、270番目がメチオニン、
(13) 270番目がメチオニン、300番目がアスパラギン酸、
(14) 2番目がイソロイシン、259番目がグルタミン酸、270番目が
メチオニン、

(15) 45番目ガスパラギン酸、175番目ガスパラギン酸、183番目ガスレオニン、

(16) 102番目ガイソロイシン、226番目ガリシン、267番目ガプロリン、

(17) 124番目ガロイシン、259番目ガルタミン酸、270番目ガメチオニン、

(18) 177番目ガフェニルアルニン、259番目ガルタミン酸、270番目ガメチオニン、

(19) 220番目ガバリン、259番目ガルタミン酸、270番目ガメチオニン、

(20) 236番目ガスパラギン、259番目ガルタミン酸、270番目ガメチオニン、

(21) 238番目ガイソロイシン、259番目ガルタミン酸、270番目ガメチオニン、

(22) 257番目ガセリン、259番目ガルタミン酸、270番目ガメチオニン、

(23) 257番目ガセリン、259番目ガルタミン酸、300番目ガスパラギン酸、

(24) 259番目ガルタミン酸、265番目ガリシン、270番目ガメチオニン、

(25) 259番目ガルタミン酸、270番目ガメチオニン、300番目ガスパラギン酸、

(26) 259番目ガルタミン酸、270番目ガメチオニン、301番目ガシスティン、

(27) 2番目ガイソロイシン、238番目ガイソロイシン、

(28) 71番目ガスパラギン、195番目ガロイシン、

(29) 109番目ガリシン、331番目ガフェニルアルニン、
(30) 第124番目がロイシン、236番目がアスパラギン、
(31) 第159番目がフェニルアラニン、259番目がグルタミン酸、
(32) 第42番目がアルギニン、155番目がアルギニン、279番目がアルギニン、
(33) 第45番目がアスパラギン酸、175番目がアスパラギン酸、183番目がレオニン、
(34) 第155番目がロイシン、250番目がプロリン、298番目がプロリン、および
(35) 第56番目がグリシン、138番目がアスパラギン、190番目がセリン、254番目がアスパラギンに置換されるアミノ酸置換、
から選択されるアミノ酸置換が導入されていることが好ましい。

[0017] アミノ酸置換が、次の群;
22番目がアルギニン、39番目がアルギニン、51番目がアラニン、87番目がイソロイシン、90番目がグリシン、259番目がグルタミン酸、および、270番目がメチオニンに置換されるアミノ酸置換、
から選択される1つ以上のアミノ酸置換であり、
配列表の配列番号1に記載のアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶剤による反応阻害に対する抵抗性が向上していることが好ましい。

[0018] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において下記の(1) ～ (7) ；
(1) 第22番目がアルギニン、
(2) 第22番目がアルギニン、87番目がイソロイシン、
(3) 第39番目がアルギニン、
(4) 第39番目がアルギニン、51番目がアラニン、
(5) 第51番目がアラニン、
(6) 第87番目がイソロイシン、および
(7) 第90番目がグリシンに置換されるアミノ酸置換、
から選択される1つ以上のアミノ酸置換であることが好ましい。

[0019] また、本発明は、前記ポリペプチドをコードするポリヌクレオチドに関する。

[0020] また、本発明は、前記ポリヌクレオチドを含むペクターに関する。

[0021] 還元型補酵素再生能を有するポリペプチドをコードするポリヌクレオチドをさらに含むことが好ましい。

[0022] 還元型補酵素再生能を有するポリペプチドがグルコース脱水素酵素であることが好ましい。

[0023] また、本発明は、前記ペクターにより宿主細胞を形質転換して得られる形質転換体に関する。

[0024] 前記宿主細胞が大腸菌であることが好ましい。

[0025] また、本発明は、前記ポリペプチド、または、前記形質転換体および/またはその処理物を、カルボニル化合物に作用させることを特徴とする、アルコール化合物の製造方法に関する。

[0026] 前記カルボニル化合物が非対称ケトンであり、前記アルコール化合物が光学活性アルコールであることが好ましい。

[0027] 前記カルボニル化合物が、下記式（1）:

\[R_1 \quad R_2 \quad (1) \]

(式中、R_1およびR_2は水素原子、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアラルキル基、置換されていても良いアルーロ基、置換されていても良いアルメキシ基、アミノ基、またはニトロ基であるが、もしくは、R_1とR_2が互いに結合し環を形成しても良い。但し、R_1とR_2は構造が異なる）で表される非対称ケトンであり、

前記アルコール化合物が下記式（2）:

前記アルコール化合物が下記式（2）:
光学活性アルコールであること好ましい。

発明の効果

本発明により、有機溶剤存在下での反応性が野生型よりも向上した改変型カルボニル還元酵素およびその遺伝子、その遺伝子を含むベクター、そのベクターで形質転換された形質転換体、その形質転換体の処理物の製造方法を提供することができる。

発明を実施するための形態

本発明のポリペプチドは、以下の (a) — (c) の性質を示すことを特徴とする；

(a) 配列の配列番号 1 に記載のアミノ酸配列と 78% 以上の配列同一性を有し、

(b) 2 _ ペンタノンを還元して 2 _ ペンタノールを生成し、かつ

(c) 配列の配列番号 1 に記載のアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶剤存在下でカルボニル化合物に対する反応性が高い、および/または熱安定性が高い。

[変異の記載方法]

なお、本明細書において、アミノ酸、ペプチド、タンパク質は下記に示す I U P A C — I U B 生化学命名委員会 (C B N) で採用された略号を用いて表される。また、特に明示しない限り、ペプチドおよびタンパク質のアミノ酸残基の配列は、左端から右端にかけて N 末端から C 末端となるように表される。また、参照を容易にするため、一般的に用いられている下記の命名法を適用する。1 つは、"もとのアミノ酸 ;位置 ;置換したアミノ酸" と記述する方法であり、例えば、位置 6 4 におけるチロシンのアスパラギン酸への置換は「γ 4 D」と表される。多重変異については、ハイフン記号 "—" に
より分けることで表記する。例えば、「S41A Y64D」とは、位置4
1のセリンをアラニンへ、かつ、位置64のチロシンをアスパラギン酸へ置
換することを示す。

[アミノ酸の略号]
A = A l a アラニン、C = C y s システィン、
D = A s P アスパラギン酸、E = G l u グルタミン酸、
F = P h e フェニルアラニン、G = G l y グリシン、
H = H i s ヒスチジン、I = I l e イソロイシン、
K = L y s リジン、L = L e u ロイシン、
M = M e t メチオニン、N = A s n アスパラギン、
P = P r o プロリン、Q = G l n グルタミン、
R = A r g アルギニン、S = S e r セリン、
T = T h r スレオニン、V = V a l パリン、
W = T r p トリプトファン、Y = T y ' = チロシン

[配列同一性]
ポリペプチドやポリヌクレオチドの 配列同一性 とは、対比される2つの
ポリペプチドまたはポリヌクレオチドを最適に整列させ、アミノ酸または核
酸塩基（例えば、A、T、C、G、U、またはI）が両方の配列で一致した
位置の数を比較塩基総数で除し、そして、この結果に100を乗じた数値で
表される。

[配列同一性] 配列同一性は、例えば、以下の配列分析用ツールを用いて算出し得る ; G C
G W i s c o n s i n P a c k a g e (ウイスコンシン大学)、t h e
E x p A S y W o r l d W i d e W e b分子生物学用サーバー（ス
イスバイオインフォマティックス研究所）、B L A S T (米国生物工学情報
センター)、G E N E T Y X (ゼネティックス社)。

[0034] 本発明において、変異を導入する前の野生型酵素は、配列表の配列番号1で
表される335個のアミノ酸残基からなり、2_ペンタノンを還元して2_ ペンタノールを生成する能力を有するポリペプチドである。
ポリペプチドの起源は限定されるものではないが、好ましくはサッカロミセス科（Saccharomycetaceae）、より好ましくはヴァンデルワルトザイマ（Vanderwaaltozyma）属に属する微生物、さらに好ましくはヴァンデルワルトザイマ・ポリスポラ（Vanderwaldtozyma polyspora）種に属する微生物、特に好ましくはヴァンデルワルトザイマ・ポリスポラ（Vanderwaldtozyma polyspora）株NBRC0996株由来のカルポニール還元酵素である。当該微生物は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部生物遺伝資源部門（NBRC：〒292-0818 千葉県松戸市かすみ鎌足2—5—8）より入手することができる。[0036]

本発明の野生型酵素は、配列表の配列番号2に示されるポリヌクレオチドによりコードされる。例えば、Molecular Cloning 2nd Edition (Joseph Sambrook, Cold Spring Harbor Laboratory Press (1989)) 等に記載される通常の遺伝子工学的手法に準じてサッカロミセス科、好ましくはヴァンデルワルトザイマ属、より好ましくはヴァンデルワルトザイマ・ポリスポラ（Vanderwaldtozyma polyspora）種にきるする微生物、さらに好ましくはヴァンデルワルトザイマ・ポリスポラ（Vanderwaldtozyma polyspora）株NBRC0996株から取得することができる。[0037]

即ち、ヴァンデルワルトザイマ・ポリスポラ（Vanderwaldtozyma polyspora）株NBRC0996株のゲノムDNAから[参考例1]に記載の方法でPCRを行うことにより、配列番号1で示されるアミノ酸配列をコードするポリヌクレオチド、または配列番号2で示されるポリヌクレオチドを増幅して野生型酵素遺伝子を調製することができる。[0038]

本発明のポリペプチドは、配列番号1に示すアミノ酸配列に変更を加えて得られるものであっても良い。[0039]

配列番号1に示すアミノ酸配列に加える変更としては、置換、付加、挿入も
しくは欠失が挙げられ、1種類の改変（例えば置換）のみを含むものであっても良いし、2種以上の改変（例えば、置換と挿入）を含んでいても良い。
上記の「複数個のアミノ酸」とは、例えば、40個、好ましくは20個、より好ましくは10個、さらに好ましくは8個、5個、4個、3個、または2個のアミノ酸を意味する。

[0040]また、改変を加えた後のアミノ酸配列と、配列番号1に示すアミノ酸配列との配列の同一性は85%以上、好ましくは90%以上、より好ましくは92%以上、さらに好ましくは95%以上、97%以上、98%以上、98.5%以上、99%以上である。

[0041]配列表の配列番号1に示したアミノ酸配列において、アミノ酸が置換、挿入、欠失、付加される場所は特に制限されないが、好ましくは配列表の配列番号1に示すアミノ酸配列のうち、2、22、25、39、42、45、51、56、71、87、90、102、109、124、135、138、155、159、175、177、183、190、195、212、220、226、228、236、238、250、254、257、259、265、267、270、279、298、300、301、および331番目から選択される1つもしくは複数のアミノ酸置換が導入されているポリペプチドであることが好ましい。

[0042]さらに好ましくは、配列表の配列番号1に示すアミノ酸配列において次の群：2番目がイソロイシン、2番目がアルギニン、2番目がフェニルアラニン、3番目がアルギニン、4番目がアルギニン、4番目がアスパラギン酸、5番目がアラニン、5番目がリジン、7番目がアスパラギンもしくはアルギニン、8番目がイソロイシン、9番目がグリシン、10番目がイソロイシン、10番目がグリシン、12番目がグリシン、13番目がアラニン、13番目がフェニルアラニン、13番目がロイシン、もしくはアルギニン、13番目がフェニルアラニン、17番目がフェニルアラニン、17番目がアスパラギンもしくはアルギニン、15番目がフェニルアラニン、17番目がフェニルアラニン、18番目がスレオニン、19番目がセリン、19番目がロイシン、21番目がフェニルアラニン、ス
レオニンもしくはチロシン、220番目がバリリン、226番目がグリシン、228番目がバリリン、236番目がアスパラギン、238番目がイソロイシン、250番目がプロリン、254番目がアスパラギン、257番目がセリン、259番目がグルタミン酸、265番目がリジン、267番目がプロリン、270番目がメチオニン、279番目がアルギニン、298番目がプロリン、300番目がアスパラギン酸、301番目がシステイン、および331番目がフェニルアラニンに置換、かから選択される1つ以上のアミノ酸に、アミノ酸置換が導入されているポリペプチドである。

[0043] また、本発明のポリペプチドは、有機溶剤に対する安定性の向上の観点から、配列表の配列番号1に示すアミノ酸配列において次の群；2番目がイソロイシン、45番目がアスパラギン酸、71番目がアスパラギンもしくはアルギニン、102番目がイソロイシン、124番目がロイシン、175番目がアスパラギン酸、177番目がフェニルアラニン、183番目がスレオニン、195番目がロイシン、220番目がバリリン、226番目がグリシン、236番目がアスパラギン、238番目がイソロイシン、257番目がセリン、259番目がグルタミン酸、265番目がリジン、267番目がプロリン、270番目がメチオニン、300番目がアスパラギン酸、および301番目がシステインに置換、かから選択される1つ以上のアミノ酸置換が導入されていることが好ましい。

[0044] さらに、下記の（1）～（35）；配列表の配列番号1に示すアミノ酸配列において下記の（1）～（35）；

（1）71番目がアスパラギン、195番目がロイシン、
（2）71番目がアルギニン、259番目がグルタミン酸、
（3）71番目がアルギニン、270番目がメチオニン、
（4）71番目がアルギニン、300番目がアスパラギン酸、
（5）102番目がイソロイシン、270番目がメチオニン、
（6）177番目がフェニルアラニン、220番目がバリリン、
（7）226番目がグリシン、270番目がメチオニン、
（8）257番目がセリン、259番目がグルタミン酸、
（9）257番目がセリン、270番目がメチオニン、
（10）259番目がグルタミン酸、270番目がメチオニン、
（11）259番目がグルタミン酸、300番目がアスパラギン酸、
（12）267番目がプロリン、270番目がメチオニン、
（13）270番目がメチオニン、300番目がアスパラギン酸、
（14）2番目がイソロイシン、259番目がグルタミン酸、270番目がメチオニン、
（15）45番目がアスパラギン酸、175番目がアスパラギン酸、183番目がスレオニン、
（16）102番目がイソロイシン、226番目がグリシン、267番目がプロリン、
（17）124番目がロイシン、259番目がグルタミン酸、270番目がメチオニン、
（18）177番目がフェニルアラニン、259番目がグルタミン酸、270番目がメチオニン、
（19）220番目がバリニン、259番目がグルタミン酸、270番目がメチオニン、
（20）236番目がアスパラギン、259番目がグルタミン酸、270番目がメチオニン、
（21）238番目がイソロイシン、259番目がグルタミン酸、270番目がメチオニン、
（22）257番目がセリン、259番目がグルタミン酸、270番目がメチオニン、
（23）257番目がセリン、259番目がグルタミン酸、300番目がアスパラギン酸、
（24）259番目がグルタミン酸、265番目がグリシン、270番目がメチオニン、
（25）259番目がグルタミン酸、270番目がメチオニン、300番目がアスパラギン酸。
（26）259番目がグルタミン酸、270番目がメチオニン、301番目がシステム。
（27）2番目がイソロイシン、238番目がイソロイシン、
（28）71番目がアスパラギン、195番目がロイシン、
（29）109番目がグリシン、331番目がフェニルアラニン、
（30）124番目がロイシン、236番目がアスパラギン、
（31）159番目がフェニルアラニン、259番目がグルタミン酸、
（32）42番目がアルギニン、155番目がアルギニン、279番目がアルギニン、
（33）45番目がアスパラギン酸、175番目がアスパラギン酸、183番目がスレオニン、
（34）155番目がロイシン、250番目がプロリン、298番目がプロリン、および
（35）56番目がリジン、138番目がアスパラギン、190番目がセリン、254番目がアスパラギンに置換されるアミノ酸置換から選択されるアミノ酸置換が導入されているポリペプチドであることが好ましい。

また、本発明のポリペプチドは、有機溶剤による反応阻害に対する抵抗性の向上の観点から、配列表の配列番号1に示すアミノ酸配列のうち次の群；22番目がアルギニン、39番目がアルギニン、51番目がアラニン、87番目がイソロイシン、90番目がグリシン、259番目がグルタミン酸、および270番目がメチオニンに置換されるアミノ酸置換から選択される1つ以上のアミノ酸置換が導入されていることが好ましい。

さらに、配列表の配列番号1に示すアミノ酸配列に下記の（1）〜（7）；
（1）22番目がアルギニン、
（2）22番目がアルギニン、87番目がイソロイシン、
（3）３９番目がアルギニン、
（4）３９番目がアルギニン、５１番目がアラニン、
（5）５１番目がアラニン、
（6）８７番目がイソロイシン、および
（7）９０番目がグリシンに置換されるアミノ酸置換
のいずれかで示されるアミノ酸置換が導入されていることがより好ましい。

[0047] 有機溶剤としては、ジメチルホルムアミド、ジメチルスルホキシド、２—プロパノール、酢酸エチル、トルエン、メタノール、エタノール、ｎ—ブタノール、ヘキサン、アセトニトリル、酢酸プロピル、酢酸ブチル、アセトン、ジメトキシプロパン、ｔ—メチルブチルエーテル、ジェチルエーテル、ジソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジメチルアセトアミド、ジグリム、エチレングリコール、ジメトキシエタン、四塩化炭素、塩化メチレン、エチルセロソルブ、酢酸セロソルブ、１，３—ジメチル—２—イミダゾリジノン、または、ヘキサメチルリン酸トリアミドなどであることが好ましく、ジメチルホルムアミド、ジメチルスルホキシド、２—プロパノール、酢酸エチル、トルエン、酢酸ブチル、または、１，３—ジメチル—２—イミダゾリジノンであることがより好ましく、ジメチルホルムアミド、ジメチルスルホキシドまたは２—プロパノールであることがさらに好ましい。

[0048] 本発明の酵素は、有機溶剤存在下でもカルボニル化合物に対する反応性が高く、有機溶剤存在下とは、酵素を含む液体と有機溶剤が混合している状態でも良いが、酵素を含む液体と有機溶剤が不均一な状態でも良く、これを物理的に攪拌し、混合した状態でも良い。

[0049] 有機溶剤存在下で反応性の高い酵素」とは、配列の配列番号１に記載の野生型酵素と比較して、前記有機溶剤存在下で一定時間処理した後、もしくは、前記有機溶剤存在下で２—ベンタノンに対する酵素の還元活性が高いことを見示す。好ましくは有機溶剤に対する酵素の安定性が高い、もしくは有機溶剤による反応阻害に対する抵抗性が高い酵素である。

[0050] 有機溶剤に対する安定性が向上している」とは、具体的には、酵素を有機
溶剤とインキュベートした後で、2—ペンタノンまたは2—ヘキサノンに対する残存活性を後述の実施例4または5に記載する方法で測定した場合に、野生型酵素と比較して残存活性が1％以上高いことであり、好ましくは5％以上、さらに好ましくは10％以上、もっとも好ましくは20％以上高いことといえる。

[0051] また、「有機溶剤による反応阻害に対する抵抗性が向上している」ことは、具体的には、有機溶剤存在条件下での2—ヘキサノンに対する相対活性を後述の実施例3に記載する方法で測定した場合に、野生型酵素と比較して相対活性が1％以上高いことであり、好ましくは5％以上、より好ましくは7％以上、さらに好ましくは10％以上、最も好ましくは20％以上高いことをいう。

[0052] 有機溶剤に対する酵素の安定性は、例えば、以下的方法で評価できる。

[有機溶剤に対する酵素の安定性の評価方法]
酵素を含む無細胞抽出液に任意の濃度（例えば0.5％〜50％）の有機溶剤を含む緩衝液（好ましくはpH5〜8の0.01〜1Mリン酸緩衝液）を加えて任意の温度（例えば4〜40℃）でインキュベートする。有機溶剤と緩衝液が不均一な場合は振とう、または攪拌しながらインキュベートする。有機溶剤を非添加のサンプルと有機溶剤を添加した処理液を0.1〜4.8時間後にサンプリングし、それを0.1Mのリン酸カリウム水溶液（pH7.0）で希釈し、その希釈液を用いて下記の[カルボニル化合物に対する還元能力の評価方法]で酵素の活性を測定する。相対活性は下記式で算出することができる。

相対活性（％）= [溶剤添加条件での酵素活性] ÷ [溶剤非添加条件での酵素活性] × 100

[0053] 配列表の配列番号1に記載のカルボニル還元酵素と比較して、有機溶剤に対する安定性が向上している変異型カルボニル還元酵素とは、上記の評価を行なった場合の残存活性が、野生型に比べて1％以上高い酵素であり、好ましくは5％以上、さらに好ましくは10％以上、最も好ましくは20％以上高い
い酵素である。

[0054] [カルボニル化合物に対する還元能力の評価方法]
100 mM リン酸カリウム緩衝液 (pH 6.5) にNADPH もしくは還元型ニコチンアミド、アデニンジヌクレオチド（以下、NADH）0.25 mM、還元活性を評価したいカルボニル化合物（例えば 2-ペンタノン、2-ヘキサノン、2、3-ブタンジオン）1〜50 mM および本発明のポリペプチドを含む反応液を 30℃ で反応させ、NADPH もしくは NADH 量の減少に伴う波長 340 nm の吸光度の減少を測定することにより、還元反応の進行を容易に評価することができる。吸光度が減少した場合、本発明のペプチドは評価対象のカルボニル化合物を還元する能力を有する、と判断することができる。なお、吸光度の減少速度が速いほど、評価対象のカルボニル化合物に対する還元能力が高いといえる。また、ポリペプチドの還元能力は数値化することも可能であり、還元活性 1U は 1 分間に 1 μmol の NADPH の消費を触媒する酵素量とした。

[0055] また、有機溶剤による反応阻害に対する抵抗性は、例えば、以下の方法のように決定することができる。
[有機溶剤による反応阻害に対する抵抗性の評価方法 1]
100 mM リン酸カリウム緩衝液 (pH 6.5) に NADPH もしくは還元型ニコチンアミド、アデニンジヌクレオチド（以下、NADH）3 mM、還元活性を評価したいカルボニル化合物（例えば 2-ペンタノン、2-ヘキサノン、2、3-ブタンジオン）1%、有機溶剤 0.01〜60%（v/v）または有機溶剤非添加、および本発明のポリペプチドを含む反応液を 30℃ で 0.01〜5 時間反応させ、ガスクロマトグラフィーなどにより分析し、カルボニル化合物からアルコールへの変換率を求める。

[0056] 相対活性は下記式で算出することができる。
相対活性（%） = [有機溶剤存在下での変換率] ÷ [有機溶剤非存在下での変換率] × 100

[0057] 本明細書中で、配列表の配列番号 1 に記載のカルボニル還元酵素と比較して
有機溶剤による反応阻害に対す抵抗性が向上している変型カルボニル還元酵素とは、上記の評価を行った場合の残存活性が、野生型に比べて1％以上高いことであり、好ましくは5％以上、より好ましくは7％以上、さら
に好ましくは10％以上、最も好ましくは20％以上高いことである。また
本発明の酵素は、配列表の配列番号1に記載のカルボニル還元酵素と比較
して、熱安定性が高い。

[0058] 本発明の変型カルボニル還元酵素は、下記の方法により探索することがで
できる。
エラープローンPCR法（Leung et al. 1989）、あるいは同様の原理に基づいたキッ
トを用いて、配列表の配列番号2に示す塩基配列（野生型酵素遺伝子）に1
つ以上の塩基配列の置換、挿入、欠失、付加が導入されたDNA断片を得る
ことができる。例えば、野生型酵素遺伝子をテンプレートにし、定法により
、240番目のTをCに置換し、野生型酵素のアミノ酸配列を変えずにNd
且I認識部位を破壊できる（配列表の配列番号3）。これをテンプレートに
プライマー1：5' - G G G A A T T C C A T A T G A G T G T T T T A G
T T A C A G G - 3'（配列表の配列番号4）、およびプライマー2：5'
- A T A C G G C G T G A C T T A C T A T T G T T C T T G A A C C T T
C A - 3'（配列表の配列番号5）とDiversify PCR Random Mutagenesis Kit（Clontech社製）を用し
て、野生型酵素をコードする遺伝子の全長にランダムに変異が導入され、か
つ開始コードにNdeI認識部位が付加され、終始コードの直後にSalI
認識部位が付加された複数種類のニ本鎖DNA（変異型酵素遺伝子）を得る
ことができる。この増幅断片をNdeIおよびSalIで消化し、プラスミ
ドpUCN18（PCR法によりpUC18（タカラバイオ社製）の185
番目のTをAに変更してNdeIサイトを破壊し、更に471-472番目
のGCをTGに変更することにより新たにNdeIサイトを導入したプラス
ミド）のlacプロモーターの下流のNdeI認識部位とSalI認識部位
の間に挿入し、このプラスミドを用いてエスキヒア・コリ（Escherichia coli）HB101株（以下、E. coli HB101）を形質転換する。形質転換した大腸菌を100μg／mLのアンピシンを含むLBプレート培地に塗布し、シングルコロニーの大腸菌を得る。また、野生型遺伝子の代わりに前記方法で得られた変異型酵素遺伝子を用いて、同様の操作でさらに変異を導入した変異酵素ライブラリーを作製することもできる。

[0059] 上記ライブラリーから、本発明の変異型カルボニル還元酵素を選抜することができる。選抜方法としては特に限定されないが、好ましくは下記の方法である。

[有機溶剤に対する安定性が向上した酵素のプレート評価による選抜法1] 变異酵素ライブラリーの各組換え菌および野生型酵素を生産する組換え菌（例えば、参考例3に示すE. coli HB101（pNKP））を適当な培地（例えば200μg／mLのアンピシンを含む2X YT培地（トリプトン1.6%、イーストエキス1.0%、塩化ナトリウム0.5%、pH 7.0））に接種し、37℃で24時間振盪培養する。得られた各培養液を菌体破砕処理し、遠心分離後、沈殿を除去し、無細胞抽出液を得る。各酵素を含む無細胞抽出液に適当な濃度の有機溶剤（好ましくは低濃度10～30%のジメチルホルムアミド）を含む緩衝液（好ましくはpH 5～8の0.01～1Mリン酸緩衝液）を加えて適当な温度（例えば4～40℃）でインキュベートする。0.1～48時間程度インキュベートした後、処理した各無細胞抽出液を96穴プレート（AGCテクノプラス社製）に分注し、NADPH（好ましくは1.5mM）とカルボニル化合物（好ましくは10mMの2,3-ブタンジオン）を含むリン酸緩衝液（pH 5～7）を加えて、10～40℃で反応する。経時的にUVサンプル撮影装置FAS-III（東洋紡績社製）でNADPHの蛻光を観察する。この時、反応が進行しない酵素液はNADPHの蛻光が残存するが、反応が進行した無細胞抽出液はNADPHの減少に伴い、蛻光がなくなる。対照である野生型酵素に比べ、短時間
蛍光がなくなった酵素を塩化物に対する安定性が向上した酵素として選抜した。選抜した酵素の培養液からプラスミドを抽出し、Big Dye Terminator Cycle Sequencing Kit（アプライドバイオシステムズジャパン社製）およびApplied Biosystems 3130 x 1 ジェネティックアナライザ（アプライドバイオシステムズジャパン社製）を用いて変換型カルボニル還元酵素遺伝子の塩基配列を決定し、変異部位を特定することができる。

[0060] 有機溶剤に対する安定性が向上した酵素のプレート評価による選抜法 2]
変異酵素ライブラリーの各組換え菌および野生型酵素を生産する菌（例えば、参考例 3 に示す E.coli HB101（pNHK）を適当な培地）を適当な寒天培地（例えば、100 斗 g/mL のアンビシリンを含む LB プレート培地）に植菌し、30 ℃で 24 時間培養する。得られたコロニーをナイロン膜（Biodyne A、0.45 μm）で転写した後、そのナイロン膜を有機溶剤（好ましくは 40% のジメチルホルムアミド）を含むバッファー（好ましくは 50 mM の 3-N-morpholino propanesulfonic acid (MOPS) バッファー中に 0.1 分−24 時間浸漬する。このバッファーは 40 〜 80 ℃に加温されていることが好ましい。その後、このナイロン膜を NADP+（好ましくは 1 mM）、nitroblue tetrazolium（好ましくは 200 μM）、1-methoxy-5-methylphenazinium methylsulfate（好ましくは 10 μM）、2-bromoanil（例えば 0.1 〜 50%）を含むバッファー（好ましくは 50 mM の 3-N-morpholino propanesulfonic acid (MOPS バッファー-) 中に適当な温度（例えば 4 〜 40 ℃）で 0.1 分〜24 時間浸漬する。その後、ナイロン膜を蒸留水で洗浄し、4 染色されたコロニーを有機溶剤に対する安定性が向上した変換型カルボニル還元酵素の組換え菌として選抜することができる。

[0061] これらの組換え菌を適当な液体培地（例えば、200 斗 g/mL のアンビシ
リンを含む2 × Y T培地（トリプトトン1.6％、イーストエキス1.0％、塩化ナトリウム0.5％、pH 7.0）に接種し、37℃で20時間振盪培養する。得られた各培養液について、遠心分離により菌体を集め、パッファー（好ましくは50mMの3-(N-morpholino)propanesulfonic acid (MOPS)パッファー）に懸濁する。これよりH_5 0型超音波ホモゲナイザー（SMT社製）を用いて破砕した後、遠心分離により菌体残渣を除去し、無細胞抽出液を得る。

バッファー（好ましくは50mMの3-(N-morpholino)propanesulfonic acid (MOPS)パッファー）とジメチルホルムアミドの混合液を、ジメチルホルムアミドの終濃度が好ましくは0.1〜6.0％になるように各無細胞抽出液に加え、加温（好ましくは40〜80℃で0.1分〜24時間）したのち、冷冷する。これに、NADP+（好ましくは1mM）、nitroblue tetrazolium（好ましくは200μM）、1-methoxy-5-methylphenazinium methylsulfate（好ましくは10μM）、2-プロパノール（例えば0.1〜50％）を含むバッファー（好ましくは50mMの3-(N-morpholino)propanesulfonic acid (MOPS)パッファー）を混合し、96穴プレート（AGCテクノグラス社製）に移して観察する。染色されたものを有機溶剤に対する安定性がより向上した変異型カルボニル還元酵素として選抜することができる。

選抜した組換え菌の培養液からプラスミドを抽出し、Big Dye Terminator Cycle Sequencing Kit（アプライドバイオシステムズジャパン社製）およびApplied Biosystems 3130×1ジェネティックアナライザー（アプライドバイオシステムズジャパン社製）を用いて変異型KRK遺伝子の塩基配列を決定し、変異部位を特定することができる。

[有機溶剤による反応阻害に対する抵抗性が向上した酵素のプレート評価による選抜法]
変異酵素ライブラリーの各組換え菌および野生型酵素を生産する菌（例えば、参者例3に示すE. coli HB101（pNKP））を適当な寒天培地（例えば、100μg/mLのアンビシンを含む1Bプレート培地）に植菌し、30℃で24時間培養する。得られたコロニーをナイロン膜（Biodyne A、0.45μm）に転写した後、NADP+（好ましくは1mM）、Nitroblue tetrazolium（好ましくは200μM）、1-methoxy-5-methylphenazinium methylsulfate（好ましくは10μM）、2-プロパノール（例えば0.1〜50%）と有機溶剤（好ましくは0.1〜80%のジメチルホルムアミド）含むバッファー（好ましくは50mMの3-(N-morpholino) propanesulfonic acid（MOPS）バッファー）中に適当な温度（例えば4〜40℃）で0.1分〜10時間浸漬する。その後、ナイロン膜を蒸留水で洗浄し、染色されたコロニーを有機溶剤による反応阻害に対する抵抗性が向上した改変型カルボニル還元酵素の組換え菌の候補として選択することができる。

[0065]これらの組換え菌を適当な液体培地（例えば、200μg/mLのアンビシンを含む2XYT培地（トリプトン1.6%、イーストエキス1.0%、塩化ナトリウム0.5%、pH7.0））に接種し、37℃で20時間振盪培養する。得られた各培養液を菌体破砕処理し、遠心分離後、沈殿を除去し、無細胞抽出液を得る。無細胞抽出液にNADPH（好ましくは0.625M）、カルボニル化合物（好ましくは10mMの2,3-プタンジオン）、有機溶剤（好ましくは0.1〜80%のジメチルホルムアミド）を溶解したバッファー（好ましくは0.1Mのリン酸バッファー（pH6.5））を混合する。これを96穴プレート（アサヒテクノグラス社製）に分注し、継時的にBenchmark Plus microplate spectrophotometer（BIO-RAD社製）でNADPHの蛍光を観察する。反応が進行しない酵素液はNADPHの蛍光が残存するが、反応が進行した無細胞抽出液はNADPHの減少に伴い、蛍光が無くなる。カルボニ
ル化合物の還元によってNADPHが消費され、短時間で蛍光がなくなったものを有機溶剤に対する反応阻害に対する抵抗性がさらに向上した変異型カルボニル還元酵素の組換え菌として選抜する。

[0066] 選抜した組換え菌の培養液からプラズミドを抽出し、Big Dye Terminator Cycle Sequencing Kit (アプリライドバイオシステムズジャパン社製) および Applied Biosystems 3130×1ジェネティックアナライザ (アプリライドバイオシステムズジャパン社製) を用いて変異型RKP遺伝子の塩基配列を決定し、変異部位を特定することができる。

[0067] 有機溶剤存在下でカルボニル化合物に対する反応性を高めることのできる、および/または熱安定性を高めることのできる複数の変異を、部位特異的変異導入によって組み合わせることによって、複数の変異の性質を併せ持つ変異型カルボニル還元酵素を作製できる。

[0068] 本発明のポリヌクレオチドは、本発明のポリペプチドをコードするものであらびに限定されないが、例えば、配列表の配列番号2に示した野生型酵素をコードする塩基配列からなるポリヌクレオチド、またはこれに変更を加えて得られるポリペプチドが挙げられる。

[0069] 野生型酵素遺伝子の改変方法としては、Current Protocols in Molecular Biology (Frederick M. Ausubel, Greene Publishing Associates and Wiley_Interscience (1989)) 等に記載の公知的方法を用いることができる。すなわち、野生型酵素遺伝子の塩基の1個、または複数個（例えば、40個、好ましくは20個、より好ましくは10個、さらに好ましくは5個、4個、3個、または2個の塩基）を置換、付加、挿入もしくは欠失することにより、野生型酵素のアミノ酸配列を改変したポリヌクレオチドを作製することができる。例えば、エラープローヌーPCR法 (Leung et al., Technique 1, 11-15 (1989)) などのPCRを用いた変異導入法や、あるいは市
販のキットDiversify PCR Random Mutagenesis Kit (Clontech社製)、Transformer Mutagenesis Kit (Clontech社製)、EX0 III/Mung Bean Deletion Kit (Stratagene社製)、QuickChange Site Directed Mutagenesis Kit (Stratagene社製)などの利用が挙げられる。

[0070] ポリヌクレオチドを部位特異的変異導入法により作製する場合、部位特異的変異導入法としては、例えば、Ol fert Landts (Gene, 96, 1 25 - 128 (1990))、Smiths (Genetic Engineering, 3, 1, Set low, J. Plenum Press)、V lasuk S (Experimental Manipulation of Gene Expression, Inouye, M. Academic Press)、H os. N. Hunt s (Gen e, 77, 51 (1989)) の方法や QuickChange II Kit (ストラタジーン社製)の市販キットの利用等があげられる。なお、2箇所に変異を導入する場合には上記方法に準じた方法を2回繰り返すことにより、目的とする本発明ポリヌクレオチドを得ることができる。尚、複数の他のポジションが他のアミノ酸で置換されている場合も当該方法により、目的とする本発明ポリヌクレオチドを得ることができる。

[0071] 本発明のポリベプチドをコードするポリヌクレオチドとしては、例えば、2—ペンタノールを還元して2—ペンタノールを生成する活性を有し、配列の配列番号1に示すアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶剤存在下でカルボニル化合物に対する反応性が高いポリベプチドをコードし、かつ、配列の配列番号2に示した塩基配列からなるポリヌクレオチドと相補的である塩基配列を含むポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドが好ましい。

[0072] ここで、配列の配列番号2に示したポリヌクレオチドと相補的塩基配列
列からなるポリヌクレオチドとストリンジェントな条件下でハイプリダイズするポリヌクレオチド」とは、配列表の配列番号2に示した塩基配列と相補的な塩基配列からなるポリヌクレオチドをプロープとして、ストリンジェントな条件下にコロニー。ハイプリダイゼーション法、プラク・ハイプリダイゼーション法、あるいはサザンハイプリダイゼーション法等を用いることにより得られるポリヌクレオチドを意味する。

ハイプリダイゼーションは、Molecular Cloning 2nd Edition (Joseph Sambrook, Cold Spring Harbor Laboratory Press (1989))等に記載されている方法に準じて行うことができる。ここで、ストリンジェントな条件下でハイプリダイズするポリヌクレオチド」とは、例えば、コロニーあるいはプラク由来のポリヌクレオチドを固定化したフィルターを用いて、0.7-1.0 Mの塩化ナトリウム存在下、65℃でハイプリダイゼーションを行った後、3倍濃度のSSC溶液（1倍濃度のSSC溶液の組成は、150 mM塩化ナトリウム、15 mMクエン酸ナトリウムよりなる）を用し、65℃の条件下でフィルターを洗浄することにより取得できるDNAをあげることができる。より好ましくは65℃で1倍濃度のSSC溶液で洗浄、さらに好ましくは65℃で0.7倍濃度のSSC溶液で洗浄、更に好ましくは65℃で0.5倍、0.45倍、0.25倍、0.2倍、0.15倍濃度のSSC溶液で洗浄することにより取得できるポリヌクレオチドである。

以上のようにハイプリダイゼーション条件を記載したが、これらの条件に特に制限されない。ハイプリダイゼーションのストリンジエンシーに影響する要素としては温度や塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで最適なストリンジエンシーを実現することが可能である。

上記の条件にてハイプリダイズ可能なポリヌクレオチドとしては、配列番号2に示されるポリヌクレオチドとの配列同一性が、好ましくは78%以上、より好ましくは84%以上、さらに好ましくは87%以上、さらに好ましく
は 89%、 90%、 94%、 95%、 97%以上のポリヌクレオチドを挙げることができ、コードされるポリペプチドが、本発明のポリペプチドの性質を有する限り、上記ポリヌクレオチドに包含される。

[0076] 本発明のポリペプチドをコードするポリヌクレオチドを発現ベクターに挿入することにより、ポリペプチド発現ベクターを作製できる。

[0077] 上記で用いる発現ベクターとしては、適当な宿主生物内で当該ポリヌクレオチドがコードするポリペプチドを発現できるものであれば、特に限定されない。このようなベクターとしては、例えば、プラスミドベクター、ファージベクター、コスミドベクターなどが挙げられ、さらに、他の宿主株との間での遺伝子交換が可能なシャトルベクターも使用できる。

[0078] このようなベクターは、例えば大腸菌の場合では、通常、lacUV5 プロモーター、trp プロモーター、tac プロモーター、lac プロモーター、IPP プロモーター、tufB プロモーター、recA プロモーター、pL プロモーター等の制御因子を含み、本発明の DNA と作動可能に連結された発現単位を含む発現ベクターとして好適に使用できる。例えば、pUCN18（参考例 2 参照）、pSTV28（タカラバイオ社製）、pUCNT（国際公開第94/03613号）などが挙げられる。

[0079] 本明細書で用いる用語「制御因子」は、機能的プロモーターおよび、任意の関連する転写要素（例えばエンハンサー、CCAATボックス、TATAボックス、SPI部位など）を有する塩基配列をいう。

[0080] 本明細書で用いる用語「作動可能に連結」は、遺伝子の発現を調節するプロモーター、エンハンサー等の種々の調節エレメントと遺伝子が、宿主細胞中で作動し得る状態で連結されることをいう。制御因子のタイプおよび種類が、宿主に応じて変わり得ることは、当業者に周知の事項である。

[0081] 各種生物において利用可能なベクター、プロモーターなどに関して微生物学基礎講座（8、安藤忠彦、共立出版、1987）などに詳細に記述されている。

[0082] ベクターは、遺伝型補酵素再生を有するポリペプチドをコードするポリヌクレオチドで、コードされるポリペプチド発現ベクターに挿入することにより、ポリペプチド発現ベクターを作製できる。
クレオチドをさらに含んでいても良い。還元型補酵素再生能を有するポリベプチドとしては、例えば、グルコース脱水素酵素が挙げられる。

ベクターにより宿主細胞を形質転換することにより、形質転換体を得ることができる。或いは、形質転換体として、本発明のポリベプチドをコードするポリヌクレオチドを染色体中に導入して得られる形質転換体も挙げられる。

ベクターにより形質転換するための宿主細胞としては、各ポリベプチドをコードするポリヌクレオチドを含むポリベプチド発現ベクターにより形質転換され、導入したポリヌクレオチドがコードするポリベプチドを発現することができる細胞であれば、特に制限されない。宿主細胞として利用可能な微生物としては、例えば、エキシエリヒア (Escherichia) 属、パチルス (Bacillus) 属、シュードモナス (Pseudomonas) 属、セラチア (Serratia) 属、プレビパクテリウム (Brevibacterium) 属、コリ不パクテリウム (Corynebacterium) 属、ストレプトコッカス (Streptococcus) 属、およびラクトバチルス (Lactobacillus) 属など宿主ベクター系の開発されている菌、ロドコッカス (Rhodococcus) 属およびストレプトマイセス (Streptomyces) 属など宿主ベクター系の開発されている放線菌、サッカロマイセス (Saccharomyces) 属、クライベロマイセス (Kluyveromyces) 属、シソサッカロマイセス (Schizosaccharomyces) 属、チョサッカロマイセス (Zygosaccharomyces) 属、ヤロウィア (Yarrowia) 属、トリコスポロン (Trichosporon) 属、ロドスポリジウム (Rhodosporidium) 属、ピキア (Pichia) 属、およびキャンディダ (Candida) 属などの宿主ベクター系の開発されている酵母、ノイロスポラ (Neurospora) 属、アスペルギルス (Aspergillus) 属、セファロスホリウム (Cephalosporium) 属、およびトリコテリマ (Trichoderma) 属などの宿主ベクター系の開発されているカビ、などが挙げられる。また、微生物以外で
も、植物、動物において様々な宿主・ベクター系が開発されており、特に蚕を用いた昆虫（Nature, 315, 592-594 (1985)）や菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種タンパク質を発現させる系が開発されており、好適に利用できる。これらのうち、導入および発現効率から細菌が好ましく、大腸菌が特に好ましい。

[0085] 本発明のベクターは、公知の方法により宿主微生物に導入できる。例えば、ポリペプチド発現ベクターとして前記の発現ベクター pUCN18 に改変型カルボニル還元酵素をコードするポリヌクレオチドを導入した本発明のプラスミド（実施例 2 ～ 3、6 ～ 15、17 ～ 27、30 に示す pNKPm01 ～ 53）を、宿主微生物として大腸菌を用いる場合は、市販の且、coli HB101 コンビテン トセル（タカラバイオ社製）などを利用して、そのプロトコールに従って操作することにより、当該ベクターを宿主細胞に導入した形質転換体（例えば、実施例 2 7 に示す且、coli HB101（pNKPm50））が得られる。

[0086] また、本発明のポリペプチドおよび後述する還元型補酵素再生能を有するポリペプチドの両ポリペプチドを、同一菌体内で発現させた形質転換体も育種することができる。すなわち、本発明のポリペプチドをコードするポリヌクレオチドおよび還元型補酵素再生能を有するポリペプチドをコードするポリヌクレオチドを、同一のベクターに組み込み、これを宿主細胞に導入することにより得られる他、これら 2 種類のDNA を不和合性グループの異なる 2 種のベクターにそれぞれ組み込み、それらを同一の宿主細胞に導入することによっても得られ得る。

[0087] このようにして得られる形質転換体としては、例えば、改変型カルボニル還元酵素をコードするヌクレオチドを前記の発現ベクター pUCN18 に導入した組換えベクター（例えば、実施例 2 に示した pNKPmO1）と還元型補酵素再生能を有するポリペプチドであるグルコース脱水素酵素をコードするポリヌクレオチドを含むベクター、且、coli HB101 コンビテン トセル（タカラバイオ社製）に導入した形質転換体などが挙げられる。
本発明のポリペプチドもしくは形質転換体および/またはその処理物を、カルボニル化合物に作用させることにより、アルコール化合物を製造することができる。

基質となるカルボニル化合物は特に制限されない。カルボニル化合物の中でも、非対称ケトンは、その還元産物が有用な光学活性アルコールとなるため、好ましい。

前記カルボニル基を有する化合物としては、例えば、下記式（1）:

\[
\begin{align*}
R^1 & \quad R^2 \\
\end{align*}
\]

（式中、 \(R^1 \) および \(R^2 \) は水素原子、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアラルキル基、置換されていても良いアリール基、置換されていても良いアルコレキシ基、アミノ基、またはニトロ基であるか、もしくは、\(R^1 \) と \(R^2 \) が互いに結合し環を形成しても良い。但し、\(R^1 \) と \(R^2 \) は構造が異なる）で表される非対称ケトンが挙げられ、その生成物としては、例えば、下記式（2）:

\[
\begin{align*}
R^1 & \quad OH \\
\end{align*}
\]

（式中、\(R^1 \) 、\(R^2 \) は前記と同じ、* は不斉炭素を表す）で表される光学活性アルコールが挙げられる。

前記 \(R^1 \) 、\(R^2 \) は炭素数 1 〜 14 のアルキル基、炭素数 6 〜 14 のアリール基、炭素数 4 〜 14 のヘテロアリール基、炭素数 1 〜 5 のアルコレキシ基、炭素数 2 〜 5 のアルコレキシカルボキシル基、炭素数 1 〜 5 の直鎖もしくは分岐鎖アルキル基、炭素数 2 〜 5 のアルケニル基、炭素数 5 〜 10 のシクロアルキル基、炭素数 4 〜 9 のヘテロシクロアルキル基、カルボキシル基、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、またはニトロ基が好ましい。
なお、上記で言う置換されていても良いとは、置換基を有していても良いという意味であり、置換基として、ハロゲン原子、ヒドロキシル基、カルボキシル基、アミノ基、シアノ基、ニトロ基、アルキル基、アリール基、アラルキル基、またはアルコキシ基などが挙げられる。また、ハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。

具体的なカルボニル化合物として、2_ペンタノール、2_ヘキサノール、2,3_プタンジオール、(S)-1-(4_フロロフエニル)-5-(2_オキソ_4_フエニルオキサソリジン_3_イロ)-ペンタン=1.5_ジオール、プロピオフエノン、n_プチロフエノン、パクロフエノン、ヘキサノフエノン、1_フエニル_2_プタノール、ペンジルアセトン、2,5_ヘキサンジオール、2,3_ヘキサンジオール、3,4_ヘキサンジオール、フェノキシ_2_プロパノールが挙げられる。

本発明のポリペプチドを使用して生産されるアルコール化合物として、2_ペンタノール、2_ヘキサノール、2,3_プタンジオール、3_ヒドロキシ_2_プタノール、1_フエニルエチルアルコール、[3_[(5_フロロフエニル)_5_ヒドロキシペンタノイル]-4_フロロフエニル_1_オキソサロリジン_2_オール、1_フエニル_1_プロパノール、1_フエニル_1_ヘキサノール、1_フエニル_2_プタノール、4_フエニル_2_ツマノール、2,5_ヘキサンジオール、5_ヒドロキシ_2_ヘキサノール、2,3_ヘキサンジオール、2_ヒドロキシヘキサン_3_オール、3_ヒドロキシ_2_ヘキサノール、3,4_ヘキサンジオール、4_ヒドロキシ_3_ヘキサノール、1_フエノキシ_2_プロパノールが挙げられる。

本発明のポリペプチドもしくは本発明のポリペプチドを発現させた形質転換体および/またはその処理物を用いて、前記カルボニル基を有する化合物を還元してアルコールを製造する場合、以下のように実施され得る。但し、以下の方法に限定されるわけではない。
適当な溶媒（例えば 100 mM リン酸緩衝液（pH 6.5）など）、カルボニル化合物である基質（例えば、2-ペンタノンもしくはアセトフェノンを加え、NADPHや酸化型ニコチンアミド・アデニンジヌクレオチドリン酸（以下、NADP+）等の補酵素、および該形質転換体の培養物および/またはその処理物などを添加し、pH調整下、攪拌して反応させる。

ここで、処理物とは、例えば、粗抽出液、培養菌体、凍結乾燥生物体、アセトン乾燥生物体、菌体破砕物、またはそれらの固定化物等で、該ポリベプチドの酵素触媒活性が残存している物を意味する。

反応温度は 5〜8°Cであることが好ましく、10〜60°Cであることがより好ましく、20〜40°Cであることがさらに好ましい。反応液の pH は 3〜10であることが好ましく、pH 4〜9であることがより好ましく、pH 5〜8であることがさらに好ましい。反応はパッチ式あるいは連続方式で行われる。パッチ方式の場合は、反応基質は 0.01〜100% (w/v)、好ましくは 0.1〜70%(w/v)、より好ましくは 0.5〜50%(w/v)の仕込み濃度で添加される。また、反応の途中で新たに基質を追加添加しても良い。

また、反応には水系溶媒を用いても良いし、水系の溶媒と有機系の溶媒とを混合して用いても良い。有機系溶媒としては、例えばジメチルホルムアミド、ジメチルホキシド、2-プロパノール、酢酸エチル、トルエン、メタンール、エタノール、n-プタノール、ヘキサン、アセトニトリル、酢酸プロピル、酢酸ブチル、アセトン、ジメチルシプロパン、t-メチルブチルエーテル、ジェチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジメチルアセトアミド、ジグリム、エチレングリコール、ジメトキシタン、四塩化炭素、塩化メチレン、エチルセロソルブ、酢酸セロソルブ、1、3-ジメチル-2イミダゾリジノン、ヘキサメチルリン酸トリアミド等が挙げられる。反応系に含まれる有機系溶媒の濃度は、特に限定されないが、好ましくは 1〜95%、より好ましくは 5〜90%、さらに好ましくは 10〜80%である。
ここで形質転換体の処理物等とは、例えば、無細胞抽出液、培養菌体、凍結乾燥菌体、アセトン乾燥菌体、あるいはその他の磨砕物、これらの混合物などを意味する。更にそれらは、ポリペプチド体あるいは菌体のまま公知の手段で固定化されて用いられ得る。

また、反応を行う際に、本発明のポリペプチド、および還元型補酵素再生能を有するポリペプチドの両者を生産する形質転換体を用いれば、補酵素の使用量を大幅に減らすことが可能となる。還元型補酵素再生能を有するポリペプチドについて、次に詳述する。

本発明のポリペプチドの生産能を有する形質転換体を用いて、カルボニル化合物を還元してアルコール化合物を合成する場合、補酵素としてNADPHもしくはNADHが必要となる。上記のように、反応系にNADPHもしくはNADHを必要な量だけ添加しても還元反応を実施しうる。しかし、酸化された該補酵素（NADP+やNAD+）を還元型NADPHやNADHに変換する能力（以後還元型補酵素再生能力と呼ぶ）を有する酵素とその基質からなる補酵素再生系を、本発明のポリペプチドと組み合わせて反応を行うことにより、高価な補酵素の使用量を大幅に削減することができる。還元型補酵素再生能力を有する酵素としては、ヒドロゲナーゼ、ギ酸脱水素酵素、カルボニル還元酵素、グルコース-6-リン酸脱水素酵素およびグルコース脱水素酵素等を用いることができる。好適には、グルコース脱水素酵素が用いられる。

このような反応は、補酵素再生系を不斉還元反応系内に添加することによくても行われ得るが、本発明の酵素をコードするポリヌクレオチドおよび還元型補酵素再生能を有するポリペプチドをコードするポリヌクレオチドの両者により形質転換された形質転換体を触媒とした場合は、還元型補酵素再生能を有する酵素を別に調製し反応系内に添加しなくても、効率的に反応を行うことができる。このような形質転換体は、先述の形質転換体の作製方法により得られる。

反応後の反応液からアルコールの回収方法は特に限定されないが、反応液
か ら直接、 または必要 に応 じて菌体等 を分離後、酢酸 エチル、 トルエン、 t —プチルメチルエーテル、 ヘキサン、 塩化 メチレン等 の溶剤で 抽 出し、脱水 後、 蒸留、 再結晶あ るい は シリカゲル カラムクロマ トグラフィー等 により精 製することができる。 こ の方法 により高 純度の アル コール化合 物を容易 に得 ることができる。

実施例

以下、実施例 で本 発明 を詳細 に説明するが、 本 発明 はこれら りにより限定され るものではない。 なお、 以下の実施例 において用 いた組み 換えDNA 技術 に関する 詳細な 操作 方法 などは、 次の成書に記載 されている 。

[参考例1] ウァンデル ウルトツイマ・ポリスポラ (Vanderwa lt ozyma polvsp ora) NBRC 0996 株由来 カルポニル化合 物還元活性 を有 する ポリ ベブチド (野生 型酵素) を コード するDNA の 取得 ウァンデルウル トツイマ・ポリスポラ (Vanderwa ltozyma polvsp ora) NBRC O996 株より カルポニル化合 物に対 する 還元活性を 有する ポリ ベブチド (以下、 本ポ リ ベブチドを RKP と呼ぶ) を コード するDNAをPCR により取得 した。

[ウァンデルウルトツイマ・ポリスポラ NBRC 0996 株の染色体DNA の調製]

5 00 m l 容 坂 口フラスコ に、 バク トトリプト トン16 g 、 酵母エキス 10 g 、 塩化 ナトリウム 5 g 、 アデ カノール L G — 109 (日油 社 製) 0.1 g (いずれ も 1 L 当 り) の 組成からなる 液体 培地 (pH 7) 50 m l を調製 し
120℃で20分間蒸気殺菌をおこなった。この培地に、予め同培地にて前培養しておいたヴアンデルワルトザイマ・ポリスポラ（Vanderwa
tozyma polvspsora）NBRC0996株の培養液を5m
l接種し、30℃で18時間振盪しながら培養を行った。この培養液から、
Murray等の方法（NucにAcids Res. 8, 4321（1
t光）に記載の方法に従って染色体DNAを抽出した。

[0108] [PCR反応]
プライマー1：5' - GGGATTCATATGAGTGTTTAG
TTACGAG-3' （配列表の配列番号4）、プライマー2：5' - AT
ACGCCTCAGCTATTTGTCTTGAACCTTCA-
3' （配列表の配列番号5）を用いて、ヴアンデルワルトザイマ・ポリスポラ（Vanderwalltozyma polvspsora）NBRC09
96株の染色体DNAを錶型としてPCRを行った。

[0109] その結果、配列表の配列番号2に示す塩基配列からなる遺伝子の開始コドン
部分にNdeI認識部位が付加され、かつ終始コドンの直後にSalI認識
部位が付加された二本鎖DNA（RKP遺伝子）が得られた。これを錶型に
さらにPCR反応を行い、定法により240番目のTをCに改変した。これ
によりこの遺伝子がコードするRKP酵素のアミノ酸配列は変わらずに、遺
伝子中のNdeI認識部位が破壊された配列表の配列番号3に示す塩基配列
からなる二本鎖DNA（NdeI部位を破壊したRKP遺伝子）が得られた。
PCRは、DNAポリメラーゼとして、PrimeSTAR HS DNA
polymerase（タカラバイオ社製）を用いて行い、反応条件は
その取り扱い説明書に従った。

[0110]（参考例2）組換えベクターpNKPの構築
参考例1で得られたNdeI部位を破壊したRKP遺伝子をNdeIおよび
SalIで消化し、プラスマドpUCN18（PCR法によりpUC18（
タカラバイオ社製）の185番目のTをAに改変してNdeIサイトを破壊
し、更に471-472番目のGCをTGに改変することにより新たにNde
サイトを導入したプラスミドのlacプロモーターの下流のNdeI認識部位とSalI認識部位の間に挿入し、組換えベクターpNKを構築した。

（参考例3）ポリペプチドを発現する組換え生物の作製
参考例2で構築した組換えベクターpNKを用いて、且. coli HB101コンピュートセル（タカラバイオ社製）を形質転換し、組換え生物且. coli HB101（pNK）を得た。また、pUCN18を用いて且. coli HB101コンピュートセル（タカラバイオ社製）を形質転換し、組換え生物E. coli HB101（pUCN18）を得た。

（参考例4）組換え生物におけるDNAの発現
参考例3で得た2種類の組換え生物（且. coli HB101（pUCN18）、E. coli HB101（pNK））を、200μg/mLのアンピシリンを含む2XYT培地（トリプトン1.6%、イーストエキス1.0%、塩化ナトリウム0.5%、pH7.0）を5mLに接種し、37℃で24時間振盪培養した。上記の培養で得られたそれぞれ培養液について、遠心分離により菌体を集め、5mLの100mMリン酸緩衝液（pH6.5）に懸濁した。これを、UH−50型超音波ホモゲナイザー（SMT社製）を用いて破砕した後、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。これら無細胞抽出液のアセトフエノン還元活性を測定した。アセトフエノンに対する還元活性は、100mMリン酸緩衝液（pH6.5）に、アセトフエノン10mM、補酵素NADPH0.25mM、および無細胞抽出液を添加して30℃で1分間反応を行い、波長340nmにおける吸光度の減少速度より算出した。この反応条件において、1分間に1μmolのNADPHをNADPに酸化する酵素活性を1Uと定義した。それぞれの組換え生物のアセトフエノン還元活性を以下に示す。且. coli HB101（pUCN18）については、アセトフエノン還元活性は0.1U/mg以下であった。一方、RKを発現させたE. coli HB101（pNK）のアセトフエノン還元活性は5U/mgであった。以上のように、参考例
3で得られた組換え生物はアセトフエノンに対する還元活性を有し、RKPの発現が認められた。

[0113]（参考例5）野生型酵素RKPの有機溶剤に対する安定性

参考例4と同様の方法で野生型酵素の無細胞抽出液を得た。この無細胞抽出液に最終濃度3.0、4.0、5.0%のジメチルホルムアミドを添加し、硫酸もしくは水酸化ナトリウムでpH6.5に調整後、30℃で3時間インキュベートした。また、対照として何も添加しない無細胞抽出液も同様にインキュベートした。3時間後、各無細胞抽出液を希釈した。これら無細胞抽出液の2—ベンタノン還元活性を参考例4と同様の方法で測定した。下記式より溶剤添加時の相対活性を算出し、この値を各種化合物に対する安定性の指標とした。結果を表1に示す。

相対活性（％）=[3時間目の酵素活性（溶剤添加）]/[3時間目の酵素活性（溶剤非添加）]×100

[0114]（表1）

<table>
<thead>
<tr>
<th>溶剤</th>
<th>濃度</th>
<th>相対活性（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>非添加</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ジメチルホルムアミド</td>
<td>30%</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0</td>
</tr>
<tr>
<td>ジメチルスルホキシド</td>
<td>40%</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>58</td>
</tr>
</tbody>
</table>

[0115]野生型酵素はジメチルスルホキシドに比べて、ジメチルホルムアミドに対する安定性が低かった。

[0116]（参考例6）野生型酵素RKPの有機溶剤に対する安定性

参考例4と同様の方法で野生型酵素の無細胞抽出液を得た。この無細胞抽出液に最終濃度3.0%のジメチルホルムアミドを添加し、硫酸もしくは水酸化ナトリウムでpH6.5に調整後、30℃で2時間インキュベートした。また、対照として何も添加しない無細胞抽出液も同様にインキュベートした。2時間後、各無細胞抽出液を希釈した。これら無細胞抽出液の2—ヘキサノン還元活性を測定した。100mMリン酸緩衝液（pH6.5）に、2—ヘキ
サノン 10 mM、補酵素 NADPH 0.25 mM、および無細胞抽出液を添加して 30℃で 1 分間反応を行い、波長 340 nm における吸光度の減少速度を測定した。この減少速度より 2_ヘキサノン還元活性を算出した。下記式より溶剤添加時の相対活性を算出し、この値を各種化合物に対する安定性の指標とした。溶剤添加条件下の野生型酵素の活性（相対活性）は溶剤非添加条件下の 8% であった。

相対活性 (%) = (2 時間目の酵素活性（溶剤添加）) / (2 時間目的酵素活性（溶剤非添加）) X 100

[0117] (参考例 7) 野生型酵素 RKP の有機溶剤による反応阻害

参考例 4 と同様の方法で野生型酵素の無細胞抽出液を得た。この無細胞抽出液に終濃度 30% のジメチルホルムアミドを添加し、硫酸もしくは水酸化ナトリウムで pH 6.5 に調整後、30℃で 2 時間インキュベートした。また、対照として何も添加しない無細胞抽出液も同様にインキュベートした。2 時間後、各無細胞抽出液を希釈した。これら無細胞抽出液の 2_ヘキサノン還元活性を測定した。100 mM リン酸緩衝液 (pH 6.5) に、30% ジメチルホルムアミド、2_ヘキサノン 10 mM、補酵素 NADPH 0.25 mM、および無細胞抽出液を添加して反応を行った。NADPH の蛻光の減少速度から NADPH の消費速度を求め、2_ヘキサノン還元活性を算出した。下記式より溶剤添加時の相対活性を算出し、この値を各種化合物に対する安定性の指標とした。溶剤添加条件下の野生型酵素の活性（相対活性）は溶剤非添加条件下の 24% であった。

相対活性 (%) = (酵素活性（溶剤添加）) / (酵素活性（溶剤非添加）) X 100

[0118] (実施例 1) 変異酵素ライブラリーの作製 1

TCA—3'（配列番号別）を用いてエラープローヌPCR法（Leung et al. Technique 1, 11–15 (1989)）を用いて、RKP遺伝子全長にランダムな変異を導入したDNA増幅断片を得た。この増幅断片を制限酵素NdeIおよびSalIで消化したのち、同酵素で処理した高発現ベクターpUCN18に組み込み、複数の変異酵素発現プラスマドを作製した。このプラスマドを用いて且、coli HB101を形質転換し、100 μg/mLのアンピシリンを含むLBプレート培地に塗布した。生育したコロニーは変異導入されたRKP遺伝子を有する組換え大腸菌であり、この組換え株群で変異酵素ラビラリーグ1とした。

[0119]（実施例2）変異型カルボニル還元酵素の選抜1
変異酵素ラビラリーグ1より有機溶剤に対する安定性が向上した変異型カルボニル還元酵素を選抜した。実施例1で作製した変異酵素ラビラリーグ1の各組換え菌および参考例3で作製した且、coli HB101（pNKP）（対照）をそれぞれ参考例4と同様の方法で培養した。得られた各培養液60 μlに10 mM EDTA・2Naおよび1% Triton X-100を含むリン酸緩衝液（pH 7.0）240 μlを加え、37℃で1時間インキュベートした。各処理液を遠心し、上清を無細胞抽出液とした。各無細胞抽出液20 μlに終濃度10～30%のジメチルホルムアミドを含むリン酸緩衝液（pH 6.5）を加え、30℃で2時間インキュベートした（ジメチルホルムアミド処理）。ジメチルホルムアミド処理した各無細胞抽出液を96穴プレート（AGCテクノグラス社製）に50 μl分注し、6 mMのNADPHを含むリン酸緩衝液（pH 6.5）50 μlと133 mM 2，3−ブタンジオンを含むリン酸緩衝液（pH 6.5）100 μlを加え30℃で反応した。経時的にUVサンプル撮影装置FAS III（東洋紡績社製）でNADPHの蛻光を観察した。反応が進行しない酵素液はNADPHの蛻光が残存するが、反応が進行した無細胞抽出液はNADPHの減少に伴い、蛻光がなくなった。対照である且、coli HB101（pNKP）の無細胞抽出液（野生型酵素）に比べ、早く蛻光がなくなった酵素をジメ
チルホルムアミド存在下で反応性の高い酵素、すなわち有機溶剤に対する安定性が向上した変型カルボニル還元酵素として選抜した。選抜した酵素の培養液からプラスミドを抽出し、Big Dye Terminator Cycle Sequencing Kit（アプライドバイオシステムズジャパン社製）およびApplied Biosystems 3130x 1ジェネティックアナライザ（アプライドバイオシステムズジャパン社製）を用いて変異型RKP遺伝子の塩基配列を決定し、変異部位を特定した。得られた有機溶剤に対する安定性の向上した変型カルボニル還元酵素を表2に示す。

[0120] [表2]

<table>
<thead>
<tr>
<th>プラスミド名称</th>
<th>変異部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNKPm01</td>
<td>T257S</td>
</tr>
<tr>
<td>pNKPm02</td>
<td>K259E</td>
</tr>
<tr>
<td>pNKPm03</td>
<td>S267P</td>
</tr>
<tr>
<td>pNKPm04</td>
<td>K270M</td>
</tr>
<tr>
<td>pNKPm05</td>
<td>H102-E226G-S267P</td>
</tr>
<tr>
<td>pNKPm06</td>
<td>H71R-G300D</td>
</tr>
</tbody>
</table>

[0121] 表2に示す6種類の有機溶剤に対する安定性が向上した酵素を取得した。

[0122] （実施例3）変型カルボニル還元酵素の選抜2

変異酵素ライブラリー1より有機溶剤に対する安定性が向上した変型カルボニル還元酵素を選抜した。実施例1で作製した変異酵素ライブラリー1の各組換え菌および参考例3で作製したE.coli HB101 (pNKP)（対照）を100μg/mlのアンピシンを含むLB培地培地上に植菌した。得られたコロニーを40℃で加熱しておいたナイロン膜（Biodyne A、0.45μm）に転写した後、そのナイロン膜を30%のジメチルホルムアミドを含む50mMの3-(N-morpholino)propanesulfonic acid（MOPS）バッファー中に40℃で30分浸漬した。その後、このナイロン膜を1mMのNADP+、200μMのnitroblue tetrazolium、10μMの1-methoxy-5-methylphenazinium methylsulfo酸6および10%（リ/リ）の2-プロパノールを含む50mMのM0
PSバッファー中に室温で30分浸漬した。その後、ナイロン膜を蒸留水で洗浄し、染色されたコロニーをジメチルホルムアミドに対する安定性が向上した変換型カルボニル還元酵素の組換え菌候補として選抜した。候補株を200μg/mLのアンビシリンを含む2×YT培地（トリプトン1.6%、イーストエキス1.0%、塩化ナトリウム0.5%、pH7.0）5mLに接種し、20時間培養した。得られた各培養液について、遠心分離により菌体を集め、培養液の1/6量の100mMリン酸緩衝液（pH6.5）に懸濁した。これを、UH-50型超音波ホモゲナイザー（SMT社製）を用いて破砕した後、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。この無細胞抽出液20μLに最終濃度20、23、26、30%のジメチルホルムアミドと50mM MOPSバッファー（pH7.0）を総液量40μLになるように添加し、40℃で30分間加熱した。氷上で1分間冷却した後、1mMのNADP+、200μMのnitroblue tetrazolium、10μMの1-methoxy-5-methylphenazinium methylsulfateおよび10%（v/v）の2-プロパノールを含む50mMのMOPSバッファーを200μL加えた。反応液を96穴プレート（AGCテクノグラス社製）に移し、1時間観察した。染色されたものをジメチルホルムアミドに対する安定性がさらに向上した変換型カルボニル還元酵素の組換え菌として選抜した。選抜した組換え菌の培養液からプラスミドを抽出し、Big Dye Terminator Cycle Sequencing Kit（アプライドバイオシステムズジャパン社製）およびApplied Biosystems 3130×1ジェネティックアナライザ（アプライドバイオシステムズジャパン社製）を用いて変異型RKP遺伝子の塩基配列を決定し、変異部位を特定した。得られた有機溶剤に対する安定性の向上した変換型カルボニル還元酵素を表3に示す。

[0123]
表3

<table>
<thead>
<tr>
<th>プラスミド名称</th>
<th>変異部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNKpMo1</td>
<td>T257S</td>
</tr>
<tr>
<td>pNKpMo2</td>
<td>K259E</td>
</tr>
<tr>
<td>pNKpMo3</td>
<td>S267P</td>
</tr>
<tr>
<td>pNKpMo4</td>
<td>K270M</td>
</tr>
<tr>
<td>pNKpMo5</td>
<td>N102I E226G-S267P</td>
</tr>
<tr>
<td>pNKpMo6</td>
<td>H71R-G300D</td>
</tr>
<tr>
<td>pNKpMo7</td>
<td>H71N-F195L</td>
</tr>
<tr>
<td>pNKpMo8</td>
<td>L177F-A220V</td>
</tr>
<tr>
<td>pNKpMo9</td>
<td>N45D-N175D-I183T</td>
</tr>
<tr>
<td>pNKpMl0</td>
<td>K22R</td>
</tr>
<tr>
<td>pNKpM1 1</td>
<td>Y25F</td>
</tr>
<tr>
<td>pNKpM1 2</td>
<td>T135A</td>
</tr>
<tr>
<td>pNKpM1 3</td>
<td>Q155L</td>
</tr>
<tr>
<td>pNKpM1 4</td>
<td>F195L</td>
</tr>
<tr>
<td>pNKpM1 5</td>
<td>S212F</td>
</tr>
<tr>
<td>pNKpM1 6</td>
<td>S212T</td>
</tr>
<tr>
<td>pNKpM1 7</td>
<td>S212Y</td>
</tr>
<tr>
<td>pNKpM1 8</td>
<td>E228V</td>
</tr>
<tr>
<td>pNKpM1 9</td>
<td>N265K</td>
</tr>
<tr>
<td>pNKpM20</td>
<td>R301C</td>
</tr>
<tr>
<td>pNKpM2 1</td>
<td>S212I</td>
</tr>
<tr>
<td>pNKpM22</td>
<td>E109G-K331F</td>
</tr>
<tr>
<td>pNKpM23</td>
<td>I124L-S236N</td>
</tr>
<tr>
<td>pNKpM24</td>
<td>I159F-K259E</td>
</tr>
<tr>
<td>pNKpM25</td>
<td>L177F-A220V</td>
</tr>
<tr>
<td>pNKpM26</td>
<td>K42R-Q155R-K279R</td>
</tr>
<tr>
<td>pNKpM28</td>
<td>Q155L-S250P-Q298P</td>
</tr>
<tr>
<td>pNKpM29</td>
<td>E56K-T138N-T190S-D254N</td>
</tr>
</tbody>
</table>

【0124】表3に示す29種類の有機溶剤に対する安定性が向上した酵素を取得した。これらのうち6種類は実施例2で取得した酵素と同一の変異酵素だった。

【0125】(実施例4) 変型カルボニル還元酵素の評価1

実施例2で取得した変型カルボニル還元酵素の各組換え菌および参考例3で作製したE. coli HB101(pNKP)（対照）をそれぞれ参考例4と同様の方法で培養した。得られた各培養液について、遠心分離により菌体を集め、培養液と等量から1/5量の100mMリン酸緩衝液（pH6.5）に懸濁した。これを、UH-50型超音波ホモゲナイザー（SMT社製）を用いて破砕した後、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。無細胞抽出液60μlに終濃度30、40μMまたは50μMのジメチルホルムアミドを含むリン酸緩衝液（pH7.0）60μlを加え、30℃
でインキュベートした（ジメチルホルムアミド処理）。3時間目のジメチルホルムアミド処理液をサンプリングし、希釈して参考例4に示した方法で2ベンタノンに対する還元活性を測定した。下記式より残存活性は算出し、この値をジメチルホルムアミドに対する安定性の指標とした。相対活性（%）=[3時間目の酵素活性（溶剤添加）]/[3時間目の酵素活性（溶剤非添加）]×100
ジメチルホルムアミド40mM存在下で評価した野生型酵素および変異型カルボニル還元酵素の相対活性を表4に示す。

変異部位 残存活性
(%)
野生型酵素 7.9
T257S 20.2
K259E 29.4
N1021-E226G-S267P 25.6
K270M 36.2
H71R-G300D 17.8

表4に示した変異型カルボニル還元酵素は野生型酵素よりも有機溶剤に対する安定性が向上していた。

(実施例5)変異型カルボニル還元酵素の評価2
実施例3で得た変異型カルボニル還元酵素の各組換え菌および参考例3で作製したE．coli HB101（pNKP）（対照）をそれぞれ参考例4と同様の方法で培養した。得られた各培養液について、遠心分離により菌体を集め、培養液と等量から1/5量の100mMリン酸緩衝液（pH6.5）に懸濁した。これを、UH－50型超音波ホモゲナイザー（SMT社製）を用いて破砕した後、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。25mMの無細胞抽出液に等量の80％ジメチルホルムアミド溶液を加え、30℃で30分静置した。これに100mMリン酸緩衝液（pH6.5）200μLを加え、混合した。この溶液15mMに最終濃度0.625mMのNADPHと12.5mMの2,3－ブタンジオンを溶解した100mMリン酸緩衝液（pH6.5）を250μL加え、混合した。5秒振とう
し、NADPHの吸光（340 nm）をBenchmark Plus microplate spectrophotometer（BIOD社製）で15秒間測定し、その減少速度から2,3-ブタンジオンに対する還元活性を求めた。下記式よりジメチルホルムアミド添加時に対する添加時の酵素活性を算出し、この値をジメチルホルムアミドに対する安定性の指標とした。

相対活性（%） = \[酵素活性（ジメチルホルムアミド添加）] ÷ \[酵素活性（ジメチルホルムアミド非添加）] \times 100

野生型酵素および変異型カルボニル還元酵素の相対活性を表5に示す。

<table>
<thead>
<tr>
<th>変異部位</th>
<th>残存量活性（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>野生型酵素</td>
<td>8</td>
</tr>
<tr>
<td>H71N-F195L</td>
<td>24</td>
</tr>
<tr>
<td>L177F-A220V</td>
<td>47</td>
</tr>
<tr>
<td>N45D-N175D-I183T</td>
<td>16</td>
</tr>
<tr>
<td>N102I-E226G-S267P</td>
<td>26</td>
</tr>
<tr>
<td>K22R</td>
<td>13</td>
</tr>
<tr>
<td>Y25F</td>
<td>11</td>
</tr>
<tr>
<td>T135A</td>
<td>13</td>
</tr>
<tr>
<td>Q155L</td>
<td>13</td>
</tr>
<tr>
<td>F195L</td>
<td>29</td>
</tr>
<tr>
<td>S212F</td>
<td>11</td>
</tr>
<tr>
<td>S212T</td>
<td>10</td>
</tr>
<tr>
<td>S212Y</td>
<td>12</td>
</tr>
<tr>
<td>E228V</td>
<td>28</td>
</tr>
<tr>
<td>T257S</td>
<td>20</td>
</tr>
<tr>
<td>K259E</td>
<td>29</td>
</tr>
<tr>
<td>N265K</td>
<td>28</td>
</tr>
<tr>
<td>S267P</td>
<td>38</td>
</tr>
<tr>
<td>K270M</td>
<td>38</td>
</tr>
<tr>
<td>R301C</td>
<td>41</td>
</tr>
<tr>
<td>S21-V238I</td>
<td>36</td>
</tr>
<tr>
<td>H71R-G300D</td>
<td>12</td>
</tr>
<tr>
<td>E109G-K331F</td>
<td>9</td>
</tr>
<tr>
<td>I124L-S236N</td>
<td>38</td>
</tr>
<tr>
<td>I159F-K259E</td>
<td>15</td>
</tr>
<tr>
<td>L177F-A220V</td>
<td>47</td>
</tr>
<tr>
<td>K42R-Q155R-K279R</td>
<td>14</td>
</tr>
<tr>
<td>N45D-N175D-I183T</td>
<td>16</td>
</tr>
<tr>
<td>Q155L-S250P-Q298P</td>
<td>23</td>
</tr>
<tr>
<td>E56K-T138N-T190S-D254N</td>
<td>14</td>
</tr>
</tbody>
</table>
表5に示した改変型カルボニル還元酵素は野生型酵素よりも有機溶剤に対する安定性が向上していた。

（実施例6）多重変異改変型カルボニル還元酵素の作製1
実施例2で取得したプラスミドpNKPm02を錶型として、プライマー1:
5' - GGGGATTCCATATTAGTGTTTATCAGG - 3'（配列の配列番号4）、プライマー3: 5' - GTTAATTT
CATAGCGCAGTTTATAATTACATG - 3'（配列の配列番号6）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうち
257Sのアミノ酸置換を有するN末端側のポリペプチドをコードする二本
鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm02を錶型として、プライマー4:
5' - CATGTAATTAAAATCGCG
CTAATGAAATTAC - 3'（配列の配列番号7）、プライマー2:
5' - ATACGCCTCGACTTACTTATGGCTTTGAA
CCTTCA - 3'（配列の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちH71R、K259Eのアミノ酸置換を有する
C末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちH71R、K259Eのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKPm30を作製した。このpNKPm30を用いて、且．

HBI01コンピューティング（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素H71R-K259Eを生産する組換え生物旦．co-

（実施例7）多重変異改変型カルボニル還元酵素の作製2
実施例2で取得したプラスミドpNKPm02を錶型として、プライマー1:
5' - GGGGATTCCATATTAGTGTTTATCAGG - 3'（配列の配列番号4）、プライマー5: 5' - GATCAACCC
T T T C A C C G C T T A A C T C A T C A T T A T G - 3'（配列表の配列番号8）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちT257Sのアミノ酸置換を有するN末端側のポリプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKP m02を鏡型として、プライマー6：5' - CATAATGTAGTATTCCTTGAAG
G T G A A A G G T T G A T C - 3'（配列表の配列番号9）、プライマー2：5' - ATACGC GTCACTTACTATTGTTCCTTGAACCTTCA - 3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちT257S、K259Eのアミノ酸置換を有するC末端側のポリプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを鏡型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちT257S、K259Eのアミノ酸置換を有するポリプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKP m31を作製した。このpNKP m31を用いて、大腸菌H B 1 0 1 コンピジェンテルセル（タカラバイオ社製）を形質転換し、
変異型カリボニル還元酵素T257S-K259Eを生産する組換え生物を大腸菌H B 1 0 1（pNKP m31）を得た。[0133]（実施例8）多重変異変異型カリボニル還元酵素の作製3
実施例2で取得したプラスミドpNKP m02を鏡型として、プライマー1：5' - GGGAAATCCCATATAGTGTTTTAGTACAG
G - 3'（配列表の配列番号4）、プライマー7：5' - CTCGTTAT
G G A C A C G A T C T C T G A G G T A A C T C A - 3'（配列表の配列番号10）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、G300Dのアミノ酸置換を有するN末端側のポリプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpN
KP m02を鏡型として、プライマー8：5' - GAGTTACCTCAAGGAGATCGTGCTCCATACACGAG - 3'（配列表の配列番号1
1) プライマー2: 5'-ATACGCGTCGACTTACTATTG
TTCTTGAACCTTCA-3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちG300Dのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、G300Dのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKp32を作製した。このpNKp32を用いて、且てcoliHB101コンピテンシートセル（タカラバイオ社製）を形質転換し、変異型カルポニール還元酵素K259E-G300Dを生産する組換え生物産coliHB101（pNKp32）を得た。

[0134]（実施例9）多重変異変異型カルポニール還元酵素の作製4
実施例2で取得したプラスマドpNKp04を錶型として、プライマー1: 5'-GGGATTCCATATGAGTGGTTAATCAG
G-3'（配列表の配列番号4）、プライマー9: 5'-GGTAAATTT
CATTAGCGCATTTTAAATTACATG-3'（配列表の配列番号12）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちH71R、K270Mのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスマドpNKp02を錶型として、プライマー10: 5'-CATGTAATTAAAAATACGCGCTAATGAAATTAA-3'（配列表の配列番号13）、プライマー2: 5'-ATACGCGTCGACTTACTATTG
TTCTTGAACCTTCA-3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちH71R、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側Dー6）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号
1に示すアミノ酸配列のうちH71R、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKp33を作製した。このpNKp33を用いて、E．coliHB101コンピテンツセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素H71R—K270Mを生産する組換え生物E．coliHB101（pNKpm33）を得た。

[0135]（実施例10）多重変異改変型カルボニル還元酵素の作製5
実施例2で取得したプラスミドpNKpm04を錶型として、プライマー1
5′—GGGAATTCAATATGAGTGTTTAGTTACAG
G−3′（配列の配列番号4）、プライマー11：5′—GGATACCTTTAGTACCAATACAGCTGGGATTAG−3′（配列の配列番号14）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちN1021のアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKpm04を錶型として、プライマー12：5′—CTTATCCCAAGCTGTATATTGGTTAGTACTAAAGGTATCC−3′（配列の配列番号15）、プライマー2：5′−ATACGCGTGCAGCTTACTATTTGTTCTTGGACCTTCA−3′（配列の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちN1021、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側Dー六）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちN1021、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でPUCN18に導入し、pNKpm34を作製した。このpNKpm34を用いて、E．coliHB101コンピテンツセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素N1021—K270Mを生産する組換え生物E．coliHB101（pNKpm34）を得た。
実施例1（1）多重変異改変型カルボニル還元酵素の作製6
実施例2で取得したプラスミドpNKPm04を錶型として、プライマー1
:5' - GGGGATCCATATGGAGTTTAGTTACAG
G - 3'（配列番の配列番号4）、プライマー13:5' - TTTATCA
ATTTCACCTGCTTTGGAGCAACATAGC - 3'（配列番の配列番号16）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちE226Gのアミノ酸置換を有するN末端側のエピブチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKP
m04を錶型として、プライマー14:5' - GCTATGGTTTGCTCC
AACCAGGGAGTGATATAAAG - 3'（配列番の配列番号17）、プライマー2:5' - ATACGCGTGCACCTACTAT
TGTTCTGGACCTTCA - 3'（配列番の配列番号5）を用いて
PCRを行い、配列番号1に示すアミノ酸配列のうちE226Gのアミノ
酸置換を有するC末端側のエピブチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に
示すアミノ酸配列のうちE226G、K270Mのアミノ酸置換を有するポリブチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUC
CN18に導入し、pNKPm35を作製した。このpNKPm35を用い
て、且、coliHB101コンピテンテストル（ダラカバイオ社製）を形
質転換し、改変型カルボニル還元酵素E226G - K270Mを生産する組
換え生物E.coliHB101（pNKPm35）を得た。

実施例1（2）多重変異改変型カルボニル還元酵素の作製7
実施例2で取得したプラスミドpNKPm04を錶型として、プライマー1
:5' - GGGGATCCATATGGAGTTTAGTTACAG
G - 3'（配列番の配列番号4）、プライマー15:5' - GATCAAC
CTTTACCGCTTTAACCTCATTAG - 3'（配列番の配列番号18）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうち
ちT257Sのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPｍ04を録型として、プライマー16：5'—CATATTGAGTGTTAAGCGGTAAAGGTTGATC-3'（配列表の配列番号19）、プライマー2：5'—ATACGGCGTCACTTATTTGTTCTTGAACCCTTCA-3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちT257S、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを録型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちT257S、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKPtr36を作製した。このpNKPtr36を用いて、E.coli HB101コンピテンシセル（タカラバイオ社製）を形質転換し、変異型カルポニル還元酵素T257S-K270Mを生産する組換え生物E.coli HB101（pNKPtr36）を得た。

[0138]（実施例13）多重変異変異型カルポニル還元酵素の作製8
実施例2で取得したプラスミドpNKPm04を録型として、プライマー1：5'—GGGAATTCCATAATGAGTGTTTATAGTTACAGG-3'（配列表の配列番号4）、プライマー17：5'—GACAGAAGCTCAACCTTTACCAGTTAACTCATT-3'（配列表の配列番号20）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259Eのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm04を録型として、プライマー18：5'—GATGAGTTAACTGTTGAAAGGTTGATCTTGTTC-3'（配列表の配列番号21）、プライマー2：5'—ATACGCGTCGACTTACTATTGTTCTTGAACCCTTCA-3'（配列表の配列番号5）を用いてPCRを行い、配
列番号1に示すアミノ酸配列のうちK259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錦型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、N末端側DNAを用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS267P、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、
p N K P m 3 8 を作製した。この p N K P m 3 8 を用いて、且. c o l i H B 1 0 1 コンピテン トセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素 S 2 6 7 P - K 2 7 0 M を生産する組換え生物旦. c o l i 1 H B 1 0 1 (p N K P m 3 8) を得た。

[0140] （実施例 15）多重変異改変型カルボニル還元酵素の作製 10
実施例 2 で取得したプラスミド p N K P m 0 4 を錶型として、プライマー 1 : 5' - G G G A A T T C C A T A T G A G T T T T A G T T A C A G G - 3'（配列表の配列番号 4）、プライマー 2 1 : 5' - C T C G T T A T G A C A C G A T C T C C T C T G A G G T A A C T C - 3'（配列表の配列番号 2 4）を用いて P C R を行い、配列番号 1 に示すアミノ酸配列のうち K 2 7 0 M、G 3 0 0 D のアミノ酸置換を有する N 末端側のポリベプチドをコードする二本鎖 D N A を得た（N 末端側 D N A）。同じくプラスミド p N K P m 0 4 を錶型として、プライマー 2 2 : 5' - G A G T T A C C T C A A G G A G A T C G T G T C C A T A A C G A G - 3'（配列表の配列番号 2 5）、プライマー 2 : 5' — A T A C G C G T C A G C A C T T A C T T A T T G T T C T T G A A C C T T C A - 3'（配列表の配列番号 5）を用いて P C R を行い、配列番号 1 に示すアミノ酸配列のうち G 3 0 0 D のアミノ酸置換を有する C 末端側のポリベプチドをコードする二本鎖 D N A を得た（C 末端側 D N A）。N 末端側 D N A と C 末端側 D N A を混合し、これを錶型として、プライマー 1、プライマー 2 を用いて P C R を行い、配列番号 1 に示すアミノ酸配列のうち K 2 7 0 M、G 3 0 0 D のアミノ酸置換を有するポリベプチドをコードする二本鎖 D N A を得た。参考例 2 と同様の方法で p U C N 1 8 に導入し、p N K P m 3 9 を作製した。この p N K P m 3 9 を用いて、且. c o l i H B 1 0 1 コンピテン トセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素 K 2 7 0 M - G 3 0 0 D を生産する組換え生物旦. c o l i H B 1 0 1 (p N K P m 3 9) を得た。

[0141] （実施例 16）多重変異改変型カルボニル還元酵素の評価 1
実施例 6 〜 1 5 で取得した多重変異改変型カルボニル還元酵素の各組換え菌
および参考例3で作製したcoli HB 101 (p NKP) （対照）をそれぞれ参考例4と同様の方法で培養した。実施例4と同様に多重変異改変型カルポニール還元酵素のジメチルホルムアミドに対する安定性を評価した。ジメチルホルムアミド4 0 %存在下で評価した野生型酵素および改変型カルポニール還元酵素の相対活性を表6に示す。

[0142] [表6]

<table>
<thead>
<tr>
<th>変異部位</th>
<th>残存活性 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>野生型酵素</td>
<td>8</td>
</tr>
<tr>
<td>K259E</td>
<td>25</td>
</tr>
<tr>
<td>K270M</td>
<td>31</td>
</tr>
<tr>
<td>H71R-K259E</td>
<td>30</td>
</tr>
<tr>
<td>T257S-K259E</td>
<td>38</td>
</tr>
<tr>
<td>K259E-G300D</td>
<td>36</td>
</tr>
<tr>
<td>H71R-K270M</td>
<td>29</td>
</tr>
<tr>
<td>N1021-K270M</td>
<td>26</td>
</tr>
<tr>
<td>E226G-K270M</td>
<td>31</td>
</tr>
<tr>
<td>T257S-K270M</td>
<td>44</td>
</tr>
<tr>
<td>K259E-K270M</td>
<td>64</td>
</tr>
<tr>
<td>S287P-K270M</td>
<td>33</td>
</tr>
<tr>
<td>K270M-G300D</td>
<td>44</td>
</tr>
</tbody>
</table>

[0143] 表6に示した変異型カルポニール還元酵素は野生型酵素よりも有機溶剤に対する安定性が向上していた。

[0144] （実施例17）多重変異改変型カルポニール還元酵素の作製11
実施例7で取得したプラスミドp NKP m37を錶型として、プライマー1
: 5′ - GGG AAT TCC ATG AGT TTT TAC AGG - 3′ （配列表の配列番号4）、プライマー2 3 : 5′ - C C A G T A G
C A C T G T A A C T A A A A C A A T C A T - 3′ （配列表の配列番号
26）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS21のアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドp NKP m37を錶型として、プライマー2 4 : 5′ - A T G A T T G T T T A G T T A C A G G T G
C T A C T G G - 3′ （配列表の配列番号27）、プライマー2 2 : 5′ - A
T A C G C T C G A C T C T A C T A T T G T T C T T G A A C C T T C A
3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS2I、K259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちI124L、K259E、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKpM40を作製した。このpNKpM40を用いて、大肠菌HB101コンピテンシートセル（タカラバイオ社製）を形質転換し、変異型カルボニル還元酵素S2I-K259E-K270Mを生産する組換え生物を大腸菌HB101（pNKpM40）を得た。

[0145]（実施例18）多重変異変異型カルボニル還元酵素の作製12
実施例7で取得したプラスミドpNKpM37を錶型として、プライマー1:5'-GGGAAATCCATATGAGTGTITAGTTACAGG-3'（配列表の配列番号4）、プライマー2:5'-GGCAGCAGAATTGACTTCCTCAGAACAATTCTCTCACA-3'（配列表の配列番号28）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちI124Lのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKpM37を錶型として、プライマー2:5'-GTGAAAGAGAAATTTGTTCCTGACTTCCTCAGAACAATTCTCTCACA-3'（配列表の配列番号29）、プライマー2:5'—ATACGCCTCGACTTACTATTGTTCTTGAAACCTTCA-3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちI124L、K259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちI124L、K259E、
K２7０Ｍのアミノ酸置換を有するポリベプチドをコードする二本鎖ＤＮＡを得た。参考例２と同様の方法でｐＵＣＮ１８に導入し、ｐＮＫＰｍ４１を作製した。このｐＮＫＰｍ４１を用いて、且、ｃｏｌｉＨＢ１０１コンピテンストセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素１１２４Ｌ－Ｋ２５９Ｅ－Ｋ２７０Ｍを生産する組換え生物且、ｃｏｌｉＨＢ１０１（ｐＮＫＰｍ４１）を得た。

実施例１３

実施例７で得たプラスミドｐＮＫＰｍ３７を錫型として、プライマー１：5' - GGAATTCCATATGGATGTATTAGTTACAG - 3'（配列の配列番号４）、プライマー２：7: 5' - CTTTATCTCTTCTCAAGAGATTTCCAGACGC - 3'（配列の配列番号３０）を用いてＰＣＲを行い、配列番号１に示すアミノ酸配列のうちL１７７Fのアミノ酸置換を有するN末端側のポリベプチドをコードする二本鎖ＤＮＡを得た（N末端側ＤＮＡ）。同様にプラスミドｐＮＫＰｍ３７を錫型として、プライマー２：8: 5' –GCTGCTTGGAACTTCTTTGAGAGATAAAGG - 3'（配列の配列番号３１）、プライマー２：5' –ATACGCCTCGACCTATTGTCTTGAACCTTTCA - 3'（配列の配列番号５）を用いてＰＣＲを行い、配列番号１に示すアミノ酸配列のうちL１７７F、K２５９E、K２７０Mのアミノ酸置換を有するC末端側のポリベプチドをコードする二本鎖ＤＮＡを得た（C末端側ＤＮＡ）。N末端側ＤＮＡとC末端側ＤＮＡを混合し、これを錫型として、プライマー１、プライマー２を用いてＰＣＲを行い、配列番号１に示すアミノ酸配列のうちL１７７F、K２５９E、K２７０Mのアミノ酸置換を有するポリベプチドをコードする二本鎖ＤＮＡを得た。参考例２と同様の方法でｐＵＣＮ１８に導入し、ｐＮＫＰｍ４２を作製した。このｐＮＫＰｍ４２を用いて、且、ｃｏｌｉＨＢ１０１コンピテンストセル（タカラバイオ社製）を形質転換し、改変型カルボニル還元酵素L１７７F－K２５９E－K２７０Ｍを生産する組換え生物E．ｃｏｌｉＨＢ１０１（ｐＮ
KPm42）を得た。

実施例20）多重変異改変型カルボニル還元酵素の作製14
実施例7で取得したプラスミドp NKPm37を錶型として、プライマー1
:5' - GGGGATTCCATATGGTGTATTAGTTACAG
G - 3' （配列表の配列番号4）、プライマー2:5' - GGAACCAA
AGACAGAAGCGGTTGATCG - 3' （配列表の配列番号32）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちF195
Lのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドp NKPm37を錶型として、プライマー3:5' - CGATCAACCAAGTTCTGGTCT
TTGGTCC - 3' （配列表の配列番号33）、プライマー2:5' - A
TACGCCTCGACTTACTATTTGTTCTTGAACCTTCA
_3' （配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちF195L、K259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちF195L、K259E、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でp
UCN18に導入し、pNKPm43を作製した。このpNKPm43を用
いて、且.coli HB101コンピテンセル（タカラバイオ社製）を
形質転換し、改変型カルボニル還元酵素F195L-K259E-K270
Mを生産する組換え生物且.coli HB101（p NKPm43）を得
た。

実施例21）多重変異改変型カルボニル還元酵素の作製15
実施例7で取得したプラスミドp NKPm37を錶型として、プライマー1
:5' - GGGGATTCCATATGGTGTATTAGTTACAG
G - 3' （配列表の配列番号4）、プライマー3:5' - C T G T T G G

AGCAAACATCCTTCTTGATGATTCT -3'（配列番号3 4）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちA220Vのアミノ酸置換を有するN末端側のポリプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm37を錶型として、プライマー32 : 5' - GAAATCATCAGGAA
GTGATGTTGGCTCACAAGC -3'（配列番号3 5）プライマー2 : 5' - ATACGGTGACTTATTTGTT
CTTGAACCTCACA -3'（配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちA220V、K259E、K270Mのアミノ酸置換を有するC末端側のポリプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちA220V、K259E、K270Mのアミノ酸置換を有するポリプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKPm44を作製した。このpNKPm44を用いて、且．coliHB101コンビネントセル（タカラバイオ社製）を形質転換し、変型カルボニル還元酵素A220
V - K259E - K270Mを生産する組換え生物且．coliHB10
1（pNKPm44）を得た。

[0149]（実施例2 2）多重変異改変型カルボニル還元酵素の作製16
実施例7で取得したプラスミドpNKPm37を錶型として、プライマー1 :5' - GGAATTCCATATGATGTCTTAGTTACAGC -3'（配列番号4）、プライマー33 : 5' - CGTACAT
CAACATAGTTACAAACACAGATTATC -3'（配列番号3 6）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS236Nのアミノ酸置換を有するN末端側のポリプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm37を錶型として、プライマー34 : 5' - GATAACTCGTGT
TGTTAATGTTGGTACG - 3'（配列表の配列番号37）、プライマー2 : 5' - ATACGCTGACTACTTATGGTTCTGACCTTCA - 3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS236N、K259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちS236N、K259E、K270Mのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKPm45を作製した。このpNKPm45を用いて、大腸菌HB101コンピテント（タカラバイオ社製）を形質転換し、変型カルボニル還元酵素S236N→K259E→K270Mを生産する組換え生物が、大腸菌HB101（pNKPm45）を得た。

【0150】（実施例23）多重変異変型カルボニル還元酵素の作製17
実施例7で取得したプラスミドpNKPm37を錶型として、プライマー1 : 5' - GGGATTCATGAGTTTCTAGTACAG - 3'（配列表の配列番号4）、プライマー3 5：5' - GCTACATTCACTACTACTACAAAAC - 3'（配列表の配列番号38）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちV238Iのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm37を錶型として、プライマー3 6：5' - GTTTTCTAGTACATTGATTGTTGATCGTACGTGGATGTCATG - 3'（配列表の配列番号39）、プライマー2 : 5' - ATACGCTGACTACTTATGGTTCTGACCTTCA - 3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちV238I、K259E、K270Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二
本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを
混合し、これを管型として、プライマー1、プライマー2を用いてPCRを
行い、配列番号1に示すアミノ酸配列のうちV2831、K259E、K270M
のアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得
た。参考例2と同様の方法でpUCN18に導入し、pNKPm46を作製
した。このpNKPm46を用いて、大coliHB101コンピテン
トセル（タカラバイオ株式）を形質転換し、改変型カルボニル還元酵素V2
381-K259E-K270Mを生産する組換え生物且。coliHB
101（pNKPm46）を得た。

実施例24多重変異改変型カルボニル還元酵素の作製18
実施例7で取得したプラスミドpNKPm37を管型として、プライマー1
:5'-GGGAAATTCCATATGAGTTAGTTACAG
G-3'（配列表の配列番号4）、プライマー3:5'-GATCAAC
CTTTTACCGCTTAACCTAATTATG-3'（配列表の配列番号40）を用いてPCRを行い、配列号1に示すアミノ酸配列のう
ちT257Sのアミノ酸置換を有するN末端側のポリペプチドをコードする
二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPm37
を管型として、プライマー3:5'-CATAATGAGTATTAA
GCCTAAGAGGTGATC-3'（配列表の配列番号41）、プ
ライマー2:5'-ATACGCGTCGACCTACTATTGGTTCT
TGAACTTCA-3'（配列表の配列番号5）を用いてPCRを行い
、配列番号1に示すアミノ酸配列のうちT257S、K259E、K270
Mのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNA
とC末端側DNAを混合し、これを管型として、プライマー1、プライマー2を用いてPCRを行い、配
列番号1に示すアミノ酸配列のうちT257S、K259E、K270Mの
アミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考
例2と同様の方法でpUCN18に導入し、pNKPm47を作製した。こ
の p N K P m 4 7 を用いて、株 c o l i H B 1 0 1 コンピテン トセル （
タカラバイオ社製）を形質転換 し、変異型カルボニル還元酵素 T 2 5 7 S _
K 2 5 9 E —K 2 7 0 M を生産する組換え生物 c o l i H B 1 0 1 （
p N K P m 4 7) を得た。

[01 5 2] (実施例 2 5) 多重変異変異型カルボニル還元酵素の作製 1 9
実施例 7 で取得したプラスミド p N K P m 3 7 を錶型 として、プライマー 1
:5 ' —G G G A A T T C C A T A T G A G T G T T T G A T C A A G G
G - 3 ' （配列表の配列番号 4) 、プライマー 3 9 :5 ' —G C A T A G T
G A A T G A A G C T T T T G A C A A G A T C A A C C T T C A C C —
3 ' （配列表の配列番号 4 2) 用いて P C R 行い、配列番号 1 に示すア
ミノ酸配列のうち K 2 5 9 E 、N 2 6 5 K のアミノ酸置換を有する N 末端側
のポリペプチドをコードする二本鎖 DNA を得た (2 未端側 D 一八 ）。同様
にプラスミド p N K P m 3 7 を錶型 として、プライマー 4 0 :5 ' —G G T
G A A A G G T T G A T C T T G T C A A A G C T T C A T T C A C T A
T G C —3 ' （配列表の配列番号 4 3) 、プライマー 2 :5 ' —A T A C G
C G T C G A C T T A C T A T T G T T C T T G A A C C T T C A —3 ' （
配列表の配列番号 5) 用いて P C R 行い、配列番号 1 に示すアミノ酸配
列のうち K 2 5 9 E 、N 2 6 5 K 、K 2 7 0 M のアミノ酸置換を有する C 末
端側のポリペプチドをコードする二本鎖 DNA を得た (C 末端側 D N A) 。
N 末端側 D N A と C 末端側 D N A を混合し、これを錶型 として、プライマー
1 、プライマー 2 を用いて P C R 行い、配列番号 1 に示すアミノ酸配列の
うち K 2 5 9 E 、N 2 6 5 K 、K 2 7 0 M のアミノ酸置換を有するポリペプ
チドをコードする二本鎖 DNA を得た。参考例 2 と同様の方法で p U C N 1
8 に導入し、 p N K P m 4 8 を作製した。この p N K P m 4 8 用いて、且
. c o l i H B 1 0 1 コンピテン トセル （タカラバイオ社製）を形質転換
し、変異型カルボニル還元酵素 K 2 5 9 E 、N 2 6 5 K 、K 2 7 0 M を生産
する組換え生物 c o l i H B 1 0 1 （ p N K P m 4 8) を得た。

[01 5 3] (実施例 2 6) 多重変異変異型カルボニル還元酵素の作製 2 0
実施例7で取得したプラスミドpNKPm37を錶型として、プライマー1
: 5′ - G G G A A T T C C A T A T G A G T G T T T T A G T T A C A G
G - 3′ (配列番号の配列番号4)、プライマー4 1: 5′ - C T C G T T A
T G G A C A C G A T C T C C T T G A G G T A A C T C - 3′ (配列番号
の配列番号4 4) を用いてPCRを行い、配列番号1に示すアミノ酸配列のう
ちK259E、K270M、G300Dのアミノ酸置換を有するN末端側の
ポリペプチドをコードする二本鎖DNAを得た(−末端側D−八)。同様に
プラスミドpNKPm37を錶型として、プライマー4 2: 5′ - G A G T
T A C C T C A A G G A A T C G T G T C C A T A A C G A G - 3′ (配
列表の配列番号4 5)、プライマー−2: 5′ - A T A C G C G T C G A C T
T A C T A T T G T T C T T G A A C C T T C A − 3′ (配列表の配列番号
5) を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259
E、K270M、G300Dのアミノ酸置換を有するC末端側のポリペプチ
ドをコードする二本鎖DNAを得た(−C末端側DNA)。N末端側DNAと
C末端側DNAを混合し、これを錶型として、プライマー1、プライマー2
を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、
K270M、G300Dのアミノ酸置換を有するポリペプチドをコードする
二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pN
KPm49を作製した。このpNKPm49を用いて、且. c o l i に
HB101コンピテンシートセル(タカラバイオ社製)を形質転換し、多変型カリポ
ニル還元酵素K259E-K270M-G300Dを生産する組換え生物及び
. c o l i にHB101(pNKPm49)を得た。

[0154] (実施例2 7)多重変異多変型カルポニル還元酵素の作製2 1
実施例7で取得したプラスミドpNKPm37を錶型として、プライマー1
: 5′ - G G G A A T T C C A T A T G A G T G T T T T A G T T A C A G
G - 3′ (配列番号の配列番号4)、プライマー4 3: 5′ - C T T C T C G
T T A T G G A C G C A A C C T C C T T G A G G T A A C T C G - 3′ (配
列表の配列番号4 6) を用いてPCRを行い、配列番号1に示すアミノ酸
配列のうちK259E、K270M、R301Cのアミノ酸置換を有するN末端側のポリペプチドをコードする二本鎖DNAを得た（N末端側DNA）。同様にプラスミドpNKPM37を錶型として、プライマー44：5' -
CGAGTTACCTCAAAGGGTCTGCCTCAATTACGAG
AAG _ 3'（配列表の配列番号47）、プライマー2：5' - ATAC
GCCTCGACTTACTATTGTCTTGAACTTCA - 3'（配列表の配列番号5）を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、K270M、R301Cのアミノ酸置換を有するC末端側のポリペプチドをコードする二本鎖DNAを得た（C末端側DNA）。N末端側DNAとC末端側DNAを混合し、これを錶型として、プライマー1、プライマー2を用いてPCRを行い、配列番号1に示すアミノ酸配列のうちK259E、K270M、R301Cのアミノ酸置換を有するポリペプチドをコードする二本鎖DNAを得た。参考例2と同様の方法でpUCN18に導入し、pNKPM50を作製した。このpNKPM50を用いて、
且. c o l i H B 1 0 1 コンピテンクトセル（タカラバイオ社製）を形質転
換し、変異型カルボニル還元酵素K259E-K270M-R301Cを生
産する細胞を生物E. c o l i H B 1 0 1 （pNKPM50）を得た。

[0155]（実施例28）多重変異変異型カルボニル還元酵素の評価2
実施例17〜27で取得した多重変異変異型カルボニル還元酵素の各組換え菌および参考例3で作製した且. c o l i H B 1 0 1 （pNKP）（対照）をそれぞれ参考例4と同様の方法で培養した。実施例4と同様に多重変異
変異がたカルボニル還元酵素のジメチルホルムアミドに対する安定性を評価した。ジメチルホルムアミド50%存在下で評価した野生型酵素および変異型カルボニル還元酵素の相対活性を表7に示す。

[0156]
表7に示した変異型カルボニル還元酵素は野生型酵素よりも有機溶剤に対する安定性が向上していた。

実施例29变異酵素ライブラリーの作製
実施例15で取得したK259E-K270M変異酵素の変異型RKP遺伝子を含むプラスミドpNKPm3をテンプレートに実施例1と同様の方法で変異酵素ライブラリーを作成し、これを変異酵素ライブラリー2とした。

実施例30変異型カルボニル還元酵素の選抜
変異酵素ライブラリー2より有機溶剤の1つであるジメチルホルムアミドによる反応阻害に対する抵抗性が向上した変異型カルボニル還元酵素を選抜した。実施例29で作製した変異酵素ライブラリー2の各組換え菌および参考例3で作製した大腸菌K101（pNKP）（対照）を100μg/mLのアンピシリンを含むLBプレート培養地上に植菌した。

得られたコロニーをナイロン膜（Biodyne A、0.45μm）に転写した後、そのナイロン膜を40%のジメチルホルムアミドを含む50mMの3-(N-morpholino)propanesulfonic acid（MOPS）バッファー中に30〜60分浸漬した。その後、このナイロン膜を1mMのNADP+、200μMのnitroblue tetrazolium、10μMの1-methoxy-5-methylphen
アズミウムメチルサルフェートおよび5%（v/v）の2-プロパノールを含む50mMのMOPSバッファー中に室温で30分浸漬した。その後、ナイロン膜を蒸留水で洗浄し、染色されたコロニーを有機溶剤による反応阻害に対する抵抗性が向上した変換型カルボニル還元酵素の組換え菌の候補として選抜した。これらの候補株を200μg/mlのアンピシンリンを含む2XYT培地（トリプトン1.6%、イーストエキス1.0%、塩化ナトリウム0.5%、pH7.0）5mlに接種し、20時間培養した。得られた培養液を菌体破砕処理し、遠心分離後、沈殿を除去し、無細胞抽出液を得た。無細胞抽出液を96穴プレート（AGCテクノグラス社製）に200μl分注し、NADPH0.625mMと10mMの2,3-ブタンジオンを含む0.1Mリン酸緩衝液（pH6.5）5μlを加え混合した。経時的にBenchmark Plus microplate spectrophotometer（BIO-RAD社製）でNADPHの蛻光を観察した。2,3-ブタンジオンの還元によってNADPHが消費され、蛻光がなくなったものを、有機溶剤による反応阻害に対する抵抗性がさらに向上了か変換型カルボニル還元酵素の組換え菌として選抜した。選抜した組換え菌の培養液からプラスミドを抽出し、Big Dye Terminator Cycle Sequencing Kit（アプライドバイオシステムズジャパン社製）およびApplied Biosystems 3130x1ジェネティックアナライザ（アプライドバイオシステムズジャパン社製）を用いて変異型RKP遺伝子の塩基配列を決定し、変異部位を特定した。得られた有機溶剤による反応阻害に対する抵抗性が向上した変換型カルボニル酵素を表8に示す。

<table>
<thead>
<tr>
<th>プラスミド名称</th>
<th>変異部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNKpm51</td>
<td>K22R-F871-K259E-K270M</td>
</tr>
<tr>
<td>pNKpm52</td>
<td>D90G-K259E-K270M</td>
</tr>
<tr>
<td>pNKpm53</td>
<td>K39-R-T51A-K259E-K270M</td>
</tr>
</tbody>
</table>

表8に示す3種類の有機溶剤による反応阻害に対する抵抗性が向上した酵素
実施例 3 で取得した改変型カルボニル還元酵素の評価

実施例 3 で取得した改変型カルボニル還元酵素の各組換え菌および参考例 3 で作製した E. coli HB101 (pNKP)（対照）をそれぞれ参考例 4 と同様の方法で培養した。得られた各培養液について、遠心分離により菌体を集め、培養液の 1/5 量の 100 mM リン酸緩衡液（pH 6.5）に懸濁した。これを、UH－50型超音波ホモゲナイザー（SMT社製）を用いて破砕し、遠心分離により菌体残渣を除去し、無細胞抽出液を得た。無細胞抽出液 100 μl に 1 M リン酸緩衡液（pH 7.0）400 μl、水または 60% D MF溶液 500 μl、2-ヘキサノン 1%、NADPH 5%、グルコース 3.4% を混合し 30℃で 2 時間摂拌し、反応した。反応後、反応液を酢酸エチルで抽出した。抽出液を下記の “[ガスクロマトグラフィーによる分析条件] に記載の条件で分析することにより、2-ヘキサノールの生成を確認した。2-ヘキサノールと 2-ヘキサノンのピーク面積から変換率を算出した。

[0163] [ガスクロマトグラフィーによる分析条件]
カラム : Inert Cap 1 キャビラリーカラム（30 m、内径に 2.5 mm、ジーエルサイエンス社製）
検出器 : 水素炎イオン化検出器
注入部温度 : 250 ℃
カラム温度 : 50 ℃
検出器温度 : 250 ℃
キャリアーガス : ヘリウム、流量 150 kPa

この変換率から、各組換え菌のジメチルホルムアミド非存在条件に対する、ジメチルホルムアミド 60% 存在下での相対活性を算出した。相対活性は下記式より算出し、この値をジメチルホルムアミドによる反応阻害の指標とした。結果を表 9 に示す。

相対活性 (%) = [ジメチルホルムアミド存在下での変換率] ÷ [ジメチル
ホルムアミド非存在下での変換率 \(\times 100 \)

得られた有機溶剤による反応阻害に対する抵抗性が向上した変型カルボニル還元酵素を表9に示す。

[01 65] [表9]

<table>
<thead>
<tr>
<th>変異部位</th>
<th>残存活性（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>野生型酵素</td>
<td>24</td>
</tr>
<tr>
<td>K22R-F87I-K259E-K270M</td>
<td>35</td>
</tr>
<tr>
<td>D90G-K259E-K270M</td>
<td>31</td>
</tr>
<tr>
<td>K39R-T51A-K259E-K270M</td>
<td>31</td>
</tr>
</tbody>
</table>

表9に示す3種類の有機溶剤による反応阻害に対する抵抗性が向上した酵素を取得した。表に示した変型カルボニル還元酵素は野生型酵素よりも有機溶剤の1つであるジメチルホルムアミドによる反応阻害に対する抵抗性が向上していた。

[01 66] (実施例3 2) 3 - [(5 R) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイール] - (4 S) —フエニル－1 , 3 _ オキサゾリジン _ 2 _ オンの製造

参考例4で取得したヴァンデルウルトマイラ・ポリスポラ (V a n d e r w a l t o z y m a p o l y s p o r a) NBRC 0 9 9 6 株由来のカルボニル還元酵素 RKP (野生型) を発現する組換え大腸菌の培養液、および実施例2 4 で取得した変型カルボニル還元酵素 T 2 5 7 S - K 2 5 9 E - K 2 7 0 M を生産する組換え大腸菌を参考例4と同様の方法を用いて培養した培養液 7 0 0 /μ 1 に、グルコース脱水素酵素 (商品名 : G L U C D H " A m a n o " Ⅱ、天野エンザイム社製) 1 2 , 5 U 、グルコース 8 0 m g 、NADP+0. 6 m g 、ジメチルホルムアミドまたは 0. 1 M リン酸緩衝液 (pH 7) 3 0 0 μ 1 、(S) - 1 - (4 _ フルオローフエニル)_ 5 _ (2 - オキソ _ 4 _ フエニル－オキサゾリジン _ 3 _ イル) –ベンタン－1 , 5 _ ジオん 1 0 m g を加えて、30℃で20時間摂拌した。反応液をジメチルスルホキシドで希釈し、下記の条件で高速液体クロマトグラフィー分析し、3 - [(5 R) - (4 _ フルオローフエニル)_ 5 —ヒドロキシペンタノイール
 Fujiwara - 1 , 3 - オキサゾリジン - 2 _ オンへの変換率、その光学純度を測定した。その結果を表 10 に示す。

[01 67] [表 10]

<table>
<thead>
<tr>
<th>酵素種</th>
<th>DMF濃度(%)</th>
<th>変換率 (%)</th>
<th>S体の光学純度 (%e.e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>野生型</td>
<td>0</td>
<td>54.4</td>
<td>89.21</td>
</tr>
<tr>
<td>野生型</td>
<td>30</td>
<td>16.6</td>
<td>87.89</td>
</tr>
<tr>
<td>T257S-K259E-K270M</td>
<td>0</td>
<td>47.5</td>
<td>80.15</td>
</tr>
<tr>
<td>T257S-K259E-K270M</td>
<td>30</td>
<td>99.0</td>
<td>73.91</td>
</tr>
</tbody>
</table>

[01 68] [3 - [(5 R) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイル] - (4 S) —フエニル_ 1 , 3 _ オキサゾリジン—2 _ オンへの変換率の算出方法と分析条件]

カリム : COSMOSIL 5 C 8 —MS (250 m m 、内径4. 6 μ m)、
ナカライテスク社製)
カリム温度 : 40 ℃
検出波長 : 254 m m
移動相 : 水/アセトニトリル = 1/1
保持時間 : [3 - [(5) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイル] - (4) —フエニル—1 , 3 _ オキサゾリジン—2 _ オン約 8. 5 分、1 — (4 _ フルオローフエニル)_ 5 —(2 _ オキソ —4 _ フェニル—オキサゾリジン—3 _ イル)_ ベンタン _ 1 , 5 _ ジオン 約 12 . 9分
変換率 = [3 - (5) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイル] - (4) —フエニル—1 , 3 _ オキサゾリジン—2 _ オンの生成量 / [3 - (5) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイル] - (4) —フエニル—1 , 3 _ オキサゾリジン—2 _ オンの生成量 + 1 — (4 _ フルオローフエニル)_ 5 —(2 _ オキソ —4 _ フェニル—オキサゾリジン—3 _ イル)_ ベンタン _ 1 , 5 _ ジオンの残存量) × 1 0 0

[3 - [(5 R) - (4 _ フルオローフエニル)_ 5 —ヒドロキシベンタノイル] - (4 S) —フエニル_ 1 , 3 _ オキサゾリジン—2 _ オンの光学純
度の算出方法と分析条件]
カラム: CHIRALCEL ODH (250 mm、内径4.6 µm、ディセル化学工業社製)
カラム温度: 30℃
検出波長: 254 mm
移動相: ヘキサン/エタノール = 8/2
保持時間: 3_ [(5 R) _ (4 _ フルオロフニル) _ 5 _ ヒドロキシペンタノイル] – (4 S) _ フニル – 1 , 3 _ オキサゾリン – 2 _ オン
約 18.1 分、3_ [(5 S) _ (4 _ フルオロフニル) _ 5 _ ヒドロキシペンタノイル] – (4 S) _ フニル – 1 , 3 _ オキサゾリン – 2 _ オン 約 21.7 分
R体の光学純度 (% e.e.) = { (R体のピーク面積) – (S体のピーク面積) } ÷ { (R体のピーク面積) + (S体のピーク面積) } X 100
請求の範囲

[請求項1] 以下の (a) 〜 (c) ;

(a) 配列表の配列番号 1 に記載のアミノ酸配列と 78 % 以上の配列同一性を有し、
(b) 2 _ ペンタノンを還元して 2 _ ペンタノールを生成し、かつ、
(c) 配列表の配列番号 1 に記載のアミノ酸配列からなるカルボニル还元酵素と比較して、有機溶剤存在下でカルボニル化合物に対する反応性が高し、および/または熱安定性が高し、

の性質を示すポリペプチド。

[請求項2] 前記有機溶剤がジメチルホルムアミドである、請求項 1 に記載のポリペプチド。

[請求項3] 配列表の配列番号 1 に記載のアミノ酸配列において次の群 ;

2番目、2 2番目、2 5番目、3 9番目、4 2番目、4 5番目、5 1番目、5 6番目、7 1番目、8 7番目、9 0番目、1 0 2番目、1 0番目、1 24番目、1 35番目、1 38番目、1 55番目、1 59番目、1 75番目、1 77番目、1 83番目、1 90番目、1 95番目、2 12番目、2 20番目、2 26番目、2 28番目、2 36番目、2 38番目、2 50番目、2 54番目、2 57番目、2 59番目、2 65番目、2 67番目、2 70番目、2 79番目、2 98番目、3 00番目、3 01番目、および3 31番目から選択される 1 つ以上のアミノ酸に、アミノ酸置換が導入されている、請求項 1 または 2 に記載のポリペプチド。

[請求項4] アミノ酸置換が、配列表の配列番号 1 に記載のアミノ酸配列において次の群 ;

2番目がイソロイシン、2 2番目がアルギニン、2 5番目がフェニルアラニン、3 9番目がアルギニン、4 2番目がアルギニン、4 5番目がアスパラギン酸、5 1番目がアラニン、5 6番目がリジン、7 1番目がアスパラギンもしくはアルギニン、8 7番目がイソロイシン、9
0番目がグリシン、102番目がイソロイシン、109番目がグリシン、124番目がロイシン、135番目がアルニン、138番目がアスパラギン、155番目がロイシンもしくはアルニン、159番目がフェニルアラニン、175番目がアスパラギン酸、177番目がフェニルアラニン、183番目がスレオニン、190番目がセリン、195番目がロイシン、212番目がフェニルアラニン、スレオニンもしくはチロシン、220番目がバリン、226番目がグリシン、228番目がバリン、236番目がアスパラギン、238番目がイソロイシン、250番目がプロリン、254番目がアスパラギン、257番目がセリン、259番目がグルタミン酸、265番目がリジン、267番目がプロリン、270番目がメチオニン、279番目がアルニン、298番目がプロリン、300番目がアスパラギン酸、301番目がシステイン、および、331番目がフェニルアラニンに置換されるアミノ酸置換、から選択される1つ以上のアミノ酸置換である、請求項3に記載のポリペプチド。

[請求項5] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において次の群：
2番目がイソロイシン、45番目がアスパラギン酸、71番目がアスパラギンもしくはアルニン、102番目がイソロイシン、124番目がロイシン、175番目がアスパラギン酸、177番目がフェニルアラニン、183番目がスレオニン、195番目がロイシン、220番目がバリン、226番目がグリシン、236番目がアスパラギン、238番目がイソロイシン、257番目がセリン、259番目がグルタミン酸、265番目がリジン、267番目がプロリン、270番目がメチオニン、300番目がアスパラギン酸、および、301番目がシステインに置換されるアミノ酸置換、から選択される1つ以上のアミノ酸置換であり、
配列表の配列番号1に記載のアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶剤に対する安定性が向上している、請求項4に記載のポリプチド。

[請求項6] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において下記の（1）〜（35）;

(1) 71番目がアスパラギン、195番目がロイシン、
(2) 71番目がアルギニン、259番目がグルタミン酸、
(3) 71番目がアルギニン、270番目がメチオニン、
(4) 71番目がアルギニン、300番目がアスパラギン酸、
(5) 102番目がイソロイシン、270番目がメチオニン、
(6) 177番目がフェニルアラニン、220番目がバリン、
(7) 226番目がグリシン、270番目がメチオニン、
(8) 257番目がセリン、259番目がグルタミン酸、
(9) 257番目がセリン、270番目がメチオニン、
(10) 259番目がグルタミン酸、270番目がメチオニン、
(11) 259番目がグルタミン酸、300番目がアスパラギン酸、
(12) 267番目がプロリン、270番目がメチオニン、
(13) 270番目がメチオニン、300番目がアスパラギン酸、
(14) 2番目がイソロイシン、259番目がグルタミン酸、270番目がメチオニン、
(15) 45番目がアスパラギン酸、175番目がアスパラギン酸、
183番目がスレオニン、
(16) 102番目がイソロイシン、226番目がグリシン、267番目がプロリン、
(17) 124番目がロイシン、259番目がグルタミン酸、270番目がメチオニン、
(18) 177番目がフェニルアラニン、259番目がグルタミン酸、270番目がメチオニン、
(19) 220番目がバリン、259番目がグルタミン酸、270番目がメチオニン、
(20) 236番目がアスパラギン、259番目がグルタミン酸、270番目がメチオニン、
(21) 238番目がイソロイシン、259番目がグルタミン酸、270番目がメチオニン、
(22) 257番目がセリン、259番目がグルタミン酸、270番目がメチオニン、
(23) 257番目がセリン、259番目がグルタミン酸、300番目がアスパラギン酸、
(24) 259番目がグルタミン酸、265番目がリジン、270番目がメチオニン、
(25) 259番目がグルタミン酸、270番目がメチオニン、300番目がアスパラギン酸、
(26) 259番目がグルタミン酸、270番目がメチオニン、301番目がシステイン、
(27) 2番目がイソロイシン、238番目がイソロイシン、
(28) 71番目がアスパラギン、195番目がロイシン、
(29) 109番目がグリシン、331番目がフェニルアラニン、
(30) 124番目がロイシン、236番目がアスパラギン、
(31) 159番目がフェニルアラニン、259番目がグルタミン酸、
(32) 42番目がアルギニン、155番目がアルギニン、279番目がアルギニン、
(33) 45番目がアスパラギン酸、175番目がアスパラギン酸、183番目がスレオニン、
(34) 155番目がロイシン、250番目がプロリン、298番目がプロリン、および
(35) 56番目がリジン、138番目がアスパラギン、190番目がセリン、254番目がアスパラギンに置換されるアミノ酸置換、から選択されるアミノ酸置換が導入されている。請求項5に記載のポリペプチド。

[請求項7] アミノ酸置換が、次の群；

22番目がアルギニン、39番目がアルギニン、51番目がアラニン、
87番目がイソロイシン、90番目がグリシン、259番目がグルタミン酸、および、270番目がメチオニンに置換されるアミノ酸置換、から選択される1つ以上のアミノ酸置換であり、

配列表の配列番号1に記載のアミノ酸配列からなるカルボニル還元酵素と比較して、有機溶剤による反応阻害に対する抵抗性が向上している、請求項4に記載のポリペプチド。

[請求項8] アミノ酸置換が、配列表の配列番号1に記載のアミノ酸配列において下記の(1)～(7)；

(1) 22番目がアルギニン、
(2) 22番目がアルギニン、87番目がイソロイシン、
(3) 39番目がアルギニン、
(4) 39番目がアルギニン、51番目がアラニン、
(5) 51番目がアラニン、
(6) 87番目がイソロイシン、および
(7) 90番目がグリシンに置換されるアミノ酸置換、から選択される1つ以上のアミノ酸置換である、請求項7に記載のポリペプチド。

[請求項9] 請求項1～8のいずれか1項に記載のポリペプチドをコードするポリヌクレオチド。

[請求項10] 請求項9に記載のポリヌクレオチドを含むベクター。

[請求項11] 還元型補酵素再生能を有するポリペプチドをコードするポリヌクレオチド。
チドをさらに含む、請求項10に記載のベクター。

[請求項12] 還元型補酵素再生能を有するポリペプチドがグルコース脱水素酵素である、請求項11に記載のベクター。

[請求項13] 請求項10〜12のいずれか1項に記載のベクターにより宿主細胞を形質転換して得られる形質転換体。

[請求項14] 前記宿主細胞が大腸菌である請求項13に記載の形質転換体。

[請求項15] 請求項1〜8のいずれか1項に記載のポリペプチド、または、請求項13または請求項14に記載の形質転換体および/またはその処理物を、カルボニル化合物に作用させることを特徴とする、アルコール化合物の製造方法。

[請求項16] 前記カルボニル化合物が非対称ケトンであり、前記アルコール化合物が光学活性アルコールである、請求項15に記載の製造方法。

[請求項17] 前記カルボニル化合物が、下記式(1)。

[化1]

\[\text{式中、} \ R^1 \text{および} \ R^2 \text{は水素原子、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアラルキル基、置換されていても良いアリール基、置換されていても良いアルコキシ基、アミノ基、またはニトロ基であるか、もしくは、} \ R^1 \text{と} \ R^2 \text{が互いに結合し環を形成しても良い。但し、} \ R^1 \text{と} \ R^2 \text{は構造が異なる} \text{)で表される非対称ケトンであり、}

前記アルコール化合物が下記式(2)。

[化2]

\[\text{式中、} \ R_1 \text{、} \ R_2 \text{は前記と同じ、} \ * \text{は不斉炭素を表す} \text{)で表される} \]
光学活性アルコールである、請求項15または16に記載の製造方法。
A. CLASSIFICATION OF SUBJECT MATTER

C12N 5/09 (2006.01)i. C12N1/21 (2006.01)i, C12N9/02 (2006.01)i, C12P 7/02 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N 5/09, C12N1/21, C12N9/02, C12P 7/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Uni Prot /Gene Seq, GenBank/ EMBL /DDB J/Gene Seq, BIOS IS/CaPlus /WP /DS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“R” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“Z” document member of the same patent family

Date of the actual completion of the international search 17 April 1, 2014 (17.04.14)

Date of mailing of the international search report 28 April 1, 2014 (28.04.14)

Name and mailing address of the ISA/ Japanese Patent Office Authorized officer

Facsimile No. Telephone No.
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Juan Lucas Argue et al., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Research, 2009, Vol. 19, PP. 2258-2270</td>
<td>1-17</td>
</tr>
<tr>
<td>P,A</td>
<td>Marta Goretti et al., Product ion of Flavours and Fragrances via Bioreduction of (4R)-(-)-Carvone and (1R)-(-)-Myrtenal by Non-Conventional Yeast Whole-Cells, molecules, 2013.05.16, VOL.18, PP.5736-5748</td>
<td>1-17</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C12N15/09 (2006.01) i, C12N1/21 (2006.01) i, C12N9/02 (2006.01) i, C12P7/02 (2006.01) i

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C12N15/09, C12N1/21, C12N9/02, C12P7/02

最小限資料以外の資料で調査を行った分野に含まれるものを
日本国実用新案公報 1922-1
日本国公報用新案公報 1971-1
日本国実用新案登録公報 1996-1
日本国登録新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用途）
UniProt/GeneSeq, GenBank/EMBL/DDJB/GeneSeq, BIOSIS 年內CAplus/WPIDS (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ※</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wo 2011/142865 A2 (GEVO, INC.) 2011.11.17, 全文 & JP 2013-519376</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>10-2012-0129953 A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Wo 2012/129555 A2 (BUTAMAX(TM) ADVANCED BIOFUELS LLC) 2012.09.27, 全文 & US 2012/0258873 AI</td>
<td>1-17</td>
</tr>
</tbody>
</table>

☑ C 欄の続きにも文献が列挙されている。

参考: パテントファミリーに関する別紙を参照。

※ 引用文献のカテゴリ
A 特に関連のある文献ではなく、一般的な技術水準を示すもの
M 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの
E 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を理由付ける文書
δ 口頭による開示、使用、展示等に言及する文献
P 国際出願 日前の出願及び優先権の主張の基礎となる出願

国際調査を完了した日
17.04.2014
国際調査報告の発送日
28.04.2014

特許庁審査官（権限のある職員）
大久保 智之
電話番号 03-3581-1101 内線 3448

様式 PCT/ISA/210（第2ページ）（2009年7月）
国際調査報告

国際出願番号 PCT／JP 2014／058248

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Juan Lucas Argueso et al., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Research, 2009, Vol. 19, PP. 2258-2270</td>
<td>1-17</td>
</tr>
<tr>
<td>P, A</td>
<td>Marta Goretti et al., Production of Flavours and Fragrances via Bioreduction of (4R)-(-)-Carvone and (1R)-(-)-Myrtenal by Non-Conventional Yeast Whole-Cells, molecules, 2013. 05. 16, VOL 18, PP. 5736-5748</td>
<td>1-17</td>
</tr>
</tbody>
</table>

様式 PCT／ISA／210（第2ページの続き）（2009年7月）