Title: COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF

Bezeichnung: VERBUNDWERKSTOFF UND VERFAHREN ZU SEINER HERSTELLUNG

Abstract: The invention relates to a composite material comprising a porous inorganic non-metallic matrix and a second material. Said composite material is characterised in that the porous inorganic non-metallic matrix has a bending resistance of ≥ 40 MPa which is measured according to the ISO 6 872; said second material is an organic material which fills at least partially the pores in the porous matrix and said composite material has an elastic modulus E ≥ 25 GPa measured according to the ISO 10 477.

Verbundwerkstoff und Verfahren zu seiner Herstellung

Die vorliegende Erfindung betrifft einen Verbundwerkstoff mit einem porösen anorganisch-nichtmetallischen Netzwerk, dessen Poren mit einem Polymer gefüllt sind, ein Verfahren zu seiner Herstellung, sowie Verwendungen dieses Verbundwerkstoffs.

Der Erfindung liegt die Aufgabe zu Grunde, einen Verbundwerkstoff zu schaffen, der ein homogenes porenfreies Gefüge und Eigenschaften aufweist, die zwischen keramischen und konventionell gefüllten Polymerwerkstoffen liegen, und ein Verfahren zur Herstellung dieses Verbundwerkstoffs aufzuzeigen.

Diese Aufgabe wird gelöst durch einen Verbundwerkstoff mit einer porösen anorganisch nichtmetallischen Matrix und einem zweiten Material, dadurch gekennzeichnet, dass

- die poröse anorganische nichtmetallische Matrix eine Biegebruchfestigkeit von ≥ 40 Mpa, gemessen nach ISO 6 872, besitzt,

- das zweite Material ein organismisches Material ist, das die Poren der porösen Matrix mindestens teilweise ausfüllt und
der Verbundwerkstoff einen Elastizitätsmodul $E \geq 25$ GPa gemessen nach ISO 10 477 aufweist.

Der erfindungsgemäße Verbundwerkstoff ist vorteilhaft, weil eine neue Werkstoffklasse erreicht wird, deren Eigenschaften zwischen Keramik- und Kunststoffmaterialien liegen. Zum Beispiel zeichnet sich diese Werkstoffklasse einerseits durch eine geringere Sprödigkeit als Keramik und andererseits durch eine erhöhte Abriebfestigkeit gegenüber den bisherigen anorganisch gefüllten Polymeren aus.

Die anorganisch-nichtmetallische Phase des erfindungsgemäßen Verbundwerkstoffs bildet ein Netzwerk, das eine Eigenfestigkeit (Biegebruchfestigkeit des porösen anorganisch-nichtmetallischen Netzwerks vor Infiltration) von $\sigma \geq 40$ MPa besitzt. Dadurch findet eine Erhöhung des Elastizitätsmoduls des Verbundwerkstoffes im Vergleich zu herkömmlich gefüllten Kompositen statt.

Der erfindungsgemäße Verbundwerkstoff weist vorzugsweise eine Biegebruchfestigkeit von $\sigma \geq 100$ Mpa, gemessen nach ISO 6 872 auf.

Typischerweise weisen die Poren des anorganisch-nichtmetallischen Netzwerks des erfindungsgemäßen Verbundwerkstoffs eine Porengröße von 0,2 bis 25 μm, vorzugsweise 0,5 bis 10 μm, auf. Die zu verwendenden Porengrößen und -formen sind abhängig von der Werkstoffkombination aus Anorganik und Polymer, vom Benetzungswinkel zwischen Anorganik und Monomer bzw. Polymer, von der Vorbehandlung und vom verwendeten Infiltrationsverfahren.

Das poröse anorganisch-nichtmetallische Netzwerk als Zwischenschritt zum erfindungsgemäßen Verbundwerkstoff ist beispielsweise durch Sinterung von
pulverförmigen anorganischen, insbesondere keramischen Substanzen oder Substanzmischungen erhältlich, wobei der Sinterungsprozess insbesondere vor der Bildung geschlossener Poren beendet wird. Bevorzugt wird weiterhin, dass der Sinterprozess erst nach der Phase der Sinterhalsbildung oder des Glasflusses beendet wird, die typischerweise mit einer sprunghaften Änderung der Eigenfestigkeit des anorganisch-nichtmetallischen Netzwerkes verbunden ist.

Vorzugsweise werden pulverförmige anorganische Substanzen oder Substanzmischungen mit Korngrößen eingesetzt, die eine bimodale Verteilung, z.B. feine und grobe Korngrößen, aufweisen. Dabei weisen die feinen Körner eine höhere Sinteraktivität auf, die großen Körner bestimmen die Porenform.

Das anorganisch-nichtmetallische Netzwerk des erfindungsgemäßen Verbundwerkstoffs weist in einer bevorzugten Ausführungsform pulverförmige anorganische Substanzen oder Substanzmischungen auf, die eine Korngröße von 0,2 µm bis 25 µm besitzen. Typische d₅₀ Werte (Lasergranulometrie) der verwendeten Ausgangsmaterialien liegen zwischen 0,5 und 5 µm.

Das anorganisch-nichtmetallische Netzwerk des erfindungsgemäßen Verbundwerkstoffs ist vorzugsweise aus mindestens zwei verschiedenen Pulvermischungen mit unterschiedlichen Sintertemperaturen aufgebaut worden. Die Sinteraktivität wird durch die niedrigschmelzenden Pulverkomponenten bestimmt.

Die Silanisierung erfolgt in einfacher Weise mittels eines Silanisierungsmittels in flüssiger Phase.
Zur Silanisierung des porösen anorganisch-nichtmetallischen Netzwerks wird ein Alkoxyisilan oder ein Halogensilan, vorzugsweise 3-Methacryloxypropyl-\trimethoxysilan, eingesetzt.

Die organische Phase des erfindungsgemäßen Verbundwerkstoffs ist insbesondere ein organisches Polymer, das durch Präpolymere, Oligomere oder Monomere in situ in den Poren des porösen Netzwerks durch Polymerisation gebildet wird. Das organische Polymer wird aus thermisch polymerisierbaren Monomeren und/oder durch chemisch induzierte Starterreaktionen polymerisierbarer Monomere und/oder durch kondensierbare Monomere gebildet.

Der erfindungsgemäße Verbundwerkstoff kann Hilfsstoffe, wie Antioxidantien und für den jeweiligen Anwendungszweck geeignete Pigmente aufweisen.

Der erfindungsgemäße Verbundwerkstoff kann z. B. durch ein Verfahren wie folgt hergestellt werden:

- Herstellen des anorganisch-nichtmetallischen Ausgangsmaterials,
- Formgebungsverfahren der anorganisch-nichtmetallischen Phase, nass z.B. Schlickern oder trocken z. B. isostatisches Pressen, gegebenenfalls unter Verwendung eines geeigneten Bindersystems.
- Sintern des anorganisch-nichtmetallischen Netzwerks auf den gewünschten Sintergrad und Porosität,
- wobei der Sinterprozess beendet wird, bevor im wesentlichen geschlossene Poren im Sinterprodukt entstehen,
- und nachdem die Phase der Sinterhalsbildung und/oder Glasflusses erreicht worden ist,
- das erhaltene poröse Produkt aus anorganisch-nichtmetallischen Material wird zunächst mit einem Benetzungsmittel, bevorzugt Silane mit einer geeigneten funktionellen Gruppe, belegt,
- dann wird das anorganisch-nichtmetallische Netzwerk vollständig mit Monomeren infiltriert,
- und anschließend mit einem geeigneten Verfahren, wie z.B. Heißpolymerisation oder Mikrowellen, polymerisiert.

Im erfindungsgemäßen Verfahren werden als anorganisches Material z.B. Oxidkeramiken, Gläser, Porzellan, Nichtoxidkeramiken und Kombinationen derselben eingesetzt.

Im erfindungsgemäßen Verfahren werden insbesondere pulverförmige anorganische Materialien mit einer Korngröße von 0,2 μm bis 25 μm, vorzugsweise 0,5 bis 10 μm (d₅₀-Werte bestimmt mittels Lasergranulometrie), eingesetzt.

Vorzugsweise wird erfindungsgemäß das organische Material in flüssiger Form in das gesinterte anorganische Material infiltriert.

Das Benetzungsmittel liegt vorzugsweise in Lösung vor. Ein Vorteil der Verdünnung liegt in der erniedrigten Viskosität.

Das Benetzungsmittel muss eine koplungsfähige funktionelle Gruppe enthalten.

Das organische Material kann erfindungsgemäß durch Druckinfiltration in das gesinterte anorganische Material eingebracht werden. Der Vorteil besteht in der schnellen vollständigen und homogenen Durchdringung. Es kann sich je nach Aufgabenstellung als Vorteil erweisen, die Polymerisation unter Druck durchzuführen.

Gegebenenfalls sind vor der Infiltration sowohl das anorganisch-nichtmetallische Netzwerk als auch das organische Monomer zu evakuieren.

Als Monomere werden dabei vorzugsweise organische Verbindungen eingesetzt, die mindestens eine ethylenisch ungesättigte Struktureinheit, mindestens eine kondensierbare Struktureinheit oder mindestens eine ringöffnende polymerisierbare Struktureinheit oder Kombinationen derselben aufweisen.

geeignete Startersysteme für die Polymerisation sind bekannt und der entsprechenden Literatur zu entnehmen.

Zur Herstellung transluzenter für Dentalzwecke geeigneter Materialien werden erfindungsgemäß feldspattaltige Pulver und Fritten als anorganisches Material und Bismethacrylate als organische Verbindung sowie peroxidhaltige Verbindungen als Starter eingesetzt.

Gegenstand der Erfindung ist auch ein Verbundwerkstoff für dentale Anwendungen, der durch das erfindungsgemäße Verfahren erhältlich ist.

Der erfindungsgemäße Verbundwerkstoff kann bevorzugt für dentale Zwecke, wie z.B. für Inlays, Onlays, Kronen und Brücken verwendet werden.

Insbesondere kann der erfindungsgemäße Verbundwerkstoff als Gleitlager, zur Wärme- und/oder Schalldämmung, oder als Vibrationsdämpfer eingesetzt werden.

Die zur Herstellung des erfindungsgemäßen Verbundwerkstoffes einsetzbare poröse anorganische nichtmetallische Matrix mit einer Biegebruchfestigkeit von \(\geq 40 \text{ Mpa} \), gemessen nach ISO 6 872 kann als Zwischenprodukt dienen und ist ebenfalls Gegenstand der Erfindung.

Vorzugsweise wird die erfindungsgemäße poröse anorganische nichtmetallische Matrix aus Oxidkeramik, Gläsern, Porzellanen, Nichtoxidkeramiken oder Kombinationen davon gebildet.

Die Poren der erfindungsgemäßen porösen anorganischen nichtmetallischen Matrix nehmen insbesondere ein Volumen von 5 Vol % bis 85 Vol %, vorzugsweise 10 bis 50 Vol %, insbesondere 15 – 35 Vol % ein.

Erfindungsgemäß beansprucht wird auch ein Verfahren zur Herstellung einer erfindungsgemäßen porösen anorganisch-nichtmetallischen Matrix,

- wobei ein anorganisches nichtmetallisches Material mit einem entfernbaren Binder zu einem formbaren Material gemischt wird,
- der Binder entfernt wird unter Erhalt einer porösen anorganischen nichtmetallischen Struktur,
- die poröse anorganische nichtmetallische Struktur gesintert wird,
- unter Ausbildung der porösen anorganisch- nichtmetallischen Matrix.

Ein Verfahren zur Abformung von Gegenständen, unter Verwendung der erfindungsgemäßen porösen anorganisch-nichtmetallischen Matrix ist ebenfalls Gegenstand der Erfindung. Dieses erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass

- ein anorganisches nichtmetallisches Material mit einem entfernbaren Binder zu einem formbaren Material gemischt wird,
- das formbare Material mit einem abzuformenden Gegenstand in Kontakt gebracht wird, so dass der abzuformende Gegenstand in Negativform im formbaren Material abgeformt wird,

- das formbare Material unter Erhalt der Form des abgeformten Gegenstandes abgelöst wird und dann der Binder entfernt wird,

- danach gegebenenfalls die nach dem Entfernen des Binders erhaltene Struktur gesintert und infiltriert wird.

Erfindungsgemäß beansprucht wird auch eine Mischung aus pulverförmigen anorganischen nichtmetallischen Substanzen oder Substanzmischungen und entfernbarem Binder. Diese Mischung ist dadurch gekennzeichnet, dass die pulverförmigen anorganischen nichtmetallischen Substanzen oder Substanzmischungen eine Korngröße \(d_{50} \) von 0,2 \(\mu \text{m} \) bis 25 \(\mu \text{m} \) aufweisen und der Binder in einer Menge von 2 Gew \% bis 50 Gew \%, bezogen auf das Gesamtgewicht der Mischung, vorliegt.

Die pulverförmigen anorganischen nichtmetallischen Substanzen oder Substanzmischungen sind vorzugsweise Oxidkeramik, Gläser, Porzellan, Nichtoxidkeramiken oder Kombinationen davon.
Vorzugsweise werden pulverförmige anorganische Substanzen oder Substanzmischungen mit Korngrößen eingesetzt, die eine bimodale Verteilung aufweisen.

Die pulverförmigen anorganischen nichtmetallischen Substanzen oder Substanzmischungen zur Herstellung der erfindungsgemäßen Paste weisen insbesondere eine Korngröße d_{50} von 0,5 bis 5 μm, gemessen mittels Lasergranulometrie, auf.

In der erfindungsgemäßen Mischung zur Herstellung der Paste können mindestens zwei verschiedene Pulver und/oder Pulvermischungen mit unterschiedlichen Sintertemperaturen vorliegen. In der erfindungsgemäßen Paste sind Zusätze enthalten, die ein gezieltes Aushärten nach Stand der Technik erlauben.

Insbesondere vorteilhaft sind mehrschichtige Formkörper mit mehreren Schichten mit unterschiedlichen Eigenschaften in den Schichten erhältlich durch Auftragen verschiedener Pasten mit unterschiedlichen resultierenden anorganisch-nichtmetallischen Matrixkomponenten, anschließendem Sintern D. Die Herstellung des kompletten Verbundwerkstoffs erfolgt dann wie bereits beschrieben.
Auch Formkörper mit kontinuierlich ändernden Eigenschaften sind gemäß der Erfindung herstellbar und Gegenstand der Erfindung. Diese Formkörper sind erhältlich durch z.B. Sintern der anorganisch-nichtmetallischen Matrix in einem Gradientenofen. Auch der natürliche Zahn ist anisotrop und aus mehreren unterschiedlichen Schichten aufgebaut. Typischerweise werden die erfindungsgemäßen Formkörper wie folgt hergestellt:

-Präparation der Arbeit im Mund, Aufbringen eines Trennmittels

-bei Kavitäten direkte Abformung im Mund mittels der erfindungsgemäßen Paste

-Härtung oder Aushärtung des Formkörpers, Entfernen aus der Kavität

-Sintern auf Porosität unter Ausbrennen des Binders.

-bei Kronen und Brücken: Abformung der Präparation

-Erstellen des Meistermodells

-Aufbau der Restauration auf dem Modell mittels erfindungsgemäßer Paste

-Sintern der Arbeit auf Porosität unter Ausbrennen des Binders.

Die Erfindung wird anhand der folgenden Beispiele näher erläutert.

Beispiel 1:

Ein bimodales Aluminiumoxid mit einem d-50 von ca. 2,5 μm wurde mit destilliertem Wasser und üblichen Zusätzen (hier Citronensäure und Darvan) sowie Ultraschall zu einer schlicker-fähigen Suspension angerührt. Mit dieser Suspension wurden Delrinformen mit den Maßen 1,2x4x20mm ausgesegossen. Nach Trocknung wurden die Teile entformt und bei einer Spitzentemperatur von 1120 °C und einer Haltezeit von 2 Stunden gebrannt.

Beispiel 2:

Ein bimodales Magnesium-Aluminiumoxid-Spinell mit einem d-50 von ca. 2,5 µm wurde mit destilliertem Wasser und üblichen Zusätzen (hier Citronensäure und Darvan) sowie Ultraschall zu einer schlickerfähigen Suspension angerührt. Mit dieser Suspension wurden Delrinformen mit den Maßen 1,2x4x20mm ausgeschossen. Nach Trocknung wurden die Teile entformt und bei einer Spitzen temperatur von 1180 °C und einer Haltezeit von 2 Stunden gebrannt.

Die Teile zeigten auf einer Universalprüfmaschine der Fa. Zwick eine mittlere Biegefestigkeit von 256,87 MPa und einen Elastizitätsmodul von 82,89 GPa.

Beispiel 3:

Ein bimodales Gemisch aus 67% Aluminiumoxid und 33% Zirkondioxid mit einem d-50 von ca. 2,5 µm wurde mit destilliertem Wasser und üblichen
Zusätze (hier Citronensäure und Darvan) sowie Ultraschall zu einer schlickerfähigen Suspension angerührt. Mit dieser Suspension wurden Delrininformen mit den Maßen 1,2x4x20mm ausgegossen. Nach Trocknung wurden die Teile entformt und bei einer Spitzentemperatur von 1180 °C und einer Haltezeit von 2 Stunden gebrannt.

Beispiel 4:

Ein bimodales Gemisch aus 2 Feldspatfritten (Fritte 1 Brenntemperatur ca. 830 °C, 10% Anteil an der Mischung und Fritte 2 Brenntemperatur ca. 1180 °C, 90% Anteil an der Mischung) mit einem d-50 von ca. 4,5μm wurde mit einer üblichen Modellierflüssigkeit (Wasser + Binderzusatz) zu einer schlickerfähigen Suspension angerührt. Diese Suspension wurde in Metallformen mit den Maßen 25x5x1,6 mm eingerüttelt. Nach Trocknung wurden die Teile entformt und bei einer Spitzentemperatur von 940 °C und einer Haltezeit von ca. 40 Minuten gebrannt.

Die Teile zeigen eine hervorragende Transluzenz und sind auf Grund ihrer optischen Eigenschaften für ästhetische Dentalrestaurationen geeignet.
Patentansprüche

1. Verbundwerkstoff mit einer porösen anorganisch nichtmetallischen Matrix und einem zweiten Material, dadurch gekennzeichnet, dass

 - die poröse anorganische nichtmetallische Matrix eine Biegebruchfestigkeit von ≥ 40 Mpa, gemessen nach ISO 6 872, besitzt,
 - das zweite Material ein organisches Material ist, das die Poren der porösen Matrix mindestens teilweise ausfüllt und
 - der Verbundwerkstoff einen Elastizitätsmodul $E \geq 25$ GPa gemessen nach ISO 10 477 aufweist.

2. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass er eine Biegebruchfestigkeit von $\sigma \geq 100$ Mpa, gemessen nach ISO 6 872 aufweist.

3. Verbundwerkstoff nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass der Sinterprozess erst nach der Phase der Sinterhalbsbildung und/oder des Glasflusses beendet wird.

4. Verbundwerkstoff nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass pulverförmige anorganische Substanzen oder Substanzmischungen mit Korngrößen eingesetzt werden, die eine bimodale Verteilung aufweisen.

5. Verbundwerkstoff nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die pulverförmigen anorganischen Substanzen oder Substanzmischungen eine Korngröße d_{50} von $0,2$ μm bis 25 μm, vorzugsweise von $0,5$ bis 5 μm, gemessen mittels Lasergranulometrie, aufweisen.

6. Verbundwerkstoff nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das anorganisch- nichtmetallische Netzwerk eine mit
einem Kopplungsreagenz belegt Oberfläche aufweist, die dadurch hydrophobiert und mit funktionellen Gruppen versehen wird.

7. Verbundwerkstoff nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Silanisierungsmittel Aminopropyltriethoxysilan, Vinyltriethoxysilan, 3-Methacyrloxypropyl-trimethoxysilan oder eine Mischung derselben ist.

8. Verfahren zur Herstellung eines Verbundwerkstoffs nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es folgende Schritte umfasst:

- Herstellung des anorganischen Ausgangsmaterials, vorzugsweise in Pulverform,

- Sintern des anorganischen Ausgangsmaterials, wobei der Sinterprozess beendet wird, bevor im wesentlichen geschlossene Poren im Sinterprodukt entstehen,

- und die Phase der Sinterhalsbildung und/oder des Glasflusses erreicht worden ist,

- die Oberfläche der porösen anorganisch nichtmetallischen Matrix mit einem Kopplungsreagenz belegt wird,

- die so erhaltene poröse und oberflächenmodifizierte anorganische nichtmetallische Matrix mit organischem Material infiltriert wird und

- das organische Material danach verfestigt wird.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Polymerisation unter Druck durchgeführt wird.

11. Verfahren nach Anspruch 9 und/oder 10, dadurch gekennzeichnet, dass als Monomere organische Verbindungen eingesetzt werden, die
mindestens eine ethylenisch ungesättigte Struktureinheit, mindestens eine kondensierbare Struktureinheit und/oder mindestens eine ringöffnend polymerisierbare Struktureinheit enthalten.

13. Verfahren nach mindestens einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass feldspathhaltige Pulver und Fritten als anorganisches Material und Bismethacrylate als organische Verbindung sowie peroxidhaltige Verbindungen als Starter eingesetzt werden.

15. Verwendung eines Verbundwerkstoffs nach mindestens einem der Ansprüche 1 bis 7 und/oder 14 für dentale Zwecke, z.B. für Inlays, Onlays, Kronen und Brücken.

18. Verfahren zur Herstellung einer porösen anorganischen nichtmetallischen Matrix nach Anspruch 17,
 - wobei ein anorganisches nichtmetallisches Material mit einem entfernbaren Binder zu einem formbaren Material gemischt wird,
 - der Binder entfernt wird, unter Erhalt einer porösen anorganischen nichtmetallischen Struktur,
- die poröse anorganische nichtmetallische Struktur gesintert wird,
- unter Ausbildung der porösen anorganischen nichtmetallischen Matrix.

19. Mischung aus pulverförmigen anorganischen nichtmetallischen Substanzen oder Substanzmischungen und entfernbarem Binder, dadurch gekennzeichnet, dass die pulverförmige anorganische nichtmetallische Substanzen oder Substanzmischungen eine Korngröße d_{50} von 0,2 µm bis 25 µm aufweisen und der Binder in einer Menge von 2 Gew % bis 50 Gew % bezogen auf das Gesamtgewicht der Mischung vorliegt.

24. Verfahren zur Herstellung eines Formkörpers nach Anspruch 22, wobei eine homogene Matrix aus einem porösen anorganischen nichtmetallischen Material in einem Gradientenofen gebrannt wird.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>C04B38/00</th>
<th>C04B38/06</th>
<th>C04B41/83</th>
<th>A61K6/06</th>
<th>A61K6/083</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>C04B</th>
<th>A61K</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 701 808 A (TRUSTEES OF BOSTON UNIVERSITY) 20 March 1996 (1996-03-20) cited in the application column 1, line 1 - line 12; claims 1-6, 17-23; figures 2, 4</td>
<td>19-21, 23</td>
</tr>
<tr>
<td>A</td>
<td>column 6, line 33 - line 56 column 7, line 51 - column 8, line 14 column 10, line 53 - column 12, line 24</td>
<td>1-3, 5, 6, 8, 9, 11-15, 17, 18</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 803 241 A (GC DENTAL PRODUCTS CORP.) 29 October 1997 (1997-10-29) cited in the application page 3, line 50 - page 6, line 47; claims 1-9; figure 1; examples 1-9; tables 1, 2, 4</td>
<td>17-20</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. **X** Patent family members are listed in annex.

" Special categories of cited documents:

- **"A"** document defining the general state of the art which is not considered to be of particular relevance
- **"E"** earlier document but published on or after the international filing date
- **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **"O"** document referring to an oral disclosure, use, exhibition or other means
- **"P"** document published prior to the international filing date but later than the priority date claimed

"*" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"*G" document member of the same patent family

Date of the actual completion of the international search

1 July 2002

Date of mailing of the international search report

08/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5616 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 940-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Hauck, H

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 006 095 A (TRUSTEES OF BOSTON UNIVERSITY) 7 June 2000 (2000-06-07) cited in the application column 1, line 1 – line 10; claims 1, 4, 7–9, 19, 20, 26 column 2, line 53 – line 55 column 5, line 16 – line 21 column 9, line 11 – line 13</td>
<td>7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9098990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6159417 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6271282 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5843348 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0803241 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10043209 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1006095 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000185058 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6271282 B1</td>
</tr>
</tbody>
</table>
INTERNATIONALER REUCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDGUNGSSTANDES

<table>
<thead>
<tr>
<th>IPK 7</th>
<th>C04B38/00</th>
<th>C04B38/06</th>
<th>C04B41/83</th>
<th>A61K6/06</th>
<th>A61K6/083</th>
</tr>
</thead>
</table>

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestrüftstoff (Klassifikationssystem und Klassifikationssymbol) IPK 7 C04B A61K

Recherchierte aber nicht zum Mindestrüftstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fällen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGEGEHNE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angeige der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Spalte 1, Zeile 1 - Zeile 12; Ansprüche 1-6,17-23; Abbildungen 2,4</td>
<td>1-3,5,6, 8,9, 11-15, 17,18</td>
</tr>
<tr>
<td></td>
<td>Spalte 6, Zeile 33 - Zeile 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 7, Zeile 51 - Spalte 8, Zeile 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 10, Zeile 53 - Spalte 12, Zeile 24</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Seite 3, Zeile 50 - Seite 6, Zeile 47; Ansprüche 1-9; Abbildung 1; Beispiele 1-9; Tabellen 1,2,4</td>
<td>7</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

| X | Siehe Anhang Patentfamilie |

* Besondere Kategorien von angegebenen Veröffentlichungen:
 * A: Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutungsvoll anerkannt ist
 * E: älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldungsdatum veröffentlicht worden ist
 * L: Veröffentlichung, die gleichzeitig, einen Prioritätsanspruch zweifellos er-scheinen zu lassen, oder durch die dazu entstehende Veröffentlichung, benannt werden soll oder die aus einem anderen besonders hervorragenden Grund angegeben ist (wie ausgeführt)
 * O: Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benennung, eine Ausstellung oder andere Maßnahmen bezieht
 * P: Veröffentlichung, die vor dem internationalen Anmeldungsdatum, aber nach dem entscheidenden Prioritätsdatum veröffentlicht worden ist

Datum des Abschlusses der internationalen Recherche

1. Juli 2002

Absendetermine des internationalen Rechenberichts

08/07/2002

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentamt 2 NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Hauck, H
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9098990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6159417 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6271282 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5843348 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0803241 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10043209 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1006095 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000185058 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6271282 B1</td>
</tr>
</tbody>
</table>