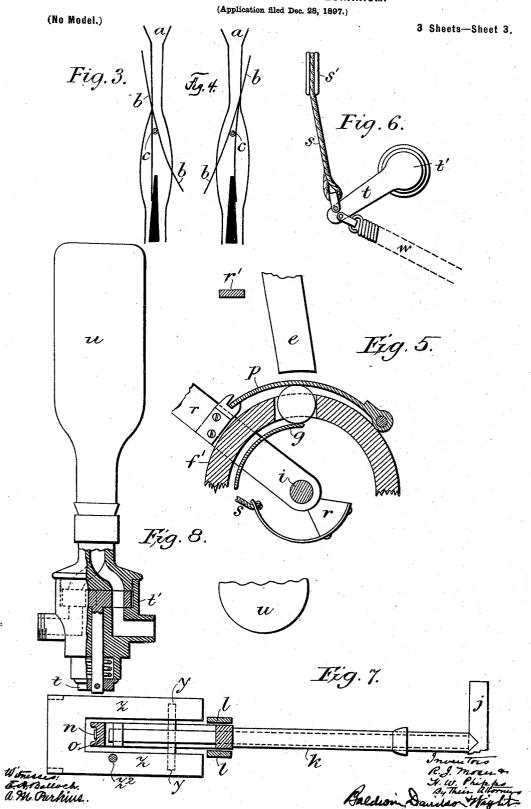

R. J. MOSER & H. W. PHIPPS. COIN FREED DELIVERY MECHANISM.


(Application filed Dec. 28, 1897.)

R. J. MOSER & H. W. PHIPPS. COIN FREED DELIVERY MECHANISM.

(Application filed Dec. 28, 1897.) (No Model.) 3 Sheets-Sheet 2. Fig. 2. wd Witnesses Inventors E. A. Breech. W. W. Parkius.

R. J. MOSER & H. W. PHIPPS. COIN FREED DELIVERY MECHANISM.

UNITED STATES PATENT OFFICE.

ROBERT JAMES MOSER AND HENRY WILLIAM PHIPPS, OF LONDON, ENG-LAND, ASSIGNORS TO THE GENERAL AUTOMATIC DELIVERY COMPANY, LIMITED, OF SAME PLACE.

COIN-FREED DELIVERY MECHANISM.

SPECIFICATION forming part of Letters Patent No. 624,844, dated May 9, 1899.

Application filed December 28, 1897. Serial No. 664,015. (No model.)

To all whom it may concern:

Beit known that we, ROBERT JAMES MOSER, residing at 178 High street, Southwark, and HENRY WILLIAM PHIPPS, residing at 59 5 Harders road, Peckham, London, in the county of Surrey, England, subjects of the Queen of Great Britain, have invented a certain new and useful Coin-Freed Delivery-Machine, (for which we have received Letters reparent in Great Britain, No. 2,585, dated February 4, 1896; in France, No. 263,368, dated January 23, 1897, and in Germany, 24, 262,774, dated January 24, 1807, of which No. 93,576, dated January 24, 1897,) of which the following is a specification.

The object of this invention is to deliver

a predetermined quantity of liquid in ex-

change for a coin.

The operation of the apparatus is as follows: A penny is dropped into a slot and is 20 led by a chute to a cavity in which it is retained. A handle is then moved, which brings a pusher against the coin. The pusher riding up over the coin is brought into position to thrust against a lever, which by suitable 25 connections then turns a cock or valve. the end of the movement of the handle the coin is allowed to escape into a receptacle. In some cases where the value of the liquid delivered is two pence two coins are inserted 30 in succession. The first coin simply moves a switch in passing down its chute, and the switch directs the second coin into the operative cavity. The cock being opened establishes connection between a measuring vessel 35 and a draw-off valve, and by a suitable manipulation of the handle the valve is opened and the measured quantity is drawn off. When the handle is raised, springs return the parts to their original positions.

Figure 1 is a side elevation with the outside casing removed. Fig. 2 is an end elevation of the apparatus. Figs. 3 and 4 show the coin-chute with the switch-tongue in two positions. Fig. 5 is a local section, showing 45 the pusher after it has ridden up over the coin. Fig. 6 is a section on the line 6 6, Fig. Fig. 7 is a horizontal section taken just above the handle in the position that it occupies when it has been pulled down; and Fig.

partly in section, showing the valve mechanism controlling the passage of liquid to and

from the measuring vessel.

a is the coin-chute, having in it a switchtongue b, pivoted at c. The tongue b, as will 55 be seen in Figs. 3 and 4, acts as a guide for the coin. The tongue b is simply a strip of metal having its pivot carranged about midway between its ends inside an enlargement of the chute. The ends project through open- 60 ings in the chute, so that the tongue is free to oscillate on its pivot and move from side to side. The first coin is dropped into the chute, the tongue being in the position shown by Fig. 3, and it is guided into the channel d, 65 leading direct to the coin-receptacle, the position of the switch being at the same time reversed. The tongue will then be in the position shown by Fig. 4, and another coin being dropped into the chute it is guided down 70 a channel e, leading to a recess f in an arched guide f'. There it is retained resting on the flange g of a segment h, which can turn on a shaft i.

The apparatus is actuated by a handle j, 75. the stem of which passes through a sleeve k, pivoted to the uprights ll at k'. A quadrant n is attached to the sleeve, and a flexible band o connects the quadrant with the segment h. When the handle j is pulled down, the seg- 80 ment h is turned about the shaft i and carries with it the pusher p, which normally is kept in contact with the arched guide f' by a spring q. When, however, there is a coin in the recess f, the pusher p is raised by it and 85 engages with a lever r, pivoted upon the shaft i, as is shown in Fig. 5.

The lever r has attached to its end a cord s, which passes around a pulley s' and is attached to an arm t on the stem of a cock t'. 90 The cock t' when the parts are in the position shown in Figs. 1 and 2 connects the closed measuring vessel u with a supply-cistern, and the liquid will then stand at a regulated height in the vessel u. When the han- 95 dle is drawn down, the passage leading to the supply-cistern is closed and a passage is opened leading from the vessel u to the depies when it has been pulled down; and Fig. livery-valve x, which is outside the casing of S is a detail view, partly in side elevation and the machine. The supply-eistern may either 100 be within the easing of the apparatus or at |

some distance away from it.

The apparatus is ready to be used when the parts are in the position shown in Figs. 1 and 5 2, the segment h being drawn against the stop h' on the arched guide f' by a spring or weight at the end of the cord v and the lever r against the stop r' by a spring w, attached to the arm t. (Shown in Fig. 6.)

The delivery-valve x is opened by turning

the handle j.

On the stem of the handle j are the pins y y, which when the handle is turned lift the flap z, which is pivoted at z'. The flap lifts the 15 valve by thrusting upward the stem z^2 .

The requisite number of coins having been dropped into the chute, one coin falls into the recess f, and the handle j being pulled down the pusher p rises over the coin and engages with the lever r, which turns the arm t, closing the measuring vessel u to the supply and opening it to the delivery-valve x. The coin when in the recess f is supported by the flange g of the segment h, and this is cut away, as is shown in Fig. 5, so that when the measuring vessel is opened to the delivery-cock the coin ceases to be supported and it falls into the

coin-receptacle. When the handle j is raised, all the parts

30 return to their original positions.
What we claim is—

1. The combination of a coin-chute, a coin-

retaining cavity, a pusher riding over the coin, a handle operating the pusher, a measuring vessel and means actuated by the pusher for 39 operating the valve or cock of the measuring vessel.

2. The combination of a coin-chute, a coin-retaining cavity, a pusher riding over the coin, a handle operating the pusher, a measuring 40 vessel, a three-way cock leading from the measuring vessel, an arm on the stem of the cock, and means for connecting the arm to

the pusher.

3. The combination of a coin-chute, an 4 arched guide, a recess in the arched guide, a pivoted segment, a flange on the pivoted segment, a pusher riding over the coin, a handle operating the pusher, a measuring vessel, and means actuated by the pusher for operating the valve or cock of the measuring vessel.

4. The combination of a coin-chute, a pivoted tongue in the coin-chute, a coin-retaining cavity, a pusher riding over the coin, a handle operating the pusher, a measuring vessel and means actuated by the pusher for operating the valve or cock of the measuring vessel.

ROBERT JAMES MOSER. HENRY WILLIAM PHIPPS.

Witnesses

WILLIAM JOHN WEEKS, RICHARD BUNDY.