

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 January 2003 (09.01.2003)

PCT

(10) International Publication Number
WO 03/002060 A2

(51) International Patent Classification⁷:

A61K

(21) International Application Number: PCT/US02/20320

(22) International Filing Date: 26 June 2002 (26.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/891,763 26 June 2001 (26.06.2001) US

(71) Applicant: BONE CARE INTERNATIONAL, INC.
[US/US]; 1600 Aspen Commons, Middleton, WI 53562
(US).

(72) Inventors: BISHOP, Charles, W.; 8550 Bakken Road,
Mount Horeb WI 53572 (US). MAZESS, Richard, B.;
3534 Blackhawk Drive, Madison, WI 53705 (US).

(74) Agents: WELCH, Teresa, J. et al.; Michael Best &
Friedrich LLP, One South Pinckney Street, Suite 700, P.O.
Box 1806, Madison, WI 53701-1806 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/002060 A2

(54) Title: METHOD OF TREATING MALIGNANCY ASSOCIATED HYPERCALCEMIA USING ACTIVE VITAMIN D ANALOGUES

(57) Abstract: Methods utilizing active vitamin D analogs for the treatment of malignancy-associated hypercalcemia. Methods comprise the application of an effective amount of a hypocalcemic vitamin D compound to alleviate hypercalcemia, lower serum parathyroid hormone related protein (PTHrP) levels.

METHOD OF TREATING MALIGNANCY ASSOCIATED HYPERCALCEMIA
USING ACTIVE VITAMIN D ANALOGUES

5

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Serial No. 09/596,149 filed February 23, 1998, which is a divisional of U.S. application Serial No. 08/781,910, filed December 30, 1996, now U.S. Patent No. 5,763,429, all of which are 10 incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT

Not Applicable

15

BACKGROUND OF THE INVENTION

This invention relates generally to a method of treating malignancy-associated hypercalcemia (MAH), and in particular, to the use of active forms of vitamin D to reduce hypercalcemia associated with inhibit the hyperproliferative diseases.

20 Extensive research during the past two decades has established important biologic roles for vitamin D apart from its classic role in bone and mineral metabolism. Specific nuclear receptors for 1 α ,25-dihydroxyvitamin D₃, the hormonally active form of vitamin D, are present in cells from diverse organs not involved in calcium homeostasis. For example, specific, biologically active vitamin D receptors have been 25 demonstrated in the human prostatic carcinoma cell line, LNCaP, (Miller et al., 52 *Cancer Res.* (1992) 515-520); Vitamin D receptors have also been described for many other neoplastic cells, e.g., carcinomas of the breast and carcinomas of the colon.

30 It has been reported that certain vitamin D compounds and analogues are potent inhibitors of malignant cell proliferation and are inducers/stimulators of cell differentiation. For example, U.S. Patent No. 4,391,802 issued to Suda et al. discloses

-2-

that 1α -hydroxyvitamin D compounds, specifically $1\alpha,25$ -dihydroxyvitamin D₃ and 1α -hydroxyvitamin D₃, possess potent antileukemic activity by virtue of inducing the differentiation of malignant cells (specifically leukemia cells) to nonmalignant macrophages (monocytes), and are useful in the treatment of leukemia. Antiproliferative and differentiating actions of $1\alpha,25$ -dihydroxyvitamin D₃ and other vitamin D₃ analogues have been reported with respect to cancer cell lines. More recently, an association between vitamin D receptor gene polymorphism and cancer risk has been reported, suggesting that vitamin D receptors may have a role in the development, and possible treatment, of cancer.

10 These previous studies have focused exclusively on vitamin D₃ compounds. Even though these compounds may indeed be highly effective in promoting differentiation in malignant cells in culture, their practical use in differentiation therapy as anticancer agents is severely limited because of their equally high potency as agents affecting calcium metabolism. At the levels required *in vivo* for effective use as, for 15 example, antileukemic agents, these same compounds can induce markedly elevated and potentially dangerous blood calcium levels by virtue of their inherent calcemic activity. That is, the clinical use of $1\alpha,25$ -dihydroxyvitamin D₃ and other vitamin D₃ analogues as anticancer agents is precluded, or severely limited, by the risk of hypercalcemia.

20 Hypercalcemia is frequently associated with malignancy (MAH), and is often a major contributor to morbidity and complicates clinical management of the malignancy. Parathyroid hormone related protein (PTHrP) is closely related to parathyroid hormone (PTH) and binds to the same receptor as PTH as well as other receptors. PTHrP is one of the main causative substances of such hypercalcemia, and is overproduced by malignant cells. 1,25-dihydroxyvitamin D₃ has been found to repress the transcription 25 of the PTHrP gene in cells, however, the 1,25-dihydroxyvitamin D₃ compounds themselves increase serum calcium levels. Therefore a need exists for compounds with greater specific activity and selectivity of action, i.e., vitamin D compounds with antiproliferative and differentiating effects but which have less calcemic activity.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a method of treating malignancy-associated hypercalcemia (MAH) such as that associated with hyperproliferative cell growth and/or abnormal cell differentiation. The method includes use of active vitamin D compounds 5 to treat hypercalcemia and reduce serum parathyroid hormone related protein (PTHrP) levels.

The foregoing, and other advantages of the present invention, are realized in one aspect thereof in a method of treating malignancy-associated hypercalcemia from the hyperproliferative activity of human neoplastic or hyperplastic cells, comprising treating 10 the cells with an effective amount of a hypocalcemic hydroxyvitamin D compound having a hydrocarbon moiety substituted at the C-24 position on the sidechain of the molecule. The treating step includes inhibiting proliferation of, and inducing and enhancing differentiation in such cells.

A hydroxyvitamin D compound in accordance with the present invention is an 15 active vitamin D and is suitably represented by the formula (I) described hereafter. Suitable compounds of formula (I) are $1\alpha,24$ -dihydroxyvitamin D₂, $1\alpha,24$ -dihydroxyvitamin D₄, $1\alpha,25$ -dihydroxyvitamin D₄, $1\alpha,25$ -dihydroxyvitamin D₂, 1α -hydroxyvitamin D₂ and 1α -hydroxyvitamin D₄.

The effective or therapeutic amount of the hypocalcemic hydroxyvitamin D 20 compounds administrable in accordance with the present invention to patients in need on a daily basis per kilogram of body weight ranges from 0.01 $\mu\text{g}/\text{kg}/\text{day}$ to 2.0 $\mu\text{g}/\text{kg}/\text{day}$.

In another aspect of the invention, lowering serum parathyroid hormone related protein (PTHrP) levels in patients suffering from hypercalcemia is accomplished by a method comprising, administering to these patients an effective amount of a 25 hypocalcemic vitamin D compound, to lower the serum parathyroid hormone related protein (PTHrP) level.

The hypocalcemic vitamin D compounds are also valuable for the treatment of breast, prostate and colon cancer, as well as other neoplasms such as pancreatic cancer, endometrial cancer, testicular cancer, small cell and non-small cell cancer of the lung

-4-

(including squamous, adneocarcinoma and large cell types), squamous cell of the head and neck, bladder, ovarian and cervical cancers, myeloid and lymphocytic leukemia, lymphoma, hepatic tumors, medullary thyroid carcinoma, multiple myeloma, retinoblastoma, and sarcomas of the soft tissue and bone, i.e. neoplasms that express a 5 vitamin D receptor.

In accordance with the present invention, when effective amounts of the hypocalcemic vitamin D compounds are administered to patients with MAH, significantly reduced hypercalcemia is observed than is observed after the same amount 10 of an activated vitamin D₃ (e.g., 1 α -OH D₃, 1 α ,25-(OH)₂ D₃) is administered in previously known formulations. Thus, the compound in accordance with the present invention has an improved therapeutic index relative to active forms of vitamin D₃ analogues.

15 Accordingly, another aspect of the invention is a method of treating malignancy associated hypercalcemia comprising administering to a subject who is suffering therefrom an effective amount of active vitamin D compound which has, or attains through metabolism *in vivo*, a vitamin D receptor (VDR) binding affinity substantially equivalent to the binding affinity of 1 α ,25-dihydroxyvitamin D₃ and has a 20 hypercalcemia risk substantially lower than that of 1 α ,25-dihydroxyvitamin D₃, to normalize or reduce serum calcium levels.

25 For treatment for malignancy-associated hypercalcemia and the underlying malignant condition in accordance with the present invention, the active vitamin D is suitably administered alone as an active ingredient in a pharmaceutical composition, or is co-administered with an anticancer agent.

30 Further, included within the scope of the present invention is the co-administration of a hypocalcemic vitamin D compound with a cytotoxic or anticancer agent. Such agents suitably include antimetabolites (e.g., 5-fluoro-uracil, methotrexate, fludarabine), antimicrotubule agents (e.g., vincristine, vinblastine, taxanes such as paclitaxel, docetaxel), an alkylating agent (e.g., cyclophosphamide, melphalan,

biochloroethylnitrosurea, hydroxyurea), platinum agents (e.g. cisplatin, carboplatin, oxaliplatin, JM-216, CI-973), anthracyclines (e.g., doxrubicin, daunorubicin), antibiotics (e.g., mitomycin, idarubicin, adriamycin, daunomycin), topoisomerase inhibitors (e.g., etoposide, camptothecins) or any other antineoplastic agents.

5 (estramustine phosphate, prednimustine).

It is anticipated that the active vitamin D compounds used in combination with various anticancer drugs can give rise to a significantly enhanced cytotoxic effect on cancerous cells, thus providing an increased therapeutic effect. Specifically, as a

10 significantly increased growth-inhibitory effect is obtained with the above disclosed combinations utilizing lower concentrations of the anticancer drugs compared to the treatment regimes in which the drugs are used alone, there is the potential to provide therapy wherein adverse side effects associated with the anticancer drugs are considerably reduced than normally observed with the anticancer drugs used alone in

15 larger doses. Possible dose ranges of these co-administered anticancer agents are about 0.1 to 20 mg/kg/day.

Also included within the scope of the present invention is the co-administration of effective dosages of a hypocalcemic vitamin D compound in conjunction with

20 administration of hormones or other agents, e.g., estrogens, which are known to ameliorate bone diseases or disorders. For example, prostate cancer often metastasizes to bone, causing bone loss and associated pain. Such bone agents may include conjugated estrogens or their equivalents, calcitonin, bisphosphonates, calcium supplements, cobalamin, pertussis toxin and boron.

25 In another aspect, the invention is a pharmaceutical composition which includes an anticancer agent which is an active hypocalcemic vitamin D compound; an agent selected from the group consisting of (i) an anticancer agent, (ii) a bone agent, and combinations thereof; and a physiologically acceptable carrier.

Other advantages and a fuller appreciation of specific adaptations, compositional

30 variations, and physical attributes will be gained upon an examination of the following

-6-

detailed description of preferred embodiments, taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWING(S)

5 Not Applicable

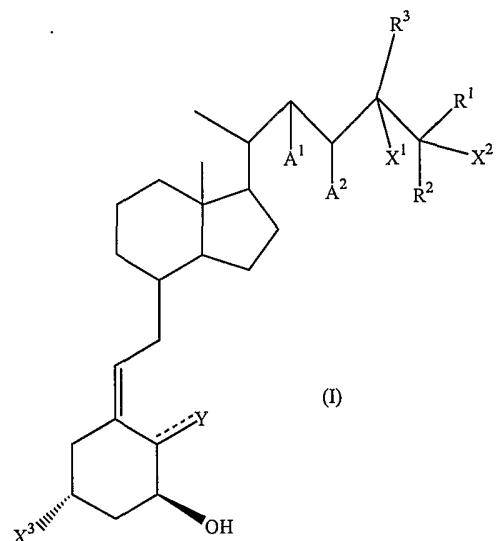
DETAILED DESCRIPTION OF THE INVENTION

The present invention provides an effective method for the treatment of hypercalcemia, i.e. unphysiologically high and deleterious blood calcium levels, 10 associated with neoplastic and hyperproliferative diseases. Particularly, the present invention relates to therapeutic methods for ameliorating or alleviating the hypercalcemia associated with the hyperproliferative cellular activity of malignant and neoplastic diseases, as well as inducing, enhancing or promoting cell differentiation in the diseased cells. The present invention provides a novel treatment of a patient 15 suffering from a hyperproliferative disease with an active hypocalcemic vitamin D compound. Preferably, the active vitamin D analogue is a hydroxyvitamin D compound and is suitably represented by formula (I) as described hereinbelow. The active vitamin D analogue is provided to the patient without itself causing dose-limiting hypercalcemia and hypercalciuria, and in fact, reduces the hypercalcemia caused by the 20 malignancy. These attributes are achieved through specific chemical properties of the hypocalcemic vitamin D compounds as described.

In accordance with the present invention, when effective amounts of the hypocalcemic active vitamin D compounds are administered to patients with malignant diseases, the hypercalcemia is reduced, the PTHrP serum level is reduced, and the 25 proliferative activity of the abnormal cells is inhibited, reduced, or stabilized, and cell differentiation is induced, promoted or enhanced. Thus, the hypocalcemic vitamin D compounds of the present invention have an improved therapeutic index relative to active forms of vitamin D₃ analogues.

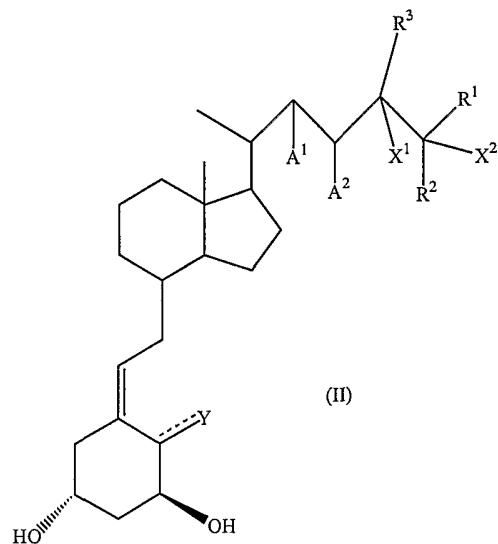
It is known that vitamin D₃ must be hydroxylated in the C-1 and C-25 positions before it is activated, i.e., before it will produce a biological response. A similar metabolism appears to be required to activate other forms of vitamin D, e.g., vitamin D₂ and vitamin D₄. Therefore, as used herein, the term "activated vitamin D" or "active 5 vitamin D" is intended to refer to a vitamin D compound or analogue that has been hydroxylated in at least the C-1, C-24 or C-25 position of the molecule and either the compound itself or its metabolites in the case of a prodrug, such as 1 α -hydroxyvitamin D₂, binds the vitamin D receptor (VDR). For example, "prodrugs" are vitamin D compounds which are hydroxylated in the C-1. Such compounds undergo 10 further hydroxylation *in vivo* and their metabolites bind the VDR.

The term "hypocalcemic vitamin D compound" is in reference to active vitamin D analogs which demonstrate hypocalcemic activity, i.e. have low calcemic activity relative to that of 1 α ,25-dihydroxyvitamin D₃, including 24-hydroxyvitamin D compounds, 25-hydroxyvitamin compounds and 1 α -hydroxyvitamin compounds.


15 Also, as used herein, the term "lower" as a modifier for alkyl, alkenyl acyl, or cycloalkyl is meant to refer to a straight or branched, saturated or unsaturated hydrocarbon radical having 1 to 4 carbon atoms. Specific examples of such hydrocarbon radicals are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, *t*-butyl, 20 ethenyl, propenyl, butenyl, isobut enyl, isopropenyl, formyl, acetyl, propionyl, butyryl or cyclopropyl. The term "aromatic acyl" is meant to refer to a unsubstituted or substituted benzoyl group.

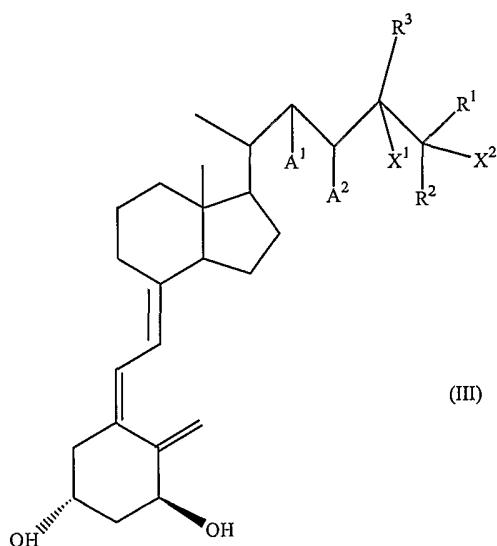
As used herein, the term "hydrocarbon moiety" refers to a lower alkyl, a lower alkenyl, a lower acyl group or a lower cycloalkyl, i.e., a straight or branched, saturated or unsaturated C₁-C₄ hydrocarbon radial.

25 The compound in accordance with the present invention is an active hypocalcemic vitamin D compound. The active vitamin D provided is such that the compound has a hydrocarbon moiety at the C-24 position, e.g. a lower alkyl, alkenyl or acyl group as the C-24 position. Further, the active vitamin D in accordance with the present invention may have an unsaturated sidechain, e.g., there is suitably a double 30 bond between C-22 and C-23, between C-25 and C-26 or between C-26 and C-27.


-8-

The hypocalcemic hydroxyvitamin D of the present invention suitably has the general formula described in formula (I)

wherein A¹ and A² each are hydrogen or a carbon-carbon bond, thus forming a
 5 double bond between C-22 and C-23; R¹ and R² are identical or different and are
 hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower
 fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with
 the proviso that R¹ and R² cannot both be alkenyl, or taken together with the carbon to
 which they are bonded, form a C₃-C₈ cyclocarbon ring; R³ is lower alkyl, lower alkenyl,
 10 lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl,
 O-aromatic acyl or lower cycloalkyl; X¹ is hydrogen or hydroxyl, X² is hydrogen or
 hydroxyl, or, may be taken with R¹ or R², to constitute a double bond, and X³ is
 hydrogen or hydroxyl provided that at least one of X¹, X², or X³ is hydroxyl, and Y is a
 15 methylene group if the bond to Y is a double bond or is a methyl group or hydrogen if
 the bond to Y is a single bond.


A 1α -hydroxyvitamin D compound of formula (I) is characterized by the general formula (II):

5 wherein A^1 and A^2 each are hydrogen or a carbon-carbon bond, thus forming a double bond between C-22 and C-23; R^1 and R^2 are identical or different and are hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R^1 and R^2 cannot both be an alkenyl, or taken together with the carbon
10 10 to which they are bonded, form a C_3 - C_8 cycloalkyl ring; R^3 is lower alkyl, lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl or lower cycloalkyl; X^1 is hydrogen or hydroxyl, X^2 is hydrogen or hydroxyl, or, may be taken with R^1 or R^2 , to constitute a double bond, and
15 15 Y is a methylene group if the bond to Y is a double bond or is a methyl group or hydrogen if the bond to Y is a single bond.

-10-

Specifically, 1α -hydroxyvitamin D compounds in accordance with the present invention are characterized by the general formula (III):

wherein A^1 and A^2 each are hydrogen or a carbon-carbon bond, thus forming a
 5 double bond between C-22 and C-23; R^1 and R^2 are identical or different and are hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R^1 and R^2 cannot both be an alkenyl, or taken together with the carbon to which they are bonded, form a C₃-C₈ cyclocarbon ring; R^3 is lower alkyl, lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl or lower cycloalkyl; X^1 is hydrogen or hydroxyl, and X^2 is hydrogen or hydroxyl, or, may be taken with R^1 or R^2 , to constitute a double bond.
 10

The hypocalcemic hydroxyvitamin D compounds of the present invention are those that have effective antiproliferative and cell differentiation activity (i.e., reversal of malignant transformation), but have a lower tendency or inability to cause hypercalcemia and/or hypercalciuria i.e. they are hypocalcemic compounds that have low calcemic activity relative to that of $1\alpha,25$ -dihydroxyvitamin D₃. In other words, the compounds of the present invention can be administered at dosages that allow them to act as antiproliferative agents and cell differentiation agents when exposed to malignant or other hyperproliferative cells and can reduce hypercalcemia associated with the
 15
 20

malignancy. This selectivity and specificity of action makes the hypocalcemic vitamin D compounds useful and preferred antihypercalcemic agents as well as safely inhibiting hyperproliferation and promoting malignant or hyperplastic cell differentiation. The compounds of the present invention, thus, overcome the shortcomings of the known 5 active vitamin D₃ compounds described above, and can be considered preferred agents for the control and treatment of malignant diseases such breast, prostate, testicular and colon cancer, as well as other neoplasms such as pancreatic cancer, endometrial cancer, small cell and non-small cell cancer of the lung (including squamous, adenocarcinoma and large cell types), squamous cell of the head and neck, bladder, ovarian and cervical 10 cancers, myeloid and lymphocytic leukemia, lymphoma, hepatic tumors, medullary thyroid carcinoma, multiple myeloma, melanoma retinoblastoma, and sarcomas of the soft tissue and bone, i.e. neoplasms that express vitamin D receptors.

Suitable hypocalcemic vitamin D compounds in accordance with the present invention include: 1 α ,24-dihydroxyvitamin D₂, 1 α ,24-dihydroxyvitamin D₄, 1 α ,25-dihydroxyvitamin D₂, 1 α ,25-dihydroxyvitamin D₄, 1 α -hydroxyvitamin D₂, and 1 α -hydroxyvitamin D₄. Among those compounds of formula (I) that have a chiral center in the sidechain, such as at C-24, it is understood that both epimers (e.g., R and S) and the racemic mixture are within the scope of the present invention.

Thus, the present invention provides a method of treating hypercalcemia 20 associated with malignant cells with an effective amount of a hypocalcemic vitamin D compound. The effective dosage amount on a daily basis per kilogram of body weight of the patient ranges from about 0.01 μ g/kg/day to about 2.0 μ g/kg/day.

The compounds of formula (I) can be prepared as described, e.g., in U.S. Patent 5,488,120 issued to Knutson et al., U.S. Patent 4,670,190 and 4,554,106 issued to 25 DeLuca et al., U.S. Patent 5,486,636 issued to DeLuca et al., and Strugnell et al., 310 *Biochem. J.* (1995) pp. 233-241, all of which are incorporated herein by reference.

The biopotencies of the compounds of formula (I) have been studied and compared to that of 1 α ,25-dihydroxyvitamin D₃, the active hormonal form of vitamin D and the standard against which all vitamin D compounds and analogues are measured. 30 For example, it has been found that the vitamin D receptor (VDR) binding affinities of

-12-

the compounds of formula (I), or their active metabolites, are substantially equivalent to (i.e., equal to or up to 3 times weaker than) the affinity of 1 α ,25-dihydroxyvitamin D₃. Such receptor binding affinities are indicative of potent biological activity.

At the same time, it has been found that compounds of formula (I) are significantly less toxic than their corresponding vitamin D₃ analogues. For example, in parent co-pending application, Ser. No. 08/265,438, the disclosure of which is incorporated herein by reference, the LD₅₀ for 1 α -hydroxyvitamin D₄ was found to be 1.0 mg/kg in males and 3.0 mg/kg in females, i.e., substantially less toxic than 1 α -hydroxyvitamin D₃ (LD₅₀ ~ 0.2 mg/kg). Further, in the parent U.S. Patent No. 5,403,831, and its grandparent U.S. Patent 5,104,864, both of which are incorporated herein by reference, it has been shown that 1 α -hydroxyvitamin D₂ has the same biopotency as 1 α -hydroxyvitamin D₃ and 1 α ,25-dihydroxyvitamin D₃ but is much less toxic. Even dosages up to 10 μ g/day of 1 α -hydroxyvitamin D₂ in women with postmenopausal osteoporosis elicited only mild hypercalciuria (U.Ca >300 mg/24 hrs), and no marked hypercalcemia (S. Ca>11.0 mg/dL) solely due to 1 α -hydroxyvitamin D₂ was evident. Additionally, the compound did not adversely affect kidney function, as determined by creatinine clearance and BUN; nor did it increase urinary excretion of hydroxyproline, indicating the absence of any stimulatory effect on bone resorption. Administration of 1 α -hydroxyvitamin D₂ to healthy adult males in dosages up to 8 μ g/day showed no clinically significant hypercalcemia or other adverse effects.

The hypocalcemic vitamin D compounds of the present invention are useful as active compounds in pharmaceutical compositions having reduced side effects and low toxicity as compared with the known analogues of active forms of vitamin D₃.

The pharmacologically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, e.g., mammals including humans. For example, the hypocalcemic vitamin D compounds can be employed in admixtures with conventional excipients, e.g., pharmaceutically acceptable carrier substances suitable for enteral (e.g., oral), parenteral or topical application which do not deleteriously react with the active compounds.

-13-

Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils (e.g., almond oil, corn oil, cottonseed oil, peanut oil, olive oil, coconut oil), mineral oil, fish liver oils, oily esters such as Polysorbate 80, polyethylene glycols, gelatine, carbohydrates (e.g., lactose, 5 amylose or starch), magnesium stearate, talc, silicic acid, viscous paraffin, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxy methylcellulose, polyvinyl pyrrolidone, etc.

The pharmaceutical preparations can be sterilized and, if desired, be mixed with 10 auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or one or more other active compounds, for example, vitamin D₃ and its 1 α -hydroxylated metabolites, conjugated estrogens or their equivalents, anti-estrogens, calcitonin, biphosphonates, calcium supplements, cobalamin, pertussis toxin and boron.

15

For parenteral application, particularly suitable are injectable, sterile solutions, preferably oily or aqueous solution, as well as suspensions, emulsions, or implants, including suppositories. Parenteral administration suitably includes subcutaneous, intramuscular, or intravenous injection, nasopharyngeal or mucosal absorption, or 20 transdermal absorption. Ampoules are convenient unit dosages.

For enteral application, particularly suitable are tablets, dragees, liquids, drops, suppositories, lozenges, powders, or capsules. A syrup, elixir, or the like can be used if a sweetened vehicle is desired.

25

For topical application, suitable nonsprayable viscous, semi-solid or solid forms can be employed which include a carrier compatible with topical application and having a dynamic viscosity preferably greater than water, for example, mineral oil, almond oil, self-emulsifying beeswax, vegetable oil, white soft paraffin, and propylene glycol. 30 Suitable formulations include, but are not limited to, creams, ointments, lotions, solutions, suspensions, emulsions, powders, liniments, salves, aerosols, transdermal patches, etc., which are, if desired, sterilized or mixed with auxiliary agents, e.g.,

-14-

preservatives, stabilizers, demulsifiers, wetting agents, etc. A cream preparation in accordance with the present invention suitably includes, for example, mixture of water, almond oil, mineral oil and self-emulsifying beeswax; an ointment preparation suitably includes, for example, almond oil and white soft paraffin; and a lotion preparation 5 suitably includes, for example, dry propylene glycol.

Topical preparations of the compound in accordance with the present invention useful for the treatment of skin disorders may also include epithelialization-inducing agents such as retinoids (e.g., vitamin A), chromanols such as vitamin E, β -agonists such 10 as isoproterenol or cyclic adenosine monophosphate (cAMP), anti-inflammatory agents such as corticosteroids (e.g., hydrocortisone or its acetate, or dexamethasone) and keratoplastic agents such as coal tar or anthralin. Effective amounts of such agents are, for example, vitamin A about 0.003 to about 0.3% by weight of the composition; vitamin E about 0.1 to about 10%; isoproterenol about 0.1 to about 2%; cAMP about 0.1 15 to about 1%; hydrocortisone about 0.25 to about 5%; coal tar about 0.1 to about 20%; and anthralin about 0.05 to about 2%.

For rectal administration, the compound is formed into a pharmaceutical composition containing a suppository base such as cacao oil or other triglycerides. To 20 prolong storage life, the composition advantageously includes an antioxidant such as ascorbic acid, butylated hydroxyanisole or hydroquinone.

For treatment of hypercalcemia associated with malignancy, oral administration of the pharmaceutical compositions of the present invention is preferred. Generally, the 25 compound of this invention is dispensed by unit dosage form comprising about 0.5 μ g to about 25 μ g in a pharmaceutically acceptable carrier per unit dosage. The dosage of the compound according to this invention generally is about 10 μ g to 200 μ g/day.

For topical treatment of skin disorders, the dosage of the compound of the 30 present invention in a topical composition generally is about 0.01 μ g to about 50 μ g per gram of composition. For treatment of skin cancers, the dosage of the hypocalcemic

vitamin D compound in a locally applied composition generally is about 0.01 μ g to 100 μ g per gram composition.

It is noted that dosing of the hypocalcemic compounds in accordance with the 5 present invention can also be done on an episodic basis, in which case higher doses can be used generally about 20 μ g to about 200 μ g given once every 2 to 7 days. The dose can be given as a single dose or a divided dose in 2 to 5 subdoses, the subdoses given, e.g., one every hour until the total dose is taken.

10 Those of ordinary skill in the art will readily optimize effective doses and coadministration regimens as determined by good medical practice and the clinical condition of the individual patient. Regardless of the manner of administration, it will be appreciated that the actual preferred amounts of active compound in a specific case will vary according to the efficacy of the specific compound employed, the particular 15 compositions formulated, the mode of application, and the particular situs and organism being treated. For example, the specific dose for a particular patient depends on age, body weight, general state of health, on diet, on the timing and mode of administration, on the rate of excretion, and on medicaments used in combination and the severity of the particular disorder to which the therapy is applied. Dosages for a given host can be 20 determined using conventional considerations, e.g., by customary comparison of the differential activities of the subject compounds and of a known agent, such as by means of an appropriate conventional pharmacological protocol.

Further, included within the scope of the present invention is the co-administration of a hypocalcemic vitamin D compound with a anticancer agent, e.g., 25 a cytotoxic agent. Such agents suitably include antimetabolites (e.g., 5-fluoro-uracil, methotrexate, fludarabine), antimicrotubule agents (e.g., vincristine, vinblastine, taxanes such as paclitaxel, docetaxel), an alkylating agent (e.g., cyclophosphamide, melphalan, biochoroethylnitrosurea, hydroxyurea), platinum agents (e.g. cisplatin, carboplatin, oxaliplatin, JM-216, CI-973), anthracyclines (e.g., doxorubicin, daunorubicin), 30 antibiotics (e.g., mitomycin, idarubicin, adriamycin, daunomycin), topoisomerase inhibitors (e.g., etoposide, camptothecins) or any other antineoplastic agents.

(estramustine phosphate, prednimustine). It is anticipated that the hypocalcemic vitamin D compounds used in combination with various anticancer drugs can give rise to a significantly enhanced cytotoxic effect on cancerous cells, thus providing an increased therapeutic effect. Specifically, as a significantly increased growth-inhibitory effect is 5 obtained with the above disclosed combinations utilizing lower concentrations of the anticancer drugs compared to the treatment regimes in which the drugs are used alone, there is the potential to provide therapy wherein adverse side effects associated with the anticancer drugs are considerably reduced than normally observed with the anticancer drugs used alone in larger doses. Possible dose ranges of these co-administered 10 anticancer agents are about 0.1 to 20 mg/kg/day.

The term "co-administration" is meant to refer to any administration route in which two or more agents are administered to a patient or subject. For example, the agents may be administered together, or before or after each other. The agents may be administered by different routes, e.g., one agent may be administered intravenously 15 while the second agent is administered intramuscularly, intravenously or orally. The agents may be administered simultaneously or sequentially, as long as they are given in a manner sufficient to allow both agents to achieve effective concentrations in the body. The agents also may be in an admixture, as, for example, in a single tablet. In sequential administration, one agent may directly follow administration of the other or 20 the agents may be given episodically, i.e., one can be given at one time and the other at a later time, typically within a week. An example of a suitable co-administration regimen is where a hypocalcemic vitamin D compound is administered from 0.5 to 7 days prior to administration of a cytotoxic agent.

Also included within the scope of the present invention is the co-administration 25 of effective dosages of the analogue of formula (I) in conjunction with administration of hormones or other agents, e.g., estrogens, which are known to ameliorate bone diseases or disorders. As noted above, prostate cancer often metastasizes to bone, causing bone loss and associated pain. Such bone agents may include conjugated estrogens or their equivalents, calcitonin, bisphosphonates, calcium supplements, cobalamin, pertussis 30 toxin and boron. It is contemplated that these bone agents also have an antihypercalcemic effect and may enhance the treatment of malignancy-associated

-17-

hypercalcemia. Possible dose ranges for these co-administered bone agents are provided in Table 1.

TABLE 1

5

Possible Oral Dose Ranges for Various Bone Agents
Co-Administered With 1 α -Hydroxyvitamin D of Formula (I)

	Agent	Dose Ranges		
		<u>Broad</u>	<u>Preferred</u>	<u>Most Preferred</u>
10	Conjugated Estrogens or Equivalent (mg/day)	0.3-5.0	0.4-2.4	0.6-1.2
	Sodium Fluoride (mg/day)	5-150	30-75	40-60
	Calcitonin (IU/day)	5-800	25-500	50-200
	Bisphosphonates (mg/day)	0.5-20	1-15	5-10
	Calcium Supplements (mg/day)	250-2500	500-1500	750-1000
	Cobalamin (μ g/day)	5-200	20-100	30-50
	Pertussis Toxin (mg/day)	0.1-2000	10-1500	100-1000
	Boron (mg/day)	0.10-3000	1-250	2-100

Antiestrogens, such as TamoxifenTM, are also known bone agents and may be suitably used in conjunction with the hypocalcemic hydroxyvitamin D compounds of the present invention.

15

The present invention is further explained by the following examples which should not be construed by way of limiting the scope of the present invention.

VDR BINDING ANALYSES

Example 1: 1 α ,24-dihydroxyvitamin D₂ [1 α ,24-(OH)₂D₂]

The affinity of 1 α ,24-(OH)₂D₂ for the mammalian vitamin D receptor (VDR) was assessed using a commercially available kit of bovine thymus VDR and standard 5 1,25-(OH)₂D₃ solutions from Incstar (Stillwater, Minnesota). The half-maximal binding of chemically synthesized 1 α ,24-(OH)₂D₂ was approximately 150 pg/ml whereas that of 1 α ,25-(OH)₂D₃ was 80 pg/ml. Thus, the 1 α ,24-(OH)₂D₂ had a very similar affinity for bovine thymus VDR as did 1 α ,25-(OH)₂D₃, indicating that 1 α ,24-(OH)₂D₂ has potent biological activity.

10 **Example 2:** 1 α ,24-dihydroxy vitamin D₄ [1 α ,24-(OH)₂D₄]

The VDR affinity binding of 1 α ,24-(OH)₂D₄ was investigated. The 1 α ,24-(OH)₂D₄ was incubated with vitamin D receptor and radiolabeled tracer 1 α ,25-(OH)₂D₃. After incubation, the amount of radioactivity bound to the receptor was 15 determined and compared with the amount bound after co-incubation of unlabeled and labeled 1 α ,25-(OH)₂D₃. It was found that 50 pg/tube of 1 α ,24-(OH)₂D₄ was equivalent to approximately 20 pg 1 α ,25-(OH)₂D₃.

These results show that 1 α ,24-(OH)₂D₄ binds slightly less tightly to the vitamin D receptor than does 1 α ,25-(OH)₂D₃. Such data mean that 1 α ,24-(OH)₂D₄ has 20 high affinity for the VDR and significant biological activity, similar to that of 1 α ,25-(OH)₂D₃. These data are consistent with gene expression studies done (described below) with 1 α ,24-(OH)₂D₄ which demonstrate that 1 α ,24-(OH)₂D₄ is only slightly less active than is 1 α ,25-(OH)₂D₃.

These results are surprising and unexpected in view of the prior art. They are 25 contrary to the normative wisdom in the vitamin D art regarding the very low degree of biological activity of vitamin D₄ compounds.

Example 3: 1 α ,24-dihydroxyvitamin D₂ [1 α ,24-(OH)₂D₂]

VDR binding of vitamin D compounds by prostate cells is demonstrated using 30 the techniques of Skowronski et al., 136 *Endocrinology* (1995) 20-26, which is incorporated herein by reference. Prostate-derived cell lines are cultured to near

-19-

confluence, washed and harvested by scraping. Cells are washed by centrifugation, and the cell pellet resuspended in a buffered salt solution containing protease inhibitors. The cells are disrupted by sonication while cooling on ice. The supernatant obtained from centrifuging the disrupted cells at 207,000 x g for 35 min at 4EC is assayed for binding.

5 200 TL of soluble extract, (1-2 mg protein/ml supernatant) is incubated with a 1 nM $^3\text{H}-1\alpha,25-(\text{OH})_2\text{D}_3$ and increasing concentrations of $1\alpha,24-(\text{OH})_2\text{D}_2$ (0.01-100 nM) for 16-20 hr at 4EC. Bound and free hormones are separated with hydroxylapatite using standard procedures. Specific binding is calculated by subtracting nonspecific binding obtained in the presence of a 250-fold excess of nonradioactive $1\alpha,25-(\text{OH})_2\text{D}_3$ from the total binding measured. The results demonstrate that $1\alpha,24-(\text{OH})_2\text{D}_2$ has strong affinity for prostate VDR, indicating that $1\alpha,24-(\text{OH})_2\text{D}_2$ has potent biological activity in respect of prostate cells.

10

Example 4: $1\alpha,24$ -dihydroxy vitamin D₄ [$1\alpha,24-(\text{OH})_2\text{D}_4$]

15 The procedure of Example 3 is repeated using the active vitamin D analogue $1\alpha,24-(\text{OH})_2\text{D}_4$, and the specific binding is determined. The results demonstrate that $1\alpha,24-(\text{OH})_2\text{D}_4$ has strong affinity for prostate VDR, indicating that $1\alpha,24-(\text{OH})_2\text{D}_4$ has potent biological activity in respect of prostate cells.

Example 5: $1\alpha,25$ -dihydroxyvitamin D₄ [$1\alpha,25-(\text{OH})_2\text{D}_4$]

20 The procedure of Example 3 is repeated using the active vitamin D analogue $1\alpha,25-(\text{OH})_2\text{D}_4$, and the specific binding is determined. The results demonstrate that $1\alpha,25-(\text{OH})_2\text{D}_4$ has strong affinity for prostate VDR, indicating that $1\alpha,25-(\text{OH})_2\text{D}_4$ has potent biological activity in respect of prostate cells.

25 **GENE EXPRESSION**

Example 6: $1\alpha,24$ -dihydroxy vitamin D₄ [$1\alpha,24-(\text{OH})_2\text{D}_4$]

Using the plasmids p(CT4)⁴TKGH, a vitamin D receptor (VDR)-expressing plasmid, and pSG5-hVDR1/3, a plasmid containing a Growth Hormone (GH) gene, under the control of a vitamin D-responsive element (VDRE), experiments were conducted to explore the ability of $1\alpha,24-(\text{OH})_2\text{D}_4$ to induce vitamin D-dependent growth hormone acting as a reporter gene compared to that of $1\alpha,25-(\text{OH})_2\text{D}_3$. Cells in

30

-20-

culture were transfected with these two plasmids. One plasmid contained the gene for Growth Hormone (GH) under the control of the vitamin D responsive element (VDRE) and the other plasmid contained the structural gene for the vitamin D receptor (VDR). These transfected cultures were incubated with $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$ or $1\alpha,25\text{-}(\text{OH})_2\text{D}_3$, and 5 the production of growth hormone was measured. Table 2 below shows the results of this assay:

TABLE 2

10 Induction of Growth Hormone by Vitamin D Compounds

Compound	Concentration Used (M)	Growth Hormone Induction (ng/ml)
$1,25\text{-}(\text{OH})_2\text{D}_3$	1×10^{-10}	39
$1,25\text{-}(\text{OH})_2\text{D}_3$	5×10^{-10}	248
$1,24\text{-}(\text{OH})_2\text{D}_4$	5×10^{-10}	165
$1,24\text{-}(\text{OH})_2\text{D}_4$	1×10^{-9}	628
$1,24\text{-}(\text{OH})_2\text{D}_4$	5×10^{-9}	1098

15 These data show that the ability of $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$ to stimulate vitamin D-dependent growth hormone is nearly equivalent to that of $1\alpha,25\text{-}(\text{OH})_2\text{D}_3$. Such results are truly surprising and would not have been expected by following the teachings of the prior art.

20 **Example 7:** $1\alpha,24\text{(S)}\text{-dihydroxyvitamin D}_2$ and $1\alpha,24\text{(R)}\text{-dihydroxy-vitamin D}_2$
[$1\alpha,24\text{(S)}\text{-}(\text{OH})_2\text{D}_2$ and $1\alpha,24\text{(R)}\text{-}(\text{OH})_2\text{D}_2$]

25 The gene expression study described in Example 6 was conducted to compare the biological activity *in vitro* of chemically synthesized $1\alpha,24\text{(S)}\text{-}(\text{OH})_2\text{D}_2$ and $1\alpha,24\text{(R)}\text{-}(\text{OH})_2\text{D}_2$, with $1\alpha,25\text{-}(\text{OH})_2\text{D}_3$ and 25-OH-D_3 . The vitamin D-dependent transcriptional activation model system was used in which plasmids pSG5-hVDR1/3 and p(CT4)⁴TKGH were co-transfected into Green monkey kidney, COS-1 cells.

Transfected cells were incubated with vitamin D metabolites and growth hormone production was measured. As shown in Table 3, both $1\alpha,24\text{(S)}\text{-}(\text{OH})_2\text{D}_2$ and

-21-

its epimer, $1\alpha,24(R)$ -(OH)₂D₂, had significantly more activity in this system than 25-OH-D₃, with $1\alpha,24(S)$ -(OH)₂D₂ having nearly the same activity as $1\alpha,25$ -(OH)₂D₃.

TABLE 3

5

Vitamin D-Inducible Growth Hormone Production
In Transfected COS-1 Cells

10

<u>Inducer</u>	<u>Molar Concentration</u>	Vitamin D-Inducible Growth Hormone Production	
		Total GH Production* (ng/ml)	Net vitamin D-Inducible GH-production (ng/ml)
Ethanol		44	0
25-OH-D ₃	1×10^{-7}	245	201
	1×10^{-6}	1100	1056
	1×10^{-5}	775	731
$1\alpha,25$ -(OH) ₂ D ₃	1×10^{-10}	74	30
	1×10^{-9}	925	881
	1×10^{-8}	1475	1441
$1\alpha,24(S)$ -(OH) ₂ D ₂	5×10^{-10}	425	381
	5×10^{-9}	1350	1306
	5×10^{-8}	1182	1138
$1\alpha,24(R)$ -(OH) ₂ D ₂	1×10^{-9}	80	36
	1×10^{-8}	1100	1056
	1×10^{-7}	1300	1256

*Averages of duplicate determinations

15

INHIBITION OF CELL PROLIFERATION

Example 8: $1\alpha,24$ -dihydroxyvitamin D₂ [$1\alpha,24$ -(OH)₂D₂]

20

Inhibition of cell proliferation is demonstrated using the techniques of Skowronski et al., 132 *Endocrinology* (1993) 1952-1960 and 136 *Endocrinology* (1995)

20-26, both of which are incorporated herein by reference. The cell lines, LNCaP and PC-3, which are derived from human prostate adenocarcinoma, are seeded in six-well tissue culture plates at a density of about 50,000 cells/plate. After the cells have attached and stabilized, about 2-3 days, the medium is replenished with medium
5 containing vehicle or the active vitamin D analogue $1\alpha,24\text{-}(\text{OH})_2\text{D}_2$, at concentrations from 10^{-11} M to 10^{-7} M. Medium containing test analogue or vehicle is replaced every three days. After 6-7 days, the medium is removed, the cells are rinsed, precipitated with cold 5% trichloroacetic acid, and washed with cold ethanol. The cells are solubilized with 0.2 N sodium hydroxide, and the amount of DNA determined by
10 standard procedures. The results show that cultures incubated with $1\alpha,24\text{-}(\text{OH})_2\text{D}_2$ in accordance with the present invention have significantly fewer cells than the control cultures.

15 **Example 9:** $1\alpha,24\text{-dihydroxy vitamin D}_4$ [$1\alpha,24\text{-}(\text{OH})_2\text{D}_4$]

The procedure of Example 8 is repeated using the active vitamin D analogue $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$, and the cell number is determined. Cultures incubated with $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$ have significantly fewer cells than the control cultures.

20 **Example 10:** $1\alpha,25\text{-dihydroxyvitamin D}_4$ [$1\alpha,25\text{-}(\text{OH})_2\text{D}_4$]

The procedure of Example 8 is repeated using the active vitamin D analogue $1\alpha,25\text{-}(\text{OH})_2\text{D}_4$, and the cell number is determined. Cultures incubated with $1\alpha,25\text{-}(\text{OH})_2\text{D}_4$ have significantly fewer cells than the control cultures.

25

STIMULATION OF CELL DIFFERENTIATION

Example 11: $1\alpha,24\text{-dihydroxyvitamin D}_2$ [$1\alpha,24\text{-}(\text{OH})_2\text{D}_2$]

30 Using the techniques of Skowronski et al., 132 *Endocrinology* (1993) 1952-1960 and 136 *Endocrinology* (1995) 20-26, both of which are incorporated herein by reference, cells of the cell line, LNCaP, which is derived from a human metastatic prostate adenocarcinoma and known to express PSA, are seeded in six-well tissue culture plates at a density of about 50,000 cells/plate. After the cells have attached and

-23-

stabilized, about 2-3 days, the medium is replenished with medium containing vehicle or the active vitamin D analogue, $1\alpha,24\text{-}(\text{OH})_2\text{D}_2$, at concentrations from 10^{-11} M to 10^{-7} M. After 6-7 days, the medium is removed and stored at -20°C for prostate specific antigen (PSA) analysis.

5 The cells from parallel cultures are rinsed, precipitated, and the amount of DNA determined by standard procedures. PSA is measured by standard known methods. Cultures incubated with $1\alpha,24\text{-}(\text{OH})_2\text{D}_2$ have significantly more PSA than control cultures when expressed as mass of PSA/cell.

10 **Example 12:** $1\alpha,24\text{-dihydroxyvitamin D}_4$ [$1\alpha,24\text{-}(\text{OH})_2\text{D}_4$]

The procedure of Example 12 is repeated except the active vitamin D analogue is $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$. The PSA is measured and cultures incubated with $1\alpha,24\text{-}(\text{OH})_2\text{D}_4$ have significantly more PSA than control cultures when expressed as mass of PSA/cell.

15 **Example 13:** $1\alpha,25\text{-dihydroxyvitamin D}_4$ [$1\alpha,24\text{-}(\text{OH})_2\text{D}_4$]

The procedure of Example 12 is repeated except the active vitamin D analogue is $1\alpha,25\text{-}(\text{OH})_2\text{D}_4$. The PSA is measured and cultures incubated with $1\alpha,25\text{-}(\text{OH})_2\text{D}_4$ have significantly more PSA than control cultures when expressed as mass of PSA/cell.

CLINICAL STUDIES

Example 14: General Treatment of MAH

Patients with malignancy-associated hypercalcemia participate in an open-label 25 study of a hypocalcemic vitamin D compound in accordance with the present invention. Patients are restricted to daily calcium intake of about 400-500 mg. Each patient is also asked to drink 4-6 cups of fluid more than usual intake to assure adequate oral hydration.

Each subject is monitored at regular intervals for: (1) hypercalcemia, serum PTHrP levels, hyperphosphatemia, hypercalciuria, hyperphosphaturia and other toxicity; 30 (2) evidence of changes in the progression of metastatic disease; and (3) compliance with the prescribed test drug dosage.

-24-

The dosing regimen is typically on a daily dose basis of 10 μ g or 20 μ g per day to about 100 μ g/day for 10 weeks. Alternatively, a non-daily dosing regimen can be used, e.g., 40 μ g given every other day, 100 μ g given once a week. The route of administration can vary from oral to intravenous to regional delivery (e.g., arterial infusion, via the portal vein). Oral is, of course, the easiest and most cost effective route. Regional delivery permits high dosing and generally avoids any production of hypercalcemia. Although, in the case of the compound of the present invention, the compound is substantially hypocalcemic.

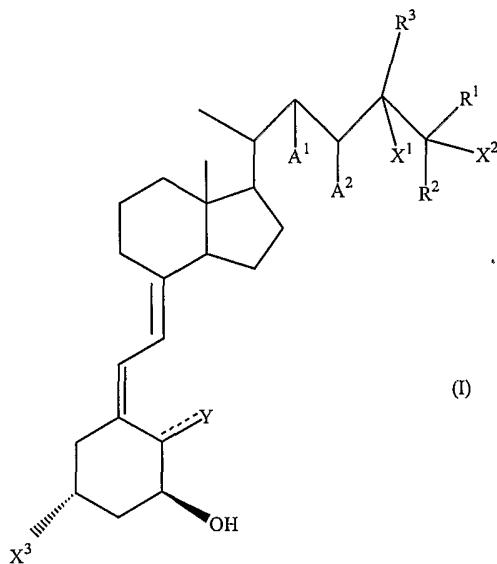
After the treatment period, CAT, scans, X-rays and bone scans used for evaluating the progress of metastatic disease show stable disease or partial remission in many patients treated at the lower dosage, and stable disease and partial or complete remission in many patients treated at the higher dosage. Serum calcium levels are in the normal range and serum levels of PTHrP are reduced.

Example 15: Treatment of MAH using 1 α ,24(s)-dihydroxyvitamin D₂ [1 α ,24(S)-(OH)₂D₂]

The procedure of example 14 is carried out using 1 α ,24-(OH)₂D₂. The results show serum calcium levels in the normal range and serum levels of PTHrP reduced.

Example 16: Treatment of MAH using 1 α -hydroxyvitamin D₂ [1 α -OH-D₂]

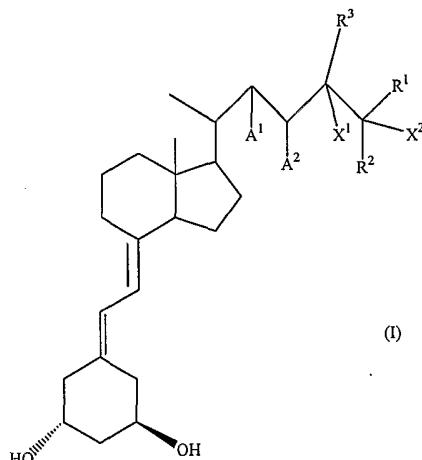
The procedure of example 14 is carried out using 1 α -OH-D₂. The results show serum calcium in the normal range and serum PTHrP levels reduced.


While the present invention has now been described and exemplified with some specificity, those skilled in the art will appreciate the various modifications, including variations, additions, and omissions, that may be made in what has been described. Accordingly, it is intended that these modifications also be encompassed by the present invention and that the scope of the present invention be limited solely by the broadest interpretation lawfully accorded the appended claims.

-25-

CLAIM(S)

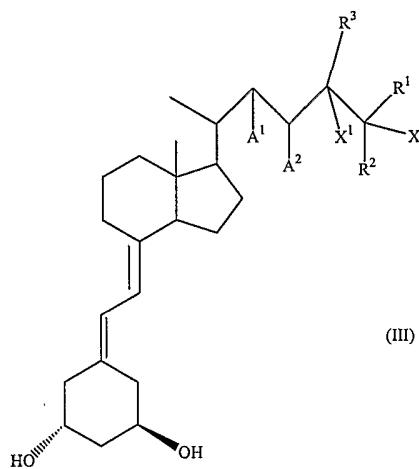
What is claimed is:


1. A method of treating hypercalcemia associated with malignant or neoplastic cells, comprising treating the cells with an effective amount of a hypocalcemic vitamin D compound having a hydrocarbon moiety at the C₂₄ position.
2. The method of claim 1, wherein the cells are cancers of the breast, colon, lung, neck and head, pancreas, endometrium, bladder, cervix, testes, ovaries, squamous cell carcinoma, myeloid and lymphocytic leukemia, lymphoma, medullary thyroid carcinoma, melanoma, multiple myeloma, retinoblastoma or sarcomas of the soft tissues and bone.
3. The method of claim 1, wherein the hypocalcemic vitamin D is a compound represented by formula (I)

wherein A¹ and A² each are hydrogen or a carbon-carbon bond, thus forming a double bond between C-22 and C-23; R¹ and R² are identical or different and are hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R¹ and R² cannot both be an alkenyl group, or taken together with the carbon to which they are bonded, form a C₃-C₈ cycloalkyl ring; R³ is lower alkyl,

lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl or lower cycloalkyl; X^1 is hydrogen or hydroxyl, or, taken with R^3 , constitutes a bond when R^3 is an alkenyl group, and X^2 is hydrogen or hydroxyl, or, taken with R^1 or R^2 , constitutes a double bond, and X^3 is hydrogen or hydroxyl provided that at least one of X^1 , X^2 and X^3 is hydroxyl; and Y is a methylene group if the bond to Y is a double bond or is a methyl group or hydrogen if the bond to Y is a single bond.

4. The method of claim 1, wherein said hypocalcemic vitamin D is a 1α -hydroxvitamin D compound is represented by formula (I)


10

wherein A^1 and A^2 each are hydrogen or a carbon-carbon bond, thus forming a double bond between C-22 and C-23; R^1 and R^2 are identical or different and are hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R^1 and R^2 cannot both be an alkenyl group, or taken together with the carbon to which they are bonded, form a C₃-C₈ cyclocarbon ring; R^3 is lower alkyl, lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl or lower cycloalkyl; X^1 is hydrogen or hydroxyl, or, taken with R^3 , constitutes a bond when R^3 is an alkenyl group, and X^2 is hydrogen or hydroxyl, or, taken with R^1 or R^2 , constitutes a double bond.

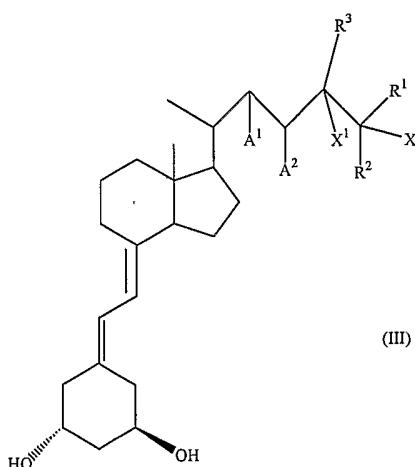
5. The method of claim 4, wherein the compound of formula (I) is 1 α ,24-dihydroxyvitamin D₂, 1 α ,24-dihydroxyvitamin D₄, 1 α ,25-dihydroxyvitamin D₂, 1 α ,25-dihydroxyvitamin D₄, 1 α -hydroxyvitamin D₂ or 1 α -hydroxyvitamin D₄.
6. A method in accordance with claim 1, wherein a dosing regimen for the
5 hypocalcemic vitamin D compound is a daily regimen or an episodic regimen.
7. A method in accordance with claim 6, wherein the episodic regimen is a dose once
every 2 to 7 days.
8. A method in accordance with claim 6, wherein the hypocalcemic vitamin D
compound is administered daily at a dose of about 10 to 100 μ g/day.
- 10 9. A method in accordance with claim 6, wherein the hypocalcemic vitamin D
compound is orally, intravenously or regionally delivered to a cancer site.
10. A method in accordance with claim 9, wherein the hypocalcemic vitamin D
compound is administered orally.
11. A method in accordance with claim 1, wherein the hypocalcemic vitamin D
15 compound is co-administered with a cytotoxic agent.
12. A method in accordance with claim 11, wherein the cytotoxic agent is an
antimetabolite, and antimicrotubule agent, an alkylating agent, a platinum agent, an
anthracycline, a topoisomerase inhibitor, or an antibiotic.
13. A method in accordance with claim 12, wherein the antimetabolite is 5-fluoro-uracil,
20 methotrexate or fludarabine.
14. A method in accordance with claim 12, wherein the antimicrotubule agent is
vincristine, vinblastine or a taxane.
15. A method in accordance with claim 14, wherein the taxane is paclitaxel or docetaxel.
16. A method in accordance with claim 12, wherein the alkylating agent is
25 cyclophosphamide, melphalan, biochboroethylnitrosurea or hydroxyurea.

-28-

17. A method in accordance with claim 12, wherein the platinum agent is cisplatin, carboplatin, oxaliplatin, JM-216 or CI-973.
18. A method in accordance with claim 12, wherein the anthracycline is doxubicin or daunorubicin.
- 5 19. A method in accordance with claim 12, wherein the antibiotic is mitomycin, idarubicin, adriamycin or daunomycin.
20. A method in accordance with claim 12, wherein the topoisomerase inhibitor is etoposide or camptothecins.
- 10 21. A method in accordance with claim 12 wherein the cytotoxic agent is estramustine phosphate or prednimustine.
22. A method of treating a human to alleviate hypercalcemia associated with breast cancer, colon cancer, prostate cancer, testicular cancer, pancreatic cancer, endometrial cancer, small cell and non-small cell cancer of the lung (including squamous, adenocarcinoma and large cell types), squamous cell of the head and neck, bladder, 15 ovarian and cervical cancers, myeloid and lymphocytic leukemia, lymphoma, hepatic tumors, medullary thyroid carcinoma, multiple myeloma, melanoma, retinoblastoma or sarcomas of the soft tissue and bone, comprising administering to the human therapeutic amount of a hypocalcemic vitamin D compound.
23. A method of claim 22, wherein said hypocalcemic vitamin D is a 1 α -hydroxyvitamin D compound represented by formula (III)

wherein A¹ and A² each are hydrogen or a carbon-carbon bond, thus forming a double bond between C-22 and C-23; R¹ and R² are identical or different and are hydrogen, 5 hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R¹ and R² cannot both be an alkenyl group, or taken together with the carbon to which they are bonded, form a C₃-C₈ cyclocarbon ring; R³ is lower alkyl, lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, 10 O-lower acyl, O-aromatic acyl or lower cycloalkyl; X¹ is hydrogen or hydroxyl, or, taken with R³, constitutes a bond when R³ is an alkenyl group, and X² is hydrogen or hydroxyl, or, taken with R¹ or R², constitutes a double bond.

24. The method of claim 23, wherein said therapeutic amount is 0.01 µg/kg/day to 2.0 15 µg/kg/day.


25. The method of claim 23, wherein the compound of formula (I) is 1 α ,24-dihydroxyvitamin D₂, 1 α ,24-dihydroxyvitamin D₄, 1 α ,25-dihydroxyvitamin D₂, 1 α ,25-dihydroxyvitamin D₄, 1 α -hydroxyvitamin D₂ or 1 α -hydroxyvitamin D₄.

26. A method of treating a human to alleviate hypercalcemia associated with malignant 20 cells, comprising administering to the patient a hypocalcemic vitamin D compound, and a cytotoxic agent.

-30-

27. A method in accordance with claim 26, wherein the hypocalcemic vitamin D compound is administered from 0.5 to 7 days prior to administration of the cytotoxic agent.
28. A method in accordance with claim 26, wherein the hypocalcemic vitamin D compound is administered 2 to 4 days prior to administration of the cytotoxic agent.

29. A method of claim 26, wherein said hypocalcemic vitamin D is a 1α -hydroxyvitamin D compound represented by formula (III)

5

wherein A^1 and A^2 each are hydrogen or a carbon-carbon bond, thus forming a double bond between C-22 and C-23; R^1 and R^2 are identical or different and are hydrogen, hydroxyl, lower alkyl, lower fluoroalkyl, O-lower alkyl, lower alkenyl, lower fluoroalkenyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl, lower cycloalkyl with the proviso that R^1 and R^2 cannot both be an alkenyl group, or taken together with the carbon to which they are bonded, form a C₃-C₈ cyclocarbon ring; R^3 is lower alkyl, lower alkenyl, lower fluoroalkyl, lower fluoroalkenyl, O-lower alkyl, O-lower alkenyl, O-lower acyl, O-aromatic acyl or lower cycloalkyl; X^1 is hydrogen or hydroxyl, or, taken with R^3 , constitutes a bond when R^3 is an alkenyl group, and X^2 is hydrogen or hydroxyl, or, taken with R^1 or R^2 , constitutes a double bond.

30. The method of claim 29, wherein the therapeutic amount is 0.01 μ g/kg/day to 2.0 μ g/kg/day.

31. The method of claim 29, wherein the compound of formula (I) is 1α ,24-dihydroxyvitamin D₂, 1α ,24-dihydroxyvitamin D₄, 1α ,25-dihydroxyvitamin D₂, 1α ,25-dihydroxyvitamin D₄, 1α -hydroxyvitamin D₂ or 1α -hydroxyvitamin D₄.

-32-

32. A method in accordance with claim 29, wherein the cytotoxic agent is an antimetabolite, and antimicrotubule agent, an alkylating agent, a platinum agent, an anthracycline, a topoisomerase inhibitor, or an antibiotic.
33. A method of lowering serum parathyroid hormone related protein in a human patient by administering to the human an effective amount of a hypocalcemic vitamin D compound.