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NON-SEPARABLE SECONDARY TRANSFORM FOR VIDEO CODING

RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No.
62/234,644, filed September 29, 2015, U.S. Provisional Application No. 62/294,897,
filed February 12, 2016, U.S. Provisional Application No. 62/323,496, filed April 15,
2016, and U.S. Provisional Application No. 62/337,736, filed May 17, 2016, the entirety

of each of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in various standards including defined by ITU-T H.261, ISO/IEC
MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC
MPEG-4 Visual, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), and
ITU-T H.265, High Efticiency Video Coding (HEVC), and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video coding techniques.
[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
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of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques related to secondary transform
designs applied for intra or inter prediction residual data in video coding. The transform
may be used in the context of advanced video codecs, such as extensions of HEVC or
the next generation of video coding standards.

[0007] In one example, the disclosure describes a method comprising: inverse
quantizing a first coefficient block; applying a first inverse transform to at least part of
the inverse quantized first coefficient block to generate a second coefficient block, the
first inverse transform being a non-separable transform; applying a second inverse
transform to the second coefficient block to generate a residual video block, the second
inverse transform converting the second coefficient block from a frequency domain to a
pixel domain; and forming a decoded video block, wherein forming the decoded video
block comprises summing the residual video block with one or more predictive blocks.
[0008] In one example, the disclosure describes a method comprising: forming a
residual video block, wherein forming the residual video block comprises subtracting

one or more predictive blocks from a video block being coded; applying a first
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transform to the residual video block to generate a first coefficient block, the first
transform converting the residual video block from a pixel domain to a frequency
domain; applying a second transform to at least part of the first coefticient block to
generate a second coefficient block, the second transform being a non-separable
transform; and quantizing the second coefficient block.

[0009] In one example, the disclosure describes an apparatus for decoding video data
comprising: a memory configured to store the video data; and a video decoder
configured to: inverse quantize a first coefficient block; apply a first inverse transform
to at least part of the inverse quantized first coefficient block to generate a second
coefficient block, the first inverse transform being a non-separable transform; apply a
second inverse transform to the second coefficient block to generate a residual video
block, the second inverse transform converting the second coefficient block from a
frequency domain to a pixel domain; sum the residual video block with one or more
predictive blocks; and form a decoded video block based on the sum of the residual
video block with one or more predictive blocks.

[0010] In one example, the disclosure describes an apparatus for encoding video data
comprising: a memory configured to store the video data; and a video encoder
configured to: form a residual video block, wherein forming the residual video block
comprises subtracting one or more predictive blocks from a video block being coded;
apply a first transform to the residual video block to generate a first coefficient block,
the first transform converting the residual video block from a pixel domain to a
frequency domain; apply a second transform to at least part of the first coefficient block
to generate a second coefficient block, the second transform being a non-separable
transform; and quantize the second coefficient block.

[0011] In one example, the disclosure describes an apparatus for decoding video data
comprising: means for inverse quantizing a first coefficient block; means for applying a
first inverse transform to at least part of the inverse quantized first coefficient block to
generate a second coefficient block, the first inverse transform being a non-separable
transform; means for applying a second inverse transform to the second coefficient
block to generate a residual video block, the second inverse transform converting the
second coefficient block from a frequency domain to a pixel domain; and means for
forming a decoded video block, wherein the means for forming the decoded video block
comprises means for summing the residual video block with one or more predictive

blocks.



WO 2017/058614 PCT/US2016/052926

[0012] In one example, the disclosure describes an apparatus for encoding video data
comprising: means for forming a residual video block, wherein forming the residual
video block comprises subtracting one or more predictive blocks from a video block
being coded; means for, applying a first transform to the residual video block to
generate a first coefficient block, the first transform converting the residual video block
from a pixel domain to a frequency domain; means for applying a second transform to at
least part of the first coefficient block to generate a second coefficient block, the second
transform being a non-separable transform; and means for quantizing the second
coefficient block.

[0013] In one example, the disclosure describes a non-transitory computer-readable
storage medium storing instructions that, when executed, cause one or more processors
of a device for decoding video data to: inverse quantize a first coefficient block; apply a
first inverse transform to at least part of the inverse quantized first coefficient block to
generate a second coefficient block, the first inverse transform being a non-separable
transform; apply a second inverse transform to the second coefficient block to generate
a residual video block, the second inverse transform converting the second coefficient
block from a frequency domain to a pixel domain; sum the residual video block with
one or more predictive blocks; and form a decoded video block based on the sum of the
residual video block with one or more predictive blocks.

[0014] In one example, the disclosure describes a non-transitory computer-readable
storage medium storing instructions that, when executed, cause one or more processors
of a device for encoding video data to: form a residual video block, wherein forming the
residual video block comprises subtracting one or more predictive blocks from a video
block being coded; apply a first transform to the residual video block to generate a first
coefficient block, the first transform converting the residual video block from a pixel
domain to a frequency domain; apply a second transform to at least part of the first
coefficient block to generate a second coefficient block, the second transform being a
non-separable transform; and quantize the second coefticient block.

[0015] In one example, the disclosure describes a method for decoding video data, the
method comprising: reorganizing a first 2-dimensional coefficient block as a first 1-
dimensional coefficient vector according to a coefficient scanning order; applying a first
inverse transform to the first 1-dimensional coefficient vector to generate a second 1-
dimensional coefficient vector, the first inverse transform being a non-separable

transform; reorganizing the first 1-dimensional coefficient vector as a second 2-
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dimensional coefficient block; applying a second inverse transform to the second 2-
dimensional coefficient block to generate a residual video block, the second inverse
transform converting the second 2-dimensional coefficient block from a frequency
domain to a pixel domain; and forming a decoded video block, wherein forming the
decoded video block comprises summing the residual video block with one or more
predictive blocks.

[0016] In one example, the disclosure describes a method for encoding video data, the
method comprising: forming a residual video block, wherein forming the residual video
block comprises subtracting one or more predictive blocks from a video block being
coded; applying a first transform to at least part of the residual video block to generate a
first 2-dimensional coefficient block, the first transform converting the residual video
block from a pixel domain to a frequency domain; reorganizing the first 2-dimensional
coefficient block as a first 1-dimensional coefficient vector; applying a second
transform to at least part of the first 1-dimensional coefficient vector to generate a
second 1-dimensional coefficient vector, the second transform being a non-separable
transform; and reorganizing the second 1-dimensional coefficient vector as a second 2-
dimensional coefficient block according to a coefficient scanning order.

[0017] In one example, the disclosure describes an apparatus for decoding video data
comprising: a memory configured to store the video data; and a video decoder
configured to: reorganize a first 2-dimensional coefficient block as a first 1-dimensional
coefficient vector according to a coefficient scanning order; apply a first inverse
transform to the first 1-dimensional coefficient vector to generate a second 1-
dimensional coefficient vector, the first inverse transform being a non-separable
transform; reorganize the first 1-dimensional coefficient vector as a second 2-
dimensional coefficient block; apply a second inverse transform to the second 2-
dimensional coefficient block to generate a residual video block, the second inverse
transform converting the second 2-dimensional coefficient block from a frequency
domain to a pixel domain; sum the residual video block with one or more predictive
blocks; sum the residual video block with one or more predictive blocks; and form a
decoded video block based on the sum of the residual video block with one or more
predictive blocks.

[0018] In one example, the disclosure describes an apparatus for encoding video data
comprising: a memory configured to store the video data; and a video encoder

configured to: form a residual video block, wherein forming the residual video block
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comprises subtracting one or more predictive blocks from a video block being coded;
apply a first transform to at least part of the residual video block to generate a first 2-
dimensional coefficient block, the first transform converting the residual video block
from a pixel domain to a frequency domain; reorganize the first 2-dimensional
coefficient block to generate a first 1-dimensional coefficient vector; apply a second
transform to at least part of the first 1-dimensional coefficient vector to generate a
second 1-dimensional coefficient vector, the second transform being a non-separable
transform; and reorganize the second 1-dimensional coefficient vector as a second 2
dimensional coefficient block according to a coefficient scanning order.

[0019] In one example, the disclosure describes an apparatus for decoding video data
comprising: means for reorganizing a first 2-dimensional coefficient block as a first 1-
dimensional coefficient vector according to a coefficient scanning order; means for
applying a first inverse transform to the first 1-dimensional coefficient vector to
generate a second 1-dimensional coefficient vector, the first inverse transform being a
non-separable transform; means for reorganizing the first 1-dimensional coefficient
vector as a second 2-dimensional coefficient block; means for applying a second inverse
transform to the second 2-dimensional coefficient block to generate a residual video
block, the second inverse transform converting the second 2-dimensional coefficient
block from a frequency domain to a pixel domain; and means for forming a decoded
video block, wherein the means for forming the decoded video block comprises means
for summing the residual video block with one or more predictive blocks.

[0020] In one example, the disclosure describes an apparatus for encoding video data
comprising: means for forming a residual video block, wherein the means for forming
the residual video block comprises means for subtracting one or more predictive blocks
from a video block being coded; means for applying a first transform to at least part of
the residual video block to generate a first 2-dimensional coefficient block, the first
transform converting the residual video block from a pixel domain to a frequency
domain; means for reorganizing the first 2-dimensional coefficient block to generate a
first 1-dimensional coefficient vector; means for applying a second transform to at least
part of the first 1-dimensional coefficient vector to generate a second 1-dimensional
coefficient vector, the second transform being a non-separable transform; and means for
reorganizing the second 1-dimensional coefficient vector as a second 2-dimensional

coefficient block according to a coefficient scanning order.
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[0021] In one example, the disclosure describes a non-transitory computer-readable
storage medium storing instructions that, when executed, cause one or more processors
of a device for decoding video data to: reorganize a first 2-dimensional coefficient block
as a first 1-dimensional coefficient vector according to a coefficient scanning order;
apply a first inverse transform to the first 1-dimensional coefficient vector to generate a
second 1-dimensional coefficient vector, the first inverse transform being a non-
separable transform; reorganize the first 1-dimensional coefficient vector as a second 2-
dimensional coefficient block; apply a second inverse transform to the second 2-
dimensional coefficient block to generate a residual video block, the second inverse
transform converting the second 2-dimensional coefficient block from a frequency
domain to a pixel domain; and form a decoded video block, wherein forming the
decoded video block comprises summing the residual video block with one or more
predictive blocks.

[0022] In one example, the disclosure describes a non-transitory computer-readable
storage medium storing instructions that, when executed, cause one or more processors
of a device for encoding video data to: form a residual video block, comprising
subtracting one or more predictive blocks from a video block being coded; apply a first
transform to at least part of the residual video block to generate a first 2-dimensional
coefficient block, the first transform converting the residual video block from a pixel
domain to a frequency domain; reorganize the first 2-dimensional coefficient block to
generate a first 1-dimensional coefficient vector; apply a second transform to at least
part of the first 1-dimensional coefficient vector to generate a second 1-dimensional
coefficient vector, the second transform being a non-separable transform; and
reorganize the second 1-dimensional coefficient vector as a second 2 dimensional
coefficient block according to a coefficient scanning order.

[0023] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0024] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system that may utilize techniques described in this disclosure.
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[0025] FIG. 2 is an illustration of a transform scheme based on residual quadtree in
HEVC that may utilize techniques described in this disclosure.

[0026] FIG. 3A is an illustration of a transform process at a video encoder.

[0027] FIG. 3B is an illustration of a transform process at a video decoder.

[0028] FIG. 4 is an illustration of an example rotational transform applied by a video
decoder.

[0029] FIG. 5 is a block diagram illustrating an example encoding process that includes
a secondary transform coefficient reorganization process.

[0030] FIG. 6 is a block diagram illustrating an example decoding process that includes
a secondary transform coefficient reorganization process.

[0031] FIG. 7A is an illustration of an example mapping from luma intra mode to
transform set index.

[0032] FIG. 7B is an illustration of intra prediction mode (IPM) ranges from O to 66.
[0033] FIG. 8 is a block diagram illustrating an example of a video encoder that may
implement techniques described in this disclosure.

[0034] FIG. 9 is a block diagram illustrating an example of a video decoder that may
implement techniques described in this disclosure.

[0035] FIG. 10A is an illustration of an example transform processing by a video
encoder, in accordance with one or more techniques described in this disclosure.

[0036] FIG. 10B is an illustration of an example inverse transform processing by a
video decoder, in accordance with one or more techniques described in this disclosure.
[0037] FIG. 11 is a flow diagram illustrating a first example decoding of video data that
may implement techniques described in this disclosure.

[0038] FIG. 12 is a flow diagram illustrating a first example encoding of video data that
may implement techniques described in this disclosure.

[0039] FIG. 13 is a flow diagram illustrating a second example decoding of video data
that may implement techniques described in this disclosure.

[0040] FIG. 14 is a flow diagram illustrating a second example encoding of video data

that may implement techniques described in this disclosure.

DETAILED DESCRIPTION

[0041] In general, this disclosure describes techniques related to secondary transform

designs applied for intra or inter prediction residual data in video coding. The transform
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may be used in the context of advanced video codecs, such as extensions of HEVC or
the next generation of video coding standards.

[0042] A video encoder may represent residual blocks for video data in a form suitable
for output from the video encoder to a video decoder. It is desirable to reduce an
amount of data used to represent the residual blocks such that an amount of data
transmitted from the video encoder to the video decoder is reduced. In video coding,
separable transforms have been applied over non-separable transforms because
separable transforms may use fewer operations (e.g., addition, multiplication), as
compared to a non-separable transform. Separable transforms are filters that can be
written as a product of two or more filters. In contrast, a non-separable filter cannot be
written as a product of two or more filters.

[0043] Rather than relying solely on a transform that converts a residual block in a pixel
domain to a coefficient block in a frequency domain, a video encoder may also apply a
secondary transform to increase energy compaction of the coefficient block. For
instance, the secondary transform may concentrate non-zero coefficients of the
coefficient block closer to the DC coefficient of the coefficient block. As a result, there
may be fewer coefficients between the DC coefficient of the coefficient block and the
last significant (i.e., non-zero) coefficient of the coefficient block, resulting in a reduced
amount of data used to represent the residual block. Similarly, a video decoder may
apply an inverse primary transform to transform the coefficient block into a residual
block. In this manner, data used to represent residual blocks may be reduced, thereby
reducing bandwidth and/or storage requirements for the video data, and potentially
reducing energy usage of the video decoder and video encoder.

[0044] Existing designs of the secondary transform apply the secondary transform as a
separable transform. In some instances, separable transforms have been applied instead
of non-separable because separable transforms have a lower complexity compared to
non-separable transforms. As such, separable transforms may have become favored
over non-separable transforms for video coding schemes. However, the use of a non-
separable transform as the secondary transform may provide improved transform
efficiency. For instance, a device may be able to apply a non-separable secondary
transform faster or with less complexity than a separable secondary transform. Thus, in
accordance with an example of this disclosure, a video decoder may apply a first inverse
transform to at least part of an inverse quantized first coefficient block to generate a

second coefficient block, the first inverse transform being a non-separable transform.
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Additionally, in this example, the video decoder may apply a second inverse transform
to the second coefficient block to generate a residual video block. The second inverse
transform may convert the second coefficient block from a frequency domain to a pixel
domain. In this example, the video decoder may form a decoded video block. In some
examples, as part of forming the decoded video block, the video decoder may sum the
residual video block with one or more predictive blocks.

[0045] Differences in the compression of video data, for example, different intra
prediction modes, may change an effectiveness of a non-separable secondary transform.
For example, a first non-separable secondary transform may have a higher energy
compaction than a second non-separable secondary transform when using a first intra
prediction mode. In the example, however, the second non-separable secondary
transform may have a higher energy compaction than the first non-separable secondary
transform when using a second intra prediction mode. Accordingly, it may be desirable
to permit techniques that select a candidate non-separable secondary transform from a
set of candidate non-separable secondary transforms. That is, rather than using a same
non-separable secondary transform for different video data, a video encoder may select
a candidate non-separable secondary transform from a set of non-separable secondary
transforms. For instance, the video encoder may formulate a subset of non-separable
secondary transforms based on a intra prediction mode. Similarly, in some examples, a
video decoder may select a candidate non-separable secondary transform from a set of
non-separable secondary transforms. For instance, the video decoder may formulate a
subset of non-separable secondary transforms based on already decoded information of
the video data. In this manner, a more suitable non-separable secondary transform may
be selected to apply to residual blocks, which may result in a reduced amount of data
used to represent the residual blocks compared with examples that use only one non-
separable secondary transform candidate.

[0046] In some examples, rather than necessarily quantizing transform coefficients in a
vector format, a video encoder may reorganize the transform coefficients into a two-
dimensional coefficient block. More specifically, in some instances, a quantization unit
may be configured to quantize a two-dimensional coefficient block, which may be a
format that is output by a separable transform. Accordingly, a same quantization unit
may be used in instances where a video encoder only uses a separable transform as well
as instances where the video encoder used a separable transform and a non-separable

transform.
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[0047] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques described in this disclosure. As shown in FIG. 1,
system 10 includes a source device 12 that provides encoded video data to be decoded at
a later time by a destination device 14. In particular, source device 12 provides the
video data to destination device 14 via a computer-readable medium 16. Source device
12 and destination device 14 may comprise any of a wide range of devices, including
desktop computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes,
telephone handsets such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication.

[0048] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In an example, computer-readable medium 16 may comprise a
communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14.

[0049] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored

video data from the storage device via streaming or download. The file server may be
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any type of server capable of storing encoded video data and transmitting that encoded
video data to destination device 14. Example file servers include a web server (e.g., for
a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0050] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0051] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques described in
this disclosure, such as, for example, techniques relating to secondary transforms. In
accordance with this disclosure, video decoder 30 of destination device 14 may be
configured to apply the techniques described in this disclosure, such as, for example,
techniques relating to secondary transforms. In other examples, a source device and a
destination device may include other components or arrangements. For example, source
device 12 may receive video data from an external video source 18, such as an external
camera. Likewise, destination device 14 may interface with an external display device,
rather than including an integrated display device.

[0052] As noted above, source device 12 includes output interface 22 and destination
device 14 includes input interface 28. In some examples, output interface 22 represents
a transmitter and input interface 28 represents a receiver. In other examples, output

interface 22 and input interface 28 represent examples of transceivers (that is, interfaces
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capable of both transmitting and receiving data signals wirelessly). The transceivers
may be configured to send and receive video data in wireless signals. For example,
output interface 22, when implemented as a transceiver, may send a data signal (e.g.,
computer-readable medium 16) including encoded video data, while input interface 28,
when implemented as a transceiver, may receive a data signal (e.g., computer-readable
medium 16) including encoded video data. As discussed above, video encoder 20 may
provide the encoded video data to output interface 22, while input interface 28 may
provide encoded video data to video decoder 30.

[0053] The illustrated system 10 of FIG. 1 is merely one example. Techniques
described in this disclosure may be performed by any digital video encoding and/or
decoding device. Although generally the techniques of this disclosure are performed by
a video encoding device and a video decoding device, the techniques may also be
performed by a video encoder/decoder, typically referred to as a “CODEC.” Source
device 12 and destination device 14 are merely examples of such coding devices in
which source device 12 generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical
manner such that each of devices 12, 14 include video encoding and decoding
components. Hence, system 10 may support one-way or two-way video transmission
between source device 12 and destination device 14, e.g., for video streaming, video
playback, video broadcasting, or video telephony.

[0054] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, source device 12 and destination device 14 may form so-called camera phones or
video phones. As mentioned above, however, the techniques described in this
disclosure may be applicable to video coding in general, and may be applied to wireless
and/or wired applications. In each case, the captured, pre-captured, or computer-
generated video may be encoded by video encoder 20. The encoded video information
may then be output by output interface 22 onto computer-readable medium 16.

[0055] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission. In some examples, a network server (not

shown) may receive encoded video data from source device 12 and provide the encoded
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video data to destination device 14, e.g., via network transmission. Therefore,
computer-readable medium 16 may be understood to include one or more computer-
readable media of various forms, in various examples.

[0056] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units. Display device 32 displays the decoded video data to a
user, and may comprise any of a variety of display devices such as a cathode ray tube
(CRT), a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0057] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device. A device including
video encoder 20 and/or video decoder 30 may comprise an integrated circuit, a
microprocessor, and/or a wireless communication device, such as a cellular telephone.
[0058] Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the standards described above and, in some examples, according to the
High Efficiency Video Coding (HEVC) standard, also referred to as ITU-T H.265, or
extensions of the HEVC standard, or according to the next generation of video coding
standards. The techniques of this disclosure, however, are not limited to any particular
coding standard. Other examples of video coding standards include MPEG-2 and ITU-
TH.263. Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

of both audio and video in a common data stream or separate data streams. If
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applicable, MUX-DEMUX units may conform to a protocol such as the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0059] The techniques of this disclosure are generally described with respect to ITU-T
H.265, also referred to as High Efticiency Video Coding (HEVC), which is described in
“SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS, Infrastructure of
audiovisual services—Coding of moving video,” High Lfficiency Video Coding, ITU-T
H.265, April 2013. However, these techniques may be applied to other video coding
standards, including extensions of HEVC and extensions of other standards. Examples
of other video coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual, and ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), including its Scalable Video
Coding (SVC) and Multiview Video Coding (MVC) extensions.

[0060] The H.265 standard was recently finalized by the Joint Collaboration Team on
Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). An HEVC draft specification, referred to as
HEVC WD hereinafter, is available from http://phenix.int-

evry fr/jct/doc_end user/documents/14 Vienna/wgl1/JCTVC-N1003-v1.zip.

[0061] The multiview extension to HEVC, MV-HEVC, has also been developed by the
JCT-3V. An example of a Working Draft (WD) of MV-HEVC, referred to as MV-
HEVC WDS8, is available from phenix.it-sudparis.eu/jct2/doc_end user/documents/

8 Valencia/wgl1/JCT3V-H1002-v5.zip. A scalable extension to HEVC, named SHVC,
has also been developed by the JCT-VC. An example of a Working Draft (WD) of
SHVC, referred to as SHVC WD6, is available from phenix.it-

sudparis.eu/jct/doc_end user/documents/17 Valencia/wgl1/JCTVC-Q1008-v2.zip.
[0062] In HEVC and other video codecs, a video frame or picture may be divided into a
sequence of treeblocks, which are also known as largest coding units (LCUs), that may
include both luma and chroma samples. Syntax data within a bitstream may define a
size for the LCU, which is a largest coding unit in terms of the number of pixels. A slice
includes a number of consecutive treeblocks in coding order. A video frame or picture
may be partitioned into one or more slices.

[0063] To generate an encoded CTU (i.e., to encode a CTU) in HEVC, video encoder
20 may recursively perform quad-tree partitioning on the coding tree blocks of a CTU to
divide the coding tree blocks into coding blocks, hence the name “coding tree units.” A

coding block is an NxN block of samples. A CU may be a coding block of luma
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samples and two corresponding coding blocks of chroma samples of a picture that has a
luma sample array, a Cb sample array and a Cr sample array, and syntax structures used
to code the samples of the coding blocks. In monochrome pictures or pictures having
three separate color planes, a CU may comprise a single coding block and syntax
structures used to code the samples of the coding block.

[0064] Each treeblock may be split into CUs according to a quadtree data structure. In
general, a quadtree data structure includes one node per CU, with a root node
corresponding to the treeblock. If a CU is split into four sub-CUs, the node
corresponding to the CU includes four leaf nodes, each of which corresponds to one of
the sub-CUs. Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU are also referred to as leaf-CUs even if there is no
explicit splitting of the original leat-CU. For example, if a CU at 16x16 size is not split
further, the four 8x8 sub-CUs are also referred to as leat-CUs although the 16x16 CU
was never split.

[0065] A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leat-CU.
Syntax data associated with a coded bitstream may define a maximum number of times
a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). A size of the CU corresponds to a size of the coding node and is
generally square in shape. The size of the CU may range from 8x8 pixels up to the size
of the treeblock with a maximum size, e.g., 64x64 pixels or greater.

[0066] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. Each CU may contain one or more PUs and one
or more TUs. Syntax data associated with a CU may describe, for example, partitioning
of the CU into one or more PUs. As part of encoding a CU, video encoder 20 may

partition a coding block of the CU into one or more prediction blocks. A prediction
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block may be a rectangular (i.e., square or non-square) block of samples on which the
same prediction is applied. A prediction unit (PU) of a CU may be a prediction block of
luma samples, two corresponding prediction blocks of chroma samples of a picture, and
syntax structures used to predict the prediction block samples. Video encoder 20 may
generate predictive luma, Cb and Cr blocks for luma, Cb and Cr prediction blocks of
each PU of the CU. In monochrome pictures or pictures having three separate color
planes, a PU may comprise a single prediction block and syntax structures used to
predict the prediction block.

[0067] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. Each CU is coded with one of either intra prediction mode
or inter prediction mode. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU. If video encoder
20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may
generate the predictive blocks of the PU based on decoded samples of one or more
pictures other than the picture associated with the PU.

[0068] Partitioning modes may differ between whether the CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction mode encoded. PUs may
be partitioned to be non-square in shape.

[0069] Furthermore, video encoder 20 may decompose each residual block of a CU into
one or more transform blocks. A transform block may be a rectangular (square or non-
square) block of samples on which the same transform is applied. A transform unit
(TU) of a CU may be a transform block of luma samples, two corresponding transform
blocks of chroma samples, and syntax structures used to transform the transform block
samples. Thus, each TU of a CU may be associated with a luma transform block, a Cb
transform block, and a Cr transform block. The luma transform block associated with
the TU may be a sub-block of the luma residual block of the CU. The Cb transform
block may be a sub-block of the Cb residual block of the CU. The Cr transform block
may be a sub-block of the Cr residual block of the CU. In monochrome pictures or
pictures having three separate color planes, a TU may comprise a single transform block
and syntax structures used to transform the samples of the transform block. In some
examples, the residual blocks the same CU for luma and chroma components may be

partitioned in different ways.
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[0070] Syntax data associated with a CU may also describe, for example, partitioning of
the CU into one or more TUs according to a quadtree. A TU can be square or non-
square (e.g., rectangular) in shape. This disclosure may use the term “block” to refer to
any of a CU, PU, or TU, in the context of HEVC, or similar data structures in the
context of other standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).
[0071] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefticients, which may be quantized.
[0072] A leaf-CU may include one or more PUs. In general, a PU represents a spatial
area corresponding to all or a portion of the corresponding CU, and may include data for
retrieving and/or generating a reference sample for the PU. Moreover, a PU includes
data related to prediction. For example, when the PU is intra-mode encoded, data for
the PU may be included in a RQT, which may include data describing an intra-
prediction mode for a TU corresponding to the PU. The RQT may also be referred to as
a transform tree. In some examples, the intra-prediction mode may be signaled in the
leaf-CU syntax, instead of the RQT. As an example, when the PU is inter-mode
encoded, the PU may include data defining motion information, such as one or more
motion vectors, for the PU. The data defining the motion vector for a PU may describe,
for example, a horizontal component of the motion vector, a vertical component of the
motion vector, a resolution for the motion vector (e.g., one-quarter pixel precision or
one-eighth pixel precision), a reference picture to which the motion vector points,
and/or a reference picture list (e.g., List 0, List 1, or List C) for the motion vector.
[0073] A leaf-CU having one or more PUs may also include one or more TUs. The
transform units may be specified using an RQT (also referred to as a TU quadtree
structure), as discussed above. For example, a split flag may indicate whether a leaf-CU
is split into four transform units. Then, each transform unit may be split further into
further sub-TUs. When a TU is not split further, it may be referred to as a leaf-TU.
Generally, for intra coding, all the leaf-TUs belonging to a leat-CU share the same intra

prediction mode. That is, the same intra-prediction mode is generally applied to
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calculate predicted values for all TUs of a leaf-CU. For intra coding, a video encoder
may calculate a residual value for each leaf-TU using the intra prediction mode, as a
difference between the portion of the CU corresponding to the TU and the original
block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be greater or
smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-
TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

[0074] Moreover, TUs of leat-CUs may also be associated with respective quadtree data
structures, referred to as RQTs or transform trees as noted above. That is, a leaf-CU
may include a quadtree indicating how the leat-CU is partitioned into TUs. The root
node of a TU quadtree generally corresponds to a leat-CU, while the root node of a CU
quadtree generally corresponds to a treeblock. TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to
leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0075] A video sequence typically includes a series of video frames or pictures. Each
slice of a picture may include slice syntax data that describes an encoding mode for the
respective slice. Video encoder 20 typically operates on video blocks within individual
video slices in order to encode the video data. A video block may correspond to a
coding node within a CU. The video blocks may have fixed or varying sizes, and may
differ in size according to a specified coding standard.

[0076] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block has 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0077] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a technique or mode of generating predictive pixel data
in the spatial domain (also referred to as the pixel domain) and the TUs may comprise

coefficients in the transform domain following application of a transform, e.g., a
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Discrete Cosine Transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs to include quantized
transform coefticients representative of the residual data for the CU. That is, video
encoder 20 may calculate the residual data (in the form of a residual block), transform
the residual block to produce a block of transform coefficients, and then quantize the
transform coefticients to form quantized transform coefficients. Video encoder 20 may
form a TU including the quantized transform coefficients, as well as other syntax
information (e.g., splitting information for the TU).

[0078] As noted above, following application of any transforms to produce transform
coefficients, video encoder 20 may perform quantization of the transform coefficients.
Quantization generally refers to a process in which transform coefficients are quantized
to possibly reduce the amount of data used to represent the coefficients, providing
further compression. The quantization process may reduce the bit depth associated with
some or all of the coefficients. For example, an n-bit value may be rounded down to an
m-bit value during quantization, where » is greater than m.

[0079] Following quantization, video encoder 20 may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scanning order to scan the
quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, video
encoder 20 may entropy encode particular syntax elements representing transform
coefficients in the one-dimensional vector, e.g., according to context-adaptive variable
length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC), syntax-
based context-adaptive binary arithmetic coding (SBAC), probability interval
partitioning entropy (PIPE) coding or another entropy encoding methodology. Video
encoder 20 may also entropy encode syntax elements associated with the encoded video

data for use by video decoder 30 in decoding the video data.
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[0080] In general, video decoder 30 performs a similar, albeit reciprocal, process to that
performed by video encoder 20 to decode encoded data. For example, video decoder 30
inverse quantizes and inverse transforms transform coefficients of a received TU to
reproduce a residual block. Video decoder 30 may use a signaled prediction mode
(intra- or inter-prediction) to form a predicted block. Video decoder 30 may combine
the predicted block and the residual block (on a pixel-by-pixel basis) to reproduce the
original block. Video decoder 30 may perform additional processing, such as
performing a deblocking process, to reduce visual artifacts along block boundaries.
Furthermore, video decoder 30 may decode syntax elements using CABAC in a manner
substantially similar to, albeit reciprocal to, the CABAC encoding process of video
encoder 20.
[0081] As previously noted, video encoder 20 may apply a DCT, an integer transform, a
wavelet transform, or a conceptually similar transform to residual video data. Such
separable transforms may indicate the process of deriving an alternative representation
of the input signal. Given an N-point vector x = [ xo, x1,..., xn-1]* and a set of given
vectors {¢o, @1, ..., Pm-1}, x can be approximated or exactly represented using a linear
combination of ¢, @1, ..., ¢m-1, which can be formulated as follows,

=35 i b
where X can be an approximation or equivalent of x, vector f= [f, f, .., fm-1] is called
the transform coefficient vector and {¢o, @1, ..., §m-1} are the transform basis vectors.
[0082] In the scenario of video coding, transform coefficients may be roughly
non-correlated and sparse. For example, the energy of the input vector x may be
compacted only on a few transform coefficients, and the remaining majority transform
coefficients are typically close to zero.
[0083] Given the specific input data, the optimal transform in terms of energy
compaction may be the so-called Karhunen-Loeve transtform (KLT). The KLT uses the
eigenvectors of the covariance matrix of the input data as transform basis vectors.
Therefore, KLT is actually a data-dependent transform and does not have a general
mathematical formulation. However, under certain assumptions, such as the input data
forming a first-order stationary Markov process, it has been proven in the literature that
the corresponding KL T is actually a member of the sinusoidal family of unitary
transforms, which are described in Jain, A.K., A sinusoidal family of unitary transforms,

IEEE Trans. on Pattern Analysis and Machine Intelligence, 1, 356, 1979. The
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sinusoidal family of unitary transforms may indicate transforms using transform basis
vectors formulated as follows:

Pu(k) = A-eko+B-¢-ike
In the equation above, e is the base of the natural logarithm approximately equal to
2.71828, A, B, and e are complex in general, and depend on the value of m.
Additionally, in the equation above, ¢m is a vector, dm(k) indicates the kth component of
vector ¢m, and 1 indicates the imaginary part of a complex number.
[0084] Several well-known transforms, including the discrete Fourier transform, cosine
transform, sine transform, and the KLT (for first-order stationary Markov processes),
are members of this sinusoidal family of unitary transforms. As described in S. A.
Martuccti, "Symmetric convolution and the discrete sine and cosine transforms," IEEE
Trans. Sig. Processing SP-42, 1038-1051 (1994), the complete DCT and Discrete Sine
Transform (DST) families may include a total of 16 transforms based on different types
and a complete definition of the different types of DCT and DST are given below. The
different types may correspond to different values of 4, B, and o.
[0085] Assume an input N-point vector is denoted as x=[ xo, x1,..., xx-1]", and the N-
point vector is transformed to another N-point transform coefficient vector denoted as
¥=[ 30, ¥1,..., yn-1]" by multiplying a matrix. The process transforming x to y can be
further illustrated according to one of the following transform formulations, wherein &
ranges from O through N-1, inclusive:

DCT Type-1 (DCT-1):

_ wN—-1 2 Tnk .
Yk = Ln=0 N_1COS N—1 Wyt Wyt Xy,

1 .
wherewoz{ﬁ' ifn=0orn=N 1’W1:{
1, otherwise

1 .
5 ifk=0ork=N-1

1, otherwise

DCT Type-II (DCT-2):

__ wYN-1 |2 7(n+0.5)°k\ .
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where wy = {ﬁ’ if k=0
1, otherwise

DCT Type-III (DCT-3):



WO 2017/058614 PCT/US2016/052926
23

__ wYN-1 |2 7n(k+0.5)\ .
Yk = Zn=0 ’ECOS(—N Wo " Xy
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where w, = {E’ ifn=0
1, otherwise

DCT Type-IV (DCT-4):
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DCT Type-V (DCT-5):

_ wN-1 ’ 2 (TL"‘n'k)
= — CoSs "Wt W1t X
Yk Zn—o N—05 N—05 0 1 n->

1 , 1 ,
wherewoz{ﬁ’ lfn—O’le{ﬁ, if k=0
1, otherwise 1, otherwise
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DCT Type-VII (DCT-7):
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DCT Type-VIII (DCT-8):

_ woN-1 2 (Tr-(n+0.5)-(k+0.5))
= YN ’ cos X
Y = Zn=o N+0.5 N+0.5 no

DST Type-I (DST-1):
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DST Type-VI (DST-6):
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DST Type-VII (DST-7):
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DST Type-VIII (DST-8):
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[0086] A transform type, such as a DST type, may be specified by a mathematical
formulation of a transform basis function. For example, 4-point DST-VII and 8-point
DST-VII have the same transform type, regardless the value of N.
[0087] Without loss of generality, all the above transform types may be represented
using the generalized formulation below:

Ym = Znzo Tmn " *n.
In the equation above, T is the transform matrix that may be specified by the definition
of one certain transform, e.g., DCT Type-1 ~ DCT Type-VIIL, or DST Type-I ~ DST
Type-VIIL, and the row vectors of T, e.g., [Tio, Ti1, Tiz, ..., Tin-1] are the i transform
basis vectors. A transform applied on the N-point input vector may be called an N-point
transform.
[0088] It is also noted that the above transform formulations, which are applied on the
1-D input data x, can be represented in matrix multiplication form as below:

y=T-x

In the equation above, T indicates the transform matrix, x indicates the input data vector,
and y indicates the output transform coefficients vector.

[0089] The transforms introduced in the previous section may be applied on 1-D input

data, and transforms can be also extended for 2-D input data sources. In the following
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discussion, X is an input MxN data array. The techniques of applying transform on 2-D
input data may include separable and non-separable 2-D transforms.

[0090] A separable 2-D transform applies 1-D transforms for horizontal and vertical
vectors of X sequentially, formulated as below:

Y=C-X-RT
In the equation above, C and R denote the given MxM and NxN transform matrices,
respectively. From the formulation, it can be seen that C applies 1-D transforms for the
column vectors of X, while R applies 1-D transforms for row vectors of X. In the later
part of this document, for simplicity, C and R are denoted as left (vertical) and right
(horizontal) transforms and they both form a transform pair. There are cases when C is
equal to R and is an orthogonal matrix. In such a case, the separable 2-D transform may
be determined by just one transform matrix.
[0091] In some examples, a non-separable 2-D transform may first reorganize all
elements of X into a single vector, namely X’, by applying the following mathematical
mapping:

Xy = Xij
Then, a 1-D transform T’ may be applied for X’ as below:

Y=7-X

In the equation above, T’ is an (M*N)x(M*N) transform matrix.

[0092] In video coding, separable 2-D transforms may be applied because 2-D
transforms may use fewer operation counts (e.g., addition, multiplication) as compared
to a 1-D transform.

[0093] In conventional video codecs, such as H.264/AVC, an integer approximation of
the 4-point and 8-point DCT Type-II is applied for both intra and inter prediction
residual. In other words, a video coder may apply an integer approximation of the 4-
point and 8-point DCT Type-II to residual blocks generated using intra or inter
prediction. To better accommodate various statistics of residual samples, more flexible
types of transforms other than DCT Type-II is utilized in the new generation video
codec. For example, in HEVC, an integer approximation of the 4-point Type-VII DST
may be utilized for intra prediction residual. As described in J. Han, A. Saxena and K.
Rose, “Towards jointly optimal spatial prediction and adaptive transform in
video/image coding,” IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), March 2010, pp. 726-729, it has been both theoretically proven
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and experimentally validated that the DST Type-VII used in HEVC is more efficient
than DCT Type-II for residuals vectors generated along intra prediction directions. For
instance, DST Type-VII is more efficient than DCT Type-II for row residual vectors
generated by the horizontal intra prediction direction. In HEVC, an integer
approximation of 4-point DST Type-VII is applied only for 4x4 luma intra prediction
residual blocks. The 4-point DST-VII used in HEVC is shown below:

4x4 DST-VIIL:

{29, 55, 74, 84}
(74,74, 0,-74}
{84,-29.-74, 55}
{55,-84, 74,-29}

[0094] In HEVC, for residual blocks that are not 4x4 luma intra prediction residual
blocks, integer approximations of the 4-point, 8-point, 16-point and 32-point DCT
Type-1I may also be applied, as shown below:

4-point DCT-II:

(64, 64, 64, 64}
(83, 36,-36,-83}
{64,-64,-64, 64}
{36,-83, 83,-36}

8-point DCT-II:

{64, 64, 64, 64, 64, 64, 64, 64}
{89, 75, 50, 18,-18,-50,-75,-89}
{83, 36,-36,-83,-83,-36, 36, 83}
{75,-18,-89,-50, 50, 89, 18,-75}
{64,-64,-64, 64, 64,-64,-64, 64}
{50,-89, 18, 75,-75,-18, 89,-50}
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{36,-83, 83,-36,-36, 83,-83, 36}
{18,-50, 75,-89, 89,-75, 50,-18}

16-point DCT-II:

(64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64}
{90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90}
{89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50.-18, 18, 50, 75, 89}
(87,57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87}
(83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83}
{80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80}
{75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75}
{70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70}
(64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64}
{57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-57}
{50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50}
{43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43}
{36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36}
{25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25}
{18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18}
{9, -25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9}

32-point DCT-II:

{64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64
,64,64,64,64}
£90,90,88,85,82,78,73,67,61,54,46,38,31,22,13,4,-4,-13,-22,-31,-38,-46,-54,-61,-67 -
73,-78,-82,-85,-88,-90,-90}
{90,87,80,70,57,43,25,9,-9,-25,-43,-57,-70,-80,-87,-90,-90,-87,-80,-70,-57,-43,-25 -
9,9,25,43,57,70,80,87,90}

{90,82,67,46,22,-4,-31,-54,-73,-85,-90,-88,-78,-61,-38,-
13,13,38,61,78,88,90,85,73,54,31,4,-22,-46,-67,-82,-90 }
{89,75,50,18,-18,-50,-75,-89,-89,-75,-50,-18,18,50,75,89,89,75,50,18,-18,-50,-75,-89, -
89,-75,-50,-18,18,50,75,89}
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(88,67,31,-13,-54,-82,-90,-78,-46,-4,38,73,90,85,61,22,-22,-61,-85,-90,-73 -
38,4,46,78,90,82,54,13,-31,-67,-88}
{87,57,9,-43,-80,-90,-70,-25,25,70,90,80,43,-9,-57,-87,-87,-57,-9,43,80,90,70,25,-25 -
70,-90,-80,-43,9,57,87}
(85,46,-13,-67,-90,-73,-22,38,82,88,54,-4,-61,-90,-78,-31,31,78,90,61,4,-54,-88 -82, -
38,22,73,90,67,13,-46,-85}
(83,36,-36,-83,-83,-36,36,83,83,36,-36,-83,-83,-36,36,83,83,36,-36,-83,-83, -
36,36,83,83,36,-36,-83,-83,-36,36,83 }
{82,22.-54.-90.,-61,13,78,85,31,-46,-90,-67,4,73,88,38,-38,-88,-73,-4,67,90,46,-3 1 ,-85,-
78,-13,61,90,54,-22,-82}
{80,9,-70,-87,-25,57,90,43,-43,-90,-57,25,87,70,-9,-80,-80,-9,70,87,25,-57,-90, -
43,43,90,57,-25,-87,-70,9,80}
(78,-4,-82,-73,13,85,67,-22,-88,-61,31,90,54,-38,-90,-46,46,90,38,-54,-90, -
31,61,88,22,-67,-85,-13,73,82,4,-78}
{75,-18,-89,-50,50,89,18,-75,-75,18,89,50,-50,-89,-18,75,75,-18,-89,-50,50,89,18,-75,-
75,18,89,50,-50,-89,-18,75}
{73,-31,-90,-22,78,67,-38,-90,-13,82,61,-46,-88,-4,85,54,-54,-85 4,88,46,-61 -
82,13,90,38,-67,-78,22,90,31,-73}
{70,-43,-87,9,90,25,-80,-57,57,80,-25,-90,-9,87,43,-70,-70,43,87,-9,-90,-25,80,57,-57. -
80,25,90,9,-87,-43,70}
{67,-54,-78,38,85,-22,-90,4,90,13,-88,-31,82,46,-73,-61,61,73,-46,-82,31,88,-13,-90. -
4,90,22,-85,-38,78,54,-67}
{64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64,-64,64,64,-64, -
64,64,64,-64,-64,64,64,-64,-64,64}
{61,-73,-46,82,31,-88,-13,90,-4,-90,22 85 -38,-78,54,67,-67,-54,78,38,-85,-22,90,4, -
90,13,88,-31,-82,46,73,-61}
{57,-80,-25,90,-9,-87,43,70,-70,-43,87,9,-90,25,80,-57,-57,80,25,-90,9,87,-43, -
70,70,43,-87,-9,90,-25,-80,57}

{54.-85,-4,88 -46,-61,82,13,-90,38,67,-78,-22,90,-31,-73,73,31,-90,22,78 -67,-38,90. -
13,-82,61,46,-88,4,85,-54}
{50,-89,18,75,-75,-18,89,-50,-50,89,-18,-75,75,18,-89,50,50,-89,18,75,-75,-18,89,-50,-
50,89,-18,-75,75,18,-89,50}
{46,-90,38,54,-90,31,61,-88,22,67,-85,13,73,-82,4,78,-78,-4,82,-73,-13,85,-67,-22,88, -
61,-31,90,-54,-38,90,-46}
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{43,-90,57,25,-87,70,9,-80,80,-9,-70,87,-25,-57,90,-43 -43,90,-57,-25,87,-70,-9,80, -
80,9,70,-87,25,57,-90,43 }
{38,-88,73,-4,-67,90,-46,-31,85,-78,13,61,-90,54,22,-82,82,-22,-54,90,-61,-13,78, -
85,31,46,-90,67,4,-73,88,-38}
{36,-83,83,-36,-36,83,-83,36,36,-83,83,-36,-36,83,-83,36,36,-83,83,-36,-36,83 -
83,36,36,-83,83,-36,-36,83,-83,36}
{31,-78,90,-61,4,54,-88,82,-38,-22,73,-90,67,-13,-46,85,-85,46,13,-67,90,-73,22,38, -
82,88,-54,-4,61,-90,78,-31}
{25,-70,90,-80,43,9,-57,87,-87,57,-9,-43,80,-90,70,-25,-25,70,-90,80,-43,-9,57,-87,87. -
57,9,43,-80,90,-70,25}
{22,-61,85,-90,73,-38,-4,46,-78,90,-82,54,-13,-31,67,-88,88,-67,31,13,-54,82,-90,78, -
46,4,38,-73,90,-85,61,-22}
{18,-50,75,-89,89,-75,50,-18,-18,50,-75,89,-89,75,-50,18,18,-50,75,-89,89,-75,50,-18, -
18,50,-75,89,-89,75,-50,18}
{13,-38,61,-78,88,-90,85,-73,54,-31,4,22,-46,67,-82,90,-90,82,-67,46,-22,-4.31,-54,73 -
85,90,-88,78,-61,38,-13}
{9,-25,43,-57,70,-80,87,-90,90,-87,80,-70,57,-43,25,-9,-9,25-43,57,-70,80,-87,90, -
90,87,-80,70,-57,43,-25,9}
{4,-13,22,-31,38,-46,54,-61,67,-73,78,-82,85,-88,90,-90,90,-90,88,-85,82,-78,73, -
67,61,-54,46,-38,31,-22,13 -4}

[0095] As described in http://www.hhi fraunhofer.de/fields-of-competence/image-
processing/research-groups/image-video-coding/heve-high-efticiency-video-
coding/transform-coding-using-the-residual-quadtree-rqt.html, to adapt to various
characteristics of residual blocks, a transform coding structure using a residual quadtree
(RQT) may be applied in HEVC. As briefly described above, each picture may be
divided into coding tree units (CTUs). The CTUs may be coded in raster scanning order
for a specific tile or slice. A CTU may be a square block and may represent the root of
a quadtree, e.g., a coding tree. The CTU size may range from 8x8 to 64x64 luma
samples, but 64x64 is typically used. Each CTU may be further split into smaller
square blocks called CUs. After a CTU is split recursively into CUs, each CU may be
further divided into one or more PUs and one or more TUs. The partitioning of a CU

into TUs may be carried out recursively based on a quadtree approach. Therefore, the
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residual signal of each CU is coded by a tree structure namely, a residual quadtree
(RQT).

[0096] A RQT allows TU sizes from 4x4 up to 32x32 luma samples. FIG. 2 shows an
example where a CU includes ten TUs, labeled with the letters a to j, and the
corresponding block partitioning. Each node of the RQT may actually be a TU.
Individual TUs may be processed in depth-first tree traversal order, which is illustrated
in FIG. 2 as alphabetical order, which follows a recursive Z-scan with depth-first
traversal. The quadtree approach may enable the adaptation of the transform to the
varying space-frequency characteristics of the residual signal. Typically, larger
transform block sizes, which have larger spatial support, provide better frequency
resolution. However, smaller transform block sizes, which have smaller spatial support,
provide better spatial resolution. The trade-off between the two, spatial and frequency
resolutions, may be chosen by an encoder mode decision. For example, the choice of
larger or smaller transform block sizes may be based on a rate-distortion optimization
technique. The rate-distortion optimization technique may calculate a weighted sum of
coding bits and reconstruction distortion, e.g., the rate-distortion cost, for each coding
mode (e.g., a specific RQT splitting structure). Additionally, the rate-distortion
optimization technique may select the coding mode with least rate-distortion cost as the
best mode.

[0097] Three parameters may be defined in the RQT: a maximum depth of the RQT, a
minimum allowed transform size of the RQT, and a maximum allowed transform size.
The minimum and maximum transform sizes may vary within the range from 4x4 to
32x32 samples, which may correspond to the supported block transforms mentioned in
the previous paragraph. The maximum allowed depth of the RQT may restrict the
number of TUs. A maximum depth equal to zero may mean that a coding block (CB)
cannot be split any further if each included transform block (TB) reaches the maximum
allowed transform size, e.g., 32x32.

[0098] Each of the three parameters interact and influence the RQT structure. Consider
a case in which a root CB size is 64x64, the maximum depth is equal to zero and the
maximum transform size is equal to 32x32. In this case, the CB may be partitioned at
least once, since otherwise it would lead to a 64x64 TB, which may not be allowed.
The RQT parameters, e.g. maximum RQT depth, minimum and maximum transform

size, may be transmitted in the bitstream at the sequence parameter set level. Regarding
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the RQT depth, different values may be specified and signaled for intra and inter coded
CUs.

[0099] A quadtree transform may be applied for both intra and inter residual blocks.
The DCT-II transform of the same size as a current residual quadtree partition may be
applied for a residual block. However, if the current residual quadtree block is 4x4 and
is generated by intra prediction, the above 4x4 DST-VII transform may be applied. In
HEVC, larger size transforms, e.g., 64x64 transform, are not adopted mainly due to their
limited benefit and relatively high complexity for relatively smaller resolution videos.
[0100] Despite the fact that DST Type-VII may efficiently improve intra coding
efficiency compared to conventional DCT Type-II, transform efficiency may be
relatively limited because prediction residuals present various statistics, and fixed usage
of DCT Type-II and DST Type-VII may not efficiently adapt to all possible cases.
[0101] As described in Lim et al., “Rate-distortion optimized adaptive transform
coding,” Opt. Eng., vol. 48, no. 8, pp. 087004-1-087004-14, Aug. 2009, a transform
scheme adaptively employs an integer version of DCT or DST for prediction residue,
for each block it is signaled whether the DCT or DST transform is used for the
prediction residue. As described in Y. Ye and M. Karczewicz, “Improved H.264 intra
coding based on bidirectional intra prediction, directional transform, and adaptive
coefficient scanning,” in Proc. 15th IEEE Int. Conf. Image Process., Oct. 2008, pp.
2116-2119, each intra prediction mode can be mapped to a unique pair of transforms
(e.g., C and R), a pre-defined as KLT pair, so that mode dependent transform (MDDT)
applies. In this manner, different KLTs may be used for different intra prediction
modes. However, which transform to use is predefined and dependent on the intra
prediction mode.

[0102] However, as described in X. Zhao et al., “Video coding with rate-distortion
optimized transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 1, pp.
138-151, Jan. 2012, more transforms may be used and such examples may explicitly
signal an index (e.g., encode data indicative of the index) to the transforms from a pre-
defined set of transform candidates which are derived from off-line training process.
Similar to MDDT, in such examples, each intra prediction direction may have its unique
set of pairs of transforms. An index may be signaled to specify which transform pair is
chosen from the set. For example, there may be up to four vertical KLTs and up to four
horizontal KL Ts for smallest block sizes 4x4. Therefore, in this example, 16

combinations may be chosen. For larger block sizes, a smaller number of combinations
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may be used. The techniques proposed in this disclosure may apply to both intra and
inter prediction residual. In this disclosure, intra prediction residual refers to residual
data generated using intra prediction. Furthermore, in this disclosure, inter prediction
residual refers to residual data generated using inter prediction. For inter prediction
residual, up to 16 combinations of KL Ts may be chosen and an index to one of the
combinations (four for 4x4 and sixteen for 8x8) may be signaled for each block.

[0103] As described in Saxena et al., “DCT/DST-based transform coding for intra
prediction in image/video coding,” IEEE Trans. Image Processing, and Yeo et al,
“Mode-dependent transforms for coding directional intra prediction residuals,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 4, pp. 545-554, 2012, multiple
transforms may be used. However, in such examples, instead of using KL Ts (which
may be trained), either DCT (DCT-II) or DST (DST-VII) may be used for a transform
unit (with both left and right transforms being the same) and which one to be used is
determined by a signaled flag.

[0104] Furthermore, as described in Zou et al., “Rate-Distortion Optimized Transforms
Based on the Lloyd-Type Algorithm for Intra Block Coding,” IEEE Journal of Selected
Topics in Signal Processing, Volume:7, Issue: 6, Nov. 2013, several pre-defined KLT
pairs are used, an index to a transform pair may be signaled (instead of derived) for a
coding unit, such that each TU of a CU uses the same pair of transforms.

[0105] As described in An et al., “Non-CE7: Boundary-Dependent Transform for Inter-
Predicted Residue,” JCTVC-G281, multiple transforms may be chosen for inter
predicted residual of TUs according to their locations within a CU. Both the C and R
transforms may be chosen from DST-VII and the flipped version of DST-VIL
Therefore, up to four combinations may be possible for the TUs within a CU. However,
because the combination may be fully determined by the location of the PUs, there may
be no need to signal which combination is being used.

[0106] In V).5. provisional application no. 62/137,03%, filed March 23, 20135, 118
provisional application no. 62/107,996, filed January 26, 2015, and U5, Patent
Application No. 15/005,736, filed January 25, 2016, an Enhanced Multiple Transforms
{(EMT) techruque 15 proposed tor both inntra and ioter predicnon residual. In EMT &
CU-level flag may be signaled to indicate whether only the conventional DUT-2 or
other non-DCT2 type ranstorms are used. I the CU-level 15 sigoaled as 1, a two-but
T-level index may be further signaled for each TU inside the current CU 1o indicate

which horizontal/vertical transform from a transform subset 15 used for the current TH.
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The ranstorm subset may contain two transforis selecied from DRT-VIH, DCT-VI,
BCT-V and DST-1) and selection may be based on the intra prediction mode and
whether it 15 g honizontal or a vertical transform subset.

[0107] FIG. 3A is an illustration of an example transform process at a video encoder,
such as video encoder 20. FIG. 3B is an illustration of an example transform process at
a video decoder, such as video decoder 30. In the example of FIG. 3A, video encoder
20 applies a forward primary transform 40 (fwdT), followed by a secondary transform
41 (fwdR), followed by forward quantization 42 (fwdQua). In the example of FIG. 3B,
video decoder 30 applies inverse quantization 43 (invQ), followed by an inverse
secondary transform 44 (invR), followed by an inverse primary transform 45 (invTran).
Forward primary transform 40 may convert residual samples from a pixel domain to
transform coefficients in a frequency domain. Inverse primary transform 43 may
convert transform coefficients in the frequency domain to residual samples in the pixel
domain.

[0108] Secondary transform 41 may be used for better energy compaction of transform
coefficients. As illustrated in FIGS. 3A and 3B, secondary transform 41 may apply
another transform on the transform coefficients derived from the first transform process.
[0109] As described in E. Alshina, A. Alshin, F. Fernandes, A. Saxena, V. Seregin, Z.
Ma, W .-J. Han (Samsung), “CE7: Experimental results of ROT by Samsung” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JCTVC-E380, Geneva, CH, 16-23 March, 2011, a secondary
transform may be a rotational transform (ROT). The ROT does not replace the primary
transform. However, the ROT is applied as a secondary transform for only the low
frequency part of transform coefficients matrix. With the ROT as described in the
above, for each intra coded TU, an index, indicating which ROT is applied from the
four pre-defined transform candidates, is signaled. A 4x4 secondary transform is
applied for 4x4 intra coded TUs, while 8x8 secondary transform is applied for 8x8 and
larger intra coded TUs. For instance, in the example, the secondary transform may be

specified as follows.
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[0110] In the four transform candidates illustrated above, one candidate corresponds to
not applying a secondary transform and the other three candidates correspond to Rvertical
and Ruorizontal generated by three different settings of al, a2, . . ., a6. A more detailed
description can be found in K. McCann, W.-J. Han, 1.-K. Kim, J.-H. Min, E. Alshina, A.
Alshin, T. Lee, J. Chen, V. Seregin, S. Lee, Y.-M. Hong, M.-S. Cheon, N. Shlyakhov,
“Video coding technology proposal by Samsung (and BBC)” Joint Collaborative Team
on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,
JCTVC-A124, Dresden, Germany, 15-23 April, 2010.

[0111] FIG. 4 is an illustration of an example ROT applied by a video decoder, such as
video decoder 30. In the example of FIG. 4, the video decoder performs inverse
quantization 60 (Inv Q) on transform coefficient blocks 62 ranging in size from 4x4 to
32x32. Furthermore, in the example of FIG. 4, the video decoder applies an inverse
ROT 64 (Inv ROT) as a secondary transform for only a low frequency part of transform
coefficients matrices. For instance, as shown in the example of FIG. 4, all transform
coefficients of 4x4 and 8x8 transform coefficient matrices may be considered to be in
low frequency parts of the transform coefficient matrices. However, as shown in FIG.
4, only transform coefficients in the top left 8x8 sub-blocks of 16x16 and 32x32
transform coefficient matrices are considered to be in low frequency parts of the
transform coefficient matrices. Furthermore, in the example of FIG. 4, the video
decoder applies an inverse DCT transform 66 (Inv DCT transform) to transform
coefficient matrices to convert the transform coefficient matrices into residual blocks.
In the example of FIG. 4, prior to applying inverse DCT transform 66 to 16x16 and
32x32 transform coefficient matrices, the video decoder may replace the top left 8x8

sub-blocks of the 16x16 and 32x32 transform coefficient matrices with the
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corresponding 8x8 transform coefficient matrices produced by application of inverse
ROT 64.

[0112] As described in E. Alshina, A. Alshin, J.-H. Min, K. Choi, A. Saxena, M.
Budagavi, “Known tools performance investigation for next generation video coding”,
ITU-T SG16 Doc. VCEG-AZO0S, Jun. 2015, ROT may be extended to a whole TU, not
only the low-frequency part. More specifically, three 4x4 separable secondary
transform candidates may be pre-defined, and the selected one may be explicitly
signaled with a 2-bit index at the CU-level. The 2-bit index may be referred to herein as
a ROT index. In one example, when the ROT index is 0, no secondary transform is
applied. However, in this example, when the ROT index is 1, 2 and 3, the secondary
transform corresponding to one of the three pre-defined secondary transform candidates
may be applied for every TU inside a current CU. Given a selected secondary
transform, for every 4x4 sub-block of the current TU, a secondary 4x4 separable
secondary transform may be applied.

[0113] The design of secondary transforms may apply a separable transform as the
secondary transform. However, the secondary transform efficiency may be improved
because a non-separable transform may provide superior coding gain on 2-D image
blocks. Said differently, in the scenario of video coding, transform coefficients may be
roughly non-correlated and sparse such that the energy of the input vector x may be
compacted only on a few transform coefficients, and the remaining majority transform
coefficients may be typically close to 0. In the example, a KLT, which is a non-
separable transform, may have an optimal energy compaction because it uses
eigenvectors of the covariance matrix of the input data as the transform basis vectors
rather than merely transforming coefficients from a pixel domain to a frequency
domain.

[0114] More specifically, separable transforms may capture the pixel correlation along
horizontal and/or vertical directions. In contrast, non-separable transforms may capture
the correlation between any pair of two pixels in a 2-dimensional image block.
Therefore, non-separable transforms may have more flexibility to reduce the data
correlation than separable transforms. For example, for image blocks which show
correlation along non-horizontal or non-vertical directions, e.g., a 45-degree edge
texture, separable transforms may not be efficient to reduce the correlation between the
pixels along a 45-degree direction, but non-separable may reduce the correlation

efficiently.
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[0115] In view of the problems discussed above, the following techniques are proposed.
It should be understood that the techniques of the disclosure described below may be
used in conjunction with techniques for adaptive cross-component residual prediction,
such as those described in U.S. Patent Application No. 15/006,994 and U.S. Provisional
Application 62/108,491. The following text describes itemized techniques proposed in
this disclosure. Video encoder 20 and/or video decoder 30 may apply the itemized
techniques individually. Alternatively, video encoder 20 and/or video decoder 30 may
apply any combination of the itemized techniques.

[0116] In accordance with a first technique, video encoder 20 and/or video decoder 30
are configured to apply a non-separable secondary transform between the quantization
and transform process. For instance, a non-separable transform set (including three

non-separable transforms) applied for planar mode may be as follows.
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[0117] In one aspect of this example, the non-separable secondary transform may be
KLTs, which may be derived from off-line training, or analytically derived off-line
using an assumed image correlation model. In some examples, an image correlation
model is a function f(x,y), which measures the covariance between

the 1 th and j th elements of a random vector. A random vector may be a random
variable with multiple dimensions. Said differently, an image correlation function may
be symmetric: f(x,y) = f(y,x), and the covariance matrix Cov(x,y) = f(x,y) may be semi-
positive definite. An example of a correlation model is f{x*y} = p*¥| where 0 <p <1.
[0118] In one aspect of this example, the non-separable secondary transform may be
KLTs, which may be derived from off-line training, or analytically derived off-line
using KL Ts derived on-line during the encoding/decoding process. In some instances,
during the encoding/decoding process, video encoder 20 and/or video decoder 30 are

configured to collect the statistics of the transform coefficients, and update, where
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secondary transform is applied, the correlation matrix of the transform coefficients.
Based on the updated correlation matrix, video encoder 20 and/or video decoder 30 may
be configured to extract the Eigen vectors and derive KL T transform cores as a matrix
composed of all the Eigen vectors arranged in the order of their corresponding Eigen
values.

[0119] In accordance with an example of the first technique, video encoder 20 may
form a residual video block. In some examples, as part of forming the residual video
block, video encoder 20 subtracts one or more predictive blocks from a video block
being coded. Additionally, video encoder 20 may apply a first transform to the residual
video block to generate a first coefficient block. In this example, the first transform
converts the residual video block from a pixel domain to a frequency domain. As used
herein, a pixel domain or a spatial domain may refer to domains where changes in a
value for a pixel correspond to changes in the luminance and/or color for that pixel. As
used herein, however, a frequency domain may refer to a domain where changes in a
value for a pixel correspond to changes in a rate at which the pixel values for the pixel
are changing in the pixel domain. Furthermore, video encoder 20 may apply a
secondary transform to at least part of the first coefficient block to generate a second
coefficient block. In accordance with the first technique of this disclosure, the second
transform is a non-separable transform, such as a KLT. Video encoder 20 may then
quantize the second coefficient block.

[0120] Similarly, in accordance with an example of the first technique, video decoder
30 may inverse quantize a first coefficient block. Additionally, in this example, video
decoder 30 may apply a first inverse transform (i.e., an inverse secondary transform) to
at least part of the inverse quantized first coefficient block to generate a second
coefficient block. In accordance with the first technique of this disclosure, the first
inverse transform is a non-separable transform, such as a KLT. Furthermore, in this
example, after applying the first inverse transform to generate the second coefficient
block, video decoder 30 may apply a second inverse transform to the second coefficient
block to generate a residual video block. In this example, the second inverse transform
converts the second coefficient block from a frequency domain to a pixel domain.
Additionally, in this example, video decoder 30 may form a decoded video block. In
some examples, as part of forming the decoded video block, video decoder 30 sums the
residual video block with one or more predictive blocks. For instance, video decoder 30

may sum the residual video block with one or more predictive blocks and form a
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decoded video block based on the sum of the residual video block with one or more
predictive blocks.

[0121] In accordance with a second technique, video encoder 20 and/or video decoder
30 perform a pre-selection from three or more non-separable transform candidates to
formulate a subset of non-separable transforms. In some examples, the subset of non-
separable transforms may refer to KL Ts, which are derived by off-line training and the
transform cores are hard coded as fixed numbers for both encoder 20 and/or decoder 30.
Video encoder 20 and/or video decoder 30 may choose the final transform to be used for
a current TU from the subset of transforms.

[0122] For example, video encoder 20 may formulate a subset of a set of non-separable
transforms that includes three or more non-separable transform candidates. In this
example, video encoder 20 may select one candidate from the subset of the set of non-
separable transforms as the first inverse transform. In some aspects of this example, the
set of non-separable transforms includes twelve transform subsets, the twelve transform
subsets including the subset of the set of non-separable transforms. In some aspects of
this example, the set of non-separable transforms is specified by a luma intra prediction
mode for the video data. For instance, video encoder 20 may specify that a first luma
intra prediction mode for the video data is used with a first set of non-separable
transforms and may specify that a second luma intra prediction mode for the video data
is used with a second set of non-separable transforms. More specifically, video encoder
20 may specify a transform candidate by a signaled index (e.g., data indicative of an
index) and the selected transform subset.

[0123] Similarly, video decoder 30 may formulate a subset of a set of non-separable
transforms that includes three or more non-separable transform candidates. In this
example, video decoder 30 may select one candidate from the subset of the set of non-
separable transforms as the second transform. In some aspects of this example, the set
of non-separable transforms includes twelve transform subsets, the twelve transform
subsets including the subset of the set of non-separable transforms. In some aspects of
this example, the set of non-separable transforms is specified by a luma intra prediction
mode for the video data.

[0124] In an example, the pre-selection to formulate the subset of transforms may be
determined by already decoded information such as intra prediction modes, EMT CU-
level and/or TU-level indices, RQT depth, quantized coefficients, reference prediction

block, relative location of the current TU inside a PU (which boundary of the current
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PU is the TU located), block sizes, block shape (whether it is square or non-square
block, and the ratio of height versus width). Said differently, video decoder 30 may pre-
select a subset of transforms according to the decoded information rather than relying on
separate or additional signaling. For example, video encoder 20 may determine the
subset based on decoded information, the decoded information comprising one or more
of an intra prediction mode, a CU level EMT index, a TU level EMT index, a residual
quadtree depth, quantized coefficients, a reference prediction block, and a relative
location of a current TU inside a PU. In some aspects of this example, twelve transform
subsets are applied, and a look-up table specifying the mapping from intra prediction
mode to transform subset selection is pre-defined, given the intra prediction mode and
this look-up table, a transform subset, which includes three different non-separable
transforms, is firstly selected, then one of the three non-separable transforms is further
specified by decoded information and used to perform the first transform. Similarly, in
some aspects of this example, video decoder 30 may determine the subset based one or
more of an intra prediction mode, a CU level EMT index, a TU level EMT index, a
residual quadtree depth, quantized coefficients, a reference prediction block, a relative
location of a current TU inside a unit PU, block sizes, and block shape (whether it is
square or non-square block, and the ratio of height versus width).

[0125] In accordance with some examples of the second technique, the number of
subsets of transforms may be limited to a small integer, e.g., 1, 2, 3, 4, 12, or 34.
Additionally, in some aspects of this example, different subsets of transforms may
contain different types of transforms. For example, video encoder 20 may preselect a
first subset having one or more left transforms, a second set having or more right
transforms, or a third set having left and right transforms as a preselected subset. Then,
in the example, video encoder 20 may select one transform candidate from the
preselected subset as a selected transform. For instance, video encoder 20 may select a
transform using an encoder mode decision, and video encoder 20 encodes data
indicative of an index of the transform. Similarly, video decoder 30 may decode an
index from a bitstream and select the transform based on the decoded index from the set
of preselected transforms.

[0126] In some examples, a total number of transform candidates in transform subsets
of the set of non-separable transforms that correspond to different intra prediction

modes are different. For example, video encoder 20 and/or video decoder 30 may use a
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first subset for a first intra prediction mode and a second subset for a second intra
prediction mode.

[0127] In an example, there are a total of 12 transform subsets. In this example, each
respective transform subset of the 12 transform subsets contains three non-separable
transform candidates. The transform subset may be specified by the luma intra
prediction mode, and for different intra modes, the same transform set may be applied.
As used herein, intra prediction modes may refer to various direction of prediction for a
block being predicted. Examples of intra prediction modes may include, but are not
limited to, vertical, horizontal, diagonal down-left, diagonal down-right, vertical-right,
horizontal-down, vertical-left, horizontal-up, and other directions of prediction for a
block being predicted. Said differently, in some aspects of this example, the set of non-
separable transforms is specified by a luma intra prediction mode for the video data.
For example, video decoder 30 may select one transform subset of the 12 transform
subsets for a particular luma intra prediction mode. In an aspect of the example, video
decoder 30 may select a first transform of the three non-separable transform candidates
contained in the selected subset for the first intra prediction mode and may select a
second transform of the three non-separable transform candidates contained in the
selected subset for a second intra prediction mode.

[0128] In an example, there are a total of 12 transform subsets, and each transform
subset may contain five non-separable transform candidates. The transform set may be
specified by the luma intra prediction mode and EMT CU-level and TU-level indices.
For different intra modes, the same transform set may be applied.

[0129] In an example, the transform subset may contain only one transform. For
different TU sizes, the number of transforms in a transform subset may be different, a
typical number of may be, but not limited to 2, 3 and 4. For different intra prediction
modes, the number of transforms in a transforms subset may be different, a typical
number may be, but not limited to 2, 3 and 4. In an aspect of the example, for planar or
DC prediction mode, the number of transforms in a transforms subset is 2, while for
other prediction modes, the number of transforms in a transforms subset is 3.

[0130] FIG. 5 and FIG. 6 relate to a third technique of this disclosure. FIG. 5 is a block
diagram illustrating a portion of an example encoding process that includes a secondary
transform coefficient reorganization process. FIG. 6 is a block diagram illustrating a
portion of an example decoding process that includes a secondary transform coefficient

reorganization process. In FIG. 5, video encoder 20 applies a primary transform 100 to
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a residual block 101 to generate a 2-dimensional coefficient block 102. Furthermore,
the encoding process of FIG. 5, includes a non-separable secondary transform 106.
Non-separable secondary transform 106 may take a 1-dimensional coefficient vector
156 as input and generate in a 1-dimensional coefficient vector 108 as output. Thus, in
the example of FIG. 5, primary transform 100 generates 2-dimensional coefficient block
102, but non-separable secondary transform 106 takes a 1-dimensional coefficient
vector as input. Accordingly, video encoder 20 may perform a reorganization process
104 to transform 2-dimensional coefficient block 102 into 1-dimensional coefficient
vector 105. In some examples, reorganization process 104 may be considered to be part
of non-separable secondary transform 106.

[0131] Furthermore, quantization process 114 may take a 2-dimensional coefficient
block 112 as input and may output a quantized 2-dimensional coefficient block 116.
Thus, in accordance with the third technique of this disclosure, video encoder 20 may
apply a secondary transform coefficient reorganization process 110 for reorganizing the
1-dimensional coefficient vector 108 derived by non-separable secondary transform 106
as a 2-dimensional coefficient block 112 after video encoder 20 applies secondary
transform 106 during encoding. Applying reorganization process 110 may obviate the
need to modify quantization process 106 to accept 1-dimensional coefficient vectors.
[0132] In FIG. 6, video decoder 30 may apply an inverse quantization 150 to a
quantized 2-dimensional coefficient block 151 to derive 2-dimensional coefficient block
152. Furthermore, the decoding process of FIG. 6 includes an inverse secondary
transform 158. Inverse secondary transform 158 may take a 1-dimensional coefficient
vector 156 as input and output a 1-dimensional coefficient vector 160. For example,
inverse secondary transform 158 may take a 16x1 coefficient vector as input and may
output a 16x1 coefficient vector. However, inverse quantization 150 may output 2-
dimensional coefficient block 152 and primary inverse transform 166 may take a 2-
dimensional coefficient block 164 as input. Hence, in accordance with the third
technique of this disclosure, before video decoder 30 applies secondary inverse
transform 158 during the decoding process, video decoder 30 may apply a secondary
transform coefficient reorganization process 154 for reorganizing 2-dimensional
coefficient block 152 derived by inverse quantization 150 as 1-dimensional coefficient
vector 156. Applying reorganization process 154 before applying inverse secondary
transform 158 may obviate the need to modify inverse quantization 150 to generate a 1-

dimensional coefficient vector. Moreover, video decoder 30 may apply a secondary
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transform coefficient reorganization process 162 for reorganizing 1-dimensional
coefficient vector 160 as 2-dimensional coefficient block 164. Video decoder 30 may
then apply primary inverse transform 166 to 2-dimensional coefficient block 164 to
generate residual block 168. Applying reorganization process 162 before applying
primary inverse transform 166 may obviate the need to modify primary inverse
transform 166. In some examples, reorganization process 162 is considered part of
secondary inverse transform 158.

[0133] Hence, in accordance with the third technique, video encoder 20 may form a
residual video block. As part of forming the residual video block, video encoder 20
may subtract one or more predictive blocks from a video block being coded.
Additionally, video encoder 20 may apply a first transform (e.g., primary transform 100)
to at least part of the residual video block to generate a first 2-dimensional coefficient
block (e.g., 2-dimensional coefficient block 102). In this example, the first transform
converts the residual video block from a pixel domain to a frequency domain.
Additionally, video encoder 20 may reorganize the first 2-dimensional coefficient block
as a first 1-dimensional coefficient vector. In the example, video encoder 20 may apply
a second transform to at least part of the first 1-dimensional coefficient vector to
generate a second 1-dimensional coefficient vector. In this example, the second
transform is a non-separable transform. In the example, the second transform is a non-
separable transform. In this example, video encoder 20 may reorganize the second 1-
dimensional coefficient vector as a second 2-dimensional coefficient block according to
a coefficient scanning order.

[0134] Similarly, video decoder 30 may reorganize a first 2-dimensional coefficient
block (e.g., 2-dimensional coefficient block 152) as a first 1-dimensional coefficient
vector (e.g., 1-dimensional coefficient vector 156) according to a coefficient scanning
order. In this example, video decoder 30 may apply a first inverse transform (e.g., non-
separable secondary inverse transform 158) by multiplying a non-separable transform
matrix by the first 1-dimensional coefficient vector to generate a second 1-dimensional
coefficient vector (e.g., 1-dimensional coefficient block 160). In this example, the first
inverse transform is a non-separable transform. In this example, video decoder 30 may
reorganize the second 1-dimensional coefficient vector as a 2-dimensional coefficient
block (e.g., 2-dimensional coefticient block 164). Video decoder 30 may apply a
second inverse transform (e.g., primary inverse transform 166) to the second 2-

dimensional coefficient block to generate a residual video block (e.g., residual block
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168). In this example, the second inverse transform converts the second 2-dimensional
coefficient block from a frequency domain to a pixel domain. In this example, video
decoder 30 may form a decoded video block. As part of forming the decoded video
block, video decoder 30 may sum the residual video block with one or more predictive
blocks.

[0135] In some examples of the third technique, applying the second transform
comprises multiplying a 2-dimensional transform matrix by the first 1-dimensional
coefficient vector. In some instances of the example, the first 2-dimensional coefficient
block is a 4x4 block and the 2-dimensional transform matrix is a 16x16 non-separable
transform matrix selected by a luma intra prediction mode and a coding unit-level index.
For example, video encoder 20 may apply a second transform (e.g., non-separable
secondary transform 106) by multiplying a 16x16 non-separable transform matrix by
the first 1-dimensional coefficient vector (e.g., 1-dimensional coefficient vector 105),
thereby generating the second 1-dimensional coefficient vector (e.g., 1-dimensional
coefficient vector 108). Similarly, video decoder 30 may apply a second transform
(e.g., non-separable secondary transform 158) by multiplying a 16x16 non-separable
transform matrix by the first 1-dimensional coefficient vector (e.g., 1-dimensional
coefficient vector 156), thereby generating the second 1-dimensional coefficient vector
(e.g., 1-dimensional coefficient vector 160).

[0136] In some examples of the third technique, the secondary transform coefficient
reorganization process performed on a 4x4 coefficient group may depend on a
coefficient scanning order of the 4x4 coefficient group. For example, if video encoder
20 uses a zig-zag scanning order to process syntax element representing coefficients of
the 4x4 coefficient group during entropy encoding, video encoder 20 may use the same
zig-zag scanning order when reorganizing the 4x4 coefficient group into a 16x1
coefficient vector as part of applying the non-separable secondary transform.

[0137] Furthermore, in some examples of the third technique, video encoder 20 may
determine a coefficient scanning order for the 4x4 coefficient group. In this example,
video encoder 20 may reorganize a first 1-dimensional coefficient vector as a first 2-
dimensional coefficient block (e.g., the 4x4 coefficient group) based on the determined
coefficient scanning order. In some aspects of this example, video encoder 20 may
reorganize the first 1-dimensional coefficient vector as the first 2-dimensional

coefficient block such that the first 2-dimensional coefficient block has a coefficient
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scanning order corresponding to (e.g., matching) the determined coefficient scanning
order.

[0138] Similarly, video decoder 30 may determine a coefficient scanning order for a
4x4 coefficient group. In this example, video decoder 30 may reorganize second 2-
dimensional coefficient block (e.g., the 4x4 coefficient group) as a second 1-
dimensional coefficient vector based on the determined coefficient scanning order. In
some aspects of this example, video decoder 30 may reorganize the second 2-
dimensional coefficient block as the second 1-dimensional coefficient vector such that
the second 1-dimensional coefficient vector has a coefficient scanning order
corresponding to (e.g., matching) the determined coefficient scanning order.

[0139] In some examples of the third technique, the secondary transform coefficient
reorganization process performed on a 4x4 coefficient group may depend on already
encoded/decoded information, such as intra prediction modes, EMT CU-level and/or
TU-level indices, RQT depth, and/or quantized coefficients. Said differently,
reorganization process 110 of video encoder 20 may reorganize, based on intra
prediction modes, EMT CU-level and/or TU-level indices, RQT depth, and/or quantized
coefficients, 1-dimensional coefficient vector 108 as 2-dimensional coefficient block
112. For example, video encoder 20 may reorganize 1-dimensional coefficient vector
108 as 2-dimensional coefficient block 112 based on whether a vertical or horizontal
luma prediction mode is selected such that the 1-dimensional coefficient vector has a
coefficient scanning order corresponding (e.g., matching) the determined coefficient
scanning order. Similarly, reorganization process 154 of video decoder 30 may
reorganize, based on intra prediction modes, EMT CU-level and/or TU-level indices,
RQT depth, and/or quantized coefficients, 2-dimensional coefficient block 152 to
generate 1-dimensional coefficient vector 156.

[0140] In one example of the third technique, after applying the non-separable
secondary transform (e.g., secondary transform 102) for a particular 4x4 coefficient
block, video encoder 20 may derive a 16x1 coefficient vector (e.g., 1-dimensional
coefficient vector 108) and may reorganize the resulting 16 coefficients as a 4x4 block
(e.g., 2-dimensional coefficient block 112) according to (i.e., along) the coefficient
scanning order for the particular 4x4 block. Video encoder 20 may perform the
reorganization of the 16 coefficients in a way that coefficients with smaller indices are
placed at locations with the smaller scanning index in the 4x4 coefficient block. For

example, when the 4x4 coefficient block is scanned row-by-row from a top of the 4x4
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coefficient block to the bottom of the 4x4 coefficient block (e.g., according to an intra
prediction mode), video encoder 20 may reorganize the four coefficients of the top row
of the coefficient block as the first four coefficients of the 1-dimensional coefficient
vector, the four coefficients of the second-to-top row of the coefficient block as the next
four coefficients of the 1-dimensional coefficient vector, and so on.

[0141] After performing dequantization on the TU coefficients, video decoder 30 may,
for each 4x4 sub-block of a current TU, derive a 4x4 dequantized secondary transform
coefficients block (e.g., 2-dimensional coefficient block 152). Furthermore, for each
respective 4x4 sub-block of the current TU, video decoder 30 may reorganize the 16
coefficients in the respective 4x4 dequantized block as a respective 16x1 vector (e.g., 1-
dimensional coefficient vector 156) based on a coefficient scanning order for the 4x4
block. Video decoder 30 may perform the reorganization of the 4x4 coefficients in a
way that coefficients with smaller scan indices are placed at locations with the smaller
indices in the 16x1 coefficient vector.

[0142] In an example, video encoder 20 and/or video decoder 30 may perform the
reorganization process based on a fixed 4x4 coefficient scanning order, e.g., horizontal,
vertical, diagonal, or zigzag scanning order. In this manner, the 16 secondary transform
coefficients with smaller indices in the 16x1 coefficient vector may be placed in a 4x4
coefficient block according to a fixed pre-defined 4x4 coefficient scanning order.
[0143] In accordance with an example of the third technique, after the transform process
(e.g., primary transform 100), video encoder 20 may apply the secondary transform

(e.g., secondary transform 102) for each respective 4x4 transform coefficient sub-block

B of a current MxN TU by first representing B as a vector b using b (i-N+j)=B())

and then performing the following calculation:

- —

f=T-b.
In the equation above, 7'is a 16x16 non-separable transform matrix selected based on a

luma intra prediction mode and a signaled CU-level flag as described above.

Furthermore, in the example of FIG. 5, b may correspond to 1-dimensional coefficient
vector 105. As a consequence of applying the equation above, for each respective 4x4

sub-block, video encoder 20 derives a respective 16x1 secondary transform coefficient

vector f . In the example of FIG. 5, f corresponds to 1-dimensional coefficient vector

108. Video encoder 20 may reorganize the respective 16x1 secondary transform
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coefficient vector as a respective 4x4 coefficient block by performing the following
operation:

F(scan_x(j),scan_y(j)) = f(j).
In the equation above, j=0,1,...,15, scan_x and scan_y may be a scan table for an x- and
y-coordinate as already defined in HEVC, respectively. In this way, the respective 4x4
transform coefficient sub-block B may be replaced by a respective derived secondary
4x4 transform coefficient block /. In the example of FIG. 5, F corresponds to 2-
dimensional coefficient bock 112. After video encoder 20 has performed the secondary
transform for each 4x4 transform coefficient sub-block, video encoder 20 may further
quantize and entropy encode the updated MxN coefficient block.
[0144] For each respective 4x4 coefficient sub-block F, after the quantization process

(e.g., inverse quantization 150), video decoder 30 may derive a 16x1 secondary

transform coefficient vector f by reorganizing the respective 4x4 coefficient sub-block

Ftoa 16x1 vector.
f(j) = F(scan_x(j), scan_y(j)).

[0145] In this equation above, j=0,1,...,15, scan_x and scan_y are a scan table for x-

and y-coordinates of the 4x4 coefficient sub-block /- as already defined in HEVC,

respectively. In the example of FIG. 6, f corresponds to 1-dimensional coefficient
vector 156 and F' corresponds to 2-dimensional coefficient block 152. Video decoder
30 may then apply the inverse secondary transform (e.g., secondary inverse transform
158) on f by performing the following calculation:

b=T"T,
[0146] In the equation above, 7"1s a 16x16 non-separable transform matrix that may be
selected by a luma intra prediction mode and a signaled CU-level flag as described in
above. As a consequence of the matrix multiplication of the equation above, for each

respective 4x4 sub-block 7, video decoder 30 derives a respective 16x1 secondary

transform coefficient vector b. In the example of FIG. 6, b corresponds to 1-

dimensional coefficient vector 160. Video decoder 30 reorganizes the 16x1 secondary

transform coefficient vector as a 4x4 coefficient block by calculating B(i, j) = b (i
N + ). In the example of FIG. 6, B corresponds to 2-dimensional coefficient block
164. Video decoder 30 may replace the 4x4 transform coefficient sub-block F by the

derived secondary 4x4 transform coefficient block B. After video decoder 30 performs



WO 2017/058614 PCT/US2016/052926
50

the inverse secondary transform for each of the 4x4 coefficient sub-lock, video decoder
30 may input the updated MxN coefficient block to the inverse transform (e.g., primary
inverse transform 166).

[0147] As indicated above, in some examples, video encoder 20 may select a
non-separable secondary transform. In accordance with a fourth technique, video
encoder 20 may signal (e.g., encode) and video decoder 30 may receive an indication of
the selection of non-separable secondary transform using an index applicable to a TU,
PU, CU or any image coding block unit. In other words, video encoder 20 may encode,
for a TU, PU, CU or other image coding block unit, data indicative of an index
indicating a selected non-separable secondary transform. For example, the selection of
the first inverse transform from the set of non-separable transforms may be signaled by
an index for a TU, a PU, a CU, or a combination thereof. Similarly, video decoder 30
may obtain, from a bitstream of the video data, data indicative of an index for a TU, a
PU, a CU, or a combination thereof, the index indicating a selected non-separable
secondary transform. For ease of explanation, this disclosure may refer to the index
indicating the selected non-separable secondary transform as a non-separable secondary
transform (NSST) index.

[0148] In some examples, video encoder 20 may entropy encode the NSST index. As
part of entropy encoding the NSST index, video encoder 20 may binarize the NSST
index. For entropy coding the NSST index, a fixed-length code may be used for
binarization or a variable length code, such as a truncated unary code or an exponential
Golomb code, may be used for binarization.

[0149] In accordance with a fifth technique, if the energy of a residual signal is limited,
video encoder 20 may skip, for certain TUs, the signaling of the NSST index and the
secondary transform may not be applied. For example, video encoder 20 may skip
signaling of the NSST index for a current TU if there is no non-zero coefficient
transmitted for the current TU. In other words, video encoder 20 may skip encoding of
data indicative of the NSST index for the current TU if there is no non-zero coefficient
encoded for the current TU. Similarly, in other examples, skipping of NSST index
signaling may apply to LCU, CU, PU, or any other block level syntax element. Thus, in
accordance with the fifth technique, video encoder 20 may generate, in an encoded
bitstream of the video data, data indicative of an index applicable to a TU, a PU, a CU,
or a combination thereof, the index indicating the selected candidate is the second

transform.
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[0150] Similarly, video decoder 30 may obtain, from the bitstream of the video data, a
syntax element indicative of an index applicable to a TU, a PU, a CU, or a combination
thereof. In this example, video decoder 30 may select the candidate from the subset of
non-separable transforms comprises selecting, as the first inverse transform, a candidate
indicated by the index.

[0151] In some examples, the NSST index at a certain block level is skipped and the
secondary transform is not applied if a total number or a total absolute sum or a sum of
squared values of nonzero coefficients transmitted at that certain block level is no
greater than a given threshold value. For example, video encoder 20 may skip signaling
of the NSST index and not apply the secondary transform when the total number of
nonzero coefficients transmitted at a certain LCU is no greater than 10. In some
examples, video encoder 20 may skip signaling of the NSST index and not apply the
secondary transform when the total absolute sum of nonzero coefficients transmitted at
a certain CU is no greater than 100. In an example, video encoder 20 may skip
signaling of the NSST index and not apply the secondary transform when the sum of
squared values of nonzero coefficients transmitted at a certain PU is no greater than 100.
[0152] Thus, in accordance with the fifth technique, video encoder 20 may determine
whether to encode an index of a secondary transform (e.g., non-separable secondary
transform 106) in a bitstream. The index of the secondary transform may identify the
secondary transform from among a plurality of available secondary transforms. In this
example, video encoder 20 may make a determination that the index of the secondary
transform is not encoded in the bitstream based on a sum of a total number, a total
absolute sum, or sum of squared values of nonzero coefficients transmitted at a
particular block level (e.g., in a LCU, CU, PU, TU) being no greater than a given
threshold value. In this example, video encoder 20 may signal the index of the
secondary transform at the particular block level. In this example, video encoder 20
may apply to at least part of a 2-dimensional coefficient block the secondary transform
whose index is signaled in the bitstream.

[0153] Similarly, video decoder 30 may determine whether an index of a secondary
transform (e.g., non-separable inverse transform 158) is signaled in a bitstream. In this
example, video decoder 30 may make a determination that the index of the secondary
transform is not encoded in the bitstream based on a sum of a total number, a total
absolute sum, or sum of squared values of nonzero coefficients at a particular block

level being no greater than a given threshold value. In this example, the index of the



WO 2017/058614 PCT/US2016/052926
52

secondary transform is signaled at the particular block level. In this example, video
decoder 30 may apply to the 1-dimensional coefficient vector a secondary inverse
transform that is inverse of the secondary transform indicated by the index signaled in
the bitstream.

[0154] In one example, video decoder 30 may apply a secondary inverse transform to a
I-dimensional coefficient vector in response to video encoder 20 determining that the
quantity of non-zero coefficients of a 2-dimensional coefficient block is no greater than
a threshold. In this example, the threshold may be different for different block sizes,
different intra prediction modes, or a combination thereof for the video data.

[0155] Similarly, video encoder 20 may determine whether a quantity of non-zero
coefficients of a 2-dimensional coefficient block is greater than a threshold. In this
example, video encoder 20 may apply a secondary transform to at least part of the 2-
dimensional coefficient block in response to determining that the quantity of non-zero
coefficients of the 2-dimensional coefficient block is no greater than the threshold. In
this example, the threshold may be different for different block sizes, different intra
prediction modes, or a combination thereof for the video data.

[0156] In some examples, the threshold value of the total number of nonzero
coefficients is 1. In an example, the threshold value for the total number of non-zero
coefficients may be different for different block sizes or different intra prediction
modes.

[0157] In some examples, video encoder 20 and video decoder 30 may apply secondary
transforms and secondary inverse transforms to coefficient values for all color
components (e.g., Y, Cb, and Cr). In other examples, video encoder 20 and video
decoder 30 may apply secondary transforms and secondary inverse transforms to some
but not all color components. For example, video encoder 20 and video decoder 30 may
apply secondary transforms and secondary inverse transforms to coefficient values for
the luma (i.e., Y) component, but not to coefficient values for chroma (e.g., Cb and Cr)
components. In examples where video encoder 20 and video decoder 30 apply
secondary transforms and secondary inverse transforms to two or more color
components, the NSST index may be shared for the two or more color components.
[0158] In accordance with an example of the fifth technique, if the NSST index is
signaled at a certain block level and shared for several components (e.g., Y, Cb, Cr) and
if a sum of the total number or if the total absolute sum or if the sum of squared values

of nonzero coefficients transmitted at that certain block level from all the components
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sharing the same NSST index is no greater than a given threshold value, the NSST
index may be skipped and the secondary transform is not applied. In an example, the
threshold value of total number of nonzero coefficients is 1, 2, or 3. In some examples,
the threshold value of the total number of nonzero coefficients is greater than 3.

[0159] In an example, if the NSST index is signaled at a certain block level and shared
for Y, Cb, and Cr components, then the NSST index may be skipped and the secondary
transform may not be applied if a sum of total number of nonzero coefficients of Y, Cb,
and Cr components is less than a given threshold. For example, video encoder 20 may
skip signaling of the NSST index and not apply the secondary transform when the
absolute sum of nonzero coefficients transmitted at a certain CU for the combination of
Y, Cb, and Cr components is no greater than 100.

[0160] In an example, if the NSST index is signaled at a certain block level and shared
for Cb and Cr components, then video encoder 20 may skip signaling of the NSST
index and not apply the secondary transform if a sum of a total number of nonzero
coefficients of Cb and Cr components is less than a given threshold. For example,
video encoder 20 may skip signaling of the NSST index and not apply the secondary
transform when the total number of nonzero coefficients for Cb and Cr components of a
certain CU is no greater than 3.

[0161] In accordance with some examples of the fifth technique, the threshold value for
the total number of nonzero coefficients may be different for different block sizes or
different intra prediction modes. For example, a LCU may have a greater threshold
value than CU and PU. Similarly, video encoder 20 may use a first threshold value for
blocks coded using vertical intra prediction modes and may use a second, different
threshold value for blocks coded using horizontal intra prediction modes.

[0162] In an example of the fifth technique, if the NSST index is signaled at a certain
block level and shared for Y, Cb, and Cr components, then the NSST index may be
skipped and the secondary transform may not be applied if a total number of nonzero
coefficients of only the Y component is less than a given threshold. For example, video
encoder 20 may skip signaling of the NSST index and not apply the secondary
transform when the total number of nonzero coefficients transmitted at a certain a CU
for only the Y component is no greater than 1, 2, 3, or another threshold value.

[0163] In an example, if the NSST index is signaled at a certain block level and shared
for Cb and Cr components, then the NSST index may be skipped and the secondary

transform may not be applied if a total number of nonzero coefficients of only the Cb
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component is less than a given threshold. For example, video encoder 20 may skip
signaling of the NSST index and not apply the secondary transform when the total
number of nonzero coefficients transmitted at a certain a CU for only the Cb component
is no greater than 1, 2, 3, or another threshold value. Similarity, video encoder 20 may
skip signaling of the NSST index and not apply the secondary transform when the total
number of nonzero coefficients transmitted at a certain a CU for only the Cr component
is no greater than 1, 2, 3, or another threshold value.

[0164] Additionally, or alternatively, in some examples of the fifth technique, the
threshold value for a total number of nonzero coefficients may be difterent for different
block sizes or different intra prediction modes. Said differently, an LCU may have a
greater threshold value than CU and PU. Similarly, a 16x16 chroma prediction mode
may have a greater threshold value than a 4x4 chroma prediction mode. For example,
video encoder 20 may use a first threshold value for blocks coded using vertical intra
prediction modes and may use a second, different threshold value for blocks coded
using horizontal intra prediction modes.

[0165] In an example of the fifth technique, when the size of LCU, CU, PU, or other
type of block is greater than or smaller than a pre-defined threshold value, or within a
given threshold value range, signaling of the NSST index may be skipped and no
secondary transform is applied. For example, video encoder 20 may skip generating, in
an encoded video bitstream, data indicative of the NSST index and not apply the
secondary transform when a size of a CU is smaller than a predefined value of 8x8.
[0166] In an example of the fifth technique, when the TU is coded using a transform
skip mode, the signaling of the NSST index may be skipped and no secondary transform
is applied. Said differently, video encoder 20 may skip generating, in an encoded video
bitstream, data indicative of the NSST index and the secondary transform is not applied
when a TU is coded using transform skip mode.

[0167] For example, video encoder 20 may determine whether to signal (e.g., encode
data indicative of) an index of a secondary transform in a bitstream based on a TU being
coded in a transform skip mode. In this example, video encoder 20 generates, in an
encoded video bitstream, data indicative of the index of a secondary transform in the
bitstream and video encoder 20 may apply the secondary transform to at least part of the
first 2-dimensional coefficient block based on data indicative of the index of the second
transform being encoded in the bitstream. Similarly, video decoder 30 may determine

whether an index of a secondary transform is signaled in a bitstream based on a TU
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being coded in a transform skip mode. Said differently, video decoder 30 may apply to
a 1-dimensional coefficient vector a secondary inverse transform indicated by the index
of the secondary transform.

[0168] Furthermore, in some examples of the fifth technique, when a block (e.g., TU) is
coded using a secondary transform, the transform skip mode may not be signaled. Said
differently, video encoder 20 may generate, in an encoded video bitstream, data
indicative one of the transform skip mode and the secondary transform. For example,
video encoder 20 may generate, in an encoded video bitstream, data indicative of the
transform skip mode and omit signaling the secondary transform. Similarly, video
encoder 20 may omit generating, in an encoded video bitstream, data indicative the
transform skip mode and generates, in an encoded video bitstream, data indicative of the
secondary transform.

[0169] In accordance with a sixth technique of this disclosure, for a particular coding
mode, the secondary transform may be disabled and/or not signaled, and vice versa. For
instance, such coding modes may include, but are not necessarily limited to, transform
skip mode, linear method (LM) mode, cross-component residual prediction mode, and
so on. Thus, if the secondary transform is applied, a particular coding mode may be
disabled and/or not signaled. For example, in some instances, transform skip mode, LM
mode, and cross-component residual prediction mode may be disabled and/or indexes of
transform skip mode, LM mode, and cross-component residual prediction mode are not
encoded when the secondary transform is applied. Similarly, the secondary transform
may be disabled and/or not signaled when one or more of the transform skip mode, LM
mode, and cross-component residual prediction mode is used. In general, adaptive
cross-component residual prediction may include predicting the residual of one color
component (e.g., Y, Cr, or Cb) from the residual of another color component for the
same block.

[0170] In an example of the sixth technique, when a secondary transform is enabled, the
particular mode may always be disabled. For example, based on the secondary
transform being enabled, transform skip mode is disabled.

[0171] In an example of the sixth technique, when a secondary transform is enabled, the
particular mode may be disabled for some conditions but enabled for other conditions.
The conditions may include, but are not limited to, block size, number of non-zero
transform coefficients, whether coding is for the luma or chroma component, the

neighboring prediction modes, and other conditions, and vice versa.
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[0172] In an example of the sixth technique, the particular prediction mode may still be
enabled when a secondary transform is applied, but context modeling used for signaling
this particular prediction mode may be modified such that the context modeling depends
on the signaled secondary index/flag. Said differently, a particular prediction mode may
be permitted to be applied when a secondary transform is applied but a context
modeling for the particular prediction mode is modified.

[0173] In an example, a secondary transform is still enabled for a particular prediction
mode, but the context modeling used for signaling the secondary transform may be
modified such that the context modeling depends on whether the particular prediction
mode is applied. Said differently, rather than disabling prediction modes that are not
applied by video encoder 20 and/or video decoder 30, a particular prediction mode may
be permitted to be used when a secondary transform is applied but context modeling for
the particular prediction mode is modified.

[0174] In accordance with a seventh example of this disclosure, when applying a
secondary transform on other non-luma components (e.g., chroma) and when the
secondary transform selection has some dependency on certain coded information, the
NSST index value may be inherited (e.g., reused) from a co-located luma component
and not encoded for non-luma components. Examples of such coded information, may
include, but are not limited to, intra prediction modes. As used herein, co-located may
refer to the components of the same block. In aspects of this example, the dependency
on certain coded information is done in a way that the coded information of the non-
luma components is used instead of inheriting the coded information of the co-located
luma components.

[0175] In an example, when a secondary transform is performed for the chroma
component (e.g., the Cr component and/or the Cb component), and video decoder 30
selects the secondary transform based on the signaled NSST index and intra prediction
mode, then for the chroma component, video decoder 30 may select the secondary
transform based on the NSST index of the co-located luma component and intra
prediction mode of the current chroma component.

[0176] When the intra prediction mode of the chroma component is inherited from the
co-located luma component (e.g., the Y component), then the intra prediction mode of
the co-located luma component may be used for selecting the secondary transform. For

example, video decoder 30 may select the secondary transform candidate from a subset
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based on the NSST index of the co-located luma component and intra prediction mode
of the co-located luma component.

[0177] In an example, when the intra prediction mode of the chroma component is a
LM mode, e.g., as described in U.S. Patent Application No. 15/006,994, the secondary
transform may not be applied for the chroma component. For example, video decoder
30 may apply the secondary transform candidate for the co-located luma component and
refrain from applying the secondary transform candidate for the chroma component.
[0178] In an example, when the secondary transform is applied, LM mode may not be
applied or signaled. In this case, the intra mode coding may be modified accordingly
such that the LM mode is not a candidate intra mode to be signaled. Such intra mode
coding modification may include, but is not limited to: reducing the number of available
intra modes to be coded, or replacing the LM modes with other intra prediction modes
so that the total number of available intra modes is the same. Said differently, when the
secondary transform is applied, a signaling of the intra mode may be modified to no
longer signal the LM mode, because the LM modes may be presumed to not be a
candidate intra modes when the secondary transform is applied.

[0179] Additionally, or alternatively, when the intra prediction mode of the chroma
component is an LM mode, the secondary transform may be selected using the inherited
NSST index and planar/DC mode for the chroma component. For example, video
decoder 30 may select the secondary transform candidate from a subset based on the
NSST index of the co-located luma component and planar/DC mode of the chroma
component.

[0180] In an example, both the NSST index and the intra prediction mode of the co-
located luma component may be inherited for the current non-luma component. For
example, video decoder 30 may select the secondary transform candidate from a subset
based on the NSST index of the co-located non-luma component and intra prediction
mode of the co-located non-luma component.

[0181] FIG. 7A is an illustration of an example mapping from luma intra mode to
transform set index. The examples described below may be performed by video
encoder 20 and/or video decoder 30. As illustrated in FIG. 7A, the example described
below may be implemented on top of 67 luma intra prediction modes, including planar
(0), DC (1) and 65 angular luma intra prediction modes (2 ~ 66). For selecting a
transform matrix for performing the non-separable transform, a total of 12 non-

separable 16x16 transform sets may be pre-defined. Each transform set contains three
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16x16 transform candidates. In an example, the transform set may be specified by the
luma intra prediction mode. For example, as shown in FIG. 7A, luma intra prediction
mode ‘0’ specifies transform set index ‘0’, luma intra prediction mode ‘1’ specifies
transform set index ‘0’, luma intra prediction mode ‘2’ specifies transform set index ‘1°,
and so on.

[0182] In the example of FIG. 7A, the transform set may be specified and within each
transform set, the selected transform from 3 candidates may be specified by the
explicitly signaled CU-level ROT index. For instance, an ROT index may be an index
value signaled per CU in a bitstream, and the ROT index value may range from O to 3.
In some instances, an ROT index O specifies that no secondary transform is applied, and
an ROT index 1 ~ 3 specifies the selected one transform from 3 different ROTs. The
mapping from the luma prediction mode to the transform set index is defined in FIG.
TA.

[0183] In addition, according to FIG. 7A, for luma intra prediction modes (IPM) greater
than 34, the same transform set index for the intra mode 68-IPM may be applied.
However, to utilize the symmetry between intra prediction mode IPM and 68-IPM, at
the encoder/decoder, the transform coefficient block may be transposed before/after
doing the secondary transform. More specifically, in the example of FIG. 7B, intra
prediction mode (IPM) ranges from 0 to 66. As illustrated in FIG. 7B, intra mode IPM
and 68-IPM are symmetric. For instance, intra mode 18 (horizontal prediction) and 50
(vertical prediction) are symmetric. Since IPM and 68-IPM are symmetric, the non-
separable transform applied on these two modes has some connection. For instance, if
we transpose the residual block predicted from mode 50 (vertical prediction), the
residual statistics should be very similar to the residual blocks predicted from mode 18
(horizontal prediction). Therefore, a non-separable transform for intra mode IPM
should be similar to a non-separable transform for intra mode IPM plus a transpose
operation. To utilize this symmetry and reduce total number of non-separable transform
sets, for intra mode IPM which is greater than 34, the same transform set of 68-IPM
may be used and transform coefficient block may be transposed after the secondary
transform. In section 2.2.1 of JVET-C1001: http://phenix.it-

sudparis.eu/jvet/doc_end user/documents/3 Geneva/wgl1/JVET-C1001-v3 zip, a 66
luma intra prediction mode is described.

[0184] In an eighth technique of this disclosure, video encoder 20 and/or video decoder

30 may be configured to apply different sizes and different shapes (other than square or
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non-square) of NSST for different block sizes. In an example, a 4x4 NSST may be
applied for 4x4 blocks, and an 8x8 NSST may be applied on the top-left 8x8 transform
coefficients for 8x8 and greater blocks. For instance, video encoder 20 may apply a 4x4
secondary transform to 4x4 blocks, may apply an 8x8 secondary transform to 8x8
blocks, and may apply an 8x8 secondary transform to the top-left 8x8 coefficients of
blocks greater than 8x8. For example, video encoder 20 may apply an 8x8 secondary
transform to the top-left 8x8 coefficients of a 16x16 block.

[0185] In an example of the eighth technique, when a 4x4 NSST is applied for MxN
blocks, where M>4, N>4, M and N are multiples of 4, M#N, the MxN block may be
divided by multiple non-overlapped 4x4 sub-blocks. For each 4x4 sub-block, a 4x4
NSST may be applied. For example, video encoder 20 may apply a first 4x4 secondary
transform to the top-left 4x4 coefficients of an 8x4 block and a second 4x4 secondary
transform to the 4x4 coefficients of the 8x4 block that are below the top-left 4x4
coefficients such that video encoder 20 applies a NSST to each of the two 4x4 blocks of
the 8x4 block.

[0186] For example, video encoder 20 may divide a MxN coefficient block into a
plurality of non-overlapped 4x4 sub blocks. In this example, the plurality of non-
overlapped 4x4 sub-blocks include a first 2-dimensional coefficient block and a second
2-dimensional coefficient block, M and N are each greater than 4, M and N are each
multiples of 4, and M is not equal to N. In this example, video encoder 20 performs, for
each respective 4x4 sub-block of the plurality of non-overlapped 4x4 sub blocks, a
secondary transform to generate a respective coefficient block.

[0187] Similarly, video decoder 30 may divide a MxN coefficient block into a plurality
of non-overlapped 4x4 sub-blocks, the plurality of non-overlapped 4x4 sub-blocks
including the first 2-dimensional coefficient block, M and N are each greater than 4, M
and N are each multiples of 4, and M is not equal to N. In this example, video decoder
30 may perform a 4x4 inverse NSST for each 4x4 sub-block of the multiple non-
overlapped 4x4 sub blocks. In this example, for each respective 4x4 sub-block of the
plurality of 4x4 sub-blocks, video decoder 30 applies an inverse secondary transform to
generate a respective 2-dimension coefficient block.

[0188] In an example of the eighth technique, when an 8x8 NSST is applied for MxN
blocks, where M>8, N>8, M and N is a multiple of 8, the MxN block may be divided
into multiple non-overlapped 8x8 sub-blocks, and for each 8x8 sub-block, an 8x8 NSST

may be applied. For example, video encoder 20 may apply a first 8x8 secondary
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transform to the top-left 8x8 coefficients of an 8x64 block and a second 8x8 secondary
transform to the 8x8 coefficients of the 8x64 block that are below the top-left 8x8
coefficients, and so on such that video encoder 20 applies a NSST to each of the eight
8x8 blocks of the 8x64 block.

[0189] In an example of the eighth technique, instead of a square NSST, a NSST may
be applied to a group of transform coefficients that located in an arbitrary region of a
coefficient block. For example, video encoder 20 may apply a first 4x16 secondary
transform to the center 4x16 coefficients of an 8x64 block. In an example, the first K
transform coefficients in a coefficient scanning order may be organized into a single
vector and a non-separable transform may be performed on this transform coefficient
vector. In this example, the coefficient scanning order can be, but is not limited to, a
diagonal scan, horizontal scan or vertical scan.

[0190] In an example of the eighth technique, for an NxN block, a zero-out NSST may
be applied such that only the first M coefficients are calculated, and the remaining N-M
coefficient may be considered to be zero. For instance, for a 1-dimensional coefficient
vector that includes N number of coefficients, video encoder 20 may apply an NSST
that calculates only the first M of the N coefficients of the 1-dimensional coefficient
vector and sets the remaining (i.e., N-M) coefficients of the 1-dimensional coefficient
vector to zero.

[0191] If a group of zeroed coefficients forms a coefficient group (CG), e.g., a 4x4 sub-
block as defined in HEVC, when entropy coding this CG, the flag, which signals
whether there is at least one non-zero coefficient in this CG, may be skipped and not
coded. In some examples, instead of not coding the syntax elements for the zeroed
coefficients, the syntax elements for the zeroed coefficients may still be coded but using
a separate context.

[0192] Furthermore, in some examples, if a group of zeroed coefficients forms a
coefficient group (CG), e.g., a 4x4 sub-block as defined in HEVC, when entropy coding
this CG, the last position coding may be modified to include the restriction that the last
position cannot appear in these zeroed coefficient positions.

[0193] FIG. 8 is a block diagram illustrating an example of video encoder 20 that may
implement techniques described in this disclosure. In accordance with this disclosure,
video encoder 20 may be configured to apply the techniques described in this
disclosure, such as, for example, techniques relating to secondary transforms. Video

encoder 20 may perform intra- and inter-coding of video blocks within video slices.
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Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video
within a given video frame or picture. Inter-coding relies on temporal prediction to
reduce or remove temporal redundancy in video within adjacent frames or pictures of a
video sequence. Intra-mode (I mode) may refer to any of several spatial based coding
modes. Inter-modes, such as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based coding modes.

[0194] As shown in FIG. 8, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 8, video encoder 20 includes mode
select unit 240, reference picture memory 264 (which may also be referred to as a
decoded picture buffer (DPB)), summer 250, transform processing unit 252,
quantization unit 254, and entropy encoding unit 256. Mode select unit 240, in turn,
includes motion compensation unit 244, motion estimation unit 242, intra-prediction
unit 246, and partition unit 248. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 258, inverse transform unit 260, and summer 262. In
some examples, a deblocking filter (not shown in FIG. 8) is also included to filter block
boundaries to remove blockiness artifacts from reconstructed video. The deblocking
filter filters the output of summer 262. Additional filters (in loop or post loop) may also
be used in addition to the deblocking filter. Such filters are not shown for brevity, but if
desired, may filter the output of summer 250 (as an in-loop filter).

[0195] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 242 and motion compensation unit 244 perform inter-predictive
encoding of the received video block relative to one or more blocks in one or more
reference frames to provide temporal prediction. Alternatively, intra-prediction unit 246
may perform intra-predictive encoding of the received video block relative to one or
more neighboring blocks in the same frame or slice as the block to be coded to provide
spatial prediction. Video encoder 20 may perform multiple coding passes, e.g., to select
an appropriate coding mode for each block of video data.

[0196] Moreover, partition unit 248 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 248 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-

distortion optimization). Mode select unit 240 may further produce a quadtree data
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structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

[0197] Mode select unit 240 may select one of the prediction modes, intra or inter, e.g.,
based on error results, and provides the resulting predicted block to summer 250 to
generate residual data and to summer 262 to reconstruct the encoded block for use as a
reference frame. Mode select unit 240 also provides syntax elements, such as motion
vectors, intra-mode indicators, partition information, and other such syntax information,
to entropy encoding unit 256.

[0198] Motion estimation unit 242 and motion compensation unit 244 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 242, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum
of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference picture memory 264. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-eighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 242 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0199] Motion estimation unit 242 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (list 0) or a second reference picture list (list 1), each of which
identify one or more reference pictures stored in reference picture memory 264. Motion
estimation unit 242 sends the calculated motion vector to entropy encoding unit 256 and
motion compensation unit 244,

[0200] Motion compensation, performed by motion compensation unit 244, may
involve fetching or generating the predictive block based on the motion vector

determined by motion estimation unit 242. Again, motion estimation unit 242 and
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motion compensation unit 244 may be functionally integrated, in some examples. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 244 may locate the predictive block to which the motion vector points in one of the
reference picture lists. Summer 250 forms a residual video block. As part of forming
the residual video block, summer 250 may subtract pixel values of the predictive block
from the pixel values of the current video block being coded, forming pixel difference
values, as discussed below. In general, motion estimation unit 242 performs motion
estimation relative to luma components, and motion compensation unit 244 uses motion
vectors calculated based on the luma components for both chroma components and
luma components. Mode select unit 240 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0201] Intra-prediction unit 246 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 242 and motion compensation
unit 244, as described above. In particular, intra-prediction unit 246 may determine an
intra-prediction mode to use to encode a current block. In some examples, intra-
prediction unit 246 may encode a current block using various intra-prediction modes,
e.g., during separate encoding passes, and intra-prediction unit 246 (or mode select unit
240, in some examples) may select an appropriate intra-prediction mode to use from the
tested modes.

[0202] For example, intra-prediction unit 246 may calculate rate-distortion values using
a rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 246 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0203] After selecting an intra-prediction mode for a block, intra-prediction unit 246
may provide information indicative of the selected intra-prediction mode for the block
to entropy encoding unit 256. Entropy encoding unit 256 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 may include in the

transmitted bitstream configuration data, which may include a plurality of intra-
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prediction mode index tables and a plurality of modified intra-prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra-
prediction mode index table, and a modified intra-prediction mode index table to use for
each of the contexts.

[0204] Video encoder 20 forms a residual video block. As part of forming the residual
video block, video encoder 20 may subtract the prediction data from mode select unit
240 from the original video block being coded. Summer 250 represents the component
or components that perform this subtraction operation. Transform processing unit 252
applies a transform, such as a discrete cosine transform (DCT) or a conceptually similar
transform, to the residual block, producing a video block comprising transform
coefficient values. Wavelet transforms, integer transforms, sub-band transforms, DSTs,
or other types of transforms could be used instead of a DCT. In any case, transform
processing unit 252 applies the transform to the residual block, producing a block of
transform coefficients. The transform may convert the residual information from a pixel
domain to a transform domain, such as a frequency domain.

[0205] Additionally, as discussed above, transform processing unit 252 may be
configured to apply a secondary transform that is non-separable. In some examples,
transform processing unit 252 may be configured to reorganize the 1-dimensional
coefficient vector formed by a secondary transform that is non-separable as a second 2-
dimensional coefficient block according to a coefficient scanning order for use by
quantization unit 254. Transform processing unit 252 may send the resulting transform
coefficients to quantization unit 254.

[0206] Quantization unit 254 quantizes the transform coefficients to further reduce bit
rate. The quantization process may reduce the bit depth associated with some or all of
the coefficients. The degree of quantization may be modified by adjusting a
quantization parameter.

[0207] Following quantization, entropy encoding unit 256 scans and entropy encodes
syntax elements indicating the quantized transform coefficients. For example, entropy
encoding unit 256 may perform CAVLC, CABAC, SBAC, PIPE coding or another
entropy coding technique. In the case of context-based entropy coding, context may be
based on neighboring blocks. Following the entropy coding by entropy encoding unit
256, the encoded bitstream may be transmitted to another device (e.g., video decoder

30) or archived for later transmission or retrieval.
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[0208] Inverse quantization unit 258 and inverse transform unit 260 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain. In particular, summer 262 adds the reconstructed residual block to
the motion compensated prediction block earlier produced by motion compensation unit
244 or intra-prediction unit 246 to produce a reconstructed video block for storage in
reference picture memory 264. The reconstructed video block may be used by motion
estimation unit 242 and motion compensation unit 244 as a reference block to inter-code
a block in a subsequent video frame.

[0209] Video encoder 20 generally uses the process discussed above to encode each
block of each picture in a coded video sequence. In addition, in some examples, video
encoder 20 may determine temporal layers to which to assign each of the pictures.
Furthermore, video encoder 20 may be configured to encode pictures of other layers,
e.g., other views, scalable video coding layers, or the like. In any case, video encoder
20 may further encode data indicating a layer to which each picture belongs, for one or
more layers (e.g., of various video dimensions).

[0210] FIG. 9 is a block diagram illustrating an example of video decoder 30 that may
implement techniques described in this disclosure. In accordance with this disclosure,
video decoder 30 may be configured to apply the techniques described in this
disclosure, such as, for example, techniques relating to secondary transforms. In the
example of FIG. 9, video decoder 30 includes an entropy decoding unit 270, motion
compensation unit 272, intra prediction unit 274, inverse quantization unit 276, inverse
transformation unit 278, reference picture memory 282, and summer 280. Video
decoder 30 may, in some examples, perform a decoding pass generally reciprocal to the
encoding pass described with respect to video encoder 20 (FIG. 8). Motion
compensation unit 272 may generate prediction data based on motion vectors received
from entropy decoding unit 270, while intra prediction unit 274 may generate prediction
data based on intra-prediction mode indicators received from entropy decoding unit 270.
[0211] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 270 of video decoder 30
entropy decodes the bitstream to generate quantized coefficients, motion vectors or
intra-prediction mode indicators, and other syntax elements. Entropy decoding unit 270

forwards the motion vectors to and other syntax elements to motion compensation unit
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272. Video decoder 30 may receive the syntax elements at the video slice level and/or
the video block level.

[0212] When the video slice is coded as an intra-coded (I) slice, intra prediction unit
274 may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (i.e., B, Por a
generalized P and B-picture (GPB)) slice, motion compensation unit 272 produces
predictive blocks for a video block of the current video slice based on the motion
vectors and other syntax elements received from entropy decoding unit 270. The
predictive blocks may be produced from one of the reference pictures within one of the
reference picture lists. Video decoder 30 may construct the reference frame lists, list O
and list 1, using default construction techniques based on reference pictures stored in
reference picture memory 282. Motion compensation unit 272 determines prediction
information for a video block of the current video slice by parsing the motion vectors
and other syntax elements, and uses the prediction information to produce the predictive
blocks for the current video block being decoded. For example, motion compensation
unit 272 uses some of the received syntax elements to determine a prediction mode
(e.g., intra- or inter-prediction) used to code the video blocks of the video slice, an inter-
prediction slice type (e.g., B slice, P slice, or GPB slice), construction information for
one or more of the reference picture lists for the slice, motion vectors for each inter-
encoded video block of the slice, inter-prediction status for each inter-coded video block
of the slice, and other information to decode the video blocks in the current video slice.
[0213] Motion compensation unit 272 may also perform interpolation based on
interpolation filters. Motion compensation unit 272 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 272
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0214] Inverse quantization unit 276 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
270. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be

applied.
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[0215] Inverse transform unit 278 applies an inverse transform, e.g., an inverse DCT, an
inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.
Additionally, in accordance with various techniques of this disclosure, inverse transform
unit 278 may be configured to apply an inverse secondary transform that is non-
separable. In some examples, inverse transform unit 278 may be configured to
reorganize a 1-dimensional coefficient vector as a second 2-dimensional coefficient
block according to a coefficient scanning order.

[0216] After motion compensation unit 272 generates the predictive block for the
current video block based on the motion vectors and other syntax elements, video
decoder 30 forms a decoded video block. As part of forming the decoded video block,
video decoder 30 may sum the residual blocks from inverse transform unit 278 with the
corresponding predictive blocks generated by motion compensation unit 272. Summer
280 represents the component or components that perform this summation operation. If
desired, a deblocking filter may also be applied to filter the decoded blocks in order to
remove blockiness artifacts. Other loop filters (either in the coding loop or after the
coding loop) may also be used to smooth pixel transitions, or otherwise improve the
video quality. The decoded video blocks in a given frame or picture are then stored in
reference picture memory 282, which stores reference pictures used for subsequent
motion compensation. Reference picture memory 282 also stores decoded video for
later presentation on a display device, such as display device 32 of FIG. 1.

[0217] Video decoder 30 generally uses the process discussed above to decode each
block of each picture in a coded video sequence. In addition, in some examples, video
decoder 30 may decode data indicating temporal layers to which pictures are assigned.
Furthermore, video decoder 30 may be configured to decode pictures of other layers,
e.g., other views, scalable video coding layers, or the like. In any case, video decoder
30 may further decode data indicating a layer to which each picture belongs, for one or
more layers (e.g., of various video dimensions).

[0218] The techniques of the disclosure, which may be performed by video encoder 20
or video decoder 30, are described in more detail below.

[0219] FIG. 10A is an illustration of an example transform processing by video encoder
20, in accordance with one or more techniques described in this disclosure. In the
example of FIG. 10A, transform processing unit 252 of video encoder 20 comprises a

primary transform unit 802, a secondary transform unit 804, and a reorganization unit
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806. Primary transform unit 802 applies a primary transform, such as, for example,
DST or DCT, on a residual block to generate a 2-dimensional coefficient block.
Secondary transform unit 804 applies a non-separable transform, such as a KL T, to the
2-dimensional coefticient block to generate a 1-dimensional vector. Reorganization unit
806 reorganizes the 1-dimensional vector as a 2-dimensional coefficient block.
Quantization unit 254 quantizes the 2-dimensional block.

[0220] FIG. 10B is an illustration of an example transform processing by video decoder
30, in accordance with one or more techniques described in this disclosure. In the
example of FIG. 10B, inverse transform unit 278 of video decoder 30 comprises a
reorganizing unit 824, a secondary inverse transform unit 826, and a primary inverse
transform unit 828. Inverse quantization unit 276 inverse quantizes the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
270. Reorganizing unit 824 reorganizes the transform coefficients from a 2-dimensional
coefficient block to a 1-dimensional vector. Secondary inverse transform unit 826
applies a non-separable inverse transform, such as a KLT, on the 1-dimensional vector
to generate a 2-dimensional coefficient block. Primary inverse transform unit 828
applies a separable inverse transform on the 2-dimensional coefficient block to generate
a residual coefficient block for video data.

[0221] FIG. 11 is a flow diagram illustrating a first example decoding of video data that
may implement techniques described in this disclosure. The example techniques of
FIG. 11 may be performed by video decoder 30. In the example of FIG. 11, a decoder
(e.g., video decoder 30) inverse quantizes a first coefficient block (902). The decoder
applies a first inverse transform to at least part of the inverse quantized first coefficient
block to generate a second coefficient block (904). For example, the first inverse
transform is a non-separable transform. For instance, the decoder may apply an inverse
KLT on the inverse quantized first coefficient block. The decoder may apply a second
inverse transform to the second coefficient block to generate a residual video block
(906). The second inverse transform converts the second coefficient block from a
frequency domain to a pixel domain. For instance, the decoder applies an inverse DCT
or DST on the second coefficient block. The decoder forms a decoded video block
(908). As part of forming the decoded video block, the decoder may sum the residual
video block with one or more predictive blocks.

[0222] FIG. 12 is a flow diagram illustrating a first example encoding of video data that

may implement techniques described in this disclosure. As described, the example
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techniques of FIG. 12 may be performed by encoder 20. In the example of FIG. 12, an
encoder (e.g., video encoder 20) forms a residual video block (1002). As part of
forming the residual video block, the encoder may subtract one or more predictive
blocks from a video block being coded. The encoder applies a first transform to the
residual video block to generate a first coefficient block (1004). For example, the first
transform converts the residual video block from a pixel domain to a frequency domain.
For instance, the encoder may apply a DCT or DST on the residual video block. The
encoder applies a second transform to at least part of the first coefficient block to
generate a second coefficient block (1006). For example, the second transform is a non-
separable transform. For instance, the encoder may apply a KLT on the second
coefficient block. Next, the encoder quantizes the second coefficient block for entropy
encoding (1008).

[0223] FIG. 13 is a flow diagram illustrating a second example decoding of video data
that may implement techniques described in this disclosure. As described, the example
techniques of FIG. 13 may be performed by video decoder 30. In the example of FIG.
13, a decoder (e.g., video decoder 30) reorganizes a first 2-dimensional coefficient
block as a first 1-dimensional coefficient vector according to a coefficient scanning
order (1102). For example, the decoder reorganizes the first 2-dimensional coefficient
block according to a coefficient scanning order in which coefficients in the first 2-
dimensional coefficient block with smaller index values are placed at smaller scanning
index positions in the first 1-dimensional coefficient vector. Next, the decoder applies a
first inverse transform to the first 1-dimensional coefficient vector to generate a second
I-dimensional coefficient block (1104). The first inverse transform is a non-separable
transform. For instance, the decoder applies an inverse KLT on the 1-dimensional
coefficient vector. The decider reorganizes the second 1-dimensional coefficient block
as a second 2-dimensional coefficient vector according to a coefficient scanning order
(1106). Next, the decoder applies a second inverse transform to the second 2-
dimensional coefficient block to generate a residual video block (1108). For example,
the second inverse transform converts the second 2-dimensional coefficient block from
a frequency domain to a pixel domain. For instance, the decoder applies an inverse
DCT or DST on the second 2-dimensional coefficient block. The decoder forms a
decoded video block (1110). As part of forming the decoded block, the decoder may

sum the residual video block with one or more predictive blocks.
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[0224] FIG. 14 is a flow diagram illustrating a second example encoding of video data
that may implement techniques described in this disclosure. As described, the example
techniques of FIG. 14 may be performed by video encoder 20. In the example of FIG.
14, an encoder (e.g., video encoder 20) forms a residual video block (1202). As part of
forming the residual video block, the encoder may subtract one or more predictive
blocks from a video block being coded. The encoder applies a first transform to at least
part of the residual video block to generate a first 2-dimensional coefficient block
(1204). For example, the first transform converts the residual video block from a pixel
domain to a frequency domain. For instance, the encoder applies a DCT or DST on the
residual video block. The encoder reorganizes the first 2-dimensional coefficient as a
first 1-dimensional coefficient vector (1206). Next, the encoder applies a second
transform to at least part of the first 1-dimensional coefficient block to generate a
second 1-dimensional coefficient vector (1208). For example, the second transform is a
non-separable transform. For instance, the encoder applies a KL T on the first 1-
dimensional coefficient block. Next, the encoder reorganizes the second 1-dimensional
coefficient vector as a second 2-dimensional coefficient block according to a coefficient
scanning order (1210). For example, the decoder reorganizes the 1-dimensional
coefficient vector according to a coefficient scanning order in which coefficients in the
second 1-dimensional coefficient vector with smaller index values are placed at smaller
scanning index positions in the second 2-dimensional coefficient block for quantizing
and entropy encoding.

[0225] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0226] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to
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another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0227] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0228] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.
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[0229] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0230] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method for decoding video data, the method comprising:

inverse quantizing a first coefficient block;

applying a first inverse transform to at least part of the inverse quantized first
coefficient block to generate a second coefficient block, the first inverse transform being
a non-separable transform;

applying a second inverse transform to the second coefficient block to generate a
residual video block, the second inverse transform converting the second coefficient
block from a frequency domain to a pixel domain; and

forming a decoded video block, wherein forming the decoded video block

comprises summing the residual video block with one or more predictive blocks.

2. The method of claim 1, further comprising:

formulating a subset of a set of non-separable transforms that includes three or
more non-separable transform candidates; and

selecting one candidate from the subset of the set of non-separable transforms as

the first inverse transform.

3. The method of claim 2, wherein formulating the subset comprises determining
the subset based on decoded information, the decoded information comprising one or
more of an intra prediction mode, a Coding Unit (CU) level Enhanced Multiple
Transforms (EMT) index, a Transform Unit (TU) level EMT index, a residual quadtree
depth, quantized coefficients, a reference prediction block, and a relative location of a

current TU inside a prediction unit (PU).

4. The method of claim 2, wherein the set of non-separable transforms includes 12
transform subsets, the 12 transform subsets including the subset of the set of non-

separable transforms.

5. The method of claim 4, wherein each transform subset of the 12 transform

subsets includes 3 transform candidates.
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6. The method of claim 5, wherein the set of non-separable transforms is specified

by a luma intra prediction mode for the video data.

7. The method of claim 2, wherein a number of transform candidates in transform
subsets of the set of non-separable transforms that correspond to different intra

prediction modes are different.

8. The method of claim 2, wherein:

the method further comprises obtaining, from a bitstream of the video data, a
syntax element indicative of an index applicable to a transform unit, a prediction unit, a
coding unit, or a combination thereof, and

selecting the candidate from the subset of non-separable transforms comprises

selecting, as the first inverse transform, a candidate indicated by the index.

9. The method of claim 1, wherein the first inverse transform is a Karhunen-Loeve
Transform (KLT).
10. A method for encoding video data, the method comprising:

forming a residual video block, wherein forming the residual video block
comprises subtracting one or more predictive blocks from a video block being coded;

applying a first transform to the residual video block to generate a first
coefficient block, the first transform converting the residual video block from a pixel
domain to a frequency domain;

applying a second transform to at least part of the first coefficient block to
generate a second coefficient block, the second transform being a non-separable
transform; and

quantizing the second coefficient block.

1. The method of claim 10, further comprising:

formulating a subset of a set of non-separable transforms that includes three or
more non-separable transform candidates; and

selecting one candidate from the subset of the set of non-separable transforms as

the second transform.
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12. The method of claim 11, wherein formulating the subset comprises determining
the subset based on one or more of an intra prediction mode, a Coding Unit (CU) level
Enhanced Multiple Transforms (EMT) index, a Transform Unit (TU) level EMT index,
a residual quadtree depth, quantized coefficients, a reference prediction block, and a

relative location of a current TU inside a prediction unit (PU).

13.  The method of claim 11, wherein the set of non-separable transforms includes 12
transform subsets, the 12 transform subsets including the subset of the set of non-

separable transforms.

14. The method of claim 13, wherein each transform subset of the 12 transform

subsets includes 3 transform candidates.

15. The method of claim 14, wherein the set of non-separable transforms is specified

by a luma intra prediction mode for the video data.

16. The method of claim 11, wherein a number of transform candidates in transform
subsets of the set of non-separable transforms that correspond to different intra

prediction modes are different.

17. The method of claim 11, further comprising:
generating, in an encoded bitstream of the video data, data indicative of an index
for a transform unit, a prediction unit, a coding unit, or a combination thereof, the index

indicating the selected candidate is the second transform.

18. The method of claim 10, wherein the second transform is a Karhunen-Loeve

Transform (KLT).
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19. An apparatus for decoding video data comprising:
a memory configured to store the video data; and
a video decoder configured to:
inverse quantize a first coefficient block;
apply a first inverse transform to at least part of the inverse quantized
first coefficient block to generate a second coefficient block, the first inverse
transform being a non-separable transform,;
apply a second inverse transform to the second coefficient block to
generate a residual video block, the second inverse transform converting the
second coefficient block from a frequency domain to a pixel domain;
sum the residual video block with one or more predictive blocks; and
form a decoded video block based on the sum of the residual video block

with one or more predictive blocks.

20.  The apparatus of claim 19, wherein the video decoder is further configured to:
formulate a subset of a set of non-separable transforms that includes three or
more non-separable transform candidates; and
select one candidate from the subset of the set of non-separable transforms as the

first inverse transform.

21.  The apparatus of claim 20, wherein the video decoder is further configured to:
formulate the subset, comprising determining the subset based on decoded
information, the decoded information comprising one or more of an intra prediction
mode, a Coding Unit (CU) level Enhanced Multiple Transforms (EMT) index, a
Transform Unit (TU) level EMT index, a residual quadtree depth, quantized
coefficients, a reference prediction block, and a relative location of a current TU inside a

prediction unit (PU).

22.  The apparatus of claim 20, wherein the set of non-separable transforms includes
12 transform subsets, the 12 transform subsets including the subset of the set of non-

separable transforms.

23. The apparatus of claim 22, wherein each transform subset of the 12 transform

subsets includes 3 transform candidates.
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24.  The apparatus of claim 23, wherein the set of non-separable transforms is

specified by a luma intra prediction mode for the video data.

25. The apparatus of claim 20, wherein a number of transform candidates in
transform subsets of the set of non-separable transforms that correspond to different

intra prediction modes are different.

26. The apparatus of claim 20, wherein:

the video decoder is configured to obtain, from a bitstream of the video data, a
syntax element indicative of an index applicable to a transform unit, a prediction unit, a
coding unit, or a combination thereof, and

the video decoder is configured such that, as part of selecting the candidate from
the subset of non-separable transforms, the video decoder selects, as the first inverse

transform, a candidate indicated by the index.

27.  The apparatus of claim 19, wherein the first inverse transform is a

Karhunen-Loeve Transform (KLT).

28. The apparatus of claim 19, wherein the apparatus comprises a display configured

to display a picture comprising the decoded video block.

29. The apparatus of claim 19, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.
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An apparatus for encoding video data comprising:
a memory configured to store the video data; and
a video encoder configured to:

form a residual video block, wherein forming the residual video block
comprises subtracting one or more predictive blocks from a video block being
coded;

apply a first transform to the residual video block to generate a first
coefficient block, the first transform converting the residual video block from a
pixel domain to a frequency domain;

apply a second transform to at least part of the first coefficient block to
generate a second coefficient block, the second transform being a non-separable
transform; and

quantize the second coefficient block.

The apparatus of claim 30, wherein the video encoder is further configured to:

formulate a subset of a set of non-separable transforms that includes three or

more non-separable transform candidates; and

select one candidate from the subset of the set of non-separable transforms as the

second transform.

32.

The apparatus of claim 30, wherein the video encoder is further configured to:

formulate the subset, comprising determining the subset based on one or more of

an intra prediction mode, a Coding Unit (CU) level Enhanced Multiple Transforms
(EMT) index, a Transform Unit (TU) level EMT index, a residual quadtree depth,

quantized coefticients, a reference prediction block, and a relative location of a current

TU inside a prediction unit (PU).

33.

The apparatus of claim 31, wherein the set of non-separable transforms includes

12 transform subsets, the 12 transform subsets including the subset of the set of non-

separable transforms.

34.

The apparatus of claim 33, wherein each transform subset of the 12 transform

subsets includes 3 transform candidates.
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35.  The apparatus of claim 34, wherein the set of non-separable transforms is

specified by a luma intra prediction mode for the video data.

36. The apparatus of claim 31, wherein a number of transform candidates in
transform subsets of the set of non-separable transforms that correspond to different

intra prediction modes are different.

37.  The apparatus of claim 31, wherein the video encoder is further configured to:
generate, in an encoded bitstream of the video data, data indicative of an index
for a transform unit, a prediction unit, a coding unit, or a combination thereof, the index

indicating the selected candidate is the second transform.

38.  The apparatus of claim 30, wherein the second transtorm is a Karhunen-Loeve
Transform (KLT).
39.  The apparatus of claim 30, wherein the video encoder is further configured to:

determine whether to encode data indicative of an index of the second transform
in a bitstream of the video data based on a transform unit being coded in a transform
skip mode; and

apply the second transform to at least part of the first coefficient block,
comprising performing the second transform to at least part of the first coefficient block
based on data indicative of the index of the second transform being encoded in the

bitstream.

40. The apparatus of claim 30, wherein the apparatus comprises a camera configured

to capture a picture comprising the video block.

41. The apparatus of claim 30, wherein the apparatus comprises one or more of a

camera, a computer, a mobile device, a broadcast receiver device, or a set-top box.
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42. An apparatus for decoding video data comprising:

means for inverse quantizing a first coefficient block;

means for applying a first inverse transform to at least part of the inverse
quantized first coefficient block to generate a second coefficient block, the first inverse
transform being a non-separable transform,;

means for applying a second inverse transform to the second coefticient block to
generate a residual video block, the second inverse transform converting the second
coefficient block from a frequency domain to a pixel domain; and

means for forming a decoded video block, wherein the means for forming the
decoded video block comprises means for summing the residual video block with one or

more predictive blocks.

43. A non-transitory computer-readable storage medium storing instructions that,
when executed, cause one or more processors of a device for decoding video data to:

inverse quantize a first coefficient block;

apply a first inverse transform to at least part of the inverse quantized first
coefficient block to generate a second coefficient block, the first inverse transform being
a non-separable transform;

apply a second inverse transform to the second coefficient block to generate a
residual video block, the second inverse transform converting the second coefficient
block from a frequency domain to a pixel domain,;

sum the residual video block with one or more predictive blocks; and

form a decoded video block based on the sum of the residual video block with

one or more predictive blocks.
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