a2 United States Patent

Partridge et al.

US008839266B1

US 8,839,266 B1
Sep. 16, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

@
(22)
(1)
(52)

(58)

INTER-APPLICATION COMMUNICATION
ON MOBILE PLATFORMS

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Brian Partridge, Brookline, MA (US);
Harish Dhurvasula, San Jose, CA (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.
Appl. No.: 13/955,985

Filed: Jul. 31, 2013

Int. CI.
GOGF 13/00
U.S. CL
USPC o, 719/310;719/313
Field of Classification Search

CPC e, GOG6F 9/54; GOGF 9/546

USPC ittt 719/310, 313
See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

5/2013 Lietal. .o, 719/310
2006/0168347 Al* 7/2006 Martin 709/246
2014/0096025 Al* 4/2014 Mandel etal. 715/739

OTHER PUBLICATIONS

8,443,374 B2 *

Apple, Inc., “i0OS App Programming Guide”, Apr. 23, 2013, pp.
113-135.

Pierce, Greg, “x-callback-url 1.0 DRAFT R1”, retrieved on Jul. 30,
2013, 3 pages.

Apple, Inc., “Apple URL Scheme Reference”, Dec. 13, 2012 14
pages.

* cited by examiner

Primary Examiner — Andy Ho

(57) ABSTRACT

Applications executing in a mobile device utilize a protocol
for inter-application communication to overcome restrictions
of a sandboxed environment. Applications advertise their
exposed capabilities using structured definition files, which
are consumed by other applications. Applications can invoke
the advertised capabilities by exchanging inter-application
communication (IAC) messages in the form of URLs or other
platform-specific mechanisms. URL messages are formatted
according to parameters and URL schemes specified by the
provided definition files.

25 Claims, 4 Drawing Sheets

™
106 ~\]\
{ {
Hub Node
Application 112 Application 114
Virtualization
Callback Integr Pt w Management
blocks 122 Handlers 120 Server 132
Callback Callback
Manager Manager
116 118
\, J \, J
. A_| A Integration 124
Method Invocation ~ |~ Method Results Point
oS Definitions
110
Hardware 108
104 ~\
e B a o
v

US 8,839,266 B1

Sheet 1 of 4

Sep. 16, 2014

U.S. Patent

| "Old

ESESNEISN

~— ¥0l
801 8JempleH
0k
suoniuyeq SO
iod _ L LOIEOOAU| POYID
vzl uoneiBo S)Nsay coéo_\,_w v - {\< .ﬁj | POUYISIN
gl 9l
Jabeuepy Jabeuepy
A0eq|[e) Aoeq|e)
CE}, Jonieg 027 sielpuen 727 syop
Iuswisbeuey 1d J6au| YoeqieD
uonezilenui
P17 uopeonddy 21T uopeoyddy
9PON anH
. J \ J/

4/! 901

L —

=20l
f/ 00}

US 8,839,266 B1

Sheet 2 of 4

Sep. 16, 2014

U.S. Patent

dde apou

a1e10dI00UI 0} MO[YIOM AJpoLl IO
/pue Ayllige|reae ajeaipul o} 1 AJpoy

C 9¢¢

uiod
uonelsBayul
g)eAloE-2Q

V¢ 9l

SO WOJJ UONEIPUI BAIB08Y

0zz—"

BWBYds TN usab sy

pasa)sibial Buiaey SO uo pajeIsul
_A) uoniealjdde ojqe|ieae jo uonealpul

uoneoydde gny o1 uiney

—

+

$9WBYIS pauIIg)ep Jo)

g|qeieae suoneoydde Joj g0 A1enp

yiz —

+

SOWAYSS TN uanib Jo) sdde
a|qe|ieAe 1o} 1$anbal SAI809Y

9z —’

suoniuysp juiod uonesBayul

Ul pauLlep SeWayos TN eulwiele(

tz—"

+

Kousodai [esjusd WoJl suoniuLap
uiod uonesBajul aAsLa) ‘Youne] 1y

uoneslidde apou woly

uonensibal sWayos TYM aAIeoeYy

olz—"

Z1L1 uoneolddy qny

80z —

011 waysAg Bupetadp

V\ 002

SO

UM 8Wsyos TN JeisiBay

i

~—90zZ

8|l paunionais ul fioysodal

[BJ1USD 0) SUOIIULBP

Juiod uoneJlBayul wsuel |

i

N— 10z

uoneoidde spou |eisy|

11 uonealjddy spoN

N— 207

US 8,839,266 B1

Sheet 3 of 4

Sep. 16, 2014

U.S. Patent

a¢ 9l

THN YECIED /M PAEID0SSE ¥00[q
YoBq|[e0 B S|[eo Jebeuewl ¥oreq|e)

91z —" A

uoneoidde gny dn axep

y1z—"

waysAs Bunesedo
10 |[e9 waysAs Buisn Bus TN
pajessusb suado Jabeuew yoeq|ed

y5z —’ A

Buuis 14N
¥oeq||ea apiroid pue dn axem
0] uoneoldde gny 1sanbay

89¢
\\\

we—" 4

Buuis 7N
BuijoAul ||B9 WeISAS aA18d8Y

SO 10 |lea wasAs buisn BuLls THN
Yoeq||ed sa)oAul Jabeuew oeq|len

817 —

i

weJted TN ¥oeq|eo

TdN 1oeq|[ed uo paseq TdN Xoeq|ed
Jolis sjelsuss) soresauab Jbw yoeq|en
99¢ K SOA
N ygz

weled TN ¥oeq|e9 e pue dde
apou Jo awayos TN Buiney Bulys
14N Sejessuab Jebeuew »oeq|e)

Buws 14N epiroid pue youne)
0] uoneoldde apou 1sanbay

1d uonelBaul /M peleInosse Jajpuey
poylew e sjjeo Jabeuew yoeqjen

85z — »

29z — A

25z —’ A

r-—-—————— ==

Jabeuew yoeq|es
Buisn juiod uone.Baul a40AU|

Buiis 14N
uado 0] |22 WAISAS aNIBIaY

dde apou (dn ayem Jo) youneq

osz —’
Z1| uoneoyddy qny

95z —’

011 waysAg buelsadp

p11 uoneoljddy apoN

US 8,839,266 B1

Sheet 4 of 4

Sep. 16, 2014

U.S. Patent

a¢ 'oid

{ooe

Loanyeyio

{gny) uoneoddy c0¢

pieoquseq

{UX

g¢ "ol

80€

(any) uoneaddy 20¢

pieoqyseq

J¢€ 'O

dde \ @ mm—m—m——— .
glopusp,

80¢ _
(any) voneaydey \ L~ €0€
ddy pJeoquseq |
VIOpUBA “
508 punoibaio “
y0€
Ve 'Ol
dde \ @ mm—m————
qIopusp
80¢
(qnu) uoneayddy a0¢g
ddy pieoquseq | |
yiopusA “
90¢ puno.aiod |
de \ T 77
Jwbw A
— 00€

y0€

US 8,839,266 B1

1
INTER-APPLICATION COMMUNICATION
ON MOBILE PLATFORMS

BACKGROUND

Desktop applications are traditionally feature-rich because
of available display screen sizes for desktop computers and
other hardware capabilities, which encourage developers to
provide extensive programming interfaces and to grow to
support many use cases and workflows. In many cases, native
desktop applications have full access to a user’s file system,
network-accessible resources, and even the data of other
desktop applications. These capabilities have led to several
ways in which one application can interact with another appli-
cation, such as with shared libraries, plug-in systems, etc.

Shared libraries, such as those used by suites of applica-
tions, e.g., Microsoft Office suite, enable applications
focused on one type of task (e.g., word processing) to have the
ability to embed features and content from another applica-
tion (e.g., spreadsheet), thus seamlessly working as a suite
while remaining as independent applications. Plug-in sys-
tems integrate external code into another running application,
providing complete access to the running process’s data and
extending functionality. Server management software, such
as the VMware vSphere Client for Windows made available
by VMware, Inc. of California, provides this type of plug-in
functionality, which has enabled both second and third parties
to provide advanced functionality by extending the vSphere
Client user interface. Additionally, distribution and installa-
tion of desktop applications is not limited in any way.
Whether read from a disk, downloaded from the Internet, or
input from the user, any application code may be executed
once it is on a desktop computer.

However, in contrast, applications for mobile devices (i.e.,
mobile applications) can be limited by the devices on which
the mobile applications execute. A smaller screen, compared
to desktop computers, means less information can be dis-
played at once. Less internal storage encourages network
connectivity and persisting data within the “cloud” or remote
servers. Further, mobile applications tend to run within envi-
ronments that are much more restrictive than desktop appli-
cations. In some cases, mobile applications are distributed
through user- or platform-specified channels, which deter-
mine whether an application is appropriate for distribution.
For example, applications may be downloaded and installed
onto a mobile device from an application store (e.g., Android
Market, iPhone App Store, Amazon Appstore, various carrier
or device manufacturer based application stores, etc.). Some
of these channels even require an application review process
with humans acting as gatekeepers to ensure quality and
acceptability of applications distributed through their plat-
form. Such restrictions provide additional safety and security
to users while also imposing different constraints than when
producing applications for desktop computers and limiting
some functionality.

As such, these restrictions on mobile applications present a
challenge when attempting to apply traditional techniques for
inter-application communication and operability used for
desktop applications to mobile applications.

SUMMARY

One or more embodiments of the present disclosure pro-
vide a method, system, and computer-readable storage
medium having executable instructions for inter-application
communication on a mobile device having an operating sys-
tem that provides a sandboxed environment. The method

20

25

30

35

40

45

50

55

60

65

2

includes retrieving, at a first application executing on the
mobile device, a definition for an integration point that speci-
fies functionality provided by another application executing
on the mobile device. The method further includes determin-
ing a second application that implements the integration point
is available on the mobile device based on the retrieved defi-
nition, and generating a first URL string based on the
retrieved definition for the integration point. The first URL
string may include at least one parameter specified by the
definition for the integration point. The method further
includes invoking the integration point by opening the first
URL string using a system call of the operating system of the
mobile device.

Other embodiments of the present disclosure provide a
method, system, and computer-readable storage medium
having executable instructions for inter-application commu-
nication on a mobile device having an operating system that
provides a sandboxed environment. The method includes
transmitting, at a first application executing on the mobile
device, a definition for an integration point implemented by
the first application. The definition specifies a URL scheme
associated with the first application. The method further
includes registering the URL scheme associated with the first
application with the operating system of the mobile device,
and receiving a request, from the operating system, to handle
opening a first URL string generated by a second application.
The first URL string comprises the registered URL scheme
and at least one parameter specified by the definition for the
integration point. The method further includes executing a
handler method associated with the integration point using
the at least one parameter specified by the definition for the
integration point.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the disclosure, briefly summa-
rized above, may be had by reference to the appended draw-
ings.

FIG. 11is a block diagram representative of a mobile device
having applications executing thereon, according to one or
more embodiments of the disclosure.

FIGS. 2A and 2B are flow diagrams for a method for
inter-application communication, according to one embodi-
ment of the present disclosure.

FIGS. 3A-3D are block diagrams depicting a technique for
inter-application communication that includes third-party
integration, according to one embodiment of the present dis-
closure.

DETAILED DESCRIPTION

One or more embodiments disclosed herein provide meth-
ods, systems, and computer programs for inter-application
communication (IAC) using a messaging protocol between
mobile applications executing on a mobile device. The IAC
messaging protocol provides a method an application can
implement to initiate two-way communication to another
application; a method an application can implement to pro-
vide integration points for other applications to access, a
method for an application to advertise available integration
points, and a method for an application to dynamically enable
support for available integration points at runtime. Based on
knowing which applications are available, an application may
present the available capabilities to the end user. Additionally,

US 8,839,266 B1

3

knowledge of available capabilities allows an application to
orchestrate completion of complex tasks and workflows with
other applications.

FIG. 1 is a schematic illustration of a mobile device 100
according to one or more embodiments of the disclosure.
Mobile device 100 may be smartphone, a tablet computing
device, and in general any computing device that is portable
and configured for wireless connectivity with a network. In
the embodiment shown, mobile device 100 includes a display
device 102, such as a touch screen, and a plurality ofkeys 104,
and may include other hardware components 108, including
conventional computing components such as one or more
processing units, memory, storage device(s), and a network
interface.

In one embodiment, mobile device 100 includes an oper-
ating system (OS) 108 that supports executions of one or
more applications 106. Examples of OS 110 include
Android™ operating system made available by Google, Inc,
or iI0OS® made available by Apple, Inc of California, although
other mobile operating systems may be used. In many cases,
mobile applications (e.g., applications 106) tend to run within
environments that are much more restrictive than the execu-
tion environment for a typical desktop application. OS 110
may execute applications 106 within a sandboxed environ-
ment restricts an application’s access to outside resources,
both in hardware (e.g., regions in memory, networking inter-
face), and in software (e.g., system-level data, state data of
other applications). Such restrictions provide additional
safety and security to users while also imposing different
constraints than when producing applications for desktop
computers and limiting some functionality.

OS 110 may limit an application’s access to outside
resources to only specific, defined interfaces. In such a sand-
boxed environment, an application 106 may only read and
write data to defined locations. This approach prevents an
application from writing over or corrupting data belonging to
another application. In one embodiment, OS 110 may provide
several defined interfaces that are exceptions to sandboxing
and allow for some shared data. OS 110 may include a public
named region of memory (known inthe iOS operating system
as a “pasteboard”), which data can be read from or written to
by all applications. In some embodiments, OS may include a
secure data store (known in the iOS operating system as a
“keychain”) for persisting small amounts of cryptographic or
sensitive data. However, the keychain typically has limited
storage space, is not publicly available to all applications, but
rather available only to other applications created by the same
developer, and usage of the keychain is typically carefully
scrutinized by an application review process to prevent mis-
use.

In one embodiment, OS 110 is configured to limit aware-
ness of external applications and functionality to the use of
custom URL (Uniform Resource Locator, sometimes
referred to as a Uniform Resource Identifier, or URI) scheme.
An application 106 may expose a specific scheme, e.g.,
“acme-app-1-0:” so that other applications can detect that the
scheme is installed and let the user switch to that application
to open the URL, while other applications may expose a more
generalized scheme, e.g., “define:” or “vnc:” so that external
applications looking for an external dictionary or VNC func-
tionality, respectively, can launch to those other applications.
Using such an approach, third party applications are able to
launch a web browser (e.g., using the URL scheme “http:”) or
the telephone application (e.g., using the URL scheme “tel:”).

According to one embodiment, applications 106 executing
on mobile device 100 may be configured to utilize an inter-
application communications protocol that enables two-way

20

25

30

35

40

45

50

55

60

65

4

communication between applications and that allows one
application to initiate tasks in another application, even
though the applications are executing in a sandboxed envi-
ronment. In one embodiment, the inter-application commu-
nications protocol utilizes a hub-and-spoke architecture
which enables applications to communicate and pass state
and context between each other as if the applications belong
to a suite. According to the embodiment shown in FIG. 1, a
central application, referred to herein a “hub” application
112, is configured to initiate two-way communication
between one or more other applications, referred to herein as
“node” applications 114, using a communication mechanism
(i.e., spoke) that are available on a particular mobile platform.

While FIG. 1 depicts one hub application 112 and one node
application 114, it should be recognized that mobile device
100 may include more than one hub application 112 and more
than one node application 114 configured for inter-applica-
tion communication. Additionally, while embodiments of the
present disclosure describe a mobile application executing on
a mobile device, it should be recognized embodiments of the
present disclosure are not limited to mobile applications and
mobile devices. It should be appreciated that techniques for
inter-application communication as described herein may be
applied to any computer application operating in a restricted
or sandboxed environment where conventional techniques
for inter-application or inter-process communication are
unavailable.

In one embodiment, any application 106 may act as a node
by defining one or more integration points that are accessible
over a platform-specific spoke. Integration points of a node
application 114 represent functionality made available by
node application 114. An integration point corresponds to a
method in a node application 114, which is invoked when an
inter-application communication (IAC) message is received.
Hub application 112 accessing an integration point may be
considered analogous to calling a method on a class. Node
application 114 is configured to advertise its capabilities to
handle one or more integration points by publishing integra-
tion point definitions 124 defining the one or more integration
points to a central repository or some other shared data area
accessible to hub application 112.

At runtime, hub application 112 is configured retrieve inte-
gration point definitions 124 from the central repository or
other shared data area. Hub application 112 is configured to
parse and process integration point definitions 124, and use
platform-specific mechanisms to determine whether a node
application which implements a defined integration point is
available on mobile device 100. When hub application 112
detects that an integration point is available, hub application
112 is configured to dynamically alter its functionality to
enable support for the integration point. For example, in some
cases, hub application 112 may display a Ul element that
enables an end user to invoke the integration point, or other
cases, hub application 112 may involve the integration point
in part of a workflow by out-sourcing one or more operations
to the node application. Node application 114 is configured to
handle IAC requests from a spoke, mapping the IAC request
to one of the implemented integration points, and calling a
corresponding method to act upon the IAC request. Once
invocation of an integration point concludes, node application
114 is responsible for returning to hub application 112 with
successful return data, error details, or a flag indicating the
integration point task was aborted. Hub application 112 may
then continue operation.

In one embodiment, each hub and node application 112,
114 maintains a singleton reference to a callback manager
116, 118, which handles routing of communication between

US 8,839,266 B1

5

applications. A hub application 112 invokes a task through
callback manager 116, which handles serialization of param-
eters and transmission of the request. Also, when a hub appli-
cation invokes a task, several callback blocks 122 are
included as a method to retain references to the context of the
task and are executed when the task executes. When a node
application 114 receives a task, callback manager 118 routes
the task to the appropriate method handler 120, which pro-
cesses the task, and once complete, returns results back
through callback manager 118. Accordingly, embodiments of
the present disclosure provide a consistent method of provid-
ing integration point handlers for node applications. Embodi-
ments of the present disclosure further provide a drop-in
callback manager library with limited configuration for com-
municating over URL schemes. Embodiments also provide a
technique for retaining context about initiated tasks through
to their completion.

Hub application 112 may include a callback manager 116
configured to handle remote method invocation of node appli-
cation 114. Callback manager 116 includes program code for
exchanging inter-application communication (IAC) mes-
sages with a node application 114 using a platform-specific
mechanism, i.e., one or more of the limited, exempted
resources to the sandboxing environment described earlier.
As described in greater detail later, callback manager 116 of
hub application 112 is configured to generate a URL string
having a custom URL scheme that acts as an IAC message to
node application 114, and to process callback URL strings
that acts as IAC response messages from node application
114. Node application 114 includes a corresponding callback
manager 118 configured to process the remote method invo-
cation using one or more integration point handlers 120. In
one particular embodiment, callback manager 118 of node
application 114 is configured to process an opened URL
string that acts as an IAC from hub application 112, execute
one or more of the integration point handlers 120, and gen-
erate a callback URL string that acts as an IAC response
message to hub application 112.

In one particular embodiment, callback managers 116, 118
may be a packaged library that wraps platform-specific
mechanisms for inter-application communication into a
developer friendly interface. Callback managers 116, 118
may include methods for invoking integration points of a
node application that accept one or more parameters and
methods for integration point detection and inspection similar
to class reflection. Callback managers 116, 118 may be func-
tionally connected to callback functions, such as callback
blocks 122 for hub application 112 and integration point
handlers 120 for node application 114. In the embodiment
shown in FIG. 1, responsive to IAC requests, node application
114 is configured to call one or more integration point han-
dlers 120 to act upon the IAC request. An integration point
handler 120 is associated with a particular integration point
and includes application code or logic configured to accom-
plish a specific task associated with the associated integration
point, i.e., implements the functionality of the advertised
integration point. For example, an integration point handler
120 corresponding to a “ReverseString” integration point
may be a function that accepts a string as a parameter, reverses
order of characters within the string, and returns the string.
Similarly, callback blocks 122 of hub application 112 may be
associated with one or more integration points and may
include application code configured to be executed upon
completion of the associated integration point. Callback
block 122 may be configured to which handle responses to the
remote method invocation, for example, by processing data

20

25

30

35

40

45

50

55

60

65

6

returned in a return result, processing and coordinating
changes in state of node applications 114, and other post-
processing operations.

In one embodiment, an integration point may have an iden-
tifier, required named parameters and data types, optional
named parameters and data types, and returned results. Such
details of an integration point may be specified by an integra-
tion point definitions file 124. In one embodiment, integration
point definitions 124 may be represented in a structured defi-
nition file having a machine-readable format, such as a Java-
Script Object Notation (JSON) file, XML, or other suitable
structured formats. An example definition file having integra-
tion point definitions 124 for a node application is shown in
Table 1 below.

TABLE 1

An example integration point definition file

[{ “bundleldentifier: “com.example.node App”,
“methods™: [{
“action”: “reverseString”,
“actionOptionalParameters™: {
“uppercase”: “number”

,
“actionRequiredParameters™: {
“string”: “string”
,
“identifier”: “com.example.reverseString”,
“successRequiredParameters™: {
“result”: “string”
,

“type”: “method”

>
. <

{“action”: “rotateString”,
“actionRequiredParameters™: {
“offset”: “number”,
“string”: “string”
,
“identifier”: “com.example.rotateString”,
“successRequiredParameters™: {
“result”: “string”

>

“type”: “method”
}

‘name”: “MyNodeApp”,
‘scheme™: “mynodeapp”,
type™: “app”

1

In one embodiment, integration point definitions file 124
may include identification information about the node appli-
cation associated with the definition file. Such identification
information may include a user-friendly identifier or label
(e.g., the “name” field) that specifies the name of node appli-
cation 114 (e.g., “MyNodeApp”). In other embodiments, the
identifiers may further include a platform-specific identifier
(known in the 10S operating system as a “bundleldentifier”)
that uniquely identifies node application 114 within OS 110.
In some cases, mobile platforms may support a variety of
ways to display and specify applications, including user-
installed applications, widgets, and control panels. In such
cases, integration point definitions file 124 may further
include a “type” parameter that specifies the type of applica-
tion associated with the definitions file (e.g., “app”).

In one embodiment, integration point definitions file 124
includes platform-specific parameters used to facilitate inter-
application communication using platform-specific mecha-
nism. In embodiments using a custom URL scheme to pro-
vide inter-application communication, as shown in Table 1,
definitions file 124 may include a “scheme” parameter that
specifies a custom URL scheme associated with and regis-

US 8,839,266 B1

7

tered by node application 114 (e.g., “mynodeapp://”). It
should be recognized that in some embodiments, the scheme
parameter may specify a generalized custom URL scheme
(e.g., “stringOps://”") associated with the integration points
made available by the node application 114, rather than the
particular node application itself.

As shown in Table 1, integration point definitions file 124
specify includes definitions of features of the integration
points provided by node application 114, for example, in an
array of defined methods (e.g., “methods” field). Each inte-
gration point described in the methods field may include a
user-friendly label (e.g., “action” field) that identifies the
integration point in both the calling application (hub) and the
called application (node). Each integration point definition
may include an internal identifier (e.g., “identifier” field) that
uniquely identifies the integration, and, for example, may be
referenced by application code of hub application 112 (e.g.,
executeMethodWithld:@ “com.example.reverseString”™).
Each integration point definition may further include a list of
named required parameters and data types (e.g., “action
Required Parameters” field), a list of named optional param-
eters and data types (e.g., “action Optional Parameters” field),
and returned parameters, upon success (e.g., “success
Required Parameters™ field), error, cancellation, or generally.
Analogous to the type field described earlier, each integration
point definition may include a type field (e.g., “method”) to
support other techniques for invoking functionality in node
applications.

In one embodiment, a repository of integration point defi-
nitions 124 may be hosted at a server communicatively con-
nected to mobile device 100 by a network 130, or in other
embodiments, integration point definitions 124 may be acces-
sible in other shared data areas, such as a shared data area on
mobile device 100 permitted by OS 110. In the embodiment
shown in FIG. 1, the repository of integration point defini-
tions 124 may be hosted at a virtualization management
server 132 that manages virtual machines and server infra-
structure in a data center. Virtualization management server
132 may include an extension registration mechanism that
allows third-party providers to register extension functional-
ity specialized for managing particular components within a
datacenter. The extension registration mechanism may be
configured to support a hub-and-spoke integration point defi-
nition format, as described above. In such an embodiment,
hub application 112 may connect to an extension registry at
virtualization management server 132 to identify and detect
supported node applications installed on the same mobile
device 100 using an integration point definitions file 124. The
extension registry may directly deliver integration point defi-
nitions 124 to hub application 112, or in some embodiments,
may re-direct hub application 112 to another server, such as a
web server, where integration point definitions may be
retrieved.

FIGS. 2A and 2B are flow diagrams for a method 200 for
providing inter-application communication, according to one
embodiment of the present disclosure. While method 200 is
described in conjunction with the system depicted in FIG. 1,
it should be recognized that other systems may be configured
to perform the method described herein.

At step 202, node application 114 is installed on mobile
device 100. At step 204, node application 114 transmits one or
more integration point definitions 124 to a central repository
that is accessible to hub applications. In some embodiments,
integration point definitions may be stored in a machine-
readable structured file, such as a JSON file, as described
earlier. In one embodiment, integration point definitions may
be pre-generated and part of the package installed at step 202.

—

0

20

25

30

35

40

45

50

55

60

65

8

In other embodiments, integration point definitions 124 may
be dynamically generated and stored in a central repository
accessible to hub applications.

At step 206, node application 114 registers capabilities
specified by integration points with mobile operating system
110. In one embodiment, node application 114 registers a
URL scheme associated with node application 114 with oper-
ating system 110. At step 208, mobile operating system 110
receives URL scheme registration from node application 114.
In some embodiments, node application 114 may include one
or more configuration files (e.g., an array of dictionaries), at
least one of which defines a URL scheme matching the cus-
tom URL scheme in integration point definitions 124 (e.g.,
“mynodeapp://”’). During installation of node application 114
(e.g., at step 202), OS 110 may parse the configuration file to
determine specified URL schemes and register the specified
URL schemes with the system.

At some later time, hub application 112 is launched, e.g., in
response to user input. At step 210, at launch, hub application
112 retrieves integration point definitions 124 from the cen-
tral repository, e.g., from virtualization management server
132. It should be recognized that hub application 112 may
store or cache integration point definitions within local stor-
age of mobile device 100 for later access.

At step 212, hub application 112 parses the retrieved inte-
gration point definitions to determine integration point capa-
bilities that may potentially be available to hub application
112. Hub application 112 determines identifiers, named
required parameters and data types, named optional param-
eters and data types, return results, error codes, and other
details for integration points based on the retrieved integra-
tion point definitions. Integration point definition 124 may
provide information that enables callback manager 116 of
hub application 112 to invoke a platform-specific communi-
cation mechanism (e.g., spoke). In one particular embodi-
ment, callback manager 116 of hub application 112 deter-
mines a URL scheme specified by integration point definition
124 and associated with a particular integration point.

At step 214, callback manager 116 of hub application 112
queries mobile OS 110 for applications available for the
determined URL schemes. Callback manager 116 may query
mobile OS 110 using one or more system calls provided by
mobile OS 110 to identify whether a given URL can be
handled by OS 110 or other applications installed on OS 110.
In an example using the iOS platform, callback manager 116
formulates a test URL having the URL scheme of the desired
integration point, and calls a UlApplication.canOpenURL()
method with the test URL as a parameter.

At step 216, mobile operating system 110 receives request
for available applications for a given URL scheme(s). At step
218, mobile operating system 110 returns an indication of
whether they are any available applications installed on OS
110 and that have been registered for the given URL scheme
(s). For example, OS 110 may determine that node applica-
tion 114 previously registered the scheme “mynodeapp://”
(e.g., at step 206) and returns a positive (i.e., true, or YES
value) result indicating there is an application that can open a
given URL scheme. Otherwise, OS 110 may return a negative
(i.e., false, or NO value) indicating no application is available
that will accept the URL. In an alternative embodiment, rather
than a yes/no indication, OS 110 may generate and return a
list of available applications installed on OS 110 and that are
currently registered for the given URL scheme.

At step 220, hub application 112 receives the indication of
available applications for handling the given URL scheme
from Os 110, and at step 222, hub application 112 determines
whether a node application is available that provides at least

US 8,839,266 B1

9

one integration point defined in integration point definitions
124 based on the received indication.

At step 224, responsive to determining at least one node
application is available, hub application 112 may alter its
functionality based on the availability of the node application
to invoke an integration point. In some embodiments, hub
application 112 may modify a graphical user interface (GUI)
to indicate to the user that a node application is available for
a given integration point. For example, hub application 112
may generate and display a Ul element (e.g., icon, badge,
button) that, when activated or pressed, invokes the integra-
tion point. The Ul element may have an appearance corre-
sponding to an icon for node application 114. In some
embodiments, hub application 112 may modify one or more
workflows to incorporate the integration point of node appli-
cation 114. For example, hub application 112 may include
application logic that conditionally invokes an integration
point if a node application 114 is available, and otherwise,
performs another operation within hub application 112.

At step 226, responsive to determining no node application
is available, hub application 112 may de-activate the integra-
tion point. For example, in some embodiments, callback man-
ager 116 of hub application 112 may mark a state of an
integration point as “inactive” and raise an error or exception
if hub application 112 attempts to invoke the inactive integra-
tion point. In some embodiments, hub application 112 may
modify the GUI to “grey-out” or render inactive an existing
Ul element (e.g., icon, badge, button) to indicate to the user
that no node application is available for one or more integra-
tion points. Operations for method 200 are continued in FIG.
2B.

As shown in FIG. 2B, at step 250, hub application 112
invokes an integration point using callback manager 116. In
some embodiments, hub application 112 may call amethod of
callback manager 116 that accepts an identifier associated
with an integration point, as specified by integration point
definition 124. For example, hub application 112 may use a
method call to a handlelnvocation(. . .) method of callback
manager 116 and pass an integration point identifier “com.ex-
ample.reverseString” specified by the integration point defi-
nitions shown in Table 1. As such, callback manager 116
provides a simple interface for developers to create hub appli-
cations that invoke integration points, and reduces the cost of
writing application code that uses a platform-specific mecha-
nism to invoke the integration point.

In one embodiment, in addition to passing the handlelnvo-
cation() method an integration point identifier, hub applica-
tion 112 may pass additional parameters for the integration
point, as specified by integration point definition 124. Con-
tinuing the “ReverseString” example, hub application 112
may include a value for the required “string” parameter, and
another value for the optional “uppercase” parameter, as
specified by the integration point definition in Table 1. In one
embodiment, callback manager 116 of hub application 112
may perform parameter checking on the additional passed
parameters based on the integration point definition. Callback
manager 116 may check if a parameter has been given for
each of the list of named required parameters (i.e., required
parameter checking), and whether each required or optional
parameter has a data type specified by the integration point
definition (i.e., parameter type checking).

At step 252, callback manager 116 of hub application 112
generates a URL string that acts as an inter-application com-
munication (IAC) message to node application 114. The gen-
erated URL string is configured such that OS 110 opens the
generated URL string using node application 114, thereby
passing context, state data, and other information from hub

20

25

30

35

40

45

50

55

60

65

10

application 112 and node application 114. The generated
URL string may be formatted according to known URL for-
mats, for example, according to syntax for Uniform Resource
Identifiers (URIs) specified in RFC 3986. In one embodi-
ment, the generated URL string may have the format shown in
Table 2 below, although other suitable formats or syntaxes
may be utilized.

<scheme_name>://<path_part>/
<action_name>?<query_string>#<fragment_id>

Table 2: An Example URL Format

In the embodiment shown in Table 2, the URL string has a
scheme_name portion which is the URL scheme of the
invoked integration point, as defined by integration point
definition 124. For example, an IAC message formatted based
on the integration point definition shown in Table 1 may have
the scheme identifier “mynodeapp://”. The URL scheme in
the URL string acts as a destination field indicating the IAC
message is intended for any node application implementing
the integration point. In some embodiments, the action_name
portion of the URL string may be an identifier for integration
point as specified by integration point definition 124. Again
using the example shown in Table 1, an IAC message may
have the action_name “com.example.reverseString” for
invoking the ReverseString integration point. In an alternative
embodiment, the URL string may have a path_part portion
that is the unique identifier (e.g., “com.example.revers-
eString”) and an action_name portion that is the user-friendly
identifier (e.g., “reverseString”) for an integration point,
although other schemes may be used.

In one embodiment, the generated URL string includes a
query string component that contains required and optional
named parameters as specified by the integration point defi-
nition. The query string component may specify one or more
name-value pairs, for example, separated by ampersands
(e.g., keyl=valuel&key2=value2&key3=value3). In some
embodiments, parameter values within the query string com-
ponent may be encoded, serialized, or transformed to comply
with URL syntax rules and constraints, including restrictions
on character encodings, escaping reserved characters, and
character limits. The query string component of the URL
string contains data for the JAC message, as well as IAC-
related parameters used to facilitate inter-application com-
munication.

In one embodiment, callback manager 116 generates a
query_string component for the URL string that contains
parameters for named required parameters and named
optional parameters based on integration point definition 124.
In some embodiments, callback manager 116 determines
parameters specified by the fields within definition 124, such
as, “actionRequiredParameters” and “actionOptionalParam-
eters” and generates appropriate name-value pairs. In the
example of Table 1, callback manager 116 generates a query
string component for the “reverseString” integration point
having key-value pairs for the “string” required parameter
and the “uppercase” optional parameter (e.g.,
“?string=abc123&uppercase=17).

Callback manager 116 may generate a query string com-
ponent of the URL string that includes parameters that iden-
tify hub application 112 and may be used to return to hub
application 112 after invocation of an integration point is
completed. In one embodiment, the query string component
of the URL string may include a “source name” parameter
that provides the name of hub application 112 (e.g., for dis-
play within node application 114 for user experience pur-

US 8,839,266 B1

11

poses). While specific names of parameters (e.g., “source_
name”) are described for sake of example, it should be rec-
ognized that any suitable labels or parameter names may be
used according to techniques described herein. It should be
further recognized that parameter names used by callback
manager 116 may include a reserved prefix (e.g., “cm-" as in
“cm-return-success”) to avoid namespace conflicts with inte-
gration point parameters.

In one embodiment, callback manager 116 generates a
query string component of the URL string that includes a
callback URL parameter specitying a URL to open to return
to hub application 112 upon completion of the action
requested by the integration point. The callback URL param-
eter may include pre-determined parameters and variables
encoded and appended as its own query string. In one embodi-
ment, callback manager 116 may generate a callback URL
having a custom scheme identifier that is unique to hub appli-
cation 112, such that opening the callback URL returns to hub
application 112 and not any other applications installed on
mobile device 100. In some embodiments, the custom scheme
identifier may be machine-generated to be unique across all
applications installed on mobile device and avoid possible
scheme collisions. Accordingly, the callback manager advan-
tageously takes care of platform-specific logistics, such as
generating an appropriate callback URL or including a
unique scheme identifier, thereby reducing time and costs in
software development for inter-application communication.

In some embodiments, a number of separate parameters for
callback URL may be specified for use in difterent scenarios
depending on the results of invoking the integration point. For
example, a “return success” callback URL parameter may be
specified within the query string component and is opened by
node application 114 upon successful completion of the inte-
gration point invocation. Similarly, a “return error” callback
URL parameter may be specified within the query string
component to be opened by node application 114 if the
invoked integration point generates an error or exception. In
another example, a “return cancel” callback URL parameter
may be specified to be opened by node application if the
invoked integration point is cancelled by user action, e.g., if
node application 114 offers the end user the option to cancel
the requested action.

In some embodiments, callback manager 116 may gener-
ate a query string component of the URL string that includes
a “continue” URL parameter specifying a URL to open to
launch another application (i.e., not necessarily return to hub
application 112) upon completion of the action requested by
the integration point. The continue-URL parameter may
specify a plurality or an array of URLs that should be opened
in sequence, upon success of each integration point. At each
step, a node application is responsible for popping the URL
that the node application opens off of the top of the array, and
inserting any returned values into the continue-URLs so that
state data and returned results are persisted through the work-
flow and the URL is prepared when executed later. In such
embodiments, the continue-URL parameters may include
templating language that is parsed and processed by each
node application for inserting results into the URLs for sub-
sequent steps. Accordingly, hub application 112 can supply
URLSs for each step of an operation up front and orchestrate a
whole operation all at once. Use of a “continue” URL param-
eter advantageously reduces context switching by enabling
each node application to initiate a next step directly rather
than having to return to the hub application. Further, use of the
“continue” URL reduces the need of a node application to
maintain state while waiting for another node application to
return, thereby simplifying operations.

20

25

30

35

40

45

50

55

60

65

12

In one embodiment, callback manager 116 may assign a
task identifier to a particular invocation of the integration
point and generate a query string component of the URL
string that includes the task identifier parameter, for example,
with a “task_id” parameter. While in some cases, operations
performed on mobile operating system 110 may be inherently
synchronous, as a single application appears in the fore-
ground at any one time, certain situations of asynchronous
operations between node and hub applications can arise. For
example, a node application, while handling an integration
point invocation, may initiate an asynchronous task on a
server (e.g., backup a target virtual machine) and then the
node application might leave the foreground while this task is
still processing. In some cases, the user might even return to
the hub application to initiate another operation while the
previous operation is still processing. According, in such
embodiments, callback manager 116 uses separate task iden-
tifiers to differentiate these operations, and to distinguish
which operation might be invoking the callback URL (e.g.,
the second operation completes before the first operation). In
some embodiments, the task identifier may be a unique iden-
tifier across all hub and node applications on mobile device
100.

In one embodiment, callback manager 116 may generate a
URL string that includes a “version” parameter specifying a
version of the integration point being invoked. In some cases,
hub application 112 and node applications 114 may be run-
ning in a mixed system where a hub application supports a
newer API or integration point than the node applications, or
vice versa. In such situations, callback manager 116 may
incorporate versioning when invoking an integration point to
prevent versioning issues. Callback manager 116 may deter-
mine the version of the integration point using the integration
point definition file. In some embodiments, callback manager
116 may generate a query string component of the URL string
that includes a “version” parameter, or in other embodiments,
callback manager 116 may generate a URL string having a
URL scheme identifier that incorporates a version number
within (e.g., “mynodeapp-v1.0:// . ..”)

Referring back to FIG. 2B, at step 254, callback manager
116 of hub application 112 invokes the generated URL string
using one or more system calls provided by OS 110 to open a
resource at a specified URL. For example, in embodiments
using the 108 platform, callback manager 116 may call the
UlApplication.openURL() method with the generated URL
string as a parameter. Callback manager 116 opens the gen-
erated URL string and control flow passes to OS 110 for
handling of the opened URL.

At step 256, OS 110 receives the system call to open a
resource located at the generated URL string. At step 258, OS
110 requests anode application 114 that previously registered
to handle that URL scheme to launch and provides the URL
string. In one particular embodiment, OS 110 passes the URL
string to a delegate of node application 114 for handling.

At step 260, responsive to request from OS 110, node
application 114 launches, or wakes up, in cases where node
application 114 has been dormant. At step 262, a callback
manager 118 of node application 114 processes the URL
string provided by OS 110 to extract the component portions
of'the provided URL string, including the scheme name, path,
action name, and query string portions, as described in detail
earlier. Callback manager 118 determines the integration
point referenced by the URL string and calls an integration
point handler 120, or method handler, mapped to the corre-
sponding integration point. In one embodiment, callback
manager 118 calls an integration point handler 120 based on
matching the action name portion of the URL string to an

US 8,839,266 B1

13

integration point identifier (e.g., “com.example.revers-
eString”). Example pseudo-code of node application 114 for
handling an invocation is shown in Table 3 below.

TABLE 3

An example pseudo-code for handling an invocation

-(void) handleInvocation:(CMInvocation *)invocation {
if([invocation.method.identifier isEqual To:
@"“com.example.reverseString™]) {

ActionViewController *ve = appDelegate.viewController;
[ve handleInvocation:invocation];
¥
¥

At step 264, callback manager 118 of node application 114
determines whether execution of integration point handler
120 completed successfully. If so, at step 266, responsive to
determining execution was a success, callback manager 118
generates a callback URL string based on the callback URL
parameter provided by the received URL string. In one
embodiment, callback manager 118 of node application 114
generates a callback URL based on the callback URL param-
eter found in the query string component of the received URL
string. As described earlier, the callback URL parameter may
include pre-determined parameters and variables encoded
and appended as its own query string.

In one embodiment, callback manager 118 may use the
return-success callback URL provided by the callback URL
parameter and add additional parameters in the query string
component. Callback manager 118 includes one or more
parameters containing results returned from integration point
handler 120 as returned data, as specified by integration point
definition 124. Using the example in Table 1, upon comple-
tion of the ReverseString method, callback manager 118
appends the query string “?result=321cba” (or
“&result=321cba” if there already is a query string) to the
callback URL. In one embodiment, callback manager 118
may include the task identifier parameter (i.e., task_id) asso-
ciated with the invocation of the integration point and pro-
vided by the received URL string, in order to allow hub
application 112 to distinguish which operation the callback
URL is returning from. It should be recognized that in some
embodiments the task identifier parameter may have been
pre-generated and already be included as part of the callback
URL parameter provided by the received URL string.

If, at step 278, responsive to determining execution was not
completed successfully, callback manager 118 generates a
callback URL string based on a return-error callback URL
parameter provided by the received URL string. In some
embodiments, callback manager 118 uses the return-error
callback URL and adds additional parameters in the query
string component specifying an error code, an error descrip-
tion, and other information (e.g.,
“?errorCode=12513253&errorMessage=NoMoreMemory”).

In embodiments having an array of URLs (i.e., continue-
URL parameter) that specify a workflow through a plurality
of node applications, node application 114 generates a call-
back URL to continue to a next one of the plurality of node
applications, rather than return to the original hub applica-
tion. In such embodiments, node application 114 takes the
next URL from the array of URLs and generates a callback
URL based on the taken URL. The generated callback URL
retains the continue-URL parameter in the query string por-
tion, but with the taken URL removed from the array of
URLs. In some embodiments, node application 114 parses
templating language found within the query string portion of

20

25

30

35

40

45

50

55

60

65

14

the taken URL and replaces the templating language with
parameter values for use by the reset of the plurality of node
applications.

At step 268, callback manager 118 of node application 114
opens the generated callback URL string using a system call
provided by OS 110, similar to the system call used by hub
application 112 in step 254. At step 270, OS 110 receives the
system calling opening the callback URL string, and at step
272, OS 110 requests hub application 112 to wake up and
provides the callback URL string to the hub application. In
some embodiments, a delegate of hub application 112
receives the callback URL string and signals to hub applica-
tion 112 to wake up.

At step 274, hub application 112 wakes up, and moves to
the foreground. At step 276, callback manager 116 of hub
application 112 processes the callback URL by extracting
information from portions of the callback URL string, such as
scheme identifier, host, action, and parameters from a query
string portion of the received callback URL string. In some
embodiments, callback manager 116 extracts the task identi-
fier parameter (e.g., task_id) from a query string portion of the
callback URL and determines the task from which the call-
back is returning. In one embodiment, callback manager 116
ofhub application 112 calls a callback block 122 associated to
the callback URL.

One example of inter-application communication can be
described in context of hub and node applications that allow
a user to manage virtual machines and server components in
adata center. A mobile dashboard application that provides an
overview of virtual machines and server components and that
manages virtualization operations, such as a vCenter Opera-
tions for iPhone app made available by VMware, Inc., can be
integrated with a mobile VM management application that
provides deeper views into the virtualized environment, such
as a vSphere Client for iOS app made available by VMware,
Inc. Such integration enables context sharing between the
applications, such as where viewing a virtual machine in the
dashboard application can launch into the VM management
application to see more environment-specific details about a
particular virtual machine. In another example, the dashboard
application can retrieve single sign-on authentication tokens
from the VM management application. A user could initiate
remediation of virtual machines and server components in the
VM management application, for example, by initiating a
virtual machine power operation, or taking a snapshot of a
virtual machine, or performing a VM migration, using the
VM management application.

As such, complete workflows can be performed through
integration between applications rather than requiring a user
to manually jump between applications and mentally carry
contexts to each step. Consider on example workflow, where
a user might receive an alert notification via e-mail on their
mobile device about trouble in the data center. The user
launches into the dashboard application from the e-mail cli-
ent, directly to the alert, views the alert details, and takes
ownership of the problem. After completing their analysis,
the dashboard application launches into the VM management
application, passing the context of the problematic virtual
machine via IAC message. The VM management application
launches directly into the troublesome virtual machine and
initiates a restart. After monitoring completion of the restart
and verifying the virtual machine is running properly, the user
is returned to the dashboard application where they may
message their supervisor that the problem has been resolved.

As such, embodiments of the present disclosure provide
support for retrieving advertised integration points from a
server, enabling dynamically adding and removing capabili-

US 8,839,266 B1

15

ties from an application based on its environment (i.e.,
whether node application are available in the environment).
This support enables applications developed by one devel-
oper to integrate with other applications developed by third
parties. For example, one developer might provide a virtual-
ization management server (e.g., virtualization management
server 132) that has an extension registration mechanism that
allows third-party providers to register extension functional-
ity specialized for managing particular components within a
datacenter. The extension registration mechanism may be
configured to support a hub-and-spoke integration point defi-
nition format, as described earlier.

FIGS. 3A-3D are block diagrams depicting inter-applica-
tion communication that includes third-party integration,
according to one embodiment of the present disclosure. FIG.
3 A depicts relationships and communication among a plural-
ity of applications 300, which includes hubs and nodes,
installed on the same mobile device 100. The plurality of
applications 300 includes a mobile dashboard application 302
that provides an overview of virtual machines and server
components and that manages virtualization operations, as
described earlier. Applications 300 further includes a mobile
VM management application 304 that enables a user to view
individual performance of a virtual machine, start/stop/sus-
pend virtual machines, reboot physical hosts, and other
operations. Third party providers may provide mobile appli-
cations with some domain-specific functionality, such as
ordering spare parts, or datacenter configuration. In the
example shown, Vendor A and Vendor B are companies that
provide data center equipment, such as servers, network
switches, storage arrays, etc., and provide specialized mobile
applications 306, 308 for managing their respective products.

Dashboard application 302 (i.e., hub application), shown
in FIG. 3A as executing in the foreground, identifies that
third-party providers have registered extensions indicating
various capabilities using the extension registry. For example,
Vendor A has registered extensions advertising the capability
to look up warranty information for Vendor A’s equipment,
and Vendor B has registered extensions advertising the capa-
bility to provide access to knowledge base article for specific
products of Vendor B. Knowing these capabilities, dashboard
application 302 presents two workflows to the user: (1)
“Check Vendor A warranty”, and (2) “Troubleshoot Vendor B
host”.

Once a workflow is initiated, dashboard application 302
launches VM management application 304, and passes an
IAC message indicating that the user needs to pick a host to
operate on. As shown in FIG. 3B, VM management applica-
tion 304 moves to the foreground of execution within OS 110.
Within VM management application 304, a host-picker inter-
face is presented to the user.

Once a host is selected by the user, focus automatically
returns to dashboard application 302, as shown in FIG. 3C,
where dashboard application 302 initiates a next step in the
workflow by launch either Vendor A’s application 306 or
Vendor B’s application 308, depending upon the selected
workflow, as shown in FIG. 3D. These steps may repeat until
the workflow is complete, when the user will be automatically
returned back to dashboard application 302 (i.e., hub appli-
cation). Each workflow execution can be uniquely identified
to track progress by the hub, for example, using a task iden-
tifier parameter, described earlier. Use of the task identifier
parameter also enables resilience in the event that a phase of
a workflow is cancelled or abandoned mid-execution.
Accordingly, by loosely associating hub and node applica-
tions, an ecosystem of applications can be very dynamic. New
nodes and capabilities can be added and removed to a mobile

20

25

30

35

40

45

50

55

60

65

16

device at any time. Additionally, it should be recognized that
each node can support multiple hub-based eco-systems, such
as another hub 310 depicted in FIG. 3D.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims. For
example, while embodiments herein have referred to certain
mobile operating systems such as 108, it should be recog-
nized that any mobile operating systems may be utilizing in
alternative embodiments such as Google’s Android, Research
in Motion’s Blackberry OS, Microsoft’s Windows Phone,
Hewlett Packard’s webOS, Symbian, Java, and the like. Simi-
larly, embodiments herein may have referred to certain func-
tions and components using terminology more common used
in certain mobile operating systems as compared to others
(e.g., custom URL scheme, pasteboard, foreground, etc.). It
should be recognized that use of such terminology is merely
exemplary not meant to limit the scope of the teachings herein
to any particular operating system and that corresponding
functions and components in other operating system plat-
forms may benefit from the teachings herein. Further, while
the present disclosure describes one particular mechanism for
inter-application communication that uses custom URL
schemes, it should be recognized that the communication
mechanism (i.e., spoke) may be platform-specific and there-
fore different on each mobile platform. However, embodi-
ments of the present disclosure provide a protocol that uses a
standard definition of capabilities that may be used across
various types of mobile platforms. Such a protocol may
encourage second- and third-party integration using mobile
applications developed by other parties, as described earlier.

The embodiments described herein may employ various
computer-implemented operations involving data stored in
computer systems. For example, these operations may
require physical manipulation of physical quantities usually,
though not necessarily, these quantities may take the form of
electrical or magnetic signals, where they or representations
of them are capable of being stored, transferred, combined,
compared, or otherwise manipulated. Further, such manipu-
lations are often referred to in terms, such as producing,
identifying, determining, or comparing. Any operations
described herein that form part of one or more embodiments
of the invention may be useful machine operations. In addi-
tion, one or more embodiments of the invention also relate to
a device or an apparatus for performing these operations. The
apparatus may be specially constructed for specific required
purposes, or it may be a general purpose computer selectively
activated or configured by a computer program stored in the
computer. In particular, various general purpose machines
may be used with computer programs written in accordance
with the teachings herein, or it may be more convenient to
construct a more specialized apparatus to perform the
required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs in

US 8,839,266 B1

17

a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

What is claimed is:

1. A method for inter-application communication on a
mobile device having an operating system that provides a
sandboxed environment, the method comprising:

retrieving, at a first application executing on the mobile

device, a definition for an integration point that specifies
functionality provided by another application executing
on the mobile device;

determining a second application that implements the inte-

gration point is available on the mobile device based on
the retrieved definition;

generating a first URL string based on the retrieved defi-

nition for the integration point, wherein the first URL
string comprises at least one parameter specified by the
definition for the integration point; and

invoking the integration point by opening the first URL

string using a system call of the operating system of the
mobile device.

2. The method of claim 1, further comprising:

registering a URL scheme for the first application with the

operating system of the mobile device;

modifying the first URL string to include a callback URL

parameter having the URL scheme for the first applica-
tion; and

receiving a request, from the operating system, to handle

opening a second URL string, wherein the second URL
string is generated based on the callback URL parameter
and is responsive to the opening of the first URL string.

3. The method of claim 1, wherein the receiving the defi-
nition for the integration point further comprises:

5

20

25

35

40

50

55

60

65

18

retrieving a structured file specifying a plurality of integra-
tion point definitions from a central repository acces-
sible to the first application and to the second applica-
tion.

4. The method of claim 1, wherein the determining the
second application that implements the integration point is
available on the mobile device based on the retrieved defini-
tion further comprises:

determining a URL scheme identifier associated with the

integration point based on the definition for the integra-
tion point; and

determining the URL scheme identifier is registered with

the operating system of the mobile device.
5. The method of claim 1, further comprising:
responsive to determining the second application that
implements the integration point is available on the
mobile device, executing a workflow that includes invo-
cation of the integration point at the second application
based on the definition of the integration point.
6. The method of claim 1, wherein the first URL string
comprises a task identifier parameter associated with invoca-
tion of the integration point and assigned by the first applica-
tion.
7. The method of claim 1, wherein the first URL string
comprises a plurality of callback URLs specifying a plurality
of integration points to be executed upon success of the inte-
gration point.
8. A method for inter-application communication on a
mobile device having an operating system that provides a
sandboxed environment, the method comprising:
transmitting, at a first application executing on the mobile
device, a definition for an integration point implemented
by the first application, wherein the definition specifies a
URL scheme associated with the first application;

registering the URL scheme associated with the first appli-
cation with the operating system of the mobile device;

receiving a request, from the operating system, to handle
opening a first URL string generated by a second appli-
cation, wherein the first URL string comprises the reg-
istered URL scheme and at least one parameter specified
by the definition for the integration point; and

executing a handler method associated with the integration
point using the at least one parameter specified by the
definition for the integration point.

9. The method of claim 8, wherein the transmitting the
definition for the integration point further comprises:

transmitting a structured file specifying a plurality of inte-

gration point definitions to a central repository acces-
sible to the first application and the second application.
10. The method of claim 8, wherein the first URL string
comprises a task identifier parameter associated with the
invocation of the integration point and assigned by the second
application.
11. The method of claim 8, further comprising:
determining the first URL string comprises a callback URL
parameter associated with the second application;

generating a second URL string based on the callback URL
parameter and based on the definition for the integration
point; and

invoking a return to the second application by opening the

second URL string using a system call of the operating
system of the mobile device.

12. The method of claim 11, wherein the second URL
string comprises a task identifier parameter extracted from
the first URL string and associated with the invocation of the
integration point.

US 8,839,266 B1

19

13. The method of claim 8, further comprising:
determining the at least one parameter of the first URL
string comprises a plurality of callback URLs;
determining a next URL of the plurality of callback URLs;
generating a second URL string based on the next URL,
wherein the second URL string comprises a parameter
specifying the plurality of callback URLs excluding the
next URL; and

invoking a second integration point by opening the second

URL string using a system call of the operating system
of the mobile device.

14. A non-transitory computer-readable storage medium
comprising instructions that, when executed in a computing
device, for providing inter-application communication on a
mobile device having an operating system that provides a
sandboxed environment, by performing the steps of:

retrieving, at a first application executing on the mobile

device, a definition for an integration point that specifies
functionality provided by another application executing
on the mobile device;

determining a second application that implements the inte-

gration point is available on the mobile device based on
the retrieved definition;

generating a first URL string based on the retrieved defi-

nition for the integration point, wherein the first URL
string comprises at least one parameter specified by the
definition for the integration point; and

invoking the integration point by opening the first URL

string using a system call of the operating system of the
mobile device.

15. The non-transitory computer-readable storage medium
of claim 14, further comprising:

registering a URL scheme for the first application with the

operating system of the mobile device;

modifying the first URL string to include a callback URL

parameter having the URL scheme for the first applica-
tion; and

receiving a request, from the operating system, to handle

opening a second URL string, wherein the second URL
string is generated based on the callback URL parameter
and is responsive to the opening of the first URL string.

16. The non-transitory computer-readable storage medium
of claim 14, wherein the receiving the definition for the inte-
gration point further comprises:

retrieving a structured file specifying a plurality of integra-

tion point definitions from a central repository acces-
sible to the first application and to the second applica-
tion.

17. The non-transitory computer-readable storage medium
of claim 14, wherein the determining the second application
that implements the integration point is available on the
mobile device based on the retrieved definition further com-
prises:

determining a URL scheme identifier associated with the

integration point based on the definition for the integra-
tion point; and

determining the URL scheme identifier is registered with

the operating system of the mobile device.

18. The non-transitory computer-readable storage medium
of claim 14, wherein the first URL string comprises a task
identifier parameter associated with the invocation of the
integration point and assigned by the first application.

20

25

30

35

40

45

55

60

20

19. The non-transitory computer-readable storage medium
of'claim 14, wherein the first URL string comprises a plurality
of callback URLs specitying a plurality of integration points
to be executed upon success of the integration point.
20. A non-transitory computer-readable storage medium
comprising instructions that, when executed in a computing
device, for providing inter-application communication on a
mobile device having an operating system that provides a
sandboxed environment, by performing the steps of:
transmitting, at a first application executing on the mobile
device, a definition for an integration point implemented
by the first application, wherein the definition specifies a
URL scheme associated with the first application;

registering the URL scheme associated with the first appli-
cation with the operating system of the mobile device;

receiving a request, from the operating system, to handle
opening a first URL string generated by a second appli-
cation, wherein the first URL string comprises the reg-
istered URL scheme and at least one parameter specified
by the definition for the integration point; and

executing a handler method associated with the integration
point using the at least one parameter specified by the
definition for the integration point.

21. The non-transitory computer-readable storage medium
of claim 20, wherein the transmitting the definition for the
integration point further comprises:

transmitting a structured file specifying a plurality of inte-

gration point definitions to a central repository acces-
sible to the first application and the second application.
22. The non-transitory computer-readable storage medium
of claim 20, wherein the first URL string comprises a task
identifier parameter associated with the invocation of the
integration point and assigned by the second application.
23. The non-transitory computer-readable storage medium
of claim 20, further comprising:
determining the first URL string comprises a callback URL
parameter associated with the second application;

generating a second URL string based on the callback URL
parameter and based on the definition for the integration
point; and

invoking a return to the second application by opening the

second URL string using a system call of the operating
system of the mobile device.

24. The non-transitory computer-readable storage medium
of claim 23, wherein the second URL string comprises a task
identifier parameter extracted from the first URL string and
associated with the invocation of the integration point.

25. The non-transitory computer-readable storage medium
of claim 20, further comprising:

determining the at least one parameter of the first URL

string comprises a plurality of callback URLs;
determining a next URL of the plurality of callback URLs;
generating a second URL string based on the next URL,
wherein the second URL string comprises a parameter
specifying the plurality of callback URLs excluding the
next URL; and

invoking a second integration point by opening the second

URL string using a system call of the operating system
of the mobile device.

#* #* #* #* #*

