铜合金硬币坯饼抗变色工艺及其抗变色制剂

摘要

本发明铜合金硬币坯饼抗变色工艺：退火→酸洗→漂洗 1→磨光→漂洗 2→防腐处理→漂洗 3→干燥；铜合金坯饼经退火达到所需硬度指标后，经酸液洗去表面氧化物。再经平整后，表面清洁，完全无氧化，铜合金坯饼再进入抗变色溶液，迅速发生化学反应，在其表面生成有机物转化膜。本发明改变传统的坯饼保护方式，即在坯饼表面生成 SiO₂及有机高分子化学吸附膜的保护方式。而是采用铜合金复配缓蚀技术，在以 BTA 等化合物为有效成分的试剂中，铜合金坯饼与其发生化学反应，生产致密的有机转化膜，并以无机分子填补络合物分子间空隙，从而隔绝坯饼表面电化学腐蚀所必须的空气和水，使电化学反应缺乏必要的条件，从而实现抗变色目的。
1. 铜合金硬币坯饼抗变色工艺，其特征是包括下述步骤：
 (1). 退火：将铜合金硬币坯饼进行退火处理使其达到所需硬度指标；
 (2). 酸洗：用硫酸、磷酸混合溶液去除铜合金硬币坯饼表面氧化物，时间为 24——25 分钟；
 (3). 漂洗 1：用清水将铜合金硬币坯饼进行第一次漂洗处理，时间为 9——10 分钟；
 (4). 磨光：采用易于清洗的磨光介质将铜合金硬币坯饼进行磨光平整处理，时间为 25——27 分钟；
 (5). 漂洗 2：有清水将铜合金硬币坯饼进行第二次漂洗，时间为 8——10 分钟；
 (6). 防腐处理：将表面清洁，完全无氧化的铜合金硬币坯饼完全浸入抗变色制剂中，时间为 4——10 分钟，铜合金硬币坯饼与抗变色制剂迅速发生化学反应，在铜合金硬币坯饼表面生成有机物转化膜，即 \(\text{Cu}^+ (\text{-C}_6\text{H}_3\text{N}_3) \) 表面聚合物，其化学反应为：\(\text{Cu}^+ \text{C}_6\text{H}_3\text{N}_3 \rightarrow \text{Cu}^+ (\text{-C}_6\text{H}_3\text{N}_3) \); 所述的抗变色制剂是由下述成分按配比组成：苯并三唑 2g/l，壬基酚聚氧乙稀月桂醚 4g/l，苯甲酸 0.5g/l，磷酸钠 8g/l；
 (7) 漂洗 3：用清水将铜合金硬币坯饼进行第三次漂洗，时间为 5——7 分钟；
 (8) 干燥。

2. 铜合金硬币坯饼抗变色制剂，其特征是由下述成份按配比组成：
苯并三唑：1-3g/l
壬基酚聚氧乙稀月桂醚：3-5g/l
苯甲酸：0.1-1g/l
磷酸钠：6-10g/l。

3. 铜合金硬币坯饼抗变色制剂的制备方法，其特征是由下述成份按配比组成：
苯并三唑：1—3g/l
壬基酚聚氧乙烯醚：3—5g/l
苯甲酸：0.1—1g/l
磷酸钠：6—10g/l

其制备方法：
1. 先将去离子水加热至40—50摄氏度，按上述成份配比加入壬基酚聚氧乙烯醚，待其完全溶解后加入苯并三唑；
2. 按上述配比加入苯甲酸；
3. 按上述配比加入磷酸钠；
4. 搅拌均匀。
铜合金硬币坯饼抗变色工艺及其抗变色制剂

所属技术领域

本发明涉及一种铜合金硬币坯饼抗变色工艺及其抗变色制剂，属于铜合金的表面处理工艺技术。

背景技术

随着经济的全球化发展，世界造币行业之间的合作日益密切。东南亚以及西方发达国家倾向于外购货币坯饼，在本国的造币厂进行印花。铜及铜合金以其美丽的色泽和良好的机械加工性能而备受造币行业的喜爱。但是坯饼的变色问题始终困扰着造币行业，既在坯饼完成表面处理后不能长时间保存，这在一定程度限制了坯饼的国际供货。

沈阳造币厂是我国铜合金硬币生产的基地，承担着我国绝大部分铜合金硬币的生产任务。但是每年的高温季节，坯饼变色迅速，有的仅仅几个小时就发生了明显变色，不得不投入大量的人力、物力进行返洗处理，既造成生产效率的低下，也影响成品硬币的表面质量。

目前，在造币行业普遍采用的是利用坯饼光饰阶段光饰液个别组分在坯饼表面形成的化学吸附膜来实现坯饼的抗变色保护的，事实证明这种保护效果不好。这层保护膜与基体是以化学吸附力结合的，本身膜体也不是很致密，因而保护效果差。

发明内容

本发明针对上述存在的问题而提供一种铜合金硬币坯饼抗变色工艺及其抗变色制剂。本发明将制备的抗变色制剂与铜合金硬币坯饼发生化学反应，在铜合金坯饼表面生产致密的有机转化膜，从而延缓铜合金坯饼的变色时间，解决工序间变色问题及储存、运输问题。

本发明铜合金硬币坯饼抗变色工艺如下：

1. 退火坯饼：将铜合金硬币坯饼进行退火处理使其达到所需硬度指标；

2. 酸洗：用硫酸、磷酸混合溶液去除铜合金硬币坯饼表面氧化物，时间
为 24 - 25 分钟；

3. 漂洗 1：用清水将铜合金硬币坯饼进行第一次漂洗处理，时间为 9 - 10 分钟；

4. 磨光：采用易于清洗的 SC-880 将铜合金硬币坯饼进行磨光平整处理，时间为 25 - 27 分钟；

5. 漂洗 2：用清水将铜合金硬币坯饼进行第二次漂洗，时间为 8 - 10 分钟；

6. 防腐处理：将表面清洁，完全无氧化的铜合金硬币坯饼完全浸入抗变色制剂中，时间为 4 - 10 分钟，铜合金硬币坯饼与抗变色制剂迅速发生化学反应，在铜合金硬币坯饼表面生成有机物转化膜，即 Cu-(C₆H₄N₃) 表面聚合物，其化学反应为：Cu+ C₆H₄N₃→Cu-(C₆H₄N₃)；所述的抗变色制剂是由下述成份按配比组成：苯并三唑 2g/l、壬基酚聚氧乙稀月桂醚 4g/l、苯甲酸 0.5g/l、磷酸钠 8g/l；

7. 漂洗 3：用清水将铜合金硬币坯饼进行第三次漂洗，5 - 7 分钟；

8. 干燥。

本发明铜合金硬币坯饼抗变色制剂是由下述成分按配比组成：

苯并三唑：1-3g/l

壬基酚聚氧乙稀月桂醚：3-5g/l

苯甲酸：0.1-1g/l

磷酸钠：6-10 g/l

上述抗变色制剂的制备方法是：

1. 先将去离子水加热至 40 - 50 摄氏度，按上述成份配比加入壬基酚聚氧乙稀月桂醚，待其完全溶解后加入苯并三唑；

2. 按上述配比加入苯甲酸；
3、按上述配比加入磷酸钠；
4、搅拌均匀。

本发明的有益效果是：

本发明改变了坯饼的传统保护方式，即在坯饼表面生成 SiO₂及有机高分子化学吸附膜的保护方式。而是采用铜合金复配缓蚀技术，在以苯并三唑等化合物为有效成分的试剂中，铜合金坯饼与其发生化学反应，生产致密的有机转化膜，并以无机分子填补络合物分子间空隙，从而隔绝坯饼表面发生电化学腐蚀所必须的空间和水，使电化学反应缺乏必要的条件，从而实现抗变色目的。

此有机物转化膜呈无色透明，与金属基体以化合键结合，因而结合力比化学吸附力强。膜层连续，耐磨性好，因而其对坯饼的保护作用明显好于化学吸附膜。

本发明适用于 BAK 坯饼光饰机，可以一次性完成铜合金硬币坯饼的酸洗、磨光和防腐处理。按上述工艺生产的铜合金硬币坯饼表面光亮，产品的一致性好，抗变色性能显著，可以满足造币生产的需要。

附图说明

图 1 是经和未经防腐处理坯饼的 XPS 表征全谱。

图 2 是经和未经防腐处理坯饼样品的 Cu2pXPS 谱图。

图 3 是经和未经防腐处理铜合金坯饼的 N₁s 的 XPS 谱图。

图 4A 是中性盐雾对比加速腐蚀试验照片。

图 4B 是 SO₂气体对比加速腐蚀试验照片。

图 4C 是湿热对比加速腐蚀试验照片。

图 4D 是人工汗液对比加速腐蚀试验照片。

图 1－图 3 中：a 为抗变色处理坯饼，b 为光饰坯饼。

图 4A－图 4D 中：0#为光饰坯饼，1#为抗变色处理坯饼。

下面结合附图及实施例详细描述本发明：

本发明抗变色处理的坯饼与光饰处理坯饼的 XPS 表征

XPS 表征在英国 VGSCALAB 210 型光电子能谱仪上对坯饼的表面组成进行
测量。主真空室基础真空为 4.5×10^{-11} mbar，用 300watt Mg Kα 射线为激发源，
通能 (Pass Energy) 为 20eV，步长 0.08eV，以 C1s = 285.00 结合能进行荷
电校正。谱图采集和数据处理采用 VG Eclipse Data System V1.7t 版本。

将一枚薄膜按本发明处理—抗变色处理薄膜，另一枚用光饰液处理—光饰
薄膜。

表征结果与讨论：

图 1 是两种薄膜的 XPS 表征全谱。图 1 表明两种薄膜表面主要区别在结合
能为 399.8eV 处，对应于 N1s 的结合能，表明经过抗变色处理的样品，其表面
有氮 (N) 元素存在。

图 2 给出了两枚铜合金薄膜的 Cu2p 的 XPS 谱图。由图 2 可知，光饰薄膜
Cu 2p3/2 的结合能值为 932.90eV，Cu 2p1/2 的结合能值为 952.7eV，由于+2，
+1 和零价态的 Cu 这两个峰很相近，所以从这一点不能确定 Cu 在表面的存在形
式。而抗变色处理薄膜除了在上述两个结合能位置出现两个峰外，在 954.79
和 934.97 处出现两个肩峰，表明表面铜与抗变色剂发生作用，生成了某种新
物种。

图 3 给出两枚铜合金薄膜的 N1s 的 XPS 谱图，由图 3 可知，光饰薄膜在考
察的结合能范围内没有出现明显的结合能信号，而抗变色处理薄膜在 399.8eV
有一峰，对应于 N1s 的结合能，表明抗变色溶液中某种含氮化合物与铜作用而
存在于样品表面。

为了便于参照，表 1 列出了美国 NIST XPS 数据库中的 Cu2p 和 N1s 及其化
合物的结合能值。表 2 为实验测得两枚铜合金薄膜的 Cu2p 和 N1s 的结合能值。
比较表 1 和表 2 中的结合能值可知，经过抗变色处理薄膜的 Cu2p3/2 和 N1s 结
合能值与美国 NIST XPS 数据库中报道的 Cu-（$-C_8H_8N_4$）中 Cu2p3/2 和 N1s 结合
能值一致，充分说明抗变色处理后铜与抗变色剂中的苯并三唑作用，生成了 Cu-(\(-\text{C}_8\text{H}_8\text{N}_3\)) 表面聚合物。

表 1：美国 NIST XPS 数据库中的 Cu2p 和 N1s 及其一些化合物的结合能值

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Binding energy (ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2p1/2</td>
</tr>
<tr>
<td>Cu</td>
<td>--</td>
</tr>
<tr>
<td>CuO</td>
<td>952.70</td>
</tr>
<tr>
<td>Cu,0</td>
<td>952.50</td>
</tr>
<tr>
<td>[Cu(^-) ((-\text{C}_8\text{H}_8\text{N}_3))]</td>
<td>--</td>
</tr>
<tr>
<td>[Cu(^-) ((-\text{C}_8\text{H}_8\text{N}_3))]</td>
<td>932.67</td>
</tr>
<tr>
<td></td>
<td>933.20</td>
</tr>
<tr>
<td></td>
<td>932.70</td>
</tr>
<tr>
<td></td>
<td>934.90</td>
</tr>
<tr>
<td></td>
<td>399.70</td>
</tr>
</tbody>
</table>

表 2：实验测得的经和未经防腐处理的两枚铜合金坯饼的 Cu2p 和 N1s 的结合能值

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Binding energy (ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2p1/2</td>
</tr>
<tr>
<td>Cu (b)</td>
<td>952.70</td>
</tr>
<tr>
<td>Cu (a)</td>
<td>952.70</td>
</tr>
<tr>
<td></td>
<td>954.79</td>
</tr>
<tr>
<td>N1s</td>
<td>399.80</td>
</tr>
</tbody>
</table>

结论：

综合上述，XPS 表征结果表明，经防腐处理后，铜与防腐中的苯并三唑作用，生成了 Cu\(^-\) (\(-\text{C}_8\text{H}_8\text{N}_3\)) 表面聚合物，从而起到防腐蚀、抗变色作用，阻止了坯饼表面铜的氧化。
加速腐蚀试验：

在理论上的评价的基础上，我们对两种坯饼的耐腐蚀、抗变色性能进行了加速腐蚀试验考证。试验按各项试验的国家标准和企业标准进行，具体情况如下：

中性盐雾加速腐蚀试验——GB/T10125-1997
SO₂气体加速腐蚀试验——GB/T9789-1988
湿热加速腐蚀试验——GB2423.4-81
人工汗液加速腐蚀试验——QJ/SYB07.02-1997

从图 4A-图 4D 加速腐蚀试验照片可以看出，抗变色处理坯饼的耐腐蚀、抗变色性能要明显好于光饰坯饼。

具体实施方式

实施例 1

本发明铜合金硬币坯饼抗变色工艺：

人工汗液加速腐蚀试验——QJ/SYB07.02-1997

1. 退火：将铜合金硬币坯饼进行退火处理使其达到所需硬度指标；
2. 酸洗：用硫酸、磷酸混合溶液去除铜合金硬币坯饼表面氧化物，时间为 25 分钟；
3. 漂洗 1：用清水将铜合金硬币坯饼进行第一次漂洗处理，时间为 8 分钟；
4. 磨光：采用易于清洗的 SC－880 将铜合金硬币坯饼进行磨光平整处理，时间为 26 分钟；
5. 漂洗 2：用清水将铜合金硬币坯饼进行第二次漂洗，时间为 9 分钟；
6. 防腐处理：将表面清洁，完全无氧化的铜合金硬币坯饼完全浸入抗变色制剂中，时间为 6 分钟，铜合金硬币坯饼与抗变色制剂迅速发生化学反应，使铜合金硬币坯饼表面生成有机物转化膜，即 Cu－(C₆H₃N₃) 表面聚合物，其化学反应为：Cu＋C₆H₃N₃→Cu-(C₆H₃N₃)；
7. 漂洗 3: 用清水将铜合金硬币坯饼进行第三次漂洗，时间为 6 分钟；

8. 干燥。

上述工艺适用于 BAK 硬币坯饼光饰机。以磨料与硬币坯饼重量比为 1:1 的比例装载，采用易于清洗磨光介质 SC880 取代光饰液，不在硬币坯饼表面沉淀，不影响化学反应 Cu+ C₆H₅N₃ → Cu-(C₆H₅N₃) 的进行。

本发明铜合金硬币坯饼抗变色制剂是由下述成分配比组成：

苯并三唑：1g/l
壬基酚聚氧乙稀月桂醚 3g/l
苯甲酸：0.1 g/l
磷酸钠：6g/l

上述抗变色制剂的制备方法是：

1、先将去离子水加热至 40 摄氏度，按上述成分配比加入壬基酚聚氧乙稀月桂醚 3g/l，待其完全溶解后加入苯并三唑 1g/l;
2、按上述配比加入苯甲酸 0.1 g/l;
3、按上述配比加入磷酸钠 6g/l;
4、搅拌均匀。

实施例 2

本发明铜合金硬币坯饼抗变色工艺：
退火→酸洗→漂洗 1→磨光→漂洗 2→防腐处理→漂洗 3→干燥

铜合金坯饼经退火达到所需硬度指标后，经酸液洗去表面氧化物。再经平整后，表面清洁，金属表面无氧化，再浸入抗变色溶剂中，迅速发生化学反应，在其表面生成有机物转化膜。

所述的抗变色制剂可采用市售产品。

实施例 3

本发明铜合金硬币坯饼抗变色工艺同实施例 1。
其抗变色制剂是由下述成分配比组成:
苯并三唑：3g/l

壬基酚聚氧乙烯月桂醚：5g/l

苯甲酸：1g/l

磷酸钠：10g/l

上述抗变色制剂的制备方法是：

1、先将去离子水加热至45摄氏度，按上述成分配比加入壬基酚聚氧乙烯月桂醚5g/l，待其完全溶解后加入苯并三唑3g/l；

2、按上述配比加入苯甲酸1g/l；

3、按上述配比加入磷酸钠10g/l；

4、搅拌均匀。

实施例4

本发明铜合金硬币坯饼抗变色工艺同实施例1。

其抗变色制剂是由下述成分按配比组成：

苯并三唑：2g/l

壬基酚聚氧乙烯月桂醚：4g/l

苯甲酸：0.5g/l

磷酸钠：8g/l

上述抗变色制剂的制备方法是：

1、先将去离子水加热至50摄氏度，按上述成分配比加入壬基酚聚氧乙烯月桂醚4g/l，待其完全溶解后加入苯并三唑2g/l；

2、按上述配比加入苯甲酸0.5g/l；

3、按上述配比加入磷酸钠8g/l；

4、搅拌均匀。

上述实施例各工序时间表3为准：
<table>
<thead>
<tr>
<th>工序名称</th>
<th>时间（min）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸洗</td>
<td>24 - 26</td>
<td>设定正转时间多于反转时间</td>
</tr>
<tr>
<td>漂洗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>漂洗 1</td>
<td>7 - 9</td>
<td>洗去表面残液</td>
</tr>
<tr>
<td>漂洗 2</td>
<td>8 - 10</td>
<td>洗去表面残液</td>
</tr>
<tr>
<td>漂洗 3</td>
<td>7 - 8</td>
<td>洗去表面残液</td>
</tr>
<tr>
<td>磨光</td>
<td>25 - 27</td>
<td>尽可能多的使用反转</td>
</tr>
<tr>
<td>防腐处理</td>
<td>4 - 8</td>
<td>保证防腐液完全浸泡坯饼</td>
</tr>
</tbody>
</table>