EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 18.09.85

Application number: 80201107.2

Date of filing: 24.11.80

Method for producing an improved layer, particular for a drill bit.

Priority: 04.12.79 NL 7908745

Date of publication of application:

10.06.81 Bulletin 81/23

Publication of the grant of the patent:

18.09.85 Bulletin 85/38

Designated Contracting States:

DE FR GB IT NL SE

References cited:

- FR-A-1 434 158
- GB-A-1 367 762
- NL-A- 54 863
- NL-A-7 703 234
- US-A-3 882 581

Proprietor: SKF Industrial Trading & Development Company B.V.

Kelvinbaan 16 P.O. Box 50

NL-3430 AB Nieuwegein (NL)

Inventor: van Nederveen, Hans Bertil

Reelaan 23

Bosch en Duin (NL)

Inventor: Verburgh, Martin Bastiaan

Bisschopsweg 212

Amersfoort (NL)

Representative: Merkelbach, B.

SKF Engineering & Research Centre B.V.

Kelvinbaan 16 P.O. Box 50

NL-3430 AB Nieuwegein (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

The invention relates to a method for producing a solid core-member on which an exterior layer is applied by thermal spraying, followed by hot isostatic compaction.

Such a method is disclosed in British Patent 1,367,762. In application of the method described above to objects wherein it is required that the exterior layer applied be capable, in operation of withstanding great variable forces, for example, that it must be resistant to wear, however, it happens that this layer subjected to erosive circumstances often chips off, thus shortening the life of the object obtained.

The invention accordingly provides a method of the type mentioned at the beginning, which improves the service of objects subjected thereto and is characterized in that on said member a layer of powder material is applied by cold isostatic compaction, followed by sintering, whereafter an exterior layer, which is a wear-resistant layer, is applied by plasma spraying and whereafter the said structure obtained is isostatically hot compacted.

It has been found that a suitable powder material for this purpose is a nickel-containing alloy steel powder with preferably 3.5% nickel therein.

For the performance of a method pursuant to the invention a supply of powder material is introduced into a rubber mold and distributed, after which the core-member, which is usually a type of steel suitable for a bearing, is placed in the powder, following which the powder is pressed on. The core-member may alternatively be placed in the mold first, after which the powder material is introduced and pressed on. The mold is closed and is then isostatically compacted cold until a coherent member having a density of approximately 90% is obtained. The compact removed from the mold is then sintered in a furnace. After cooling the sintered object is coated with a wear-resistant layer by thermal spraying, for example plasma spraying, after which the structure thus obtained is isostatically compacted hot. This hot isostatic compacting may be done by inserting the entire object in a thin-walled deep-drawn vessel or container of low-carbon steel having a wall thickness of approximately 0.5mm, filled with a ceramic powder. This vessel is then heated and placed under pressure on all sides. After hot isostatic compacting the object may be readily separated from the surrounding ceramic mass and cleaned by sand blasting. This method proves to procure components with accurately shaped dimensions comparable to those of a forged product.

When e.g. a drill bit for rock is produced in this fashion, after sintering not the entire surface of the cutting teeth but only the parts thereof which come directly into contact with the rock are coated with the wear-resistant layer by thermal spraying. Following the selective application of the wear-resistant layer the preformed drill bit is subjected in its entirety to the method as defined above. The European Patent 0005285 discloses a method for applying a wear-resistant layer on a rock drill bit accordingly to which the sprayed-on layer however is directly consolidated by hot isostatic compaction.

The invention is now explained in greater detail by means of the accompanying drawing, which represents a preferred embodiment of the invention.

Fig. 1 is a cross section of a drill bit produced according to the invention.

Fig. 2 is a perspective view of a portion of this drill bit.

The drill bit 1 shown in Fig. 1 is composed of a core member 3, made of a bearing material, in which are applied the races 2 for the following elements (not shown). On this core member 3, solid at the beginning, is applied, in a rubber mold, a layer 4 of powder, which combination is isostatically compacted cold. This operation takes place preferably under a pressure of approximately 6000 atmospheres at room temperature. Then the preformed drill bit, isostatically compacted cold, is removed from the mold and sintered in a sintering furnace at a temperature of approximately 1200°C at 1 atmosphere under reduction by hydrogen for approx. 1 hour, which operations lead to a density of approx. 90% of the compacted material. Then, by means of plasma spraying technique, the wear-resistant layer 5 is applied on the layer 4 and the object obtained is then inserted into a vessel or container and isostatically compacted hot under a pressure of for example 1600 atmospheres and at a temperature of approx. 1100°C for at least 2 hours. This operation results in a density of the layers 4 and 5 of 99% and a very solid bond between the layers.

It will be found by the method pursuant to the invention that the mechanical properties of the drill bit thus formed are greatly improved, like the bond between layers 4 and 5, on the one hand, and the layer 4 and the core member 3, on the other. By this means the desired effect of very high resistance to wear and resistance to chipping of the cutting teeth is obtained, combined with a core member which functionally has other possible applications, such as, for example, the function of a bearing.

It is noted that the original solid core member 3, after mechanical operations and heat treatment, acquires the shape, as represented in Fig. 1, in which the races 2 of the rolling elements are supplied.

It may be seen further from Fig. 2 that not the entire surface of the cutting teeth of the drill bit is provided with the wear-resistant layer 5, but that the wear-resistant layer is applied only on the places where the tooth comes directly into contact with rock during operation.

Thus there is procured by the invention a device, such as a drill bit, which in principle consists of three parts, namely, a significantly improved cutting part 5, a supporting part 4 and a
core or bearing part 3, which parts are combined in an economically and technically advantageous manner such that the said drill bit satisfies the requirements set.

Claims

1. Method for producing a solid core-member on which an exterior layer is applied by thermal spraying, followed by hot isostatic compaction characterized in that on said member (3) a layer (4) of a powder material is applied by cold isostatic compaction, followed by sintering, whereafter an exterior layer (5), which is a wear-resistant layer, is applied by plasma spraying and whereafter the said structure obtained is isostatically hot compacted.

2. Method according to claim 1, characterized in that the core-member (3) forms a hollow piece made of a bearing material which is capable of receiving rolling bearing elements.

3. Method according to claim 1 or 2, characterized in that the powder material of said first layer (4) is a nickel-containing alloy steel powder.

4. Method according to claim 3, characterized in that the steel powder contains 3.5% nickel.

5. Method according to claims 1-4, characterized in that, after sintering the wear-resistant layer (5) is only sprayed on surface parts of said first layer (4) which in operation are directly subjected to wearing circumstances.

Patentansprüche

1. Verfahren zum Herstellen eines Massivkern-Bauteils, an welchem eine äußere Schicht durch Wärmespritzen, gefolgt von heißer isostatischer Verdichtung, angebracht wird, dadurch gekennzeichnet, daß an dem Bauteil (3) ein Schicht (4) eines Pulvermaterials durch kalte isostatische Verdichtung, gefolgt von einer Sinterung, angebracht wird, woraufhin die äußere Schicht (5), die eine verschleiβfeste Schicht ist, durch Plasmaspritzen angebracht wird, und woraufhin das dadurch erhaltene Gebilde isostatisch heißverdichtet wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Kern-Bauteil (3) ein aus einem Lagermaterial hergestelltes Hohlteil bildet, das in der Lage ist, Wälzkörper aufzunehmen.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Pulvermaterial der ersten Schicht (4) ein Nickel enthaltendes Sonderstahlpulver ist.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Stahlpulver 3,5% Nickel enthält.

5. Verfahren nach Ansprüchen 1—4, dadurch gekennzeichnet, daß nach der Sinterung die verschleiβfeste Schicht (5) nur auf diejenigen Oberflächenteile der ersten Schicht (4) gespritzt wird, die im Betrieb unmittelbar Abnutzungen unterworfen sind.

Revendications

1. Procédé de fabrication d'un élément central résistant, sur lequel une couche extérieure est appliquée par pulvérisation à chaud, suivie d'une compression isostatique à chaud, caractérisé en ce que, sur l'élément (3), une couche (4) de matière en poudre est appliquée par compression isostatique à froid, suivie d'un frittage, après quoi une couche extérieure (5), qui est une couche résistante à l'usure, est appliquée par projection de plasma et après quoi la structure obtenue est comprimée isostatiquement à chaud.

2. Procédé selon la revendication 1, caractérisé en ce que l'élément central (3) forme une pièce creuse en matière antifricion capable de recevoir des éléments de roulements roulants.

3. Procédé selon la revendication 1, ou 2, caractérisé en ce que la matière en poudre de la première couche 4 est une poudre d'acier allié contenant du nickel.

4. Procédé selon la revendication 3, caractérisé en ce que la poudre d'acier contient 3,5% de nickel.

5. Procédé selon les revendications 1 à 4, caractérisé en ce que, après le frittage, la couche (5) résistante à l'usure est projetée uniquement sur des parties de la surface de la première couche (4) qui, en fonctionnement, sont directement soumises à des conditions d'usure.