
US 2004O139383A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0139383 A1

Salvi et al. (43) Pub. Date: Jul. 15, 2004

(54) METHOD AND APPARATUS FOR CODING (52) U.S. Cl. .. 714/759
BITS OF DATA IN PARALLEL

(76) Inventors: Rohan S. Salvi, San Diego, CA (US);
Michael A. Howard, San Diego, CA 57 ABSTRACT
(US) (57)

Correspondence Address:
Qualcomm Incorporated
Patents Department
5775 Morehouse Drive
San Diego, CA 92.121-1714 (US) and a second (inner) encoder coupled in cascade. The first

A concatenated encoder capable of coding multiple data bits
in parallel and including a first (outer) encoder, a memory,

encoder receives and codes M data bits in parallel in
(21) Appl. No.: 10/745,089 accordance with a first coding Scheme to generate MR code

bits. The memory receives and Stores unpunctured ones of
(22) Filed: Dec. 22, 2003 the MR code bits from the first encoder. The second encoder

Related U.S. Application Data receives and codes N code bits in parallel in accordance with
a Second coding Scheme to generate coded data. M and N

(63) Continuation of application No. 09/957,820, filed on can be any values (e.g., Me8, Ne4). Each encoder can be
Sep. 20, 2001, now Pat. No. 6,701,482. a (e.g., a rate %) convolutional encoder that implements a

particular polynomial generator, and can be implemented Publication Classification
with one or more look-up tables, a State machine, or Some

(51) Int. Cl. .. H03M 13700 other design.

1OO

110
A

112

DATA
SOURCE

114

ENCODER

Patent Application Publication Jul. 15, 2004 Sheet 1 of 11 US 2004/0139383 A1

S.
8

&

e
s

e s

2
S

US 2004/0139383 A1

HEGIOONE -HEIGIOONE T\/NOILOTO/\NOOHE/\\/ETHELNITV/NO||LINTOANOO HENNIHE|| []O

Patent Application Publication Jul. 15, 2004 Sheet 2 of 11

Patent Application Publication Jul. 15, 2004 Sheet 3 of 11 US 2004/0139383 A1

g g
ea ca

s

Patent Application Publication Jul. 15, 2004 Sheet 5 of 11 US 2004/0139383 A1

5OO
U0 x -1
u x2

ua - || || -----
U4 EN 512A514A, 510
5 X

.. 1 6 X

7 PHASE 512B
- P 54B

|HE) . X2 d

PHASE
512C 514C

HEC X3 H
PHASE

512D 514D

EC P. X 4
520 ----------PHASE

- - - -Y------------- - - - - - - - - - - - -
522E

522A yb
4. yb

= H O iseaf || ||
522B yb

5 yb

522G

522C yb
6 yb

2
522H 522D

yb
7 yb

3

Patent Application Publication Jul. 15, 2004 Sheet 6 of 11 US 2004/0139383 A1

- - - - - - yoao
542A yoa1

MUX ODO2 MUX yoa2
A : 542B5'0'

HNygd Mux E MUX yoa3
532B r 542C

HNya Mux y Oa4
532C ?is HNyas yoa5
532D. i 542E

H MUX yoa6
542F

MUX
H 530 o- 'oa7

- - - - - -

| |I|| ; ; ,54,540B HNyed MUXHyo O

532B 544B.
R MUX yob1
H O

1632F 544C Eye: MuxH-yota
ITT 532G -?; HNy. MUXHya O

532H} ?t EHTNyc4 MUXH> y RD MUX Ob4
S32 544F

Es, Mux yob5

Patent Application Publication Jul. 15, 2004 Sheet 7 of 11 US 2004/0139383 A1

Vo X 600
V1 X2 61 O -1

- - - - - - - - - - - a
V2 612A 614A

V3 EED P. X
H 1
| PHASE;
HD 612B 64B

P. X2
PHASE

2622B yho E. Mux - yo
C 22D y yf 1 64.4B E. MUX H> y

H 622E.; y2 644C HD

HER : 622G, y HR) s: 644D
:03 MUX y y3 ib3
O
- - - - - - - - - - -
- - - - - - - - - - - -

He MUX Hy iaO
ye1 642B

C
2 2 H M U X y ial

Patent Application Publication Jul. 15, 2004 Sheet 8 of 11 US 2004/0139383 A1

8 t
>

CO :
9

Z.
d CC LU

CD

098AHOWNEW

US 2004/0139383 A1

S TOHLNOOSE HOJCIV/ HOIv?EN?0 SE HOJCIV/
LINT) TOHI NOO

LINT. §)NISSE OOHc]819 HEGIOONE

SE HOOV/Z08

O 18

008

Patent Application Publication Jul. 15, 2004 Sheet 10 of 11

Patent Application Publication Jul. 15, 2004 Sheet 11 of 11 US 2004/0139383 A1

START

RECEIVE M DATA BITS FROM
A PACKET OF DATA

CODEM DATA BITS IN
PARALLEL WITH A FIRST
CODING SCHEME TO

GENERATE MR CODE BITS

PUNCTURE ZERO ORMORE
GENERATED CODE BITS

STORE UNPUNCTURED
CODE BITS TO MEMORY

ENTRE
PACKET CODED2

YES

CODEN CODE BITS IN PARALLEL WITH A SECOND 924
CODING SCEME TO GENREATE NR CODE BITS

PUNCTURE ZERO ORMORE - 9
GENERATED CODE BITS

PROVIDE UNPUNCTURED 928
CODE BITS AS CODED DATA

FIG. 9

RETRIEVEN CODE BITS 92
FROMMEMORY

2

2

6

US 2004/0139383 A1

METHOD AND APPARATUS FOR CODING BITS
OF DATA IN PARALLEL

CLAIM OF PRIORITY UNDER 35 U.S.C. S120

0001. The present application for patent is a Continuation
and claims priority to patent application Ser. No. 09/957,
820, entitled “METHOD AND APPARATUS FOR COD
ING BITS OF DATA IN PARALLEL,” filed Sep. 20, 2001,
now allowed, and assigned to the assignee hereof and hereby
expressly incorporated by reference herein.

BACKGROUND

0002) 1. Field
0003. The present invention relates to data communica
tions. More particularly, the present invention relates to
coding multiple bits of data in parallel (e.g., using a mul
tiple-port memory) to significantly reduce delays associated
with coding.
0004 2. Background
0005. In a typical digital communications system, data is
processed, modulated, and conditioned at a transmitter unit
to generate a modulated Signal that is then transmitted to one
or more receiver units. The data processing may include, for
example, formatting the data into a particular frame format,
coding the formatted data with a particular coding Scheme to
provide error detection and/or correction at the receiver
units, channelizing (i.e., covering) the coded data, and
Spreading the channelized data over the System bandwidth.
The data processing is typically defined by the System or
Standard being implemented.
0006. At the receiver unit, the transmitted signal is
received, conditioned, demodulated, and digitally processed
to recover the transmitted data. The processing at the
receiver unit is complementary to that performed at the
transmitter unit and may include, for example, despreading
the received Samples, decovering the despread Samples, and
decoding the decovered Symbols to recover the transmitted
data.

0007. The ability to correct transmission errors enhances
the reliability of a data transmission. Many digital commu
nications Systems employ a convolutional code or a Turbo
code to provide error correction capability at the receiver
units. Convolutional codes operate on Serial data, one or a
few bits at a time. There are a variety of useful convolutional
codes, and a variety of algorithms for decoding the received
coded information Sequences to recover the original data.
Turbo coding specifically is a parallel-concatenated convo
lutional coding Scheme. A concatenated code is a cascaded
combination of two or more codes and is used to provide
additional error correction capabilities. For a concatenated
code, the code bits between the coding Stages may be
interleaved (i.e., reordered) to provide temporal diversity,
which can further improve performance. An entire packet or
frame of code bits is typically Stored before the reordering
is performed. The reordered code bits are then serially
retrieved and coded by the next coding Stage.
0008 Conventionally, convolutional and Turbo coding
are performed Serially on an input bit Stream. For each clock
cycle, one data bit is provided to the encoder, and two or
more code bits are generated depending on the code rate of

Jul. 15, 2004

the encoder. Some of the code bits may then be punctured
(i.e., deleted) to obtain code bits at other code rates.
0009 Digital multiple access communications systems
typically transmit data in packets or frames to allow for
efficient Sharing of System resources among active users. For
Services that cannot tolerate long delays (e.g., voice, Video),
the packets are selected to be short in duration (e.g., 10
mSec), and the codes are accordingly selected to have shorter
processing delayS. However, for improved coding efficiency,
it is desirable to process and code larger sized packets, which
can result in longer processing delays using the conventional
technique that Serially codes data. The long processing
delays may adversely impact the performance of the com
munications System. For example, a particular user or data
rate may be Selected for a particular data transmission based
on the conditions of the communications link. If the pro
cessing delays are excessively long, the link conditions may
have changed by the time of the data transmission, and
performance may be compromised or adversely affected.
0010 AS can be seen, techniques that can be used to
efficiently code data with Shorter processing delays are
highly desirable.

SUMMARY

0011. According to one aspect, encoders are capable of
coding multiple bits in parallel to greatly shorten the coding
time. Two or more encoders can be serially concatenated to
form a concatenated encoder, such as a Turbo encoder
commonly used in CDMA communications systems. By
coding M bits in parallel with a first (outer) encoder and N
bits in parallel with a Second (inner) encoder, the overall
coding delays for the concatenated encoder can be signifi
cantly reduced. An interleaver typically couples between the
first and Second encoderS and Supports parallel coding with
its ability to receive multiple code bits for a write operation
and provide multiple code bits for a read operation.
0012 One embodiment provides a concatenated encoder
for coding multiple data bits in parallel. The concatenated
encoder includes a first (outer) encoder, a memory, and a
Second (inner) encoder coupled in cascade. The first encoder
receives and codes M data bits in parallel in accordance with
a first coding Scheme to generate MR code bits, where R is
related to the code rate of the Outer encoder (e.g., R=2 for a
rate % encoder). The memory receives and Stores the
unpunctured (i.e., non-deleted) MR code bits from the first
encoder. The Second encoder receives and codes N code bits
in parallel in accordance with a Second coding Scheme to
generate coded data comprising NR code bits, when R is
related to the code rate of the inner encoder (e.g., R=2 for a
rate % encoder). M and N can be any values. For example,
M can be eight or more, and N can be four or more.
0013 Each of the first and second encoders can be a
convolutional encoder that implements a particular polyno
mial generator matrix (e.g., a rate % convolutional code).
Each encoder can also be implemented with one or more
look-up tables, a State machine, or Some other design. To
reduce memory requirements, the coding can be performed
and completed by both encoderS for a particular packet
before coding is initiated on another packet. To reduce
processing delays, the first encoder can code one packet
while the Second encoder codes another packet (i.e., pipe
lined coding).

US 2004/0139383 A1

0.014. The memory can be implemented with a multi-port
memory having P ports (P>1), a single memory unit, or
multiple memory units. The memory can be designed to
store W words in parallel for a write operation and provide
R words in parallel for a read operation, with each word
including a particular number of code bits (e.g., eight). The
memory can be operated to provide interleaving of code bits
stored within the memory. For example, W words can be
Stored to Sequential rows in the memory with a write
operation and R words can be retrieved from permutated
rows in the memory with a read operation.

0.015 The concatenated encoder can further include a set
of N multiplexers used to provide N code bits in parallel to
the Second encoder. Each multiplexer receives a respective
word from the memory, selects one of the code bits in the
received word, and provides the Selected bit to the Second
encoder.

0016. Another embodiment provides a convolutional
encoder for coding multiple data bits in parallel. The con
volutional encoder includes a State machine coupled to an
output generator. The State machine receives M data bits in
parallel and provides a set of values indicative of the next
State of the State machine. The next State is a function of the
M data bits and the current state of the state machine. The
output generator also receives the M data bits and the current
State and generates MR code bits in response thereto. Mand
MR can be any number greater than one (e.g., M28,
MR216).
0.017. The state machine typically implements a particu
lar polynomial generator matrix and can be implemented
with a set of logic elements (e.g., gates) coupled to a set of
registers. Each logic element couples to Selected ones of the
M data bits and the current State values to implement a
particular logic function for one bit of the State machine. The
registerS Store output values from the logic elements and the
register outputs comprise the current State of the State
machine.

0.018 To code packets of data, the output generator may
include first and Second output generators. The first output
generator receives the M data bits and the current State and
generates MR code bits in response thereto for a first coding
phase (e.g., data). The Second output generator also receives
the M data bits and the current state and generates MR code
bits in response thereto for a second coding phase (e.g.,
code-tail). The code bits from either the first or second
output generator are Selected, depending on the coding
phase being executed. The State machine is typically Set to
a known state (e.g., all Zeros) in the Second coding phase.
0.019 Yet another embodiment provides a data encoder
for coding multiple bits in parallel. The data encoder
includes an input interface, a multi-bit encoder, a memory,
and an output interface. The input interface receives M data
bits and provides the received bits to the multi-bit encoder.
The multi-bit encoder can be selected to receive and code the
M data bits in parallel to generate MR code bits, or to receive
and code N code bits in parallel to generate NR code bits.
The memory stores unpunctured bits of the MR code bits
from the multi-bit encoder and, when directed, provide N
code bits to the multi-bit encoder. The output interface
receives the NR code bits from the multi-bit encoder and
provides unpunctured bits of the NR code bits as coded data.

Jul. 15, 2004

The data encoder typically further includes an address
generator that generates addresses for write and read opera
tions for the memory.

0020 Still another embodiment provides a transmitter
unit for use in a communications System (e.g., a CDMA
System). The transmitter unit includes an encoder, a modu
lator, and a transmitter coupled in cascade. The encoder
receives and codes M data bits in parallel in accordance with
a first coding Scheme to generate MR code bits, Stores
unpunctured ones of the MR code bits, interleaves code bits
for a particular packet, receives and codes N code bits in
parallel in accordance with a Second coding Scheme to
generate NR code bits, and provides unpunctured ones of the
NR code bits as coded data. The modulator receives and
modulates the coded data with a particular modulation
Scheme to generate modulated data. And the transmitter
receives and processes the modulated data to generate a
modulated Signal Suitable for transmission. The encoder can
be designed to implement a Turbo code or a concatenated
code.

0021 Another embodiment provides a method for per
forming concatenated coding of multiple data bits in paral
lel. In accordance with the method, M data bits are received
and coded in parallel in accordance with a first coding
scheme to generate MR code bits. Zero or more of the MR
code bits may be punctured with a particular puncturing
Scheme, and the unpunctured code bits are Stored to a
memory. At the appropriate time, N code bits are retrieved
from the memory and coded in parallel in accordance with
a Second coding Scheme to generate coded data. For effi
ciency and reduced delays, W words of unpunctured code
bits may be written concurrently to W ports of the memory,
and R words of code bits may be read concurrently from R
ports of the memory. To provide interleaving, W words can
be stored to Sequential rows in the memory with a write
operation and R words can be retrieved from permutated
rows in the memory with a read operation.

0022. Other aspects and embodiments of the invention
are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

0023 The features, nature, and advantages of the present
invention will become more apparent from the detailed
description Set forth below when taken in conjunction with
the drawings in which like reference characters identify
correspondingly throughout and wherein:

0024
System;

0025 FIG. 2 is a block diagram of an encoder that can be
designed to implement Some embodiments of the present
invention;

0026 FIG. 3 is a diagram of a concatenated encoder
which implements a particular set of polynomial generator
matrices according to one embodiment;
0027 FIG. 4 is a block diagram of a convolutional
encoder for coding multiple data bits in parallel according to
one embodiment;

0028 FIGS. 5A and 5B are schematic diagrams of a
convolutional encoder which implements a Specific polyno

FIG. 1 is a block diagram of a communications

US 2004/0139383 A1

mial generator matrix and for coding eight data bits in
parallel according to various embodiments,

0029 FIG. 6 is a schematic diagram of one embodiment
of a convolutional encoder that implements another specific
polynomial generator matrix and can code four code bits in
parallel;

0030)
0031 FIGS. 7B and 7C are diagrams of an interface
between an outer convolutional encoder and an interleaver
without and with puncturing, respectively, according to
various embodiments,

0.032 FIG. 8 is a block diagram of an encoder according
to one embodiment; and

0033 FIG. 9 is a flow diagram of a method for perform
ing concatenated coding of multiple data bits in parallel
according to one embodiment.

FIG. 7A is a diagram of an interleaver;

DETAILED DESCRIPTION

0034 FIG. 1 is a simplified block diagram of an embodi
ment of a communications system 100 in which various
aspects of the present invention may be implemented. At a
transmitter unit 110, traffic data is sent, typically in packets
or frames, from a data Source 112 to an encoder 114 that
formats and codes the data using a particular coding Scheme.
Encoder 114 typically further performs interleaving (i.e.,
reordering) of the code bits. A modulator (MOD) 116 then
receives, channelizes (i.e., covers), and spreads the coded
data to generate Symbols that are then converted to one or
more analog signals. The analog signals are filtered,
(quadrature) modulated, amplified, and upconverted by a
transmitter (TMTR) 118 to generate a modulated signal,
which is then transmitted via an antenna 120 to one or more
receiver units.

0035. At a receiver unit 130, the transmitted signal is
received by an antenna 132 and provided to a receiver
(RCVR) 134. Within receiver 134, the received signal is
amplified, filtered, downconverted, quadrature demodu
lated, and digitized to provide Samples. The samples are
despread, decovered, and demodulated by a demodulator
(DEMOD) 136 to generate demodulated symbols. A decoder
138 then decodes the demodulated symbols and (possibly)
reorders the decoded data to recover the transmitted data.
The processing performed by demodulator 136 and decoder
138 is complementary to the processing performed at trans
mitter unit 110. The recovered data is then provided to a data
Sink 140.

0.036 The signal processing described above supports
transmissions of Voice, Video, packet data, messaging, and
other types of communication in one direction. A bi-direc
tional communications System Supports two-way data trans
mission. However, the Signal processing for the other direc
tion is not shown in FIG. 1 for simplicity.
0037 Communications system 100 can be a Code Divi
sion-Multiple Access (CDMA) system, a Time Division
Multiple Access (TDMA) communications System (e.g., a
GSM system), a Frequency Division-Multiple Access
(FDMA) communications System, or other multiple access
communications System that Supports Voice and data com
munication between users over a terrestrial link.

Jul. 15, 2004

0038. The use of CDMA techniques in a multiple access
communications system is disclosed in U.S. Pat. No. 4,901,
307, entitled “SPREAD SPECTRUMMULTIPLE ACCESS
COMMUNICATION SYSTEM USING SATELLITE OR
TERRESTRIAL REPEATERS, and U.S. Pat. No. 5,103,
459, entitled “SYSTEMAND METHOD FOR GENERAT
ING WAVEFORMS IN A CDMA CELLULAR TELE
PHONE SYSTEM.” Another specific CDMA system is
disclosed in U.S. patent application Ser. No. 08/963,386,
entitled “METHOD AND APPARATUS FOR HIGHRATE
PACKET DATA TRANSMISSION," filed Nov. 3, 1997
(hereinafter referred to as the HDR system), now U.S. Pat.
No. 6,574,211, issued on Jun. 3, 2003 to Padovani et al.
These patents and patent application are assigned to the
assignee of the present invention and incorporated herein by
reference.

0039) CDMA systems are typically designed to conform
to one or more standards such as the “TIA/EIA/IS-95-A
Mobile Station-Base Station Compatibility Standard for
Dual-Mode Wideband Spread Spectrum Cellular System”
(hereinafter referred to as the IS-95-A standard), the “TIA/
EIA/IS-98 Recommended Minimum Standard for Dual
Mode Wideband Spread Spectrum Cellular Mobile Station”
(hereinafter referred to as the IS-98 standard), the standard
offered by a consortium named "3rd Generation Partnership
Project” (3GPP) and embodied in a set of documents includ
ing Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS
25.213, and 3G TS 25.214 (hereinafter referred to as the
W-CDMA standard), and the “TR-45.5 Physical Layer Stan
dard for cdma2000 Spread Spectrum Systems” (hereinafter
referred to as the CDMA-2000 standard). New CDMA
Standards are continually proposed and adopted for use.
These CDMA standards are incorporated herein by refer
CCC.

0040 FIG. 2 is a block diagram of an encoder 200 that
can be designed to implement Some embodiments of the
present invention. Encoder 200 may be used for encoder 114
in FIG. 1. In this embodiment, encoder 200 implements a
concatenated code and includes an outer convolutional
encoder 212, an interleaver 214, and an inner convolutional
encoder 216 coupled in cascade. Outer convolutional
encoder 212 provided to interleaver 214 for storage. Once an
entire packet of code bits has been Stored in interleaver 214,
the code bits are retrieved and provided to inner convolu
tional encoder 216. To achieve the interleaving, the code bits
are read out in an order that is different from the order in
which the bits are written to interleaver 214. Outer convo
lutional encoder 212 receives and convolutionally codes the
code bits to generate coded data, which is then provided to
the Subsequent processing Stage.

0041 Aconventional convolutional encoder receives and
codes data Serially, one bit at a time (i.e., per clock cycle).
For communications Systems that transmit data in large
packets, the Serial coding of data can result in long process
ing delayS. Moreover, for a concatenated coder made up of
multiple convolutional encoderS coupled in cascade, the
processing delays can be excessively long, especially if the
outer and inner convolutional encoders both code bits Seri
ally.

0042. In one aspect, a convolutional encoder is capable of
receiving and coding multiple (M) bits in parallel. This
capability allows the convolutional encoder to code a packet

US 2004/0139383 A1

of data in approximately (1/M)th the amount of time
required by a conventional convolutional encoder. The ben
efits are more pronounced for a concatenated coder (e.g., a
Turbo coder) when each of the individual convolutional
encoderS processes bits in parallel.
0043. According to another aspect, an interleaver is
capable of Storing and providing multiple bits of data in
parallel. The interleaver may be implemented using, for
example, a multi-port memory. When used in combination
with the convolutional encoderS described herein, the inter
leaver can further reduce the processing delayS. Since data
can be written to, and read from the interleaver in a fraction
of the time.

0044) For clarity, an exemplary embodiment is now
described for an encoder used for a downlink data transmis
Sion in the communications System described in the afore
mentioned U.S. patent application Ser. No. 08/963,386 (i.e.,
the HDR system). The HDR system employs a concatenated
code comprised of an outer convolutional code, interleaving,
and an inner convolutional code. The HDR system also
defines two packet formats having the properties listed in
Table 1.

TABLE 1.

Packet Packet
Parameters Format 1 Format 2 Units

Total bits/packet 1024 2048 bits
Outer convolutional
encoder

Input data bits/packet 101.8 2042 bits
Code-tail bits/packet 4 4 bits
Outer code rate 1/2 2/3
Outer code puncture pattern (1111) (1011)
Output code bits/packet 2044 3069 bits
Interleaver depth 2O48 3072 bits
Inner convolutional encoder

Input code bits/packet 2044 3069 bits
Code-tail bits/packet 4 3 bits
Inner code rate 1/2 3f4
Inner code puncture pattern (111111) (111001)
Output code bits/packet 4096 4096 bits
Overall code rate 1f4 1/2

0.045. In the HDR system, the outer convolutional
encoder implements a rate 72 convolutional code defined by
the following polynomial generator matrix:

x + x + x + 1 Eq. (1)
Go(x) = |, 4 3 1

0046) The inner convolutional encoder in the HDR sys
tem implements a rate 72 convolutional code defined by the
following polynomial generator matrix:

x + x + 1 Eq. (2)
x + 1

0047 FIG. 3 is a diagram of an encoder 300 that imple
ments the outer and inner convolutional codes defined by

Jul. 15, 2004

equations (1) and (2). The data bits u are provided to an outer
convolutional encoder 310 that implements equation (1) and
generates two outputs y, and y. Within encoder 310, the
data bits u are provided to a Summer 312 that further couples
in cascade with registers 314a through 314d (which are used
to implement a set of delays). The outputs from summer 312
and registers 314A, 314B, and 314D are summed by sum
mers 316A, 316B, and 316C to implement the numerator of
the Second element in the polynomial generator matrix
expressed in equation (1). The outputs from registers 314C
and 314D are summed by a Summer 318 and provided to
Summer 312 to implement the denominator of the second
element in equation (1). The input data bits u are provided
as the first output y, and the output from Summer 316c
comprises the Second output y.
0048. The code bits in the outputs y, and y of outer
convolutional encoder 310 may be punctured (not shown in
FIG. 3 for simplicity). The unpunctured code bits are then
provided to interleaver 330 and reordered. The reordered
code bits V are then provided to an inner convolutional
encoder 340 that implements equation (2) and generates two
outputs y, and y. Within encoder 340, the code bits v are
provided a Summer 342 that couples in cascade with regis
ters 344A and 344B. The outputs from Summer 342 and
registers 344A and 344B are summed by Summers 346A and
346B to implement the numerator of the second element in
the polynomial generator matrix expressed in equation (2).
The output from register 344A is provided to Summer 342 to
implement the denominator of the Second element in equa
tion (2). The input code bits v are provided as the first output
y and the output from Summer 346B comprises the Second
Output y.
0049 Conventionally, the data bits u are provided serially
to encoder 310 and the code bits v are also provided serially
to encoder 340. For each input data bit, outer convolutional
encoder 310 generates two code bits. Interleaver 330
receives and Stores the code bits, and provides the code bits
serially to inner convolutional encoder 340. The coding of
the bits in a Serial manner results in long processing delayS.
0050. The convolutional encoder of one embodiment is
capable of coding multiple bits in parallel to significantly
Shorten the coding delayS. For each clock cycle, multiple
(e.g., M) data bits can be received and coded to generate
multiple code bits. For a rate % encoder, 2M code bits are
generated for the M data bits. M can be selected to be any
number Such as, for example, 4, 8, 16, 32, and So on. Various
alternate embodiments of Such a convolutional encoder are
described below.

0051. Many digital communications systems, such as the
High Data Rate (HDR) system, transmit data in packets. The
number of bits in a packet (i.e., the packet size) is selected
based on a number of criteria Such as, for example, the data
rate, the amount of data to transmit, the processing delayS
requirements, and So on. To allow the decoder at the receiver
unit to Start at a known State at the beginning of each packet,
which shortens the decoding time and improves perfor
mance, the encoder is initialized to a known State (e.g., all
Zeros) at the start of each packet. The initialization is
achieved by inserting a Set of code tail bits at the end of the
preceding packet. The code-tail bits are Selected Such that
the encoder is set to the known State.

0052. In one embodiment, the convolutional encoder of
the exemplary embodiment is implemented with a look-up

US 2004/0139383 A1

table. Referring to FIG. 3, outer convolutional encoder 310
may be viewed as a State machine with a 4-bit State defined
by the outputs of registers 314A through 314D. To generate
the contents of the look-up table, the M input data bits at
time index n can be represented by a vector U, the 2M code
bits can be represented by a vector Y, and the current
encoder State can be represented by a vector X. The next
State X, for the encoder and the encoder output vector Y,
can be expressed as:

Data Code-tail

X1 = f(X, U) X = 0 Eq. (3)
Y = g1(Xn, U) Y = g2(Xn U) Eq. (4)

0053 Each of equations (3) and (4) provides one equa
tion to use when the input is data and another equation to use
when the encoder input includes code-tail bits.
0054) Equations (3) and (4) can be computed for all
possible combinations of input data bits and encoder States.
For example, for equation (4), the output code bits can be
computed for the input vector U=0 ... 00 and an encoder
state of X=0 . . . 00, an input vector U=0 . . . 01 and the
encoder State of X=0 . . .00, and So on, and an input vector
U=1 ... 11 and the encoderstate of X=0 ... 00. The output
code bits can then be computed for all possible combination
of the input vector U, and an encoder state of X=0 ... 01.
The process then continues until all combinations of input
vector and encoder State are computed. Equation (3) can also
be computed in a similar manner.
0055 The results from the computations for equations (3)
and (4) can be stored to a memory that implements a look-up
table. The required memory size is dependent on the number
of data bits to be coded in parallel and the particular
polynomial generator matrix being implemented. For
example, if eight data bits are to be coded in parallel with the
convolutional code expressed in equation (1), a memory
having a size of 12 address bits and 20 data bits (i.e.,
4096x20) can be used. The 12-bit address is composed of 8
input data bits and 4 bits for the current encoder state. The
20-bit output includes 16 code bits and 4 bits for the next
encoder State.

0056. Once the memory has been properly defined, the
input data vector U and the current encoder State X, can be
provided to the address input of the memory, which then
provides the output vector Y and the next encoder State
X. The next encoder State X is appropriately stored for
use with the next input data vector U.
0057. In another embodiment, the convolutional encoder
is implemented with a State machine. The encoder State and
output can be expressed as shown in equations (3) and (4).
Each of equations (3) and (4) can be recursively Solved, and
the resulting equations are then implemented in hardware,
Software, or a combination thereof. The recursive equations
for the encoder may be solved as follows. Let X, -X, X, X
X denotes the transposed State vector and uo denotes the
input data bit at time index 0. The next state and output of
the encoder can then be expressed as:

Jul. 15, 2004

0058 where A, B, C, and D are scalar, vectors, and matrix
that are dependent on the particular polynomial generator
matrix being implemented. The encoder State equation (5)
can be recursively solved as follows:

X = AXo + ABuo + Bu

X3 = AXo + ABuo + ABu + Bu2

A'Bus + ABu4 + A Bus + ABus + Bur

0059) The encoder output equation (6) can also be recur
Sively Solved in Similar manner.
0060) Equations (5) and (6) are used to code one data bit
u at a time. A similar set of equations can be derived for
coding M data bits in parallel. For example, for coding 8
data bits in parallel (i.e., M=8), the transpose of the input
data vector at time index n can be defined as U =u, u,
uns u, u, u, u, uno) and the transpose of the output code
vector can be defined as Y,"-ly, yngysya yaylay, yol.
Using the defined vector notations for U and Y, equations
(5) and (6) can be expressed as:

X=FX+GU, Eq. (7)
Y=HX+IU Eq. (8)

0061 where F, G, H, and I are vectors and matrices that
are dependent on the particular polynomial generator matrix
being implemented, the current encoder State X, and the
input data vector U. Equation (7) is used to generate the
next encoder State X, after M data bits have been coded,
and equation (8) is used to generate the encoder outputs Y,
for the input vector U.
0062) To determine F, G, H, and I in equations (7) and (8),
equations (5) and (6) can be solved recursively using various
techniques and the results from the recursive computations
can be used to implement equations (7) and (8). For
example, a table can be used to tabulate the State and outputs
of the encoder for each input data bit. The entries in the table
can then be used to implement equations (7) and (8), as
described below.

0063 Table 2 shows the encoder states and outputs after
eight input data bits up through ul, have been serially pro
vided to convolutional encoder 310 in FIG. 3, which imple
ments equation (1). As shown in FIG. 3, registers 314A
through 314D initially Store the values of X, X, X, and X,
respectively. On the first clock cycle, the first data bit uo is
provided to encoder 310, and the output of Summer 312 is
computed as X+x+uo, which is Stored in the Second row,
Second column in Talbe 2. The encoder outputs are com
puted as yo-uo and yo-(X+Xa+uo)+X4+X2+X=X3+X2+x+
uo. (Each Summer 316 performs modulo-2 addition.) On the
next clock cycle, the values from Summer 312 and registers
314A through 314C are shifted into registers 314A through
314D, respectively. The next data bit u is provided to the
encoder, and the output of Summer 312 is computed as
x+x+ui, which is stored in the third row, Second column in
Table 2. The encoder outputs are computed as y=u and
y2=(X+X2+u)+Xa+x+(X+Xa+uo)=X+Xa+X2+x+uo+u.
The processing continues until the eighth data bit u7 is
received and processed.

US 2004/0139383 A1

0064. The encoder output vector:
0065 Y=y 7 yes yes yt ys y2 y yo)

0.066 corresponds to the input vector U=u, u, usual us U2
u uo and is generated based on the entries in the last
column in Table 2. The encoder State X, after the eighth
data bit ul, has been coded is generated based on the entries
in the last row in Table 2. As shown in Table 2, the encoder
output vector Y, and the next encoder State X, are each a
function of the current encoder State X=X X X X and the
input vector U. For the data phase, the encoder output vector
Y, is simply a function of the input vector U (i.e., Y=U).

Jul. 15, 2004

serially provided to convolutional encoder 310 in FIG. 3.
Again, registers 314A through 314D initially store the
values of X, X2, Xs, and X, respectively. On the first two
clock cycles, the two data bits, uo and u, are Serially
provided to the encoder. The encoder States X through X
and the encoder outputs y, and y are computed in Similar
manner as described above. Thus, the Second and third rows
of Table 3 are identical to the second and third rows of Table
2. On the third clock cycle, the first code-tail bit having a
value of X+X is provided to the encoder. The value of the
code-tail bit is selected such that the output of Summer 312
is equal to Zero, which is used to flush out the convolutional

TABLE 2

u 1

X + X3 lo
X + X + ll
X + X + ul
X + X + X + up + us
X + X2 + up + u + lu
X + X + Ll + l2 + us
X + X + X2 + up +
l2 + lls lls
X + X2 + X + u +
ls + u + ll,

X + X + lo
X + X2 + ul
X + X + X + up + us
X + X2 + up + u + lu
X + X + u + lul - ul
X + X + u + l2 + us

X
X
X + X3 lo
X + X2 + ul
X + X + X + up + us
X + X + u + lul - ul
X + X2 + up + u + lu

X + X + u + l2 + us

X + X + X2 + up +
l2 + lls lls

X + X3 lo
X + X + ul
X + X + X + up + lls
X + X + up + u + lu

X + X + up + u + lu

X + X + u + l2 + us

X + X3 lo
X + X + ll
X + X3 +
X1 llo lls
X + X2 +
ulo - ul + Ll
X + X2 + up +
l1 + ll

X + u + u + lus + u + u7

0067 Referring back to Table 1, the outer convolutional
encoder in the HDR system receives 1018 data bits and four
code-tail bits for each packet in packet format 1. If eight bits
are coded in parallel, 128 clock cycles are used to code one
packet of data. The first 127 clock cycles are used to code
1016 data bits (i.e., 127x8=1016), and the 128th clock cycle
is used to code the remaining two data bits and four code-tail
bits. The first 127 clock cycles are referred to as the “data
phase,” and the last clock cycle is referred to as the “code
tail phase.”

0068 The outer convolutional encoder receives 2042
data bits and four code-tail bits for each packet in packet
format 2. If eight bits are coded in parallel, 256 clock cycles

l 1. X1 X2

lo X + X3 huo X1 X2
l X + X2 + ll X + X + up X1
X + X O X + X2 + u X + X + up
X + X + X + up O O X + X2 + ul
X + X2 + up + Ll O O O
X + X2 + ll O O O
O O O O
O O O O

O O

are used to code one packet of data. The first 255 clock
cycles are used to code 2040 data bits (i.e., 255x8=2040),
and the 256" clock cycle is used to code the remaining two
data bits and four code-tail bits. The first 255 clock cycles
are referred to as the data phase, and the last clock cycle is
referred to as the code-tail phase.

0069 Table 3 shows the encoder states and outputs after
two data bits uo and u and four code-tail bits have been

encoder. The encoder outputs are computed as y=X+X
and y =X+uo-ul. On the next clock cycle, the values from
Summer 312 and registers 314A through 314C are shifted
into registers 314A through 314D, respectively. The second
code-tail bit is Selected to be X+X+X+uo, again to Set the
output of Summer 312 to zero and flush out the encoder. The
processing continues, with the last two bits provided to the
encoder having values of Zero.

0070. As shown in Table 3, the encoder outputs Y and Y
are both functions of the input vector U and the current
encoder State X. For the code-tail phase, the next encoder
State X is set to a known state of all Zeros (i.e., Xs=0 0
0 0).

TABLE 3

X3 X4 yc yd

X3 X4 lo X + X2 + X + up
X2 X3 l X + X + X2 + X + u + lu
X1 X2 X + X X - Llo u1
X + X3 + llo X1 X + X + X + up X + X2 + X + ul
X + X2 + u X + X + up X + X2 + up + u X + X + up
O X + X + ll X + X2 + ll X + X2 + ll
O O O O
O O O O
O O

0071 FIG. 4 is a block diagram of an embodiment of a
convolutional encoder 400 that can code multiple input data
bits in parallel. Convolutional encoder 400 can be used to
implement the data and code-tail phases (e.g., as defined in
Tables 2 and 3, respectively). The encoder architecture
shown in FIG. 4 can be used to implement, for example,
outer convolutional encoder 310 or inner convolutional
encoder 340 in FIG. 3.

US 2004/0139383 A1

0072. Within convolutional encoder 400, the input data
bits are provided in parallel as a data vector U to an encoder
State machine 410, a data phase output generator 420, and a
code-tail phase output generator 430. Encoder State machine
410 also receives the current encoderstate X and determines
the new encoder State based on the received inputs vector U
and the current encoder state X. Encoder state machine 410
can implement, for example, the last row in Table 2.
0.073 Data phase output generator 420 and code-tail
phase output generator 430 also receive the current encoder
State X and determine the encoder outputs for the data phase
and the code-tail phase, respectively, based on the received
inputS X and U. Data phase output generator 420 can
implement, for example, the last two columns in Table 2, and
code-tail output generator 430 can implement, for example,
the last two columns in Table 3. The first and second outputs,
Y and Y, from data phase output generator 420 are
provided to multiplexers (MUXes) 440A and 440B, respec
tively. Similarly, the first and Second outputs, Y and Y,
from code-tail phase output generator 430 are provided to
multiplexers 440A and 440B, respectively. Multiplexers
440A and 440B provide the outputs Y and Y, respectively,
from data phase output generator 420 when operating in the
data phase and the outputs Y and Y, respectively, from
code-tail phase output generator 430 when operating in the
code-tail phase.
0.074 To implement a convolutional encoder that con
tinuously codes input data bits as they are received, without
having to reset the encoder State at the Start of each packet,
only encoder State machine 410 and data phase output
generator 420 are needed. For communications Systems
(e.g., the HDR System) in which data is sent in packets and
code-tail bits are used to reset the convolutional encoder to
a known State at the Start of each packet, code-tail phase
output generator 430 and multiplexers 440A and 440B are
used to provide the required encoder outputs.
0075. The design of encoder state machine 410 and data
phase output generator 420 is dependent on the particular
polynomial generator matrix to be implemented and the
number of data bits to be coded in parallel. The design of
code-tail phase output generator 430 is dependent on the
polynomial generator matrix, the number of data bits to be
coded in parallel, and the particular frame format (i.e., the
number of data and code-tail bits to be coded in the code-tail
phase). A specific design of convolutional encoder 400 is
now described below.

0.076 FIG. 5A is a schematic diagram of a specific
embodiment of a convolutional encoder 500 that can code
eight input data bits in parallel and implements the polyno
mial generator matrix expressed in equation (1). Convolu
tional encoder 500 includes an encoder state machine 510
that implements the State machine defined in Table 2 and a
data phase output generator 520 that generates the encoder
outputs defined in Table 2. Encoder state machine 510 and
data phase output generator 520 correspond to encoder State
machine 410 and data phase output generator 420, respec
tively, in FIG. 4. In this embodiment, encoder state machine
510 is implemented with AND gates 512A through 512D
and registers 514A through 514D, and data phase output
generator 520 is implemented with AND gates 522A through
522H.

0.077 As shown in FIG. 5A, the eight input data bits, up
through uz, are provided in parallel to the inputs to encoder
state machine 510 and data phase output generator 520, each
of which also receives the current encoder state defined by

Jul. 15, 2004

X through X. Each AND gate 512 within encoder state
machine 510 Selectively couples to the inputs uo-ul, and
X-X, as defined by the last row in Table 2. For example,
AND gate 512A couples to the inputS Xs, X2, X, u, us, u,
and u7, as defined by the entry in the last row, third column
(x) in Table 2. The outputs of AND gates 512A through
512D couple to the inputs of registers 514A through 514D,
respectively. The outputs of registers 514A through 514D
comprise the State machine outputS X through X, respec
tively.

0078 Similarly, each AND gate 522 within data phase
output generator 520 Selectively couples to the inputs u-ul,
and X-X, as defined by the last column in Table 2. For
example, AND gate 522A couples to the inputS X, X2, X,
and up, as defined by the entry in the Second row, last column
(yo) in Table 2. The inputs up through ul, comprise the
encoder outputs yo through y7, respectively (not shown in
FIG. 5A for simplicity), and the outputs of AND gates 522A
through 522H comprise the encoder outputs yo through y,
respectively.

007.9 FIG. 5B is a schematic diagram of a specific
embodiment of a code-tail phase output generator 530 and
multiplexers 540A and 540B that implement the code-tail
phase of the polynomial generator matrix expressed in
equation (1) and for packet formats 1 and 2 shown in Table
1. Code-tail phase output generator 530 and multiplexers
540A and 540B correspond to code-tail phase output gen
erator 430 and multiplexers 440A and 440B, respectively, in
FIG. 4. In this embodiment, code-tail phase output genera
tor 530 is implemented with AND gates 532A through 532J
and generates the encoder outputs Y and Y for the code-tail
phase defined in Table 3. Multiplexer 54.0a is implemented
with 2x1 multiplexers 542A through 542F and provides the
first encoder output Y. Similarly, multiplexer 540B is
implemented with 2x1 multiplexers 544A through 544H and
provides the Second encoder output Y.

0080 Encoder state machine 510, data phase output
generator 520, code-tail phase output generator 530, and
multiplexers 540A and 540B in FIGS. 5A and 5B form a
specific implementation of convolutional encoder 400. This
Specific implementation is used to implement the polyno
mial generator matrix expressed in equation (1) and for the
packet formats described in Table 1. For packet format 1,
1018 data bits are provided to convolutional encoder 500
over 128 clock cycles. For each of the first 127 clock cycles,
eight data bits are provided to encoder 500, and multiplexers
540A and 540B are selected to provide the outputs Y and Y,
from data phase output generator 520. On the 128" clock
cycle, the remaining two data bits, four code-tail bits, and
two zeros are provided to encoder 500. Registers 514A
through 514D are reset to zero (synchronously), and multi
plexers 540A and 540B are selected to provide the outputs
Y and Y from code-tail phase output generator 530. For
packet format 2, 2042 data bits are provided to convolutional
encoder 500 over 256 clock cycles. For each of the first 255
clock cycles, corresponding to the data phase, eight data bits
are coded in parallel and multiplexers 540A and 540B
provide the outputs Y, and Y, respectively. On the 256"
clock cycle, corresponding to the code-tail phase, two data
bits, four code-tail bits, and two Zeros are coded in parallel
and multiplexers 540A and 540B provide the outputs Y and
Y, respectively.

0081. The specific implementation shown in FIGS. 5A
and 5B is described to provide a clearer understanding. It
will be noted that different implementations can also be

US 2004/0139383 A1

contemplated and are within the Scope of the present inven
tion. Moreover, a different design is typically used for a
different polynomial generator matrix, a different number of
input data bits, or different packet formats.
0082 In similar manner, another convolutional encoder
can be designed to implement the polynomial generator
matrix expressed in equation (2). In an embodiment, the
convolutional encoder is designed to receive and code four
code bits in parallel. Equations (5) and (6) for the next
encoder State and outputs, respectively, can be recursively
Solved in the manner described above.

0.083 Table 4 shows the encoder states and outputs after
four input code bits Vo through V have been Serially pro
vided to convolutional encoder 340 in FIG. 3. Registers
344A and 34.4B initially store the values of X and X,
respectively. On the first clock cycle, the first code bit Vo is
provided to encoder 340, and the output of Summer 342 is
computed as X+Vo, which is Stored in the Second row,
Second column in Table. The encoder outputs are computed
as yeo-Vo and yo-(X+Vo)+X2+X=X2+Vo. On the next clock
cycle, the values from Summer 312 and register 344A are
shifted into registers 344A and 34.4B, respectively. The next
code bit v is provided to encoder 340, and the output of
Summer 342 is computed as X+Vo-V, which is Stored in the
third row, Second column. The outputs are computed as
y=V, and y1=(X+Voi-v)+(X+Vo)+x =X1+V. The process
ing continues until the fourth code bit V is received and
processed.
0084. The encoder output vector Y is generated based on
the entries in the last column in Table 4. The encoder state
X, after the fourth code bit V has been coded is generated
based on the entries in the last row in Table. As shown in
Table 4, the encoder output vector Y and the next encoder
State X are each a function of the current encoder State
X =X- X and the input vector V. For the data phase, the
encoder output vector Y is simply a function of the input
vector V.

w 1 X1. X2 ye

Wo X1 + Vo X1 X2 Vo
V X1 + Vo + V X + Vo X1 V1
V2 X + Vo + V + V2 X + X + ll X + vo V2
Vs X + Vo + V + V2 + V X1 + Vo + V + V2 X + X2 + ul W3

0085. Referring back to Table 1, the inner convolutional
encoder in the HDR system receives 2044 code bits and four
code-tail bits for each packet in packet format 1. If four bits
are coded in parallel, 512 clock cycles are used to code one
packet. The first 511 clock cycles are used to code 2044 code
bits (i.e., 511x4=2044), and the 512" clock cycle is used to
code the four code-tail bits. The convolutional encoder
receives 3079 code bits and three code-tail bits for each
packet in packet format 2. If four bits are coded in parallel,
768 clock cycles are used to code one packet of data. The
first 767 clock cycles are used to code 3068 code bits (i.e.,
767x4=3068), and the 768" clock cycle is used to code the
last code bit and three code-tail bits.

0.086 Table 5 shows the states and outputs of the inner
convolutional encoder for the code-tail phase for packet
format 1. On the first clock cycle, the first code-tail bit of
having a value of X is provided to the encoder. The code-tail

Jul. 15, 2004

bit value is selected such that the output of Summer 342 is
equal to Zero. The encoder outputs are computed as yo-X,
and yo-X2+X. The processing continues in Similar manner
for the remaining three code-tail bits.

TABLE 5

w 1. X1 X2 yg Wh

X1. O X1. X2 X1. X + X
O O O X1 O X1
O O O O O O
O O O O O O

O O

0087 Table 6 shows the states and outputs of the inner
convolutional encoder for the code-tail phase for packet
format 2. On the first clock cycle, the last code bit Vo is
provided to the encoder, and the encoder States X and X and
outputs yo and yo are computed in similar manner as
described above. The second row of Table 6 is thus identical
to the second row of Table 4. On the second clock cycle, the
first code-tail bit having a value of X+Vo is provided to the
encoder. The code-tail bit value is selected Such that the
output of Summer 342 is equal to Zero. The encoder outputs
are computed as y=X+Vo and y =Vo. The processing
continues in Similar manner for the remaining code-tail bits.

TABLE 6

w 1. X1 X2 yi yi

Vo X + Vo X1 X2 Vo X2 + Vo
X + Vo O X + Vo X1 X + Vo Vo
O O O X + Vo O X + Vo
O O O O O O

O O

yf

X2 + Vo
X + V.

0088 FIG. 6 is a schematic diagram of a specific
embodiment of a convolutional encoder 600 that can code
four input code bits in parallel and implements the polyno
mial generator matrix expressed in equation (2). Convolu
tional encoder 600 includes an encoder state machine 610
that implements the State machine defined by Table, an
output generator 620 that generates the encoder outputs
defined in Tables 4 through 6, and multiplexers 640A and
640B that provide the proper encoder outputs for the data
and code-tail phases for packet formats 1 and 2.

0089. As shown in FIG. 6, four input code bits, vo
through V, are provided in parallel to the inputs of encoder
state machine 610 and output generator 620, each of which
also receives the current encoder State defined as X=X- X.
Each AND gate 612 within encoder state machine 610
Selectively couples to the inputs Vo-V and X-X, as defined

US 2004/0139383 A1

by the last row in Table 4. For example, AND gate 612A
couples to the inputS X, Vo, V, V2, Vs, and V, as defined by
the entry in the last row, third column (x) in Table 4. The
outputs of AND gates 612A and 612B couple to the inputs
of registers 614A and 614B, respectively. The outputs of
registers 614A and 614B comprise the state machine outputs
X and X2, respectively.
0090 Similarly, each AND gate 622 within output gen
erator 620 Selectively couples to the inputs Vo-V and X-X,
as defined by the last two columns in Tables 4 through 6. For
example, AND gate 622A couples to the inputs X and Vo and
generates yo (the Second row, last column in Table 4), AND
gate 622B couples to the inputS X and X and generates yo
(the second row, last column in Table 5), and AND gate
622C couples to the inputs X, and Vo and generates yo (the
second row, last column in Table 6). The other encoder
outputs are generated as indicated in Tables 4 through 6.
0091 Multiplexer 640A includes 3x1 multiplexers 642A
through 642D that provide the first encoder outputs yo
through yi, respectively, for inner convolutional encoder
600. During the data phases, yo through y are provided
through multiplexers 642A through 642D, respectively. Dur
ing the code-tail phase, multiplexers 642A through 642D
respectively provideyo through y for packet format 1 and
y through y for packet format 2. Similarly, multiplexer
640B includes 3x1 multiplexers 64.4A through 644D that
provide the Second encoder outputs yito through yies, respec
tively, for inner convolutional encoder 600. During the data
phases, yo through y are provided through multiplexers
64.4A through 644D, respectively. During the code-tail
phase, multiplexers 64.4A through 644D respectively pro
vide yo throughys for packet format 1 and yo through yis
for packet format 2.
0092 Another aspect of the invention provides an inter
leaver capable of Storing multiple code bits generated in
parallel by the outer convolutional encoder and providing
multiple code bits in parallel to the inner convolutional
encoder. Referring back to FIG. 2, an interleaver is coupled
between the outer and inner convolutional encoders. The
interleaver is designed to Store one or more packets of code
bits. After an entire packet has been Stored, the code bits are
then retrieved in a read order that is different than the write
order to achieve interleaving of the code bits. If no inter
leaving is desired, the code bits can be retrieved from the
interleaver in the same order.

0093. The outer convolutional encoder of the exemplary
embodiment can be designed to receive and code M data bits
in parallel and generate MR code bits, where R is related to
the code rate of the outer convolutional encoder (e.g., R=2
for a rate % encoder). To expedite processing and reduce
delays, the interleaver can be designed to store MR code
bits from the outer convolutional encoder in parallel as the
code bits are generated by the encoder. Similarly, the inner
convolutional encoder can be designed to receive and code
N code bits in parallel. Again, to expedite processing and
reduce delays, the interleaver can be designed to provide at
least N code bits in parallel to the inner convolutional
encoder on a Single read operation.

0094. The code bits from each of the outer and inner
convolutional encoderS may be punctured to provide code
bits at other code rates. For example, referring back to Table
1, the outputs from the Outer convolutional encoder is

Jul. 15, 2004

unpunctured for packet format 1 to obtain a code rate of 72
and punctured for packet format 2 to obtain a code rate of 73.
Similarly, the outputs from the inner convolutional encoder
is unpunctured for packet format 1 to obtain a code rate of
/2 and punctured for packet format 2 to obtain a code rate of
%. The interface between the encoder and the interleaver can
be designed to efficiently achieve the Symbol puncturing.
0.095 FIG. 7A is a diagram of an embodiment of an
interleaver 700. In this embodiment, interleaver 700 is
implemented with a multi-port memory 710 having P ports,
where P is greater than one. Depending on the particular
memory unit used to implement the interleaver, each of the
P ports may be used as both write and read port or may be
a dedicated write or read port. In the embodiment shown in
FIG. 7A, memory 710 includes W ports designated as write
ports D through Dw, and R ports designated as read ports
Q through Q. Memory 710 further includes P address
inputs, A through Ap, one address input for each of the P
ports. Each write and read port can transfer C bits in parallel.
0096. An address generator 720 receives an input address
ADDR, generates the necessary addresses for each active
port, and provides the generated addresses to the address
inputs A through A of memory 710. Although not shown
in FIG. 7A for simplicity, address generator 720 further
generates one or more control Signals that direct memory
710 to perform a write or read operation.
0097. In an embodiment, memory 710 is configured as a
two-dimensional memory having a number of rows and a
number of columns. In an embodiment, code bits are written
to sequential rows in memory 710. For efficiency, the width
of each row can correspond to the width of each port (i.e.,
C bits). This allows up to Wrows of code bits to be written
to the W write ports of memory 710 for each write operation.
Once the code bits for an entire packet have been Stored to
memory 710 the code bits can be retrieved from the memory.
In an embodiment, code bits are also read from memory 710
by rows. For the embodiment shown in FIG. 7A, up to R
rows of code bits can be retrieved from the R read ports for
each read operation.
0098 Various designs can be used to provide code bits
from interleaver 700 to the inner convolutional encoder. The
particular design to implement is dependent on the particular
system requirements. In one design, R multiplexers 730A
through 730R are coupled to the R read ports Q through Q,
respectively. For each read operation, up to R rows of code
bits are retrieved from memory 710 and provided to multi
plexers 730A through 730R, which also receive the control
Signals AD through AD, respectively. Each multiplexer
730 receives the C code bits, selects one of the code bits
based on the respective control Signal AD, and provides the
selected code bit to the multiplexer output. The control
Signals AD through AD Select a particular code bit from
each retrieved row of code bits. R multiplexers 730 can thus
be used to provide up to R code bits in parallel to the inner
convolutional encoder.

0099 For a clearer understanding, a specific design of the
interleaver is now described for use with the outer and inner
convolutional encoders described above in FIGS. 5A, 5B,
and 6. In the above encoder designs, the outer convolutional
encoder receives and codes 8 data bits in parallel in one
clock cycle to generate 16 code bits, and the inner convo
lutional encoder receives and codes 4 code bits in parallel.

US 2004/0139383 A1

In this specific interleaver design, an 8-port memory is
employed, with four ports being used for receiving code bits
in write operations and four ports being used for providing
code bits in read operations. In this design, each port is
capable of receiving or providing 8bits in parallel. Thus, for
this specific design, up to 32 code bits can be written to the
interleaver in a write operation, and up to 32 code bits can
be read from the interleaver in a read operation.
0100 FIG. 7B is a diagram of an embodiment of the
interface between the Outer convolutional encoder and the
interleaver with no puncturing. In this embodiment, the code
bits generated by the outer convolutional encoder are pro
vided to four registers 732A through 732D. Registers 732A
and 732B receive the 16 code bits generated in the first clock
cycle and registers 732C and 732D receive the 16 code bits
generated in the Second (e.g., alternate) clock cycle. When
no puncturing is performed, all 32-code bits on registers
732A through 732D are provided to ports D through D,
respectively, of the memory in one write operation.
0101 FIG. 7C is a diagram of an embodiment of the
interface between the Outer convolutional encoder and the
interleaver with puncturing. Referring back to Table 1, the
code bits for the Outer code are punctured with the punc
turing pattern (1011) for packet format 2. Thus, in one clock
cycle, 16 code bits are generated, 4 code bits are punctured,
and 12 code bits are stored. Initially, the 16 code bits
generated in the first clock cycle are Stored to registers 732A
and 732B, and the 16 code bits generated in the second clock
cycle are stored to registers 732C and 732D. After the
puncturing, 24 code bits remain, as shown in FIG. 7C, and
are provided to three write ports (e.g., D through D.).
0102) The address generator provides the proper
addresses for writing the unpunctured code bits to Sequential
rows in the memory. One address is generated for each
active port used for writing the code bits. Thus, the address
generator generates four addresses for port D through D.
when no puncturing is performed and generates three
addresses for port D through D when puncturing is per
formed.

0103) To provide four code bits in parallel to the inner
convolutional encoder, four rows of code bits are retrieved
from the memory and provided to four 8x1 multiplexers.
Each multiplexer also receives a respective 3-bit control
Signal AD that Selects a particular bit in the retrieved row
to provide to the inner convolutional encoder. The address
for each retrieved bit may thus be partitioned into two parts,
with the first part identifying a particular row in the memory
and the Second part identifying a particular location within
the row. The first part of the address is provided to the
appropriate address input of the memory and the Second part
is provided as the control Signal AD. The first and Second
parts of the address are generated in accordance with the
particular-interleaving Scheme defined by the System or
Standard being implemented.

0104. The interleaver of the exemplary embodiment can
also be implemented using other memories. For example, a
Single-port memory unit or multiple memory units can be
used to concurrently Store and provide multiple bits in
parallel. For a single-port memory unit, multiple write
operations may be used to Store the generated code bits, and
multiple read operations may also be used to retrieve the
required code bits. In designs employing multiple memory

Jul. 15, 2004

units, each memory unit may be operated Similar to a port (or
a pair of ports) of the multi-port memory. Thus, numerous
designs can be used to implement the interleaver and are
within the Scope of the present invention.
0105. In the embodiments described above, an interleaver
is used between the outer and inner convolutional encoderS.
This configuration is used to implement a Turbo encoder,
which can provide certain advantages. In other encoder
designs, interleaving after the Outer convolutional encoder
may not be necessary, and a memory may not be needed
after the outer convolutional encoder or may simply be used
as a buffer.

0106 The concatenated encoder of the exemplary
embodiment can be operated in various manners. In one
Specific design, the encoder is operated to code one packet
of data at a time. Referring back to FIG. 2, a particular
packet of data can be coded by the outer convolutional
encoder and Stored to the interleaver. After an entire packet
has been coded by the outer convolutional encoder, the code
bits are retrieved from the interleaver and coded by the inner
convolutional encoder. Once the entire packet has been
coded by the inner convolutional encoder, the next packet is
coded by the outer convolutional encoder. This design
reduces the memory requirement for the interleaver, which
may be desirable in Some applications.
0107. In another specific design, the interleaver is imple
mented with the capacity to Store two or more packets of
code bits. For example, the memory used to implement the
interleaver can be partitioned into two banks, with each
memory bank being capable of Storing an entire packet of
code bits. The two memory banks allow the outer and inner
convolutional encoders to operate on two packets concur
rently. The Outer convolutional encoder codes a first packet
and Stores the code bits for this packet to one memory bank.
After the entire first packet has been Stored to memory, the
outer convolutional encoder codes a Second packet and
Stores the code bits for this packet to the Second memory
bank. While the outer convolutional encoder codes and
Stores the code bits for the current packet to one memory
bank, the inner convolutional encoder can retrieve and code
the code bits for the previous packet from the other memory
bank. This design can reduce the processing delayS.
0.108 FIG. 8 is a block diagram of a specific design of an
encoder 800 that can be used to implement some embodi
ments. Encoder 800 may be used to implement encoder 114
in FIG. 1. Encoder 800 includes a processing unit 810
coupled to an address generator 820 and a memory 830.
Processing unit 810 receives data from a buffer 802 and
control information from a control Source (not shown),
codes the received data in accordance with the control
information, and provides the coded data to a buffer 850.
0109. In the embodiment shown in FIG. 8, processing
unit 810 includes an input interface 812, a multi-bit encoder
814, an output interface 816, and a control unit 818. Input
interface 812 generates addresses and control Signals for
buffer 802, receives data provided by buffer 802 in response
to the generated addresses and control Signals, and routes the
received data to multi-bit encoder 814. Multi-bit encoder
814 implements the output and inner convolutional encoders
and may be implemented with one or more look-up tables or
one or more encoderS Such as the one described above in
FIG. 4. When operated as an outer convolutional encoder,

US 2004/0139383 A1

multi-bit encoder 814 codes the data from input interface
812 and provides the generated code bits to memory 830.
And when operated as an inner convolutional encoder,
multi-bit encoder 814 codes the code bits from memory 830
and provides the generated code bits to output interface 816.
Output interface 816 then provides the coded data to buffer
850.

0110 Control unit 818 receives various control informa
tion Such as, for example, the particular data packet to code,
the location of the packet in buffer 802, the packet format,
the coding Scheme to use, the location to Store the coded
packet in buffer 850, and so on. Control unit 818 then directs
input interface 812 to retrieve the appropriate data bits from
buffer 802, directs encoder state machine 814 to use the
appropriate coding Scheme, and further directs output inter
face 816 to provide the coded data to the appropriate
location in buffer 850.

0111 Address generator 820 generates the appropriate
addresses for both writing code bits to memory 830 and
reading code bits from the memory. Address generator 820
can be implemented with logic, a look-up table, or Some
other designs.
0112 Memory 830 stores the code bits generated by
multi-bit encoder 814 and also provides the stored code bits
to multi-bit encoder 814. By properly generating the
addresses, memory 830 can be operated to provide inter
leaving of the code bits. Memory 830 can be implemented
with a multi-port memory, as described above, or with one
or more memory units.
0113 FIG. 9 is a flow diagram of an embodiment of a
method for performing concatenated coding of multiple data
bits in parallel. Initially, a number of (M) data bits from a
particular data packet is received, at Step 912, and coded in
parallel in accordance with a first (e.g., convolutional)
coding Scheme to generate a number of (MR) code bits, at
step 914. The number of code bits generated by the first
coding Scheme is dependent on the particular code rate of the
Scheme. Zero of more of the generated code bits may be
punctured with a first puncturing Scheme, at Step 916, to
provide code bits at a different code rate. The unpunctured
code bits are then stored to a memory, at step 918.
0114. In the embodiment shown in FIG. 9, an entire
packet is coded by the first coding Scheme and Stored before
Subsequent coding by a Second coding Scheme. This allows
for interleaving of the code bits, as described above. Thus,
a determination is made whether the entire packet has been
coded, at step 920. If the answer is no, the process returns
to step 912 and another M (or less) data bits are received.
0115 Otherwise, if the entire packet has been coded, a
number of (N) code bits is retrieved from the memory, at
Step 922, and coded in parallel in accordance with the
Second (e.g., convolutional) coding Scheme to generate a
number of (NR) code bits, at step 924. Again, the number of
code bits generated by the Second coding Scheme is depen
dent on the particular code rate of the Scheme. And again,
Zero of more of the generated code bits may be punctured
with a Second puncturing Scheme, at Step 926, to provide
code bits at another code rate. The unpunctured code bits are
then provided as coded data to the next processing unit (e.g.,
modulator 116 in FIG. 1), at step 928.
0116 For efficiency and reduced delays, W words may be
Stored in parallel (e.g., via W write ports) to the memory, and

Jul. 15, 2004

R words may be retrieved in parallel (e.g., via R read ports)
from the memory. The W words allow for parallel storage of
the unpunctured code bits from the first coding Scheme and
the R words allow for N code bits to be provided in parallel
to the Second coding Scheme. The memory may be operated
in the manner described above to achieve interleaving of the
code bits. For example, W words may be written to sequen
tial rows in the memory and R words may be read from
permutated rows in the memory.
0117 The encoder and interleaver of the exemplary
embodiment can be used to greatly shorten the coding time.
By coding M data bits in parallel with the outer convolu
tional encoder and N code bits in parallel with the inner
convolutional encoder, the overall coding delays can be
Significantly reduced. The interleaver of the invention Sup
ports parallel coding with its ability to receive multiple code
bits for a write operation and to provide multiple code bits
for a read operation. The improvement in the processing
delays for a specific design, with M=8 and N=4 and for
packet formats 1 and 2 in the HDR system, is shown in
Table.

TABLE 7

Packet format 1 Packet format 2

parallel serial parallel serial

Outer convolutional encoder

Input bits 101.8 2042
Code-tail bits 4 4
Total input bits 1022 2O46
Clock cycles needed 128 1024 256 2048
Inner convolutional encoder

Input bits 2044 3069
Code-tail bits 4 3
Total input bits 2O48 3072
Clock cycles needed 512 2O48 768 3072
Coding time (20 MHz clock)

Outer encoder (usec) 6.4 51.2 12.8 102.4
Inner encoder (usec) 25.6 102.4 38.4 153.6
Total coding time (usec) 32.O 153.6 51.2 256.O

0118 For the specific design shown in Table 7, the
overall coding delays are reduced by a factor of 4.8 for
packet format 1 and a factor of 5.0 for packet format 2. It can
be observed that further improvement in the processing
delays can be achieved by increasing the number of bits to
code in parallel, especially for the inner convolutional
encoder (i.e., increasing N).
0119) The shorter processing delays provided by the
encoder and interleaver of the present invention provide
numerous advantages. Some of these advantages are briefly
described below.

0120 First, shorter processing delays may be used to
Support certain types of Services, Such as Voice and Video,
which have more Stringent delays requirements. The shorter
processing delayS may thus allow for use of more efficient
coding Schemes for delay Sensitive applications.
0121 Second, shorter processing delays can improve
System performance. For example, if a particular user or data
rate is Selected for a particular transmission based on the
conditions of the communications link, which are deter

US 2004/0139383 A1

mined at a particular time, shorter processing delays increase
the likelihood that the link conditions have not changed by
the time of the data transmission. Link conditions typically
vary over time, and longer processing delays increase the
likelihood that the link conditions have changed by the time
of the data transmission, which can then result in degraded
performance.
0122) Third, shorter processing delays can improve the
capacity of Some communications Systems. For example, in
the HDR system, power control data is multiplexed with the
traffic data and transmitted to the user terminals. Shorter
processing delays allow for more accurate control of the
transmit power of the user terminals, which can increase the
System capacity and improve performance.
0123 Fourth, shorter processing delays allow sequential
Sharing of a hardware resource (i.e., the encoder) in one
processing time slot (i.e., the forward link slot in an HDR
System) by multiple transmitting entities (i.e., three users in
a three sector System) to reduce the overall area of the
hardware design.
0.124 For clarity, certain aspects and embodiments of the
encoder of the invention have been described specifically for
the forward link in the HDR system. However, the invention
can also be used in other communications Systems that
employ the Same, Similar, or different coding Schemes. For
example, the encoder of the invention can be used to
implement a convolutional encoder capable of receiving and
coding multiple data bits in parallel. The encoder of the
invention can also be used to implement a concatenated
encoder, Such as a Turbo encoder, that is capable of receiv
ing and coding multiple data bits in parallel. The Specific
design of the encoder is dependent on various factorS Such
as, for example, the particular polynomial generator matrix
being implemented, the number of bits to code in parallel,
the packet format, the use of code-tail bits, and So on.
0.125 The encoder of the invention can be advanta
geously used in a base Station or a user terminal (e.g., a
mobile unit, a telephone, and So on) of a communications
System. The coding for the forward link (i.e., downlink) and
reverse link (i.e., uplink) may be different, and is typically
dependent on the particular CDMA System or Standard being
implemented. Thus, the encoder of the invention is typically
designed Specially for the particular application for which it
is used.

0.126 Referring to the specific design shown in Tables 2
and 3, the next States and outputs for the outer convolutional
encoder can be generated with functions having up to Seven
terms. Referring to the Specific design shown in Tables 4
through 6, the next States and outputs for the inner convo
lutional encoder can be generated with functions having up
to five terms. These functions can be easily generated using
logic gates in a manner known in the art. The other elements

Jul. 15, 2004

of the Outer and inner convolutional encoders (e.g., registers,
multiplexers) can also be implemented in a manner known
in the art.

0127. Some or all of the elements described above for the
encoder of the present invention (e.g., multi-bit encoder,
input and output interfaces, control unit, encoder State
machine, output generator, multiplexer, and So on) can be
implemented within one or more application specific inte
grated circuits (ASICs), digital signal processors (DSPs),
programmable logic device (PLD), Complex PLD (CPLD),
controllers, micro-controllers, microprocessors, other elec
tronic units designed to perform the functions described
herein, or a combination thereof. Some or all of the elements
of the encoder of the invention can also be implemented
using Software or firmware executed on a processor.
0128. The memories and memory units such as the ones
used to implement the interleaver of the present invention
can be implemented with various memory technologies Such
as, for example, random access memory (RAM), dynamic
RAM (DRAM), Flash memory, and others. The memory
unit can also be implemented with Storage elements Such as,
for example, a hard disk, a CD-ROM drive, and others.
Various other implementation of the memory units are
possible and within the Scope of the present invention.
0129. The foregoing description of the preferred embodi
ments is provided to enable any person skilled in the art to
make or use the present invention. Various modifications to
these embodiments will be readily apparent to those skilled
in the art, and the generic principles defined herein may be
applied to other embodiments without the use of the inven
tive faculty. Thus, the present invention is not intended to be
limited to the embodiments shown herein but is to be
accorded the widest Scope consistent with the principles and
novel features disclosed herein.
What is claimed is:

1. An apparatus, comprising:
a clock means for generating a clock Signal having a clock

cycle;
a plurality of Serially coupled registers, wherein each

register is updated on one clock cycle; and
means for generating a future State of the plurality of

registers in response to an input to the plurality of
Serially coupled registers.

2. An apparatus, comprising:
an encoder, comprising:

a plurality of delay elements, wherein a State of the
encoder is determined by the state of the plurality of
delay elements, and

a look up table for mapping of a current State of the
encoder to a future State of the encoder.

k k k k k

