
US 2004O139383A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2004/0139383 A1 

Salvi et al. (43) Pub. Date: Jul. 15, 2004 

(54) METHOD AND APPARATUS FOR CODING (52) U.S. Cl. .............................................................. 714/759 
BITS OF DATA IN PARALLEL 

(76) Inventors: Rohan S. Salvi, San Diego, CA (US); 
Michael A. Howard, San Diego, CA 57 ABSTRACT 
(US) (57) 

Correspondence Address: 
Qualcomm Incorporated 
Patents Department 
5775 Morehouse Drive 
San Diego, CA 92.121-1714 (US) and a second (inner) encoder coupled in cascade. The first 

A concatenated encoder capable of coding multiple data bits 
in parallel and including a first (outer) encoder, a memory, 

encoder receives and codes M data bits in parallel in 
(21) Appl. No.: 10/745,089 accordance with a first coding Scheme to generate MR code 

bits. The memory receives and Stores unpunctured ones of 
(22) Filed: Dec. 22, 2003 the MR code bits from the first encoder. The second encoder 

Related U.S. Application Data receives and codes N code bits in parallel in accordance with 
a Second coding Scheme to generate coded data. M and N 

(63) Continuation of application No. 09/957,820, filed on can be any values (e.g., Me8, Ne4). Each encoder can be 
Sep. 20, 2001, now Pat. No. 6,701,482. a (e.g., a rate %) convolutional encoder that implements a 

particular polynomial generator, and can be implemented Publication Classification 
with one or more look-up tables, a State machine, or Some 

(51) Int. Cl. .................................................... H03M 13700 other design. 

1OO 

110 
A 

112 

DATA 
SOURCE 

114 

ENCODER 

  



Patent Application Publication Jul. 15, 2004 Sheet 1 of 11 US 2004/0139383 A1 

S. 
8 

& 

e 
s 

e s 

2 
S 

  

  

  

  

  



US 2004/0139383 A1 

HEGIOONE -HEIGIOONE T\/NOILOTO/\NOOHE/\\/ETHELNITV/NO||LINTOANOO HENNIHE|| []O 

Patent Application Publication Jul. 15, 2004 Sheet 2 of 11 

  

  

  



Patent Application Publication Jul. 15, 2004 Sheet 3 of 11 US 2004/0139383 A1 

g g 
ea ca 

s 

  





Patent Application Publication Jul. 15, 2004 Sheet 5 of 11 US 2004/0139383 A1 

5OO 
U0 x -1 
u x2 

ua - || || ----- 
U4 EN 512A514A, 510 
5 X 

.. 1 6 X 

7 PHASE 512B 
- P 54B 

|HE) . X2 d 

PHASE 
512C 514C 

HEC X3 H 
PHASE 

512D 514D 

EC P. X 4 
520 ----------PHASE 

- - - -Y------------- - - - - - - - - - - - - 
522E 

522A yb 
4. yb 

= H O iseaf || || 
522B yb 

5 yb 

522G 

522C yb 
6 yb 

2 
522H 522D 

yb 
7 yb 

3 



Patent Application Publication Jul. 15, 2004 Sheet 6 of 11 US 2004/0139383 A1 

- - - - - - yoao 
542A yoa1 

MUX ODO2 MUX yoa2 
A : 542B5'0' 

HNygd Mux E MUX yoa3 
532B r 542C 

HNya Mux y Oa4 
532C ?is HNyas yoa5 
532D. i 542E 

H MUX yoa6 
542F 

MUX 
H 530 o- 'oa7 

- - - - - - 

| |I|| ; ; ,54,540B HNyed MUXHyo O 

532B 544B. 
R MUX yob1 
H O 

1632F 544C Eye: MuxH-yota 
ITT 532G -?; HNy. MUXHya O 

532H} ?t EHTNyc4 MUXH> y RD MUX Ob4 
S32 544F 

Es, Mux yob5 



Patent Application Publication Jul. 15, 2004 Sheet 7 of 11 US 2004/0139383 A1 

Vo X 600 
V1 X2 61 O -1 

- - - - - - - - - - - a 
V2 612A 614A 

V3 EED P. X 
H 1 
| PHASE; 
HD 612B 64B 

P. X2 
PHASE 

2622B yho E. Mux - yo 
C 22D y yf 1 64.4B E. MUX H> y 

H 622E.; y2 644C HD 

HER : 622G, y HR) s: 644D 
:03 MUX y y3 ib3 
O 
- - - - - - - - - - - 
- - - - - - - - - - - - 

He MUX Hy iaO 
ye1 642B 

C 
2 2 H M U X y ial 



Patent Application Publication Jul. 15, 2004 Sheet 8 of 11 US 2004/0139383 A1 

8 t 
> 

CO : 
9 

Z. 
d CC LU 

CD 

  





098AHOWNEW 

US 2004/0139383 A1 

S TOHLNOOSE HOJCIV/ HOIv?EN?0 SE HOJCIV/ 
LINT) TOHI NOO 

LINT. §)NISSE OOHc]819 HEGIOONE 

SE HOOV/Z08 

O 18 

008 

Patent Application Publication Jul. 15, 2004 Sheet 10 of 11 

  

  

  

    

  

  



Patent Application Publication Jul. 15, 2004 Sheet 11 of 11 US 2004/0139383 A1 

START 

RECEIVE M DATA BITS FROM 
A PACKET OF DATA 

CODEM DATA BITS IN 
PARALLEL WITH A FIRST 
CODING SCHEME TO 

GENERATE MR CODE BITS 

PUNCTURE ZERO ORMORE 
GENERATED CODE BITS 

STORE UNPUNCTURED 
CODE BITS TO MEMORY 

ENTRE 
PACKET CODED2 

YES 

CODEN CODE BITS IN PARALLEL WITH A SECOND 924 
CODING SCEME TO GENREATE NR CODE BITS 

PUNCTURE ZERO ORMORE - 9 
GENERATED CODE BITS 

PROVIDE UNPUNCTURED 928 
CODE BITS AS CODED DATA 

FIG. 9 

RETRIEVEN CODE BITS 92 
FROMMEMORY 

2 

2 

6 

  

  



US 2004/0139383 A1 

METHOD AND APPARATUS FOR CODING BITS 
OF DATA IN PARALLEL 

CLAIM OF PRIORITY UNDER 35 U.S.C. S120 

0001. The present application for patent is a Continuation 
and claims priority to patent application Ser. No. 09/957, 
820, entitled “METHOD AND APPARATUS FOR COD 
ING BITS OF DATA IN PARALLEL,” filed Sep. 20, 2001, 
now allowed, and assigned to the assignee hereof and hereby 
expressly incorporated by reference herein. 

BACKGROUND 

0002) 1. Field 
0003. The present invention relates to data communica 
tions. More particularly, the present invention relates to 
coding multiple bits of data in parallel (e.g., using a mul 
tiple-port memory) to significantly reduce delays associated 
with coding. 
0004 2. Background 
0005. In a typical digital communications system, data is 
processed, modulated, and conditioned at a transmitter unit 
to generate a modulated Signal that is then transmitted to one 
or more receiver units. The data processing may include, for 
example, formatting the data into a particular frame format, 
coding the formatted data with a particular coding Scheme to 
provide error detection and/or correction at the receiver 
units, channelizing (i.e., covering) the coded data, and 
Spreading the channelized data over the System bandwidth. 
The data processing is typically defined by the System or 
Standard being implemented. 
0006. At the receiver unit, the transmitted signal is 
received, conditioned, demodulated, and digitally processed 
to recover the transmitted data. The processing at the 
receiver unit is complementary to that performed at the 
transmitter unit and may include, for example, despreading 
the received Samples, decovering the despread Samples, and 
decoding the decovered Symbols to recover the transmitted 
data. 

0007. The ability to correct transmission errors enhances 
the reliability of a data transmission. Many digital commu 
nications Systems employ a convolutional code or a Turbo 
code to provide error correction capability at the receiver 
units. Convolutional codes operate on Serial data, one or a 
few bits at a time. There are a variety of useful convolutional 
codes, and a variety of algorithms for decoding the received 
coded information Sequences to recover the original data. 
Turbo coding specifically is a parallel-concatenated convo 
lutional coding Scheme. A concatenated code is a cascaded 
combination of two or more codes and is used to provide 
additional error correction capabilities. For a concatenated 
code, the code bits between the coding Stages may be 
interleaved (i.e., reordered) to provide temporal diversity, 
which can further improve performance. An entire packet or 
frame of code bits is typically Stored before the reordering 
is performed. The reordered code bits are then serially 
retrieved and coded by the next coding Stage. 
0008 Conventionally, convolutional and Turbo coding 
are performed Serially on an input bit Stream. For each clock 
cycle, one data bit is provided to the encoder, and two or 
more code bits are generated depending on the code rate of 
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the encoder. Some of the code bits may then be punctured 
(i.e., deleted) to obtain code bits at other code rates. 
0009 Digital multiple access communications systems 
typically transmit data in packets or frames to allow for 
efficient Sharing of System resources among active users. For 
Services that cannot tolerate long delays (e.g., voice, Video), 
the packets are selected to be short in duration (e.g., 10 
mSec), and the codes are accordingly selected to have shorter 
processing delayS. However, for improved coding efficiency, 
it is desirable to process and code larger sized packets, which 
can result in longer processing delays using the conventional 
technique that Serially codes data. The long processing 
delays may adversely impact the performance of the com 
munications System. For example, a particular user or data 
rate may be Selected for a particular data transmission based 
on the conditions of the communications link. If the pro 
cessing delays are excessively long, the link conditions may 
have changed by the time of the data transmission, and 
performance may be compromised or adversely affected. 
0010 AS can be seen, techniques that can be used to 
efficiently code data with Shorter processing delays are 
highly desirable. 

SUMMARY 

0011. According to one aspect, encoders are capable of 
coding multiple bits in parallel to greatly shorten the coding 
time. Two or more encoders can be serially concatenated to 
form a concatenated encoder, such as a Turbo encoder 
commonly used in CDMA communications systems. By 
coding M bits in parallel with a first (outer) encoder and N 
bits in parallel with a Second (inner) encoder, the overall 
coding delays for the concatenated encoder can be signifi 
cantly reduced. An interleaver typically couples between the 
first and Second encoderS and Supports parallel coding with 
its ability to receive multiple code bits for a write operation 
and provide multiple code bits for a read operation. 
0012 One embodiment provides a concatenated encoder 
for coding multiple data bits in parallel. The concatenated 
encoder includes a first (outer) encoder, a memory, and a 
Second (inner) encoder coupled in cascade. The first encoder 
receives and codes M data bits in parallel in accordance with 
a first coding Scheme to generate MR code bits, where R is 
related to the code rate of the Outer encoder (e.g., R=2 for a 
rate % encoder). The memory receives and Stores the 
unpunctured (i.e., non-deleted) MR code bits from the first 
encoder. The Second encoder receives and codes N code bits 
in parallel in accordance with a Second coding Scheme to 
generate coded data comprising NR code bits, when R is 
related to the code rate of the inner encoder (e.g., R=2 for a 
rate % encoder). M and N can be any values. For example, 
M can be eight or more, and N can be four or more. 
0013 Each of the first and second encoders can be a 
convolutional encoder that implements a particular polyno 
mial generator matrix (e.g., a rate % convolutional code). 
Each encoder can also be implemented with one or more 
look-up tables, a State machine, or Some other design. To 
reduce memory requirements, the coding can be performed 
and completed by both encoderS for a particular packet 
before coding is initiated on another packet. To reduce 
processing delays, the first encoder can code one packet 
while the Second encoder codes another packet (i.e., pipe 
lined coding). 
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0.014. The memory can be implemented with a multi-port 
memory having P ports (P>1), a single memory unit, or 
multiple memory units. The memory can be designed to 
store W words in parallel for a write operation and provide 
R words in parallel for a read operation, with each word 
including a particular number of code bits (e.g., eight). The 
memory can be operated to provide interleaving of code bits 
stored within the memory. For example, W words can be 
Stored to Sequential rows in the memory with a write 
operation and R words can be retrieved from permutated 
rows in the memory with a read operation. 

0.015 The concatenated encoder can further include a set 
of N multiplexers used to provide N code bits in parallel to 
the Second encoder. Each multiplexer receives a respective 
word from the memory, selects one of the code bits in the 
received word, and provides the Selected bit to the Second 
encoder. 

0016. Another embodiment provides a convolutional 
encoder for coding multiple data bits in parallel. The con 
volutional encoder includes a State machine coupled to an 
output generator. The State machine receives M data bits in 
parallel and provides a set of values indicative of the next 
State of the State machine. The next State is a function of the 
M data bits and the current state of the state machine. The 
output generator also receives the M data bits and the current 
State and generates MR code bits in response thereto. Mand 
MR can be any number greater than one (e.g., M28, 
MR216). 
0.017. The state machine typically implements a particu 
lar polynomial generator matrix and can be implemented 
with a set of logic elements (e.g., gates) coupled to a set of 
registers. Each logic element couples to Selected ones of the 
M data bits and the current State values to implement a 
particular logic function for one bit of the State machine. The 
registerS Store output values from the logic elements and the 
register outputs comprise the current State of the State 
machine. 

0.018 To code packets of data, the output generator may 
include first and Second output generators. The first output 
generator receives the M data bits and the current State and 
generates MR code bits in response thereto for a first coding 
phase (e.g., data). The Second output generator also receives 
the M data bits and the current state and generates MR code 
bits in response thereto for a second coding phase (e.g., 
code-tail). The code bits from either the first or second 
output generator are Selected, depending on the coding 
phase being executed. The State machine is typically Set to 
a known state (e.g., all Zeros) in the Second coding phase. 
0.019 Yet another embodiment provides a data encoder 
for coding multiple bits in parallel. The data encoder 
includes an input interface, a multi-bit encoder, a memory, 
and an output interface. The input interface receives M data 
bits and provides the received bits to the multi-bit encoder. 
The multi-bit encoder can be selected to receive and code the 
M data bits in parallel to generate MR code bits, or to receive 
and code N code bits in parallel to generate NR code bits. 
The memory stores unpunctured bits of the MR code bits 
from the multi-bit encoder and, when directed, provide N 
code bits to the multi-bit encoder. The output interface 
receives the NR code bits from the multi-bit encoder and 
provides unpunctured bits of the NR code bits as coded data. 
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The data encoder typically further includes an address 
generator that generates addresses for write and read opera 
tions for the memory. 

0020 Still another embodiment provides a transmitter 
unit for use in a communications System (e.g., a CDMA 
System). The transmitter unit includes an encoder, a modu 
lator, and a transmitter coupled in cascade. The encoder 
receives and codes M data bits in parallel in accordance with 
a first coding Scheme to generate MR code bits, Stores 
unpunctured ones of the MR code bits, interleaves code bits 
for a particular packet, receives and codes N code bits in 
parallel in accordance with a Second coding Scheme to 
generate NR code bits, and provides unpunctured ones of the 
NR code bits as coded data. The modulator receives and 
modulates the coded data with a particular modulation 
Scheme to generate modulated data. And the transmitter 
receives and processes the modulated data to generate a 
modulated Signal Suitable for transmission. The encoder can 
be designed to implement a Turbo code or a concatenated 
code. 

0021 Another embodiment provides a method for per 
forming concatenated coding of multiple data bits in paral 
lel. In accordance with the method, M data bits are received 
and coded in parallel in accordance with a first coding 
scheme to generate MR code bits. Zero or more of the MR 
code bits may be punctured with a particular puncturing 
Scheme, and the unpunctured code bits are Stored to a 
memory. At the appropriate time, N code bits are retrieved 
from the memory and coded in parallel in accordance with 
a Second coding Scheme to generate coded data. For effi 
ciency and reduced delays, W words of unpunctured code 
bits may be written concurrently to W ports of the memory, 
and R words of code bits may be read concurrently from R 
ports of the memory. To provide interleaving, W words can 
be stored to Sequential rows in the memory with a write 
operation and R words can be retrieved from permutated 
rows in the memory with a read operation. 

0022. Other aspects and embodiments of the invention 
are described below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0023 The features, nature, and advantages of the present 
invention will become more apparent from the detailed 
description Set forth below when taken in conjunction with 
the drawings in which like reference characters identify 
correspondingly throughout and wherein: 

0024 
System; 

0025 FIG. 2 is a block diagram of an encoder that can be 
designed to implement Some embodiments of the present 
invention; 

0026 FIG. 3 is a diagram of a concatenated encoder 
which implements a particular set of polynomial generator 
matrices according to one embodiment; 
0027 FIG. 4 is a block diagram of a convolutional 
encoder for coding multiple data bits in parallel according to 
one embodiment; 

0028 FIGS. 5A and 5B are schematic diagrams of a 
convolutional encoder which implements a Specific polyno 

FIG. 1 is a block diagram of a communications 
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mial generator matrix and for coding eight data bits in 
parallel according to various embodiments, 

0029 FIG. 6 is a schematic diagram of one embodiment 
of a convolutional encoder that implements another specific 
polynomial generator matrix and can code four code bits in 
parallel; 

0030) 
0031 FIGS. 7B and 7C are diagrams of an interface 
between an outer convolutional encoder and an interleaver 
without and with puncturing, respectively, according to 
various embodiments, 

0.032 FIG. 8 is a block diagram of an encoder according 
to one embodiment; and 

0033 FIG. 9 is a flow diagram of a method for perform 
ing concatenated coding of multiple data bits in parallel 
according to one embodiment. 

FIG. 7A is a diagram of an interleaver; 

DETAILED DESCRIPTION 

0034 FIG. 1 is a simplified block diagram of an embodi 
ment of a communications system 100 in which various 
aspects of the present invention may be implemented. At a 
transmitter unit 110, traffic data is sent, typically in packets 
or frames, from a data Source 112 to an encoder 114 that 
formats and codes the data using a particular coding Scheme. 
Encoder 114 typically further performs interleaving (i.e., 
reordering) of the code bits. A modulator (MOD) 116 then 
receives, channelizes (i.e., covers), and spreads the coded 
data to generate Symbols that are then converted to one or 
more analog signals. The analog signals are filtered, 
(quadrature) modulated, amplified, and upconverted by a 
transmitter (TMTR) 118 to generate a modulated signal, 
which is then transmitted via an antenna 120 to one or more 
receiver units. 

0035. At a receiver unit 130, the transmitted signal is 
received by an antenna 132 and provided to a receiver 
(RCVR) 134. Within receiver 134, the received signal is 
amplified, filtered, downconverted, quadrature demodu 
lated, and digitized to provide Samples. The samples are 
despread, decovered, and demodulated by a demodulator 
(DEMOD) 136 to generate demodulated symbols. A decoder 
138 then decodes the demodulated symbols and (possibly) 
reorders the decoded data to recover the transmitted data. 
The processing performed by demodulator 136 and decoder 
138 is complementary to the processing performed at trans 
mitter unit 110. The recovered data is then provided to a data 
Sink 140. 

0.036 The signal processing described above supports 
transmissions of Voice, Video, packet data, messaging, and 
other types of communication in one direction. A bi-direc 
tional communications System Supports two-way data trans 
mission. However, the Signal processing for the other direc 
tion is not shown in FIG. 1 for simplicity. 
0037 Communications system 100 can be a Code Divi 
sion-Multiple Access (CDMA) system, a Time Division 
Multiple Access (TDMA) communications System (e.g., a 
GSM system), a Frequency Division-Multiple Access 
(FDMA) communications System, or other multiple access 
communications System that Supports Voice and data com 
munication between users over a terrestrial link. 
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0038. The use of CDMA techniques in a multiple access 
communications system is disclosed in U.S. Pat. No. 4,901, 
307, entitled “SPREAD SPECTRUMMULTIPLE ACCESS 
COMMUNICATION SYSTEM USING SATELLITE OR 
TERRESTRIAL REPEATERS, and U.S. Pat. No. 5,103, 
459, entitled “SYSTEMAND METHOD FOR GENERAT 
ING WAVEFORMS IN A CDMA CELLULAR TELE 
PHONE SYSTEM.” Another specific CDMA system is 
disclosed in U.S. patent application Ser. No. 08/963,386, 
entitled “METHOD AND APPARATUS FOR HIGHRATE 
PACKET DATA TRANSMISSION," filed Nov. 3, 1997 
(hereinafter referred to as the HDR system), now U.S. Pat. 
No. 6,574,211, issued on Jun. 3, 2003 to Padovani et al. 
These patents and patent application are assigned to the 
assignee of the present invention and incorporated herein by 
reference. 

0039) CDMA systems are typically designed to conform 
to one or more standards such as the “TIA/EIA/IS-95-A 
Mobile Station-Base Station Compatibility Standard for 
Dual-Mode Wideband Spread Spectrum Cellular System” 
(hereinafter referred to as the IS-95-A standard), the “TIA/ 
EIA/IS-98 Recommended Minimum Standard for Dual 
Mode Wideband Spread Spectrum Cellular Mobile Station” 
(hereinafter referred to as the IS-98 standard), the standard 
offered by a consortium named "3rd Generation Partnership 
Project” (3GPP) and embodied in a set of documents includ 
ing Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 
25.213, and 3G TS 25.214 (hereinafter referred to as the 
W-CDMA standard), and the “TR-45.5 Physical Layer Stan 
dard for cdma2000 Spread Spectrum Systems” (hereinafter 
referred to as the CDMA-2000 standard). New CDMA 
Standards are continually proposed and adopted for use. 
These CDMA standards are incorporated herein by refer 
CCC. 

0040 FIG. 2 is a block diagram of an encoder 200 that 
can be designed to implement Some embodiments of the 
present invention. Encoder 200 may be used for encoder 114 
in FIG. 1. In this embodiment, encoder 200 implements a 
concatenated code and includes an outer convolutional 
encoder 212, an interleaver 214, and an inner convolutional 
encoder 216 coupled in cascade. Outer convolutional 
encoder 212 provided to interleaver 214 for storage. Once an 
entire packet of code bits has been Stored in interleaver 214, 
the code bits are retrieved and provided to inner convolu 
tional encoder 216. To achieve the interleaving, the code bits 
are read out in an order that is different from the order in 
which the bits are written to interleaver 214. Outer convo 
lutional encoder 212 receives and convolutionally codes the 
code bits to generate coded data, which is then provided to 
the Subsequent processing Stage. 

0041 Aconventional convolutional encoder receives and 
codes data Serially, one bit at a time (i.e., per clock cycle). 
For communications Systems that transmit data in large 
packets, the Serial coding of data can result in long process 
ing delayS. Moreover, for a concatenated coder made up of 
multiple convolutional encoderS coupled in cascade, the 
processing delays can be excessively long, especially if the 
outer and inner convolutional encoders both code bits Seri 
ally. 

0042. In one aspect, a convolutional encoder is capable of 
receiving and coding multiple (M) bits in parallel. This 
capability allows the convolutional encoder to code a packet 
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of data in approximately (1/M)th the amount of time 
required by a conventional convolutional encoder. The ben 
efits are more pronounced for a concatenated coder (e.g., a 
Turbo coder) when each of the individual convolutional 
encoderS processes bits in parallel. 
0043. According to another aspect, an interleaver is 
capable of Storing and providing multiple bits of data in 
parallel. The interleaver may be implemented using, for 
example, a multi-port memory. When used in combination 
with the convolutional encoderS described herein, the inter 
leaver can further reduce the processing delayS. Since data 
can be written to, and read from the interleaver in a fraction 
of the time. 

0044) For clarity, an exemplary embodiment is now 
described for an encoder used for a downlink data transmis 
Sion in the communications System described in the afore 
mentioned U.S. patent application Ser. No. 08/963,386 (i.e., 
the HDR system). The HDR system employs a concatenated 
code comprised of an outer convolutional code, interleaving, 
and an inner convolutional code. The HDR system also 
defines two packet formats having the properties listed in 
Table 1. 

TABLE 1. 

Packet Packet 
Parameters Format 1 Format 2 Units 

Total bits/packet 1024 2048 bits 
Outer convolutional 
encoder 

Input data bits/packet 101.8 2042 bits 
Code-tail bits/packet 4 4 bits 
Outer code rate 1/2 2/3 
Outer code puncture pattern (1111) (1011) 
Output code bits/packet 2044 3069 bits 
Interleaver depth 2O48 3072 bits 
Inner convolutional encoder 

Input code bits/packet 2044 3069 bits 
Code-tail bits/packet 4 3 bits 
Inner code rate 1/2 3f4 
Inner code puncture pattern (111111) (111001) 
Output code bits/packet 4096 4096 bits 
Overall code rate 1f4 1/2 

0.045. In the HDR system, the outer convolutional 
encoder implements a rate 72 convolutional code defined by 
the following polynomial generator matrix: 

x + x + x + 1 Eq. (1) 
Go(x) = |, 4 3 1 

0046) The inner convolutional encoder in the HDR sys 
tem implements a rate 72 convolutional code defined by the 
following polynomial generator matrix: 

x + x + 1 Eq. (2) 
x + 1 

0047 FIG. 3 is a diagram of an encoder 300 that imple 
ments the outer and inner convolutional codes defined by 
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equations (1) and (2). The data bits u are provided to an outer 
convolutional encoder 310 that implements equation (1) and 
generates two outputs y, and y. Within encoder 310, the 
data bits u are provided to a Summer 312 that further couples 
in cascade with registers 314a through 314d (which are used 
to implement a set of delays). The outputs from summer 312 
and registers 314A, 314B, and 314D are summed by sum 
mers 316A, 316B, and 316C to implement the numerator of 
the Second element in the polynomial generator matrix 
expressed in equation (1). The outputs from registers 314C 
and 314D are summed by a Summer 318 and provided to 
Summer 312 to implement the denominator of the second 
element in equation (1). The input data bits u are provided 
as the first output y, and the output from Summer 316c 
comprises the Second output y. 
0048. The code bits in the outputs y, and y of outer 
convolutional encoder 310 may be punctured (not shown in 
FIG. 3 for simplicity). The unpunctured code bits are then 
provided to interleaver 330 and reordered. The reordered 
code bits V are then provided to an inner convolutional 
encoder 340 that implements equation (2) and generates two 
outputs y, and y. Within encoder 340, the code bits v are 
provided a Summer 342 that couples in cascade with regis 
ters 344A and 344B. The outputs from Summer 342 and 
registers 344A and 344B are summed by Summers 346A and 
346B to implement the numerator of the second element in 
the polynomial generator matrix expressed in equation (2). 
The output from register 344A is provided to Summer 342 to 
implement the denominator of the Second element in equa 
tion (2). The input code bits v are provided as the first output 
y and the output from Summer 346B comprises the Second 
Output y. 
0049 Conventionally, the data bits u are provided serially 
to encoder 310 and the code bits v are also provided serially 
to encoder 340. For each input data bit, outer convolutional 
encoder 310 generates two code bits. Interleaver 330 
receives and Stores the code bits, and provides the code bits 
serially to inner convolutional encoder 340. The coding of 
the bits in a Serial manner results in long processing delayS. 
0050. The convolutional encoder of one embodiment is 
capable of coding multiple bits in parallel to significantly 
Shorten the coding delayS. For each clock cycle, multiple 
(e.g., M) data bits can be received and coded to generate 
multiple code bits. For a rate % encoder, 2M code bits are 
generated for the M data bits. M can be selected to be any 
number Such as, for example, 4, 8, 16, 32, and So on. Various 
alternate embodiments of Such a convolutional encoder are 
described below. 

0051. Many digital communications systems, such as the 
High Data Rate (HDR) system, transmit data in packets. The 
number of bits in a packet (i.e., the packet size) is selected 
based on a number of criteria Such as, for example, the data 
rate, the amount of data to transmit, the processing delayS 
requirements, and So on. To allow the decoder at the receiver 
unit to Start at a known State at the beginning of each packet, 
which shortens the decoding time and improves perfor 
mance, the encoder is initialized to a known State (e.g., all 
Zeros) at the start of each packet. The initialization is 
achieved by inserting a Set of code tail bits at the end of the 
preceding packet. The code-tail bits are Selected Such that 
the encoder is set to the known State. 

0052. In one embodiment, the convolutional encoder of 
the exemplary embodiment is implemented with a look-up 
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table. Referring to FIG. 3, outer convolutional encoder 310 
may be viewed as a State machine with a 4-bit State defined 
by the outputs of registers 314A through 314D. To generate 
the contents of the look-up table, the M input data bits at 
time index n can be represented by a vector U, the 2M code 
bits can be represented by a vector Y, and the current 
encoder State can be represented by a vector X. The next 
State X, for the encoder and the encoder output vector Y, 
can be expressed as: 

Data Code-tail 

X1 = f(X, U) X = 0 Eq. (3) 
Y = g1(Xn, U) Y = g2(Xn U) Eq. (4) 

0053 Each of equations (3) and (4) provides one equa 
tion to use when the input is data and another equation to use 
when the encoder input includes code-tail bits. 
0054) Equations (3) and (4) can be computed for all 
possible combinations of input data bits and encoder States. 
For example, for equation (4), the output code bits can be 
computed for the input vector U=0 ... 00 and an encoder 
state of X=0 . . . 00, an input vector U=0 . . . 01 and the 
encoder State of X=0 . . .00, and So on, and an input vector 
U=1 ... 11 and the encoderstate of X=0 ... 00. The output 
code bits can then be computed for all possible combination 
of the input vector U, and an encoder state of X=0 ... 01. 
The process then continues until all combinations of input 
vector and encoder State are computed. Equation (3) can also 
be computed in a similar manner. 
0055 The results from the computations for equations (3) 
and (4) can be stored to a memory that implements a look-up 
table. The required memory size is dependent on the number 
of data bits to be coded in parallel and the particular 
polynomial generator matrix being implemented. For 
example, if eight data bits are to be coded in parallel with the 
convolutional code expressed in equation (1), a memory 
having a size of 12 address bits and 20 data bits (i.e., 
4096x20) can be used. The 12-bit address is composed of 8 
input data bits and 4 bits for the current encoder state. The 
20-bit output includes 16 code bits and 4 bits for the next 
encoder State. 

0056. Once the memory has been properly defined, the 
input data vector U and the current encoder State X, can be 
provided to the address input of the memory, which then 
provides the output vector Y and the next encoder State 
X. The next encoder State X is appropriately stored for 
use with the next input data vector U. 
0057. In another embodiment, the convolutional encoder 
is implemented with a State machine. The encoder State and 
output can be expressed as shown in equations (3) and (4). 
Each of equations (3) and (4) can be recursively Solved, and 
the resulting equations are then implemented in hardware, 
Software, or a combination thereof. The recursive equations 
for the encoder may be solved as follows. Let X, -X, X, X 
X denotes the transposed State vector and uo denotes the 
input data bit at time index 0. The next state and output of 
the encoder can then be expressed as: 
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0058 where A, B, C, and D are scalar, vectors, and matrix 
that are dependent on the particular polynomial generator 
matrix being implemented. The encoder State equation (5) 
can be recursively solved as follows: 

X = AXo + ABuo + Bu 

X3 = AXo + ABuo + ABu + Bu2 

A'Bus + ABu4 + A Bus + ABus + Bur 

0059) The encoder output equation (6) can also be recur 
Sively Solved in Similar manner. 
0060) Equations (5) and (6) are used to code one data bit 
u at a time. A similar set of equations can be derived for 
coding M data bits in parallel. For example, for coding 8 
data bits in parallel (i.e., M=8), the transpose of the input 
data vector at time index n can be defined as U =u, u, 
uns u, u, u, u, uno) and the transpose of the output code 
vector can be defined as Y,"-ly, yngysya yaylay, yol. 
Using the defined vector notations for U and Y, equations 
(5) and (6) can be expressed as: 

X=FX+GU, Eq. (7) 
Y=HX+IU Eq. (8) 

0061 where F, G, H, and I are vectors and matrices that 
are dependent on the particular polynomial generator matrix 
being implemented, the current encoder State X, and the 
input data vector U. Equation (7) is used to generate the 
next encoder State X, after M data bits have been coded, 
and equation (8) is used to generate the encoder outputs Y, 
for the input vector U. 
0062) To determine F, G, H, and I in equations (7) and (8), 
equations (5) and (6) can be solved recursively using various 
techniques and the results from the recursive computations 
can be used to implement equations (7) and (8). For 
example, a table can be used to tabulate the State and outputs 
of the encoder for each input data bit. The entries in the table 
can then be used to implement equations (7) and (8), as 
described below. 

0063 Table 2 shows the encoder states and outputs after 
eight input data bits up through ul, have been serially pro 
vided to convolutional encoder 310 in FIG. 3, which imple 
ments equation (1). As shown in FIG. 3, registers 314A 
through 314D initially Store the values of X, X, X, and X, 
respectively. On the first clock cycle, the first data bit uo is 
provided to encoder 310, and the output of Summer 312 is 
computed as X+x+uo, which is Stored in the Second row, 
Second column in Talbe 2. The encoder outputs are com 
puted as yo-uo and yo-(X+Xa+uo)+X4+X2+X=X3+X2+x+ 
uo. (Each Summer 316 performs modulo-2 addition.) On the 
next clock cycle, the values from Summer 312 and registers 
314A through 314C are shifted into registers 314A through 
314D, respectively. The next data bit u is provided to the 
encoder, and the output of Summer 312 is computed as 
x+x+ui, which is stored in the third row, Second column in 
Table 2. The encoder outputs are computed as y=u and 
y2=(X+X2+u)+Xa+x+(X+Xa+uo)=X+Xa+X2+x+uo+u. 
The processing continues until the eighth data bit u7 is 
received and processed. 
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0064. The encoder output vector: 
0065 Y=y 7 yes yes yt ys y2 y yo) 

0.066 corresponds to the input vector U=u, u, usual us U2 
u uo and is generated based on the entries in the last 
column in Table 2. The encoder State X, after the eighth 
data bit ul, has been coded is generated based on the entries 
in the last row in Table 2. As shown in Table 2, the encoder 
output vector Y, and the next encoder State X, are each a 
function of the current encoder State X=X X X X and the 
input vector U. For the data phase, the encoder output vector 
Y, is simply a function of the input vector U (i.e., Y=U). 
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serially provided to convolutional encoder 310 in FIG. 3. 
Again, registers 314A through 314D initially store the 
values of X, X2, Xs, and X, respectively. On the first two 
clock cycles, the two data bits, uo and u, are Serially 
provided to the encoder. The encoder States X through X 
and the encoder outputs y, and y are computed in Similar 
manner as described above. Thus, the Second and third rows 
of Table 3 are identical to the second and third rows of Table 
2. On the third clock cycle, the first code-tail bit having a 
value of X+X is provided to the encoder. The value of the 
code-tail bit is selected such that the output of Summer 312 
is equal to Zero, which is used to flush out the convolutional 

TABLE 2 

u 1 

X + X3 lo 
X + X + ll 
X + X + ul 
X + X + X + up + us 
X + X2 + up + u + lu 
X + X + Ll + l2 + us 
X + X + X2 + up + 
l2 + lls lls 
X + X2 + X + u + 
ls + u + ll, 

X + X + lo 
X + X2 + ul 
X + X + X + up + us 
X + X2 + up + u + lu 
X + X + u + lul - ul 
X + X + u + l2 + us 

X 
X 
X + X3 lo 
X + X2 + ul 
X + X + X + up + us 
X + X + u + lul - ul 
X + X2 + up + u + lu 

X + X + u + l2 + us 

X + X + X2 + up + 
l2 + lls lls 

X + X3 lo 
X + X + ul 
X + X + X + up + lls 
X + X + up + u + lu 

X + X + up + u + lu 

X + X + u + l2 + us 

X + X3 lo 
X + X + ll 
X + X3 + 
X1 llo lls 
X + X2 + 
ulo - ul + Ll 
X + X2 + up + 
l1 + ll 

X + u + u + lus + u + u7 

0067 Referring back to Table 1, the outer convolutional 
encoder in the HDR system receives 1018 data bits and four 
code-tail bits for each packet in packet format 1. If eight bits 
are coded in parallel, 128 clock cycles are used to code one 
packet of data. The first 127 clock cycles are used to code 
1016 data bits (i.e., 127x8=1016), and the 128th clock cycle 
is used to code the remaining two data bits and four code-tail 
bits. The first 127 clock cycles are referred to as the “data 
phase,” and the last clock cycle is referred to as the “code 
tail phase.” 

0068 The outer convolutional encoder receives 2042 
data bits and four code-tail bits for each packet in packet 
format 2. If eight bits are coded in parallel, 256 clock cycles 

l 1. X1 X2 

lo X + X3 huo X1 X2 
l X + X2 + ll X + X + up X1 
X + X O X + X2 + u X + X + up 
X + X + X + up O O X + X2 + ul 
X + X2 + up + Ll O O O 
X + X2 + ll O O O 
O O O O 
O O O O 

O O 

are used to code one packet of data. The first 255 clock 
cycles are used to code 2040 data bits (i.e., 255x8=2040), 
and the 256" clock cycle is used to code the remaining two 
data bits and four code-tail bits. The first 255 clock cycles 
are referred to as the data phase, and the last clock cycle is 
referred to as the code-tail phase. 

0069 Table 3 shows the encoder states and outputs after 
two data bits uo and u and four code-tail bits have been 

encoder. The encoder outputs are computed as y=X+X 
and y =X+uo-ul. On the next clock cycle, the values from 
Summer 312 and registers 314A through 314C are shifted 
into registers 314A through 314D, respectively. The second 
code-tail bit is Selected to be X+X+X+uo, again to Set the 
output of Summer 312 to zero and flush out the encoder. The 
processing continues, with the last two bits provided to the 
encoder having values of Zero. 

0070. As shown in Table 3, the encoder outputs Y and Y 
are both functions of the input vector U and the current 
encoder State X. For the code-tail phase, the next encoder 
State X is set to a known state of all Zeros (i.e., Xs=0 0 
0 0). 

TABLE 3 

X3 X4 yc yd 

X3 X4 lo X + X2 + X + up 
X2 X3 l X + X + X2 + X + u + lu 
X1 X2 X + X X - Llo u1 
X + X3 + llo X1 X + X + X + up X + X2 + X + ul 
X + X2 + u X + X + up X + X2 + up + u X + X + up 
O X + X + ll X + X2 + ll X + X2 + ll 
O O O O 
O O O O 
O O 

0071 FIG. 4 is a block diagram of an embodiment of a 
convolutional encoder 400 that can code multiple input data 
bits in parallel. Convolutional encoder 400 can be used to 
implement the data and code-tail phases (e.g., as defined in 
Tables 2 and 3, respectively). The encoder architecture 
shown in FIG. 4 can be used to implement, for example, 
outer convolutional encoder 310 or inner convolutional 
encoder 340 in FIG. 3. 
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0072. Within convolutional encoder 400, the input data 
bits are provided in parallel as a data vector U to an encoder 
State machine 410, a data phase output generator 420, and a 
code-tail phase output generator 430. Encoder State machine 
410 also receives the current encoderstate X and determines 
the new encoder State based on the received inputs vector U 
and the current encoder state X. Encoder state machine 410 
can implement, for example, the last row in Table 2. 
0.073 Data phase output generator 420 and code-tail 
phase output generator 430 also receive the current encoder 
State X and determine the encoder outputs for the data phase 
and the code-tail phase, respectively, based on the received 
inputS X and U. Data phase output generator 420 can 
implement, for example, the last two columns in Table 2, and 
code-tail output generator 430 can implement, for example, 
the last two columns in Table 3. The first and second outputs, 
Y and Y, from data phase output generator 420 are 
provided to multiplexers (MUXes) 440A and 440B, respec 
tively. Similarly, the first and Second outputs, Y and Y, 
from code-tail phase output generator 430 are provided to 
multiplexers 440A and 440B, respectively. Multiplexers 
440A and 440B provide the outputs Y and Y, respectively, 
from data phase output generator 420 when operating in the 
data phase and the outputs Y and Y, respectively, from 
code-tail phase output generator 430 when operating in the 
code-tail phase. 
0.074 To implement a convolutional encoder that con 
tinuously codes input data bits as they are received, without 
having to reset the encoder State at the Start of each packet, 
only encoder State machine 410 and data phase output 
generator 420 are needed. For communications Systems 
(e.g., the HDR System) in which data is sent in packets and 
code-tail bits are used to reset the convolutional encoder to 
a known State at the Start of each packet, code-tail phase 
output generator 430 and multiplexers 440A and 440B are 
used to provide the required encoder outputs. 
0075. The design of encoder state machine 410 and data 
phase output generator 420 is dependent on the particular 
polynomial generator matrix to be implemented and the 
number of data bits to be coded in parallel. The design of 
code-tail phase output generator 430 is dependent on the 
polynomial generator matrix, the number of data bits to be 
coded in parallel, and the particular frame format (i.e., the 
number of data and code-tail bits to be coded in the code-tail 
phase). A specific design of convolutional encoder 400 is 
now described below. 

0.076 FIG. 5A is a schematic diagram of a specific 
embodiment of a convolutional encoder 500 that can code 
eight input data bits in parallel and implements the polyno 
mial generator matrix expressed in equation (1). Convolu 
tional encoder 500 includes an encoder state machine 510 
that implements the State machine defined in Table 2 and a 
data phase output generator 520 that generates the encoder 
outputs defined in Table 2. Encoder state machine 510 and 
data phase output generator 520 correspond to encoder State 
machine 410 and data phase output generator 420, respec 
tively, in FIG. 4. In this embodiment, encoder state machine 
510 is implemented with AND gates 512A through 512D 
and registers 514A through 514D, and data phase output 
generator 520 is implemented with AND gates 522A through 
522H. 

0.077 As shown in FIG. 5A, the eight input data bits, up 
through uz, are provided in parallel to the inputs to encoder 
state machine 510 and data phase output generator 520, each 
of which also receives the current encoder state defined by 

Jul. 15, 2004 

X through X. Each AND gate 512 within encoder state 
machine 510 Selectively couples to the inputs uo-ul, and 
X-X, as defined by the last row in Table 2. For example, 
AND gate 512A couples to the inputS Xs, X2, X, u, us, u, 
and u7, as defined by the entry in the last row, third column 
(x) in Table 2. The outputs of AND gates 512A through 
512D couple to the inputs of registers 514A through 514D, 
respectively. The outputs of registers 514A through 514D 
comprise the State machine outputS X through X, respec 
tively. 

0078 Similarly, each AND gate 522 within data phase 
output generator 520 Selectively couples to the inputs u-ul, 
and X-X, as defined by the last column in Table 2. For 
example, AND gate 522A couples to the inputS X, X2, X, 
and up, as defined by the entry in the Second row, last column 
(yo) in Table 2. The inputs up through ul, comprise the 
encoder outputs yo through y7, respectively (not shown in 
FIG. 5A for simplicity), and the outputs of AND gates 522A 
through 522H comprise the encoder outputs yo through y, 
respectively. 

007.9 FIG. 5B is a schematic diagram of a specific 
embodiment of a code-tail phase output generator 530 and 
multiplexers 540A and 540B that implement the code-tail 
phase of the polynomial generator matrix expressed in 
equation (1) and for packet formats 1 and 2 shown in Table 
1. Code-tail phase output generator 530 and multiplexers 
540A and 540B correspond to code-tail phase output gen 
erator 430 and multiplexers 440A and 440B, respectively, in 
FIG. 4. In this embodiment, code-tail phase output genera 
tor 530 is implemented with AND gates 532A through 532J 
and generates the encoder outputs Y and Y for the code-tail 
phase defined in Table 3. Multiplexer 54.0a is implemented 
with 2x1 multiplexers 542A through 542F and provides the 
first encoder output Y. Similarly, multiplexer 540B is 
implemented with 2x1 multiplexers 544A through 544H and 
provides the Second encoder output Y. 

0080 Encoder state machine 510, data phase output 
generator 520, code-tail phase output generator 530, and 
multiplexers 540A and 540B in FIGS. 5A and 5B form a 
specific implementation of convolutional encoder 400. This 
Specific implementation is used to implement the polyno 
mial generator matrix expressed in equation (1) and for the 
packet formats described in Table 1. For packet format 1, 
1018 data bits are provided to convolutional encoder 500 
over 128 clock cycles. For each of the first 127 clock cycles, 
eight data bits are provided to encoder 500, and multiplexers 
540A and 540B are selected to provide the outputs Y and Y, 
from data phase output generator 520. On the 128" clock 
cycle, the remaining two data bits, four code-tail bits, and 
two zeros are provided to encoder 500. Registers 514A 
through 514D are reset to zero (synchronously), and multi 
plexers 540A and 540B are selected to provide the outputs 
Y and Y from code-tail phase output generator 530. For 
packet format 2, 2042 data bits are provided to convolutional 
encoder 500 over 256 clock cycles. For each of the first 255 
clock cycles, corresponding to the data phase, eight data bits 
are coded in parallel and multiplexers 540A and 540B 
provide the outputs Y, and Y, respectively. On the 256" 
clock cycle, corresponding to the code-tail phase, two data 
bits, four code-tail bits, and two Zeros are coded in parallel 
and multiplexers 540A and 540B provide the outputs Y and 
Y, respectively. 

0081. The specific implementation shown in FIGS. 5A 
and 5B is described to provide a clearer understanding. It 
will be noted that different implementations can also be 
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contemplated and are within the Scope of the present inven 
tion. Moreover, a different design is typically used for a 
different polynomial generator matrix, a different number of 
input data bits, or different packet formats. 
0082 In similar manner, another convolutional encoder 
can be designed to implement the polynomial generator 
matrix expressed in equation (2). In an embodiment, the 
convolutional encoder is designed to receive and code four 
code bits in parallel. Equations (5) and (6) for the next 
encoder State and outputs, respectively, can be recursively 
Solved in the manner described above. 

0.083 Table 4 shows the encoder states and outputs after 
four input code bits Vo through V have been Serially pro 
vided to convolutional encoder 340 in FIG. 3. Registers 
344A and 34.4B initially store the values of X and X, 
respectively. On the first clock cycle, the first code bit Vo is 
provided to encoder 340, and the output of Summer 342 is 
computed as X+Vo, which is Stored in the Second row, 
Second column in Table. The encoder outputs are computed 
as yeo-Vo and yo-(X+Vo)+X2+X=X2+Vo. On the next clock 
cycle, the values from Summer 312 and register 344A are 
shifted into registers 344A and 34.4B, respectively. The next 
code bit v is provided to encoder 340, and the output of 
Summer 342 is computed as X+Vo-V, which is Stored in the 
third row, Second column. The outputs are computed as 
y=V, and y1=(X+Voi-v)+(X+Vo)+x =X1+V. The process 
ing continues until the fourth code bit V is received and 
processed. 
0084. The encoder output vector Y is generated based on 
the entries in the last column in Table 4. The encoder state 
X, after the fourth code bit V has been coded is generated 
based on the entries in the last row in Table. As shown in 
Table 4, the encoder output vector Y and the next encoder 
State X are each a function of the current encoder State 
X =X- X and the input vector V. For the data phase, the 
encoder output vector Y is simply a function of the input 
vector V. 

w 1 X1. X2 ye 

Wo X1 + Vo X1 X2 Vo 
V X1 + Vo + V X + Vo X1 V1 
V2 X + Vo + V + V2 X + X + ll X + vo V2 
Vs X + Vo + V + V2 + V X1 + Vo + V + V2 X + X2 + ul W3 

0085. Referring back to Table 1, the inner convolutional 
encoder in the HDR system receives 2044 code bits and four 
code-tail bits for each packet in packet format 1. If four bits 
are coded in parallel, 512 clock cycles are used to code one 
packet. The first 511 clock cycles are used to code 2044 code 
bits (i.e., 511x4=2044), and the 512" clock cycle is used to 
code the four code-tail bits. The convolutional encoder 
receives 3079 code bits and three code-tail bits for each 
packet in packet format 2. If four bits are coded in parallel, 
768 clock cycles are used to code one packet of data. The 
first 767 clock cycles are used to code 3068 code bits (i.e., 
767x4=3068), and the 768" clock cycle is used to code the 
last code bit and three code-tail bits. 

0.086 Table 5 shows the states and outputs of the inner 
convolutional encoder for the code-tail phase for packet 
format 1. On the first clock cycle, the first code-tail bit of 
having a value of X is provided to the encoder. The code-tail 
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bit value is selected such that the output of Summer 342 is 
equal to Zero. The encoder outputs are computed as yo-X, 
and yo-X2+X. The processing continues in Similar manner 
for the remaining three code-tail bits. 

TABLE 5 

w 1. X1 X2 yg Wh 

X1. O X1. X2 X1. X + X 
O O O X1 O X1 
O O O O O O 
O O O O O O 

O O 

0087 Table 6 shows the states and outputs of the inner 
convolutional encoder for the code-tail phase for packet 
format 2. On the first clock cycle, the last code bit Vo is 
provided to the encoder, and the encoder States X and X and 
outputs yo and yo are computed in similar manner as 
described above. The second row of Table 6 is thus identical 
to the second row of Table 4. On the second clock cycle, the 
first code-tail bit having a value of X+Vo is provided to the 
encoder. The code-tail bit value is selected Such that the 
output of Summer 342 is equal to Zero. The encoder outputs 
are computed as y=X+Vo and y =Vo. The processing 
continues in Similar manner for the remaining code-tail bits. 

TABLE 6 

w 1. X1 X2 yi yi 

Vo X + Vo X1 X2 Vo X2 + Vo 
X + Vo O X + Vo X1 X + Vo Vo 
O O O X + Vo O X + Vo 
O O O O O O 

O O 

yf 

X2 + Vo 
X + V. 

0088 FIG. 6 is a schematic diagram of a specific 
embodiment of a convolutional encoder 600 that can code 
four input code bits in parallel and implements the polyno 
mial generator matrix expressed in equation (2). Convolu 
tional encoder 600 includes an encoder state machine 610 
that implements the State machine defined by Table, an 
output generator 620 that generates the encoder outputs 
defined in Tables 4 through 6, and multiplexers 640A and 
640B that provide the proper encoder outputs for the data 
and code-tail phases for packet formats 1 and 2. 

0089. As shown in FIG. 6, four input code bits, vo 
through V, are provided in parallel to the inputs of encoder 
state machine 610 and output generator 620, each of which 
also receives the current encoder State defined as X=X- X. 
Each AND gate 612 within encoder state machine 610 
Selectively couples to the inputs Vo-V and X-X, as defined 
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by the last row in Table 4. For example, AND gate 612A 
couples to the inputS X, Vo, V, V2, Vs, and V, as defined by 
the entry in the last row, third column (x) in Table 4. The 
outputs of AND gates 612A and 612B couple to the inputs 
of registers 614A and 614B, respectively. The outputs of 
registers 614A and 614B comprise the state machine outputs 
X and X2, respectively. 
0090 Similarly, each AND gate 622 within output gen 
erator 620 Selectively couples to the inputs Vo-V and X-X, 
as defined by the last two columns in Tables 4 through 6. For 
example, AND gate 622A couples to the inputs X and Vo and 
generates yo (the Second row, last column in Table 4), AND 
gate 622B couples to the inputS X and X and generates yo 
(the second row, last column in Table 5), and AND gate 
622C couples to the inputs X, and Vo and generates yo (the 
second row, last column in Table 6). The other encoder 
outputs are generated as indicated in Tables 4 through 6. 
0091 Multiplexer 640A includes 3x1 multiplexers 642A 
through 642D that provide the first encoder outputs yo 
through yi, respectively, for inner convolutional encoder 
600. During the data phases, yo through y are provided 
through multiplexers 642A through 642D, respectively. Dur 
ing the code-tail phase, multiplexers 642A through 642D 
respectively provideyo through y for packet format 1 and 
y through y for packet format 2. Similarly, multiplexer 
640B includes 3x1 multiplexers 64.4A through 644D that 
provide the Second encoder outputs yito through yies, respec 
tively, for inner convolutional encoder 600. During the data 
phases, yo through y are provided through multiplexers 
64.4A through 644D, respectively. During the code-tail 
phase, multiplexers 64.4A through 644D respectively pro 
vide yo throughys for packet format 1 and yo through yis 
for packet format 2. 
0092 Another aspect of the invention provides an inter 
leaver capable of Storing multiple code bits generated in 
parallel by the outer convolutional encoder and providing 
multiple code bits in parallel to the inner convolutional 
encoder. Referring back to FIG. 2, an interleaver is coupled 
between the outer and inner convolutional encoders. The 
interleaver is designed to Store one or more packets of code 
bits. After an entire packet has been Stored, the code bits are 
then retrieved in a read order that is different than the write 
order to achieve interleaving of the code bits. If no inter 
leaving is desired, the code bits can be retrieved from the 
interleaver in the same order. 

0093. The outer convolutional encoder of the exemplary 
embodiment can be designed to receive and code M data bits 
in parallel and generate MR code bits, where R is related to 
the code rate of the outer convolutional encoder (e.g., R=2 
for a rate % encoder). To expedite processing and reduce 
delays, the interleaver can be designed to store MR code 
bits from the outer convolutional encoder in parallel as the 
code bits are generated by the encoder. Similarly, the inner 
convolutional encoder can be designed to receive and code 
N code bits in parallel. Again, to expedite processing and 
reduce delays, the interleaver can be designed to provide at 
least N code bits in parallel to the inner convolutional 
encoder on a Single read operation. 

0094. The code bits from each of the outer and inner 
convolutional encoderS may be punctured to provide code 
bits at other code rates. For example, referring back to Table 
1, the outputs from the Outer convolutional encoder is 
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unpunctured for packet format 1 to obtain a code rate of 72 
and punctured for packet format 2 to obtain a code rate of 73. 
Similarly, the outputs from the inner convolutional encoder 
is unpunctured for packet format 1 to obtain a code rate of 
/2 and punctured for packet format 2 to obtain a code rate of 
%. The interface between the encoder and the interleaver can 
be designed to efficiently achieve the Symbol puncturing. 
0.095 FIG. 7A is a diagram of an embodiment of an 
interleaver 700. In this embodiment, interleaver 700 is 
implemented with a multi-port memory 710 having P ports, 
where P is greater than one. Depending on the particular 
memory unit used to implement the interleaver, each of the 
P ports may be used as both write and read port or may be 
a dedicated write or read port. In the embodiment shown in 
FIG. 7A, memory 710 includes W ports designated as write 
ports D through Dw, and R ports designated as read ports 
Q through Q. Memory 710 further includes P address 
inputs, A through Ap, one address input for each of the P 
ports. Each write and read port can transfer C bits in parallel. 
0096. An address generator 720 receives an input address 
ADDR, generates the necessary addresses for each active 
port, and provides the generated addresses to the address 
inputs A through A of memory 710. Although not shown 
in FIG. 7A for simplicity, address generator 720 further 
generates one or more control Signals that direct memory 
710 to perform a write or read operation. 
0097. In an embodiment, memory 710 is configured as a 
two-dimensional memory having a number of rows and a 
number of columns. In an embodiment, code bits are written 
to sequential rows in memory 710. For efficiency, the width 
of each row can correspond to the width of each port (i.e., 
C bits). This allows up to Wrows of code bits to be written 
to the W write ports of memory 710 for each write operation. 
Once the code bits for an entire packet have been Stored to 
memory 710 the code bits can be retrieved from the memory. 
In an embodiment, code bits are also read from memory 710 
by rows. For the embodiment shown in FIG. 7A, up to R 
rows of code bits can be retrieved from the R read ports for 
each read operation. 
0098 Various designs can be used to provide code bits 
from interleaver 700 to the inner convolutional encoder. The 
particular design to implement is dependent on the particular 
system requirements. In one design, R multiplexers 730A 
through 730R are coupled to the R read ports Q through Q, 
respectively. For each read operation, up to R rows of code 
bits are retrieved from memory 710 and provided to multi 
plexers 730A through 730R, which also receive the control 
Signals AD through AD, respectively. Each multiplexer 
730 receives the C code bits, selects one of the code bits 
based on the respective control Signal AD, and provides the 
selected code bit to the multiplexer output. The control 
Signals AD through AD Select a particular code bit from 
each retrieved row of code bits. R multiplexers 730 can thus 
be used to provide up to R code bits in parallel to the inner 
convolutional encoder. 

0099 For a clearer understanding, a specific design of the 
interleaver is now described for use with the outer and inner 
convolutional encoders described above in FIGS. 5A, 5B, 
and 6. In the above encoder designs, the outer convolutional 
encoder receives and codes 8 data bits in parallel in one 
clock cycle to generate 16 code bits, and the inner convo 
lutional encoder receives and codes 4 code bits in parallel. 
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In this specific interleaver design, an 8-port memory is 
employed, with four ports being used for receiving code bits 
in write operations and four ports being used for providing 
code bits in read operations. In this design, each port is 
capable of receiving or providing 8bits in parallel. Thus, for 
this specific design, up to 32 code bits can be written to the 
interleaver in a write operation, and up to 32 code bits can 
be read from the interleaver in a read operation. 
0100 FIG. 7B is a diagram of an embodiment of the 
interface between the Outer convolutional encoder and the 
interleaver with no puncturing. In this embodiment, the code 
bits generated by the outer convolutional encoder are pro 
vided to four registers 732A through 732D. Registers 732A 
and 732B receive the 16 code bits generated in the first clock 
cycle and registers 732C and 732D receive the 16 code bits 
generated in the Second (e.g., alternate) clock cycle. When 
no puncturing is performed, all 32-code bits on registers 
732A through 732D are provided to ports D through D, 
respectively, of the memory in one write operation. 
0101 FIG. 7C is a diagram of an embodiment of the 
interface between the Outer convolutional encoder and the 
interleaver with puncturing. Referring back to Table 1, the 
code bits for the Outer code are punctured with the punc 
turing pattern (1011) for packet format 2. Thus, in one clock 
cycle, 16 code bits are generated, 4 code bits are punctured, 
and 12 code bits are stored. Initially, the 16 code bits 
generated in the first clock cycle are Stored to registers 732A 
and 732B, and the 16 code bits generated in the second clock 
cycle are stored to registers 732C and 732D. After the 
puncturing, 24 code bits remain, as shown in FIG. 7C, and 
are provided to three write ports (e.g., D through D.). 
0102) The address generator provides the proper 
addresses for writing the unpunctured code bits to Sequential 
rows in the memory. One address is generated for each 
active port used for writing the code bits. Thus, the address 
generator generates four addresses for port D through D. 
when no puncturing is performed and generates three 
addresses for port D through D when puncturing is per 
formed. 

0103) To provide four code bits in parallel to the inner 
convolutional encoder, four rows of code bits are retrieved 
from the memory and provided to four 8x1 multiplexers. 
Each multiplexer also receives a respective 3-bit control 
Signal AD that Selects a particular bit in the retrieved row 
to provide to the inner convolutional encoder. The address 
for each retrieved bit may thus be partitioned into two parts, 
with the first part identifying a particular row in the memory 
and the Second part identifying a particular location within 
the row. The first part of the address is provided to the 
appropriate address input of the memory and the Second part 
is provided as the control Signal AD. The first and Second 
parts of the address are generated in accordance with the 
particular-interleaving Scheme defined by the System or 
Standard being implemented. 

0104. The interleaver of the exemplary embodiment can 
also be implemented using other memories. For example, a 
Single-port memory unit or multiple memory units can be 
used to concurrently Store and provide multiple bits in 
parallel. For a single-port memory unit, multiple write 
operations may be used to Store the generated code bits, and 
multiple read operations may also be used to retrieve the 
required code bits. In designs employing multiple memory 

Jul. 15, 2004 

units, each memory unit may be operated Similar to a port (or 
a pair of ports) of the multi-port memory. Thus, numerous 
designs can be used to implement the interleaver and are 
within the Scope of the present invention. 
0105. In the embodiments described above, an interleaver 
is used between the outer and inner convolutional encoderS. 
This configuration is used to implement a Turbo encoder, 
which can provide certain advantages. In other encoder 
designs, interleaving after the Outer convolutional encoder 
may not be necessary, and a memory may not be needed 
after the outer convolutional encoder or may simply be used 
as a buffer. 

0106 The concatenated encoder of the exemplary 
embodiment can be operated in various manners. In one 
Specific design, the encoder is operated to code one packet 
of data at a time. Referring back to FIG. 2, a particular 
packet of data can be coded by the outer convolutional 
encoder and Stored to the interleaver. After an entire packet 
has been coded by the outer convolutional encoder, the code 
bits are retrieved from the interleaver and coded by the inner 
convolutional encoder. Once the entire packet has been 
coded by the inner convolutional encoder, the next packet is 
coded by the outer convolutional encoder. This design 
reduces the memory requirement for the interleaver, which 
may be desirable in Some applications. 
0107. In another specific design, the interleaver is imple 
mented with the capacity to Store two or more packets of 
code bits. For example, the memory used to implement the 
interleaver can be partitioned into two banks, with each 
memory bank being capable of Storing an entire packet of 
code bits. The two memory banks allow the outer and inner 
convolutional encoders to operate on two packets concur 
rently. The Outer convolutional encoder codes a first packet 
and Stores the code bits for this packet to one memory bank. 
After the entire first packet has been Stored to memory, the 
outer convolutional encoder codes a Second packet and 
Stores the code bits for this packet to the Second memory 
bank. While the outer convolutional encoder codes and 
Stores the code bits for the current packet to one memory 
bank, the inner convolutional encoder can retrieve and code 
the code bits for the previous packet from the other memory 
bank. This design can reduce the processing delayS. 
0.108 FIG. 8 is a block diagram of a specific design of an 
encoder 800 that can be used to implement some embodi 
ments. Encoder 800 may be used to implement encoder 114 
in FIG. 1. Encoder 800 includes a processing unit 810 
coupled to an address generator 820 and a memory 830. 
Processing unit 810 receives data from a buffer 802 and 
control information from a control Source (not shown), 
codes the received data in accordance with the control 
information, and provides the coded data to a buffer 850. 
0109. In the embodiment shown in FIG. 8, processing 
unit 810 includes an input interface 812, a multi-bit encoder 
814, an output interface 816, and a control unit 818. Input 
interface 812 generates addresses and control Signals for 
buffer 802, receives data provided by buffer 802 in response 
to the generated addresses and control Signals, and routes the 
received data to multi-bit encoder 814. Multi-bit encoder 
814 implements the output and inner convolutional encoders 
and may be implemented with one or more look-up tables or 
one or more encoderS Such as the one described above in 
FIG. 4. When operated as an outer convolutional encoder, 
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multi-bit encoder 814 codes the data from input interface 
812 and provides the generated code bits to memory 830. 
And when operated as an inner convolutional encoder, 
multi-bit encoder 814 codes the code bits from memory 830 
and provides the generated code bits to output interface 816. 
Output interface 816 then provides the coded data to buffer 
850. 

0110 Control unit 818 receives various control informa 
tion Such as, for example, the particular data packet to code, 
the location of the packet in buffer 802, the packet format, 
the coding Scheme to use, the location to Store the coded 
packet in buffer 850, and so on. Control unit 818 then directs 
input interface 812 to retrieve the appropriate data bits from 
buffer 802, directs encoder state machine 814 to use the 
appropriate coding Scheme, and further directs output inter 
face 816 to provide the coded data to the appropriate 
location in buffer 850. 

0111 Address generator 820 generates the appropriate 
addresses for both writing code bits to memory 830 and 
reading code bits from the memory. Address generator 820 
can be implemented with logic, a look-up table, or Some 
other designs. 
0112 Memory 830 stores the code bits generated by 
multi-bit encoder 814 and also provides the stored code bits 
to multi-bit encoder 814. By properly generating the 
addresses, memory 830 can be operated to provide inter 
leaving of the code bits. Memory 830 can be implemented 
with a multi-port memory, as described above, or with one 
or more memory units. 
0113 FIG. 9 is a flow diagram of an embodiment of a 
method for performing concatenated coding of multiple data 
bits in parallel. Initially, a number of (M) data bits from a 
particular data packet is received, at Step 912, and coded in 
parallel in accordance with a first (e.g., convolutional) 
coding Scheme to generate a number of (MR) code bits, at 
step 914. The number of code bits generated by the first 
coding Scheme is dependent on the particular code rate of the 
Scheme. Zero of more of the generated code bits may be 
punctured with a first puncturing Scheme, at Step 916, to 
provide code bits at a different code rate. The unpunctured 
code bits are then stored to a memory, at step 918. 
0114. In the embodiment shown in FIG. 9, an entire 
packet is coded by the first coding Scheme and Stored before 
Subsequent coding by a Second coding Scheme. This allows 
for interleaving of the code bits, as described above. Thus, 
a determination is made whether the entire packet has been 
coded, at step 920. If the answer is no, the process returns 
to step 912 and another M (or less) data bits are received. 
0115 Otherwise, if the entire packet has been coded, a 
number of (N) code bits is retrieved from the memory, at 
Step 922, and coded in parallel in accordance with the 
Second (e.g., convolutional) coding Scheme to generate a 
number of (NR) code bits, at step 924. Again, the number of 
code bits generated by the Second coding Scheme is depen 
dent on the particular code rate of the Scheme. And again, 
Zero of more of the generated code bits may be punctured 
with a Second puncturing Scheme, at Step 926, to provide 
code bits at another code rate. The unpunctured code bits are 
then provided as coded data to the next processing unit (e.g., 
modulator 116 in FIG. 1), at step 928. 
0116 For efficiency and reduced delays, W words may be 
Stored in parallel (e.g., via W write ports) to the memory, and 
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R words may be retrieved in parallel (e.g., via R read ports) 
from the memory. The W words allow for parallel storage of 
the unpunctured code bits from the first coding Scheme and 
the R words allow for N code bits to be provided in parallel 
to the Second coding Scheme. The memory may be operated 
in the manner described above to achieve interleaving of the 
code bits. For example, W words may be written to sequen 
tial rows in the memory and R words may be read from 
permutated rows in the memory. 
0117 The encoder and interleaver of the exemplary 
embodiment can be used to greatly shorten the coding time. 
By coding M data bits in parallel with the outer convolu 
tional encoder and N code bits in parallel with the inner 
convolutional encoder, the overall coding delays can be 
Significantly reduced. The interleaver of the invention Sup 
ports parallel coding with its ability to receive multiple code 
bits for a write operation and to provide multiple code bits 
for a read operation. The improvement in the processing 
delays for a specific design, with M=8 and N=4 and for 
packet formats 1 and 2 in the HDR system, is shown in 
Table. 

TABLE 7 

Packet format 1 Packet format 2 

parallel serial parallel serial 

Outer convolutional encoder 

Input bits 101.8 2042 
Code-tail bits 4 4 
Total input bits 1022 2O46 
Clock cycles needed 128 1024 256 2048 
Inner convolutional encoder 

Input bits 2044 3069 
Code-tail bits 4 3 
Total input bits 2O48 3072 
Clock cycles needed 512 2O48 768 3072 
Coding time (20 MHz clock) 

Outer encoder (usec) 6.4 51.2 12.8 102.4 
Inner encoder (usec) 25.6 102.4 38.4 153.6 
Total coding time (usec) 32.O 153.6 51.2 256.O 

0118 For the specific design shown in Table 7, the 
overall coding delays are reduced by a factor of 4.8 for 
packet format 1 and a factor of 5.0 for packet format 2. It can 
be observed that further improvement in the processing 
delays can be achieved by increasing the number of bits to 
code in parallel, especially for the inner convolutional 
encoder (i.e., increasing N). 
0119) The shorter processing delays provided by the 
encoder and interleaver of the present invention provide 
numerous advantages. Some of these advantages are briefly 
described below. 

0120 First, shorter processing delays may be used to 
Support certain types of Services, Such as Voice and Video, 
which have more Stringent delays requirements. The shorter 
processing delayS may thus allow for use of more efficient 
coding Schemes for delay Sensitive applications. 
0121 Second, shorter processing delays can improve 
System performance. For example, if a particular user or data 
rate is Selected for a particular transmission based on the 
conditions of the communications link, which are deter 
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mined at a particular time, shorter processing delays increase 
the likelihood that the link conditions have not changed by 
the time of the data transmission. Link conditions typically 
vary over time, and longer processing delays increase the 
likelihood that the link conditions have changed by the time 
of the data transmission, which can then result in degraded 
performance. 
0122) Third, shorter processing delays can improve the 
capacity of Some communications Systems. For example, in 
the HDR system, power control data is multiplexed with the 
traffic data and transmitted to the user terminals. Shorter 
processing delays allow for more accurate control of the 
transmit power of the user terminals, which can increase the 
System capacity and improve performance. 
0123 Fourth, shorter processing delays allow sequential 
Sharing of a hardware resource (i.e., the encoder) in one 
processing time slot (i.e., the forward link slot in an HDR 
System) by multiple transmitting entities (i.e., three users in 
a three sector System) to reduce the overall area of the 
hardware design. 
0.124 For clarity, certain aspects and embodiments of the 
encoder of the invention have been described specifically for 
the forward link in the HDR system. However, the invention 
can also be used in other communications Systems that 
employ the Same, Similar, or different coding Schemes. For 
example, the encoder of the invention can be used to 
implement a convolutional encoder capable of receiving and 
coding multiple data bits in parallel. The encoder of the 
invention can also be used to implement a concatenated 
encoder, Such as a Turbo encoder, that is capable of receiv 
ing and coding multiple data bits in parallel. The Specific 
design of the encoder is dependent on various factorS Such 
as, for example, the particular polynomial generator matrix 
being implemented, the number of bits to code in parallel, 
the packet format, the use of code-tail bits, and So on. 
0.125 The encoder of the invention can be advanta 
geously used in a base Station or a user terminal (e.g., a 
mobile unit, a telephone, and So on) of a communications 
System. The coding for the forward link (i.e., downlink) and 
reverse link (i.e., uplink) may be different, and is typically 
dependent on the particular CDMA System or Standard being 
implemented. Thus, the encoder of the invention is typically 
designed Specially for the particular application for which it 
is used. 

0.126 Referring to the specific design shown in Tables 2 
and 3, the next States and outputs for the outer convolutional 
encoder can be generated with functions having up to Seven 
terms. Referring to the Specific design shown in Tables 4 
through 6, the next States and outputs for the inner convo 
lutional encoder can be generated with functions having up 
to five terms. These functions can be easily generated using 
logic gates in a manner known in the art. The other elements 
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of the Outer and inner convolutional encoders (e.g., registers, 
multiplexers) can also be implemented in a manner known 
in the art. 

0127. Some or all of the elements described above for the 
encoder of the present invention (e.g., multi-bit encoder, 
input and output interfaces, control unit, encoder State 
machine, output generator, multiplexer, and So on) can be 
implemented within one or more application specific inte 
grated circuits (ASICs), digital signal processors (DSPs), 
programmable logic device (PLD), Complex PLD (CPLD), 
controllers, micro-controllers, microprocessors, other elec 
tronic units designed to perform the functions described 
herein, or a combination thereof. Some or all of the elements 
of the encoder of the invention can also be implemented 
using Software or firmware executed on a processor. 
0128. The memories and memory units such as the ones 
used to implement the interleaver of the present invention 
can be implemented with various memory technologies Such 
as, for example, random access memory (RAM), dynamic 
RAM (DRAM), Flash memory, and others. The memory 
unit can also be implemented with Storage elements Such as, 
for example, a hard disk, a CD-ROM drive, and others. 
Various other implementation of the memory units are 
possible and within the Scope of the present invention. 
0129. The foregoing description of the preferred embodi 
ments is provided to enable any person skilled in the art to 
make or use the present invention. Various modifications to 
these embodiments will be readily apparent to those skilled 
in the art, and the generic principles defined herein may be 
applied to other embodiments without the use of the inven 
tive faculty. Thus, the present invention is not intended to be 
limited to the embodiments shown herein but is to be 
accorded the widest Scope consistent with the principles and 
novel features disclosed herein. 
What is claimed is: 

1. An apparatus, comprising: 
a clock means for generating a clock Signal having a clock 

cycle; 
a plurality of Serially coupled registers, wherein each 

register is updated on one clock cycle; and 
means for generating a future State of the plurality of 

registers in response to an input to the plurality of 
Serially coupled registers. 

2. An apparatus, comprising: 
an encoder, comprising: 

a plurality of delay elements, wherein a State of the 
encoder is determined by the state of the plurality of 
delay elements, and 

a look up table for mapping of a current State of the 
encoder to a future State of the encoder. 

k k k k k 


