发明名称
聚合物及使用该聚合物的太阳能电池用密封材料

摘要
本发明提供在用于太阳能电池的密封材料时可得到耐候性及加工性优异的密封材料的聚合物。本发明的聚合物主链上包含式(1)所示的重复单元和式(2)所示的重复单元且满足必要条件(a1)、(a2)及(a3)。(a1)：式(2)所示的重复单元的数目相对于构成上述聚合物主链的碳原子的总数的比为3.8%以上且7.5%以下。(a2)：式(3)所示的比X为82%以上且100%以下。X＝100×A/B…(3)(a3)：该聚合物具有利用差示扫
1. 一种聚合物，其在主链上包含式(1)所示的重复单元和式(2)所示的重复单元且满足必要条件(a1)、(a2)、(a3)、(a4)和(a5)，

\[\text{···(1)} \]

\[\text{···(2)} \]

\[R^1 \text{表示氢、甲基或乙基，} R^2 \text{表示乙酰氧基、甲氧基羰基、乙氧基羰基或叔丁氧基羰基，} \]

(a1)：式(2)所示的重复单元的数目相对于构成所述聚合物主链的碳原子的总数的比为4.0%以上且7.5%以下，

(a2)：式(3)所示的比X为82%以上且100%以下，

\[X = 100 \times A/B \cdots (3) \]

A表示满足以下的必要条件(a2-1)、且式(2)所示的全部重复单元的R^2的羰基的碳原子的总数，

(a2-1)：在C^1、C^2、C^3的碳原子上均未键合以下的式(A)、式(B)、式(C)、式(D)、式(E)或式(F)所示的官能团，其中，C^1为键合在式(2)所示的重复单元上的碳原子，C^2为键合在C^1上的碳原子，C^3为键合在C^2上的碳原子，

B为式(2)所示的全部重复单元的R^2的羰基的碳原子的总数，
R³, R⁴, R⁵, R⁶, R⁷ 及 R⁸ 分别独立地表示烷基或氢。
(a3)：该聚合物具有利用差示扫描型量热计测得的42°C以上且90°C以下的熔点。
(a4)：该聚合物的数均分子量为10,000以上且500,000以下。
(a5)：该聚合物的分子量分布，即 Mw/Mn 为 1.1 以上且 6.0 以下。

2. 根据权利要求1所述的聚合物，其在主链上进一步包含式 (4) 所示的重复单元。

3. 根据权利要求1或2所述的聚合物，其中，在将该聚合物的质量设为100质量%时，该聚合物的凝胶分率为40质量%以上。

4. 一种太阳能电池用密封材料，其包含权利要求1～3中任一项所述的聚合物。
聚合物及使用该聚合物的太阳能电池用密封材料

技术领域
[0001] 本发明涉及聚合物及使用该聚合物的太阳能电池用密封材料。

背景技术
[0002] 在太阳能电池中，为了防止进行光电转换的半导体的功能降低，而借助密封材料将该半导体密封在保护基板上，作为太阳能电池用密封材料，如日本特开2000-183385中记载的那样，目前使用乙烯-醋酸乙烯酯共聚物（EVA）。

发明内容
[0003] 对于太阳能电池用密封材料而言，由于想要使其经受长时间的使用，所以要求耐候性优异。长期以来用于太阳能电池用密封材料的乙烯-醋酸乙烯酯共聚物通常是将乙烯与醋酸乙烯酯在高温高压条件下进行自由基聚合而得到的。通过该方法得到的乙烯-醋酸乙烯酯共聚物具有多个支链或将2个以上来自醋酸乙烯酯的重复单元连接而成的结构。具有这样结构的乙烯-醋酸乙烯酯共聚物尚有改良耐候性的余地。
[0004] 本发明是鉴于上述问题而完成的，其目的在于提供适合作为耐候性优异的密封材料的材料的聚合物，以及使用该聚合物的太阳能电池用密封材料。
[0005] 即，本发明涉及一种聚合物，其在主链上包含式（1）所示的重复单元和式（2）所示的重复单元且满足必要条件（a1）、（a2）及（a3）。

\[
\begin{align*}
\text{(1)} & \quad \cdot \cdots \\
\text{(2)} & \quad R^1 \cdot \cdots (2)
\end{align*}
\]

（R^1表示氢、甲基或乙基，R^2表示乙酰氧基、甲氧基羰基、乙氧基羰基或叔丁氧基羰基。）

（a1）式（2）所示的重复单元的数目相对于构成上述聚合物主链的碳原子的总数的比为3.8%以上且7.5%以下。

（a2）式（3）所示的B/A为82%以上且100%以下。

（a3）X=100×A/B\cdots (3)

（A表示满足以下的必要条件（a2-1）、且式（2）所示的全部重复单元的R^2的羰基的碳原子的总数。

（a2-1）在C^1、C^2、C^3的碳原子上均未键合选自以下的式（A）、式（B）、式（C）、式（D）、式（E）及式（F）的官能团。其中，C^1为键合在式（2）所示的重复单元上的碳原子，C^2为键合在C^1
上的碳原子，C^{3}为键合在C^{2}上的碳原子。

[0013] B为式(2)所示的全部重复单元的R^{2}的羰基的碳原子的总数。

\[\text{(A)} \]
\[\text{(B)} \]
\[\text{(C)} \]
\[\text{(D)} \]
\[\text{(E)} \]

[0016] R^{3}、R^{4}、R^{5}、R^{6}、R^{7}及R^{8}分别独立地表示烷基或氢。

[0017] (a3) 该聚合物具有利用差示扫描型量热计测得的42℃以上且90℃以下的熔点。

具体实施方式
[0018] 以下，对本发明的实施方式进行详细说明。
[0019] （聚合物）
[0020] （基本构成）
[0021] 本发明的聚合物是在主链上包含式(1)所示的重复单元和式(2)所示的重复单元的聚合物。
(R^1表示氢、甲基或乙基, R^2表示乙酰氧基、甲氧基烷基、乙氧基烷基或叔丁氧基烷基。)

本发明的聚合物满足下述必要条件 (a1)、(a2) 及 (a3)。

(a1): 式 (2) 所示的重复单元的数目相对于构成上述聚合物主链的碳原子的总数的比为3.8%以上且7.5%以下。

(a2): 式 (3) 所示的比X为82%以上且100%以下。

X = 100 \times A / B \cdots (3)

(a3): 式 (2) 所示的全部重复单元的R^2的羰基的碳原子的总数。

(a2-1): 在C^1、C^2、C^3的碳原子上均非総合以下的式 (A) 、式 (B) 、式 (C) 、式 (D) 、式 (E)或式 (F) 所示的官能团。其中，C^1为键合在式 (2) 所示的重复单元上的碳原子，C^2为键合在C^1上的碳原子，C^3为键合在C^2上的碳原子。

B为式 (2) 所示的全部重复单元的R^2的羰基的碳原子的总数。)
R³, R⁴, R⁵, R⁶, R⁷及 R⁸ 分别独立地表示烷基或氢。

（a3）该聚合物具有利用差示扫描型量热计测得的42℃以上且90℃以下的熔点。

（必要条件（a1））

在式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比为3.8%以上且7.5%以下。为了得到更透明且更柔软的密封材料，该比优选为4.0mol%以上。在将聚合物进行熔融加工来制造密封材料的情况下，为了更容易加工，而使该比优选为6.7mol%以下。

在式（2）的 R¹ 为氢的情况下，该比通过以下的式（5）求出。

\[Y = 100 \times 2a / (2a + b) \] \(\cdots (5) \)

式（5）中，Y为式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比。

\(\alpha \) 为在聚合物的\(^1\)H-NMR波谱中来自式（2）的 R¹ 即氢的峰的面积。

\(\beta \) 为在聚合物的\(^1\)H-NMR波谱中来自式（1）所包含的氢的峰的面积。

来自式（1）所包含的氢的峰和来自式（2）的 R² 所包含的氢的峰有时在大致相同的化学位移被观测到。这种情况下，需要从式（5）的分母中减去相当于来自式（2）的 R² 所包含的氢的峰的面积的值。这种情况下，式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比通过以下的式（6）求出。
式 (6) 中, α 为式 (2) 的 R^2 所包含的氢的数目。此外, 这种情况下, β 为相当于来自式 (1) 所包含的氢的峰的面积与来自式 (2) 的 R^2 所包含的氢的峰的面积之和的值。

此外, 如后所述, 有时聚合物在主链上包含式 (1) 所示重复单元和式 (4) 所示重复单元。在聚合物在主链上包含式 (1) 所示重复单元和式 (2) 所示重复单元和式 (4) 所示重复单元且式 (2) 的 R^1 为氢的情况下, 式 (2) 所示重复单元的数目相对于构成聚合物主链的碳原子的总数的比通过以下的式 (7) 求出。

式 (7) 中, δ 为来自式 (4) 所包含的氢的峰的面积。

在这种情况中, 当来自式 (1) 所包含的氢的峰和来自式 (2) 的 R^2 所包含的氢的峰在大致相同的化学学位移被观测到时, 也需要进行与上述式 (6) 同样的计算。这种情况下, 式 (2) 所示重复单元的数目相对于构成聚合物主链的碳原子的总数的比通过以下的式 (8) 求出。

式 (8) 中, γ 为来自式 (4) 所包含的氢的峰在 5.5ppm 附近被观测到, 来自式 (1) 所包含的氢的峰在 0.7〜2.5ppm 附近被观测到, 式 (2) 所示的重复单元的数目 γ 为 3。

此外, 在上述式 (8) 中, 来自式 (4) 所包含的氢的峰在 5.5ppm 附近被观测到。

在式 (2) 的 R^1 为甲基或乙基时, 式 (2) 所示重复单元的数目相对于构成聚合物主链的碳原子的总数的比通过以下的式 (9) 求出。

式 (9) 中, η 为来自式 (2) 所示重复单元的数目相对于构成聚合物主链的碳原子的总数的比。

C 为在聚合物的 ^{13}C-NMR 波谱中在 168ppm〜180ppm 附近观测到的来自式 (2) 的 R^2 为甲基的碳原子的峰的面积。

D 为在聚合物的 ^{13}C-NMR 波谱中与来自溶剂即, D_{2} 四氯乙烯的峰 (在 74.2ppm 处观测到的峰) 不同的全部峰的面积的总和。

E 为式 (2) 所包含的碳原子的数目。

在使用上述式 (9) 求出式 (2) 所示重复单元的数目相对于构成聚合物主链的碳原子的总数的比的情况下, 使用将聚合物溶解到四氯乙烯中而得到的溶液的 ^{13}C-NMR 波谱。^{13}C-NMR 波谱使用核磁共振装置 (Bruker 公司制造的 600MHz 核磁共振装置 AVANCE600) 来测定。

（必要条件 (a2)）

本发明的聚合物中, 式 (3) 所示的比 X 为 82% 以上且 100% 以下。

X = 100 × A/B ⋯ (3)
[0063] A表示满足以下的必要条件 (a2-1)、且式 (2) 所示的全部重复单元的R²的羰基的碳原子的总数。
[0064] (a2-1)：在C¹、C²、C³的碳原子上均未键合以下的式 (A)、式 (B)、式 (C)、式 (D)、式 (E)
或式 (F) 所示的官能团。其中，C¹为键合在式 (2) 所示的重复单元上的碳原子，C²为键合在C¹
上的碳原子，C³为键合在C²上的碳原子。
[0065] B为式 (2) 所示的全部重复单元的R²的羰基的碳原子的总数。

![Chemical Structure](attachment:image.png)

[0066] R³、R⁴、R⁵、R⁶、R⁷及R⁸分别独立地表示烷基或氢。
[0067] X为附近不存在极性基团的式 (2) 所示的重复单元的数目相对于式 (2) 所示的全部
重复单元的数目的比。
[0068] 作为R³、R⁴、R⁵、R⁶、R⁷及R⁸的烷基，可列举出碳原子数为1～20的烷基。
[0069] 在聚合物在主链上包含式 (1) 所示的重复单元、式 (2) 所示的重复单元和式 (4) 所
示的重复单元的情况下，由将来自式 (4) 的聚合物的主链中的碳–碳双键全部氢化而使主链

10
的碳-碳键全部成为饱和键的聚合物的13C-NMR波谱算出上述A、B及X。

[0072] 式 (3) 所示的比X为82%以上且100%以下，优选为83%以上，更优选为85%以上，进一步优选为87%以上，特别优选为90%以上，最优选为95%以上。

[0073] 在式 (2) 的R1为氢、R2为乙酰氧基且C1、C2、C3的碳原子中的任一者上键合有以下的式 (A)、式 (B)、式 (C)、式 (D)、式 (E) 或式 (F) 所示的官能团时，在式 (2) 所示的重复单元的R2的羰基的碳原子的峰在170.2ppm处被观测到。在式 (2) 的R1为氢、R2为乙酰氧基且C1、C2、C3的碳原子中的任一者上均未键合以下的式 (A)、式 (B)、式 (C)、式 (D)、式 (E) 或式 (F) 所示的官能团时，在式 (2) 所示的重复单元的R2的羰基的碳原子的峰在170.4ppm处被观测到。其中，上述化学学位移的值为来自1,1,2,2-四氟乙烯d2的峰处于74.2ppm时的值。

[0074] 式 (2) 的R2为甲氨基羰基、乙氨基羰基、或叔丁氨基羰基时的R1也可以同样地求出。

[0075] (必要条件 (a5)：聚合物的熔点)

[0076] 本发明的聚合物具有利用差示扫描型量热计测得的42℃以上且90℃以下的熔点。在将聚合物和交联剂进行熔融挤出加工来制造太阳能电池用密封材料的情况下，从在加工中不易进行交联反应、且容易进行熔融挤出加工的观点出发，聚合物的熔点优选为80℃以下，更优选为70℃以下。

[0077] 聚合物通常以将该聚合物和任意的添加剂进行加工而得到的颗粒的形态使用。为了使含有聚合物的颗粒彼此不易粘合，该熔点优选为50℃以上，更优选为57℃以上，进一步优选为59℃以上。另外，熔点为利用差示扫描型量热计测定的熔化曲线的熔化峰中峰高度最大的熔化峰的顶点的温度。熔点具体而言通过以下的方法求出。将约10mg的试样封入铝锅中，

[0078] 使用差示扫描型量热计将封入了试样的铝锅进行 (1) 在150℃下保持5分钟，(2) 以5℃/分钟的速度从150℃降至0℃，(3) 在0℃下保持2分钟，(4) 以5℃/分钟的速度从0℃升温至150℃，并对 (4) 中的熔化曲线进行测定。在 (4) 中的熔化曲线中，将从5℃到熔化结束温度 (熔化曲线回到高温侧的基线时的温度) 之间观察到的熔化峰中峰高度最大的熔化峰的顶点的温度设为熔点。

[0079] (重复单元 (4))

[0080] 本发明的聚合物也可以是在主链上包含式 (1) 所示的重复单元、式 (2) 所示的重复单元和下述式 (4) 所示的重复单元的聚合物。这种情况下，式 (4) 的碳原子数相对于构成聚合物主链的碳原子的总数的比优选为13%以下。

\[\frac{C = 100 \times F}{D - (E-1) \times C} \cdots (10) \]

式 (4) 的碳原子数相对于构成聚合物主链的碳原子的总数的比通过以下的式 (10) 求出。

[0083] 式 (10) 中，Z为式 (4) 的碳原子数相对于构成聚合物主链的碳原子的总数的比，

[0084] Z为在聚合物的13C-NMR波谱中在168ppm～180ppm附近观测到的来自式 (2) 的R2的羰基的碳原子的峰的面积。
D为在聚合物的13C-NMR波谱中与来自1,1,2,2-四氯乙烷d2的峰（在74.2ppm处观测到的峰）不同的全部峰的面积的总和，

E为式(2)所包含的碳原子的数目。

F为在聚合物的13C-NMR波谱中在120ppm～140ppm附近观测到的来自式(4)的碳原子的峰的面积。

（聚合物的分子量及分子量分布）

从使含有聚合物的颗粒的加工性优异的观点出发，通常本发明的聚合物的数均分子量为10,000以上，优选为15,000以上，更优选为21,000以上。在将聚合物与交联剂混合后进行熔融加工的情况下，从在比交联剂发生分解的温度更低的温度下容易进行熔融加工的观点出发，聚合物的数均分子量优选为500,000以上，进一步优选为100,000以上。从提高加工性的观点出发，聚合物的分子量分布（Mw/Mn）优选为1.1以上且6.0以下，更优选为1.5以上且4以下。另外，Mw是指聚合物的重均分子量，Mn是指上述聚合物的数均分子量。

聚合物的重均分子量（Mw）通过使聚乙烯与聚苯乙烯的Q因子的比（1.7/41.3）与利用凝胶渗透色谱（GPC）法计算的聚苯乙烯等价的重均分子量相乘来求出。聚合物的数均分子量（Mn）通过使聚乙烯与聚苯乙烯的Q因子的比（1.7/41.3）与利用凝胶渗透色谱（GPC）法计算的聚苯乙烯等价的数均分子量相乘来求出。

Mw/Mn为Mw除以Mn而得到的值。作为GPC法中的测定条件，可列举出例如以下的条件。

（1）装置：Waters制造的Waters150C
（2）分离柱：TOSOH TSKgel GMH-HT
（3）测定温度：140℃
（4）载体：邻二氯苯
（5）流量：1.0mL/分钟
（6）注入量：500μL
（7）检测器：差示折射计
（8）分子量标准物质：标准聚苯乙烯
（9）（透明性）

本发明的聚合物的透明性可以通过例如该聚合物的透光率进行评价。本发明的聚合物的透光率优选为85％以上，更优选为87％以上。另外，透光率为通过下述方法测定的值。将聚合物利用150℃的热压机以2MPa的压力进行5分钟压制后，利用30℃的冷压机冷却5分钟，成形为厚度约500μm的片材。使用分光光度计（株式会社島津製作所制造的UV-3150），对该片材的厚度方向，测定波长范围400nm～1200nm的透光率，将其平均值作为透光率。

（聚合物的制造方法）

本发明的聚合物可以通过配位聚合、自由基聚合、易位聚合等来制造。

例如可以通过如下方法来制造本发明的聚合物，即

[0107] 使碳原子数为3以上的未取代环状烯烃与具有选自由乙酰氧基、甲氧基羰基、乙氧基羰基及叔丁氧基羰基组成的组中的基团且成环碳原子数为5以上的环状烯烃进行开环易位共聚的方法：
将式 (11) 所示的非环状二烯与未取代的碳原子数为 5 以上的非环状二烯进行易位共聚的方法；
将式 (11) 所示的非环状二烯进行易位聚合的方法等。

式 (11) 中，R² 表示选自由乙酰氧基，甲氧基羰基，乙氧基羰基及叔丁氧基羰基组成的组中的基团，n 为 1 以上，m 为 1 以上，(n+m) 为 2 以上且 22 以下。

作为用于易位聚合的碳原子数为 5 以上的环状烯烃，可以使用环丙烯、环丁烯、环戊烯、环己烯、环庚烯、环辛烯、环壬烯、环癸烯等单烯烃；环辛二烯、环癸二烯、二环戊二烯等环二烯类；环十二碳三烯等环三烯类。为了容易获得而优选环辛烯。

作为具有选自由乙酰氧基，甲氧基羰基，乙氧基羰基及叔丁氧基羰基组成的组中的基团且成环碳原子数为 5 以上的环状烯烃，可列举出碳原子数为 5 以上的环状烯烃所具有的至少一个氢被选自由乙酰氧基，甲氧基羰基，乙氧基羰基及叔丁氧基羰基组成的组中的基团取代后的物质。

作为具有乙酰氧基且成环碳原子数为 5 以上的环状烯烃，可列举出例如 4-乙酰氧基-1-环辛烯、5-乙酰氧基-1-环辛烯等。

作为具有甲氧基羰基且成环碳原子数为 5 以上的环状烯烃，可列举出例如 3-甲基-3-甲氧基羰基-1-环辛烯、4-甲基-4-甲氧基羰基-1-环辛烯、3-甲氧基羰基-1-环辛烯、4-甲氧基羰基-1-环辛烯等。

作为具有乙氧基羰基且成环碳原子数为 5 以上的环状烯烃，可列举出例如 3-甲基-3-乙氧基羰基-1-环辛烯、4-甲基-4-乙氧基羰基-1-环辛烯、3-乙氧基羰基-1-环辛烯、4-乙氧基羰基-1-环辛烯等。

作为具有叔丁氧基羰基且成环碳原子数为 5 以上的环状烯烃，可列举出例如 3-甲基-3-叔丁氧基羰基-1-环辛烯、4-甲基-4-叔丁氧基羰基-1-环辛烯、3-叔丁氧基羰基-1-环辛烯、4-叔丁氧基羰基-1-环辛烯等。

为了得到数均分子量大的聚合物，优选将单体进行开环易位共聚的方法。

作为易位聚合用催化剂，从使用的催化剂量少、聚合物中催化剂残余量少的观点出发，优选 1-卡宾络合物。另外，也可以与 1-卡宾络合物一起并用其它的周期表第 4～8 族过渡金属-卡宾络合物。

作为 1-卡宾络合物，可列举出例如含有杂原子的卡宾化合物与中性的给电子性化合物键合而成的 1-卡宾络合物；2 个含有杂原子的卡宾化合物键合而成的 1-卡宾络合物；卡宾中具有配位性肟铭的 1-卡宾络合物等。

作为含有杂原子的卡宾化合物与中性的给电子性化合物键合而成的 1-卡宾络合物，具体而言，可列举出亚苯基双（三环己基膦）二氯代、亚苯基 [1,3-双 (2,4,6-三甲基苯基)-2-亚咪唑烷基] 亚苯基（三环己基膦）二氯代、亚苯基 [1,3-双 (2,4,6-三甲基苯基)-2-亚咪唑烷基] 亚苯基（三环己基膦）二氯代、亚苯基 [1,3-双 (2,4,6-三甲基苯基)-2-亚咪唑烷基] 亚苯基（三环己基膦）二氯代、亚苯基 [1,3-双 (2,4,6-三甲基苯基)-2-亚咪唑烷基] 亚苯基（三环己基膦）二氯代。
化釘、亚苄基(1,3-二苯基-八氮环并咔唑-2-亚基)（三环己基膦）二氯化釗、亚苄基[1,3-二（1-苯基乙基）-4-咪唑啉-2-亚基]（三环己基膦）二氯化釗、亚苄基(1,3-二苯基-2,3-二氯苯并咔唑-2-亚基)（三环己基膦）二氯化釗、亚苄基(1,3-二苯基-2,3-二氯苯并咔唑-2-亚基)（三环己基膦）二氯化釗、亚苄基(1,3-二苯基-5-四氢-1H-1,2,4-三唑-5-亚基)二氯化釗、(1,3-二异丙基六氢嗪啶-2-亚基)（乙氧基亚甲基）（三环己基膦）二氯化釗、亚苄基(1,3-二苯基-咪唑烷-2-亚基)吡啶二氯化釗等。

【0122】作为2个含有杂原子的卡宾化合物键合而成的釗-卡宾络合物，具体而言，可列举出亚苄基双(1,3-环己基咔唑烷-2-亚基)二氯化釗、亚苄基双(1,3-二异丙基-4-咪唑啉-2-亚基)二氯化釗等。

【0123】作为卡宾中具有配位性醚键的釗-卡宾络合物，具体而言，可列举出(1,3-二苯基咪唑烷-2-亚基)(2-异丙氧基苯基亚乙烯基)二氯化釗、(1,3-二苯基咪唑烷-2-亚基)(2-乙氧基苯基甲基乙烯基)二氯化釗等。

【0124】当在开环易位聚合中使用釗-卡宾络合物作为催化剂时，釗-卡宾络合物催化剂的釗与单体的总量的摩尔比优选为釗：单体的总量=1:100～1:2,000,000，更优选为1:500～1:1,000,000。进一步优选为1:1,000～1:700,000。在设单体的总量为100时，若按照釗量达到1以上的方式使用釗-卡宾络合物，则容易除去催化剂，所以优选。在设单体的总量为2,000,000时，若按照釗量达到1以上的方式使用釗-卡宾络合物，则收率变高，所以优选。

【0125】在进行开环易位共聚时，可以使用链转移剂。作为可使用的链转移剂，可列举出例如2-正烯、2-戊烯、2-己烯、3-己烯、2-庚烯、3-庚烯、2-辛烯、3-辛烯、4-辛烯等内烯烃等。它们也可以被羟基、烷氧基、酰基、羧基、烷氧基羰基、卤素原子等取代。它们可以单独使用，也可以将多种混合使用。

【0126】链转移剂的使用量只要根据目标开环易位共聚物的分子量适当选择即可。为了得到实用的分子量的开环易位共聚物，链转移剂的量以链转移剂相对于环状烯烃的摩尔比计为环状烯烃：链转移剂＝1000:1～20:1，优选为800:1～50:1的范围。

【0127】也可以根据需要使用溶剂来实施开环易位共聚。作为溶剂，可列举出烃、醚等。作为烃，可列举出脂肪族烃、芳香族烃、卤代烃。

【0128】作为脂肪族烃，可列举出已烷、庚烷、辛烷、壬烷、癸烷、十二烷、环己烷、环庚烷、环辛烷等。

【0129】作为芳香族烃，可列举出苯、邻二氯苯、甲苯、二甲苯、均三甲苯等。

【0130】作为卤代烃，可列举出氯甲烷、氯仿、四氯化碳等。

【0131】作为醚，可列举出二乙醚、四氢呋喃、1,4-二噁烷等。

【0132】若考虑溶剂的易除去性，则优选烃，更优选脂肪族烃。从聚合容易进行的观点出发，优选使用己烷、环己烷、庚烷、辛烷、环辛烷等。

【0133】在设使用的单体的总量为1重量份时，溶剂的使用量通常优选为1～1000重量份，更优选为2～200重量份，进一步优选为3～100重量份。

【0134】实施开环易位共聚的温度根据使用的溶剂种类、量而不同，但通常为0℃～180℃的范围，更优选为10℃～150℃。此外，开环易位共聚反应优选在不活泼气体气氛下实施。

【0135】在进行开环易位共聚时，可以将作为单体的环状烯烃与链转移剂混合后导入聚合
反应装置中，也可以将环状烯烃与链转移剂分别导入聚合反应装置中。

[0136] 作为进行位移聚合反应的聚合反应装置，可使用例如具有搅拌器的聚合反应装置或管式型聚合反应装置。

[0137] <反应终止工序>

[0138] 易位聚合反应结束后，迅速地在聚合反应溶液中添加反应终止剂，使反应终止。为了抑制过度反应的进行且抑制低分子量体的生成，而优选使至聚合反应溶液与反应终止剂接触而终止反应为止的时间尽可能短，优选为240秒以下，更优选为120秒以下。

[0139] 作为反应终止剂，可以使用甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、戊醇、异戊醇、己醇、环己醇、辛醇、乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,4-丁二醇、甘油等醇或水。它们可以单独使用，也可以将多种组合使用。若考虑通过反应终止剂使聚合催化剂失活，并利用反应终止剂将聚合催化剂通常具有非适宜残留在聚合物中的成分从聚合反应溶液中分离，则优选使用水、甲醇、乙醇及它们的混合溶液。

[0140] 相对于100重量份聚合反应溶液，反应终止剂的使用量优选为0.01～200重量份，若考虑反应终止效率、操作性、分离性，更优选为1重量份～100重量份，进一步优选为2重量份～50重量份。

[0141] 优选在按照聚合反应溶液相与反应终止剂相发生液液相分离的方式调整聚合反应溶液和反应终止剂的量后将非-卡宾络合物萃取到终止剂相中。在使聚合反应溶液与反应终止剂发生液液相分离来萃取催化剂时，为了提高萃取效率，而优选在搅拌聚合反应溶液与反应终止剂的混合物后利用分液等方法将聚合反应溶液相与反应终止剂进行分离。

[0142] 由于根据聚合反应溶液中的聚合物浓度、聚合物的分子量的不同而使聚合反应溶液的粘度不同，聚合反应溶液中的反应终止剂的扩散性不同，所以聚合反应的终止温度根据这些要素而适当选定。通常优选为10℃～100℃，考虑到所使用的溶剂、反应终止剂的沸点等，而更优选为20℃～80℃。

[0143] <析出工序>

[0144] 作为从聚合反应溶液中析出聚合物的方法，可列举出：

[0145] 利用单蒸发等方法从聚合反应溶液中除去溶剂后，再利用薄膜蒸发等除去残留溶剂的方法；

[0146] 在挤出机中导入聚合反应溶液，边除去残留溶剂边成形聚合物的方法；

[0147] 在聚合反应溶液中添加不良溶剂来析出聚合物的方法；

[0148] 在反应终止工序之后，将聚合反应溶液冷却，由此析出聚合物的方法等。

[0149] 如上述那样使聚合反应溶液与反应终止剂发生液液相分离时，优选在利用分液等方法除去反应终止剂后将分离的聚合反应溶液冷却而使聚合物析出的方法。为了不使络合物配体的磷化合物与聚合物同时析出，而通常使为了析出聚合物而使用的聚合反应溶液的固体成分浓度优选为20％以下。

[0150] 析出聚合物的温度根据聚合物的分子量而不同，为了提高聚合物的回收率，通常为20℃以下，更优选为10℃以下。此外，为了提高聚合物的回收率，而使反应终止工序的温度与析出工序的温度之差优选为10℃以上，更优选为20℃以上。

[0151] 由于根据聚合工序中得到的聚合物的分子量的不同而使聚合反应溶液的粘度不同，所以按照达到可适当操作的粘度范围的方式对除去溶剂的温度进行适当调整，但通常
为40℃以上，优选为60℃以上。另一方面，考虑到聚合物的热稳定性，优选为200℃以下，更优选为160℃以下。

【0152】＜干燥＞
【0153】在上述任一种方法中，通过利用真空干燥、热风干燥等一般的方法从除了大部分溶剂的聚合物中完全除去溶剂，从而可以得到干燥后的聚合物。

【0154】＜氧化工序＞
【0155】利用易位聚合制造的聚合物在主链上包含式(4)所示的重复单元的聚合物，为了调整相对于构成聚合物主链的碳原子的总数的式(4)所示的重复单元的数目，优选将主链的碳-碳不饱和键进行氧化。

【0156】聚合物的氧化可以使用一般的氧化催化剂和溶剂实施。作为氧化催化剂，可列举出例如威廉金森氧化剂和氧化剂。通常在将聚合物溶解到与聚合时使用的溶剂相同类别的溶剂中，使聚合物溶解到聚合物中并达到优选300ppm以上，更优选600～5000ppm以上的氧化的方式添加氯。氧化通常实施2～8小时，优选实施3～7小时。

【0157】作为进行聚合物氧化的其它方法，可列举出将聚合物和对甲苯磺酰胺溶解到与聚合时使用的溶剂相同类别的溶剂中并在110～150℃的温度下反应2～8小时的方法。

【0158】＜添加剂＞
【0159】在本发明的聚合物中也可以根据需要添加硅烷偶联剂、交联剂、交联助剂、着色剂、紫外线吸收剂、抗氧化剂、防变色剂等添加剂，这些添加剂例如只要在通过上述聚合反应制造聚合物后添加到该聚合物中即可。

【0160】使用添加了上述硅烷偶联剂的聚合物而得到的太阳能电池用密封材料对构成太阳能电池模块的透明材料、下部保护材料及太阳能电池元件的粘结剂优异。作为硅烷偶联剂，可列举出例如γ-氯丙基三甲氧基硅烷、乙烯基三氯硅烷、乙烯基三乙氧基硅烷、乙烯基三(3,4-乙烯氧基)环己基乙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙氧基硅烷等。

【0161】上述硅烷偶联剂的配合力例如相对于100质量份本发明的聚合物通常为5质量份以下，优选为0.8质量份以下。此外，为了得到具有更稳定的粘结力和高强度的太阳能电池用密封材料，硅烷偶联剂相对于本发明的聚合物100质量份的添加比例更优选为0.01质量份以上且0.6质量份以下。

【0162】为了使包含本发明的聚合物的太阳能电池用密封材料即使在高温下也难以变形，而优选在聚合物内及聚合物间具有交联结构的密封材料。通过将作为交联剂的例如有机过氧化物预先添加到该聚合物中，将其热分解，产生自由基，由此可以使本发明的聚合物中具有交联结构。作为表示交联的程度的指标，使用凝胶分率，作为凝胶分率，在将聚合物的质量设为100质量％时，优选为40质量％以上，凝胶分率越高，则可以说耐热稳定性越高。所谓耐热稳定性高是指即使在高温下也难以变形。

【0163】作为上述有机过氧化物，只要是在超过本发明的聚合物的熔点的温度下产生自由基的有机过氧化物，则均可使用。优选使用在将本发明的聚合物与交联剂进行配出细胞来制造片状的太阳能电池用密封材料的期间有机过氧化物的分解难以进行，通过后述的太
发光电池模块的组装时的加热使得有机氧化物发生分解，本发明的聚合物按此进行交联那里的有机氧化物。优选例如1小时半衰期温度为100°C以上且135°C以下的有机氧化物。此外，由于在挤出成形中交联剂难以分解，所以优选10小时半衰期温度为70°C以上的有机氧化物。作为优选的有机氧化物，可列举例如叔丁基过氧化2-乙基己基碳酸酯、2,5-二甲基己烷、2-二甲基己烷、2,5-二甲基-2,5-二(叔丁基过氧化)乙烷、3,3-二叔丁基过氧化物、叔二枯基过氧化物、2,5-二甲基-2,5-二(叔丁基过氧化)己烷、二枯基过氧化物、a、a’-双(叔丁基过氧化二丙基)苯、正丁基-4,4’-双(叔丁基过氧化)丁烷、2,2-双(叔丁基过氧化)环已烷、1,1-双(叔丁基过氧化)环已烷、1,1-双(叔丁基过氧化)3,3,5-三甲基环已烷、叔丁基过氧化苯甲酸酯、苯甲醚过氧化物。有机过氧化物的配合物例如相对于本发明的聚合物100质量份优选为0.001～5质量份。

【0164】在太阳能电池用密封材料含有交联剂时，在太阳能电池模块的组装时不分解而残留的交联剂有时在太阳能电池模块的使用时慢慢地分解而引起密封材料的变色等劣化。为了防止由残留的交联剂引起的密封材料的劣化，优选使本发明的聚合物中配合的交联剂的配合量较少。为了即使交联剂的配合量少也能得到凝胶分率高的聚合物，优选在该共聚物中与上述交联剂一起添加助剂。作为交联助剂，可列举例如单官能性交联助剂、2官能性交联助剂、3官能性交联助剂、6官能性交联助剂等。作为单官能性交联助剂，可列举出丙烯酸酯、甲基丙烯酸酯等。作为2官能性交联助剂，可列举出N,N'-间亚苯基双马来酰亚胺等。作为3官能性交联助剂，可列举出三烯丙基异氰脲酸酯、三羟甲基丙烷三丙烯酸酯等。作为6官能性交联助剂，可列举出例如二季戊四醇六丙烯酸酯等。例如以相对于本发明的聚合物100质量份为10质量份以下的比例使用交联助剂。

【0165】在本发明的聚合物中，为了进一步提高紫外线耐性，也可以添加紫外线吸收剂。作为紫外线吸收剂，可列举例如二苯甲酮系的紫外线吸收剂、苯并三唑系的紫外线吸收剂及受阻胺系的紫外线吸收剂。作为上述二苯甲酮系的紫外线吸收剂，可列举例如2-羟基-4-辛氧基二苯甲酮、2-羟基-4-甲氧基-5-磺基二苯甲酮。作为上述苯并三唑系的紫外线吸收剂，可列举例如2-(2’-羟基-5-甲基苯基)苯并三唑。作为上述受阻胺系的紫外线吸收剂，可列举例如水杨酸苯酯、水杨酸对叔丁基苯酯。

【0166】在本发明的聚合物中，为了进一步提高对于氧化的稳定性，也可以添加抗氧化剂。作为抗氧化剂，可列举例如烷系、苯酚系、联苯系及受阻胺系的抗氧化剂，更具体而言，可列举例如2-叔丁基对甲苯、双(2,2,6,6-四甲基-4-哌嗪基)癸二酸酯。

【0167】（成形）

【0168】包含本发明的聚合物的太阳能电池用密封材料被加工成例如片状（太阳能电池密封材料用片材）。太阳能电池密封材料用片材的成形可以使用例如T-模挤出机、压延成形机等可进行片材成形的成形机来进行。

【0169】在片材成形的更具体的一个例子中，从挤出机的料斗供给在上述聚合物中预先干混有机过氧化物（交联剂）及根据需要而使用的耐光稳定剂等添加物而成的混合物。在有机过氧化物实质上不发生分解的成形温度下将该混合物挤出成形成片状。在挤出成形时，只要通过带有压花图案的引取輥进行成形，则可得到任意压花图案的太阳能电池密封材料用片材。压花片材由于不易粘连，并且在太阳能电池的模块化过程中容易进行该片材与被粘物之间的脱气，所以优选。
太阳能电池密封材料用片材的厚度例如为0.1mm以上且1mm以下。

作为太阳能电池模块中的受光面保护材料，可以从玻璃、塑料等的透光性构件中适当选择，作为下部保护材料，可以从塑料、陶瓷、不锈钢、铝等各种保护材料中适当选择。

在太阳能电池模块的组装的一个例子中，首先，用2片以上上述太阳能电池密封材料用片材夹持平板状的太阳能电池元件（太阳能电池用硅基板等）的两面。接着，使其一侧接触上述受光面保护材料，使另一侧接触上述下部保护材料，形成真空状态后，加热至太阳能电池密封材料用片材发生熔融的温度。使太阳能电池密封材料用片材一定程度熔融后，在加热状态下解除真空状态，进行加压。通过真空状态及加压状态下的上述加热，使同一太阳能电池密封材料用片材所包含的本发明的聚合物彼此发生交联，并且使夹持太阳能电池元件的不同的2片以上的太阳能电池密封材料用片材所包含的聚合物彼此发生交联。此外，通过上述加热，从而使太阳能电池密封材料用片材所包含的硅烷偶联剂与上述受光面保护材料、上述下部保护材料及上述太阳能电池元件发生反应，使太阳能电池密封材料用片材与上述受光面保护材料或上述下部保护材料及太阳能电池密封材料用片材与上述太阳能电池元件相粘接。

在太阳能电池模块的组装的其它的例子中，首先，以上述的太阳能电池密封材料用片材作为中间层，用上述受光面保护材料和上述下部保护材料夹持该太阳能电池密封材料用片材。在此，在上述受光面保护材料与太阳能电池密封材料用片材之间、或上述下部保护材料与太阳能电池密封材料用片材之间夹持平板状的太阳能电池元件。接着，制成真空状态后，加热至太阳能电池密封材料用片材发生熔融的温度。使太阳能电池密封材料用片材一定程度熔融后，在加热状态下解除真空状态，进行加压。通过真空状态及加压状态下的上述加热，使太阳能电池密封材料用片材所包含的本发明的聚合物彼此发生交联。此外，通过上述加热，从而使太阳能电池密封材料用片材所包含的硅烷偶联剂与上述受光面保护材料、上述下部保护材料及上述太阳能电池元件发生反应，使太阳能电池密封材料用片材与上述受光面保护材料、上述下部保护材料及上述太阳能电池元件相粘接。

另外，在上述任一组装的例子中，为了提高太阳能电池密封材料用片材与上述受光面保护材料或上述下部保护材料的粘接性，优选对上述太阳能电池密封材料用片材的粘接表面、受光面保护材料的粘接表面及上述下部保护材料的粘接表面中的至少一个表面实施使用硅烷偶联剂等的底漆（primer）处理。

实施例

以下，列举出实施例及比较例对本发明具体地进行说明。

（物理的测定及评价方法）

（1）式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比（单位：%）

使用核磁共振装置测定将聚合物溶解到氯仿苯中而得到的溶液的1H-NMR波谱。另外，实施例及比较例的聚合物是式（2）中的R^1为氢、R^2为乙酰氧基的聚合物。

使用所得到的1H-NMR波谱，通过下述式（6），求出式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比。
\[Y = 100 \times 2a / (2a + b - \gamma \times a) \cdots (6) \]

式（6）中，Y是R是氢且R是乙酰氧基的式（2）所示的重复单元的数目相对于构成聚合物主链的碳原子的总数的比。

\[a \text{为来自式（2）的R}^1 \text{即氢的峰的面积。该峰在聚合物的}^{1} \text{H-NMR波谱中在} 4.9 \text{ppm附近被观测到。} \]

\[b \text{为在聚合物的}^{1} \text{H-NMR波谱中在0.7～2.5ppm附近观测到的全部峰的面积之和。} \]

\[\gamma \text{为式（2）的R}^2 \text{即乙酰氧基所包含的氢的数目。由于R}^2 \text{为乙酰氧基，所以} \gamma = 3. \]

（2）比X（单位：%）

\[\text{利用核磁共振装置在下述条件下测定将聚合物溶解到1, 1, 2, 2-四氯乙烷d2中而得到的溶液的}^{13} \text{C-NMR波谱。} \]

<测定条件>

装置：Bruker公司制造的AVANCE600

测定探针：10mm冷冻探针（cryoprobe）

测定溶剂：1, 1, 2, 2-四氯乙烷d2

测定温度：130℃

测定方法：质子去偶法

脉冲宽度：45度

脉冲重复时间：4秒

测定基准：1, 1, 2, 2-四氯乙烷d2（74.2ppm）

累积次数：256次

使用所得到的^{13}C-NMR波谱，通过下述式（3）算出X（%）。

\[X = 100 \times A / (A + B) \cdots (3) \]

（A表示满足以下的必要条件（a2-1）且式（2）所示的全部重复单元的R的羰基的碳原子的总数。）

（a2-1）：在C, C, C的碳原子上均未键合以下的式（A）, 式（B）, 式（C）, 式（D）, 式（E）

或式（F）所示的官能团。其中，C为键合在式（2）所示的重复单元上的碳原子，C为键合在C上的碳原子，C为键合在C上的碳原子。

B为式（2）所示的全部重复单元的R的羰基的碳原子的总数。）

式（3）中的A为在170.4ppm处观测到的峰的面积。B为在170.2ppm处观测到的峰的面积。

式（4）所示的重复单元的碳原子的数目相对于构成聚合物主链的碳原子的总数的比（单位：%）

利用为了算出X而使用的聚合物的^{13}C-NMR波谱，通过下述式（10），求出式（4）所示的重复单元的碳原子的数目相对于构成聚合物主链的碳原子的总数的比。

\[Z = 100 \times F / (D - (E - 1) \times C) \cdots (10) \]

式（10）中，Z为式（4）所示的重复单元的碳原子的数目相对于构成聚合物主链的碳原子的总数的比。
C在聚合物的13C-NMR波谱中在168ppm～180ppm附近观测到的来自式(2)的R的棱基的碳原子的峰的面积。

D为在聚合物的13C-NMR波谱中与来自1,1,2,2-四氯乙烯的峰(74.2ppm处观测到的峰)不同的全部峰的面积的总和。

E为式(2)所包含的碳原子的数目。

F为在聚合物的13C-NMR波谱中在120ppm～140ppm附近观测到的来自式(4)的碳原子的峰的面积。

(4)熔点(单位：℃)

(5)所述熔点的热模具以150℃的加热温度以10MPa的压力进行5分钟压制后，利用30℃的冷压机冷却5分钟，成形为厚度约100μm的片材。接着，将该片材切割约10mg的试样，将其封入到铝锅中。接着，将是示差扫描量热计(PerkinElmerCo., Ltd.制造的差示扫描量热计DSC-7型)将封入了试样的铝锅进行(1)在150℃下保持5分钟，(2)以5℃/分钟的速度从150℃降温至0℃，(3)在20℃下保持2分钟，(4)以5℃/分钟的速度从20℃升温至150℃，并转对(4)中的熔化曲线进行了测定。由所得到的熔化曲线，求出在从5℃到熔化结束温度(熔化曲线回到高温侧的基线时的温度)之间观察到的熔化峰中峰高度最大的熔化峰的顶点的温度，将其作为熔点。

(5)重均分子量(Mw,单位:g/mol)、数均分子量(Mn,单位:g/mol)、分子量分布(Mw/Mn,单位:无)

聚合物的重均分子量(Mw)通过使聚乙烯与聚苯乙烯的Q因子的比(17.7/41.3)与利用凝胶渗透色谱(GPC)法测定的聚苯乙烯换算的重均分子量相乘来求出。聚合物的数均分子量(Mn)通过使聚乙烯与聚苯乙烯的Q因子的比(17.7/41.3)与利用凝胶渗透色谱(GPC)法测定的聚苯乙烯换算的数均分子量相乘来求出。Mw/Mn为Mw除以Mn而得到的值。此外，GPC法中的测定条件如下所述。

(1)装置：Waters制造的Waters150C

(2)分离柱：TOSOH TSKgel GMH-HT

(3)测定温度：140℃

(4)载体：邻二氯苯

(5)流量：1.0mL/分钟

(6)注入量：500μL

(7)试样浓度：5mg/5ml邻二氯苯

(8)检测器：差示折射

(6)凝胶分率(单位：质量%)

使用约1g交联片材作为试样。为了防止试样漏出，而由向100目金属丝网制作的篮筐中加入试样。测定加入了试样的篮筐的重量。将加入了试样的篮筐浸渍到100ml的二甲苯溶剂中，边将二甲苯溶剂回流边加热8小时。从二甲苯中捞起加入了试样的篮筐，进行干燥。测定经干燥的加入了试样的篮筐的重量。由加热前测定的重量及干燥后测定的重量算出未溶解于二甲苯的成分的质量分率(将使用的交联片材的质量设为100质量%)。

(7)耐候性试验(乙酰氧基残留率、单位：%)

未交联片材的耐候性通过光照射后的片材所包含的乙酰氧基的数目相对于光照
射前的片材所包含的乙酰氧基的数目的比（以下，有时记载为乙酰氧基残留率）来评价。具体而言，如以下那样进行测定。

[0230] 在Daipla Metal Weather（DIAPEA WINTES CO., LTD.制）中投入2片未交联片材，进行利用金属卤化物灯的光照（照射强度：在295nm～430nm下为145mW/cm²、气：黑面板温度63℃/湿度50%RH）对1片片材进行48小时光照，对另1片片材进行96小时光照。

[0231] 乙酰氧基的含有率利用下面的方法来算出。测定光照射前的未交联片材及光照射后的未交联片材的红外线吸收光谱，用片材的厚度补正后3460cm⁻¹前出现的羰基（C=O）的特性吸收的吸光度，利用校正曲线，求出各未交联片材的乙酰氧基的含有率。将设光照射前的片材的乙酰氧基的含有率为100%时的光照后的片材的乙酰氧基的含有率作为乙酰氧基残留率。乙酰氧基残留率越大，则耐候性越优异。

[0232] （8）耐候性试验2（断裂强度残留率、断裂伸长度残留率、单位：%）

[0233] 交联片材的耐候性通过光照射后的片材的断裂强度相对于光照射前的片材的断裂强度的比（以下，有时记载为断裂强度的残留率）、和光照射后的片材的断裂伸长度相对于光照射前的片材的断裂伸长度的比（以下，有时记载为断裂伸长度的残留率）来评价。具体而言，如以下那样测定。

[0234] 在Daipla Metal Weather（DIAPEA WINTES CO., LTD.制）中投入2片未交联片材，进行利用金属卤化物灯的光照（照射强度：在295nm～430nm下为145mW/cm²、气：黑面板温度63℃/湿度50%RH）对1片片材进行48小时光照，对另1片片材进行96小时光照。

[0235] 在下述条件下进行光照射前的片材和光照射后的片材的拉伸试验。使用哑铃状6号模具从各片材采集试验片。在23℃、50%RH的气的条件下，使用拉伸试验机（STA-1225、Orientec Co., Ltd.制造），根据JIS K6251，在卡盘间距离为65mm，拉伸速度为050mm/分钟的条件下拉伸上述试验片，测定断裂强度、断裂伸长度。将设光照射前的片材的断裂强度为100%时的光照后的片材的断裂强度作为断裂强度残留率，将设光照射前的片材的断裂伸长度为100%时的光照后的片材的断裂伸长度作为断裂伸长度残留率。断裂强度残留率、断裂伸长度残留率越大，则耐候性越优异。

[0236] （9）聚合物的透光率（单位：%）

[0237] 1将聚合物通过150℃的热压机以10MPa的压力进行5分钟压制后，利用30℃的冷压机冷却5分钟，成形为厚度约500μm的片材。对该片材的厚度方向的透光波谱，使用分光光度计（株式会社岛津制作所制造的UV-3150），测定波长范围400nm～1200nm的透光率，算出其平均值。

[0238] （实施例1）

[0239] <5-乙酰氧基-1-环辛烯的制造>

[0240] 在氮气流下，在60升烧瓶中投入1,5-环辛二烯（1131g、0.455mol、东京化成工业株式会社）、冷却至11℃后，在温度20℃以下用约2小时滴加间氯过苯甲酸（1859g、纯度65%、6.97mol）的氯仿（20升、和光纯药工业株式会社）溶液。将烧瓶内的混合物在室温下搅拌约15小时。

[0241] 反应结束后，将反应液过滤。将滤液用10%NaHSO₃水溶液（10升×2次）、饱和NaHCO₃水溶液（10升）、饱和NaCl水溶液（10升）洗涤。对洗涤后的有机层进行减压浓缩。

[0242] 将所得到的粗制品用硅胶柱色谱（己烷/醋酸乙酯＝10/1、硅胶N60、关东化学株式
说明书

会社)纯化，得到无色油状的1,2-环氧基-5-环辛烯。

【0243】在氯气流下，在20升烧瓶中投入1,2-环氧基-5-环辛烯（730g，5.87mol）、THF（9升），冷却至5℃。接着，用约2小时添加LiAlH4（111g，2.94mol，和光纯药株式会社）后，将烧瓶内的混合物在26℃下搅拌2天。

【0244】反应结束后，将烧瓶用冰水冷却，慢慢地添加水（500mL），将烧瓶内的混合物过滤。将对滤液进行减压浓缩而得到的粗制品用硅胶柱色谱（己烷／醋酸乙酯＝3/1，硅胶N60／关东化学株式会社）纯化，得到无色油状的E-环辛烯。

【0245】在氯气流下，在20升烧瓶中投入5-羟基-1-环辛烯（720g，5.55mol）、吡啶（8.2升），冷却至5℃。接着，用1小时滴加乙酰氯（988g，12.20mol），将烧瓶内的混合物在室温下搅拌1小时。反应结束后，再反应物用二乙醚（5升）稀释后，添加水（3升），将烧瓶内的混合物分液。用乙醚（10升×2次）萃取水层，将全部有机层用1N盐酸水溶液（10升）、饱和NaHCO3水溶液（10升）、饱和NaCl水溶液（10升）洗涤，将洗涤液的有机层脱水（MgSO4），过滤后，对滤液进行减压浓缩，将所得到的粗制品用硅胶柱色谱（己烷／醋酸乙酯＝20/1，硅胶N60／关东化学株式会社）纯化后，进行减压蒸馏（63～65℃，0.4kPa），得到无色油状的E-环辛烯（758g，80%）。

【0246】＜聚合物(1)的制造＞

【0247】在玻璃制500ml茄型烧瓶中，加入在氮气氛下称量的亚苯基双(三环己基膦)二氯丁(络合物、154mg，Aldrich)，用三通旋塞塞住，边使亚苯基烧瓶内的搅拌子旋转边将进行了氯气泡的邻二氯苯(溶剂、6.4ml)、环辛烯(单体、5.9ml、东京工业化成株式会社)及5-氯环辛烯(单体、5.0ml)滴加到亚苯基烧瓶中，之后，将亚苯基烧瓶放入反应温度设定为(60℃)的油浴中，进行2小时开环立位聚合。然后，将聚合溶液滴加到甲醇中进行再沉淀，得到聚合物(1’)。其中，式(4)所示的重复单元中的碳原子的数目相对于构成聚合物(1’)的主链的碳原子的总数的比为11.2%。

【0248】将过再沉淀而得到的聚合物(1’)在80℃下真空干燥2小时后，溶解到邻二氯苯(溶剂、80ml)中。在该溶液中溶解对甲苯磺酰肼，在130℃下反应3小时，将聚合物(1’)氢化，得到聚合物(1)。将所得到的聚合物(1)的评价结果示于表1中。

【0249】＜未交联片材(1)的制作＞

【0250】将所得到的聚合物(1)利用90℃的热压机以2MPa的压力进行5分钟压制，利用30℃的冷压机冷却5分钟，制作厚度约为500μm的未交联片材(1)。将未交联片材(1)的评价结果示于表2中。

【0251】（实施例2）

【0252】＜聚合物(2)的制造＞

【0253】在玻璃制500ml茄型烧瓶中，加入在氮气氛下称量的亚苯基双(三环己基膦)二氯丁(络合物、175mg)，用三通旋塞塞住，边使亚苯基烧瓶内的搅拌子旋转边将进行了氯气泡的邻二氯苯(溶剂、62ml)、环辛烯(单体、6.1ml)及5-氯环辛烯(单体、7.1ml)滴加到亚苯基烧瓶中，然后，进行与实施例1同样的处理，得到聚合物(2)。将所得到的聚合物(2)的评价结果示于表1中。

【0254】＜交联片材(2)的制作＞

【0255】相对于100重量份聚合物(2)，含浸0.4重量份的叔丁基过氧化−2-乙基己基碳酸酯
说明书

（PERBUTYL E、日本油脂株式会社制、1小时半衰期温度121℃；作为交联剂的有机过氧化物）0.9质量份的三烯丙基异氰酸酯酯（TAIC、东京化成工业株式会社制、交联助剂）在含浸了有机过氧化物及交联助剂的聚合物（2）中添加300重量份的甲苯，在80℃下使该聚合物（2）均一地溶解到甲苯中。将该溶液搅拌5分钟，得到混合物。然后，将混合物在40℃下真空干燥4小时，得到聚合物组合物（2）。接着，为了进行交联反应及片材成形，将上述聚合物组合物（2）利用90℃的热压机以10MPa的压力进行5分钟压制后，利用150℃的热压机以10MPa的压力进行20分钟压制，利用30℃的冷压机冷却5分钟，制作厚度约为300μm的交联片材（2）。将交联片材（2）的评价结果表示于表3中。

【0256】（实施例3）

【0257】＜5-甲氧基苯基-1-环辛烯的制备＞

【0258】在1升高压反应釜中投入叔丁醇（144g、1.94mol）、PdCl₂（2.9g、0.016mol）、PPh₃（21.0g、0.08mol）、1,5-环辛二烯（336g、3.11mol、东京化成工业株式会社）及甲苯（184ml）进行3次CO置换。接着，在CO加压下（40MPa）、在90-92℃下使内容物反应4天。在该期间，每24小时进行CO加压（调整至40MPa）。

【0259】反应结束后，将反应液过滤，对滤液进行减压浓缩后，将残渣用硅胶柱色谱（在己烷/醋酸乙酯＝10/1后5/1、硅胶N60、关东化学株式会社）纯化，得到无色油状的5-（叔丁氧基）-1-环辛烯。

【0260】在2升烧瓶中投入5-（叔丁氧基）-1-环辛烯（216g、1.03mol）、三氯醋酸（450ml）并在室温下搅拌2天。反应结束后，将反应液注入水（450ml）-乙醇（1800ml）混合液中，用饱和小苏打水调整pH4。将混合液用二乙醚（5升×5次）萃取后，对萃取物进行减压浓缩。

【0261】将所得到的残渣用硅胶柱色谱法（己烷/醋酸乙酯＝3/1、硅胶N60、关东化学株式会社）纯化，得到白色结晶的5-甲氧基苯基-1-环辛烯。

【0262】＜聚合物（7）的制备＞

【0263】在玻璃制500ml圆型烧瓶中，加入在氮气气氛下称量的亚氨基双（三环己基膦）二氯釔（络合物、314mg），用三通插塞塞住。边使型烧瓶内的搅拌子旋转边将进行了氯甲基的邻二氯苯（溶剂、120ml）、环辛烯（单体、11.0ml）及5-甲氧基苯基-1-环辛烯（单体、12.8ml）滴加到型烧瓶中。然后，进行与实施例1同样的处理，得到聚合物（7）。将所得到的聚合物（7）的评价结果示于表4中。

【0264】＜交联片材的制作＞

【0265】相对于100重量份聚合物（7）、含浸1.0重量份（交联条件1）或2.0重量份（交联条件2）的叔丁基过氧化-2-乙基己基酸酯酯（PERBUTYL E、日本油脂株式会社制、1小时半衰期温度121℃；作为交联剂的有机过氧化物）及0.5重量份的γ-甲基丙烯酰氧基丙基三甲基硅烷（A-174、MOMENTIVEPERFOR MANCE MATERIALS制、硅烷偶联剂）。将含浸了有机过氧化物及交联助剂的聚合物（7）利用90℃的热压机以10MPa的压力进行5分钟压制后，利用150℃的热压机以10MPa的压力进行20分钟压制，利用30℃的冷压机冷却5分钟，制作厚度约为500μm的交联片材。将交联片材的评价结果示于表4中。

【0266】（比较例1：乙烯-醋酸乙烯酯共聚物（3））

【0267】除了使用市售的乙烯-醋酸乙烯酯共聚物（K2010、住友化学株式会社制）作为聚合物以外，与实施例1同样地进行各性质的测定及交联片材的制作、评价。将评价结果示于
表1、2中。

[0268] [比较例2；乙烯-醋酸乙烯酯共聚物（4）]

[0269] 除了使用市售的乙烯-醋酸乙烯酯共聚物（KA-40，住友化学株式会社制）作为聚合物以外，与实施例2同样地进行各物性的测定及交联片材的制作、评价。将评价结果示于表1、3中。

[0270] [比较例3；聚合物（5）]

[0271] [聚合物（5）的制造]

[0272] 在玻璃制500ml茄型烧瓶中，加入在氮气氛下称量的亚苯基双（三环己基膦）二氯钌（络合物、202mg），用三通旋塞塞住。使该型烧瓶内的搅拌子旋转边将进行了氮鼓泡的邻二氯苯（溶剂、61ml）、环辛烯（单体、9.8ml）及5-乙酰氧基-1-环辛烯（单体、4.3ml）滴加到茄型烧瓶中。然后，进行与实施例1同样的处理，得到聚合物（5）。将所得到的聚合物（5）的评价结果示于表1中。

[0273] [比较例4；聚合物（6）]

[0274] [聚合物（6）的制造]

[0275] 在玻璃制500ml茄型烧瓶中，加入在氮气氛下称量的亚苯基双（三环己基膦）二氯钌（络合物、124mg），用三通旋塞塞住。使该型烧瓶内的搅拌子旋转边将进行了氮鼓泡的邻二氯苯（溶剂、71ml）、5-乙酰氧基-1-环辛烯（单体、11ml）滴加到茄型烧瓶中。然后，进行与实施例1同样的处理，得到聚合物（5）。将所得到的聚合物（5）的评价结果示于表1中。

[0276] [比较例5；乙烯-丙烯酸甲酯共聚物（7）]

[0277] 除了使用市售的乙烯-甲基丙烯酸酯共聚物颗粒（CG4002，住友化学株式会社制）作为聚合物以外，与实施例3同样地进行各物性的测定及交联片材的制作、评价。将评价结果示于表4中。

[0278] 表1

<table>
<thead>
<tr>
<th>聚合物(1)</th>
<th>聚合物(1)</th>
<th>聚合物(2)</th>
<th>聚合物(3)</th>
<th>聚合物(4)</th>
<th>聚合物(5)</th>
<th>聚合物(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例1</td>
<td>实施例2</td>
<td>比较例1</td>
<td>比较例2</td>
<td>比较例3</td>
<td>比较例4</td>
<td></td>
</tr>
<tr>
<td>树脂</td>
<td>%</td>
<td>4.4</td>
<td>5.4</td>
<td>4.7</td>
<td>5.6</td>
<td>2.4</td>
</tr>
<tr>
<td>X</td>
<td>%</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>实施例4</td>
<td>实施例2</td>
<td>比较例1</td>
<td>比较例2</td>
<td>比较例3</td>
<td>比较例4</td>
<td></td>
</tr>
<tr>
<td>树脂</td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>熔点</td>
<td>℃</td>
<td>65.8</td>
<td>60.0</td>
<td>76.9</td>
<td>66.6</td>
<td>89.0</td>
</tr>
<tr>
<td>数均分子量(Mn)</td>
<td>g/mol</td>
<td>40200</td>
<td>33800</td>
<td>22700</td>
<td>17400</td>
<td>40000</td>
</tr>
<tr>
<td>重均分子量(Mw)</td>
<td>g/mol</td>
<td>86300</td>
<td>59300</td>
<td>85300</td>
<td>63900</td>
<td>65300</td>
</tr>
<tr>
<td>Mw/Mn</td>
<td>-</td>
<td>2.2</td>
<td>1.8</td>
<td>3.7</td>
<td>3.7</td>
<td>1.6</td>
</tr>
<tr>
<td>透光率</td>
<td>%</td>
<td>87</td>
<td>89</td>
<td>92</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>[0280]</td>
<td>表2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>实施例 1</td>
<td>比较例 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙酰氧基残留率(48 小时光照射后)</td>
<td>%</td>
<td>98.5</td>
<td>98.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乙酰氧基残留率(96 小时光照射后)</td>
<td>%</td>
<td>97.3</td>
<td>96.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[0282]</th>
<th>表3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施例 2</td>
</tr>
<tr>
<td>断裂强度残留率(48 小时光照射后)</td>
<td>%</td>
</tr>
<tr>
<td>断裂强度残留率(96 小时光照射后)</td>
<td>%</td>
</tr>
<tr>
<td>断裂伸长度残留率(48 小时光照射后)</td>
<td>%</td>
</tr>
<tr>
<td>断裂伸长度残留率(96 小时光照射后)</td>
<td>%</td>
</tr>
<tr>
<td>凝胶分率</td>
<td>质量%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[0284]</th>
<th>表4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施例 3</td>
</tr>
<tr>
<td>树脂</td>
<td>聚合物(7)</td>
</tr>
<tr>
<td>式(2)所示的重复单元的数日相对于构成聚合物主链的碳原子的总数的比</td>
<td>%</td>
</tr>
<tr>
<td>X</td>
<td>%</td>
</tr>
<tr>
<td>式(4)所示的重复单元的数日相对于构成聚合物主链的碳原子的总数的比</td>
<td>mol%</td>
</tr>
</tbody>
</table>

[0285]			

熔点	℃	49.5	67.7
数均分子量(Mn)	g/mol	41100	27300
重均分子量(Mw)	g/mol	79700	89900
Mw/Mn	-	1.9	3.3
凝胶分率 1	%	81	63
凝胶分率 2	%	87	81

[0286] 产业上的可利用性

[0287] 只要使用本发明的聚合物，就能够制造耐候性优异的太阳能电池的密封材料。本发明的聚合物可适当利用于太阳能电池用密封材料的领域。