(21) 申请号 200910153682.9
(22) 申请日 2009.10.23
(71) 申请人 浙江新安化工集团股份有限公司
地址 311600 浙江省建德市新安江白山南开发区大楼 4 楼
(72) 发明人 周卫星 王舜 蒋方强 严志娟 吴明慧 吕锋
(74) 专利代理机构 杭州九洲专利事务所有限公司 33101
代理人 翁霁明
(51) Int. Cl.
C07F 9/38 (2006.01)
权利要求书 1 页 说明书 4 页
(54) 发明名称
甘氨酰胺法的草甘膦合成制备方法
(57) 摘要
一种甘氨酰胺法的草甘膦合成制备方法，它是将多聚丙醛、甘氨酰胺、亚磷酸二甲酯作为反应原料，甲醇为溶剂，以硫酸亚铁作为催化剂进行草甘膦缩合反应，经缩合反应工序结束后，在缩合溶液中通入盐酸或 HCl 气体，形成甘氨酸盐酸盐，于过滤分离出醋酸甘氨酸盐酸；缩合液中继续加入盐酸进行水解，得到草甘膦，脱氢后，加碱调节 pH，冷却结晶析出草甘膦，洗涤烘干得成品；母液浓缩配制草甘膦水剂；所述的醇酸可是三乙醇胺、二乙醇胺、一乙醇胺、甲醇胺、二甲基乙基胺等，尤其特别是三乙醇胺；所述的氯化氢气体通入量与所加入得相关醇酸的摩尔比为 1：1～1.5；本发明通过过滤分离能回收三乙醇胺盐酸盐效率可达 95%，含量可达 99% 以上；回收的三乙醇胺盐酸盐可用 NaOH 中和，转化为三乙醇胺作为生产原料反复使用；三乙醇胺盐酸盐也可作为产品销售。
1. 一种甘氨酸法的草甘膦合成制备方法，该方法是将多聚甲醛、甘氨酸、亚磷酸二甲酯作为反应原料、甲醇为溶剂，以醇胺作为催化剂进行草甘膦合成反应，在缩合反应工序结束后，在缩合溶液中通入盐酸或 HCl 气体，形成醇胺盐酸盐，过滤分离出醇胺盐酸盐，缩合液中继续加入盐酸进行水解，得到草甘膦，脱醇后，加碱调节 pH，冷却结晶析出草甘膦，洗涤烘干得成品；母液浓缩配制草甘膦水剂。

2. 根据权利要求 1 所述的甘氨酸法的草甘膦合成制备方法，其特征在于所述的方法以多聚甲醛、甘氨酸、亚磷酸二甲酯作为反应原料物质的量比为：(1.7~2.2) ：1 ：(0.9~1.5)，溶剂甲醇与甘氨酸的物质的量比为 5~20，优选 8~15，加入的醇胺催化剂与甘氨酸的物质的量比例为 0.5~1.5，优选为 0.75~1.2。将上述多聚甲醛、甘氨酸、亚磷酸二甲酯、溶剂甲醇、催化剂醇胺搅拌升温至 25℃~50℃，至缩合反应完成，通入氯化氢气体（或盐酸），氯化氢气体通入量与所加入得相关醇胺的物质的量比为 1：1~1.5，析出醇胺盐酸盐，在反应液中加入与甘氨酸的物质的量比为 1.5~3.0：1，优选 2.2~2.5：1 的盐酸，进行酸化水解，7~8 小时内升温至 100℃~135℃，制得草甘膦。

3. 根据权利要求 1 或 2 所述的甘氨酸法的草甘膦合成制备方法，其特征在于所述的醇胺是三乙醇胺、二乙醇胺、一乙醇胺、甲醇胺、二甲基乙基胺中的一种。

4. 根据权利要求 3 所述的甘氨酸法的草甘膦合成制备方法，其特征在于所述的醇胺是三乙醇胺；所述的氯化氢通入量与所加入的相关醇胺的摩尔配比为 1：1~1.5。

5. 根据权利要求 1 或 2 所述的甘氨酸法的草甘膦合成制备方法，其特征在于所述的方法包括如下具体步骤：

1) 、多聚甲醛 (CH₂O)n 以甲醇为溶剂，以三乙醇胺为催化剂进行解聚；
2) 、加入甘氨酸后进行羟甲基化反应。
 2CH₂O+NH₂CH₂COOH → (HOCH₂)₂NCH₂COOH + (C₆H₅OH)₃N
3) 、加入亚磷酸二甲酯进行缩合反应
 (HOCH₂)₂NCH₂COOH + (C₆H₅OH)₃N + (CH₃)₃POH →
 CH₂OH
 (CH₂O)₃POCH₂NCH₂COOH + (C₆H₅OH)₃N
4) 、通入 HCl 气体，形成三乙醇胺盐酸盐，过滤分离三乙醇胺盐酸盐。
5) 、缩合液加入盐酸进行酸化水解，合成得到草甘膦。
 CH₂OH
 (CH₂O)₃POCH₂NCH₂COOH + 3H₂O → (H₂O)₃POCH₂NHCH₂COOH +
 CH₂(OCH₂)₃+CH₂Cl
6) 、脱醇、加碱调节 pH，冷却结晶得到草甘膦，洗涤烘干得成品。
甘氨酸法的草甘膦合成制备方法

技术领域
[0001] 本发明涉及的是一种甘氨酸法的草甘膦合成制备方法，尤其涉及一种使用新型催化剂技术用于草甘膦合成过程中的制备方法。

技术背景
[0002] 草甘膦是一种高效、灭生性化学除草剂，是全球化学除草剂使用量最大的品种，现世界年使用量大约在 80 万吨，且以年 20%以上速度增长。
[0003] 目前国内实现产业化的草甘膦生产路线有两种，一是以甘氨酸为主要原料的烷基酯法；二是以二乙醇胺、亚氨基二乙腈为主要原料的 IDA 法，国内草甘膦生产主要以烷基酯法为主。
[0004] 烷基酯法具有生产工艺成熟稳定，反应工序少，周期短，投资费用相对较低等优点，因而被我国草甘膦生产厂家广泛采用。目前所有的烷基酯化法都是采用二乙胺作为合成催化剂，将甘氨酸、多聚甲醛、二乙胺和甲醇投入反应器解聚，然后加入亚磷酸二乙酯进行合成，缩聚完成后加入甲酸进行水解得到草甘膦，加碱调节 pH，使草甘膦析出，催化剂三乙胺转化为三乙胺盐酸盐，需要继续进行草甘膦酸母液中加入大量的液碱中和三乙胺盐酸盐，生成三乙胺和钠盐并产生大量的草甘膦母液（碱母液），分离三乙胺重新利用于草甘膦生产，草甘膦母液进行浓缩，产生大量的工业盐，这些盐由于含有多种含磷杂质，用途有限。

发明内容
[0005] 本发明的目的在于克服现有技术存在的不足，而提供一种新型草甘膦合成催化剂用于草甘膦生产的甘氨酸法的草甘膦合成制备方法。
[0006] 本发明的目的是通过如下技术方案来完成的，它是将多聚甲醛、甘氨酸、亚磷酸二乙酯作为反应原料，甲醇为溶剂，以醇胺作为催化剂进行草甘膦缩合反应，在缩合反应工序结束后，在缩合溶液中通入盐酸或 HCl 气体，优选通入 HCl 气体，形成醇胺盐酸盐，过滤分离出醇胺盐酸盐，缩合液中继续加入盐酸进行水解，得到草甘膦，脱醇后，加碱调节 pH，冷却结晶析出草甘膦，洗涤烘干得成品；母液浓缩配制草甘膦水剂。
[0007] 本发明所述的醇胺可以是三乙醇胺、二乙醇胺、一乙醇胺、甲醇胺、二甲基乙基胺等，尤其是三乙醇胺。
[0008] 本发明所述的氯化氢气体通入量（盐酸以氯化氢计）与所加入得相关醇胺的摩尔配比为 1：1～1.5。
[0009] 本发明中多聚甲醛、甘氨酸、亚磷酸二乙酯作为反应原料物质的量比为：(1.7～2.2)：1：(0.9～1.5)，溶剂甲醇与甘氨酸的物质的量比为 5～20，优选 8～15，加入的醇胺催化剂与甘氨酸的物质的量比例为 0.5～1.5，优选为 0.75～1.2。将上述多聚甲醛、甘氨酸、亚磷酸二乙酯、溶剂甲醇、催化剂醇胺搅拌升温至 25℃～50℃，至缩合反应完成，通入氯化氢气体（或盐酸），氯化氢气体通入量与所加入得相关醇胺的物质的量比为 1：1～1.5，析出醇胺盐酸盐，在反应液中加入与甘氨酸的物质的量比为 1.5～3.0：1，优选 2～2.5：1。
的盐酸, 进行酸化水解, 7~8 小时内升温至 100°C - 135°C, 制得草甘膦。

[0010] 作为本发明, 具体技术方案优选为:

[0011] (1) 多聚甲醛 (CH₃O)ₙ 以甲醇为溶剂, 以三乙醇胺为催化剂进行缩聚;

[0012] (2) 加入甘氨酸后进行羟甲基化反应。

[0013] 2CH₃O+NH₂CH₂COOH → (HOCH₂)₂NCH₂COOH + (CH₃₂OH)₃N

[0014] (3) 加入亚磷酸二甲酯进行缩合反应

[0015] \[(HOCH₂)₂NCH₂COOH \cdot (CH₃₂OH)₃N + (CH₃)₂POH \rightarrow CH₂OH\]

\[(CH₂O)₂POCH₂NCH₂COOH \cdot (CH₃₂OH)₃N\]

[0016] (4) 通入 HCl 气体, 形成三乙醇胺盐酸盐, 过滤分离三乙醇胺盐酸盐。

[0017] (5) 缩合液加入盐酸进行酸化水解, 合成得到草甘膦。

[0018] \[CH₂OH \]

\[(CH₂O)₂POCH₂NCH₂COOH + 3H₂O \rightarrow (HO)₂POCH₂NHCH₂COOH + CH₂(OCH₃)₂ + CH₂CL\]

[0019] (6) 脱醇、加碱调节 pH, 冷却结晶得到草甘膦, 洗涤烘干得成品。

[0020] 本发明采用醇胺为催化剂, 尤其是三乙醇胺, 在缩合工序完成后通入氯化氢气体将其转化为三乙醇胺盐酸盐, 三乙醇胺盐酸盐不溶于以甲醇为溶剂的缩合溶液, 可以采取简单的分离方法过滤分离出来, 而不需要如传统工艺中在水解结束析出草甘膦晶体后, 在草甘膦母液中加入大量液碱中和, 加大量时间静置拿出大部分三乙胺, 并通过精馏的手段继续拿出其他三乙胺, 节省能耗, 减少产生废水总量; 另外, 由于新工艺中在草甘膦水解反应之前就先分离出三乙醇胺盐酸盐, 因此对于新工艺产生的草甘膦母液不含盐酸, 因此母液杂质含量少, 盐少, 便于浓缩, 能比较容易的进行浓缩配制水剂。

[0021] 本发明通过普通的过滤分离能回收三乙醇胺盐酸盐收率可达 95%, 含量可达 99% 以上。回收的三乙醇胺盐酸盐可用 NaOH 中和, 转化为三乙醇胺作为生产原料反复使用, 三乙醇胺盐酸盐也可作为产品销售。

具体实施方式

[0022] 本发明所述的甘氨酸法草甘膦合成制备方法, 它是将多聚甲醛、甘氨酸、亚磷酸二甲酯作为反应原料, 甲醇为溶剂, 以醇胺作为催化剂进行草甘膦缩合合成反应, 在缩合反应工序结束后, 在缩合溶液中通入盐酸或 HCl 气体, 形成醇胺盐酸盐, 过滤分离出醇胺盐酸盐, 缩合液中继续加入盐酸进行水解, 得到草甘膦, 脱醇后, 加碱调节 pH, 冷却结晶析出草甘膦, 洗涤烘干得成品; 母液浓缩配制草甘膦水剂。

[0023] 本发明所述的醇胺可以是三乙醇胺、二乙醇胺、一乙醇胺、甲醇胺、二甲基乙基胺等, 尤其特别是三乙醇胺。

[0024] 本发明所述的氯化氢气体通入量与所加入相关醇胺的摩尔配比为 1 : 1 ~ 1.5。

[0025] 本发明中多聚甲醛、甘氨酸、亚磷酸二甲酯作为反应原料物质的量比为:
(1.7~2.2) : 1 : (0.9~1.5)，溶剂甲醇与甘氨酸的物质的量比为 5~20，优选 8~15。加入的
酶胺催化剂与甘氨酸的物质的量比例为 0.5~1.5，优选为 0.75~1.2。将上述多聚甲醛、甘氨
酸、亚磷酸二甲酯、溶剂甲醇、催化酶胺搅拌升至 25℃~50℃，至缩合反应完成，通入氯
化氢气体（或盐酸），氯化氢气体通入量与所加入得相关酶胺的物质的量比为 1：1~1.5，
析出酰胺盐酸酸，在反应液中加入与甘氨酸的物质的量比为 1.5~3.0 : 1，优选 2~2.5 : 1
的盐酸，进行酸化水解，7~8 小时内升温至 100℃~135℃，制得草甘膦。

【0026】 作为本发明，具体技术方案优选为：

【0027】 (1) 多聚甲醛 (CH₂O)ₙ 以甲醇为溶剂，以三乙醇胺为催化剂进行解聚；

【0028】 (2) 加入甘氨酸后进行羟甲基化反应。

【0029】 2CH₂O+NH₂CH₂COOH → (HOCH₂)₂NCH₂COOH • (C₆H₄OH)₃N

【0030】 (3) 加入亚磷酸二甲酯进行缩合反应

【0031】

(HOCH₂)₂ NCH₂COOH • (C₆H₄OH)₃N + (CH₃) POH

CH₂OH

(CH₂O) POCH₂NCH₂COOH • (C₆H₄OH)₃N

【0032】 (4) 通入 HCl 气体，形成三乙醇胺盐酸盐，过滤分离三乙醇胺盐酸盐。

【0033】 (5) 缩合液加入盐酸进行酸化水解，合成得到草甘膦。

【0034】

CH₂OH

(CH₂O) POCH₂NCH₂COOH + 3H₂O → (HO) POCH₂NHCH₂COOH +

CH₃ (OCH₃)₂ + CH₃Cl

【0035】 (6) 脱醇，加碱调节 pH，冷却结晶得到草甘膦，洗涤烘干得成品。

【0036】 实例 1

【0037】 在 500ml 的四口烧瓶中加入多聚甲醛 12.2g，甲醇 86g，三乙醇胺 32.2g 升温至
40℃搅拌半小时，加入甘氨酸 15g，继续搅拌 1 小时，加入亚磷酸二甲酯 25g，升至缩合反应
完成后通入 HCl 气体 8.7g，待三乙醇胺盐酸盐析出，经真空泵过滤从反应液中分离出三乙
醇胺盐酸， 在反应液中再加入盐酸 50ml， 进行酸化水解， 升温至 120℃保温半小时， 加入水
20ml，30% NaOH 10ml，调节溶液的 pH 值，冷却 8 小时后出料，经洗涤过滤后得干草甘膦
(含量 95%) 24g，溶液 198g，溶液中草甘膦含量 1.2%，总收率可达 97% 以上。三乙醇胺盐
酸盐回收率可达 95% 以上。三乙醇胺盐酸盐含量可达 99% 以上。

【0038】 实例 2

【0039】 在 500ml 的四口烧瓶中加入多聚甲醛 12.2g，甲醇 86g，三乙醇胺 32.2g，甘氨酸
15g，亚磷酸二甲酯 25g，升温至 40℃，搅拌 1 小时，至缩合反应完成后通入 HCl 气体 9g，待三
乙醇胺盐酸盐析出，经真空泵过滤从反应液中分离出三乙醇胺盐酸盐，在反应液中再加入
盐酸 50ml，进行酸化水解，升温至 120℃保温半小时，加入水 20ml，30% NaOH 10ml，调节溶
液的 pH 值，冷却 8 小时后出料，经洗涤过滤后得干草甘膦（含量 95%）24g，溶液 198g，溶
液中草甘膦含量 1.2%，总收率可达 97% 以上。三乙醇胺盐酸盐回收率可达 95% 以上。三乙
醇胺盐酸盐含量可达 99% 以上。
实施例 3

在 500ml 的四口烧瓶中加入多聚甲醛 12.2g, 甲醇 86g, 乙基乙酸胺 20.4g, 甘氨酸 15g, 亚磷酸二甲酯 25g, 升温至 40℃, 搅拌 1 小时, 至缩合反应完成后通入 HCl 气体 12g, 待二甲基乙酸胺实验盐析出, 经真空泵过滤从反应液中分离出二甲基乙酸胺盐酸盐, 在反应液中再加入盐酸 50ml, 进行酸化水解, 升温至 120℃ 保温半小时, 加入水 20ml, 30% NaOH 10ml, 调节溶液的 pH 值, 冷却 8 小时后出料, 经洗涤过滤后得干基草甘膦 (含量 95%) 24g, 溶液 198g, 溶液中草甘膦含量 1.2%, 总收率可达 75%以上, 二甲基乙酸胺盐酸盐回收率可达 95%以上。二甲基乙酸胺盐酸盐含量可达 99%以上。

实施例 4

在 500ml 的四口烧瓶中加入多聚甲醛 12.2g, 甲醇 86g, 乙基乙酸胺 20.4g, 升温至 40℃ 搅拌半小时, 加入甘氨酸 15g, 继续搅拌 1 小时, 加入亚磷酸二甲酯 25g, 升至缩合反应完成后通入 HCl 气体 12.1g, 待二甲基乙酸胺盐析出, 经真空泵过滤从反应液中分离出二甲基乙酸胺盐, 在反应液中再加入盐酸 50ml, 进行酸化水解, 升温至 120℃ 保温半小时, 加入水 20ml, 30% NaOH 10ml, 调节溶液的 pH 值, 冷却 8 小时后出料, 经洗涤过滤后得干基草甘膦 (含量 95%) 24g, 溶液 198g, 溶液中草甘膦含量 1.2%, 总收率可达 75%以上, 二甲基乙基胺盐酸盐回收率可达 95%以上。二甲基乙基胺盐酸盐含量可达 99%以上。

实施例 5

在 500ml 的四口烧瓶中加入多聚甲醛 12.2g, 甲醇 86g, 乙基乙酸胺 20.4g, 升温至 40℃ 搅拌半小时, 加入甘氨酸 15g, 继续搅拌 1 小时, 加入亚磷酸二甲酯 25g, 升至缩合反应完成后通入 30% 盐酸 40g, 待二甲基乙酸胺盐析出, 经真空泵过滤从反应液中分离出二甲基乙酸胺盐, 在反应液中再加入盐酸 50ml, 进行酸化水解, 升温至 120℃ 保温半小时, 加入水 20ml, 30% NaOH 10ml, 调节溶液的 pH 值, 冷却 8 小时后出料, 经洗涤过滤后得干基草甘膦 (含量 95%) 24g, 溶液 198g, 溶液中草甘膦含量 1.2%, 总收率可达 75%以上, 二甲基乙基胺盐酸盐回收率为 91%, 二甲基乙基胺盐酸盐含量可达 99%以上。