发明名称：投影用透镜装置，采用该装置的背面投影型显示器

摘要

本发明涉及一种投影用透镜装置，该投影用透镜装置用于背面投影显示装置，可以较低的成本实现具有较大的消光比（低 F 值），高聚焦性，高对比度，低变形，以及较宽视角的投影用透镜装置。为此，本发明涉及用于以放大方式将由图象发生源显示的原始图象投影到屏幕上的投影用透镜装置，其中按照从上述屏幕侧开始的顺序，设置有第 1 组透镜，该第 1 组透镜包括具有折射性能，中心部的形状在屏幕上呈凸状的明月形透镜；第 2 组透镜，该第 2 组透镜包括具有中心部分的形状在图象发生源呈凸状的透镜面的透镜；第 3 组透镜，该第 3 组透镜包括具有中心部分的形状在图象发生源呈凹状的透镜面的透镜；第 4 组透镜，该第 4 组透镜包括上述透镜，该透镜具有正的折射性能，该透镜包括中心部的形状在图象发生源呈凸状的透镜面；第 5 组透镜，该第 5 组透镜在屏幕侧包括具有凹状的透镜面，具有负的折射性能的透镜。这样，通过形成入射
1. 一种投影用透镜装置，该投影用透镜装置用于以放大方式将由图象发生源显示的原始图象投影到屏幕上，该投影用透镜装置包括多个透镜元件，其特征在于上述多个透镜元件包括在该多个透镜元件中，具有最强的正的折射性能的大光焦度透镜，该投影用透镜装置的入射瞳孔位于该大光焦度透镜的光入射面和光射出面之间。

2. 一种投影用透镜装置，该投影用透镜装置用于以放大方式将由图象发生源显示的原始图象投影到屏幕上，该投影用透镜装置包括多个透镜元件，其特征在于上述多个透镜元件按照从上述屏幕侧到上述图象发生源的顺序，设置有第 1 组透镜，该第 1 组透镜包括中心部分的形状在屏幕侧呈凸状的弯月形透镜；第 2 组透镜，该第 2 组透镜包括具有中心部分的形状在图象发生源呈凸状的透镜面的透镜；第 3 组透镜，该第 3 组透镜包括在上述多个透镜元件中具有最强的正的折射性能的大光焦度透镜；第 4 组透镜，该第 4 组透镜包括上述透镜，该透镜具有正的折射性能，该透镜包括中心部分的形状在图象发生源侧呈凸状的透镜面；第 5 组透镜，该第 5 组透镜在屏幕侧包括具有凹状的透镜面，具有负的折射性能的透镜，该投影用透镜装置的入射瞳孔位于该大光焦度透镜的光入射面和光射出面之间。

3. 根据权利要求 2 所述的投影用透镜装置，其特征在于当在上述图象发生源中显示的原始图象的最大像高度由 H 表示，从上述图象发生源，到位于上述大光焦度透镜内的入射瞳孔的光轴上的距离由 d 表示时，则满足下述条件：

 \[0.635 \leq \frac{H}{d} \leq 0.857 \]

4. 根据权利要求 2 所述的投影用透镜装置，其特征在于当上述大光焦度透镜的光射出面的曲率半径由 RS5 表示，光入射面的曲率半径由 RS6 表示时，则满足下述条件：

 \[-105796.523 \leq \text{RS6} \leq 844843.829 \]

 \[53.203 \leq \text{RS5} \leq 97.751 \]

5. 根据权利要求 2 所述的投影用透镜装置，其特征在于上述大光焦度透镜的光入射面 S6，或射出面 S5 中的任何一个的面的曲率半径的绝对值大于 166mm。
6. 根据权利要求 2 所述的投影用透镜装置，其特征在于上述大光焦度透镜的硝材**的阿贝值 v d 大于 60，并且折射率（nd）小于 1.600。

7. 根据权利要求 2 所述的投影用透镜装置，其特征在于当上述第 1 组透镜的聚距由 f_1 表示，上述第 2 组透镜的聚距由 f_2 表示，上述第 3 组透镜的聚距由 f_3 表示，上述第 4 组透镜的聚距由 f_4 表示，上述第 5 组透镜的聚距由 f_5 表示，上述整个投影用透镜装置系统的聚距由 f_0 表示时，则满足下述条件：

\begin{align*}
0.112 \leq & f_0 / f_1 \leq 0.329 \\
-0.028 \leq & f_0 / f_2 \leq 0.505 \\
0.613 \leq & f_0 / f_3 \leq 0.833 \\
0.004 \leq & f_0 / f_4 \leq 0.420 \\
-0.905 \leq & f_0 / f_5 \leq -0.135
\end{align*}

8. 根据权利要求 2 所述的投影用透镜装置，其特征在于上述图象发生源采用投影管，上述第 5 组透镜包括弯月形透镜，该弯月形透镜包括具有凹面朝向屏幕的透镜面，具有负的折射性能；上述投影管的荧光面玻璃；冷却液，该冷却液密封于上述弯月形透镜和上述荧光面玻璃之间，用于对上述投影管进行冷却，上述弯月形透镜的光射出面与上述荧光面玻璃的光射出面和上述荧光面玻璃射出面的距离 T 按照下述方式确定：

\[T \geq 15 \text{mm} \]

9. 根据权利要求 8 所述的投影用透镜装置，其特征在于对上述弯月形透镜和上述冷却液中的至少 1 者，设置波长选择性滤色片。

10. 根据权利要求 2 所述的投影用透镜装置，其特征在于形成上述第 1 组透镜，第 2 组透镜，第 3 组透镜，第 4 组透镜，第 5 组透镜的透镜中的至少一个面呈其非球面系数大于 14 次的非球面形状；

其中，在这里所说的非球面系数指面形状由下述数学公式 1 表示时的各系数 k，a，b，c，d，e，f，z，14 次的系数与 F 相对应，另外，n 表示任意的自然数，RD 表示近轴曲率半径：

数学公式

\[
Z(r) = \frac{r^2 / RD}{1 + \sqrt{1 - (1 + K)r^2 / RD^2}} + Ar^4 + Br^6 + Cr^8 + Dr^{10} + Er^{12} + Fr^{14} + \cdots + Zr^{2n}
\]

11. 根据权利要求 2 所述的投影用透镜装置，其特征在于形成上述第 1 组
透镜，第 2 组透镜，第 4 组透镜，第 5 透镜的透镜的至少一个面在有效半径内，呈具有 2 个以上的拐点的非曲面形状。

12. 根据权利要求 2 所述的投影用透镜装置，其特征在于当相对第 1 组透镜的光射出面的球面量的 S_{s1} 的非球面量由 A_{s1} 表示，相对第 1 组透镜的光射出面的球面量的 S_{s2} 的非球面量由 A_{s2} 表示，相对第 2 组透镜的光射出面的球面量的 S_{s3} 的非球面量由 A_{s3} 表示，相对第 2 组透镜的光射出面的球面量的 S_{s4} 的非球面量由 A_{s4} 表示，相对第 4 组透镜的光射出面的球面量的 S_{s5} 的非球面量由 A_{s5} 表示，相对第 4 组透镜的光射出面的球面量的 S_{s6} 的非球面量由 A_{s6} 表示，相对第 5 组透镜的光射出面的球面量的 S_{s7} 的非球面量由 A_{s7} 表示，相对第 5 组透镜的光射出面的球面量的 S_{s8} 的非球面量由 A_{s8} 表示，相对第 5 组透镜的光射出面的球面量的 S_{s9} 的非球面量由 A_{s9} 表示时，则满足下述条件：

$$\begin{align*}
S1: & \quad 0.025 \leq A_{s1}S_{s1} \leq 0.462 \\
S2: & \quad 0.806 \leq A_{s2}S_{s2} \leq 2.194 \\
S3: & \quad -78.036 \leq A_{s3}S_{s3} \leq 84.667 \\
S4: & \quad -0.549 \leq A_{s4}S_{s4} \leq 0.911 \\
S7: & \quad -32.756 \leq A_{s7}S_{s7} \leq 74.256 \\
S8: & \quad -1.729 \leq A_{s8}S_{s8} \leq 1.216 \\
S9: & \quad 0.842 \leq A_{s9}S_{s9} \leq 1.466
\end{align*}$$

13. 一种投影用透镜装置，其用于以放大方式将显示于投影管中的原始图象投影到屏幕上，该投影用透镜装置包括多个透镜元件；

上述多个透镜元件包括弯月形透镜，该弯月形透镜设置于最靠近上述投影管图象发生源的位置，其光入射面与用于对上述投影管进行冷却的冷却液接触，并且具有负的折射性能，该弯月形透镜的光射出面与上述荧光面玻璃射出面之间的距离 T 按照下述方式设定，该方式为：$T \geq 15\text{mm}$。

14. 一种投影用透镜装置，其用于以放大方式将显示于投影管中的原始图象投影到屏幕上，该投影用透镜装置包括多个透镜元件，其特征在于：

上述多个透镜元件包括大光焦度透镜，该大光焦度透镜在上述多个透镜元件中，具有最强的正的折射性能；多个象差补偿透镜，该象差补偿透镜中的至少 1 个中的，至少 1 个面呈非球面系数至少大于 14 次的非球面形状。

15. 根据权利要求 14 所述的投影用透镜装置，其特征在于上述象差补偿透镜中的至少 1 个中的，至少 1 个面在有效半径内具有 2 个以上的拐点。
16.根据权利要求 14 或 15 所述的投影用透镜装置，其特征在于入射瞳孔位于大光焦度透镜的光入射面与光射出面之间。

17.一种背面投影型图象显示器，其特征在于权利要求 2 所述的投影用透镜装置设置于上述图象发生源的前方，在该投影用透镜之中的前方的成像面上，设置上述屏幕。

18.根据权利要求 17 所述的背面投影型图象显示器，其特征在于在权利要求 17 所述的投影用透镜装置中，在从具有上述投影用透镜装置的第 1 组透镜的光射出面，至上述透射型屏幕的距离 L（mm），与上述屏幕的有效对角线长度 M（英寸）之间，下述关系成立：14.0≤（L/M）≤17.9。

19.根据权利要求 17 所述的投影用透镜装置，其特征在于上述屏幕的对角线长度 M 在 49～71 英寸的范围内。

20.一种背面投影型图象显示器，该背面投影型图象显示器包括图象发生源；屏幕；投影用透镜装置，该投影用透镜装置用于以放大方式将显示于上述图象发生源中的原始图象投影到上述屏幕上，该投影用透镜装置具有多个透镜元件，其特征在于上述投影用透镜装置中的多个透镜元件包括大光焦度透镜，该大光焦度透镜在上述多个透镜元件中，具有最强的正的折射性能，入射瞳孔可位于该大光焦度透镜的光入射面与光射出面之间。

21.根据权利要求 17 所述的投影用透镜装置，其特征在于在从上述图象发生源，到形成上述投影用透镜装置中的第 3 组透镜的透镜面中的，最靠近图象发生源侧的透镜面的距离 A（mm），与从上述第 3 组透镜的透镜面中的，最靠近屏幕侧的透镜面，到上述透射型屏幕（49～71 英寸）的距离 B（mm）之间，下述关系成立：10.6≤（B/A）≤13.7。

22.根据权利要求 17 所述的投影用透镜装置，其特征在于当从上述图象发生源，到上述第 3 组透镜的光入射面的距离由 A（mm）表示，从上述第 3 组透镜的光射出面到上述屏幕的距离由 B（mm）表示，它们的比例（B/A）由 Ma 表示，另外上述屏幕的有效对角线长度由 M（英寸）表示，上述图象发生源的有效对角线长度由 m（英寸）表示，它们的比例（M/m）由 Mb 表示时，在上述 Ma 与上述 Mb 之间，下述关系成立：1.01≤（Ma/Mb）≤1.16。
投影用透镜装置，采用该装置的背面投影型显示器

5

本发明的领域

本发明涉及投影透镜和采用该投影透镜的投影型图象显示器，该投影透镜用于以放大方式将采用 CRT 等的投影管的图象发生源的图象投影到屏幕上，在屏幕上显示放大图象。本发明特别是涉及下述投影用透镜装置和采用该投影用透镜装置的背面投影型图象显示器，该投影用透镜装置适合用于获得画面变形很少，聚焦性能优良，对比度较高，明亮的图象。

发明背景

近年来，对于作为家庭用的图象显示器的电视机，伴随画面的横向长度的加宽，画面正在加大。作为家庭用的图象显示器，包括有采用阴极射线管的直接型，以及所谓的背面投影型这两种类型，该背面投影型从背面，将作为图象发生源的 5～7 英寸的小型投影管（阴极射线管）上的图象，通过投影用透镜装置以放大方式投影到屏幕上。从电视机的紧凑性和重量，以及成本的观点来说，对于超过 37 英寸的画面尺寸，背面投影型的图象显示器成为主流。

作为用于背面投影型图象显示器的投影用透镜装置，人们知道有比如，JP 特开平 7—159688 号文献（下面称为 “第 1 已有技术”）中描述的类型，以及 JP 特开平 9—159914 号文献（下面称为 “第 2 已有技术”）中描述的类型。上述第 1 已有技术公开有 5 组 5 块的透镜组件，其包括作为在第 3 组透镜中的，具有最强的正的折射性能的大光焦度透镜（power lens）的，低分散，高折射率的球面玻璃透镜，以及 4 块非球面透镜。另外，上述第 2 已有技术公开有 6 组 6 块的透镜组件，其包括作为大光焦度透镜的，高分散，低折射率的球面玻璃透镜与 5 块非球面透镜。

本发明的概述

但是，在投影用透镜装置中，为了使电视机的整体体积减小，要求焦距较短，画面周边部的亮度和聚焦性能良好，并且成本较低。为了降低成本，透镜组成块数极少，并且大光焦度透镜采用较低价格的光学玻璃透镜是最有效的方
法。一般，折射率越高，光学玻璃的价格越高，另外，分散越小，其价格越高。

用于上述第1已有技术的大光焦度透镜的光学玻璃为具有高折射性能的低分散玻璃的SK5。如果以作为用于投影用透镜装置的光线玻璃的代表的SK5为基准（1.0），则对于该光学玻璃的价格，SK16是2.1，大于2倍。由此，在第1已有技术中，透镜的组成数量为5，使成本降低。

但是，为了进一步降低成本，在大光焦度透镜采用低价的高分散的，低折射率的球面玻璃透镜的场合，不仅难以获得所需的折射性能，而且所产生的象差量增加。另外，由于承担象差补偿处理的作用的非球面塑料透镜的非球面系数的次数小于10次，故因所获得的透镜形状与组成数量的非球面数量的限制，象差补偿能力不够。其结果是，虽然可实现低成本，但是难于良好地对象差进行补偿。难于采用高价的低分散，高折射率的球面玻璃透镜，实现低成本。

对于畸变象差等的图象变形的发生量，大光焦度透镜与入射瞳孔的位置之间的关系造成的影响较大。"畸变象差"指由于光轴上（近轴）的倍率与周边的倍率的差，图象产生源的原始图象形体以变形的形状而投影到屏幕上，即，在入射瞳孔位于大光焦度透镜的屏幕侧的场合，由于周边倍率高于近轴倍率，故形成称为"纤线板**型"的变形。在入射瞳孔位于大光焦度透镜的图象发生源侧的场合，由于周边倍率低于近轴倍率，故称为"带盖圆木桶型"的变形。即，畸变象差是由于下述情况产生，该情况指从图象发生源上的各物点，通过入射瞳孔的中心的主光线通过离开大光焦度透镜的光轴的位置，这样周边倍率与近轴倍率之间的差增加。

按照第1已有技术，在大光焦度透镜的屏幕侧，设置第2组透镜。该第2组透镜具有较弱的折射性能，对球面象差和彗形象差进行补偿处理。由此，如果能够实现更宽的视角（短投影距离），则整个透镜系统的入射瞳孔位置从第3组透镜的中心，朝向屏幕侧移动。其结果是，畸变象差增加。通过上述这样的非球面塑料透镜的象差的补偿能力，难于良好地对畸变象差进行补偿。

在第2已有技术中，由于大光焦度透镜采用低价的，高分散的，低折射率的球面玻璃透镜，故可降低一定程度的成本。但是，按照第2已有技术，为了对因采用高分散的，低折射率的球面玻璃透镜而增加的象差良好地进行补偿处理，象差补偿用的非球面透镜较多（比第1已有技术多1块）。由此，其结果是，无法实现大幅度地降低成本。
另外，在投影用透镜装置中，还要求提高对比度。一般作为投影用透镜装置的透镜性能，重视投影透镜的象差补偿能力。但是，作为背投投影型图象显示器中的画质，表示图象的黑白比的对比度的提高是判断透镜性能是否良好的重要因素。为了提高对比度，必须按照投影用透镜装置内的各组透镜的反射光（不需要的光）不返回到原始图象中的方式的尽可能离开地设置。其结果是，在几乎所有的场合，象差的发生增加，为了良好地对该象差进行补偿处理而要求的补偿能力也增加。在第 1 和第 2 已有技术方案中，难于提高上述以上的补偿能力，也难于提高对比度。

一般，在投影用透镜装置用于视角较宽的背投投影型图象显示器的场合，为了满足所需的倍率和性能，必须将形成投影用透镜装置中的透镜中的，具有最大的倍率的玻璃透镜设置于图象发生源侧。为此，入射瞳孔和大光焦度透镜（玻璃透镜）的相对位置发生变化，由此，主光线相对图象发生源上的各物点的位置变化，图象变形和象散性增加，难于进行象差补偿处理。

另外，如果大光焦度透镜设置于图象发生源侧，则射入设置于大光焦度透镜的屏幕侧的，承担象差补偿的功能的塑料透镜的光束的幅度增加。于是，为了获得与最初的性能相同的亮度，必须增加该象差补偿用塑料透镜的口径，透镜的口径增加，这样便难于降低成本。

本发明是为了针对上述的已有技术的课题而提出的，本发明的目的在于提供一种投影用透镜装置和采用该投影用透镜装置的背投投影型图象显示器，该投影用透镜装置可在降低成本的同时，减小较宽视角范围，良好地进行象差补偿处理。

另外，本发明的目的在于提供一种使对比度提高的投影用透镜装置和采用该投影用透镜装置的背投投影型图象显示器。

即，本发明对投影透镜单体，以及投影透镜装置的适合性进行研究。具体来说，象权利要求 1，2 和 20 所述的那样，其特征在于上述投影用透镜装置所包括的，该多个透镜元件中的，具有最强的正的折射性能的大光焦度透镜的，入射瞳孔位于该大光焦度透镜的光入射面和光射出面之间。由此，来自图象发生源上的各物点的主光线在玻璃透镜的射入射出面，通过光轴附近，将畸变象差和象散现象的发生抑制在较低程度。另外，比如，即使在象权利要求 6 所述的那样的，阿贝值 v d 大于 60，并且折射率（nd）小于 1.600 的低价的玻璃材料
料用于大光焦度透镜，由 5 组 5 块组成的情况下，仍可将畸变象差和象散现象的发生抑制在较低程度，确保良好的补偿能力。

象这样，本发明形成将图象变形的发生充分地抑制的透镜的设置方案。于是，比如，即使在比如，大光焦度透镜采用低价的，高分散的，低折射率的球面玻璃透镜的情况下，仍可通过比如，4 个非球面透镜，对象差进行充分地补偿处理。因此，即使在这样的情况下，仍可获得所需的明亮和聚焦性能。即，按照本发明，可实现具有良好的图象的亮度和聚焦性能的低成本的投影用透镜装置和采用该投影用透镜装置的投影显示器。

也可通过下述方式，获得所需的折射性能，该方式为：因大光焦度透镜采用低折射率的低价的光学玻璃而不足的折射性能，分配给第 2 组透镜 2，该第 2 组透镜包括设置于玻璃透镜的屏幕侧的，用于对球面前差和彗星象差进行补偿处理的非球面塑料透镜。

在增加非球面塑料透镜的折射性能的场合，抵抗温度变化，吸湿的性能变差加剧。为了防止该情况，象权利要求 4 或 5 所述的那样，增加多个透镜元件中的，对性能的影响度最高的玻璃透镜中的任何一个的面的曲率半径（大于 166mm）。由此，减土因温度变化，吸湿造成的镜筒的装配精度和变差造成的偏心，倾斜的灵敏度，抵抗温度变化，吸湿的性能变差不会产生。

由于大光焦度透镜采用低折射率的低价的光学玻璃，故折射性能不足，球面象差增加。与此相对，象权利要求 10，11，12 和 14 所述的那样，在投影用透镜装置中，承担象差补偿处理的功能的非球面塑料透镜采用非球面系数由大于 14 次的值表示的非球面形状的透镜。

象这样，由于多次采用非球面量较大，复杂的形状的非球面形状，故可获得对从图象发生源上的各物点，通过入射瞳孔的周边部的光线的象差进行补偿处理的能力。

在投影用透镜装置中，对比度降低的原因在于在设置于最靠近图象发生源的位置的屏幕侧，由朝向凹面的弯月形透镜的空气侧界面（光射出面）所产生的反射光的反射。该反射光返回到在图象发生源的显示面显示的原始图象的亮度部分，使对比度降低。于是，按照本发明，象权利要求 8 和 13 所述的那样，尽可能地增加上述弯月形透镜的光射出面与上述荧光面玻璃入射面的距离。如果采用这样的方式，不能够减少在弯月形透镜的空气侧界面（光射出面）
产生的，返回到图象发生器的整个反射光的量，但是由于直接反射光返回到图象发生器的光路变长，自动反射光扩大，单位面积的强度可减小。这样使对比度提高。

另外，也可利用和所述的那样，在上述弯月形透镜，和对与透镜以及该弯月形透镜接触的图象发生器的冷却液的冷却液中的至少一者上，设置吸收原始图象的主波长以外的波长选择性滤色片。由此，在有效地减小反射光的同时，还可抑制色差的发生。

最后，用于增加投影用透镜的视角的课题可通过增加上述投影用透镜的第3组的倍率分配的方式解决。如果这样，则获得所需的倍率，由此，可将射入设置于大光焦度透镜的屏幕侧的，承担象差补偿处理的功能的第1组透镜和第2组透镜的光束宽度的增加抑制在最小限度。由此，可在不增加象差补偿用塑料透镜的口径的情况下，应对视角的增加的情况。

此外，即使在使第3组透镜的倍率分配增加的情况下，仍可通过第3组透镜的射出面周边部的较强的正的折射率，第1组透镜的射出面周边部的负的折射性能和非球面形状，对周边的光线的子午圈线（meridional）的横向象差进行控制。由此，可在很好地保持象差补偿能力的同时，应对视角的增加的情况。

附图的简要说明

图1为表示本发明的投影用透镜装置的一个实施例的剖视图；
图2为用于说明本发明的投影用透镜装置的光线轨迹结果，以及入射瞳孔的位置的图；
图3A、B为畸变象差的定义说明图；
图4为说明透镜形状的定义用的说明图；
图5为说明透镜形状的定义用的说明图；
图6为说明对比度的变差原因用的说明图；
图7为说明已有技术的组成的对比度的变差原因用的的说明图；
图8为说明本发明的组成的对比度的改善效果用的说明图；
图9为基于对比度的实验的，线靠近图象显示部设置的透镜元件之间的距离的相关图；
图10为本发明的投影用透镜装置的 MTF 特性图；
图11为表示适合采用本发明的投影用透镜装置的背面投影型图象显示器。
的主要部的画面垂直方向剖视图。

实施例的详细描述

下面对本发明的实施例进行描述。图1为表示本发明的一个实施例的投影用透镜装置的透镜主要部的剖视图。同时通过图2，对图1所示的本发明的投影用透镜装置的实施例的各组透镜的作用进行说明。第1组透镜1相对来自轴上的物点A的图象光束（上限光线RAY1），对球面象差进行补偿处理，相对来自画面周边部的物点H1的图象光束（上限光线RAY2，下限光线RAY3）对彗象差进行补偿处理。第2组透镜2对象散性与彗象差进行补偿处理。第3组透镜3为玻璃以便减小温度变化造成的聚焦性能的变化。由于第3组透镜3在整个系统中，具有最强的正的折射性能，故还将其称为“大光焦度透镜”。另外，在本实施例中，为了减小投影透镜的成本，采用作为低价的光学玻璃的SK5（SCHOTT玻璃材料名称）或同等的低折射率，高分散材料。第4组透镜4象图2所示的那样，对来自画面周边部的物点H1的图象光束（上限光线RAY2，下限光线RAY3）所产生的白光的彗象差进行补偿处理。第5组透镜5与投影管（阴极射线管）的荧光面P1一起，对像场弯曲进行补偿处理。第5组透镜5为凹面朝向屏幕侧的弯月形透镜，其光入射面与用于对投影管进行冷却的冷却液6连接。即，冷却液6以液体密封的方式，填充于形成于第5组透镜与投影管面板7之间的空间内。另外，从第1组透镜1到第4组透镜4装配于内镜筒8中，内镜筒8固定于外镜筒9上。另外，该外镜筒9固定于托架10上。此外，放大倍作为物体面的投影管荧光面P1上的图象投影到屏幕11上。还有，在本发明的实施例中，将第5组透镜的焦距与投影管面板7，冷却液6，荧光面P1一起进行计算。

在这样的投影用透镜装置中，本发明的特征在于该投影用透镜装置的入射瞳孔位于作为大光焦度透镜的第3组透镜3的光入射面与光射出面之间。在下面，同时通过图3，对该特征的方案进行具体描述。

图3为畸变象差的定义说明图。“畸变象差”指由于光轴上（近轴）的倍率与周边的倍率的差，图象发生源的原始图象形状以变形的形状投影到屏幕上的现象，在畸变象差的尺寸中，象图3所示的那样，将原始图象的物高Y的物点H1以等于近轴倍率的倍率进行成像的象点作为理想像高Y′，以百分率表示实际的像点P2和P3的像高Y1，Y2的尺寸，与Y相比较而伸缩的距离的比率。
另外，畸变象差的发生量在处于玻璃透镜与入射瞳孔的位置的关系时较大。在入射瞳孔位于玻璃透镜的屏幕侧的场合，周边倍率高于近轴倍率，由此，实际像高位于 \(Y_2 \) 侧，形成称为“延线板**型”的变形。此外，在入射瞳孔位于玻璃透镜的图象发生源侧的场合，由于周边倍率大于近轴倍率，故实际像高位于 \(Y_1 \) 侧，形成成为“带盖圆桶型”的变形。在任何的场合下，从图象发生源上的物点 \(H_1 \)，通过入射瞳孔的中心的主光线通过的位置越偏离玻璃透镜的光轴，其与近轴倍率的差越大。即，越将玻璃透镜设置于偏离入射瞳孔的位置，由于主光线通过玻璃透镜的周边，故畸变象差越增加。

本发明这样形成，象图 2 所示的那样，在距作为物体面的投影管荧光面 \(P_1 \)，d 的距离的位置处，设置假想的入射瞳孔 12，第 3 组透镜 3 的射出面 \(S_5 \) 和入射面 \(S_6 \)，设置于在其间具有入射瞳孔 12 这样的位置。由此，按照下述方式形成，该方式为：来自距投影管荧光面 \(P_1 \) 的光轴，H 高度的最大像高点 \(H_1 \) 和中间像高点 \(H_2 \) 的主光线 RAY4 和 RAY5，通过第 3 组透镜 3 的入射面 \(S_6 \) 和射出面 \(S_5 \) 距光轴的高度 \(±20 \text{mm} \) 以内的光轴附近处，将畸变象差和象散性的发生抑制在较低程度。

在表 1～11 中给出对应于图 1 所示的本发明的投影用透镜装置的实施例的透镜数据。另外，在表 12 中，给出对应于表 1～11 的相应的透镜数据的，距投影管荧光面 \(P_1 \) 的光轴，H 高度的最大像高点 \(H_1 \) 与距投影管荧光面 \(P_1 \) 的距离 \(d \)，以及畸变象差量。表 12 中的“数据 NO.” 对应于表的序号。如表 12 所示，对应于距投影管荧光面 \(P_1 \) 的最大像高点 \(H_1 \) 的光轴的距离 H，与距投影管荧光面 \(P_1 \) 的距离 \(d \)，下述的关系可成立：

\[
0.635 \leq H/d \leq 0.857
\]

由于将玻璃透镜设置于包括设定在该关系的成立的范围内的，入射瞳孔的位置，故可将畸变象差抑制在 1.5～7.5%的范围内。
表 1
数据 No.1

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 (v_d)</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>862.000</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>78.526</td>
<td>7.350</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>164.603</td>
<td>13.430</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>—284.661</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>—236.537</td>
<td>4.030</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>69.180</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>—1311.260</td>
<td>14.530</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>10000.000</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>—132.174</td>
<td>25.460</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>—46.797</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>—50.132</td>
<td>12.600</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>—350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据No.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td></td>
<td>0.0604</td>
<td>-1.09E-06</td>
<td>-2.19E-09</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td></td>
<td>0.0163</td>
<td>-5.49E-08</td>
<td>-2.02E-09</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td></td>
<td>0</td>
<td>2.11E-06</td>
<td>3.04E-10</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td></td>
<td>17.7867</td>
<td>1.41E-06</td>
<td>-2.77E-10</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td></td>
<td>0</td>
<td>-1.15E-06</td>
<td>6.63E-10</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td></td>
<td>0.4485</td>
<td>2.42E-07</td>
<td>1.09E-09</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td></td>
<td>0</td>
<td>-9.95E-07</td>
<td>-5.67E-10</td>
</tr>
</tbody>
</table>
表2
数据No.2
Fno=0.98

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>865.086</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>78.379</td>
<td>7.350</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>167.881</td>
<td>13.891</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-292.697</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-229.024</td>
<td>1.651</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第3透镜</td>
<td>S5</td>
<td>71.598</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-883.919</td>
<td>14.128</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>10000.000</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-119.682</td>
<td>24.695</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-45.286</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-50.132</td>
<td>12.800</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明载体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

f=81.34,
<table>
<thead>
<tr>
<th>组成透镜</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>透镜面</td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>第1透镜</td>
<td>0.0636</td>
<td>-1.09E-06</td>
<td>-2.19E-09</td>
<td>1.26E-12</td>
<td>-2.83E-16</td>
<td>2.45E-20</td>
<td>0.0</td>
</tr>
<tr>
<td>第2透镜</td>
<td>0.2952</td>
<td>2.11E-06</td>
<td>2.99E-10</td>
<td>5.58E-13</td>
<td>-5.14E-16</td>
<td>1.08E-19</td>
<td>0.0</td>
</tr>
<tr>
<td>第3透镜</td>
<td>18.2411</td>
<td>1.40E-06</td>
<td>-2.73E-10</td>
<td>2.37E-13</td>
<td>-1.68E-16</td>
<td>3.96E-20</td>
<td>0.0</td>
</tr>
<tr>
<td>第4透镜</td>
<td>-8.054E+04</td>
<td>-1.16E-06</td>
<td>5.98E-10</td>
<td>-9.74E-13</td>
<td>1.11E-15</td>
<td>-3.80E-19</td>
<td>0.0</td>
</tr>
<tr>
<td>第5透镜</td>
<td>1.5439</td>
<td>1.71E-07</td>
<td>1.03E-09</td>
<td>-1.44E-12</td>
<td>1.73E-15</td>
<td>-5.47E-19</td>
<td>0.0</td>
</tr>
<tr>
<td>数据No.2</td>
<td>0.0805</td>
<td>-8.40E-07</td>
<td>-7.53E-10</td>
<td>2.16E-12</td>
<td>-1.54E-15</td>
<td>4.08E-19</td>
<td>0.0</td>
</tr>
</tbody>
</table>
表 3
数据 No.3

$$f=79.18,$$

Fno=0.96

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>870.406</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>80.182</td>
<td>7.350</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>190.786</td>
<td>12.613</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-313.608</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-223.586</td>
<td>0.100</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第3透镜</td>
<td>S5</td>
<td>76.279</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-555.563</td>
<td>12.680</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>9889.098</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-104.293</td>
<td>23.651</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-43.055</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-50.132</td>
<td>12.600</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据 No.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.1357</td>
<td>-9.70E-07</td>
<td>-2.32E-09</td>
<td>1.29E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7.4209</td>
<td>1.42E-07</td>
<td>-1.81E-09</td>
<td>2.40E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-22.7609</td>
<td>2.16E-06</td>
<td>2.99E-10</td>
<td>5.37E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>22.3997</td>
<td>1.28E-06</td>
<td>-3.46E-10</td>
<td>2.36E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>6.456E+04</td>
<td>-1.57E-06</td>
<td>4.45E-10</td>
<td>-1.11E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>3.2279</td>
<td>-1.09E-07</td>
<td>8.09E-10</td>
<td>-1.51E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>0.0807</td>
<td>-9.20E-07</td>
<td>-1.44E-09</td>
<td>2.40E-12</td>
</tr>
</tbody>
</table>
表 4
数据 No.4

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td></td>
<td>无穷大</td>
<td>861.545</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>83.433</td>
<td>7.350</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>164.575</td>
<td>11.785</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>—277.030</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>—224.449</td>
<td>3.032</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>76.145</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>—447.756</td>
<td>16.951</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>209.361</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>—123.880</td>
<td>26.138</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>—48.345</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>—50.132</td>
<td>12.600</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>—350.000</td>
<td>0.000</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

\(f=72.64\)
<table>
<thead>
<tr>
<th>组成透镜面</th>
<th>透镜面</th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>-0.4815</td>
<td>-1.28E-06</td>
<td>-2.25E-09</td>
<td>1.31E-12</td>
<td>-2.54E-16</td>
<td>1.40E-20</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>-6.4786</td>
<td>-1.80E-07</td>
<td>-1.82E-09</td>
<td>2.36E-12</td>
<td>-1.05E-15</td>
<td>1.81E-19</td>
<td>0.0</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>2.6565</td>
<td>2.10E-06</td>
<td>4.03E-10</td>
<td>5.13E-13</td>
<td>-5.75E-16</td>
<td>1.31E-19</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>18.6621</td>
<td>1.40E-06</td>
<td>-2.81E-10</td>
<td>2.35E-13</td>
<td>-1.67E-16</td>
<td>3.89E-20</td>
<td>0.0</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-1.220E+12</td>
<td>-1.25E-06</td>
<td>5.22E-10</td>
<td>-1.23E-12</td>
<td>1.07E-15</td>
<td>-2.78E-19</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>4.0747</td>
<td>-7.31E-06</td>
<td>1.25E-09</td>
<td>-1.95E-12</td>
<td>1.67E-15</td>
<td>-4.27E-19</td>
<td>0.0</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>0.0862</td>
<td>-1.25E-06</td>
<td>-3.79E-10</td>
<td>1.88E-12</td>
<td>-1.31E-15</td>
<td>3.04E-19</td>
<td>0.0</td>
</tr>
</tbody>
</table>
表 5

数据 No.5

\(f = 67.24 \)

\[Fno = 0.84 \]

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>869.251</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>83.391</td>
<td>7.350</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>199.357</td>
<td>12.799</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>-1322.507</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-301.112</td>
<td>0.380</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>93.952</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-171.334</td>
<td>19.376</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>133.901</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-128.965</td>
<td>17.640</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>-37.553</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-50.132</td>
<td>12.600</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据No.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>-0.1487</td>
<td>-1.20E-06</td>
<td>-2.22E-09</td>
<td>1.22E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>10.4184</td>
<td>1.83E-07</td>
<td>-1.99E-09</td>
<td>2.35E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-398.4178</td>
<td>1.93E-06</td>
<td>2.98E-10</td>
<td>5.43E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>24.4865</td>
<td>8.56E-07</td>
<td>-3.00E-10</td>
<td>3.28E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-1.395E+06</td>
<td>-1.07E-06</td>
<td>4.79E-10</td>
<td>-9.34E-13</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>4.5591</td>
<td>-3.45E-07</td>
<td>1.29E-09</td>
<td>-1.95E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-0.1864</td>
<td>-5.37E-07</td>
<td>-6.54E-10</td>
<td>2.97E-12</td>
</tr>
</tbody>
</table>
表 6
数据 No.6

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>1013.300</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>78.842</td>
<td>7.210</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>138.843</td>
<td>13.290</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>−284.661</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>−236.537</td>
<td>3.300</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>66.880</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>−1243.060</td>
<td>16.030</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>2142.180</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>−124.511</td>
<td>24.870</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>−46.797</td>
<td>4.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>−50.132</td>
<td>12.600</td>
<td></td>
<td>1.44703</td>
</tr>
<tr>
<td>透明介质</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>−350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据No.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.0604</td>
<td>1.66E-06</td>
<td>1.64E-09</td>
<td>-1.07E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>0.0163</td>
<td>6.26E-07</td>
<td>1.50E-09</td>
<td>-2.37E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>0</td>
<td>-2.11E-06</td>
<td>-3.04E-10</td>
<td>-5.59E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>17.7867</td>
<td>-1.41E-06</td>
<td>2.77E-10</td>
<td>-2.34E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-6.475E+13</td>
<td>1.66E-06</td>
<td>-1.30E-09</td>
<td>2.22E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>6.0732</td>
<td>-4.47E-07</td>
<td>-2.18E-10</td>
<td>-1.15E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>0</td>
<td>9.95E-07</td>
<td>5.67E-10</td>
<td>-2.07E-12</td>
</tr>
</tbody>
</table>
表 7
数据 No.7

$$f=82.79,$$

Fno=1.03

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>900.000</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>94.882</td>
<td>6.521</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>146.459</td>
<td>12.193</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-665.255</td>
<td>8.204</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-250.492</td>
<td>0.100</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第3透镜</td>
<td>S5</td>
<td>68.340</td>
<td>18.776</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-735.708</td>
<td>14.483</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-21133.183</td>
<td>8.252</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-109.403</td>
<td>23.334</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-45.653</td>
<td>4.113</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-54.068</td>
<td>12.600</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据No.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>K：0.1738</td>
<td>A：1.60E-06</td>
<td>B：1.67E-09</td>
<td>C：-1.06E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>K：-1.7378</td>
<td>A：7.39E-07</td>
<td>B：1.46E-09</td>
<td>C：-2.39E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>K：-54.6740</td>
<td>A：-2.14E-06</td>
<td>B：-2.91E-10</td>
<td>C：-5.51E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>K：18.8374</td>
<td>A：-1.37E-06</td>
<td>B：2.76E-10</td>
<td>C：-2.37E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>K：-6.475E+13</td>
<td>A：1.76E-06</td>
<td>B：-1.20E-09</td>
<td>C：2.27E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>K：6.4261</td>
<td>A：-4.21E-07</td>
<td>B：-3.30E-10</td>
<td>C：-1.19E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>K：-0.0190</td>
<td>A：5.70E-07</td>
<td>B：6.34E-10</td>
<td>C：-1.83E-12</td>
</tr>
</tbody>
</table>
表 8

数据 No.8

F\text{no}=1.07

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 v d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>1050.896</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>100.000</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>183.411</td>
<td>10.690</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>100.000</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>100.000</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>68.092</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>224.144</td>
<td>2.785</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>12802.927</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>140.134</td>
<td>26.792</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>173.882</td>
<td>12.600</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>173.882</td>
<td>12.600</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>1.44703</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>350.000</td>
<td>0.000</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

f=87.31,
<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>非球面系数</th>
<th>数据 No.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.5035</td>
<td>1.56E-06</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>2.3056</td>
<td>5.50E-07</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>2.5268</td>
<td>-2.09E-06</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>18.0775</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-6.475E+13</td>
<td>1.63E-06</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>7.2557</td>
<td>-2.13E-07</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>0.1201</td>
<td>4.88E-07</td>
</tr>
</tbody>
</table>
表9
数据 No.9

\[f = 87.31, \]

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 vd</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>1069.926</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>60.00</td>
<td>8.571</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>124.719</td>
<td>13.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-343.483</td>
<td>9.990</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-229.353</td>
<td>2.725</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第3透镜</td>
<td>S5</td>
<td>69.191</td>
<td>20.563</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-818.631</td>
<td>15.547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>1428.895</td>
<td>8.693</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-127.335</td>
<td>24.289</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-46.911</td>
<td>5.460</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-141.198</td>
<td>12.600</td>
<td></td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE面</td>
<td>无穷大</td>
<td>14.100</td>
<td></td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.0408</td>
<td>1.69E-06</td>
<td>1.65E-09</td>
<td>-1.06E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>0.5098</td>
<td>5.97E-07</td>
<td>1.49E-09</td>
<td>-2.37E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>2.5377</td>
<td>-2.10E-06</td>
<td>-3.01E-10</td>
<td>-5.58E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>17.5655</td>
<td>-1.43E-06</td>
<td>2.74E-10</td>
<td>-2.35E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-6.475E+13</td>
<td>1.73E-06</td>
<td>-1.27E-09</td>
<td>2.25E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>5.4867</td>
<td>-5.39E-07</td>
<td>-2.75E-12</td>
<td>-1.19E-15</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>0.0831</td>
<td>1.57E-06</td>
<td>7.31E-10</td>
<td>-2.08E-12</td>
</tr>
</tbody>
</table>
表 10
数据 No.10

\(f = 83.85, \ Fno = 1.01 \)

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 νd</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>1044.755</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第 1 透镜</td>
<td>S1</td>
<td>77.631</td>
<td>7.076</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>128.327</td>
<td>12.890</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>第 2 透镜</td>
<td>S3</td>
<td>—290.988</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>—228.167</td>
<td>2.758</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>第 3 透镜</td>
<td>S5</td>
<td>71.333</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>—888.869</td>
<td>18.419</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>第 4 透镜</td>
<td>S7</td>
<td>906.304</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>—110.000</td>
<td>24.819</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>第 5 透镜</td>
<td>S9</td>
<td>—46.469</td>
<td>5.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>—111690.748</td>
<td>12.600</td>
<td></td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE 面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>—350.000</td>
<td>0.000</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.0957</td>
<td>1.65E-06</td>
<td>1.62E-09</td>
<td>-1.07E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>0.4893</td>
<td>5.99E-07</td>
<td>1.49E-09</td>
<td>-2.38E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>6.2517</td>
<td>-2.07E-06</td>
<td>-3.10E-10</td>
<td>-5.63E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>17.8616</td>
<td>-1.46E-06</td>
<td>2.97E-10</td>
<td>-2.25E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-6.475E+13</td>
<td>1.75E-06</td>
<td>-1.10E-09</td>
<td>2.35E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>5.9063</td>
<td>-3.53E-07</td>
<td>-1.19E-10</td>
<td>-1.12E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-0.1718</td>
<td>6.39E-08</td>
<td>1.25E-09</td>
<td>-2.25E-12</td>
</tr>
</tbody>
</table>
表11
数据No.11

\[f=89.29, \ Fno=1.07 \]

<table>
<thead>
<tr>
<th>组成透镜</th>
<th>透镜面</th>
<th>曲率半径 RD</th>
<th>面间距离 TH</th>
<th>阿贝值 ν d</th>
<th>折射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>屏幕</td>
<td>—</td>
<td>无穷大</td>
<td>1105.749</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>77.799</td>
<td>7.640</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>145.501</td>
<td>12.128</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>-238.802</td>
<td>10.000</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>-284.661</td>
<td>8.474</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第3透镜</td>
<td>S5</td>
<td>67.445</td>
<td>22.000</td>
<td>61.25</td>
<td>1.59137</td>
</tr>
<tr>
<td></td>
<td>S6</td>
<td>-1119.491</td>
<td>17.092</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>1620.262</td>
<td>9.939</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>-151.434</td>
<td>27.451</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-47.722</td>
<td>5.500</td>
<td>57.9</td>
<td>1.4924</td>
</tr>
<tr>
<td></td>
<td>S10</td>
<td>-252.273</td>
<td>12.600</td>
<td></td>
<td>1.44703</td>
</tr>
<tr>
<td>透明媒体</td>
<td>冷却剂</td>
<td>无穷大</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>阴极射线管</td>
<td>FACE面</td>
<td>无穷大</td>
<td>14.100</td>
<td>—</td>
<td>1.56232</td>
</tr>
<tr>
<td></td>
<td>荧光面</td>
<td>-350.000</td>
<td>0.000</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>组成透镜</td>
<td>透镜面</td>
<td>非球面系数</td>
<td>数据 No.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>第1透镜</td>
<td>S1</td>
<td>0.1056</td>
<td>1.48E-06</td>
<td>1.66E-09</td>
<td>-1.06E-12</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>-1.4803</td>
<td>6.83E-07</td>
<td>1.53E-09</td>
<td>-2.36E-12</td>
</tr>
<tr>
<td>第2透镜</td>
<td>S3</td>
<td>5.7831</td>
<td>-2.00E-06</td>
<td>-3.58E-10</td>
<td>-5.75E-13</td>
</tr>
<tr>
<td></td>
<td>S4</td>
<td>15.6998</td>
<td>-1.59E-06</td>
<td>3.23E-10</td>
<td>-2.13E-13</td>
</tr>
<tr>
<td>第4透镜</td>
<td>S7</td>
<td>-6.475E+13</td>
<td>1.10E-06</td>
<td>-1.60E-09</td>
<td>2.17E-12</td>
</tr>
<tr>
<td></td>
<td>S8</td>
<td>1.9890</td>
<td>-6.75E-07</td>
<td>-4.32E-10</td>
<td>-1.17E-12</td>
</tr>
<tr>
<td>第5透镜</td>
<td>S9</td>
<td>-0.0371</td>
<td>-7.47E-07</td>
<td>1.28E-09</td>
<td>-2.15E-12</td>
</tr>
</tbody>
</table>
表 12

<table>
<thead>
<tr>
<th>数据 No.</th>
<th>H (mm)</th>
<th>d (mm)</th>
<th>H/d</th>
<th>畸变象差 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.58</td>
<td>90</td>
<td>0.762</td>
<td>7.50</td>
</tr>
<tr>
<td>2</td>
<td>66.68</td>
<td>90</td>
<td>0.741</td>
<td>7.50</td>
</tr>
<tr>
<td>3</td>
<td>63.50</td>
<td>90</td>
<td>0.706</td>
<td>7.50</td>
</tr>
<tr>
<td>4</td>
<td>68.58</td>
<td>100</td>
<td>0.686</td>
<td>5.50</td>
</tr>
<tr>
<td>5</td>
<td>63.50</td>
<td>90</td>
<td>0.706</td>
<td>3.50</td>
</tr>
<tr>
<td>6</td>
<td>68.46</td>
<td>95</td>
<td>0.721</td>
<td>6.85</td>
</tr>
<tr>
<td>7</td>
<td>68.46</td>
<td>97</td>
<td>0.706</td>
<td>7.51</td>
</tr>
<tr>
<td>8</td>
<td>68.46</td>
<td>97</td>
<td>0.706</td>
<td>6.77</td>
</tr>
<tr>
<td>9</td>
<td>68.46</td>
<td>90</td>
<td>0.761</td>
<td>1.28</td>
</tr>
<tr>
<td>10</td>
<td>68.46</td>
<td>97</td>
<td>0.706</td>
<td>7.50</td>
</tr>
<tr>
<td>11</td>
<td>68.46</td>
<td>95</td>
<td>0.721</td>
<td>7.50</td>
</tr>
</tbody>
</table>

H：由图象发生源显示的原始图象的最大像高度

d：从图象发生源到入射瞳孔的光轴上的距离

下面根据表 1，采用图 1，图 2，对上述表 1～11 给出的透镜数据进行描述。表 1 主要按照对光轴附近的透镜区域进行处理的球面系统和其外周部的非球面系统，给出数据。

首先从上述图和表表明：屏幕 11 的曲率半径为无限大（即，平面），从屏幕 11 到第 1 组透镜 1 的面 S₁ 的光轴上的距离（面距离）为 862mm，位于其间的媒质的折射率为 1.0。另外表明，透镜面 S₁ 的曲率半径为 78.526mm（曲率半径在图象发生源侧），透镜面 S₁ 与 S₂ 的光轴上的距离（面间距）为 7.35mm，位于其间的媒质的折射率为 1.4924。接着，最后同样地知道，投影管面板 7 的荧光面 P₁ 的曲率半径为 350mm，投影管面板的光轴上的厚度为 14.1mm，折射率为 1.56232。针对第 1 组透镜 1 的面 S₁、S₂，第 2 组透镜 2 的面 S₃、S₄，第 4 组透镜 4 的面 S₅、S₆，第 5 组透镜 5 的面 S₇，给出非球面系数。

在这里，非球面系数指由下述公式表示透镜面形状时的系数。
数学公式 1

\[
Z(r) = \frac{r^2 / RD}{1 + \sqrt{1 - (1 + K)r^2 / RD^2}} + Ar^4 + Br^6 + Cr^8 + Dr^{10} + Er^{12} + Fr^{14} + \cdots + Zr^{2n}
\]

其中，K, A, B, C, D, E, F, θ, Z 表示任意的常数，n 表示任意的自然数，RD 表示近轴曲率半径。

但是，Z(r) 象作为透镜形状的定义说明图的图 4 和图 5 中所看到的那样，表示以从屏幕朝向图象发生源的光轴方向为 Z 轴，以透镜的半径方向为 r 轴时的透镜面的高度。R 表示半径方向的距离，RD 表示曲率半径。因此，如果给定提供 A, B, C, D, E, F 等的各系数，则按照上述公式，透镜面的高度（下面称为“下垂量”），即形状便确定。

图 5 为非球面 A_s(r) 的说明图，如果将相应的值代入上述非球面的项中，则获得相对仅仅球面系的透镜面 S_s, 偏离 (A_s(r) - S_s(r)) 的透镜面。另外，如果该比率 (A_s(r) / S_s(r)) 的绝对值越小，则非球面的程度越强。另外表明，在上述非球面式的 2 次微分值为 0 的任意的 r 位置，存在面的倾斜方向发生变化的拐点，该变曲点越多，则非球面形状越复杂。以上为表 1-11 所示的数据的读方。

另外，本发明的投影用透镜装置的实施例按照下述方式形成，该方式为：在投影管的荧光面 P_1 上，显示 5.39 英寸的光栅，以放大到 54 英寸或 64 英寸中的任何一种的方式投影到屏幕上，在此场合，获得最优的性能。投影用透镜装置实现按照 54 英寸，投影距离为 862mm，以及按照 64 英寸，投影距离为 1013mm 的短投影，象图 11 所示的那样，反射镜 16 即使在 1 个背投影型图象显示器中，仍可实现足够的对比度的设定。另外，关于图 11，将在后面进行描述。

在本发明的实施例中，第 3 组透镜 3 的入射面 S6 和射出面 S5 的相应曲率半径 RS6, RS5 设定在

\[-105796.523 \leq RS6 \leq 844843.829\]

\[53.203 \leq RS5 \leq 97.751\]
的范围内，由此，可以保持良好的平衡的方式对第 3 组透镜 3 的色差和球面象差进行补偿处理。

下面通过图 6，对使对比度变差的原因进行说明。图 6 为具体表示从图 1 所示的方案的投影管，到第 5 组透镜 5 的图。在图 6 中，形成这样的方案，其中，第 5 组透镜 5 在距离 T 的位置，固定于托架 10 上。与图 1 相同的部分采用同一标号，省略对其的说明。

在这样的方案中，来自写出到投影管（阴极射线管）的荧光面 P1 的原始图象的高亮度点 H1，H2，A 的各点的光束 RAY6，RAY7，RAY8 由第 5 组透镜 5 的射出面 S9 反射。其反射光 RAY6’，RAY7’，RAY8’返回到显示于投影管（阴极射线管）的荧光面 P1 的原始图象的低亮度部分，使对比度降低。该对比度由显示于投影管（阴极射线管）的荧光面 P1 的原始图象的高亮度部分与低亮度部分的比率表示，当反射光 RAY6’，RAY7’，RAY8’的能量较强时，则该能量越强，因低亮度部分的亮度上升，对比度越低。

在本发明的方案中，投影管面板 7 和第 5 组透镜 5 按照距离 T 大于已有技术的方案的方式形成，由此，使反射光 RAY6’，RAY7’，RAY8’的强度减小，实现较高的对比度。

下面通过图 7 和图 8，以视觉方式对为什么可通过使距离 T 大于已有技术的方案的方案，实现对比度的改善的情况进行描述。图 7 为表示已有技术的图，图 8 为表示本发明的方案的图。由于图 7 和图 8 的方案与图 6 的相同，故省略对其的描述。

在图 7 和图 8 中，来自显示到投影管（阴极射线管）的荧光面 P1 的原始图象的高亮度点 H3 和 H4 的光束 RAY9，RAY10，RAY11，RAY12 通过前述方案中的第 5 组透镜 5 的射出面 S9 反射。其反射光 RAY9’，RAY10’，RAY11’，RAY12’返回到显示于投影管（阴极射线管）的荧光面 P1 的原始图象的低亮度部分，使对比度降低。

在这里，如果还考虑光束 RAY9 和 RAY10，RAY11 和 RAY12 之间的光束，则通过采用返回到上述低亮度部分的反射光具有返回宽度 G，G’，使距离 T 增加的方案，上述返回宽度 G 扩大。由于该返回宽度 G 扩大，故返回到上述低亮度部分的反射光的单位面积的能量变弱，可防止对比度的降低。

如果对第 2 已有技术和本发明的形式进行比较，则相对第 2 已有技术的距
离 T'为 14.5mm 的情况，本发明的形式的距离 T 高出 2.6mm，达到 17.1mm。其结果是，上述返回宽度 G 可扩大到 1.2 倍。

图 9 为根据实验，计算距离 T 和对比度的关系的结果。根据该结果，通过将距离 T 设定在 15mm 以上，则实现高于已有技术中获得的较高的对比度。在本发明的实施例中，通过将设定在 17.1mm，相对已有技术的对比度为 70 的情况，本发明的相对对比度为 80，从而获得比过去提高 5%的结果。

另外，由于增加距离 T，进行良好的象差补偿处理更加困难，但是由于形成在后面对承担象差补偿处理的功能的非球面塑料透镜的形状进行描述的方案，故将补偿处理能力提高，实现良好的象差补偿处理。

此外，在本发明的形式中，针对第 5 组透镜 5，在第 5 组透镜 5 上，设置波长选择性滤色片，其可吸收来自原始图形的光束 RAY6，RAY7，RAY8 的主波长以外的波长，这样吸收对于画质来说不需要的光谱，在有效地减小反射光 RAY6'，RAY7'，RAY8' 的强度的同时，还抑制色差的发生。此外，比过去提高 5%的对比度的情况还具有波长选择性滤色片的效果。

下面对承担象差补偿处理的功能的非球面塑料透镜的形状进行描述。在本发明中，承担象差补偿处理的功能的非球面塑料透镜的形状由 14 次系数以上的系数表示的非球面形成。

在表 13～19 中，象与各透镜组方案相对应，已描述的那样，给出非球面的程度（Asn/Ssn 的绝对值。n 表示具有非球面的透镜面的序号，在本实施例中，n = 1, 2, 3, 4, 7, 8, 9）与拐点数量。在表 13 中给出第 1 组透镜 1 的射出面 S1，在表 14 中给出第 1 组透镜 1 的入射面 S2，在表 15 中给出第 2 组透镜 2 的射出面 S3，在表 16 中给出第 2 组透镜 2 的入射面 S4，在表 17 中给出第 4 组透镜 4 的射出面 S7，在表 18 中给出第 4 组透镜 4 的入射面 S8，在表 19 中给出第 5 组透镜 5 的射出面 S9。
表13

<table>
<thead>
<tr>
<th>数据No</th>
<th>拐点数量 (有效半径内)</th>
<th>As1 (mm)</th>
<th>Ss1 (mm)</th>
<th>As1/Ss1 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4.670</td>
<td>17.672</td>
<td>0.264</td>
<td>49.63</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.825</td>
<td>17.707</td>
<td>0.272</td>
<td>49.62</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4.230</td>
<td>17.198</td>
<td>0.246</td>
<td>49.62</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2.561</td>
<td>16.359</td>
<td>0.157</td>
<td>49.62</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.675</td>
<td>16.369</td>
<td>0.041</td>
<td>49.62</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4.477</td>
<td>17.573</td>
<td>0.255</td>
<td>49.62</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2.051</td>
<td>14.009</td>
<td>0.146</td>
<td>49.62</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.346</td>
<td>13.179</td>
<td>0.102</td>
<td>49.62</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>12.125</td>
<td>26.268</td>
<td>0.462</td>
<td>49.62</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5.070</td>
<td>17.928</td>
<td>0.283</td>
<td>49.62</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>5.650</td>
<td>17.878</td>
<td>0.316</td>
<td>49.62</td>
</tr>
</tbody>
</table>

表14

<table>
<thead>
<tr>
<th>数据No</th>
<th>拐点数量 (有效半径内)</th>
<th>As2 (mm)</th>
<th>Ss2 (mm)</th>
<th>As2/Ss2 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>6.875</td>
<td>6.445</td>
<td>1.067</td>
<td>45.61</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.440</td>
<td>6.314</td>
<td>1.178</td>
<td>45.61</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9.283</td>
<td>5.532</td>
<td>1.678</td>
<td>45.61</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.472</td>
<td>6.446</td>
<td>1.004</td>
<td>45.61</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5.928</td>
<td>5.288</td>
<td>1.121</td>
<td>45.61</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>8.186</td>
<td>7.705</td>
<td>1.062</td>
<td>45.61</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>8.380</td>
<td>7.283</td>
<td>1.151</td>
<td>45.61</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6.247</td>
<td>5.762</td>
<td>1.084</td>
<td>45.61</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9.857</td>
<td>8.639</td>
<td>1.141</td>
<td>45.61</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>9.494</td>
<td>8.379</td>
<td>1.133</td>
<td>45.61</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>7.247</td>
<td>7.333</td>
<td>0.988</td>
<td>45.61</td>
</tr>
</tbody>
</table>
表15

<table>
<thead>
<tr>
<th>数据 No</th>
<th>拐点数量（有效半径内）</th>
<th>As 3 (mm)</th>
<th>Ss 3 (mm)</th>
<th>As 3/Ss 3 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.868</td>
<td>-3.083</td>
<td>-1.579</td>
<td>41.78</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4.922</td>
<td>-2.998</td>
<td>-1.642</td>
<td>41.77</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4.878</td>
<td>-2.794</td>
<td>-1.746</td>
<td>41.77</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4.459</td>
<td>-3.187</td>
<td>-1.399</td>
<td>41.77</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6.908</td>
<td>-0.660</td>
<td>-10.467</td>
<td>41.77</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4.865</td>
<td>-3.081</td>
<td>-1.579</td>
<td>41.77</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6.786</td>
<td>-1.313</td>
<td>-5.169</td>
<td>41.77</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>4.027</td>
<td>-3.543</td>
<td>-1.137</td>
<td>41.77</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>5.309</td>
<td>-2.549</td>
<td>-2.082</td>
<td>41.77</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>4.733</td>
<td>-3.014</td>
<td>-1.571</td>
<td>41.77</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4.012</td>
<td>-3.681</td>
<td>-1.090</td>
<td>41.77</td>
</tr>
</tbody>
</table>

表16

<table>
<thead>
<tr>
<th>数据 No</th>
<th>拐点数量（有效半径内）</th>
<th>As 4 (mm)</th>
<th>Ss 4 (mm)</th>
<th>As 4/Ss 4 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.108</td>
<td>-3.667</td>
<td>0.302</td>
<td>41.49</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.338</td>
<td>-3.788</td>
<td>0.353</td>
<td>41.48</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-2.702</td>
<td>-3.884</td>
<td>0.696</td>
<td>41.48</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-1.586</td>
<td>-3.866</td>
<td>0.410</td>
<td>41.48</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-0.525</td>
<td>-2.871</td>
<td>0.183</td>
<td>41.48</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1.108</td>
<td>-3.665</td>
<td>0.302</td>
<td>41.48</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-1.126</td>
<td>-3.458</td>
<td>0.326</td>
<td>41.48</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>-1.466</td>
<td>-3.872</td>
<td>0.379</td>
<td>41.48</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.940</td>
<td>-3.622</td>
<td>0.260</td>
<td>41.48</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>-1.424</td>
<td>-3.802</td>
<td>0.374</td>
<td>41.48</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>-0.102</td>
<td>-3.038</td>
<td>0.034</td>
<td>41.48</td>
</tr>
</tbody>
</table>
表 17

<table>
<thead>
<tr>
<th>数据 No</th>
<th>拐点数量（有效半径内）</th>
<th>As 7 (mm)</th>
<th>Ss 7 (mm)</th>
<th>As 7/Ss 7 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-0.851</td>
<td>0.062</td>
<td>-13.726</td>
<td>35.30</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-1.040</td>
<td>0.062</td>
<td>-16.774</td>
<td>35.30</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-2.064</td>
<td>0.063</td>
<td>-32.762</td>
<td>35.30</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1.736</td>
<td>2.997</td>
<td>-0.579</td>
<td>35.30</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1.928</td>
<td>4.737</td>
<td>-0.407</td>
<td>35.30</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-1.454</td>
<td>0.291</td>
<td>-5.000</td>
<td>35.30</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-2.189</td>
<td>-0.029</td>
<td>74.256</td>
<td>35.30</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1.480</td>
<td>0.049</td>
<td>-30.417</td>
<td>35.30</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-1.804</td>
<td>0.436</td>
<td>-4.136</td>
<td>35.30</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>-2.171</td>
<td>0.688</td>
<td>-3.157</td>
<td>35.30</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-0.605</td>
<td>0.385</td>
<td>-1.573</td>
<td>35.30</td>
</tr>
</tbody>
</table>

表 18

<table>
<thead>
<tr>
<th>数据 No</th>
<th>拐点数量（有效半径内）</th>
<th>As 7 (mm)</th>
<th>Ss 7 (mm)</th>
<th>As 7/Ss 7 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-2.345</td>
<td>-5.028</td>
<td>0.466</td>
<td>36.61</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-3.516</td>
<td>-5.740</td>
<td>0.613</td>
<td>36.62</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-6.494</td>
<td>-6.641</td>
<td>0.978</td>
<td>36.62</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-4.858</td>
<td>-5.536</td>
<td>0.878</td>
<td>36.62</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-5.757</td>
<td>-5.308</td>
<td>1.085</td>
<td>36.62</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-2.784</td>
<td>-5.507</td>
<td>0.506</td>
<td>36.62</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-4.838</td>
<td>-6.311</td>
<td>0.767</td>
<td>36.62</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-2.666</td>
<td>-4.869</td>
<td>0.548</td>
<td>36.62</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1.930</td>
<td>-5.379</td>
<td>0.359</td>
<td>36.62</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-4.970</td>
<td>-6.275</td>
<td>0.792</td>
<td>36.62</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1.021</td>
<td>-4.494</td>
<td>0.227</td>
<td>36.62</td>
</tr>
</tbody>
</table>
表 19

<table>
<thead>
<tr>
<th>数据 No</th>
<th>拐点数量（有效半径内）</th>
<th>As 9 (mm)</th>
<th>Se 9 (mm)</th>
<th>As 9/Se 9 (mm)</th>
<th>有效半径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-20.598</td>
<td>-19.893</td>
<td>1.035</td>
<td>38.29</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-22.534</td>
<td>-21.107</td>
<td>1.068</td>
<td>38.28</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-27.198</td>
<td>-23.347</td>
<td>1.165</td>
<td>38.28</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-22.017</td>
<td>-20.220</td>
<td>1.089</td>
<td>38.28</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-27.142</td>
<td>-19.273</td>
<td>1.408</td>
<td>38.28</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-20.586</td>
<td>-19.879</td>
<td>1.036</td>
<td>38.28</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-21.666</td>
<td>-20.776</td>
<td>1.043</td>
<td>38.28</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-20.188</td>
<td>-18.940</td>
<td>1.066</td>
<td>38.28</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-19.703</td>
<td>-19.795</td>
<td>0.995</td>
<td>38.28</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>-18.907</td>
<td>-20.125</td>
<td>0.940</td>
<td>38.28</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-17.101</td>
<td>-19.226</td>
<td>0.890</td>
<td>38.28</td>
</tr>
</tbody>
</table>

象表 13～19 所示的那样，在形成投影用透镜装置的透镜组中，在至少一个以上的面上，形成在相应透镜面的有效半径内具有 2 个以上的拐点的非球面，并且对于表示非球面的程度的 A_{sf}/S_{sn} 的绝对值来说，下述的关系成立。

- S1: $0.025 \leq A_{s1}/S_{s1} \leq 0.462$
- S2: $0.806 \leq A_{s2}/S_{s2} \leq 2.194$
- S3: $-78.036 \leq A_{s3}/S_{s3} \leq 84.667$
- S4: $-0.549 \leq A_{s4}/S_{s4} \leq 0.911$
- S7: $-32.756 \leq A_{s7}/S_{s7} \leq 74.256$
- S8: $-1.729 \leq A_{s8}/S_{s8} \leq 1.216$
- S9: $0.842 \leq A_{s9}/S_{s9} \leq 1.466$

按照上述的方案，对于承担投影用透镜装置的象差补偿处理的功能的非球面塑料透镜来说，可获得足够的象差补偿能力。另外，表 13～19 全面地给出了本实施例的有代表性的数据，表示上述非球面量的范围的条件式的上限值或下限值不必给出，当然，如果在该条件式的范围内，可为任何的值。
此外，在表 1～11 表示的本发明的实施例中，当由 \(f_0 \) 表示投影用透镜装置的整个系统的焦距，由 \(f_1, f_2, f_3, f_4, f_5 \) 表示第 1 组透镜 1. 第 2 组透镜 2. 第 3 组透镜 3. 第 4 组透镜 4. 第 5 组透镜 5 的相应焦距时，则表 20 给出的关系成立。

表 20

<table>
<thead>
<tr>
<th>数据 No.</th>
<th>(f_0/f_0)</th>
<th>(f_0/f_1)</th>
<th>(f_0/f_2)</th>
<th>(f_0/f_3)</th>
<th>(f_0/f_4)</th>
<th>(f_0/f_5)</th>
<th>(f_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.793</td>
<td>0.312</td>
<td>0.740</td>
<td>0.031</td>
<td>0.279</td>
<td>82.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.809</td>
<td>0.339</td>
<td>0.721</td>
<td>0.040</td>
<td>0.280</td>
<td>81.34</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.831</td>
<td>0.378</td>
<td>0.689</td>
<td>0.052</td>
<td>0.288</td>
<td>79.18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.704</td>
<td>0.455</td>
<td>0.650</td>
<td>0.032</td>
<td>0.218</td>
<td>72.64</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.818</td>
<td>0.498</td>
<td>0.635</td>
<td>0.085</td>
<td>0.236</td>
<td>67.24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.791</td>
<td>0.345</td>
<td>0.764</td>
<td>0.031</td>
<td>0.231</td>
<td>82.50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.821</td>
<td>0.371</td>
<td>0.776</td>
<td>0.102</td>
<td>0.158</td>
<td>82.79</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-0.869</td>
<td>0.310</td>
<td>0.833</td>
<td>0.021</td>
<td>0.203</td>
<td>87.31</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.753</td>
<td>0.311</td>
<td>0.681</td>
<td>0.048</td>
<td>0.329</td>
<td>87.31</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.888</td>
<td>0.420</td>
<td>0.745</td>
<td>0.041</td>
<td>0.220</td>
<td>83.85</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.905</td>
<td>0.317</td>
<td>0.824</td>
<td>-0.028</td>
<td>0.273</td>
<td>89.29</td>
<td></td>
</tr>
</tbody>
</table>

\(f_0 \): 整个透镜系统的焦距 (mm)
\(f_1 \): 第 1 透镜组的焦距 (mm)
\(f_2 \): 第 2 透镜组的焦距 (mm)
\(f_3 \): 第 3 透镜组的焦距 (mm)
\(f_4 \): 第 4 透镜组的焦距 (mm)
\(f_5 \): 第 5 透镜组的焦距 (mm)

即，本发明的投影用透镜装置的各透镜组的焦距与整个透镜系统的焦距之间的关系（即，各透镜组的倍率分配）满足下述关系式。

\[
0.112 \leq f_0/f_1 \leq 0.329 \\
-0.028 \leq f_0/f_2 \leq 0.505 \\
0.613 \leq f_0/f_3 \leq 0.833 \\
0.004 \leq f_0/f_4 \leq 0.420 \\
-0.905 \leq f_0/f_5 \leq -0.135
\]

象这样，在本实施例中，形成下述方案，即，将整个投影用透镜装置系统
的正折射性能的一部分分担给下述第 2 组透镜，该第 2 组透镜包括设置玻璃透镜的外的屏幕侧的，用于对球面象差和彗形象差进行补偿处理的非球面塑料透镜。由于这样形成，故通过使用低折射率的低价的光学玻璃，对不足的折射力进行补偿，获得规定的折射性能。

另外，在本实施例中，在形成保持投影用透镜装置的内镜筒 8 的基准面的透镜组中，对性能的影响度最大的大光焦度透镜中的任何一个面的曲率半径较大，大于 166mm。由此，降低装配精度误差造成的偏心，倾斜的灵敏度，防止抵抗温度变化，吸湿的性能变差。

图 10 表示下述场合的 MTF（Modulation Transfer Function）的聚集性能的评价结果，该场合指采用上面描述的本发明的投影用透镜装置，在投影管荧光面上，放映 5.39 英寸的试映图（raster），以放大方式将其投影到屏幕上。

在这里，在图 10 中，特性 A 与表 1 相对应，特性 B2 与表 2 相对应。另外，特性 C3 与表 3 的数据相对应。另外，作为评价频率，在屏幕上，黑，白的条纹信号是针对取 300 台 TV 的场合而给出的。对于表 4～11 给出的透镜数据，按照本方案，与图 10 相同，均获得良好的 MTF 特性。

图 11 为表示适合采用本发明的投影用透镜装置的背面投影型图像显示器的主要部分的画面垂直方向的剖视图。在图 11 中，标号 11 表示屏幕，标号 13 表示反射镜，标号 14 表示投影用透镜装置，标号 16 表示作为图像发生源的投影管（阴极射线管），标号 15 表示用于将投影用透镜装置 14 固定于投影管 16 上的托架，标号 18 表示背面投影型图像显示器的框架，标号 17 表示来自投影用透镜装置 14 的图像光束。

在图 11 中，来自投影管 16 的图像光可以放大方式投影到投影用透镜装置 14 上，经投影的图像光束 17 通过反射镜 13 返回，从背面投影，将图像变形很小的图像播放到屏幕上 11 上。

如果象上述那样采用本发明的实施例，便获得下述的作用效果。

（1）由于将玻璃透镜设置于入射瞳孔包含在该玻璃透镜的射入射出面之间的这样的位置，来自图象发生源的各物点的主光线在玻璃透镜的射入射出面通过光轴附近，由此，可将畸变象差和象散的发生抑制在较低程度。

（2）由于将玻璃透镜的折射性能由设置于玻璃透镜的屏幕侧的非球面塑料透镜分担，故可使用低价格的，低折射率的光学玻璃。
（3）由于使在形成保持投影用透镜装置的镜筒的基准面的透镜组中，对性能影响度最高的玻璃透镜中的任何一个面的曲率半径增加，故可防止抵抗温度变化，吸湿的性能变差。

（4）由于图象发生源与最靠近图象发生源的透镜元件之间间隔开，另外在透镜元件上设置波长选择性滤色片，故来自透镜元件的反射光可减小。其结果是，与过去相比较，可使对比度提高 5%。

（5）另外，在承担象差补偿处理的功能的非球面塑料透镜中，由于非球面形状为下述非球面，该非球面为可大多采用非球面量较大，复杂形状的非球面形状的，由 14 次以上的系数表示的非球面，故可获得足够的象差补偿能力。

如果象这样，采用本发明的投影用透镜装置，则可实现下述背面投影型显示器，在该显示器中，在画面的全部区域范围内明亮，对比度较高，高聚焦性，较宽的视角，获得较小的变形的图象，整体体积减小。此外，由于在 5 组 5 块的方案中，均没有已有的 6 组 6 块的方案的聚焦性能变差的情况，可采用价格较低的玻璃透镜，故还可降低成本。

如果采用本发明的投影用透镜装置，则在从第 1 组透镜 1 中的最靠近屏幕一侧的透镜的屏幕侧透镜前端面，到透射型屏幕（从 49 英寸到 71 英寸）的距离（投影距离）L（mm）与透射型屏幕的对角线有效尺寸 M（英寸）之间，下述关系成立，可实现整体尺寸的减小。

\[14.0 \leq \left(\frac{L}{M} \right) \leq 17.9 \]

在表 1～11 表示的本发明的实施例中，在从图象发生源，到第 3 组透镜 3 中的，最靠近图象发生源侧的透镜面的距离由 A（mm）表示，从第 3 组透镜 3 中的，最靠近屏幕侧的透镜面，到屏幕的距离由 B（mm）表示，这些距离的比率（B/A）由 Ma 表示，屏幕的有效对角线长度由 M（英寸），图象发生源的有效对象线长度由 m（英寸），它们的比率（M/m）由 Mb 表示时，则表 21 表示的关系成立。
表 21

<table>
<thead>
<tr>
<th>数据 No.</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>M (英寸)</th>
<th>M (英寸)</th>
<th>Ma</th>
<th>Mb</th>
<th>Ma/Mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81.2</td>
<td>896.8</td>
<td>54.0</td>
<td>5.39</td>
<td>11.05</td>
<td>10.02</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>80.2</td>
<td>898.0</td>
<td>54.0</td>
<td>5.39</td>
<td>11.19</td>
<td>10.02</td>
<td>1.12</td>
</tr>
<tr>
<td>3</td>
<td>77.5</td>
<td>900.5</td>
<td>54.0</td>
<td>5.39</td>
<td>11.61</td>
<td>10.02</td>
<td>1.16</td>
</tr>
<tr>
<td>4</td>
<td>84.3</td>
<td>893.7</td>
<td>54.0</td>
<td>5.39</td>
<td>10.60</td>
<td>10.02</td>
<td>1.06</td>
</tr>
<tr>
<td>5</td>
<td>78.2</td>
<td>899.8</td>
<td>54.0</td>
<td>5.39</td>
<td>11.50</td>
<td>10.02</td>
<td>1.15</td>
</tr>
<tr>
<td>6</td>
<td>82.1</td>
<td>1047</td>
<td>64.0</td>
<td>5.39</td>
<td>12.75</td>
<td>11.87</td>
<td>1.07</td>
</tr>
<tr>
<td>7</td>
<td>76.88</td>
<td>927</td>
<td>64.0</td>
<td>5.39</td>
<td>12.06</td>
<td>11.87</td>
<td>1.02</td>
</tr>
<tr>
<td>8</td>
<td>85.95</td>
<td>1084</td>
<td>64.0</td>
<td>5.39</td>
<td>12.62</td>
<td>11.87</td>
<td>1.06</td>
</tr>
<tr>
<td>9</td>
<td>80.69</td>
<td>1105</td>
<td>64.0</td>
<td>5.39</td>
<td>13.70</td>
<td>11.87</td>
<td>1.15</td>
</tr>
<tr>
<td>10</td>
<td>85.44</td>
<td>1077</td>
<td>64.0</td>
<td>5.39</td>
<td>12.61</td>
<td>11.87</td>
<td>1.06</td>
</tr>
<tr>
<td>11</td>
<td>86.68</td>
<td>1144</td>
<td>64.0</td>
<td>5.39</td>
<td>13.20</td>
<td>11.87</td>
<td>1.11</td>
</tr>
</tbody>
</table>

A: 图象发生源～第 3 透镜组射出面的距离
B: 第 3 透镜组射出面～屏幕的距离
M: 屏幕的有效对角线长度
m: 图象发生源的有效对角线长度
Ma: 比率 (B/A)
Mb: 比率 (M/m)

根据表 21，在本发明的投影用透镜装置中，在玻璃透镜的设置位置，与视角（倍率）之间，以下的关系式成立。

10.6＜Ma＜13.7
1.01＜（Ma/Mb）＜1.16

在上述这样的关系成立的范围内，设置上述光焦度（power）分配的第 3 组透镜（大光焦度透镜），从而可获得下述投影透镜，该透镜具有 41 “～71” 的较宽的视角，可进行良好的象差补偿成立，可将图象变形抑制在 7.5%以下的程度。

另外，由于在具有较宽的视角的同时，在第 3 组透镜3 的射出面，光束不
达到必要值以上，故不必增加设置于第 3 组透镜中的屏幕侧的象差补偿用塑料透镜的口径，这样可以较低的价格获得该投影透镜。

此外，表 1～11 表示的本发明的实施例的透镜数据和表 12～21 表示适合于实现本发明的代表性的数据，不必给出在该实施例中描述的各条件式的范围 (d/H 的范围，各非球面透镜面的非球面的范围，各透镜组的光焦度 (power) 分配范围，第 3 组透镜 3 的设置范围）的上限值和下限值，但是，显然，如果在该条件式的范围内，也可为任何的值，即使为上限值和下限值，或接近这些值的情况下，仍可获得上述的效果。

如果象上述那样采用本发明，则减小图象变形，良好地进行象差补偿成立。另外，还可使对比度性能提高。
图 2
图 9
图 10