Office de la Propriete Canadian CA 2274962 C 2002/08/06

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 274 962
g'rn(c)iL%?r?(iesgaenada ﬁrgijgt?;%/aa;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 1997/12/16 (51) ClL.Int.%/Int.CI.° H04J 3/02
(87) Date publication PCT/PCT Publication Date: 1998/06/25| (72) Inventeurs/Inventors:
1 . FERGUSON, Dennis C., US;
(45) Date de deéelivrance/lssue Date: 2002/08/06 SINDHU, Pradeep S.. US:
(85) Entree phase nationale/National Entry: 1999/06/15 PATEL, Rajiv N., US
(86) N° demande PCT/PCT Application No.: US 1997/023287| (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 1998/027662 JUNIPER NETWORKS, US
(30) Priorités/Priorities: 1996/12/16 (08/767,576) US: (74) Agent: SMART & BIGGAR
1997/04/18 (08/844,171) US; 1997/07/24 (08/901,061) US

(54) Titre : RECHERCHE GRANDE VITESSE DU MEILLEUR APPARIEMENT, DE LONGUEUR VARIABLE
(54) Title: HIGH SPEED VARIABLE LENGTH BEST MATCH LOOK-UP IN A SWITCHING DEVICE

10 30
20 20
SOURCE ROUTER ROUTER DESTINATION
20
ROUTER
30 30
DESTINATION DESTINATION
(57) Abrége/Abstract:

A method and apparatus for looking up a key associated with a packet to determine a route through a routing device, the
method including, upon receipt of a key, forward traversing one or more nodes which make up a trie stored in a memory by
evaluating at each node traversed a bit in the key as indicated by a bit-to-test indicator associated with each node. A value of the
bit In the key determining the path traversed along the trie. The method includes locating an end node having a route and
comparing the route to the key (528). If they match, destination information associated with the end node Is outputted to guide
the transfer of the packet through the routing device (529). If they do not match, the trie Is traversed backwards to locate a best
match for the key.

B
.
'
e
ok [[f
BTN .
N "'c‘-‘-.u:-:{\: e L~
Bo
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02274962 1999-06-15

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/27662
HO04J 3/02

(43) International Publication Date: 25 June 1998 (25.06.98)

(21) International Application Number: PCT/US97/23287 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 16 December 1997 (16.12.97)

Published
(30) Priority Data: With international search report. l
08/767,576 16 December 1996 (16.12.96) US Before the expiration of the time limit for amending the claims |
08/844,171 I8 April 1997 (18.04.97) US and to be republished in the event of the receipt of amendments.

08/901,061 24 July 1997 (24.07.97) US
(88) Date of publication of the international search report:
3 September 1998 (03.09.98)

(71) Applicant: JUNIPER NETWORKS [US/US]; 3260 Jay Street,
Santa Clara, CA 95051 (US).

(72) Inventors: FERGUSON, Dennis, C.: 203 Orchard Glen Court,
Mountain View, CA 94043 (US). SINDHU, Pradeep, S.;
1557 Montalto Drive, Mountain View, CA 94040 (US).
PATEL, Rajiv, N.; 3116 Whitesand Drive, San Jose, CA
95148 (US).

(74) Agents: BOROVOY, Roger, S. et al.; Fish & Richardson P.C.,
l Suite 100, 2200 Sand Hill Road, Menlo Park, CA 94025

(US).

(54) Title: HIGH SPEED VARIABLE LENGTH BEST MATCH LOOK-UP IN A SWITCHING DEVICE

500 CREATE LOAD 512 LOAD S
START NODE NEXT KEY NEXT KEY o

ASSIGN ADD KEY AS 514

502 ARB"GTOEH %8 ROUTE NODE pgggg&M 524
START NODE SEARCH
ASSIGN A
ROUTE NODE |~ 576
526
o0 | LEETARD EASEDON, “END” ROUTE
RIGHT CHILD
POINTERS
A "O" VALUE 528
STORE 518 COMPARE
ROUTE NODE “END" ROUTE
IN MEMORY AND KEY
506 STORE
START NODE 529
IN MEMORY —— ARE
THERE YES
POINTER IN |~ 520 ANY DISSIMILAR o
START NODE BITS
?
522 s

ANY
OTHEF‘; KEYS

YES o

508
ANY YES
OTHEF; KEYS
NO

510 NG
&)~

(§7) Abstract

destination information associated with the end node is outputted to guide the transfer of the packet through the routing device (529). If they
do not match, the trie is traversed backwards to locate a best match for the key.

CA 02274962 1999-06-15

WO 98/2'7662 PCT/US97/23287

10

15

20

25

30

HIGH SPEED VARIABLE LENGTH BEST MATCH
LOOK-UP IN A SWITCHING DEVICE

Background
The present invention relates generally to data

routing systems, and more particularly to a method and
apparatus for routing packets through a high speed data
switch. '

In packet switched communication systems, a router
(switch or packet forwarding engine) is a switching
device which receives packets on one port, and based on
destination information contained within the packet,
routes the packet to the destination (or intermediary
destination) via another port. Prior art routers perform
this routing function by evaluating header information
associated with a first data block in the packet in order
Lo determine the proper output port for a particular
packet. The evaluation process involves two basic steps
performed sequentially: key extraction and route look-up.

Each packet contains a header and data field. The
header field contains control information associated with
the routing of the packet, including source and
destination information. The data field contains
information which may include embedded headers for higher
level protocols. The first step of the routlng process
1s the identification of the key. The key contains the
information that is used to look-up the route for an
incoming packet. Upon identifying the key associated
with an incoming packet, the router next must determine

which port provides the best path to the destination.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

-7 -

Assoclated with the router is a route table. The
route table 1ncludes entries having a route and
destination associated therewith. After a key for a
packet has been determined, the router performs a look-up
in the route table for the destination associated with
that key to determine the output port for the packet.

The key may match multiple routes in the route table.
Assuming the router located a match of the key in the
route table, the entire packet is thereafter routed to
the destination via the indicated output port.

In the prior art, the process of performing the
look-up in a large route table was a very time consuming
process. In order to speed the look-up process, caching
of the most recent route matches was often performed.
However, caching is minimally effective, providing an
advantage only if the same key patterns are repeated.

In addition, the process of changing a route in an
exlsting route table was difficult in prior art systems,
often requiring the disruption of the look-up process.

Finally, prior art route tables typically provide
only route and destination information. The size of the
route tables were often minimized to include only minimal
information for route look-up. Typically, separate
tables were required for unicast and multicast routing.
Pejorative information relating to flow identification,
packet routing or accounting was not stored in the route
tables so as not to slow down the already under-

performing look-up engines.

CA 02274962 1999-06-15

WO 98/27662 | PCT/US97/23287

10

15

20

25

30

- 3 -

summary of the Invention

In general, in one aspect, the invention provides
a method of looking up a key associated with a packet to
determine a route through a routing device including upon
receipt of a key, forward traversing one or more nodes
which make up a trie stored in a memory by evaluating at
each node traversed a bit in the key as indicated by a
bit-to-test indicator associated with each node. A value
of the bit in the key determining the path traversed
along the trie. The method includes locating an end node
having a route and comparing the route to the key. If
they match, destination information associated with the
end node 1s outputted to guide the transfer of the packet
through the routing device. 1If they do not match, the
trie is traversed backwards to locate a best match for
the key.

Preferred embodiments include the following
features. Forward traversing includes storing on a stack
for each node having an attached route the bit-to-test
indicator and a pointer to the attached route.

Traversing the trie backwards includes comparing
the key with the route to determine a first dissimilar
bit location, popping entries off the stack to determine
when the bit-to-test indicator associated with a first
node 1n the backward traversal is less than or equal to
the first dissimilar bit location, and outputting
destination information associated with the first node to
guide the transfer of the packet through the routing
device.

The first node includes a route and statistical
information for each packet is calculated and stored in
memory with the route for the end node and the first

node. The statistical information is transferred along

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 4 -

with the destination information to an output port in the
routing device for transfer to a destination.

Prior to a forward traversal of the trie, a root
table 1s searched for a match of a predetermined number
©of bits 1in the key where the root table is indexed by the
predetermined number of bits and each entry includes a
pointer to a start node in the trie to begin the forward
traversal.

The forward traversal of the trie includes loading
node information for each node traversed in the trie
until the end node is reached, the node information
including a bit-to-test indicator, a left child polnter,
a right child pointer and an attached route. The nodes
in the trie include left child pointers and right child
pointers with each pointer including a bit-to-test
indicator for indicating a bit to be tested in the key
assoclated with a child node to which the left or right
child pointer indicates. Memory accesses are minimized
in the forward traversal of the trie by requiring the
loading of a single pointer at each node until the end
node.

In another aspect, the invention provides a
method of routing a packet through a switch including
upon receipt of a packet, extracting a key from the
packet. Thereafter a trie is forward traversed by
evaluating at each node a bit in the key as indicated by
a bit-to-test indicator associated with each node. A
value of the bit in the key located at a position
indicated by the bit-to-test indicator determining the

path traversed along the trie at each node. Thereafter,

an end node having a route is located. The route is
compared to the key. If they match, destination

information associated with the end node 1S retrieved.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

29

30

- 5 -

If they do not match, the trie is traversed backwards to
locate a best match for the key having a route and .
destination information associated therewith. The packet
1s routed through the switch according to the destination
information.

Preferred embodiments of the invention include the
following features. Statistical information associated
with each route is calculated and stored in memory with
an associlated route. The statistical information is
forwarded along with the packet to a destination. The
statistical information includes transaction statistiecs
associated with numbers or types of packets routed to a
particular destination or billing information.

Quality of service information is assigned to each
route. The qguality of service information determining a

priority of a transfer of the packet out of the routing

device.

In another aspect the invention provides a method

of 1lnserting a route in a route table where the route

device. The route table defining the path by which a
packet 1is transferred through the routing device. The
method includes traversing a trie to determine an
insertion point, creating a new node, and determining if
the insertion point for the new node is between exlisting
nodes in the trie. If so, a child pointer is set in the
new node to indicate a node directly beneath the
insertion point. The new node is stored in memory.
Thereafter, a child pointer in a node directly above the
insertion point is updated to indicate a starting address
in memory for the new node.

In another aspect the invention provides a router

for routing packets in a packet switched network

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

29

30

- 6 -

including one or more input ports for recelving packets,
a packet memory, an input switch coupled to each input
port and the memory. The input switch including a
transfer engine for transferring packets from an input
port to the packet memory and a key extraction engine for

extracting a key from each packet. The router further

including a controller coupled to the i1nput switch. The

controller including a key look-up engine and a route
memory. The route memory for storing a route table where
the route table includes a trie. The key look-up engine
traversing the trie to determine a best match to the key.
Upon determining the best match for the key the
controller generates notification information. The
router further including one or more output ports, an
output switch coupled to the controller, the packet
memory and the output port for transferring packets from
packet memory to an appropriate output port based on the
notification information received from the controller.

Preferred embodiments include the following
features. The key look-up engine forward traverses the
trie by evaluating at each node traversed a bit in the
key as indicated by a bit-to-test indicator associated
with each node. A value of the bit in the key determining
the path traversed along the trie.

The route memory is divided into a plurality of
panks, and where parent and children nodes in the trie
are stored 1n different banks.

Each node in the trie includes a bit-to-test
indicator, a left child pointer, a right child pointer
and an attached route. The left child pointer indicating
a child node to be traversed in the forward traversal
when a value of a bit in the key as indicated by the bit-

to-test indicator is a first value. The right child

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

23

30

-7 -

pointer indicating a child node to be traversed in the
forward traversal when a value of a bit in the key
indicated by the bit-to-test indicator is a second value.
The left child pointer, right child pointer and attached
route are stored in contiguous locations in the'route
memory.

In another aspect the invention provides a route
look-up engine for locating a best match for a Key 1n a
route table. The route table including a trie stored in
a memory associated with a routing device. The trie
including one or more entries defining a path through a

routing device for transferring a packet in a packet

switched network from a source to a destination. The

route look-up engine including a stack for storing stack
entries including a bit-to-test indicator and a pointer
Lo a destination and a look-up engine including a buffer,
a bilt comparison engine and a key comparison englne. The
puffer for storing node information that is retrieved
from the memory. The node information including a bit-
to-test 1ndicator.

In another aspect the invention provides a trie
for storing routes in a routing device to allow for
efficient routing of packets through the routing device
including a start node including a bit-to-test indicator,
a left child pointer, a right child pointer and an
attached route. The left and right child pointers
pointing to internal nodes. The trie includes an
internal node including a bit-to-test indicator, a right
child pointer, a left child pointer and an attached
route. The left and right child pointers pointing to a
route node or another internal node. The trie including a

route node having a bit-to-test indicator and an attached

route.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 8 =~

Preferred embodiments include the following
féatures. The attached route includes statistical and
quality of service information.

In another aspect the invention provides a

O computer program, tangibly stored on a computer-readable
medium, comprising instructions for causing a computer
to, upon receipt of a key, forward traverse 3 trie stored
iln a memory by evaluating at each node traversed a bit in
the key as indicated by a bit-to-test lndicator

10 associated with each node. A value of the Pit in the key

determining the path traversed along the trie. The
computer caused to locate an end node in the trie having

a route and compare the route to the key. If they match,

destination information associated with the end node is

15 outputted to guide a transfer of a packet through a

routing device. If they do not match, the trie is
traversed backwards to locate a best match for the key
and destination information associated therewith.

One advantage of the invention is that routes may
20 be simply added to existing route tables without
requiring the disruption of the look-up process.

Another advantage of the invention is that
additional information including that needed for
multicast and flow identification (ID) may be stored in a
25 single route table without affecting the performance of
the look-up. The present invention provides a single
unified mechanism for performing efficient best-match
look-up for unicast, multicast and flow based routing in
the presence of eXtremely large route tables.

30 Another advantage of the present invention is that

line rate route look-ups may be performed on the whole

route table without requiring route caching.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

_9...

Another advantage of the present invention is that
large route tables may be efficiently searched at line
rates.

Other advantages and features will be apparent

from the following description and claims.

Brief Description of the Drawlings

Figure 1 is.a schematic block diagram of a packet
switching system according to one embodiment of the
present invention.

Figure 2 1s a schematic block diagram of a router
according to one embodiment of the present invention.

Figure 3 is a schematic block diagram of a route
trie according to one embodiment of the present
invention.

Figure 4a is a schematic block diagram of a data
structure for an internal node with an attached route
according to one embodiment of the present invention.

Figure 4b 1s a schematic block diagram of a data
structure for a start node according to one embodiment of
the present i1nvention.

Figure 4c 1s a schematic block diagram of a data
structure for a route node according to one embodiment of
the present invention.

Figure 4d 1s a schematic block diagram of a data
structure for a internal node according to one embodiment
of the present invention.

Figures Sa=-5g collectively are a flow chart for a
populating a trie according to one embodiment of the
present invention.

Figures 6a and 6b collectively are a process for
routing data through the router according to one

embodiment of the present invention.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 10 -

Figure 7a is a schematic block diagram of a data
structure for a internal node according to an alternative
embodiment of the present invention.

Figure 7b is a schematic block diagram of a data
structure for a internal node with an attached route
according to an alternative embodiment of the present
invention.

Figure 7c is a schematic block diagram of a data
structure for a route node according to an alternative
embodiment of the present invention.

Figures 8a and 8b collectively are a process for
routing data through the router according to an

alternative embodiment of the present invention.

Detailed Description

Referring to Figure 1, in a packet switched
network, a source 10 is connected to one or more routers
20 for transmitting packets to one or more destinations
30. Each router includes a plurality of ports that are
connected to various sources and destinations.
Accordingly, a packet from source 10 may pass through
more than one router 20 prior to arriving at its
destination.

Referring to Figure 2, each router 20 includes an
input switch 100, an output switch 102, a memory 104, a
controller 106 and a plurality of input ports 107 and
output ports 108. Associated with the controller 106 is
a memory element 109 for storing controller data. FEach
switch 100 and 102 is connected to each input and output
port 107 and 108 respectively in router 20. In one
embodiment, router 20 includes eight input and output
ports 107 and 108, respectively. In this embodiment, the

number of input ports and output ports is equal, however,

CA 02274962 1999-06-15

WO 98/27662 PCTIUS97/23287

10

15

20

25

30

- 11 -

other applications may necessitate greater numbers of one
or the other.

Assoclated with the controller 106 is a route
look-up engine 110. In one embodiment of the present
invention a plurality of route look-up engiﬁes 110 are
included in controller 106, each receiving look-up
requests 1n round-robin fashion so as to speed the
routing process. In one embodiment, controller memory
109 1s a four bank static random access memory (SRAM)
that requires thirty two route look-up engines 110 to
service at full bandwidth.

The present invention is scalable with respect to
performance. That is, the number of route look-up
engines 110 included within the controller may be
increased to provide higher performance without requiring
an increase in memory size. In one embodiment, the
number of route look-up engines is elght times as great
as the number of memory banks in controller memory 109.
Alternatively, lesser cost and performance units may use
lesser numbers of route look-up engines 110.

In operation, packets are received at an input
port 107, transferred to input switch 100 and stored
temporarily in memory 104. When the packet is received
by switch 100, a key extraction engine reads the key from
the first data block in the packet and transfers the key
Lo controller 106. The input switch also includes 3
Lransfer engine for transferring packets received from an
input port 107 to memory 104.

The key includes at least destination information
and may also include source information, a flow
identifier and physical source information (1nput port
ID). The key is located in the header field associated
with the first block of data in a packet. The header may

CA 02274962 1999-06-15

WO 98/27662 ' PCT/US97/23287

10

15

20

25

30

- 12 -

contain other information (ISO layer 2 and layer 3
headers), such information is passed to memory for
storage. The process of reading key information from a
packet 1s known in the art. The present invention
accommodates keys of various types. For example, keys
for various protocols may be designated (IPV4, IPVo,
etc.). The length of the key is user definable. In

general, the key is derived from the header, but portions

may also be derived from the payload (data field
associated with the packet).

When the controller receives the key information,
1t must determine a key type. 1In one embodiment of the
present invention, a plurality of key types are defined.
The user may define up to 4 types of keys, each having
variable length. In one embodiment, the key type 1is
defined by'a two bit field in the header. A look-up of
the two bit field is used to determine the appropriate
trie to search.

Thereafter, route look-up engine 110 performs a
trie based search for the best variable length match of
the key, with each key type defining a particular trie
for searching. A trie is a data structure that is used
to locate the best (longest) matching route for a given
key. The process of the trie based search will be
described in greater detail below in reference to Figure
6. At the completion of the trie search, the route look-
up engine returns a result which includes the output port
associated with the destination. The result and other
information (source ID, flow ID, packet length, quality
of service and statistical information) for routing the
packet through the router combine to form a notification.
The notification is transferred from the controller 106

to the output switch 102. Upon receiving the

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 13 -

notification, the output switch 102 initiates the
transfer of the packet from memory 104 to the respective
output port 108 associated with the result. |

Route look-up engine 110 performs the best match
variable length look-up based on a modified radix trie
search routine. Specifically, in one embodiment of the
invention, a route table is stored in memory 109 in the
form of one or more tries. Each trie is comprised of one
or more nodes including a start node 300, and may 1include
internal nodes (without an attached route) 302, internal
nodes with an attached route 304 and route nodes 306 as
1s shown in Figure 3. 1In one embodiment, the starting
node 1ncludes an attached route that is guaranteed to
match any key having a type associated with this
partlicular trie. 1In this way, the attached route
provides a default path in the event no other match is
located in the trie for a particular key.

Nodes are the decision points in the look-up
process. A key associated with a packet has various ones
of 1ts bits tested at nodes along the trie, and depending
on the value of the indicated bit in the key being
tested, will result in the traversal down a particular
branch of the trie. The bits of a key are numbered left
to right. Associated with each node is a bit-to-test
indicator. The value of the bit-to-test indicator in 3
trie branch increases until a leaf (route node) 1is
reached. 1Internal nodes may be of two types, those with
and those without attached routes. An internal node with
an attached route 304, may be a match for a key.

Internal nodes without attached routes are never a match
for a key. Route nodes 306 are nodes which have no

children and, accordingly, only contain route

information. The traversal along the trie will be

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

...14_

described 1n greater detail below in reference to Figure
6. ’

The data structure for each internal node in a
trie according to one embodiment of the present invention
1s shown in Figure 4a. Associated with each node is a
bit-to-test indicator field 400, a left child pointer
402, a right child pointer 404 and an attached route 406.
The bit-to-test indicator field indicates the bit in the
key which 1s to be tested at this node in order to
determine which branch (left child or right child) in the
trie should be traversed in the look-up process. The
left child pointer 402 points to a left child in the trie
structure while the right child pointer 404 points to a
right child in the trie structure. A left child is the
next node in the trie to be traversed when the bit tested
for the present node has a value of 0. Conversely the
right child is the next node in the trie to traverse when
the bit tested associated with the present node has a

value of 1.

The attached route 406 indicates a result which is
assoclated with this particular node. In one embodiment,
the attached route is two words and includes both output
port and prefix information. Alternatively, the attached
route may also include other data such as quality of
service and statistical information. In one embodiment,
the attached route includes fields associated with the
route (destination) which are updated each time a packet
is processed for the given route. The information is
stored along with the attached route and may be
downloaded in response to a query from a user or the
destlnation. Alternatively, a portion or all of the
information may be downloaded with each packet

transferred to a destination as part of the ndétification.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 15 -

Often 1t is desirable to attach information to a route
that indicates statistical information associated with a
given route (destination). Examples of statistical
information that may be transferred to a destination
include number of packets (in a given time period),
frequency of packets, average size of packets, and time
since the last packet. Other statistical information
including accounting information may also be stored with
the attached route and may be incorporated into the
notification. For example, billing information for a
particular transfer or cumulative billing information may
also be incorporated into the notification. 1In one
embodiment of the present invention, controller 106
(Fligure 2) includes statistical modules for calculating
statistical information related to each packet
transferred through the router. As each packet is
processed by the controller, statistical modules update
the statistical information stored with the destination
route determined in the look-up process.

In addition, quality of service information may be
stored with an attached route to speed the routing of
certaln packets through the switch structure. A quality
of service value may be set for each route to allow for
the prioritization of packets transferred out a
particular output port.

In one embodiment, the data structure of an
attached route is comprised of a prefix length, a prefix
(the portion that is left justified and matched against
the key), a result field, a statistics field and a
quality of service field. Prefix length indicates the
length of the prefix in bits. The prefix is a pattern
(portion of a key) that is compared against a key to

determine a best match. The result field stores the

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 16 -

output port (destination port) associated with the
particular route (prefix). In the event that the prefix
assoclated with a particular node is itself the best
match for a given key, then the attached route indicates
> the output port to which the packet is to be routed. In
one embodiment of the present invention, the attached

route 1s a pointer which points to the locs

tion in memory
where the attached route is stored. Alternatively, the

attached route may be stored in consecutive memory
10 locations with the rest of the node information as

described above.

The data structure for the start node according to

one embodlment of the present invention is shown in
Figure 4b. Associated with the start node are a left
15 child pointer 402, a right child pointer 404 and an
attached route 406. In one embodiment of the present
invention, no bit-to-test indicator field is stored in
memory for the start node. This is because, typically
the bit-to-test indicator for the start node is set to
20 bit zero. Alternatively, another bit in the key may be
the first bit-to-test. If another bit is the first bit-
to-test, then the associated bit identifier is stored in
a bit-to-test indicator field for the start node.
The data structure for each route node according
25 to one embodiment of the present invention is shown in

Figure 4c. Each route node has only an attached route
406.

Internal nodes without routes attached have a data
structure as shown in Figure 4d. Specifically, no space
30 1s set aside for an attached route. Otherwise, the data

Structure 1is 1identical to that shown in Figure 4a.

In a typical router implementation, a route table

is not fully populated. That is, not all of the possible

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 17 -

Key values are mapped to a particular output port.
Accordingly, some bits in the key are “don’t care”
values, and are not required to be tested during the
route look-up process, because they do not affect the
determination of the output port. 1In some prior art
systems, the look-up of keys in the route table required
the comparison of each bit in the key with entries in the
route table. Such systems were inefficient. With a trie
structure, not every bit in a key needs to be tested in
order to determine the best match associated with a
particular packet. By testing only the smallest number
of bits that allow the discrimination between a key and
existing routes, the speed of determining a match is
improved.

Accordingly, for each key type, a route table is
created 1n trie format. Referring now to Figure 5, in a
method of creating a trie, a start node is created for
the trie(500). The start node is assigned an attached
route (502). The left and right child pointers are
assigned a null value (a binary 511 in one embodiment of
the present invention) indicating that no left or right
child exists (504). Finally, the four word start node
including left child pointer (1), right child polnter (1)
and attached route (2) is stored in memory 108 (506).

A check 1s made to determine if any other routes
are needed to be placed in the trie (508). If not then,
the process ends (510). Else, the next route is loaded
(512). The first route in the trie is added as a route
node (514). An associated route is assigned based on the
destination for the particular prefix (516). The
attached route and prefix information is stored in memory
(518). Thereafter, the appropriate pointer in the start
node (left child pointer or right child pointer) is

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

23

30

- 18 -

updated based on the value of the zero bit of the first
prefix (520). 1If the value of the zero bit in the first
prefix (route) loaded is a “0", then the left child
pointer is updated to reflect the starting address in
memory where the route node for this prefix is stored.
Alternatively, if the value of the zero bit in the first
prefix loaded is a “1", then the right child pointer is
updated to reflect the starting address in memory where
the route node for this prefix is stored.

A check is made to determine if any other prefixes
are needed to be placed in the trie (522). If so, the
next prefix is loaded (523). The next prefix will be
placed 1n the trie as either a route node, an internal
node, an internal node with an attached route, or as an
attached route to an existing internal node. A prefix
search 1s performed in the existing trie (524). The
search entails traversing the trie by testing the new
prefix based on the bit indicated by the bit-to-test
indicator for each node. At a given node, the bit in the
new preflx designated by the bit-to-test indicator for
the node is checked in order to determine the next node
in the search. The prefix search continues until an end
route 1s determined (526). An end route will be found
either at a route node or at an internal node having an
attached route. An end route is either the route
assoclated with a route node or the first route located
on the trie after the bit-to-test indicator associated
with the current node on the trie exceeds the number of
bits in the prefix being searched. The first route
located may be an attached route to an internal node, or
a route node. The search must terminate at a node which
has an associated route in order to determine where (and

how) the new prefix will be inserted into the trie.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 19 -

That 1s, at the start node, the value of the zero
bit 1s checked in the new prefix to determine if the
search should proceed down a left child or the right
child. At each subsequent node in the trie, the bit
indicated by the bit-to-test indicator associated with
the node is checked to determine a next node in the
traversal. Eventually, the search will come to an end as
described above. In our 1nitial two node trie (start
node and a route node), the search is diminimus, and may
end at either the start node (if the new prefix being
searched has a value in the zero bit different from the
prefix associated with the route node) or at the route

node.

At the end of the search, a comparison is made
between the prefix being searched and the end route to
determine the first dissimilar bit (BIT,,.)in the new
prefix (528). In one embodiment of the present
invention, an EXCLUSIVE OR operation on the two prefixes
1s performed to reveal the first dissimilar bit. If a
dissimilar bit is found, then branch A in the process is
performed (529). If no dissimilar bits are found, then
all of the bits of the new prefix match the end route and
branch B in the process is performed.

In branch A, a dissimilar bit has been determined,
and the new prefix will be inserted into the trie as
route node pointed to by a new internal node which is to
be inserted into the existing trie. Specifically, a new
route node 1s created and stored in memory indicating the
destination associated with the new prefix (530).
Thereafter, a new internal node is created (532). The
bit-to-test indicator for the new internal node is
assigned to be the first dissimilar bit (BITMS)

discovered above (534). One of the child pointers

CA 02274962 1999-06-15

WO 98/27662 | PCT/US97/23287

10

15

20

23

30

- 20 -

(either the left child or the right child) of the new
internal node is assigned the address of the new route
node depending on the value of the bit-to-test indicator
in the new prefix (536). Starting at the node associated
with the end route identified above, the trie is
traversed 1n reverse to locate the first node (the parent
node) having a bit-to~test indicator which is less than
the first dissimilar bit (BIT,.) (538). The node
immediately beneath the parent node in thé original trie
1s referred to as the grand-child node. The new internal
node 1s inserted into the trie between the parent and the
grand-child nodes by assigning the remaining child
pointer in the new internal node the starting address
associated with the grand-child node (540). Finally,
the address of the pointer in the parent node which
previously pointed to the grand-child node is updated to
indicate the starting address in memory of the new
internal node (542). Branch A is complete.

In branch B, no dissimilar bits were determined,
necessitating a comparison of the length of the new
prefix with the length of the end route (545) . If the
length of the new prefix is longer than the length of end
route then branch Bl is traversed (546). If the length
of the new prefix is shorter than the length of end
route, then branch B2 will be traversed (5947) . Finally,
1f the length of the new prefix is the same as the length
of end route, branch B3 will be traversed.

In branch Bl (the new prefix is longer than the
length of end route), the new prefix will be inserted
into the trie below the node associated with the end
route as a new route node. Specifically, a new route
node 1is created and stored in memory indicating the

destination associated with the new prefix (550).

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

S

10

15

20

25

30

- 21 -

Thereafter, a determination is made of the type of node
associated with the end route (552). If the node
assoclated with the end route is an internal node with an
assocliated route, then the appropriate child pointer
(based on the value of the bit in the new prefix of the
bit-to-test indicator associated with the internal node)
1ls assigned the starting address of the new route node
(554) . Else, a new internal node is created (556). The
bit-to-test indicator for the new internal node is
assigned to be the last bit in the end route (558) . One
of the child pointers (either the left child or the right
child) of the new internal node is assigned the address
of the new route node depending on the value of the bit
in the new prefix of the bit-to-test indicator associated
with the new internal node (560). Finally, the address
of the pointer in the parent node (the node immediately
preceding the route node associated with the end route
and whose pointer previously indicated the starting
address of the route node associated with the end route)
1s updated to indicate the starting address in memory of
the new internal node (562). Branch Bl is complete.

In branch B2 the new prefix is shorter than the
end route. The new prefix is inserted into the trie
above the node associated with the end route, as either a
new route or as an internal node with a route attached.
Specifically, starting at the node associated with the
end route, the trie is traversed backwards until a node
(the parent node) is found having a bit-to-test indicator
less than or equal to the index (length) of the new
prefix (570). The node immediately beneath the parent
node in the original trie is referred to as the grand-
child node.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 22 _

If the bit-to-test indicator is less than the
index of the new prefix (571), then a new internal node
1s inserted below the parent node (572) . The bit-to~-test
indicator for the new internal node is assigned the value
of the index (length) of the new prefix (574).
Accordingly, the new internal node tests the first bit
atter the end of the new prefix. The new internal node
1s inserted into the trie between the parent and the
grand-child nodes by assigning one of the child pointers
(as 1lndicated by the value of the bit-to-test indicator
0f the new internal node) the starting address associated
with the grand-child node (576). The other chiild
pointer (either the left child or the right child) of the
new internal node is assigned a null value (binary 511 in
one embodiment) (578). Finally, the address of the
poilnter in the parent node which previously pointed to
the grand-child node is updated to indicate the starting
address in memory of the new internal node (580).

If the bit-to-test indicator of the node
discovered in the backwards search is equal to the index
of the new prefix, then the new prefix is inserted as an
attached route for the node (590). Specifically, the
attached route associated with the node determined in the
search 1s updated to reflect the destination of the new
prefix. Branch B2 is complete.

In branch B3 the new prefix is the same length as
the end route. The new prefix is inserted into the trie
as an update to the end route (592). Specifically, the
route associated with the end node is updated to reflect
the destination of the new prefix.

At the completion of branches A and B (and the
various sub-branches of branch B including Bl, B2 and

B3), a check is performed to determine if any more

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287
- 23 -
prefixes need to be inserted into the trie (598). TIf SO,
then the process continues at step (523). Else, the

10

15

20

25

30

process ends (510).

In one embodiment of the present invention, the
process of constructing a trie is performed for each type
of key based on an initial set of prefixes and associated
destination information. 1In addition, each trie may be
updated dynamically by a routing protocol associated with
the controller 106 (Figure 2). The routing protocol
services the tries, and may insert new prefixes as
necessary. The process for inserting a new prefix is
ldentical to the process described above for inserting a
next prefix after the first prefix in the trie has been

installed as a route node (steps 9522-592).

As was described above, the insertion of a route is
accomplished off line, and only the final step 1n the
process affects the trie. The final step in any
insertion process requires writing in memory the address

for a new node to the new node’s parent. Accordingly,

make changes to existing entries. The trie is never
invalid, thus never requiring the shutting down of the
look-up process for trie maintenance.

Having created a route table including one or more
tries which are stored in memory as described above, the
router 1s ready to process packets. A key is copied from
an 1inbound packet by input switch 100 (Figure 2) and
transferred to route look-up engine 110 (Figure 2) in the
controller 106 (Figure 2). Referring to Figures 2 and 6,

in a best variable length match look-up method, a key

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

.....24_.

type 1s determined for a new key to identify the
particular trie that must be traversed in the look-up
process (600). The look-up process includes a forward
and backward traversal of the trie to determine the best
> match associated with a given key. The forward search
begins at the start node. Specifically, the four word
data block associated with the first node in the
appropriate trie type is loaded into a buffer in the
route look-up engine 110 from memory 108 (602). A bit
10 test engine in route look-up engine 110 determines the
value of the bit in the new key indicated by the bit-to-
test 1indicator (as defined by the bit-to-test indicator
field retrieved in step (602)) (604). Thereafter, the
route look-up engine determines if the poilnter indicated
15 by the bit value (either the left child pointer or right
child pointer) indicates a child node (606). If no child
1s indicated, then route look-up engine 110 performs a
key comparison as is shown in branch C.
If the pointer indicates a child, then a check is
20 made to determine if the start node has an attached route
(608). If an attached route is associated with the start
node, the route look-up engine stores the starting
address in memory for the attached route (or the starting
address associated with the contiguous memory locations
25 associated with the start node) and the bit-to-test
indicator associated therewith on a forward search stack
in the route look-up engine (610). If no attached route
exists, the process continues at branch G. The route
look~up engine thereafter loads the data words associlated
30 with the next node indicated by the respective child
pointer (612). For example, where the start node bit-to-
test indicator is set to the “zero’th” bit, and if the

zero’th bit in the new key location has a value of “o",

CA 02274962 1999-06-15

WO 98/2°7662 PCT/US97/23287

10

15

20

25

30

- 25 -

then the route look-up engine will load the node
indicated by the left child pointer. Alternatively, if
the zero’th bit has a value of “1", the route look=-up
engine will load the node indicated by the right child
pointer. In one embodiment of the present invention, the
loading process of a node entails loading all of the data
blocks associated with a given node (5 for internal nodes
or 2 for route nodes). Alternatively, a lesser number of
data words may be loaded as will be described below.
Thereafter the route look-up engine determines if
the new node is a route node (614). 1If so, then a route
has been determined and the process continues at branch
C. If not, then the route look-up engine (bit comparison
engine) determines the bit value in the new key of the
bit indicated by the bit-to-test indicator associated
with the new node (node loaded in step ©12), where the
pit-to-test is defined by the bit-to-test indicator field
retrieved as part of the load in step 612 (616).
Thereafter, the route look-up engine determines if the
pointer indicated by the bit value (either the left child
pointer or right child pointer) indicates a child node
(618). If no child is indicated then the route look-up
engine performs a key comparison as is shown in branch C.
Alternatively, the route look-up engine checks to
determine if the new node has an attached route (620) .
If so, then the process continues at branch F resulting
ln the storage of the address associated with the
attached route onto the stack (or the pointer 1indicating
the starting address in memory for the attached route)
prior to the loading of a next route. Alternatively, the
process continues at branch G and the next node is loaded

for processing. The route look up engine repeats this

CA 02274962 1999-06-15

WO 98/27662 | PCT/US97/23287

- 206 -

process for each node (steps 610-620) until an end node
has been located.
An end node may be a route node or an internal
node having an attached route. An internal node with an
> attached route will only be an end node if the value of
the bit indicated by the bit-to-test indicator in the key
being tested indicates a child pointer associated with
the internal node that points nowhere (null). When an
end node is reached, the route look-up engine performs

10 branch C. Specifically, if the pointer indicated by a
bit-to-test value in the new key points to a route, then
the forward search portion of the process ends when the
route 1s retrieved. If however, the pointer indicates a
null, the search ends with the internal node.

15 Branch C can be characterized as follows: the
forward search has terminated at an internal node (the
end node) having a pointer to a left child or a polnter
to a right child which has no data, and, this “no-data”
pointer is indicated by the bit value in the new key of

20 the bit-to-test bit of the end node; or, the search has
terminated at a route node. 'The backward portion of the
search begins by comparing the route associated with the
current node (either an attached route for an internal

node or a route associated with a route node) and the new
25 key.

At this point, the best match for the new key will
be at the end node or is quaranteed to be somewhere back-
up stream (along the path from the end node back to the
start node). Accordingly, in order to determine the best

30 match, a key comparison engine in route look-up engine
110 compares the key being searched and the end route
(the route associated with the end node) to determine the

first dissimilar bit (BIT,,.)in the new key (630). 1In one

CA 02274962 1999-06-15

WO 98/2°7662 PCT/US97/23287

5

10

15

20

25

30

- 27 -

embodiment of the present invention, an EXCLUSIVE OR
operation on the new key and prefix (route) is performed
to reveal the first dissimilar bit. If a dissimilar bit
1s found, then branch D in the process is performed
(632). If no dissimilar bits are found, then all of the
bits of the new key match the end route and branch E in
the process is performed.

In branch D, a dissimilar bit has been determined,
and the end route is not a match for the new key.
Starting at the end node, the trie is traversed in
reverse to locate the first node (the best match node)
having a bit-to-test indicator which is less than or
equal to the bit number of the first dissimilar bit
(BIT,..) (640). 1In one embodiment of the present
invention, this is performed by popping off entries from
the forward search stack in the route look-up engine
(each entry associated with nodes that have attached
routes and have been traversed as part of the forward
search), until an entry 1is located which has a bit-to-
test 1ndicator value that is less than or equal to the
pit number of the first dissimilar bit. When the best
match node has been located, then the process continues
at branch E.

In branch E, a best match route has been
determined either by discovering no dissimilar bits when
comparing the new key to the end route, or by traversing
the trie and locating the route associated with the best
match node. The route look-up engine loads the best
match route from memory (650). In one embodiment, if the
end route associated with the end node matches the new
key, no load is required, such load having already been
accomplished as part of the loading of the end node in

the forward search of the trie. Alternatively, if the

CA 02274962 1999-06-15

WO 98/27662 . PCT/US97/123287

10

15

20

25

30

- 28 =

trie 1s required to be traversed backwards, the route
information is loaded based on the pointer stored on the

stack. The route look-up engine transfers the best match

that the trie structure guarantees a best match for each
key transmitted through the switch. As is described
above, each route stored in the trie has a prefix
assoclated therewith. A prefix is a left justified
subset of a key. Accordingly, a key may match many

prefixes in a trie. The best match is the matching

prefix having the longest length. The system of the
present invention provides for a best (longest) match for
a key.

In addition, only a single key comparison is
required in the entire matching process. The Key 1s
compared to a single prefix (at the end node) and
thereafter the best match may be determined without
performing any additional comparisons of the key to

prefixes stored in the route look-up table.

ALTERNATIVE EMBODIMENTS
In one embodiment of the invention, numerous
techniques are employed to speed the look-up process and
minimize the number of memory accesses. Specifically,
the following techniques are employed: minimized data
word loads, multiple memory banks, spread data structures

ACross memory banks and root table.

Minimized Data Word Loads
As was described above in conjunction with the

forward traversal of a trie, a load operation is

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 29 —

performed of the data words associated with each node in
the forward search. This requires the loading of up to
five words per node (bit-to-test indicator, left child
pointer, right child pointer, and attached route (2
words)). Alternatively, lesser number of words may be
loaded.

Specifically, in one embodiment of the invention,
only the bit-to-test indicator and child pointers are
loaded for a given node. In the event that the node is
determined to be the end node in a forward search, then

the attached route information can be loaded as required.

In another embodiment of the present invention,
only the bit-to-test indicator is loaded initially for a
given node. After the bit-to-test indicator is loaded
for a given node, the bit value of the new key is used to
determine which child should be loaded for this node, 1f
any. For example, if the bit value of the bit in the new
Key indicated by the bit-to-test indicator is a “0", the
left child only is loaded. If the bit value in the bit
in the new key is a “1", then only the right child is
loaded.

In another embodiment of the present invention, an
alternative data structure associated with the nodes is
used to minimize memory accesses. Referring to Figure
7a, a data structure for an internal node without an
attached route is shown. Each internal node without an
attached route 1includes a left child pointer 700, and a
right child pointer 702. The left and right child
pointers include two status bits 704 and 706 (little “r”
and big “R”, respectively), a pointer field 708 which
points to the starting address of an associated child,
and a bit-to-test indicator field 710 which indicates the

bit-to-test in the child.node indicated by the pointer

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 30 -

field 708. The first status bit (Little “r”) 704
indicates whether the pointer stored in the pointer field
708 points to a route node or an internal node. The
second status bit (big “R”) 706 indicates whether an
attached route exists for this node.

The data structure for an internal node with an
attached route is shown in Figure 7b. Each internal node
with an attached route includes a left child pointer 700,
a right child pointer 702 and an attached route 720. The
left and right child pointers include two status bits 704
and 706 (little “r” and big “R”, respectively), a pointer
field 708 which points to the starting address of an
associated child, and a bit-to-test indicator field 710
which indicates the bit-to-test in the child node
indicated by the pointer field 708. The attached route
720 contains an index 722, a prefix 724, a result 726
(destination port), a statistics field 728 and quality of
service field 730, the functions of which have been
described above.

The data structure for a route node is shown in
Figure 7c. Each route node includes an attached route
7120,

With this data structure, a single word per node
1s required to be loaded in order to traverse the trie.
Only minor variations in the creation of the trie and in
the traversal of the trie are required, yet the memory
accesses required have been reduced substantially.

During the look-up operation, the benefits of the
data structure proposed above are readlily apparent.

Referring to Figure 8, the process of performing a best

CA 02274962 1999-06-15

WO 98/2'7662 PCT/US97/23287

10

15

20

25

30

- 31 -

start node 1s determined based on the trie type (802).
Thereafter, a check is made of the value of the bit 1n
the new key indicated by the bit-to-test indicator
assocliated with the start node (typically bit zero) (804).
If the value of bit in the new Key 1s a “0", then the
route look-up engine retrieves the left child pointer
associated with the start node which will be located at
the starting address determined above in step 802 (806).
If the value of bit in the new Key 1s a “1", the route
look-up engine will increment by one the starting address
recelved in step 802 (807) and retrieve the right child
polnter associated with the start node (808) .

A check 1s made to determine if the polinter
retrieved points to a route (node) or to another lnternal
node (810). If the pointer polnts to a route node (as
indicated by the status of the little “r” status bit 704)
then the route indicated by the pointer (the first left
or right child poiﬁter) 1s retrieved (812). If the
pointer points to an internal node, then the route look-
up engine will store the pointer retrieved on a stack if
the “R” status bit is set (814). Specifically, the route
look-up engine stores the bit-to-test indicator
associated with the given node and the pointer retrieved
in step 812. Thereafter, the route look-up engine (bit
comparison engine) will test the bit of the new key
indicated by the bit-to-test indicator field in the
polnter retrieved in steps 806 or 808.

If the bit indicated by the bit-to-test indicator
has a value of “0" in the new Key, then the route look-up
engine will retrieve the left child associated with the
address indicated by the pointer (816). Specifically,

the route look-up engine will retrieve the data word

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 32 -

which is indicated by the address indicated by the left
or right child pointer. .
If the bit (in step 812) has a value of “1" in the
new key, then the route look-up engine will retrieve the
o> right child associated with the address indicated by the
pointer (818). Specifically, the route look-up engine

10 This process repeats (steps 814-822) until an end
route 1s located. Specifically, if the pointer indicated
by a bit-to-test value in the new key points to a route
(820), then the forward search portion of the process
ends when the route is retrieved (812). If however, the

15 pointer retrieved indicates a null value (822), a check
1s made to determine if the node has an attached route
(824). If so, then the forward search portion of the
process ends and the associated internal route is
retrieved in step 812. If no attached route exists, a

20 check is made to determine if the stack 1is empty (825).
If so, an error condition occurs and the route look-up
terminates (826). If the stack is not empty, then the
last entry on the stack is retrieved (828) and the
process continues at step 830. The route retrieved from

25 the route node, the internal node with attached route, or

the route indicated by the stack entry will become the

end route for the purposes of performing the backward

portion of the look~-up process.

In order to determine the best match, the route

30 look-up engine (key comparison engine) compares the key

being searched and the end route to determine the first
dissimilar bit (BIT,;.) in the new key (830). If a

dissimilar bit is found (832), then starting at the end

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 33 -

node, the trie 1s traversed in reverse to locate the
first node (the best match node) having a bit-to-test
indicator stored on the stack which is less than or equal
to the bit number of the first dissimilar bit (BIT,,.)
(840). In one embodiment of the present invention, this
1s performed by popping off entries from the forward
search stack in the route look-up engine, each entry
associated with nodes that have been traversed as part of
the forward search, until a entry is located which has a
bit-to-test indicator value that is less than or equal to
the bit number of the first dissimilar bit.

If no dissimilar bits are found or if the best
match node has been determined in step 840, then the
route look-up engine loads the best match route, either
the route associated with the best match node or the end
route from memory (850). If the best match route is the
end route, no memory load is required, such load having
pbeen accomplished as part of the comparison above.
Alternatively, the route information is loaded by
incrementing the memory address retrieved from the stack
node by two (1f the starting address for the node is
stored on the stack as opposed to the address for the
attached route), and loading the appropriate route
information. Thereafter, the route look-up engine

transfers the best match route to the output switch 102
(852) .

Multiple Memory Banks

Referring again to Figure 2, in one embodiment of
the invention, the memory 108 attached to controller 106
1s a bank of four static RAMs (SRAMs). In the
construction of the route table, parents and children are

distributed among the SRAM banks such that no parent and

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 34 -

child are stored in the same bank of static RAM.
Accordingly, when a route look-up engine accesses a
particular memory location in memory 108, it is
guaranteed to not to have to access the same memory bank
O 1n order to traverse to the next node in a given path.
The use of multiple memory banks is useful to lncrease

the number of simultaneous read operations which can be

performed in the look-up process. Distribution of parent

10 bank conflicts.

spread Data Structures across Memory Banks

Another memory saving technique included in one

embodiment of the present invention is the attachment of

routes sequentially in memory for a given node. As was

1> described above in reference to the node data structures
as described in reference to Figures 4 and 7, 1f an
internal node has an attached route, then the route is
placed by design immediately following the associated

right child pointer in memory. Accordingly, when the

20 best match is located for a given node, the destination
information associated therewith is known precisely, and
may be retrieved directly from memory (as opposed to
indirect retrieval if a pointer system 1is used). This
organization technique saves on memory accesses.

25 For example, upon a match condition, the route
look-up engine must load the result which includes the
output port associated with the particular switch. With
the memory structure described above, the result may be
loaded directly by incrementing the pointer information

30 popped off the stack during the backward traversal of the

trie (by adding 2 or 3 address locations to the stack

pointers depending on the type of node).

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

Root Table
In one embodiment of the present invention, a root
table 1s used as a preliminary screen for matching the

most significant bits in a key. A root table may be used

S to perform a quick match of the most significant bits in

10

15

20

a key so as to avoid having to perform many memory

accesses 1n the trie search. The root table is stored in
controller 106 (Figure 2). Each entrv in the route table
includes an address to the start node in memory at which

the look-up 1s to begin and a stack entry. The stack

entry includes a bit-to-test indicator and a polnter to

an attached route. The table is indexed according to the
first N bits of the key. 1In one embodiment of the
present invention, the first eight bits of the key are
indexed.

The present invention has been described in terms
of specific embodiments, which are illustrative of the
invention and not to be construed as limiting. Other

empbodiments are within the scope of the following claims.

What 1s claimed is:

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 36 -

1. A method of looking up a key associated with
a packet to determine a route through a routing device
comprising: . ‘

upon receipt of a key, forward traversing one or
more nodes which make up a trie stored in a memory by
evaluating at each node traversed a bit in the key as
indicated by a bit-to-test indicator associated with each
node, a value of the bit in the key determining the path
traversed along the trie;

locating an end node in the trie, the end node
having a route;

comparing the route to the key;

1f they match, outputting destination information
associated with the end node to guide the transfer of the
packet through the routing device; and

1f they do not match, traversing the trie
backwards to locate a best match for the key.

P
.

2. The method of claim 1 wherein the step of

forward traversing includes storing on a stack for each
node having an attached route the bit-to-test indicator

and a pointer to the attached route.

3. The method of claim 2 wherein the step of
traversing the trie backwards includes:
comparing the key with the route to determine
a first dissimilar bit location;
popping entries off the stack to determine
when the bit-to-test indicator associated with a first
node 1n the backward traversal is less than or equal to

the first dissimilar bit location; and

WO 98/27662

10

15

20

25

CA 02274962 1999-06-15

PCT/US97/23287

- 37 -

outputting destination information associated

with the first node to gquide the transfer of the packet

through the routing device.

4. The method of claim 3 wherein the first node
includes a route, the method further including
calculating statistical information for each packet and
storing in memory the statistical information with the

route for the end node and the first node.

5. The method of claim 4 further including
transferring the statistical information along with the
destination information to an output port in the routing

device for transfer to a destination.

6. The method of claim 1 further including the
step of prior to a forward traversal of the trie,
searching a root téble for a match of a predetermined
number of bits in the key, the root table indexed by the
predetermined number of bits where each entry includes a
pointer to a start node in the trie to begin the forward

traversal.

7. The method of claim 1 wherein the forward
traversal of the trie includes loading node information
for each node traversed in the trie until the end node is
reached, the node information including a bit-to-test
indicator, a left child pointer, a right child polnter

and an attached route.

8 . The method of claim 1 where the nodes in the
trie include left child pointers, and right child

pointers, each pointer including a bit-to-test indicator

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 38 -

for indicating a bit to be tested in the key associated
with a child node to which the left or right child
pointer indicates, whereby memory accesses are minimized
in the forward traversal of the trie by requiring loading

©of a single pointer at each node until the end node.

9. A method of routing a packet through a switch
comprising:

upon receipt of a packet, extracting a key from
the packet;

forward traversing a trie by evaluating at each
node a bit in the key as indicated by a bit-to-test
indicator associated with each node, a value of the bit
in the key located at a position indicated by the bit-to-
test indicator determining the path traversed along the
trie at each node;

locating an end node in the trie, the end node
having a route;

comparing the route to the key;

1f they match, retrieving destination information
associated with the end node;

1f they do not match, traversing the trie
backwards to locate a best match for the key having a
route and destination information associated therewith:
and

routing the packet through the switch according to

the destination information.

10. The method of claim 9 further including
calculating statistical information associated with each
route and storing the statistical information in MEemory

with an associated route.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 30 -

11. The method of claim 10 wherein the
statistical information is forwarded along with the

packet to a destination.

5 12. The method of claim 10 wherein the
statistical information includes transaction statistics

assocliated with numbers or types of packets routed to a

particular destination.

13. The method of claim 10 wherein the

10 statistical information includes billing information.

l4. The method of claim 9 further including
assigning quality of service information to each route,
the quality of service information determining a priority

of a transfer of the packet out of the routing device.

15 15. A method of inserting a route in a route
table where the route table is stored as a trie in a
memory of a routing device, the route table defining the
path by which a packet is transferred through the routing
device, the method comprising:

20 traversing the trie to determine an insertion
point;

creating a new node;
determining if the insertion point for the new
node 1s between existing nodes in the trie:

25 1f so, setting a child pointer in the new node to
indicate a node directly beneath the insertion point;

storing the new node in memory; and
updating a child pointer in a node directly above
the insertion point to indicate a starting address in

30 memory for the new node.

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

- 40 -

le. A router for routing packets in a packet
switched network comprising:

one or more input ports for receiving packets;

a packet memory;

5 an 1nput switch coupled to each input port and the
memory, the i1nput switch including a transfer engine for
transferring packets from an input port to the packet
memory and a key extraction engine for eXtracting a key
from each packet;

10 a controller coupled to the input switch, the
controller including a key look-up engine and a route
memory, the route memory for storing a route table where
the route table includes a trie, the key look-up engine
traversing the trie to determine a best match to the key,

15 upon determining the best match for the key generating
notification information;

one oOr more output ports;
an output switch coupled to the controller, the
packet memory and the output port for transferring

20 packets from packet memory to an appropriate output port

based on the notification information received from the

controller.

17. The apparatus of claim 16 wherein the key
look-up engine forward traverses the trie by evaluating
25 at each node traversed a bit in the key as indicated by a
bit-to-test indicator associated with each node, a value
of the bit in the key determining the path traversed
along the trie;
the key look-up engine locating an end node having
30 a route and comparing the route to the key;
1f they match, the key look-up engine outputs

destination information associated with the end node to

CA 02274962 1999-06-15

WO 98/27662 PCT/US97/23287

10

15

20

25

30

- 4] -

guide transfer of a packet through the routilng device;
and
1f they do not match, the key look-up engine

traverses the trie backwards to locate a best match for

the key.

18. The apparatus of claim 17 further including a
stack and where forward traversing includes, for each
node having an attached route, storing on the stack a

bit-to-test indicator for the node and a poilnter to the

attached route.

19. The apparatus of claim 18 where traversing
the trie backwards includes the key look-up engine
comparing the key with the route to determine a first
dissimilar bit location, popping entries off the stack to
determine when a bit-to-test indicator associated with a
first node in the backward traversal is less than or
equal to the first dissimilar bit location, and
outputting destination information associated with the
first node to guide a transfer of a packet through the

router.

20. The apparatus of claim 16 further including a
statistical engine for calculating statistical
information for each data packet and outputting the
statistical information with destination information for

transfer to a destination port.

21. The apparatus of claim 16 where the route
memory 1is divided into a plurality of banks, and where
parent and children nodes in the trie are stored in

different banks.

CA 02274962 1999-06-15

WO 98/27662 | PCT/US97/23287

10

15

20

25

30

- 42 -

22. The apparatus of claim 16 where each node in
the trie includes a bit-to-test indicator, a left child
pointer, a right child pointer and an attached route, the
left child pointer indicating a child node to be
traversed in the forward traversal when a value of a bit
in the key as indicated by the bit-to-test indicator is a
first value, the right child pointer indicating a child
node to be traversed in the forward traversal when a
value of a bit in the key indicated by the bit-to-test

indicator is a second value.

23. The apparatus of claim 22 where the left

child pointer, right child pointer and attached route are

stored in contiguous locations in the route memory.

24. A route look~-up engine for locating a best
match for a key in a route table, the route table
including a trie stored in a memory associated with a
routing device, the trie including one or more entries
defining a path through a routing device for transferring
a packet in a packet switched network from a source to a
destination, the route lock-up engine comprising:

a stack for storing stack entries including a bit-
to-test indicator and a pointer to a destination; and

a look-up engine including a buffer, a bit
comparison engine and a key comparison engine, the buffer
for storing node information that is retrieved from the
memory, the node information including a bit-to-test
indicator,

wherein responsive to receiving a key associated
with a packet, the look-up engine forward traverses the
trie, the bit comparison engine evaluating at each node

Lraversed a bit in the key as indicated by a bit-to-test

CA 02274962 2001-08-10

- 43 -

lngicator associated with each node, a value of the pit

'....J

Ln the xey determining the path traversed along the trie,

the look-up engine storing stack entries on the stack for
each node traversed having an attached route, the look-up

5 engine locating an end node having a route, the key
comparison engine performing a singular key comparison
for each packet routed through the routing device by
comparing the key with the route, if they match, the
look-up engine outputting destination information

10 associated with the =2nd node to guide the transfer of the
packet through the routling device and 1f they do not
match, the look-up engine traverses the trie backwards

popring entriles off the stack to locate a best match for

the key and destination Znformation associated therewith.

CA 02274962 1999-06-16

N~

O OO

N &

3 . yu—

VIS~

e

7 -—"e s
o ©3 LDl
cn U

.;.m m NOILYNILS3A

5O

O

a— R O¢

1/14

NOILYNILS3A 431N04 H3.LNOY
Oc 0Z
0€

"H31N0Y

Oc

NOILVNILS3A

ot

30HNOS

0l

M Mad it LaT1<4CladY 1heeemnuan = o o

. e TR RS W . SN ' vl Uvid 2 ehE g 1 3 1N ST 40

.

109

20X

106

CA 02274962 1999-06-16

PCT/US 97/23287
RO/US 26 AR 1998

QO o8 oo oo

N

102

Z
O
<
O
—
~
O
Z

110
104
MEMORY

CONTROLLER

Z
o
< g
<s
>~ (T
v ®
X \T

Z

107

CA 02274962 1999-06-16

ROUTE
NODE

ROUTE
NODE

PCTUS 97/23287

RO/US 26 MAR 1998
3/14

START 300
NODE

306 INTERNAL | - 302
NODE
INTERNAL]} ~302 ROUTE 306
NODE NODE
INTERNAL
306 NODE WITH 304
ATTACHED

ROUTE

ROUTE 306
FIG._3 NODE

TT e e o TN

CA 02274962 1999-06-16

PCT/US 97/2328
RO/US 25 a5 19298 !

4/14

BIT TO TEST
LEFT CHILD POINTER
RIGHT CHILD POINTER

ATTACHED ROUTE

LEFT CHILD POINTER

RIGHT CHILD POINTER

ATTACHED ROUTE

400
402

404

406

402

404

406

FIG._4B

406

FIG._4C

BIT TO TEST 400
LEFT CHILD POINTER 402
404

FIG._4D

CA 02274962 1999-06-16

23287
R 1998

PCT/US 97/
RO/US 26 ma

5/14

O

6cS

VS DI
O

ON

¢
Slig
HV 1IINISSIA ANY
J4ddHL
34V

8cS

9cG

LA

£cS

A3 ANV
31N0Y dN3.,
34VdINOD

31N0Y dN3,
31vO0O1

HOYVY3S

Xld43Hdd
NHO443d

ON

¢
SAIX H3IHLO

S3A ANY

AA

dAON 1HV1S
NI H3LNIOd

0cS 31vadn

AHOWSW NI
3JON 31LNOY

8LS JHOLS

NOILVYNILS3A
NO d3svd
30dON 31N0Y
Ol 31N0Y
V NOISSY

91G

300N 31N0Y
SV A3X Aav

S3A

0LS
ON

¢
SAIX H3HILO
ANY

805

AHOWIN NI
JAON 1HV1S

3HOLS 905

JNTVA .0, V
SH31NIOd
d1IHO 1HODIY
ANV 1437
NOISSY

oS

300N 1HV1S
Ol 31N0OY
UJ3dHOVLLY

NOISSY

c0S

3dJON LHV1S
31V3HO

005

SUBSTHUTE SHEET (RULE 26)

"":""""i‘N-'MI!J-I“m mmm“huul:':- e

O IR S IR R I A o M e S R N e

1O A AL e lasrr. . =

CA 02274962 1999-06-16

PCT/US ¢ (/23287
RO/US 24 AR 1998

COMPARE

6/14

CREATE NEW

IN MEMORY “END” ROUTE
CREATE NEW 532 IS >40
IN'II\'I%FBIEAL KEY LONGER
THAN “END"
ROUTE
?
ASSIGN BIT NO
TO TEST VALUE 534
EQBLIJ_I{\L TO >47
DIS IS
THE KEY YES
SHORTER @
ASSIGN ONE |
CHILD POINTER 536 NO
ADDRESS OF
NEW POINT NODE
TRAVERSE TREE
BACKWARDS 538
TO LOCATE
PARENT NODE
INSERT NEW NODE
BETWEEN PARENT | 540

AND GRAND-CHILD
NODE

UPDATE POINTER 542
IN PARENT
NODE

U

CA 02274962 1999-06-16

7/ 14

CREATE NEW

ROUTE NODE AND

STORE IN
MEMORY

NO IS “END”

NODE
?

ASSIGN
CHILD POINTER 554
IN INTERNAL NODE

THE ADDRESS OF
NEW ROUTE

562

NODE A ROUTE

552

556

558

560

UPDATE ADDRESS
OF POINTER IN

PARENT NODE

FIG._5D ()

A e A T 1 LI AT 1415

L |
4 »
-~ & ‘}
AN Lma vy °e o EEELIEDY RN “"”'“‘ONIMMMMIMMmNﬁMWW“‘"-’" Qe L et e e e, B PTP,

" . 147 FURGATI AN T AR AR M Pty . pas Sss T ’]
HMid vt e . T S e L R P RN T O N TP AT R G e e - ' > ' et

PCTUS 97725287
RO/US 2517AR 1998

550

YES

CREATE NEW

INTERNAL
NODE

ASSIGN BIT TO TEST
FOR NEW INTERNAL
NODE TO BE LAST
BIT IN “END” ROUTE

ASSIGN ONE
CHILD POINTER THE
ADDRESS OF NEW
ROUTE NODE

CA 02274962 1999-06-16

PCTUS 97/23287

o/1s RO/US 261AR 1996

LOCATE 570
PARENT NODE

571

1S BIT
TO TEST LESS
THAN INDEX
OF ’l?(EY

YES NO

UPDATE

INSERT NEW 579 590 ATTACHED

INTERNAL NODE ROUTE IN PARENT

NODE

BELOW PARENT

ASSIGN BIT TO TEST 574
THE VALUE OF THE
INDEX OF THE KEY

ASSIGN ONE POINTER
THE STARTING
ADDRESS OF THE
GRAND-CHILD NODE

576

ASSIGN OTHER 578
POINTER A
ZERO VALUE

580
UPDATE POINTER
"' NODE >
FIG._5E
NN m?r 3:

4 Ak Y B
4 - ‘\“‘.'l ;. - - e -
g 90\‘; e w b e et 6B

e T adin Lkt meBEieE A H L e L A d et e : L © o aserdia e AR U N R TR Ll s H e b e e i e me i d A USRS [1T AR A 2 e iy] A s e e Cee e eeeiseas g sacdenn,

CA 02274962 1999-06-16

9/14

UPDATE
“END” ROUTE

ANY MORE
KE?YS

PCTAUS 97723287
RO/US 25 MAR1998

592

. VU2l e 1 e R DMMALATIPEER HLL] S A Ottt sy man i e e T el e et bl ded

I AR IO TR AN AL UL A M e s i o e

CA 02274962 1999-06-16

10/14

600

DETERMINE
KEY TYPE

602

LOAD
START NODE

604

DETERMINE BIT
VALUE OF BIT IN

KEY INDICATED
BY BIT TO TEST
INDICATOR

606

DOES
POINTER
POINT TO A CHILD
NQ)DE

YES

608

DOES
START NODE HAVE
AN ATTACHED
RO})JTE

YES

610

STORE BIT TO
TEST INDICATOR
AND ROUTE

ADDRESS
ON STACK

612

LOAD
NEXT NODE

PCT/US 977232287
RO/US 25 ;1R 1998

614

1S

NODE A ROUTE

NODE
2

—(c)

NO

DETERMINE VALUE
OF BIT IN KEY
INDICATED BY BIT
TO TEST INDECATOR

616

618

DOES
POINTER
INDICATE A CHILD
NQ)DE

YES

DOES
NODE HAVE AN
ATTACHED
RO})JTE

FIG._6A

Telee e inam e ey Ak 4 B A IS TR 6 Grtde b - s Al s dan s) -

. VNI Wb NEMGRGARCHo || CL (b Lt L+

CA 02274962 1999-06-16

PCT/US 97/23287
RO/US 26 11AR 1998

11/14

DETERMINE FIRST

DISSIMILAR
BIT IN KEY

630

632

ANY
DISSIMILAR
Bl;'S

YES 0

NO

&
FIG._6B

650
LOAD BEST
MATCH ROUTE

TRAVERSE TREE
LOCATE BEST THANSFER
MATCH NODE OUTPUT SWITCH

FIG._6C FIG._6D

-y
s .
- et s e . O PP SPETE VY PR SOy TR IR TV T LYM YT TSP LT PARTEL I TT Sy NP SO e binatee e brvad<a s] el RN e Do SRR TAT le 38 S AL At k1

CA 02274962 1999-06-16

PCTAUS 97/25287
RO/US 26 MAR1998

12/ 14

704 706 708 710
n POINTER FIELD 700
n POINTER FIELD e

FIG._7A

704 706 708 710
“ POINTER FIELD m 700
-n POINTER FIELD m rue

726 RESULT 720
s PREFIX INDEX 724
FIG._7B
/26 RESULT 720
T S IS

FIG._.7C

\
TP e R : T it S el M Gt L A M R s e v

T S A AN NI TR b TR I s ot et U DO R O R 00 o M B f R 22 e et ol ST AT B MM L R S R e e st ' e AL Naryie

CA 02274962 1999-06-16

13/ 14
800 DETERMINE
KEY TYPE

DETERMINE
STARTING
ADDRESS OF
TREE

802

804

IS BIT
ZERO OF KEY
ALO"

YES

807 806
INCREMENT NO
ADDRESS N RaHT

CHILD
POINTER

RETRIEVE
RIGHT CHILD

808
POINTER

810

DOES
POINTER POINT
TO AROUTE
NQ’DE

NO

YES

812 RETRIEVE
ROUTE

828

RETRIEVE ROUTE
FOR LAST STACK

ENTRY

FIG._8A (%)

13100 AR) e TR L 2 M

e it ML Mo U KU MK USRI DU I DM e, (ifetanad sttt

e e LT ; PICTIRPR SRR : G i e TR R IR IR 6 3 L e :

PCT/US 97/23287
RO/US 25 MAR1998

STORE o174
POINTER
ON STACK
IFR =
815

1S

BIT TO TEST

A “O!!
?

NO

RETRIEVE
LEFT
CHILD

RETRIEVE
RIGHT
CHILD

820

DOES
POINTER POINT
TOA B}OUTE

YES

IS THE
POINTER VALUE
Nl'J7LL

NO

YES

824
DOES

NODE HAVE
AN ATTACHED
ROUTE
2
NO
825
YES

826

ERROR

NO

CA 02274962 1999-06-16

PCT/US 97723287
RO/US 26 yar 1998

14/ 14

DETERMINE 830
FIRST DéISSIMILAR
T

840
TRANSVERSE TREE

832

ANY

BACKWARDS TO
Dlsglll}néLAR LOCATE BEST
L MATCH NODE

LOAD
BEST MATCH
ROUTE

852

TRANSFER
ROUTE TO

OUTPUT SWITCH

10 30

20 20
SOURCE ROUTER ROUTER DESTINATION

20

ROUTER

30 30

DESTINATION DESTINATION

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - abstract drawing

