«» UK Patent Application «GB ,2 376 765 ., A

(43) Date of A Publication 24.12.2002

{21) Application No 0114895.6 {51} INTCL’

GO6F 1/00
(22) Date of Filing 19.06.2001
(62) UK CL (Edition T)

G4A AAP
(71} Applicant(s)
Hewlett-Packard Company (56) Documents Cited
(Incorporated in USA - Delaware) EP 1030237 A1 WO 2000/048063 A1
3000 Hanover Street, Palo Alto,
California 94304, United States of America (58) Field of Search
UK CL (Edition T) G4A AAP
(72) Inve.ntor(s) INT CL7 GO6F 1/00 9/455 12/14
Liqun Chen Other: ONLINE:WPI,EPODOC,JAPIO,TDB,
Jonathan Griffin INSPEC,XPESP

(74) Agent and/or Address for Service
Richard Anthony Lawrence
Hewlett-Packard Limited, IP Section,
Filton Road, Stoke Gifford, BRISTOL,
BS34 8QZ, United Kingdom

(54) Abstract Title
Multiple trusted computing environments with verifiable environment identities

(567) A host computing platform 20 provides one or more computing environments 24 and includes a trusted
device 213 arranged to form an integrity metric individual to each computing environment 24. The integrity
metric is provided to a user 10 in response to an integrity challenge, signed for authentication using a
signature key 213 held by the trusted device. in one embodiment the trusted device 213 selects a signature key
unique to the computing environment 24, or in a second embodiment the trusted device forms the signed
integrity metric including an identity label, in each case such that the user 10 can verify that the signed
integrity metric corresponds to the expected computing environment 24.

10

25

26 —~

V 99L9.E¢C 9D

/7

|0 |

112 [4¢4
/ {
L \
(1] B g
20BLIAJU] 19S[) [BO0] yun) Sunndwon
... o€
A m (
12~ " ;
SIempIEH ere—y 9
198)
07~ ST ne s¢ vt

] |

| i

| I

“ _

I

T~ m mm/m_“_ |
| |

L |

SO 150H

2/7

~— 1T
lllllll 1
|
— ''''''''
l, omeq, .
1 3¥4 /Iw\ possn1y “ arempieq
[—]
uuuuuuu _ 4z
- I fm e _
_ S0 B
44 o seanq | SO 180H “ pomduoy 022
e e e e e 1

surgoely ety N1 9C
SO1snH <<z
883001y | ¢7

1

1
: 1
, 1
:]
) 1
" 1
" 1
i [}
, 1
' 1
: 1
']
. 1
y 1
. 1
: uoneaddy '
: 1
) 1
" 1
:]
i]
" 1
' 1
) [}
) 1
!]
;]
i 1
i 1
! 1
_)
)]

3/7

€ ‘81

£1T

L90d T 1T

¥ dOd ~— 0€T

“
” 1740d J]-— osz
i
|

901AS(] pAISIIL

477

p ‘814

SO 188D 10§
0¥~ SR AjBayu] urelqo
POb~ SO 189n0) apiaolg

SOLRAIN AjBojuy
€07~ uLope|d 19O UreIq0

SO 15O 107
0~ JIaN L18ayu] weiqO
[0t~

SO 150H aptaoig

5/7

S ‘314

sonjeA payoadxy jsurede

S0~ sownapy Audsiur esedwio)
soieq Aygayug
05~ SO 1senp Ajddng
A
somaA Audajuy
€05~ SO 180H Ajddng
juswuosiaua Sunndwod
7085~ Jo AuSayur 1sanbay
uonEORUINE Josn pue
106~

[ouuEYDd 211938 YSIqeISH

6/7

[" S~——1- 12
€z 1, eomea e
/I"\ paysni] “ alempIey | i
e e i : :
; "
T | : NP
fee /l“\ IeAuq “ SO ¥CH m m
R ' - 0TC)
7 H '
m uoneoddy m
dson | ' Qe ey 9T
asuodsay / ! |
S g \ v~ SO 1s30H Y4 :
/ 1 :
/ _ ;
/ a8uoiey) H v §S00Md | ¢z m
]
]
.

mn

L84

Ko Surpuodsaioo Suisn

YO~ (s)omewr AyuBejut pousdts AJLaA
Ioguajeyd 0}
0L~ (s)omysw L3uSayur paudis pusg
Koy samyeuSis Suisn
0L~ (s)ormom Ko udig
Aoy axmyeusis pue
0L~

(s)onpwr AJLIdagl Palols 2A9LNIY

10

15

20

25

30

' 2376765

Multiple Trusted Computing Environments

with Verifiable Environment Identities

The present invention relates in general to a method
for providing multiple computing environments running on a
single host computing platform, and relates to a method

for verifying integrity of the computing environments.

It is desired to run multiple applications on a single
host computing platform such as a server. To minimise
interference between applications which are incompatible
or which do not trust each other, it is known to provide
multiple computing environments which are separate and
logically distinct. It is desired to provide a high
degree of isolation between the multiple computing
environments, and ideally it is desired to verify the
integrity of one computing environment independently of
any other computing environment, such that each computing

environment is independently trustworthy.

A problem has been identified in that it is desired to
confirm that the supplied integrity information
corresponds to an expected computing environment (and is
not based on some other subverted computing environment).
An aim of the present invention is to provide a method for
verifying the integrity of a computing environment,
including verifying that the integrity information
provided corresponds to the expected computing
environment . Another aim is to provide a computing

platform for performing the method.

According to a first aspect of the present invention

there is provided a method for verifying integrity of a

10

15

20

25

30

computing environment, comprising the steps of: identifying
a computing environment which it is desired to verify;

obtaining an integrity metric associated with the

metric with a signature key, to form a signed integrity
metric, the signed integrity metric including information
identifying a computing environment; and transmitting the

signed integrity metric to a challenger.

The method preferably is initiated by the step of
receiving an integrity challenge from the challenger.
Preferably, the integrity challenge includes challenge
information identifying a computing environment which it
is desired to verify. Preferably, the <challenge
information includes a computing environment identity
label. Preferably, the identity label is an external
computing environment identity label. Conveniently the
method includes the initial step of supplying the external
computing environment identity label to the challenger,

prior to the challenger issuing the identity challenge.

In one preferred embodiment the integrity challenge is
received from the challenger and passed through a
computing environment, suitably toward a component of a
host computing platform which is arranged to co-operate in
the wverifying method. In this case, the information
identifying a computing environment which is returned as
part of the signed integrity metric comprises information
identifying the challenging computing environment which
passes the integrity <challenge and/or information
identifying a computing environment which it is desired to
verify. That is, the challenging computing environment

passing the challenge can be identified, and this

10

15

20

25

30

challenging computing environment can be the same as or
different to a computing environment which it is desired
to verify. Suitably, an identity 1label is wused to
identify the challenging computing environment and/or the
computing environment to verify. Preferably, the identity
label is an internal computing environment identity label,
for use within the host computing platform. Conveniently,
the method includes an initial step of applying the
internal computing environment identity label to the
computing environment, prior to receiving the integrity

challenge.

The method preferably includes checking that an
identity label received in the integrity challenge
corresponds to an identity label of a computing
environment passing the integrity challenge. Preferably,
the method includes confirming that a computing
environment passing the integrity challenge has
authorisation to request verification of a computing
environment which it is desired to verify. Preferably,
the confirming step comprises restricting authorisation of
a computing environment passing a challenge only to
request verification of that computing environment.
Alternatively, the confirming step comprises selectively
restricting the computing environment passing the
integrity challenge to request verification of another

computing environment.

Preferably, the step of identifying a computing
environment which it is desired to verify uses identity
information supplied in an integrity challenge from a
challenger and/or wuses identity information about a

computing environment which passes the integrity

10

15

20

25

30

challenge. preferably, the identity information is an
external computing environment label or an internal

computing environment label.

In a second embodiment the method comprises the step
of selecting one of a plurality of signature keys, the one
signature key being associated with the identified
computing environment. Preferably, the signing step
comprises signing the integrity metric with the selected
signature key. Conveniently, the method includes an
initial step of supplying a verifying signature key to a
challenger. Preferably, the verifying signature key and
the signing signature key form a complimentary public key

and private key pair.

In a particularly preferred embodiment, the signing
step includes forming the signed integrity metric with an
external data field, the external data field including the
information identifying a computing environment.
Suitably, the method includes the step of receiving an
integrity challenge from a challenger, the integrity
challenge including external data; and forming a hash
function of the received external data and the information
identifying the computing environment, to form the
external data field of the signed integrity metric.
Preferably, the information comprises a computing
environment identity label of the computing environment
associated with the integrity metric. Preferably, the
computing environment identity label is an internal
computing environment identity label or an external
computing environment identity label. Additionally or
alternatively, the information includes a challenging

identity label of a computing environment which passes an

10

15

20

25

30

integrity challenge. Preferably, the challenging identity
label is an internal computing environment identity label
or an external computing environment identity label.
Preferably, the information includes both a computing
environment identity label identifying a computing
environment associated with the integrity metric, and a
challenging computing environment label identifying a
computing environment which passes an integrity challenge.
Preferably, the information includes an identity of a
virtual machine application running in or forming the
computing environment. Preferably, the information
includes an identity of a guest operating system provided
by the wvirtual machine application. Preferably, the
information includes an identity of at least one process

running on the guest operating system.

In each of the above embodiments, the method
preferably includes the final step of verifying the signed
integrity metric received by the challenger. Preferably,
the verifying step includes verifying the signature of the
signed integrity metric. Preferably, verifying the
signature uses a verifying signature key. When applied to
the second preferred embodiment, preferably, the verifying
signature key and the signing signature key form a

corresponding public key and private key pair.

Preferably, the verifying step includes verifying the
information identifying a computing environment.
Preferably, this step includes verifying an identity of a
computing environment associated with the integrity metric
of the signed integrity metric. Also, the verifying step
can include verifying an identity of a challenging

computing environment which passes an integrity challenge.

10

15

20

25

30

Preferably, the verifying step uses an internal identity
label and/or an external identity label associated with a

computing environment.

Preferably, the verifying step includes verifying the
integrity metric of the signed integrity metric.
Preferably, the verifying step comprises comparing the

signed integrity metric against expected values.

Suitably, the or each computing environment is one of
a plurality of computing environments provided on a single
host computing platform. Preferably, the computing
environment which it is desired to verify and, optionally,
the computing environment passing the integrity challenge,
are each one of a plurality of computing environments
provided on the single host computing platform.
Preferably, the integrity metric or group of integrity
metrice comprise one or more integrity metric values each
stored in a platform configuration register of a trusted
device. pPreferably, the method includes an initial step
of forming an integrity metric or group of integrity
metrics for the or each computing environment, and storing
the integrity metric or group of integrity metrics as one
or more integrity metric values each in a platform

configuration register of a trusted device.

According to a second aspect of the present invention
there is provided a computing platform supporting at least
one computing environment, the computing platform
comprising: a trusted device unit arranged to identify a
computing environment which it is desired to verify,
obtain an integrity metric associated with the identified

computing environment, sign the integrity metric with a

10

15

20

25

30

signature key, to form a signed integrity metric, the
signed integrity metric including information identifying
a computing environment, and transmitting the signed

integrity metric to a challenger.

Preferably, the trusted device wunit comprises a
trusted device and a trusted device driver. Preferably,
the trusted device driver is arranged to receive an
integrity challenge from a challenger, identify a
computing environment which it is desired to verify, and
transmit the signed integrity metric to the challenger;
and the trusted device is arranged to retrieve a stored
integrity metric associated with the identified computing
environment, and sign the integrity metric with the
signature key. Preferably, the trusted device is arranged
to store a plurality of signature keys, and is arranged to
gselect one of the signature keys associated with the

identified computing environment.

Preferably, the trusted device is arranged to form the
signed integrity metric including an external data field
which includes the information identifying a computing
environment. Preferably, the trusted device receives the
integrity challenge including an external data from the
challenger, and is arranged to form the external data
field of the signed integrity metric using a hash function
of the received external data and the information
identifying a computing environment. Preferably, the
computing platform supports a plurality of computing
environments, and one of the plurality of computing

environments is identified.

10

15

20

25

30

For a better understanding of the invention, and to
show how embodiments of the same wmay be carried into
effect, reference will now be made, by way of example, to

the accompanying diagrammatic drawings in which:

Figure 1 shows a preferred computing platform;

Figure 2 shows a preferred computing environment;

Figure 3 shows an example trusted device;

Figure 4 shows a method for obtaining integrity

metrics for multiple trusted computing environments;

Figure 5 shows a method for verifying multiple trusted

computing environments;

Figure 6 shows a preferred computing platform

communicating with a user; and

Figure 7 shows a preferred method for verifying a

computing environment.

The preferred embodiment of the present invention will
be particularly described and explained with reference to
Figure 7 below. However, as background to the present
invention and to show the preferred embodiment in
combination with other aspects of the invention in a
preferred practical application, the following description

is provided with reference to Figures 1 to 6.

Figure 1 shows a computing platform 20 employed in

preferred embodiments of the present invention. The

10

15

20

25

30

computing platform 20 comprises hardware 21 operating
under the control of a host operating system 22. The
hardware 21 may include standard features such as a
keyboard, a mouse and a visual display unit which provide
a physical user interface 211 to a local user of the
computing platform. The hardware 21 also suitably
comprises a computing unit 212 comprising a main
processor, a main memory, an input/output device and a
file storage device which together allow the performance
of computing operations. Other parts of the computing
platform are not shown, such as connections to a local or
global network. This is merely one example form of
computing platform and many other specific forms of

hardware are applicable to the present invention.

In the preferred embodiment the hardware 21 includes a
trusted device 213. The trusted device 213 is suitably a
physical component such as an application specific
integrated circuit (ASIC). Preferably the trusted device
is mounted within a tamper-resistant housing. The trusted
device 213 is coupled to the computing unit 212, and
ideally to the local user interface unit 211. The trusted
device 213 is preferably mounted on a motherboard of the
computing unit 212. The trusted device 213 functions to
bind the identity of the computing platform 20 to reliably
measured data that provides an integrity metric of the

platform.

Preferably, the trusted device 213 performs a secure
boot process when the computing platform 20 is reset to
ensure that the host operating system 22 of the platform
20 is running properly and in a secure manner. During the

secure boot process, the trusted device 213 acquires an

10

15

20

25

30

10

integrity metric (or a group of integrity metrics) of the
computing platform 20, such as by examining operation of
the computing unit 212 and the local user interface unit
211. he integrity metrics are then available for a user
to determine whether to trust the computing platform to
operate is a predicted manner. In particular, a trusted
computing platform 1is expected not to be subject to
subversion such as by a virus or by unauthorised access.
The user includes a local user of the computing platform,
or a remote user communicating with the computing platform
by networking (including LAN, WAN, internet and other

forms of networking).

WO 00/48063 (Hewlett-Packard) discloses an example
computing platform suitable for use in preferred
embodiments of the present invention. In this example the
trusted device 213 acquires a hash of a BIOS memory of the
computing unit 212 after reset. The trusted device 213
receives memory read signals from the main processor and
returns instructions for the main processor to form the
hash. The hash is stored in the trusted device 213, which
then returns an instruction that calls the BIOS program

and a boot procedure continues as normal.

preferably, the trusted device 213 controls the local
user interface 211 such that a local user can trust the
display of data provided on a vigual display unit.
WO 00/73913 (Hewlett-Packard) discloses an example system
for providing a trustworthy user interface by locating a
driver for the visual display unit within the trusted

device 213.

10

15

20

25

30

11

The hardware 21 may also comprise a trusted user
interface for performing secure communication with a user
device such as a smart card held by the user. The trusted
user interface allowé the wuser to perform trusted
communications with the trusted device 213 in order to
verify the integrity of the computing platform 20. The
use of a smart card or other token for trusted user
interaction is described in more detail in WO 00/54125

(Hewlett-Packard) and WO 00/54126 (Hewlett-Packard).

Figure 1 shows a user 10 such as a remote client which
is arranged to communicate with the computing platform 20,
preferably over a secure channel 30. The secure channel 30
is protected, for example, using a shared session key,
which is a secret which is known only to the computing
platform 20 and the user 10. Providing a secure channel
including generation of a shared session key will be
familiar to the person skilled in the art. Ideally, the
user 10 performs an integrity challenge to confirm that
communication is made with an expected computing platform
20, using a signature provided by the trusted device 213.

However, any suitable authentication can be employed.

The computing platform 20 provides a computing
environment 24 which gives access to resources of the
computing platform, such as processor time, memory area,
and filespace. Preferably, a plurality of discrete
computing environments 24 are provided. Each computing
environment is logically distinct, but shares access to at
least some of the resources of the computing platform with

other computing environments.

10

15

20

25

30

12

Suitably, the computing environment 24 comprises a
compartment. The actions or privileges within a
compartment are constrained, particularly to restrict the
ability of a process O execute methods and operations
which have effect outside the compartment, such as methods
that request network access Or access to files outside of
the compartment. Also, operation of the process within
the compartment is performed with a high level of
isolation from interference and prying by outside

influences.

Preferably, the compartment is an operating system
compartment controlled by a kernel of the host operating
system 22. This is also referred to as a compartmented

operating system or a trusted operating system.

Compartmented operating systems have been available
for several years in a form designed for handling and
processing classified (military) information, wusing a
containment wmechanism enforced by a kernel of the
operating system with mandatory access controls to
resources of the computing platform such as files,
processes and network connections. The operating system
attaches labels to the resources and enforces a policy
which governs the allowed interaction between these
resources based on their label values. Most compartmented
operating systems apply a policy based on the
Bell-LaPadula model discussed in the paper “Applying
Military Grade Security to the Internet” by C I Dalton and
J F Griffin published in Computer Networks and ISDN
Systems 29 (1997) 1799-1808.

10

15

20

25

30

13

The preferred embodiment of the present invention
adoptsg a simple and convenient form of operating system
compartment. Each resource of the computing platform which
it is desired to protect is given a label indicating the
compartment to which that resource belongs. Mandatory
access controls are performed by the kernel of the host
operating system to ensure that resources from one
compartment cannot interfere with resources from another
compartment. Access controls can follow relatively simple

rules, such as requiring an exact match of the label.

Examples of resources include data structures
describing individual processes, shared memory segments,
semaphores, message queues, sockets, network packets,

network interfaces and routing table entries.

Communication between compartments is provided using
narrow kernel level controlled interfaces to a transport
mechanism such as TCP/UDP. Access to these communication
interfaces is governed by rules specified on a compartment
by compartment basis. At appropriate points in the
kernel, access control checks are performed such as
through the use of hooks to a dynamically loadable
security module that consults a table of rules indicating
which compartments are allowed to access the resources of
another compartment. In the absence of a rule explicitly
allowing a cross compartment access to take place, an
access attempt is denied by the kernel. The rules enforce
mandatory segmentation across individual compartments,
except for those compartments that have been explicitly
allowed to access another compartment’s resources.
Communication between a compartment and a network resource

is provided in a similar manner. In the absence of an

10

15

20

25

30

14

explicit rule, access between a compartment and a network

regource is denied.

Suitably, each compartment is allocated an individual
gection of a file system of the computing platform. For
example, the section is a chroot of the main file system.
Processes running within a particular compartment only
have access to that section of the file system. Through
kernel controls, the process is restricted to the
predetermined section of file system and cannot escape.
In particular, access to the root of the file system is

denied.

Advantageously, a compartment provides a high level of
containment, whilst reducing implementation costs and
changes required in order to implement an existing

application within the compartment.

Referring to Figure 1, it is desired to run a process
23 in one of the computing environments 24. In practical
embodiments, many processes run on the computing platform
simultaneously. Some processes are grouped together to
form an application or service. For simplicity, a single
process will be described first, and the invention can
then be applied to many processes and to groups of

procesgsses.

Figure 2 shows a logical structure for a preferred
computing environment 24 provided by the computing

platform for running the process 23.

The process 23 runs on a guest operating system 25.

The guest operating system 25 is suitably provided by a

10

15

20

25

30

15

virtual machine application 26, The wvirtual machine
application 26 runs on the host operating system 22 and
provides an image of a computing platform, or at least
appropriate parts ﬁhereof. The virtual machine
application 26 provides the virtual guest operating system
25 such that, as far as the process 23 is concerned, the
process 23 runs on the guest operating system 25
equivalent to running on a host operating system 22. For
the purposes of the present invention, the guest operating
system 25 is preferably a replica of the host operating
system, or at least necessary ﬁarts thereof. However, it
is equally possib;e_for the virtual machine application 26
to provide a different emulated software or hardware
environment, such as a different operating system type or
version. An example virtual machine application is sold
under the trade mark VMware by VMware, Inc of Palo Alto,

California, USA.

The virtual machine application 26 assists security by
isolating the process 23 from the remainder of the
computing platform. Should problems occur during running
of the process 23 or as a result thereof, the host
operating system 22 can safely shut down the guest
operating system 25 provided by the virtual machine
application 26. Also, the virtual machine application 26
protects the host operating system 22 and hardware
resources 21 from direct access by the process 23.
Therefore, it is very difficult for the process 23 to
subvert the host operating system 22. Further, the process
23 accegses resources of the computing platform made
available through the virtual machine application 26.
Each process 23 only sees resources of the computing

platform allocated through the virtual machine application

10

15

20

25

30

16

26, such that a process 23 can be restricted to an
appropriate share of the resource of the computing
platform and cannot stop other processes having their

allocated share.

Preferably, the virtual machine application 26
providing the guest operating system 25 runs in a
compartment 220 of the host operating system 22. The
compartment confines communications and data access of the
virtual machine application. The compartment 220 provides
secure separation between applications, such that
processes are inhibited from communicating with each
other, accessing each others status, or interfering with
each other, except in accordance with strictly enforced
access controls. 1In particular, a compartment assists the
virtual machine application in resisting subversion by a

process running in that computing environment.

Referring again to Figure 2, the process 23 runs in
the computing environment 24. It is desired to confirm
the integrity of this computing environment. Also, many
similar computing environments can be provided on the
computing platform simultaneously, and it is desired to
confirm the integrity of one selected computing
environment independently of the integrity of any other
computing environment. That is, it is desired that the
multiple computing environments are independently
trustworthy. Advantageously, the use of a guest operating
system 25, preferably in combination with a compartment
220, provides a high degree of isolation between computing
environments, such that the integrity of one computing
environment is not affected by activity in any other

computing environment.

10

15

20

25

30

17

As described above, the trusted device 213 is arranged
to form an integrity'vmetric (or a group of integrity
metrics) of the host operating system 22. Also, in the
preferred embodiments of the present invention, the
trusted device 213 is arranged to obtain an integrity
metric (or a group of integrity metrics) £for each
computing environment 24. Preferably, the trusted device
213 obtains an integrity metric of the guest operating
system 25. Further, the trusted device preferably obtains
an integrity metric of the virtual machine application 26.
Each integrity metric suitably comprises one or more

separate integrity metric values.

In the preferred configuration the host operating
system 22 has direct access to the trusted device 213.
However, to improve security, processes (i.e.
applications) running on the host operating system 22 do
not have direct access to the trusted device 213.
Therefore, a trusted device driver 221 is provided,
suitably as part of the host operating system 22. The
trusted device driver 221 provides an interface available
to applications running on the host operating system 22,
including allowing results to be reported to the trusted
device 213, and allowing stored integrity metric values to

be obtained from the trusted device 213.

Figure 3 shows a simplified example of the preferred
trusted device 213. Amongst other components the trusted
device 213 comprises an addressable storage such as a
plurality of platform configuration registers (PCR8). 1In
this example eight PCRs are shown, namely PCR_0 to PCR_7

although in practice many more PCRs are available.

10

15

20

25

30

18

Suitably, each PCR stores a digest such as a 160 bit hash
value representing an integrity metric 231. A group of
PCRs form a group of integrity metrics 230. Suitably, the
trusted device driver 221 allocates a PCR, or a group ©

PCRs, to the or each computing environment 24. Therefore,
information concerning the integrity of each computing
environment is independently available from the trusted

device 213.

The stored integrity metric value 231 preferably
represents a sequence of integrity metric values obtained,
for example, by examination of the host platform 20
periodically or in response to relevant events. The old
stored integrity metric value is combined with a new
integrity metric value to produce a new updated digest of

the sequence of values.

Figure 4 shows a preferred method for obtaining
integrity metrics of a computing platform for providing

multiple trusted computing environments.

In step 401, the host operating system 22 is provided.
Suitably, this includes the steps of starting a BIOS,
starting an OS loader, and starting the host operating

system as will be familiar to the skilled person.

In step 402, a group of integrity metrics 230 for the
host operating system 22 are measured and reported to the
trusted device 213. Preferably, the trusted device 213
obtains an integrity metric for the BIOS, and preferably
also obtains an integrity metric for the 0OS loader and the
operating system software. Preferably, integrity metric

values relevant to the host operating system are stored in

10

15

20

25

30

19

a group of PCRs (or other addressable storage) such that
the integrity metrics 230 for the host operating system
are available later. Steps 401 and 402 are shown
separately for clarity. 1In practical embodiments of the
invention it will be appreciated that the integrity
metrics 230 are obtained concurrently with providing the

host 08 22.

Optionally, at step 403 additional integrity metrics
are obtained relevant to other selected elements of the
computing platform. For example, the trusted device 213
performs data event logging as described in WO 00/73880
(Hewlett-Packard). Also, the trusted device 213 may
produce a digest by applying a hash function to all or
selected data files stored on the computing platform, as
described in WO 00/73904 (Hewlett-Packard). Preferably,
at least some of the integrity metrics obtained in step
402 or step 403 are updated periodically or in response to
relevant events to confirm the current integrity status of
the host operating system and related components of the

computing platform.

In step 404, a guest operating system 25 is provided,
to form a new computing environment 24. Suitably, step
404 includes providing a virtual machine application 26

which provides the guest operating system 25.

Preferably, the step 404 includes providing the guest
operating system 25 in a compartment 220 of the host
operating system 22. Also, the step 404 preferably
includes providing a history of all processes
(applications) launched in the compartment. Here, it is

desired to record whether any other applications have been

10

15

20

25

30

20

launched alongside the virtual machine application 26
which provides the guest operating system 25.

in step 405, the trusted device 213 obtaing an
integrity metric for the computing environment 24. In
particular, the trusted device 213 obtains an integrity
metric or group of integrity metrics 230 for the guest
operating system 25, and preferably the virtual machine
application 26. The corresponding integrity metric values
231 are stored in a PCR or group of PCRs allocated to that
computing environment. Also, the step 405 preferably
includes obtaining an integrity metric for the or each
process 23 in the computing environment. Suitably, each
integrity metric is obtained by forming a digest (hash
value) of program code of a process. As will be familiar
to the skilled person, the term integrity metric can refer
to a single data item, or can refer to a metric formed
from two or more parts each of which themselves can be

considered an integrity metric.

Preferably, step 405 is repeated such that a current
integrity status of the computing environment is available
and history information is updated, periodically oxr in

response to a relevant event.

When it is desired to create or update a stored
integrity metric for a particular computing environment, a
result is reported to the trusted device driver 221 along
with information identifying that particular computing
environment, such as an arbitrary label. In one preferred
embodiment a process ID of the virtual machine application
26 is used to identify the computing environment. In

another embodiment each logical computing environment is

10

15

20

25

30

21

supplied with a secret, e.g. a secret is supplied to the
virtual machine application 26 by the trusted device
driver 221, and then the secret is subsequently used to
identify the computing environment. Suitably the
computing environment label, such as a secret, is supplied
by the host 0S 22 when the virtual machine application 26

is launched.

Referring to Figure 5, a preferred method for

verifying a computing environment will now be described.

Optionally, in step 501 a secure channel is
established for communicating with the computing platform
20. For a local user 10, a secure channel is provided
such as by using a trustworthy user interface and/or by
using a token such as a smart card. A remote user 10
establishes a secure channel 30 such as by performing
authentication of the computing platform, ideally using a
signature from the trusted device 213. Here again, the
user optionally employs trusted hardware, such as the
user’s own client platform, a PDA, mobile phone or other
device, optionally in co-operation with a smart card or
other token. bPreferably, the step 501 includes
establishing the authentication and authorisation of the

user.

In step 502, the user 10 requests demonstration of the
integrity of a computing environment 24. For example, the
user 10 issues an integrity challenge. To avoid a re-play
attack, the challenge suitably includes a random number
sequence (nonce). More detailed background information is
provided in “TCPA Specification Version 1.0” published by
the Trusted Computing Platform Alliance.

10

15

20

25

30

22

In step 503 the trusted device 213 supplies integrity
metrics associated with the host operating system 22.
Suitably, these integrity wmetrics include integrity
metrics for the BIOS, operating system loader and host
operating system, and integrity metrics formed by periodic
or event-driven checks on the host operating system and

related components of the computing platform.

In step 504, the trusted device 213 supplies an
integrity metric associated with the selected computing
environment. Preferably, the step 504 includes supplying
integrity metrics associated with the virtual machine
application 26, the guest operating system 25, the process
23, and a history of periodic or event-driven checks made

on the integrity status of the computing environment 24.

The step 504 preferably includes supplying a history
of any applications launched by the host operating system
in the same compartment as the guest operating system,

i.e. alongside the virtual machine application 26.

Preferably, in step 505 the integrity metric for the
host operating system 22 and the computing environment 24
are compared against expected values, such as by using a
certificate issued by a trusted party that is prepared to
vouch for the integrity of the computing platform. If the
comparison is successful, the computing environment is

considered to be a trusted computing environment.

The apparatus and methods described above provide
integrity information concerning a selected one of the

multiple computing environments. However, a problem has

10

15

20

25

30

23

been identified in that it is desired to confirm that the
supplied integrity metrics correspond to an expected
computing environment (and are not based on some other
computing environment). In particular, it is desired to
confirm that a process 23 is running in an expected
computing environment 24, by receiving integrity
information identified as being specific to that computing

environment.

Figure 6 shows the preferred computing platform of
Figure 2 communicating with a user 10, to perform the
method of Figure 5. As discussed above in step 502, the
user 10 issues a request for verification of the integrity
of a computing environment 24, suitably in the form of an

integrity challenge.

In a first example, the integrity challenge is issued
direct to a component of the host operating system 22,
such as the trusted device driver 221. In this
embodiment, the integrity challenge includes information
previously given to the user 10, such as an arbitrary
label, which allows the trusted device driver 221 to
establish the relevant computing environment 24. The
external computing environment identity label given to the
user 10 may be the same as, or complementary to, any
information held internally identifying the computing
environment. Suitably, the external identity information
supplied as part of the integrity challenge is matched
against a list of computing environments currently
provided on the host operating system, this step ideally
being performed by the trusted device driver 221.
Suitably, there is a one to one relationship between the

compartment identity label as given to the user 10, and

10

15

20

25

30

24

any compartment identity label used internally in the host
computing platform 20. In step 504 the trusted device
213 supplies an integrity metric or group of integrity
metrics 230 associated with the identified cowputing
environment 24. Suitably, a response is returned directly

to the challenging user 10.

In a second preferred example, an indirect integrity
challenge is issued from the user 10 and is received by a
component of the relevant computing environment 24, such
as the process 23 which suitably forms part of an
application running in that computing environment 24. The
integrity challenge 1is passed from the computing
environment 24 to the trusted device driver 221. In this
case, the trusted device driver 221 can readily establish
the identity of the computing environment 214 passing the
integrity challenge. In one example embodiment the
computing environment 24 supplies an internal computing
environment identity label such as a process ID of the
virtual machine application 26, or a secret previously
given to the virtual machine application 26 by the host
operating system 22. In step 504 the trusted device 213
supplies integrity metrics associated with that computing
environment 24. Suitably, a response is returned to the
challenging user 10 indirectly through components of the
computing environment 24 which received the indirect
integrity challenge. Alternatively, the response can be

sent direct to the challenging user 10.

Figure 7 provides an overview of preferred methods for
verifying that integrity information corresponds to an
expected computing environment. The following preferred

methods can be used individually or in combination.

10

15

20

25

30

25

Step 701 comprises retrieving integrity metric values
stored within the trusted device 213. Suitably, the
integrity metric values are retrieved from one or more
PCRs. These integrity metric values correspond to the
integrity metric or group of integrity metrics for a
particular computing environment. Optionally, as
described above, other integrity metrics or groups of
integrity metrics are obtained for the host operating
system and other selected parts of the computing platform,

as desired.

Step 702 comprises signing the integrity metrics or
group of integrity metrics (e.g. combined to form a
digest) using a signature key held by the trusted device,
to form a signed integrity metric. The signed integrity
metric includes information identifying a computing

environment.

In step 703 the signed integrity metric is transmitted

to the challenger, i.e. the user 10.

In step 704 the challenger verifies the received
signed integrity metric. Suitably, the challenger holds a
verifying signature key which corresponds to the signing
signature key used to the sign the integrity metric. The
challenger verifies the signature, and can then check the

integrity metric values.

In a first preferred method for passing computing
environment identity information, the signed integrity
metric includes an external data field which is adapted to

identify the computing environment. The external data

10

15

20

25

30

26

field is intended to minimise the risk of a replay attack
by returning an external data value to the challenging
user 10, the external data value being generated
originally by the user 10 and supplied to the computing
platform when issuing the integrity challenge. In the
most common examples this external data value is a random
number (nonce), or is a time value or a serial number
allocated to the wuser. In this first embodiment the
external data field is replaced by a hash function
combining the supplied external data with information
identifying the computing environment. For example, the

signature in step 702 is formed with:

externaldata = h(supplied_externaldata, compartment_ID),

where “h” 1is a hash function. Suitably, the user 10
performs a checking process of the hash function in order
to retrieve the supplied externaldata and compartment_ ID
fields from the externaldata field in the received
integrity information. The supplied externaldata field
can be used as in the established system as a defence
against a replay attack, and the compartment_ID field is
used to identify the received integrity information as
being specific to a particular computing environment. The
compartment ID field i1is compared against an expected
value, to confirm that the received integrity information
corresponds to the expected computing environment. That
is, the integrity information provided to the wuser is
identified as being specific to the computing environment

of interest to the user.

As mentioned above with reference to Figure 6, an

integrity challenge can either be issued directly to a

10

15

20

25

30

27

component of the host operating system as in the first
example, or indirectly through a particular computing

environment as in the second example.

Where the challenge is issued directly, then suitably
the user supplies the external computing environment
identity label as part of the integrity challenge, and the
compartment ID field is used to return the supplied
external label to the user, such that the user can then
confirm that the supplied integrity information

corresponds to an expected computing environment.

Where the integrity challenge is issued indirectly
through a computing environment 24, as in the second
example of Figure 6, then the user 10 usually does not
need to supply an external 1label. In this case, the
internal computing environment identity label held by the
computing environment is used to form the compartment ID
field. The user 10 ideally has been previously supplied
with the internal label for the computing environment of
interest, and compares the previously supplied internal
identity label against the content of the compartment_ ID
field, to determine that the supplied integrity
information corresponds to the expected computing
environment. Alternatively, the wuser 10 has been
previously supplied with an external label for the
computing environment of interest. The computing
environment passing the indirect integrity challenge
provides the internal identity label, and the
compartment ID field is completed with the external label
corresponding to that computing environment. The user 10

can then confirm that the external label provided in the

10

15

20

25

30

28

compartment_ID field matches the expected computing

environment.

is added by the trusted device driver 221. 1In this case,
the user 10 sends only the supplied externaldata field
(for example a nonce). After the trusted device driver
221 recognises the identity of the computing environment
24, the corresponding compartment ID is placed in the hash
function to make the externaldata field. The trusted
device 213 signs the externaldata field as received from
the trusted device driver 221, along with the
corresponding integrity metrics for that computing

environment, to form the signed integrity information.

The hash function forming the external data field is
optionally extended to include other desired identity
information concerning the computing environment 24. In
one example the compartment ID field comprises a
process_ID for identifying the process 23, and a VM_ID for

identifying the virtual machine application 26.

As a further refinement of this first preferred
embodiment, the external label and the internal label can
be employed in co-operation. Suitably, the integrity
challenge issued by the user includes the external label.
Suitably, the trusted device driver 221 matches the
external label against the internal label of the computing
environment passing the integrity challenge. If they
match (i.e. both the internal label and the external label
correspond to the same computing environment), then the
trusted device driver 221 can be confident that the

integrity challenge was received in the computing

10

15

20

25

30

29

environment expected by the user 10, and will pass the
challenge to the trusted device 213 for signing.
Otherwise, the challenge is rejected, the user 10 will
then not receive the expected integrity information, and
knows that the challenge was not issued to the expected

computing environment.

The first preferred embodiment of the present
invention can also be uged to pass a challenger ID label,
which identifies a computing environment receiving the
user integrity challenge. This embodiment is particularly
useful where, for example, the user issues an integrity
challenge to a first computing environment, requesting
integrity metrics about a second computing environment
(the second computing environment being guitably
identified by an internal or external label). In the
response, the user 10 receives a challenger_ID label
confirming the identity of the computing environment to
which the challenge was issued, which is expected to
correspond to the first computing environment; and
receives a compartment ID label identifying the computing
environment relevant to the supplied integrity metric or
group of integrity metrics, here expected to be the second
computing environment. Hence, the user 10 is able to
build up a more comprehensive picture of the computing
environments running on the computing platform, and can
identify and verify computing environments other than the
computing environment to which the challenge is issued.
In some circumstances the user 10 may only desire
confirmation of the challenger ID label, such that the
compartment ID label is not required and need not be

supplied.

10

15

20

25

30

30

In a second preferred method for passing computing
environment identity information, the trusted device 213
uses a different signature key for each computing

environment. In step 7

01, the integri
integrity metrics for a particular computing environment
of interest are obtained, such as by using an internal
label or supplied external label as mentioned above.
Suitably, the trusted device driver 221 establishes a
signature key pair associated with the selected computing
environment, preferably a private signature key which
corresponds to a public verification key. The private
signature keys are each held by the trusted device 213,
and the trusted device driver 221 identifies to the
trusted device 213 which of the private signature keys
should be used to sign the integrity metrics. Suitably,
the trusted device 213 stores a plurality of private
signature keys, each associated with one of the computing
environments 24. In step 702, the integrity metrics are
signed by the trusted device 213 with the private
signature key unique to the selected computing environment
24. In step 704, the challenging user 10 uses the
expected corresponding public verification key to verify
the signed data. The verification will fail if the user
does not receive signed integrity information concerning

the expected computing environment.

As an option for either of the methods just discussed
with reference to Figure 7, in some circumstances it is
desired to improved still further a user’s confidence that
the integrity metric or group of integrity metrics
received in a response correspond to an expected computing
environment. This aspect of the invention is particularly

applicable to the situation where an indirect integrity

10

15

20

25

30

31

challenge is issued to a computing environment 24.
Preferably, the trusted device driver 221 enforces an
authorisation policy, which restricts the type of
integrity response which a computing environment is able
to request. That is, when passing the indirect integrity
challenge requesting integrity information about a
particular computing environment, the trusted device
driver 221 enforces an authorisation policy to confirm
that the computing environment passing the challenge is
authorised to access integrity information corresponding
to the requested computing environment. As a specific
example, a strict authorisation policy is enforced, such
that each computing environment 24 can only successfully
pass an integrity challenge requesting integrity
information about that computing environment. The
authorisation policy prevents the integrity challenge
obtaining integrity information about any other computing
environment. Therefore, when the user 10 successfully
receives an integrity response, the user is confident that
the received integrity information corresponds to the

computing environment to which the challenge was issued.

The preferred methods of Figure 7 are each
particularly intended for use with a computing environment
ags discussed above with reference to Figures 1 to 5.
However, the methods of Figure 7 are applicable to any

suitable form of computing environment.

In a further preferred aspect that can be applied to
any of the methods described herein, the guest operating
system 25 is itself a compartmented operating system.
Multiple applications can be run on the guest operating

system 25, each within a separate compartment of the guest

10

15

20

25

30

32

operating system. This embodiment enables each computing
environment 24 to be subdivided, and the methods described
above are applied to the subdivided computing

environments.

Advantageously, a trusted computing environment is
provided by using a trusted device to verify that a guest
operating system has booted in a trusted manner. By
repeating this process and running multiple guest
operating systems, multiple trusted computing environments
are provided. A first application can run in a first of
the computing environments, whilst a second application
can run in a second of the computing environments, where
the first and second applications are mutually
incompatible or one does mnot trust the other. The
preferred implementation using a virtual machine
application in combination with a compartment allows each

computing environment to be independently trusted.

It is very difficult for a process running in one
computing environment to affect the integrity of any other
computing environment. Advantageously, a user can verify
the integrity of one computing environment without
reference to the integrity of any other computing
environment. In the preferred implementation each
computing environment has an associated set of one or more
integrity metrics which do not include or depend on

information about any other computing environment.

Advantageously, a method has been described whereby an
integrity response is provided allowing the user
(challenger) to confirm that the integrity information

corresponds to the expected computing environment. By

33

combining this method with the other methods described
above it is very difficult for a computing environment to
be subverted and for incorrect integrity information to be

supplied to the user.

10

15

20

25

30

34

Claims

1. A methnd for veri
thod Ior ver

environment, comprising the steps of:

identifying a computing environment which it is

desired to verify;

obtaining an integrity metric associated with the

identified computing environment;

signing the integrity metric with a signature key, to
form a signed integrity metric, the signed integrity
metric including information identifying a computing

environment; and

transmitting the signed integrity metric to a

challenger.

2. The method of claim 1, comprising receiving an

integrity challenge from the challenger.

3. The method of claim 2, wherein the integrity
challenge includes challenge information identifying a

computing environment which it is desired to verify.

4. The wmethod of claim 3, wherein the challenge
information includes a computing environment identity

label.

5. The method of claim 4, wherein the identity 1label

is an external computing environment identity label.

10

15

20

25

30

35

6. The method of claim 5, comprising supplying an
external computing environment identity label to a

challenger, prior to the receiving step.

7. The method of claim 2, comprising passing the

integrity challenge through a computing environment.

8. The method of claim 7, wherein the information
identifying a computing environment comprises information
identifying the challenging computing environment which
passes the integrity <challenge and/or information
identifying a computing environment which it is desired to

verify.

9. The method of claim 8, wherein the information
comprises an identity 1label for identifying the
challenging computing environment and/or an identity label

for identifying the computing environment to verify.

10. The method of claim 9, wherein the or each
identity label is an internal computing environment

identity label.

11. The method of claim 10, comprising applying the
internal computing environment identity 1label to the
computing environment, prior to receiving the integrity

challenge.

12. The method of claim 2, comprising checking that an
identity 1label received in the integrity challenge
corresponds to an identity 1label of a challenging

computing environment passing the integrity challenge.

10

15

20

25

30

36

13. The method of claim 2, comprising confirming that
a computing environment passing the integrity challenge

has authorisation to request verification of a computing

g
environment which it is desired to verify.

14. The wmethod of claim 13, wherein the confirming
step comprises restricting authorisation of a computing
environment passing a challenge only to request

verification of that computing environment.

15. The method of claim 13, wherein the confirming
step comprises selectively restricting the computing
environment passing the integrity challenge to request

verification of another computing environment.

16. The method of claim 1, wherein the identifying
step uses identity information supplied in an integrity
challenge from a challenger and/or uses identity
information about a computing environment which passes the

integrity challenge.

17. The method of claim 16, wherein the identity
information is an external computing environment label or

an internal computing environment label.

18. The method of claim 1, comprising selecting one of
a plurality of signature keys, the one signature key being

associated with the identified computing environment.

19. The method of claim 18, wherein the signing step
comprises signing the integrity metric with the selected

signature key.

10

15

20

25

30

37

20. The method of claim 19, comprising supplying a

verifying signature key to a challenger.

21. The method of claim 20, wherein the verifying
signature key and the signing signature key form a

complimentary public key and private key pair.

22. The method of c¢laim 1, wherein the signing step
includes forming the signed integrity metric with an
external data field, the external data field including the

information identifying a computing environment.

23. The method of claim 22, comprising receiving an
integrity challenge from a challenger, the integrity
challenge including external data; and forming a hash
function of the received external data and the information
identifying the computing environment, to form the

external data field of the signed integrity metric.

24. The method of claim 22, wherein the information
comprises a computing environment identity label of the
computing environment associated with the integrity

metric.

25. The method of claim 24, wherein the computing
environment identity label is an internal computing
environment identity label or an external computing

environment identity label.

26. The method of claim 22, wherein the information
includes a challenging identity label of a computing

environment which passes an integrity challenge.

10

15

20

25

30

38

27. The method of claim 26, wherein the challenging

identity 1label is an internal computing environment

R .

Ly
identity label.

P 112 e mam i i
ident label or an external computing environment

28. The method of claim 22, wherein the information
includes both a computing environment identity label
identifying a computing environment associated with the
integrity metric, and a challenging computing environment
label identifying a computing environment which passes an

integrity challenge.

29. The method of claim 22, wherein the information
includes an identity of a virtual machine application

running in the computing environment.

30. The method of claim 29, wherein the information
includes an identity of a guest operating system provided

by the virtual machine application.

31. The method of claim 30, wherein the information
includes an identity of at least one procesg running on

the guest operating system.

32. The method of claim 1, comprising verifying the

signed integrity metric received by the challenger.

33. The method of claim 32, wherein the verifying step
includes verifying the signature of the signed integrity

metric.

10

15

20

25

30

39

34. The method of claim 33, wherein verifying the

signature uses a verifying signature key.

35. The method of claim 34, wherein the verifying
signature key and the signing signature key form a public

key and private key pair.

36. The method of claim 32, wherein the verifying step
includes verifying the information identifying a computing

environment.

37. The method of claim 36, including verifying an
identity of a computing environment associated with the

integrity metric of the signed integrity metric.

38. The method of claim 36, including verifying an
identity of a challenging computing environment which

passes an integrity challenge.

39. The method of claim 36, wherein the verifying step
uses an internal identity 1label and/or an external

identity label associated with a computing environment.

40. The method of claim 32, including verifying the

integrity metric of the signed integrity metric.

41. The method of claim 32, wherein the verifying step
comprises comparing the signed integrity metric against

expected values.

42. The wmethod of claim 1, wherein the computing
environment is one of a plurality of computing

environments provided on a single host computing platform.

10

15

20

25

30

40

43 . The method of claim 42, wherein the obtaining step
comprises retrieving a stored integrity metric or group of
integrity metrics associated with the identified computing

environment.

44 . The method of claim 42, wherein the integrity
metric or group of integrity metrics comprise one or more
integrity metric values each stored in a platform

configuration register of a trusted device.

45, The method of c¢laim 42, comprising forming an
integrity metric or group of integrity metrics for the
each computing environment, and storing the integrity
metric or group of integrity metrics as one oOr more
integrity metric values each in a platform configuration

register of a trusted device.

46. A computing platform supporting at least one

computing environment, the computing platform comprising:

a trusted device unit arranged to identify a computing
environment which it is desired to wverify, obtain an
integrity metric associated with the identified computing
environment, sign the integrity metric with a signature
key to form a signed integrity metric, the signed
integrity metric including information identifying a
computing environment, and transmitting the signed

integrity metric to a challenger.

47. The computing platform of claim 46, wherein the
trusted device unit comprises a trusted device and a

trusted device driver.

10

15

20

25

30

41

48. The computing platform of claim 47, wherein the
trusted device driver is arranged to receive an integrity
challenge from a challenger, identify a computing
environment which it is desired to verify, and transmit
the signed integrity metric to the challenger; and the
trusted device is arranged to retrieve a stored integrity
metric associated with the identified computing
environment, and sign the integrity metric with the

signature key.

49. The computing platform of claim 48, wherein the
trusted device signs the integrity metric with a signature

key associated with the identified computing environment.

50. The computing platform of claim 49, wherein the
trusted device is arranged to store a plurality of
signature keys, and is arranged to select one of the
signature keys associated with the identified computing

environment.

51. The computing platform of claim 48, wherein the
trusted device is arranged to form the signed integrity
metric including an external data field which includes the

information identifying a computing environment.

52. The computing platform of claim 51, wherein the
trusted device receives the integrity challenge including
an external data from the challenger, and is arranged to
form the external data field of the signed integrity
metric using a hash function of the received external data

and the information identifying a computing environment.

10

15

42

53. The computing platform of claim 46, wherein the
computing platform supports a plurality of computing
environments, and one of the plurality of computing

environments is identified.

54. A method for verifying a computing environment,
substantially as hereinbefore described with reference to

Figure 7 of the accompanying drawings.

55. A computing platform substantially as hereinbefore
described with reference to Figure 6 and 7 of the

accompanying drawings.

£y

\ /

gﬁ
4‘(

o % Ns o
O‘?{% Oiﬁce -5 INVESTOR IN PEOPLE
Chrp s S
Application No: GB 0114895.6 M2 Examiner: D Midgley
Claims searched: 1-55 Date of search: 28 February 2002

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.T): G4A AAP
Int Cl1 (Ed.7): GO6F 1/00,9/455,12/14
Other: ONLINE:WPLEPODOC,JAPIO, TDB,INSPEC,XPESP

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
A EP 1030237 Al (HEWLETT PACKARD) See, for example, L46
column 9, lines 30-35 ’
A | WO 00/48063 A1 (HEWLETT PACKARD) See, for example, page .
18, lines 6-13
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

