WO 01/73610 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 October 2001 (04.10.2001)

PCT

(10) International Publication Number

WO 01/73610 Al

(51) International Patent Classification’:
(21) International Application Number:

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
09/534,472

GO6F 17/30 (74)

PCT/US01/09182

81

22 March 2001 (22.03.2001)

English

English

84)

24 March 2000 (24.03.2000) US

(71) Applicant: BITMOBILE TECHNOLOGIES [US/US];
225 Woodlawn Avenue, Hubbard Woods, IL 60093 (US).

(72) Inventor: KULYUKIN, Vladimir, A.; Apt. 515, 1642

East 56th Street, Chicago, IL 60637 (US).

Agent: WHITE, Jason, C.; Brinks Hofer Gilson & Lione,
P.O. Box 10087, Chicago, IL. 60610 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™M, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR EMBEDDED DISTRIBUTED INFORMATION RETRIEVAL IN A FREE-TEXT AP-

PLICATION ENVIRONMENT
(57) Abstract: An embedded information
@wo 122, retrieval system (100) including an embedder
KEYBOARD SPEECH (104), a free-text parser (110), a query engine
100 DEVICE (112), a meta search engine (116) and a
eedback retrieval manager R en the
/ feedback retrieval ger (118). When th
D system is embedded in a text application, the
- [SCarmR free-text parser (110) takes samples of the text
EMBEDDER APPLICATION f24 supplied by the user and segments the samples
~toa into sentences. The sentences are ranked
by their content. The top content-bearing
sentences are supplied to the query generator
to be converted into queries for the query
FREE-TEXT
‘ 1o~ PARSER ’m‘m‘;ﬁm dispatcher. For each query, the query dispatcher
identifies the relevant distributed information
sources (114) submits the query to them and
B’”‘» waits for retrievals. The retrievals are passed to
ey the retrieval manager (118) and saved locally.
JoX Ty QUERY / User feedback is used by the retrieval manager
ENGINE 5 - . :
PROFILE —8' 1055 (118) persistently and incrementally to improve
r \ retrieval accuracy.
\8_ 106
1k
e N
RETRIEVAL {1~ METASEARCH
MANAGER s ENGINE

S o

| mFORMATION SOURCES |

wO 01/73610 A1 I HIID 00 OO0 0O A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/73610 PCT/US01/09182

SYSTEM AND METHOD FOR EMBEDDED DISTRIBUTED
INFORMATION RETRIEVAL IN A
FREE-TEXT APPLICATION ENVIRONMENT

MICROFICHE/COPYRIGHT REFERENCE
A Microfiche Appendix is included in this application (157 frames,

2 sheets) that contains material which is subject to copyright protection. The

- copyright owner has no objection to the facsimile reproduction by anyone of the

Microfiche Appendix, as it appears in the Patent and Trademark Office patent files

or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

The integration of document processing, query generation and user
feedback continues to challenge information retrieval (IR) technologies. While
search portals that are readily accessible on the Internet and corporate intranets
remain among the most successful information retrieval applications, their ability
to generate queries and utilize user feedback has some limitations. For example,
these search portals typically require that users state their information needs in
explicit queries. While this rigid protocol may benefit information technology
professionals, lay users have difficulty formulating and satisfying their
information needs through explicit queries.

In addifion, the query processing mechanism is typically the same for all
users, and does not allow fast and intuitive customization. Feedback is obtained
through continuous solicitation of relevance judgments, which disrupts many
users’ information seeking behaviors and subsequently discouréges them from
either using the search portals or providing feedback. Even when provided,
feedback is commonly utilized in the query space alone. Consequently, the search
portals’ behavior remains the same over multiple interactions.

While the search portals allow users to perform searches on different topics
over the Internet, corporate intranets, and private databases, they neither support

nor integrate with document processing. Thus, to perform a search relevant to the

10

15

20

25

30

WO 01/73610 PCT/US01/09182

document at hand, users must disengage from document processing to use a
different application. On the other hand, current text editing and word processing
applications allow users to create documents about any topic or issue, but lack the
means to integrate document creation with simultaneous retrieval of relevant
information.

Therefore, what is lacking in the art is the integration of document
processing, query generation and feedback in an application-embedded distributed
IR system. The implementation of such a system for text processors would make
IR transparent yet responsive to the needs of common computer users. What is
needed 1s a non-intrusive, feedback-sensitive IR system that users can embed into
their applications to tap into and monitor information sources while still engaged
in routine usage of those applications. Such applications include text processing,
spreadsheets and other commonly used software. The need for such a system is
motivated by a growing number of information sources with a wealth of data,
particularly over the Internet, but with few tools to timely and efficiently put the

data to use.

SUMMARY OF THE INVENTION

In view of the above, a system and a method are presented for application-

embedded information retrieval from distributed free-text information sources. An

~ application’s usage is sampled by an embedded IR system. Samples are converted

into queries to distributed information sources. Retrieval is managed and adjusted
through a user customized interface. The IR system is.preferably embedded in a
text processor.

A system for embedded distributed information retrieval includes a module
for embedding a distributed information retrieval system in a computer application
program. A free-text parser is coupled to the application program. The free-text
parser is operative to receive continuous scheduled reads of textual information
from the application program, parse the textual information into sentences, and
rank the sentences by their content-bearing capacities. A query engine is coupled

to receive free-text sentences and generate structured queries in response thereto.

10

15

20

25

30

WO 01/73610 PCT/US01/09182

The query engine includes a semantic network processor program, and is coupled
to at least one knowledge base. A metasearch engine is coupled to receive and
submit the structured queries to at least one information source. A retrieval
manager is coupled to the metasearch engine. The retrieval manager receives the
retrieved links associated with the structured queries, and ranks and filters the
retrieved links based upon predefined criteria.

A method for generating structured queries in an embedded distributed
information retrieval environment includes receiving continuous scheduled reads
of textual information, and parsing the textual information into sentences. The
found sentences are ranked by their content-bearing capacities based on their
terms, i.e., words and phrases. Structured queries are then generated using a
semantic network processor program. The structured queries are submitted to at
least one information source. Retrieved links associated with the structured
queries are received. The retrieved links are ranked and filtered based upon
predefined criteria. '

The present invention accordingly provides the integration of document
processing, query generation and feedback in an application-embedded distributed
IR system. The presently preferred implementation is to embed such a system in a
text processor application, but other application programs that include textual or
numeric da‘a can readily take advantage of the benefits of the invention. These
benefits include a non-intrusive, feedback-sensitive IR system that users can use to
automatically tap into information sources while still engaged in routine usage of
the underlying application program. By automatically generating structured
queries in the background, such a system allows periodic access to the growing
number of information sources provided over the Internet, as well as on
proprietary and intra-corporate data sources. The frequency of query generation
and the relevance of retrieved information are controlled by the user to tailor the
information retrieval process to the user’s precise needs and desires.

These and other features and advantages of the invention will become

apparent upon a review of the following detailed description of the presently

10

15

20

25

WO 01/73610 PCT/US01/09182

preferred embodiments of the invention, when viewed in conjunction with the

appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system block diagram showing the embedded information
retrieval system of the invention.

FIG. 2 is a flow chart showing one presently preferred text segmentation
process. '

FIG. 3 is a flow chart showing one presently preferred weight assignment
process.

FIG. 4 is a flow chart showing one presently preferred method of automatic
query generation.

FIG. 5 is a flow chart showing one presently preferred metasearch engine.

FIG. 6 is a flow chart showing one presently preferred retrieval manager

process.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED
EMBODIMENTS OF THE INVENTION

Reference is now made to the drawings, where FIG. 1 is a block diagram of
a system 100 for embedded information retrieval in a distn'buted free-text
application environment. The system 100 becomes embedded in an application
102 by the embedding module 104. The embedding happens through source
subscription and knowledge base selection. During the source subscription stage,
the user selects distributed sources from which information is to be retrieved. For
example, the user selects public or private search portals. During the knowledge
base selection stage, the user selects a knowledge base 106a-c on a specific area of
expertise. A knowledge base is a semantic network of concepts organized in terms
of abstraction and packaging relations. For example, a financial planner selects a
knowledge base on mutual funds. The information specified by the user during
the source subscription and knowledge base selection is stored in a user

profile 108.

10

15

20

25

30

WO 01/73610 PCT/US01/09182

In the preferred embodiment of the invention, the application 102 in which
the system 100 becomes embedded is any application that allows the user to enter
free text through keyboard 120 or voice, e.g., text editors or text editors coupled
with speech input and speech recognition devices 122. Input data to the
system 100 comes from existing free-text documents, or may come simultaneously
as the documents or files are being created or dictated. A free-text parser 110
takes samples of incoming free text on a schedule preferably specified by the user.
The schedule can be, for example, every one or five minutes or as much as hourly,
daily, weekly, monthly, etc. The user also specifies whether the samples are taken
from the existing documents, or simultaneously as the documents are being
created. In an alternate embodiment, input data can be scanned into the system
100 through a scanner device 124 and processed as described above.

The free-text samples are segmented by the free-text parser 110 into
sentences through a pattern-matching process based on regular expressions. A
percentile of the found sentences are selected for query generation, and are passed
to the query engine 112. The selection of sentences may be done in one of two
ways. Preferably, sentences are ranked by their content-bearing capacities, and the
top percentile of the ranked sentences are chosen. The preferred content-bearing
ranking of the sentences occurs as follows. The sentences are segmented into
terms, i.e., words and phrases. Each found term is assigned an importance weight
based on the term’s distribution pattern in all of the found sentences. The rank of
a sentence is computed from the weights of its terms. In the preferred
embodiment of the invention, the found sentences are ranked by their content-
bearing capacities, and the top percentile of the ranked sentences are selected for
query generation. Alternatively, sentences may be selected randomly. A more
detailed description of the text segmentation and weighting processes is provided
below in connection with FIGS. 2-3

The selected sentences are passed to the query engine 112. From each
received sentence, the query engine 112 generates queries for the subscribed
information sources 114a-c by using a semantic network processor program

located in the query engine 112, and the knowledge bases 106a-c specified by the

10

15

20

25

30

WO 01/73610 PCT/US01/09182

user. The terms of each sentence are input into the semantic network processor
program. The semantic network processor program spreads activation from the
inputs to the nodes of the knowledge bases 106a-c. The activated nodes invoke
callback procedures associated with them to generate queries from the inputs that
caused their activation. Each callback procedure thus preferably generates
syntactically correct queries for a specific information source. The semantic
network program and its callback procedures therefore translate free-text inputs to
the query languages of the information sources 114a-c selected by the user. A
more detailed description of the process of generating queries is provided below in
connection with FIG. 4. A detailed description of one presently preferred
semantic network program is also provided below.

The queries generated by the query engine 112 are passed to the
metasearch engine 116. The metasearch engine 116 submits each query to the
appropriate information sources 114a-c. Each query is submitted only to those
sources in whose language it is formulated. As those skilled in the art will
appreciate, while FIG. 1 depicts only three information sources 114a-c for the sake
of clarity and simplicity, the number of information sources can be substantially
larger. In the preferred embodiment of the invention, the information sources
114a-c are public search portals, such as AltaVista, Excite, Infoseek, Lycos, or
Yahoo, or private search portals deployed on corporate intranets and local area
networks.

Before dispatching a query to a source, the metasearch engine 116 verifies
that the query is syntactically correct. If the syntax of the query is valid, the
metasearch engine 116 verifies that the query is appropriate for the particular
information source 114a-c. The verification of query appropriateness is based on
two factors: the source descriptions and the user evaluations from the user profile
108.‘ The source descriptions preferably specify the type of information obtainable
from the information sources 114a-c, any timeout intervals, and communication
protocols used by the information sources 114a-c. The timeout interval specifies a
user programmed time interval that elapses from the submission of a query to the

reception of retrievals before the system 100 assumes that the source has not

10

15

20

25

30

WO 01/73610 PCT/US01/09182

responded. The timeout intervals are specified by the user through the embedding
module 104. For example, the user can elect to wait for responses from the
source 114a-c for as little as several seconds or as long as several hours, days,
weeks, months, etc.

The communication between the metasearch engine 116 and the
information sources 114a-c is based on distributed networking protocols such as
HTTP, COM, and CORBA. A query is dispatchedA to an information source 114a-
¢ if it matches the information source’s description, and is consistent with previous
user evaluations. User evaluations of previous retrievals from each source are
kept in the user profile 108, and can be obtained from a retrieval manager 118 on
demand. After the query is dispatched, the metasearch engine 116 waits for an
appropriate timeout. If the timeout elapses before the reception of retrievals, it is
assumed that no retrievals were provided. Otherwise, the retrievals received from
the information source 114a-c are passed to the retrieval manager 118. Each
retrieval preferably specifies the source, the query, and the respdnses returned after
the query was submitted.

Upon reception of the retrievals, the retrieval manager 118 integrates the
retrievals with the retrievals stored in the user profile 108. The integration
preferably allows all of the retrievals to be viewable by the user on demand. The
user inspects the retrievals at his or her convenience and through the retrieval
manager 118 provides voluntary feedback on the relevance of each retrieval. User
feedback is saved in the user profile 108, and is also provided on demand to the
metaséarch engine 116. The retrieval manager 118 preferably partitions user
feedback into two spaces: global and local. The global space contains user
preferences and evaluations that are true of all sources and all free-text inputs
handled by the system 100. The local space contains user preferences and
evaluations that are true of a subset of all information sources and a subset of all
free-text inputs. For example, the user may elect to exclude a particular -
information source 114a-c from returning retrievals with respect to a particular
document. A more detailed description of the retrieval management process is

provided below in connection with FIG. 6.

10

15

20

25

30

WO 01/73610 PCT/US01/09182

In the preferred embodiment of the invention, the application 102,
embedder 104, free-text parser 110, query engine 112, user profile 108,
metasearch engine 116 and retrieval manager 118 either reside on one computer,
or are distributed across a network of computers. The information sources 114a-c
and knowledge bases 106a-c are preferably distributed across a network of
computers.

Referring now to FIG. 2, one presently preferred text segmentation process
is described. }Starting with the document 200, a test is performed at step 202 to
determine if additional text is present that needs to be evaluated. If additional text
exists, a new line of text is read from the input document 200 at step 204 and it is
added to a character buffer. A second test is performed at step 206 to determine
whether a known sentence pattern matches the contents of the character buffer. If
the contents of the character buffer does not match, the sentence pattern is added at
step 208 to the list of sentences being compiled for the document 200, and the
character buffer is cleared. If a match does exist, the test simply branches back to
determine if further text exists in the document 200 that needs to be evaluated at
step 202. Once analysis of the document is complete, a list of sentences is
returned from the text segmentation subroutine at step 210.

One presently preferred process of assigning weights to the list of sentences
returned from the text segmentation subroutine is provided in FIG. 3. Referring to
FIG. 3, the list of retrieved sentences is input to the weight assigning subroutine at
step 300. At step 302, a table is built of sentence terms from the list of sentences
received. Next, the weight assignment subroutine determines the weight of each
term in the table at step 304.

A term’s weight preferably unifies two approaches: inverse document
frequency (IDF) and condensation clustering (CC). IDF values a term's rarity in
the set of sentences found in the document 200; CC values terms' non-random
distribution patterns over the sentences of the document 200.

The mathematical model is as follows. Let D be the total number of

sentences. Define f (i, j) to be ¢'s frequency in the j-th sentence d;. Put ;= 1 if

10

15

20

25

WO 01/73610 PCT/US01/09182

f(, j)> 0, and 0, otherwise. Put D, = Z 2 7i; For t's IDF-weight, put Ty (i) = Aiyr

+ log (D/D,), with 4,4 a constant. For ¢'s tfidf weight in d;, put Tysqr (i, /) = (1.)
(Aigr+ log (D/D))). The CC-weight of #; is the ratio of the actual number of

sentences containing at least one occurrence of ¢; over the expected number of

such sentences: T, (i) =A4. + log (E(5 J/D;), where A, is a constant and INJ,- is a
random variable assuming D,'s values. Put T; = Z ?=1 f (@, j). Since 7; assumes 1

and 0 with the respective probabilities of p;and ¢;=1-p, E(f)=p;=1-(1 -

1/D)". Since D;= 32, i, E (D) = Dp;. For s tfec weight in dj, put Tyz.. (i, /) =
S) Tee (0). Let A, = A4 By definition, T, (i) = T,4 (i) + logp;. Hence, the
lemma: If A, = Aiq, Tee (i) = Tigr (i) + log ps.

A class of metrics obtains, unifying IDF and CC: Ty () =4 + BTy (i) +
Clogp;, where A, B, and C are constants. If 4 = 4,45 B=1, and C = 0, Ty = Tigs if
A=A, B=1,and C= 1, Tjye = T. Since f (i, j) approximates the importance of
t;in d;, t's weight in d; is given by Ty (i, /) = f (0,) Tigree ().

Weights obtained from the weight assignment subroutine are used to
compute the weight of each sentence, and the sentences are next sorted by their
weights at step 308. Sentences are then selected by a predetermincd threshold or
random choice at step 310. In the preferred embodiment of the invention, as
mentioned above, the threshold method is employéd using a threshold of
preferably the top 10%, but the threshold can be preferably modified by the user in
the user profile 108 (FIG. 1). A list of selected sentences is then returned from the
weight assigning subroutine at step 312.

As described above, the returned list of selected sentences is used to
generate the queries that are dispatched to fhe information sources 114a-c. One
presently preferred embodiment of the process for generating queries is shown in
FIG. 4. The list of selected sentences is received by the query generating
subroutine at step 400, and a test to determine whether the list is empty is
performed at step 402. So long as sentences remain on the list, the next sentence

from the top of the list is selected at step 404, and that sentence is propagated

10

15

20

25

30

WO 01/73610 PCT/US01/09182

10

through a semantic network of concepts at step 406. A detailed description of one
presently preferred semantic network format and associated listing for use with the
invention is provided below.

A list of activated concepts is identified at step 408 and a test is performed
at step 410 to determine if the list is empty or not. If the list is empty, the
subroutine returns back to step 402 to determine if another selected sentence
exists. If the activated concept list is not empty, the first concept is taken off the
list at step 412 and a test is performed at step 414 to determine if the concept has
been identified before. If so, the subroutine moves back to step 410 for another
activated concept. If the concept has not been seen, a query is generated for the
concept, which is added to a list of generated queries at step 416. Afterwards, the
subroutine branches back to step 402 for additional selected sentences. Once the
list of selected sentences 400 is depleted, the query generation subroutine returns a
list of generated queries at step 418.

In the preferred embodiment of the invention, a metasearch engine 116
(FIG. 1) is used to take the list of generated queries and dispatch the queries to the
appropriate information source 114a-c. One presently preferred embodiment of the
metasearch engine is shown in connection with FIG. 5.

Referring to FIG. 5, the list of generated queries is received by the
metasearch subroutine at step 500. A test is performed initially at step 502 to
determine if additional queries remain on the list. If so, the next query is taken off
the list at step S04 and a list of relevant information sources 114a-c is obtained at
step 506. If the list of relevant information sources 114a-c is empty, as determined
at step 508, the metasearch subroutine branches back to step 502. If not, the query
is submitted to each information source 114a-c on the list at step 512. The
metasearch subroutine then waits at step 514 for the pre-established wait interval
to receive a response from the respective information source 114a-c. If a timeout
occurs and no information was retrieved, as described above, the metasearch
subroutine branches back to step 508. If information was retrieved within the pre-
established time period, the information retrieved is saved in a table and processed

at step 516. The metasearch subroutine then branches back to step 502 for any

10

15

20

25

30

WO 01/73610 PCT/US01/09182

11

additional queries. If no queries remain on the list of generated queries, the
metasearch subroutine returns the table of the retrieved information at step 518.
The returned table maps each information source 114a-c to its retrievals.

The information retrieved from the queries is processed by the retrieval
manager 118 shown in FIG. 1. One presently preferred process for managing the
retrievals is shown in FIG. 6. Referring to FIG. 6, the table of retrievals is '
received at step 600 by the retrieval manager subroutine. A test is initially
performed at istep 602 to determine if the table is empty. If not, the next entry is
taken at step 604, and a test is performed at step 606 to see if the particular entry
has been returned by this information source 114a-c before. If so, the subroutine
branches back to step 602. If not, the particular entry in the table of retrievals 600
is entered into a database at step 608. In this manner, the retrieval manager
subroutine processes all of the retrievals in the table 600 until no more retrievals
exist, and the subroutine exits at step 610.

The presently preferred computer program listing for implementing the
above methods and functions is included in the Microfiche Appendix. This
program is written in the Common Lisp Object System (CLOS) programming
language and the JAVA programming language. As those skilled in the art will
appreciate, however, the methods and functions described herein can be
implemented in any number of common computer programming languages
without departing from the essential spirit and scope of the invention.

Operation of the preferred embodiment of the invention is best illustrated
with the following example where X is a computer science researcher working on
a grant proposal on intelligent networking protocols. Due to intensive competition
and rapidly approaching deadlines, it is vital that X keep abreast of the most recent
developments in the field. While X knows many relevant information sources, X
cannot take full advantage of them because of their size, dynamic nature, and lack
of adequate search tools. Once embedded in X’s word processor, X can employ
the embedded information retrieval system 100 to generate automatic queries from
the text of X’s grant proposal in the background, submit those queries to relevant

information sources 114a-c, and save the received retrievals locally. Then, X can

10

15

20

25

30

WO 01/73610 PCT/US01/09182

12

inspect the found retrievals when convenient and provide feedback on their quality
and relevance. Since the system 100 operates in the background, the retrieval of
relevant information occurs as a by-product of X’s routine document creation.

The above example is easily generalized to other user populations, e.g.,
attorneys, newspaper reporters, technical writers, etc., who need relevant
information to come to their desktops without disrupting their routine document
creation activities. Additionally, the system can also be embeddéd in other
application programs besides word processors, such as spreadsheet and database
programis, to name just a few.

A detailed description of one presently preferred semantic network that can

be used with the systems and methods described above is provided below.

Let N and NV denote reals and naturals, respectively. All subscripts are in

9, unless otherwise specified. If S is a set, 2° denotes its power set, i.e., the set of
all subsets of S, and |S| denotes its cardinality. The subset relationship is denoted
by <. The logical if'is denoted by =; the logical if and only if is denoted by <> or
iff. If V is a vector space, dim(V) denotes the dimension of V. For example, if V'1s
a plane, dim(V)=2.

Elements forming a sequence are written inside a pair of matching square
brackets [ey,...,e,]. The empty sequence is written as []. Elements forming a set
are written inside curly braces: {e,...,e,}. The empty set is written as {} or .
Elements forming a vector are written inside angular brackets: <ey,...,e,>. For
example, [0,1,2], {0,1,2}, <0,1,2> denote a sequence, a set, and a vector,
respectively. If v is a variable, {v}, [v], ¥, v denote that v is a set, a sequence, a
vector, and an element, respectively. For example, {v} = {0,1,2}; [v] =[0,1,2]; ¥
=<0,1,2>; v= 1. Furthermore, {v;} denotes a set of one element v;; {v}; denotes
the i-th set of elements; [v;] denotes a sequence with one element v;; [v]; denotes
the i-th sequence of elements. If S is a set, [S] is the set of all possible sequences
over S. For example, [R] is the set of all sequences of reals.

The functions head and tail return the first element and the rest of the

elements in a sequence respectively, that is, head([]) = [1, head([ey,e1,---,€a]) = €0,

10

15

20

25

WO 01/73610 PCT/US01/09182

13

tail([]) = tail([eo]) = (], tail([eo,€1,---,€4]) = [€15---,€n]. The function conc
concatenates its first argument to its second argument. For example, -
conc(v,[€g,-.-,€a]) = [V, €0y---,€n), conc([v], [€o,-.-,€a)) = [[V], €0,---,€n], and

v

conc([v], []) =[[v]]. The function apnd is defined by apnd([v], [w]) = [65 rees€im s
ey rmeml,m20,[V1=[ey,...ep], (W= ey ,....en], apnd((], [v]) = V],
apnd([v], (1) = [v]. If[S)o, [S], ..., [S]n are sequences, 27, [S]; = apnd([S,

apnd([S]i, ..., apnd([Sa1, [S1.)---)) A sequence [S]; completes a sequence [S], iff
[S], = [eo, ... €] and S, = [eo] + [V]o + [e1] + [V], +...+[e,] + [V],, where [v],,

0 <i <n, is a subsequence of ;. For example, if [S], = [ey, €, éz, es], [S12=[eo,
e,], and [S]; = [e,, €1], [S]; completes [S],, but does not complete [S];. Any
sequence completes [].

An object is a 2-tuple [o;, R,;], where o, € /= {O)]j € N} is the object's
unique id, and r; is the object's set of representations. The definition of
representation depends on specific retrieval tasks. For example, objects can be
represented as vectors of reals or as nodes in a semantic network. A retrieval
model M operates in a universe of objects. The universe is the set of all objects,
and is denoted by Q. M's primitives are called tokens. The definition of token
depends on the context. For example, tokens can be keywords, keyword
collocations, or nodes in a semantic network. The set of all possible tokens is
denoted by 7. M's representation function is a bijection A: /x 27 — R, where R
is M’s set of representations. The finite set of objects retrievable by M is denoted
by A € Q. Formally, A = {[o,, {r}]|A(0;, T) =r}. Since the second element of
every object in A is a singleton, i.e., a set of one element, the set notation is
dropped for the sake of simplicity. Thus, A = {[o;, r]|]A(0;, 7) =r}. While an
object's id is unique in the universe, the object's representation is unique only
within a model. Two different models may represent the same object differently.
However, since the representation function is a bijection, the object's

representation is unique within a model.

10

15

20

25

WO 01/73610 PCT/US01/09182

14

Let A;= {o] [0;, ;] € A}. Since there is a bijection between A and A,
when the context permits, A and A;are used interchangeably and the objects are
referred to by their ids, i.e., the elements of A, The token weight function
w : Ix T — 9 assigns weights to tokens in objects. The object similarity function
o : Q x Q — R computes the similarity between two objects in Q. The rank
function p: :Q x Q —» Nimposes an ordering on A’s objects. The rank of 0; € A
with respect to o, € Q is denoted by p(0;, 0,) =x € N, then (Vo, € A) {{p (0, 0y)
<x} < {o(ox, 04) > 0(0;,09)} V {o(0, 0;) = 0(0;, 0,) Ak <i}}, and (Vo; € A)
{{0(0) 09) > x} & {0(0;. 0) < (03, 09)} V {00, 0,) = (0, 0) A <j}. Thus,
the ranking of objects is determined by o and their initial ordering in A. Formally,.
M=[Q,A, T\, @, 0, pl.

N-ary relations on objects are represented as n-dimensional bit arrays. For
example, a binary relation is represented as a matrix whose rows and columns are
objects and whose entries are 0's and 1's, depending on whether the relation holds
between a given pair of objects.

A retrieval sequence returned by M in response to o, € €2 is denoted by
M(o,), and is a permutation [0y, Ox), ---, Oxm)] Of the ids of objects in A such that
(i) < n(j) <> p(os, 0,) <p(0;; 0,). Let Mo =[Ag, T, Ao, @, So, po] and M, = [Ay,
T, A, ®1, 01, p1]- Mg and M, are equivalent under ranked retrieval (My=, M;) iff
Ao = {[00, Ao, (00, D)), -.. 5 [0n, Ao, (00, D], A1 = {[00, A1, (00, T)]; --- 5 [0n; A1, (On,
N1}, and Vo, € Q) (My(o,) = Mi(0,)). Thus, the two models are equivalent only
when defined over the same set of tokens. The same methodology is frequently
used in mathematics when different constructs defined over the same set of
primitives are shown to be equivalent under specific operations. As a practical
matter, fixing the set of tokens ensures that comparisons of different models are
meaningful only when made with respect to one universe over the same inputs.

Let M=[Q,A, TAw,0,0] be a sefna'ntic network retrieval model. The set A
consists of objects each of which is a node in a directed graph G with two types of

arcs: isa and partof. An isa-arc denotes the subclass-superclass relationship

10

15

20

25

30

WO 01/73610 PCT/US01/09182

15

between the nodes it connects; a partof-arcs denotes the part-whole relationship
between the nodes. While some semantic networks introduce additional relations,
isa and partof have become the standard for abstraction and packaging. Let Ay be
the |A] x |A|] matrix such that 4y[7, j] = 1 if there is an isa-arc from o, € A and

0; € A, and A4[i, j]1 =0, if there is no such arc. Let 4, be a similar matrix for the
partof-relationship. An object 0; abstracts an object 0; iff G has a path of isa-arcs
from o; to 0;, When o; abstracts o, o; is an abstraction of 0;. An object o;
specializes an object o; iff G has a path of isa-arcs from o; to o,. Thus, o; abstracts
o; iff 0; specializes 0;. Any object both abstracts and specializes itself.

Associated with each node is a single set of labels. A label [x] = [e,, ..., €]
is a sequence of elements such that for all ;, 0 <i<n, ¢; € TUL Thus, labels may
contain not only tokens but also object ids. If o; € Q, then X; is the set of labels
associated with 0;. If 0; € A, and [x]; = [€,, ---, €], € X, g(0;, [x]i)_A= [o(e,,0), ...,
o(en0)], ie, g Ax[TUI] --> [‘Rj. An expectation is a 3-tuple [o;, [x];, [v];] such
that [x]; = [v]c + [v];. For example, if [x]; = [0, 1, 2], then [o;, [x];, [1,2]], [0
[x]i, [2]], and [o;, [x]; []] are expectations. Intuitively, an expectation reflects how
completed a label is with respect to an object. Ifz = [o;, [x]; [v];], then
eobj(z) = o, eseq(z) = [x];, ecseq(z) = [v];, and key(z) = headecseq(z)).

Put Mo,,) = [X,, Ly, L;], where X,, is the set of labels associated with o,
Ly = {ojlo; € AA Aoli, j] = 1},and L, = {oj0; € AA Ay[i, j1 = 1}. Note that L, and
L, can be empty. For example, ifo, € Q- A, A, T) =[X,, {}, {}]. Let O, € Q
and o; € A and let £ [R] x[R] — R. The object similarity between o; and o4 is
6(0:,04) = max{f{g(0,[x],).g(0q,[x],))}, where [x]; € X;, [x], € X, and [x],
completes [x].. In the maximization, the ranges of i and q in [x]; and [x], are
0<i<|X]|and 0 <g<|X,]|. An objectoq activates an object o, iff there exists a
label [x], € X, and a label [x]; € X; such that [x], completes [x].. If there is no
[x]; € X; such that [x], completes [x];, then c(0;, 04) = 0. This formalization of
spreading activation both generalizes and makes rigorous the node activation
sequence approach. It also subsumes the spreading activation level approach and

the activation path shape approach. The former is subsumed insomuch as the

10

15

20

25

30

35

40

WO 01/73610 PCT/US01/09182

16

activation level of a node becomes a function of ¢'s values. The latter is subsumed
insomuch as the node activation paths are determined by object ids in labels. An
algorithm for retrieving nodes by spreading activation is given below. |

Let M be a semantic network retrieval model. Let o be an input object with
X as its set of labels. T is a table mapping the id’s of objects in A to the scores
representing their similarity with the query object, i.e., reals. Initially, 7' maps
each id to 0. Let V be the vector representation of 7, i.e., ¥ =[[0,, S,], ---» [On, Sall,
where [0, € A} A {s;=0(0,0;)} foralli<i<n. Let E be a table mapping
expectations to tokens. If e is an expectation, then key(e, E) denotes the token to
which E maps e. The retrieve procedure returns M(o). The spread procedure
activates nodes with at least one completed sequence.

0 procedure retrieve(o, M, T)

1 for each[s]in X

T = spread(o, [s], T);

3 convert T to V;

4 sort V's entries by similarity
in non-increasing order;

sort V's entries with equal similarity
by id in increasing order;

return the sequence of ids as they occur
in V from left to right;

N

O 003N

10 procedure spread(o, [s], T)

1T w=g{[s],0)

12 for each e in [s]

13 activate(e, T, w);

14 return T;

15 procedure activate(e, T, w)

16 for each abstraction a of e

17 for each expectation e keyed on a
18 advance(e, T, w); '

19 procedure advance(x, T, w)
20 if null(ecseq(x))

21 then

22y =1f(w, g(eseq(x), eobj(x)));
23 if (T{eobj(x)] <y)

24 then T[eobj(x)] =y;

25 activate(eobj(x));

26 else

10

15

20

25

30

WO 01/73610 PCT/US01/09182

17

27 [v] = tail(ecseq(x));
28 ne = newexp(eobj(x), eseq(x), [V]);
29 key(ne, E) = head([v]);

30 procedure newexp(o, [x], [V])

31 return a new expectation [o, [x], [V]]

As can be seen, the integration of document processing, query generation
and feedback in an application-embedded distributed IR system provides unique
advantages over existing systems. Automatic generation of queries from free-text
documents enables users to retrieve relevant information without disrupting their
routine document processing activities. Consequently, the retrieval of relevant
information becomes a by-product of document processing. Customized
information retrieval and feedback are possible through the incorporation of a user
profile database 108. Through the feedback feature of the retrieval manager 118,
the user can control the frequency and content of retrieved information to suit a
particular document or application.

The presently preferred embodiment embeds the features and functions of
the invention in a text processor environment, but other application programs such
as spread sheet, database and graphical programs can readily benefit from the
unique aspects of the invention. These benefits include a non-intrusive, feedback-
sensitive IR system that integrates document processing with simultaneous
retrieval of relevant information. Users can use the system to automatically tap
into information sources while still engaged in routine usage of the underlying
application program. In an alternate embodiment, input files such as documents
can be scanned into the sjrstem. The unique semantic network processor program
provides the advantage of automatically generating structured queries from free-
text documents in a term-independent way, thus allowing the retrieval of
documents similar in content, but not necessarily similar in the way that content 1s
described.

It is to be understood that a wide range of changes and modifications to the
embodiments described above will be apparent to those skilled in the art, and are

contemplated. It is therefore intended that the foregoing detailed description be

WO 01/73610 PCT/US01/09182

18

regarded as illustrative, rather than limiting, and that it be understood that it is the
following claims, including all equivalents, that are intended to define the spirit

and scope of the invention.

10

15

20

25

WO 01/73610 PCT/US01/09182

19

I CLAIM:

1. An embedded distributed information retrieval system, comprising:
an embedding module for embedding a distributed information
retrieval system in a computer application program;

a free-text parser coupled to the application program, the free-text
parser operative to receive continuous scheduled reads of textual informaﬁon from
the application program, parse the textual information into sentences, and rank the
sentences on the basis of words and phrases in the sentences;

a query engine coupled to receive the ranked sentences, and
operative to generate structured queries, the query engine coupled to at least one
knowledge base and including a semantic network processor program;

a metasearch engine coupled to receive and submit the structured
queries to at least one information source; and

a retrieval manager coupled to the metasearch engine, the retrieval
manager 'operative to receive retrieved links associated with the structured queries,

and to rank and filter the retrieved links based upon predefined criteria.

2. The system defined in claim 1, wherein the predefined criteria

comprise relevancy to the inputted textual information.

3. The system defined in claim 1, wherein the at least one knowledge
base comprises a semantic network of concepts organized in terms of abstraction

and packaging relations.

4. The system defined in claim 1, wherein the semantic network
comprises a knowledge base of concepts connected via hierarchical and packaging

relations.

5. The system defined in claim 1, wherein the at least one information

source comprises a proprietary database.

10

15

20

25

WO 01/73610 PCT/US01/09182

20
6. The system defined in claim 1, wherein the at least one information
source comprises the Internet.
7. The system defined in claim 1, wherein the sentences are ranked in

terms of their content-bearing capacities.

8. An embedded distributed information retrieval method for
generating structured queries, comprising the Steps of:
receiving continuous scheduled reads of textual information;
parsing the textual information into sentences;
parsing the sentences into words and phrases;
ranking sentences by their content-bearing capacities based on their
weighted words and phrases;

generating structured queries using a semantic network processor

program; .
submitting the structured queries to at least one information source;
receiving retrieved links associated with the structured queries; and
ranking and filtering the retrieved links based upon predefined
criteria.
9. The method defined in claim 8, wherein the predefined criteria

comprise relevancy to the inputted textual information.

10. The method defined in claim 8, further comprising the step of

searching the information resources in response to the structured queries.

11. The method defined in claim 10, wherein the step of searching the
information resources further comprises the step of searching a proprietary

database or a search portal.

12. The method defined in claim 10, wherein the step of searching the

“information resources further comprises the step of searching the Internet.

WO 01/73610 PCT/US01/09182

21

13. The method defined in claim 8, further comprising the step of
providing a metasearch engine to receive and submit the structured queries to the

at least one information source.

14. The method defined in claim 13, wherein the semantic network

5 program provides its output as input to the metasearch engine.

15. The method defined in claim 8, wherein the semantic network
program comprises the step of spreading activation that maps free-text inputs to

relevant concepts in a knowledge base.

10

WO 01/73610

1/6

PCT/US01/09182

¢ };) (22
KEYBOARD SPEECH
160 DEVICE
104
4 y
SCANNER |
EMBEDDER APPLICATION 24
[~ 102
y i
FREE-TEXT KNOWLEDGE
1O~ PARSER BASES
B 00
L
\ y
(ot USER &Ug&é
PROFILE 195h
‘ .
106¢C
(1t
ng)
RETRIEVAL + METASEARCH
MANAGER ENGINE

RS

INFORMATION SOURCES

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 01/73610

Add contents of
buffer to list of
sentences and
clear buffer

PCT/US01/09182
2/6
. OO
Document 2
¢ <
Is doc Vas
over?
>
20 l No)
Read li d add it
to chu::t:rn buﬁ'erI [~ "0(1
Y
¢ 205 Return list of 0
: sentences b 2'

Does known
sentence pattern
match the
contents of the
buffer?

Ves |

h

’ g

SUBSTITUTE SHEET (RULE 26)

WO 01/73610

3/6
300
List of
found
sentences
30> r
Build table of 7 Sort sentences by 30
sentence terms > their weights e’
Determine the Select sentences .
clustering pattern by threshold or [} O
g P Y , .
) 0\‘] of each term random choice
- Assign weights Return list of
: w 1 to e;chbser_xtct;‘ce ::::t:::e . » 3 ')\
on the basis o
3 terms found in it

SUBSTITUTE SHEET (RULE 26)

PCT/US01/09182

WO 01/73610 PCT/US01/09182
4/6

400
0o
W@g Return list of
ra list o
——P S generated queries
404 |
ae
Pop scatence off list
Lo
Propagate seatence
through semantic
beea seea? aetwork of conoepts
Generate querics and
add them to list of
generated queries
|

yté

£16.1

SUBSTITUTE SHEET (RULE 26)

WO 01/73610 PCT/US01/09182

5/6

Pop off info {' 0
source

i

Submit query to { |~
info source

of mempee st

a4

Has source
respondended
within specified

time?

Get list of Y OL

information

sources for query

T 6
Process retrieval
V@ Rb and saver them ins _'Q
— _— table of retrievals
d

™)
T
N

SUBSTITUTE SHEET (RULE 26)

WO 01/73610

vbo

6/6

PCT/US01/09182

»| Done

lm/é”

Pop one entry

Vs

606

Put entry into
database

Has entry been
retrurned by
source before?

SUBSTITUTE SHEET (RULE 26)

- 61\O

INTERNATIONAL SEARCH REPORT Inte al application No.

PCT/US01/09182
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 17/30
USCL . 707/5

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. :707/5, 1-4,6,7, 10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,625,814 A (LUCIW) 29 April 1997 (29.04.1997), ALL. 1-15
X US 5,794,050 A (DAHLGREN et al) 11 August 1998 (11.08.1998), ALL. 1-15

D Further documents are listed in the continuation of Box C. l:l See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X” document of particular rel ; the claimed i ion cannot be
“E” carlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “xYr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“0” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“p* document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing gf the international search report
14 May 2001 (14.05.2001) 2001
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT Uyen T Le
Washington, D.C. 20231 t
Facsimile No. (703)305-3230 Telephone No. 305-9000

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

