发明名称
路灯多媒体导播监控系统

摘要
本发明公开了一种路灯多媒体导播监控系统，包括：客户端服务器、中心服务器、分控中心、
路灯终端。本发明实施例中的路灯多媒体导播监控系统以中心服务器为核心建立以太网连接关系
的客户端和分控中心，从而扩大了监控范围，保证了数据的稳定传输和安全性。更加方便的各个部
门之间的协调运作，而且在路灯终端采用微处理器对 LED 显示屏播放内容进行管理控制，在分控
中心与路灯终端建立远程连接，将用户的视频、
广告或者通知信息在第一时间显示在路灯终端的
LED 显示屏上，实现了路灯终端的广告、警示、广
播一体化的功能，节省了大量用于更换信息显示
屏上内容的人力资源。
1. 路灯多媒体导播监控系统，其特征在于，包括：客户端服务器、中心服务器、分控中心、路灯终端；
所述客户端服务器通过以太网连接至中心服务器；
所述中心服务器包括 CPU 芯片、内存卡、存储磁盘、主控制板、电源模块、网卡模块及显卡模块，CPU 芯片、内存卡、存储磁盘、网卡模块及显卡模块均安装于主控制板上，电源模块为主控卡供电；
所述路灯终端包括 LED 显示屏、监控摄像头、终端控制器；
所述终端控制器包括依次连接的模拟开关、A/D 转换器、第一微处理器、第一调制解调器以及第一接口电路，所述第一微处理器连接所述模拟开关，所述 A/D 转换器是电压/频率转换器，并且在所述 A/D 转换器与第一微处理器之间连接有高速光耦隔离器 (U5) 和第一放大器 (Q1)；所述 A/D 转换器包括接插件 (J1)、第一选通芯片 (U3)、第二选通芯片 (U4)、精密运放 (U2)、压 - 频转换电路 (U1) 以及第二放大器 (Q2)，来自所述模拟开关的多路模拟信号通过接插件 (J1) 被送到第一选通芯片 (U3)、第二选通芯片 (U4)，所述第一微处理器通过第一选通芯片 (U3)、第二选通芯片 (U4) 的各自选通脚 (S1、S2) 控制选择所述多路模拟信号中要转换的通道，所述第一选通芯片 (U3)、第二选通芯片 (U4) 的各自输出端 (OUT) 输出被选的模拟信号到精密运放 (U2)，经所述精密运放 (U2)、压 - 频转换电路 (U1) 转换、第二放大器 (Q2)、高速光耦隔离器 (U5)，第一放大器后送入所述第一微处理器；所述第一微处理器还连接有播放电路，播放电路采用安装有数字多媒体播放软件的多媒体解码芯片，播放电路具有 DVI 信号接口；
所述监控摄像头连接于终端控制器的模拟开关的插件 (J1) 上，所述 LED 显示屏具有 DVI 信号接口，并相应的连接到所述播放电路的 DVI 信号接口；
所述分控中心包括依次连接的第二接口电路、第二调制解调器、第二微处理器以及服务器接口，所述服务器接口通过以太网连接所述中心服务器，所述第二接口电路远程连接所述终端控制器的第一接口电路。
2. 如权利要求 1 所述的路灯多媒体导播监控系统，其特征在于，所述分控中心还包括分别连接所述第二微处理器的告警器、拨号电路以及存储告警录音的语音电路，所述第二微处理器包括告警模块，所述告警模块用于通过所述第二接口电路接收来自路灯终端的测量数据，在处理所述测量数据后发现需要告警时，通过所述告警器告警，并在预定时间内未收到所述告警已处理的信号时，通过所述拨号电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音。
3. 如权利要求 2 所述的路灯多媒体导播监控系统，其特征在于，所述拨号电路包括 GSM、CDMA、TD-SCDMA 或 WiFi 通信电路及其天线，所述告警模块具体用于在预定时间内未收到所述告警已处理的信号时，通过所述 GSM、CDMA、TD-SCDMA 或 WiFi 通信电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音，在未拨通所述预设电话号码时向所述预设电话号码发送预设的告警短信。
路灯多媒体导播监控系统

技术领域
[0001] 本发明涉及路灯照明设备技术领域，具体涉及路灯多媒体导播监控系统。

背景技术
[0002] 路灯作为国家的基础设施数在道路建设中发挥着重要作用。路灯，泛指提供道路或交通照明的灯具，安装地点常设于道路单侧或两侧。而随着计算机通信技术以及网络应用技术的不断发展，目前的路灯已经不再局限于之前的“用于照明的灯具”这一概念，各种路灯系统已经将网络通信技术、计算机网络技术、自动控制技术、新型传感技术和自动检测技术融为一体。
[0003] 在对路灯系统的研究和实践过程中，本发明的发明人发现：随着城市市政建设的发展以及高速公路的发展建设，在道路旁途经出现了很多广告牌、警示牌及监控设备，这些设施均独立的安置在道路的两旁，而现有的路灯系统多为智能路灯监控系统，例如公开号为 CN10159921A 的中国发明专利中公开了一种路灯线路防盗的报警系统，解决的问题多在于如何去防止路灯被盗或被损毁，如果仅仅在路灯终端安装上防盗报警装置势必会增加很大的成本，即使有些商家已经在路端终端的灯杆上装上爆炸牌，能够起到一定的广告效应，但是这种广告牌结构简单，广告内容单一，一旦需要更换广告内容则不易于更换。而且广告牌与警示牌的分立设置不利于道路两旁的设施规划，也不便于对设施进行统一管理。

发明内容
[0004] 本发明提供一种路灯多媒体导播监控系统，能够解决上述问题，同时还能实现路灯的多功能。
[0005] 本发明提供一种路灯多媒体导播监控系统，包括：客户端服务器、中心服务器、分控中心，路灯终端；
[0006] 所述客户端服务器通过以太网连接至中心服务器；
[0007] 所述中心服务器包括 CPU 芯片、内存卡、存储磁盘、主控制板、电源模块、网卡模块及显卡模块，CPU 芯片、内存卡、存储磁盘、网卡模块及显卡模块均安装于主控制板上，电源模块为主控制板供电；
[0008] 所述路灯终端包括 LED 显示屏、监控摄像头、终端控制器；
[0009] 所述终端控制器包括依次连接的模拟开关、A/D 转换器、第一微处理器、第一调制解调器以及第一接口电路，所述第一微处理器连接所述模拟开关，所述 A/D 转换器是电压/频率转换器，并且在所述 A/D 转换器与第一预处理器之间连接有高速光耦隔离器 U5 和第一放大器 Q1；所述 A/D 转换器包括接插件 J1、第一选通芯片 U3，第二选通芯片 U4，精密运放 U2，压-频转换电路 U1 以及第二放大器 Q2，来自所述模拟开关的多路模拟信号通过接插件 J1 被送到第一选通芯片 U3、第二选通芯片 U4，所述第一微处理器通过第一选通芯片 U3、第二选通芯片 U4 的各自选通脚 S1、S2 控制选择所述多路模拟信号中要转换的通道，所述第一选通芯片 U3、第二选通芯片 U4 的各自输出端 OUT 输出被选的模拟信号到精密运放 U2，经
所述精密放送 U2, 一频转换电路 U1 转换、第二放大器 Q2, 高速光耦隔离器 U5、第一放大器后送入所述第一微处理器; 所述第一微处理器还连接有播放电路, 播放电路采用安装有数字多媒体播放软件的多媒体解码芯片, 多媒体解码芯片连接有 DVI 信号接口；
【0010】所述监控摄像头连接于终端控制器的模拟开关的插件 J1 上, 所述 LED 显示屏具有 DVI 信号接口, 并相应的连接到所述播放电路的 DVI 信号接口；
【0011】所述分控中心包括依次连接的第二接口电路、第二调制解调器、第二微处理器以及服务器接口, 所述服务器接口通过以太网连接所述终端服务器, 所述第二接口电路远程连接所述终端控制器的第一接口电路。
【0012】优先地, 所述分控中心还包括分别连接所述第二微处理器的告警器、拨号电路以及存储告警录音的语音电路, 所述第二微处理器包括告警模块, 所述告警模块用于通过所述第二接口电路接收来自路灯终端的测量数据, 在处理所述测量数据后发现需要告警时, 通过所述告警器告警, 并在预定时间内未收到所述告警已处理的信号时, 通过所述拨号电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音。
【0013】优选地, 所述拨号电路包括 GSM、CDMA、TD-SCDMA 或 WiFi 通信电路及其天线, 所述告警模块具体用于在预定时间内未收到所述告警已处理的信号时, 通过所述 GSM、CDMA、TD-SCDMA 或 WiFi 通信电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音, 在未拨通所述预设电话号码时向所述预设电话号码发送预设的告警短信。
【0014】上述技术方案可以看出, 本发明实施例提供的路灯多媒体监控系统与现有技术中的路灯系统相比较具有如下优点;
【0015】1、用户或管理人员可以通过客户端服务器连接到中心服务器, 进而通过中心服务器控制路灯终端的 LED 显示屏显示各种多媒体信息, 能够实现异地同步处理路灯终端显示信息。
【0016】2、路灯终端采用 LED 显示屏, 将广告信息、相关部门的警示信息或公告信息显示于同一显示屏上, 实现了多元信息的集中化处理。
【0017】3、中心服务器与分控中心采用以太网连接, 能够保证信息数据的稳定传输, 尤其是广域网的连接能够使得整个系统的覆盖范围遍及各地。
【0018】4、分控中心使用拨号电路, 能够第一时间将告警信息传发至相关管理人员或监控部门, 达到及时反馈、有效监督的运行效果。
【0019】5、分控中心与路灯终端之间通过远程连接, 然后将信息汇集到中心服务器, 使得路灯终端能够实现分区管理、细化监控。

附图说明
【0020】为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
【0021】图 1 是本发明实施例中路灯多媒体监控系统的整体框图；
【0022】图 2 是本发明实施例中路灯多媒体监控系统的中心服务器的结构示意图；
【0023】图 3 是本发明实施例中路灯多媒体监控系统的路灯终端的结构示意图；
具体实施方式

[0027] 下面将结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员没有作出创造性劳动前提下所获得的所有其它实施例，都属于本发明保护的范围。

[0028] 实施例：

[0029] 如图1所示，本发明实施例提供一种路灯多媒体导播监控系统，包括：客户端服务器、中心服务器、分控中心、路灯终端；所述客户端服务器通过以太网连接至中心服务器；本发明实施例中以太网采用高速以太网，并以中心服务器为网络核心构成星型拓扑结构，因此在连接器及布线方面将减少更多的成本。而分控中心与中心服务器之间同样采用以太网连接，在分控中心具有服务器接口专用于连接中心服务器，这样可以使得整个网络结构更加稳定。因此，客户端的相关人员或管理人员可以通过客户端登陆到中心服务器，进而进一步地与分控中心进行信息交互或对分控中心进行管理控制。

[0030] 如图2所示，所述中心服务器包括CPU芯片、内存卡、存储硬盘、主控制板、电源模块、网卡模块及显卡模块，CPU芯片、内存卡、存储硬盘、网卡模块及显卡模块均安装于主控制板上，电源模块为主控制卡供电；其中，电源模块的输入端接入220V交流电，电源模块的输出能够提供多路直流电压源，其中包括5V电压源和12V电压源，提供给主控制板工作电压，在主控制板上具有相应电源转接口能够将直流电压转接到存储硬盘、内存卡、CPU芯片、网卡模块以及显卡模块上，显然，如果所使用的主控制板不具有相应的电源转接口时，那么，电源模块可以独立的为存储硬盘、内存卡、CPU芯片、网卡模块以及显卡模块供电，在主控制板上具有PCI插槽，网卡模块和显卡模块均可以通过PCI插槽连接到主控制板上。网卡模块上具有RJ45网线接口，同时还具有无线网络接口，能够使用双绞线网线进行连接，还能够连接到无线路由器上。

[0031] 如图3所示，所述路灯终端包括LED显示屏、监控摄像头、终端控制器；本发明实施例中的LED显示屏采用高清显示屏LED显示屏，LED显示屏具有DVI信号接口，同时，终端控制器上具有播放电路，播放电路采用安装有数字多媒体播放软件的多媒体解码芯片，播放电路同样具有DVI信号接口，能够与LED显示屏上的DVI信号接口对接，因此，多媒体解码芯片将数字信号传输至播放电路的DVI信号接口上，再进一步传送至LED显示屏上的DVI信号接口，从而供LED显示屏显示。

[0032] 具体如图4、图5所示，所述终端控制器包括依次连接的模拟开关、A/D转换器、第一微处理器、第一调制解调器以及第一接口电路，所述第一微处理器连接所述模拟开关，本发明实施例中模拟开关采用8路模拟开关，具体的芯片可以采用C051芯片，8路模拟开关的输入端接收路灯终端中用于数据收集的相关设备，如监控摄像头、防盗传感器等等，8路
模拟开关的输出端连接到A/D转换器的接插件J1上，所述A/D转换器是电压/频率转换器，并且在所述A/D转换器与微处理器之间连接有高速光耦隔离器U5和第一放大器Q1；所述A/D转换器包括接插件J1、第一选通芯片U3、第二选通芯片U4、精密运放U2、压-频转换电路U1以及第二放大器Q2。所述模拟开关的多路模拟信号通过接插件J1被送到第一选通芯片U3、第三选通芯片U4，所述第一微处理器通过第一选通芯片U3、第二选通芯片U4的各自选通脚S1、S2控制选择所述多路模拟信号中要转换的通道，所述第一选通芯片U3、第二选通芯片U4的各自输出端OUT输出被选的模拟信号到精密运放U2，所述精密运放U2、压-频转换电路U1转换第二放大器Q2、高速光耦隔离器U5、第一放大器Q1。所述模拟信号经过放大器Q1后送入所述第二微处理器，所述第一微处理器还连接有播放电路，播放电路采用安装有数字多媒体播放软件的多媒体解码芯片，播放电路具有DVI信号接口。

[0033] 所述监控摄像头的信号输出连接于终端控制器的模拟开关的输入端，所述LED显示屏具有DVI信号接口，并相应的连接到所述播放电路的DVI信号接口；

[0034] 如图6所示，所述分控中心包括依次连接的第二接口电路、第二调制解调器、第二微处理器以及服务器接口，所述服务器接口通过以太网连接所述中心服务器，所述第二接口电路远程连接所述终端控制器的第二接口电路。

[0035] 下面结合图1、图2、图3、图4、图5、图6对本发明实施例的路灯多媒体导播监控系统的工作原理作出说明。

[0036] 首先了解系统在接收监控摄像头的信息时的工作原理，如图3所示，路灯终端安装有监控摄像头，监控摄像头对路灯终端处的现场状态进行视频录制，并将视频信号传送到终端控制器，结合图4、图5，视频信号通过被传送至终端控制器的模拟开关的输入端，模拟开关可以选择多路模拟信号传至A/D转换器的两个选通芯片，第一选通芯片U3和第二选通芯片U4，那么，此时只有视频信号被传送过来，因此，此时第一微处理器通过控制第一选通芯片U3和第二选通芯片U4的选通脚S1、S2选择对应的一路视频信号经过两个选通芯片，然后该视频信号经过精密运放U2对信号进行功率放大，在精密运放U2的输出端并联有一个稳压管D1能够保证信号不被衰减，使得视频信号在进入到压-频转换电路U1之前不失真，在第二放大器Q2的三极管的基极处接收压-频转换电路U1发出的频率信号，从而在第二放大器Q2的三极管的集电极产生功率放大的频率信号，这样就完成压-频转换电路U1的模拟/数字信号间转换过程，从第二放大器Q2处输出的数字信号经过高速光耦隔离器U5，高速光耦隔离器U5的作用可以隔离掉A/D转换器产生的噪声干扰，这时该数字信号再经过第一放大器Q1后便形成了稳定的、无干扰的数字信号，数字信号进入到第一微处理器后，经过第一调制解调器进行编码，然后发给第一接口电路，第一接口电路与分控中心的第二接口电路远程连接，因此分控中心的第二接口电路能够稳定接收到第一接口电路传输的视频数字信号，第二接口电路将接收到的视频数字信号传送到第二调制解调器，第二调制解调器对接收到的视频数字信号进行解码，并将解码后的信号发给第二微处理器，第二微处理器利用服务器接口通过以太网将解码后的信号发回给中心服务器，中心服务器便顺利的接收到路灯终端的视频信息，从而及时处理相关事务。那么，此时，只要是登陆到中心服务器的客户端用户也能够通过信息共享的方式得到路灯终端处的视频信息，进而处理相关事务。

[0037] 其次，再了解本发明实施例的路灯多媒体导播监控系统的多媒体播放的工作原理，
当客户端的用户或者中心服务器处的用户想要通过本系统在路灯终端播放一段视频、广告或者通知时，如果是客户端的用户，则用户通过客户端服务器上的系统的账号及密码登陆到中心服务器并获得操作权限，然后将通过审核的视频、广告或者通知信息上传到中心服务器；如果是中心服务器的用户，则直接从中心服务器本地上获取该视频、广告或者通知信息，此时中心服务器上具有了视频、广告或者通知信息，中心服务器利用网卡模块通过以太网将上述视频、广告或者通知信息发送至分控中心的服务器接口，服务器接口通过通讯协议接收上述视频、广告或者通知信息，进而第二微处理器获取到上述视频、广告或者通知信息，然后第二微处理器将上述视频、广告或者通知信息发给第二调制解调器进行编码，并将编码后的信息经由第二接口电路发送给路灯终端的终端控制器的第一接口电路，第一接口电路接收到编码的信息再发给第一调制解调器进行解码，并将解码信息发给第一微处理器，第一微处理器将信息发送给播放电路，播放电路中的多媒体解码芯片将接收到的信息经过处理并由播放电路的DVI信号接口发送给LED显示屏的DVI信号接口，从而将用户的信息显示于路灯终端的LED显示屏上。

[0038] 在另一实施例中，所述分控中心还包括分别连接所述第二微处理器的告警器、拨号电路以及存储告警录音的语音电路，所述第二微处理器包括告警模块，所述告警模块用于通过所述第二接口电路接收来自路侧终端的测量数据，在处理所述测量数据后发现需要告警时，通过所述告警器告警，并在设定时间内未收到所述告警已处理的信号时，通过所述拨号电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音。所述拨号电路包括GSM、CDMA、TD-SCDMA或WiFi通信电路及其天线，所述告警模块具体用于在预定时间内未收到所述告警已处理的信号时，通过所述GSM、CDMA、TD-SCDMA或WiFi通信电路拨通预设电话号码并向所述电话号码播放所述语音电路中的告警录音，在未拨通所述预设电话号码时向所述预设电话号码发送预设的告警短信。

[0039] 本发明实施例中的路灯多媒体导播监控系统以中心服务器为核心建立以太网连接关系的客户端和分控中心，从而扩大了监控范围，保证了数据的稳定传输和安全性，更加方便的各个部门之间的协调运作，而且在路灯终端采用微处理器对LED显示屏播放内容进行管理控制，在分控中心与路灯终端建立远程连接，将用户的视频、广告或者通知信息在第一时间段显示在路灯终端的LED显示屏上，实现了路灯终端的广告、警示、广播一体化的功能，节省了大量用于更换信息显示屏上内容的人力资源。

[0040] 以上对本发明实施例所提供的一种路灯多媒体导播监控系统进行了详细介绍，本文中应用了具体个例对本发明的原理及实施方式进行了阐述，以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。同时，对于本领域的一般技术人员，依据本发明的思想，在具体实施方式及应用范围上均会有改变之处，综上所述，本说明书内容不应理解为对本发明的限制。