PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :

GOGF 9/45, 11/34, 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/19403

29 May 1997 (29.05.97)

(21) International Application Number: PCT/US%6/18201

(22) International Filing Date: 15 November 1996 (15.11.96)

(30) Priority Data:

08/560,426 17 November 1995 (17.11.95) US

(71) Applicant: MCI COMMUNICATIONS CORPORATION
{US/US]; 1133 19th Street, N.W., Washington, DC 20036
(US).

(72) Inventor: MCQUEEN, Stan; 2145 Sather Drive, Colorado
Springs, CO 80915 (US).

(74) Agents: LISS, Morris et al.; Pollock, Vande Sande & Priddy,
P.O. Box 19088, Washington, DC 20036 (US).

(81) Designated States: CA, JP, MX, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published .
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: HIERARCHICAL ERROR REPORTING SYSTEM

Main 20
Program
~82
Populate %0
Error — Error
B N
2 f 1
24 26
Function Subroutine N Subroutine
%0
\ u
Populate 4 86
Message
N N
32
=¥ N =33 3N Pt
Service Ls.rvlr.?l l Service] l:crvlec] l Service laorvlu]
104 102

rop
Error l N N
Message

92 ™" 9 98 100
Y
Error Error or Y Error Al Error

ErJrN

BIN :

(57) Abstract

To Main Program

Error reporting may be enhanced by utilizing a programming language, such as C++ and its attendant enhanced error reporting facility.
The invention generates an error message at the function level where the error occurs, as well as noting the line of source code during which
time the error occurred. The resulting populated error message (82) is then rolled up toward the main program (20). At each preceding roll
up level, an additional error message (90) is populated which notes the original error message (104) information as well as adding return
path information. Thus, after completed roll up to the main program (20), stacked error messages (76) are made available to the user (10)
that fully define the complete path involving the error (80), in addition to the identification of the source code line where the error occurred.

#—10

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Taly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG
SI
SK
SN
SZ
TD
TG
T
TT
UA
UG
Us
vz
VN

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

WO 97/19403 PCT/US96/18201

HIERARCHICAL ERROR REPORTING SYSTEM
Field of the Invention
The present invention relates to computer error reporting systems, and more
particularly to such a system that tracks and reports the software path traversed by

an error generated during the running of a software application.

Background of the Invention

Error code generation is an important aspect of running computer software
(hereinafter referred to as “applications”). Even operating systems generate error
codes or phrases when an abnormality is detected during operation of the software.
Typical error messages in applications may include a message indicating that a
particular requested file has not been found. Similarly, in an operating system, error
messages are presented to the user, such as in the instance where a command is
entered by the user that is not recognized by the operating system.

A primary disadvantage of present error reporting systems, in applications and
operating systems, is the lack of fully identifying where in the program (e.g., line of
source code) the error was detected. This would enable programmers to review the
source code and quickly concentrate on the cause of the error, based on -its
occurrence at a particular point in the program. Further, the same error code may
be returned during various subroutines or functions, during an application, so that no
unique correspondence between the error and the function/subroutine exists. This
makes it more difficult to troubleshoot problems when running applications.

The problem becomes multiplied when a main program accomplishes its
processing by relying upon modules, in the nature of functions and subroutines, that
themselves rely upon a library of software services. By way of example, a software
function may include an application command to retrieve a file. Services relate to
underlying surfaces such as OLE which provides a software transport for importing
data from one particular application, such as Excel™ into a second application, such

as Word™. Since the same service may be employed by various functions and

10

15

20

25

WO 97/19403 PCT/US96/18201

2

subroutines, the generation of a simple service error message is not terribly useful
since it does not uniquely identify which branch of the application was involved.
Accordingly, a need exists to track and report errors with greater detail than

that currently available.

Brief Description of the Present Invention

The present invention anticipates the rewrite of existing applications, or the
generation of new applications utilizing programming languages that permit the
generation and relaying of detailed error messages (hereinafter referred to as
“exceptions”) that identifies a line of source code where the error is generated, as
well as the path traversed by the exception on a return of the resulting error message
to a user’s display.

This is accomplished by generating a message, upon the occurrence of an
exception, the message being populated with fields that define where the error
occurred. This message is then relayed through subsequent application functions as
part of a return path to the main program and subsequently to the user’s display.
Once an error message is generated at one particular function layer, each subsequent
functional layer affected generates its own message identifying the location of that
subsequent function layer. The end result will be a stacking of these error messages,
relating to an exception detected along the return path to the main program.

In this manner, the return path is completely identified since path data has
populated fields of respective error messages, created at each affected functional
layer. Part of the information includes the line of source code affected when the
error was detected.

This level of detail in error reporting is stored for troubleshooting. It is most
helpful to detect whether the error occurred as a result of a “bug” in the program

itself, or whether it was most probably introduced as a result of user error.

10

15

20

25

WO 97/19403 PCT/US96/18201

3

Certainly, the generation of hierarchical error reporting is extremely useful during

development of a software application.

Brief Description of the Figures

The above-mentioned objects and advantages of the present invention will be
more clearly understood when considered in conjunction with the accompanying
drawings, in which:

Fig. 1 is an architectural block diagram of a generalized computer system
platform.

Fig. 2 is a hierarchical flowchart of a program indicating the two principal
layers of application and underlying software layer, namely, services.

Fig. 3 is a basic block diagram of a client-server environment involving
database management.

Fig. 4 is a flowchart indicating a typical prior art exception (error) handling
process between functions of an application.

Fig. 5 is a flowchart, similar to Fig. 4, but indicating a hierarchical exception
handling, as employed in the present invention.

Fig. 6 is a layout of an exception message, indicating typical fields to be
populated with detailed error message information, as employed in the present
invention.

Fig. 7 is flowchart, similar to that of Fig. 2 but indicating additional
hierarchical error reporting, as contributed by the present invention.

Fig. 8 is a flowchart of a sequence of normal operation of a program written
in a language such as C+ +.

Fig. 9 is a flowchart similar to Fig. 8, with operation of error handling

depicted.

10

15

20

25

WO 97/19403 PCT/US96/18201

4

Detailed Description Of The Invention

Fig. 1 is a generalized architecture of a personal computer (PC). A user 10
relies upon a software program or application 12 to process data (for example, in a
word processing program such as Word™ by Microscoft). The PC system 18
controlled by an operating system 16, such as DOS™, Windows™, etc. The hardware
of the computer 18 carries out the various processes required by the application and
the operating system. Often times, an additional layer, indicated as services 14,
interfaces with the application. For example, if data from the computer software
Excel™, by Microscoft, is to be inserted into a document being prepared in Word™,
an underlying service, such as the conventional service OLE may be required. Any
of the boxes shown in Fig. 1 may generate an error. The purpose of the present
invention is to report back, with detailed particularity to the user 10, an error report
that identifies the path of the error as well as the line of source code where the error
was encountered. Basically, in order to achieve this function, and as will be
explained hereinafter in greater detail, this requires the generation of an error
message in the layer where the error is introduced. Subsequently “touched” levels
in the return path of the error, to the user, generate a separate €rror message
identifying each respective layer in the return path. The end result is a stacking of
error messages that completely define the error and the return path of the error. The
error messages created avoid the ambiguity that results from present error reporting
systems where a similar error can occur in parallel branches so that a returned error
does not fully identify the particular branch affected.

For example, in Fig. 2, the hierarchy for a prior art architecture involving a
software application and attendant services is depicted. More particularly, a main
program 20 controls subroutines 24 and 26. The main program also controls a
function 22 which may be a simple command from the user 10, such as a retrieve file
function, or similarly a read function of a database record. As the hierarchy diagram
of Fig. 2 indicates, the function 22 and subroutines 24, 26 may each cooperate with

various services 28-35. As a reminder, “services” is used in the context of an

10

15

20

25

WO 97/19403 PCT/US96/18201

5

underlying software layer such as the case of OLE, as previously explained in
connection with Fig. 1. Function 22 again refers to an application command, such
as retrieve a file or read a database record. Typically, software applications include
a library of functions, any of which may be the particular function indicated by block
22 in Fig. 2.

In order to understand the limitations of the prior art reporting systems,
consider more than one of the services 28-35 as generating an error message. The
error message is reported back through a respective preceding level (function 22,
subroutines 24, 26) to the main program 20. The user is informed as to the error,
which is typically a code or short phrase. However, since multiple branches from
the main program invoke the same service, it would be impossible to determine
through which path the error message was returned.

The present invention solves this problem by keeping track of the path through
which an error message is “rolled up” to a top level, namely the main program. The
error message, as will be developed hereinafter, not only develops information
concerning the path through which the function error is returned, but also indicates
which line of source code was being operated upon by the main program during the
generation of the error. Such a reporting system is of great advantage during
operation of the system, so that it may be determined whether a user is introducing
the error, or whether a software problem exists. Usefulness in detecting the latter
mentioned problem is of particular importance during the debugging of applications
during development.

In order to accomplish the objectives of the present invention, an application
must be written (or an existing application rewritten) in a programming language that
provides a tool kit sufficiently extensive to allow the types of error message
generation presently required. Thus, in a preferred embodiment of the present

invention, the known programming language C+ + is employed.

10

15

20

25

WO 97/19403 PCT/US96/18201

6

To further explore the usefulness of the present invention, reference is made
to Fig. 3 which shows a typical client-server environment for database applications
40, 42 and 44. Typically, a user 36 monitors a display, which may be a graphical
user interface (GUI) 38 (e.g., Windows™). This represents a data presentation layer
for the user. The client is provided with a local database 46 which is constantly
refreshed during system operation. Communication between the client and server
occurs at a communication interface including a messaging layer 48 at the client and
a corresponding messaging layer 50 at the server. The main database 52 at the server
is the source of the complete database. In typical applications, messaging may occur
by utilizing TCP/IP protocol.

In the system of Fig. 3, the user requests records from the main database 52.
During such an operation, if an error message were created, the local database 46
would return a message indicating that the record could not be found. However,
there would be no information as to which aspect of the communication chain actually
caused the error. The programming language C+ + includes exception handling
capabilities (error messages) and by virtue of the present invention, the language’s
exception handling is augmented, in a manner heretofore unknown, so as to add error
path tracking. Thus, in the example discussed in connection with Fig. 3, the
presentation layer 38 would enable the user to specifically track where in the
communication chain the error occurred, and which application was involved,
including source code line identification.

Fig. 8 represents the normal flow of control from function to function in a
program written in C+ +, when there are no errors. In the Figure, Function A calls
Function B. This results in a transfer of control to the beginning of Function B. At
some time in its processing, Function B calls Function C, resulting in a transfer of
control to the beginning of Function C. Function C calls no additional function and
executes from beginning to end. When Function C has completed execution, control

is transferred back to Function B, which continues executing, starting at the

10

15

20

25

WO 97/19403 PCT/US96/18201

7

instruction following the call to Function C. Function B then completes executing
and returns control back to Function A. Function A resumes execution starting at the
instruction following the call to Function B. Function A then completes executing
and returns control to its caller (which could possibly be the operating system if
Function A is the “main” or topmost function in the application). Even though each
function has “exception handling code”, the code is never invoked since no error
occurred.

Fig. 9 represents the same application as the previous Fig., except that, in this
case, Function C detects an error during its processing. When Function C “throws”
an exception, control transfers to Function B. In this case, however, instead of
execution resuming in Function B at the instruction following the call to Function C,
execution now transfers to the exception handling code that is part of Function B.
If this code passes the exception back up the chain (“rethrows” the exception), then
control transfers to the exception handling code that is part of Function A.

Thus it is seen that, typically, function execution does not occur sequentially
in the sense that Function A completes processing followed by Function B, followed
by Function C. Instead, Function A interrupts itself to call Function B, which in turn
interrupts itself to call Function C. When the lowest called function is complete, the
next lowest function is then re-entered and allowed to complete. And so it goes, up
and down the chain of function calls.

A further exploration of normal exception handling by C+ + is indicated in
Fig. 4, which does not include the augmentation of the present invention. In Fig. 4,
a portion of an application is indicated, employing C+ +, wherein four sequential
Functions A-D (56-62) are shown. For example, if an exception 64 was “thrown”
(reported) by Function D, that exception is “caught” (received) by the previous layer
C. As indicated in Fig. 4, the exception is “rolled up” through prior Functions

(A-C) (66, 68), thereby completing an error reporting process. However, although

10

15

20

25

WO 97/19403 PCT/US96/18201

8

the nature of the error may be identified, its particular path from Function D-A will
not be derived.

Fig. 5 indicates the stacking of exceptions so that the entire return path of an
exception may be recorded. In accordance with the present invention, if Function D
throws Exception 1 (at reference numeral 70), a message will be generated indicating
that Function D is found to be in error and what line of source code was effected.
This message corresponds to Exception 1 (reference numeral 70). The thrown
Exception 1 is caught by Function C which generates its own message acknowledging
the previous message. Thus, Exception 2, thrown by Function C (72), repeats the
information that Function D was found to be in error and that Function D was called
from Function C. Further, the line of source code, where the error occurred, is
repeated.

Reference numeral 74 in Fig. 5 indicates the continued rolling up of
Exceptions 1 and 2 to the preceding Function B. Again, the error messages are
stacked, with the Function B adding its own error message to repeat the previous
information and adding the information that Function B called Function C.

Fig. 6 indicates the stacking of two exception (error) messages 76 and 78.
Block 76 indicates the typical types of fields that would be included in an exception
generated by C++. These would typically include a text message, corresponding
to the error. The file name indicates the original source file containing the function
generated error. The function or function module name is next included. The line
number in the original source code is similarly listed. If an error code is generated
from the application itself, for example error codes in a word processing or database
program, the error code would be included, as well. A field is also available for
explanatory information relative to the error (variable string information). Another
field may include an alternate error code, which, for example, may be a

programmer’s own error code.

10

15

20

25

WO 97/19403 PCT/US96/18201

9

In operation of the present invention, Fig. 7 indicates a software flow diagram
with enhanced error reporting, as compared with the prior art of Fig. 2.

Thus, as shown in Fig. 7, if an error is detected at step 80, between the main
program 20 and the function/subroutine steps 22/24, 26 an exception is generated and
an error message 82 is populated, with the information indicated in Fig. 6.

If no error occurs, the application continues with the appropriate function or
subroutine. If an error is detected during function 22, the error step 84 will populate
an error message 90, and this is rolled up toward the main program by stacking a
second error message 82 for completing the roll up path information. Similarly, if
errors occur during subroutines 24, 26, corresponding error steps 86 and 88 will
populate an error message 90. In the example illustrated in Fig. 7, if no error
messages occur at the conclusion of the function or subroutines, various services
28-35 will occur.

An error during the first executed service will cause completion of a
corresponding error step 92-102, thereby causing the population of an error message
104 at this level. As indicated in Fig. 7, an error message 104 will be stacked with
error messages 90 and 82 during roll up of the error message to the main program
20. If no error occurs, the application may be returned to the main program 106.
The end result of error reporting is the stacking of error messages to complete the
information concerning return path and source code line number.

Therefore, by virtue of the present invention, software applications may be
written (or rewritten) in a programming language such as C+ + with enhanced error
reporting as compared with the prior art. Full information concerning error path and
source line identification expedites error detection and correction in software that is
being developed or thereafter.

It should be understood that the invention is not limited to the exact details of
construction shown and described herein for obvious modifications will occur to

persons skilled in the art.

10

15

WO 97/19403 PCT/US96/18201

10
Claims
We claim:
1. An error reporting system for computer applications, comprising:

means for detecting an error at a present step during the execution of a
software application;

means for populating the fields of a first error message corresponding to the
detected error, with comprehensive information identifying the error and the step
where it occurred;

the message including a field identifying the line of source code being executed
when the error occurred;

the error message being rolled up to a preceding step of the application;

means for populating a second error message with preselected path information
regarding the preceding step and stacking the second error message to the first
message;

means for rolling up the first and second error messages to earlier executed
steps of the application and correspondingly populating respective error messages for
stacking with the first and second messages; and

means for displaying information from resulting stacked messages, to a user,
thereby defining the path of the error and the line of source code executed when the

error occurred.

2. The system set forth in claim 1 further including client-server components,
comprising:

a client local database accessed by at least one application;

first means for messaging data requests from an application, located at the

client, to the server;

10

15

WO 97/19403 PCT/US96/18201

11

second messaging means, located at the server, for communicating with the
first messaging means; and
a main database, located at the server, for downloading the data requested

during an application via the first and second messaging means.

3. In a data processing system having a software application invoking at least one
layer of software services, an error reporting apparatus comprising:

means for detecting an error at a present step during the execution of a service
invoked by the software application,;

means for populating the fields of a first error message corresponding to the
detected error in execution of the service, with comprehensive information identifying
the error and the step where it occurred;

the message including a field identifying the line of source code being executed
when the error occurred;

the error message being rolled up to a preceding step of the application;

means for populating a second error message with preselected path information
regarding the preceding step and stacking the second error message to the first
message;

means for rolling up the first and second error messages to earlier executed
steps of the application and correspondingly populating respective error messages for
stacking with the first and second messages; and

means for displaying resulting stacked messages to a user thereby defining the
path of the error occurring during execution of the service and the line of source code

executed when the error occurred.

4. The system set forth in claim 3 further including client-server components,
comprising:

a client local database accessed by at least one application;

10

15

WO 97/19403 PCT/US96/18201

12

first means for messaging data requests from an application, located at the
client, to the server;

second messaging means, located at the server, for communicating with the
first messaging means; and

a main database, located at the server, for downloading the data requested

during an application via the first and second messaging means.

S. A method for reporting errors to a user during execution of a software
application, the method including the steps of:

detecting an error at a present step during the execution of a software
application;

populating the fields of a first error message corresponding to the detected
error, with comprehensive information identifying the error and the step where it
occurred;

the message including a field identifying the line of source code being executed
when the error occurred,

the error message being rolled up to a preceding step of the application;

populating a second error message with preselected path information regarding
the preceding step and stacking the second error message to the first message;

rolling up the first and second error messages to earlier executed steps of the
application and correspondingly populating respective error messages for stacking
with the first and second messages; and

displaying information from resulting stacked messages, to a user, thereby
defining the path of the error and the line of source code executed when the error

occurred.

6. The method set forth in claim 5 further including client-server communication

steps comprising:

10

15

WO 97/19403 PCT/US96/18201

13

accessing a client local database, by at least one application;
messaging data requests, by the client to the server;
downloading the data requested during an application, from a server based

main database, via return messaging, to the local database at the client.

7. In a data processing system having a software application invoking at least one
layer of software services, an error reporting method comprising the steps:

detecting an error at a present step during the execution of a service invoked
by the software application;

populating the fields of a first error message corresponding to the detected
error, in execution of the service, with comprehensive information identifying the
error and the step where it occurred;

the message including a field identifying the line of source code being executed
when the error occurred;

the error message being rolled up to a preceding step of the application;

populating a second error message with preselected path information regarding
the preceding step and stacking the second error message to the first message;

rolling up the first and second error messages to earlier executed steps of the
application and correspondingly populating respective error messages for stacking
with the first and second messages; and

displaying information from resulting stacked messages, to a user, thereby
defining the path of the error occurring during the execution of the service and the

line of source code executed when the error occurred.

8. The method set forth in claim 7 further including client-server communication
steps comprising:
accessing a client local database, by at least one application;

messaging data requests, by the client to the server;

WO 97/19403 PCT/US96/18201

14

downloading the data requested during an application, from a server based

main database, via return messaging, to the local database at the client.

WO 97/19403

1/5

User

» Application

2

Services

v

PCT/US96/18201

/-12

L 14

Operating System

(16

68
\/) Function A

Exception

66

Exception

o
64\/){

Exception

—

/56

Function B

58

60

Function C

/

Function D

62

FIG. 4

PRIOR ART

v

Hardware

FIG. 1

74 56
\/)' Function A P
Exception.s
Exception 2 I
Exception 1
72 “~~ Function B | /58
Exception 2
Exception' 1 60
\ Function C /
Exception 1 62
_ Function D /

PCT/US96/18201

WO 97/19403

2/5

9 'Ol

apo) 0413 ajeulally
oju] Bulng ajqerrep

apoo 10413

laqunp aulq ./

aweN uoijoung

8¢
]

9OMAIBS| go91as0g

]

\ sweNad | 4,
" abessay 1xa]
8L
14V d0ldd
¢ 'Old
0¢
¢ ek ¢ %
CRIVVE TS 990lAlBSg —mo_?_mw mo_?_om—wo_tww
_ | |] L
| | |
auynoiqng \w:_a:o._n_._w /1 uonduny
ve
oz~ ce
\

0c

wesboid ujepy

—

uojjesiddy

|

PCT/US96/18201

WO 97/19403

3/5

€ uopesijddy

€ 'Old

cs aseqejeq
ulepn
JOAILD
0S —\ w
Buibessap
8y / Bujbessapy
| _ Jusl|d
| aseqejeq
m w¢/, |eso
| I op
N
A z uoneayddy |\ } uopjes|jddy
144 A
9¢
8¢ — (Ino) J

iakeT uojjejuasaid

las

PCT/US96/18201

WO 97/19403

4/5

L 'Ol

wesbouad utey oy

2:#

’ abessap
N N N N N N 10113
) aje|ndod
lou3 w sonz | 1ou3 souz P | souz PP»| soug C
L A A A A 14417
ZoL + 2:\% 86~ 8\+ vm\+ Z6
asiazeg || @9s1ma0g ad1A1ag adlAIag a2IAlag 991A10g
se” | e 6 | [C 0e— §
[4> 8¢
N N N Y
abessad
loug b——> lou3g —p 10113 ._otms_
A A A
N 98 — vg — aje|ndogd
88 /
06
auynoiqng aunnoiqng uojoung
\- oz /a
,/NN
N A 4
obessapy
0g 1 40443 —J»t oz
8 sjejndod
88—
weiboid

0z ulep

PCT/US96/18201

WO 97/19403

5/5

apo)
Bujjpuey uonjdaoxg

9 uojjouny

1

6 Old

P

apo)
BujjpueH uoijdasxyg

apo)
Bujpueq uondasxy

D uondung

4

g uoyjoung

apo)

8 "Old

apoo
Buijpuey uojydaoxg

BuljpueH uondaosxy

Vv uojjoungy

g uoljoungy

apo)
Bujjpuey uondaosxyg

|

Vv uoijoungy

INTERNATIONAL SEARCH

REPORT

International application No.
PCT/US96/18201

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 9/45, 11/34, 11/00
US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

UsS. :
364/232.3, 254.5, 267, 267.91, 275.5

395/183.14, 183.15, 184.01, 185.01, 185.02, 601, 704, 705, 708,

Documentation searched other than minimum documentation to the extent that such documents arc included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, EDS-MAYA, DIALOG, STN, EPCQUE Ii

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US, A, 5,432,795 (ROBINSON) 11 July 1995, see figures1,{ 1,3, 5, 7
14-15; col. 3, lines 3-6; col.7, lines 12-13; col.5, lines 3-7,
15, 19-23; col. 23, lines 1-13; col. 24, lines 50-53;
see col. 3, lines 1-3; col. 5, lines 1-3.
2,4,6,8
Y US, A, 5,383,201 (SATTERLEE ET AL.) 17 January 1995, 1,3, 5,7
see figs. 1A- 1B, abstract, cols. 19-20.
Y US, A 5,450,575 (SITES) 12 September 1995, see abstract,| 1,3, 5, 7
figures 11A-11B, cols. 4-5;
Y,P US, A, 5,561,763 (ETO ET AL.) 01 October 1996, see| 2, 4, 6, 8
abstract, fig. 5, col.22, lines 31-48.
E(] Further documecats are listed in the continuation of Box C. D Sec patent family annex.
. Special categorics of cited documents: T Iater docurnent published sfier the intemational filing dade or priority
“A* dwdﬁuhgwﬂmof&emwhnh-memdemd date and pot in coaflict with the application but cited to understand the
10 be of principlk or theory undertying the invention
B carticr document published on or afler the international filing date X documeat of particular relevance; the claimed & m'hvmg;:
L document which may throw doubts oa priority chim(s) or which i whea the document is taken alonc
cndwanbhhﬁzpubhamd-uofuw«hacmmnorotm
P (e specified) ‘Y doc\qna:t of particular relcvance; the claimed mvention cannot be
d 10 involve an inventive step when the document is
0" document referring 1o an oral disclosure, use, exhibition or other combined with oae or more other such doc such bi
means being obvious 10 & persoan skilled in the art
P documeat publhbed‘prior 10 the international filing date but later than < g~ documeat member of the same pateat family
the priority date claimed

Date of the actual completion of the international search

21 FEBRUARY 1997

Date of mailing of the international search report

2 6 MAR1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademaris
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer

e W

(703) 305-9408

DIEU-MINH THAI LE
Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/18201

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

po3 (1).

John, "SQL Solutions is broadening database line with SQR 4GL",

Category* Citation of documeat, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 5,047,977 (HILL ET AL.) 10 September 1991, see figures | 1, 3,5, 7
8 and 10; col.1, lines 31-39;
Y News Release, "SQL Solutions Unveils SQR-Developer’s Kit", 1-8
issued 05 November 1990, page 1;
Y New Release, "StratosWare Releases MemCheck for the 1-8
Macintosh”, issued 19 October 1992, pages 1-2;
Y PC Week, volume 7, no. 47, issued 26 November 1990, pallatto, 1-8

Form PCT/ISA/210 (continuation of second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/18201

A. CLASSIFICATION OF SUBJECT MATTER:
Us CL :

395/183.14, 183.15, 184.01, 185.01, 185.02, 601, 704, 705, 708,
364/232.3, 254.5, 267, 267.91, 275.5

Form PCT/ISA/210 (extra sheet)(July 1992)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

