(86) Date de dépôt PCT/PCT Filing Date: 2000/11/02
(87) Date publication PCT/PCT Publication Date: 2001/05/10
(85) Entrée phase nationale/National Entry: 2002/04/17
(86) N° demande PCT/PCT Application No.: US 2000/030485
(87) N° publication PCT/PCT Publication No.: 2001/032888
(30) Priorité/Priority: 1999/11/04 (60/163,595) US

| (54) Titre : MOLECULES HUMAINES DE LA TRANSFERASE |
| (54) Title: HUMAN TRANSFERASE MOLECULES |

(57) Abrégé/Abstract:
The invention provides human transferase molecules (HTFS) and polynucleotides which identify and encode HTFS. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTFS.
Title: HUMAN TRANSFERASE MOLECULES

Abstract: The invention provides human transferase molecules (HTFS) and polynucleotides which identify and encode HTFS. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTFS.
HUMAN TRANSFERASE MOLECULES

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of human transferase molecules and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative disorders and immune system disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human transferase molecules.

BACKGROUND OF THE INVENTION

Transferases are enzymes that catalyze the transfer of molecular groups. The reaction may involve an oxidation, reduction, or cleavage of covalent bonds, and is often specific to a substrate or to particular sites on a type of substrate. Transferases participate in reactions essential to such functions as synthesis and degradation of cell components, regulation of cell functions including cell signaling, cell proliferation, inflammation, apoptosis, secretion and excretion. Transferases are involved in key steps in disease processes involving these functions. Transferases are frequently classified according to the type of group transferred. For example, methyl transferases transfer one-carbon methyl groups, amino transferases transfer nitrogenous amino groups, and similarly denominated enzymes transfer aldehyde or ketone, acyl, glycosyl, alkyl or aryl, isoprenyl, saccharyl, phosphorous-containing, sulfur-containing, or selenium-containing groups, as well as small enzymatic groups such as Coenzyme A.

Acyl transferases include peroxisomal carnitine octanoyl transferase, which is involved in the fatty acid beta-oxidation pathway, and mitochondrial carnitine palmitoyl transferases, involved in fatty acid metabolism and transport. Choline O-acetyl transferase catalyzes the biosynthesis of the neurotransmitter acetylcholine.

Amino transferases play key roles in protein synthesis and degradation, and they contribute to other processes as well. For example, the amino transferase 5-aminolevulinic acid synthase catalyzes the addition of succinyl-CoA to glycine, the first step in heme biosynthesis. Other amino transferases participate in pathways important for neurological function and metabolism. For example, glutamine-phenylpyruvate amino transferase, also known as glutamine transaminase K (GTK), catalyzes several reactions with a pyridoxal phosphate cofactor. GTK catalyzes the reversible conversion of L-glutamine and phenylpyruvate to 2-oxoglutaramate and L-phenylalanine. Other amino acid substrates for GTK include L-methionine, L-histidine, and L-tyrosine. GTK also catalyzes the conversion of kynurenine to kynurenic acid, a tryptophan metabolite that is an antagonist of the N-methyl-D-aspartate (NMDA) receptor in the brain and may exert a neuromodulatory function. Alteration of the kynurenine metabolic pathway may be associated with several neurological disorders. GTK also plays a role in the

Glycosyl transferases include the mammalian UDP-glucuronosyl transferases, a family of membrane-bound microsomal enzymes catalyzing the transfer of glucuronic acid to lipophilic substrates in reactions that play important roles in detoxification and excretion of drugs, carcinogens, and other foreign substances. Another mammalian glycosyl transferase, mammalian UDP-galactosyl-ceramide galactosyl transferase, catalyzes the transfer of galactose to ceramide in the synthesis of galactocerebrosides in myelin membranes of the nervous system. The UDP-glycosyl transferases share a conserved signature domain of about 50 amino acid residues (PROSITE: PDOC00359, http://expasy.hcuge.ch/sprot/prosite.html).

Methyl transferases are involved in a variety of pharmacologically important processes.

Nicotinamide N-methyl transferase catalyzes the N-methylation of nicotinamides and other pyridines, an important step in the cellular handling of drugs and other foreign compounds. Phenylethanolamine N-methyl transferase catalyzes the conversion of noradrenaline to adrenaline. 6-O-methylguanine-DNA methyl transferase reverses DNA methylation, an important step in carcinogenesis. Uroporphyrin-III C-methyl transferase, which catalyzes the transfer of two methyl groups from S-adenosyl-L-methionine to uroporphyrinogen III, is the first specific enzyme in the biosynthesis of cobalamin, a dietary enzyme whose uptake is deficient in pernicious anemia. Protein-arginine methyl transferases catalyze the posttranslational methylation of arginine residues in proteins, resulting in the mono- and dimethylation of arginine on the guanidino group. Substrates include histones, myelin basic protein, and heterogeneous nuclear ribonucleoproteins involved in mRNA processing, splicing, and transport.

Phospho-transferases catalyze the transfer of high-energy phosphate groups and are important in energy-requiring and -releasing reactions. The metabolic enzyme creatine kinase catalyzes the reversible phosphate transfer between creatine/creatine phosphate and ATP/ADP. Glycocyamine kinase catalyzes phosphate transfer from ATP to guanidoacetate, and arginine kinase catalyzes phosphate transfer from ATP to arginine. A cysteine-containing active site is conserved in this family (PROSITE: PD00103).

Prenyl transferases are heterodimers, consisting of an alpha and a beta subunit, that catalyze the transfer of an isoprenyl group. An example of a prenyl transferase is the mammalian protein farnesyl transferase. The alpha subunit of farnesyl transferase consists of 5 repeats of 34 amino acids each, with each repeat containing an invariant tryptophan (PROSITE: PD00703).

Saccharyl transferases are glycating enzymes involved in a variety of metabolic processes. Oligosaccharyl transferase-48, for example, is a receptor for advanced glycation endproducts. Accumulation of these endproducts is observed in vascular complications of diabetes, macrovascular disease, renal insufficiency, and Alzheimer’s disease (Thornalley, P.J. (1998) Cell Mol. Biol. (Noisy-Le-Grand) 44:1013-1023).

Coenzyme A (CoA) transferase catalyzes the transfer of CoA between two carboxylic acids. Succinyl CoA:3-oxoacid CoA transferase, for example, transfers CoA from succinyl-CoA to a recipient such as acetoacetate. Acetoacetate is essential to the metabolism of ketone bodies, which accumulate in tissues affected by metabolic disorders such as diabetes (PROSITE: PD00980).

The discovery of new human transferase molecules and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative disorders and immune system disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human transferase molecules.

SUMMARY OF THE INVENTION

group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-42.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-42. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:43-84.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide.
comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42.

The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, c) a
polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional HTFS, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional HTFS, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment...
of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional HTFS, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:43-84, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HTFS.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of HTFS.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding HTFS were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

“HTFS” refers to the amino acid sequences of substantially purified HTFS obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term “agonist” refers to a molecule which intensifies or mimics the biological activity of HTFS. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTFS either by directly interacting with HTFS or by acting on components of the biological pathway in which HTFS participates.

An “allelic variant” is an alternative form of the gene encoding HTFS. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in
a given sequence.

"Altered" nucleic acid sequences encoding HTFS include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as HTFS or a polypeptide with at least one functional characteristic of HTFS. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTFS, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTFS. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTFS. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTFS is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of HTFS. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of HTFS either by directly interacting with HTFS or by acting on components of the biological pathway in which HTFS participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind HTFS polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or
synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term “antigenic determinant” refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term “antisense” refers to any composition capable of base-pairing with the “sense” (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2’-deoxyuracil, or 7-deaza-2’-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation “negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.

The term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” or “immunogenic” refers to the capability of the natural, recombinant, or synthetic HTFS, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

“Complementary” describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5’-AGT-3’ pairs with its complement, 3’-TCA-5’.

A “composition comprising a given polynucleotide sequence” and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTFS or fragments of HTFS may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be
deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

<table>
<thead>
<tr>
<th>Original Residue</th>
<th>Conservative Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Gly, Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>His, Lys</td>
</tr>
<tr>
<td>Asn</td>
<td>Asp, Gln, His</td>
</tr>
<tr>
<td>Asp</td>
<td>Asn, Glu</td>
</tr>
<tr>
<td>Cys</td>
<td>Ala, Ser</td>
</tr>
<tr>
<td>Gln</td>
<td>Asn, Glu, His</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp, Gln, His</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>His</td>
<td>Asn, Arg, Gln, Glu</td>
</tr>
<tr>
<td>Ile</td>
<td>Leu, Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Ile, Val</td>
</tr>
<tr>
<td>Lys</td>
<td>Arg, Gln, Glu</td>
</tr>
<tr>
<td>Met</td>
<td>Leu, Ile</td>
</tr>
<tr>
<td>Phe</td>
<td>His, Met, Leu, Trp, Tyr</td>
</tr>
<tr>
<td>Ser</td>
<td>Cys, Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser, Val</td>
</tr>
<tr>
<td>Trp</td>
<td>Phe, Tyr</td>
</tr>
<tr>
<td>Tyr</td>
<td>His, Phe, Trp</td>
</tr>
<tr>
<td>Val</td>
<td>Ile, Leu, Thr</td>
</tr>
</tbody>
</table>

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

A "fragment" is a unique portion of HTFS or the polynucleotide encoding HTFS which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 100 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:43-84 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:43-84, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:43-84 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:43-84 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:43-84 and the region of SEQ ID NO:43-84 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-42 is encoded by a fragment of SEQ ID NO:43-84. A fragment of SEQ ID NO:1-42 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-42. For example, a fragment of SEQ ID NO:1-42 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-42. The precise length of a fragment of SEQ ID NO:1-42 and the region of SEQ ID NO:1-42 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full-length" polynucleotide sequence is one containing at least a translation initiation codon.
(e.g., methionine) followed by an open reading frame and a translation termination codon. A “full-length” polynucleotide sequence encodes a “full-length” polypeptide sequence.

“Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191.

For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and “diagonals saved”=4. The “weighted” residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2
Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktupel=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties
\textit{Gap x drop-off: 50}

\textit{Expect: 10}

\textit{Word Size: 3}

\textit{Filter: on}

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68\textdegree C in the presence of about 6 x SSC, about 1\% (w/v) SDS, and about 100 \(\mu \)g/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5\textdegree C to 20\textdegree C lower than the thermal melting point (\(T_m \)) for the specific sequence at a defined ionic strength and pH. The \(T_m \) is the temperature (under defined ionic strength and pH) at which 50\% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating \(T_m \) and conditions
for nucleic acid hybridization are well known and can be found in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_d or R_d analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words “insertion” and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An “immunogenic fragment” is a polypeptide or oligopeptide fragment of HTFS which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of HTFS which is useful in any of the antibody production methods disclosed herein or known in the art.

The term “microarray” refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms “element” and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of HTFS. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTFS.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an HTFS may involve lipiddation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of HTFS.

"Probe" refers to nucleic acid sequences encoding HTFS, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIQO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user’s specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.

Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.
such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

“Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term “sample” is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTFS, or fragments thereof, or HTFS itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term “substantially purified” refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook, J. et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater
sequence identity over a certain defined length. A variant may be described as, for example, an “allelic” (as defined above), “splice,” “species,” or “polymorphic” variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.

Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass “single nucleotide polymorphisms” (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A “variant” of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human transferase molecules (HTFS), the polynucleotides encoding HTFS, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative disorders and immune system disorders.

Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding HTFS. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each HTFS were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. In some cases, GenBank sequence identifiers are also shown in column 5. The Incyte clones and GenBank cDNA sequences, where indicated, in column 5 were used to assemble the consensus nucleotide sequence of each HTFS and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis along with relevant citations, all of
which are expressly incorporated by reference herein in their entirety; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTFS. The first column of Table 3 lists the nucleotide SEQ ID NOs. Fragments of these nucleotide sequences are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:43-84 and to distinguish between SEQ ID NO:43-84 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 2 lists tissue categories which express HTFS as a fraction of total tissues expressing HTFS. Column 3 lists diseases, disorders, or conditions associated with those tissues expressing HTFS as a fraction of total tissues expressing HTFS. Column 4 lists the vectors used to subclone each cDNA library.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding HTFS were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

SEQ ID NO:44 maps to chromosome 1 within the interval from 170.1 to 186.4 centiMorgans. SEQ ID NO:46 maps to chromosome 11 within the interval from 58.2 to 59.5 centiMorgans. SEQ ID NO:48 maps to chromosome 11 within the interval from 67.4 to 70.9 centiMorgans. SEQ ID NO:49 maps to chromosome 21 within the interval from 51.6 centiMorgans to the q-terminus. SEQ ID NO:52 maps to chromosome 3 within the interval from 63.3 to 77.4 centiMorgans. SEQ ID NO:59 maps to chromosome 20 within the interval from 50.2 to 53.6 centiMorgans and to chromosome 12 within the interval from 113.3 to 118.9 centiMorgans. SEQ ID NO:60 maps to chromosome 12 within the interval from 62.7 to 70.6 centiMorgans. SEQ ID NO:62 maps to chromosome 11 within the interval from 62.5 to 70.9 centiMorgans. SEQ ID NO:68 maps to chromosome 11 within the interval from 70.9 to 72.1 centiMorgans. SEQ ID NO:78 maps to chromosome 23 within the interval from 94.4 to 97.4 centiMorgans and to chromosome 2 within the interval from 272.5 centiMorgans to the q-terminus. SEQ ID NO:85 maps to chromosome 5 within the interval from 5.5 to 21.5 centiMorgans, to chromosome 17 within the interval from 53.9 to 62.9 centiMorgans, and to chromosome 12 within the interval from 84.7 to 92.5 centiMorgans. SEQ ID NO:86 maps to chromosome 6 within the interval from 42.0 to 45.4 centiMorgans, to chromosome 11 within the interval from 58.2 to 59.5 centiMorgans, and to chromosome 16 within the interval from 88.1 to 92.6 centiMorgans.

The invention also encompasses HTFS variants. A preferred HTFS variant is one which has at
least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the HTFS amino acid sequence, and which contains at least one functional or structural characteristic of HTFS.

The invention also encompasses polynucleotides which encode HTFS. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:43-84, which encodes HTFS. The polynucleotide sequences of SEQ ID NO:43-84, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding HTFS. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HTFS. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:43-84 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:43-84. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HTFS.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTFS, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTFS, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HTFS and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring HTFS under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTFS or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTFS and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced
from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HTFS and HTFS derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTFS or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:43-84 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (PE Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding HTFS may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Appl. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids
A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5′ regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5′ non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTFS may be cloned in recombinant DNA molecules that direct expression of HTFS, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTFS.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTFS-encoding sequences for a variety of purposes including, but not
limited to, modification of the cloning, processing, and/or expression of the gene product. DNA
shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic
oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-
mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites,
alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as
MOLECULAR BREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number
improve the biological properties of HTFS, such as its biological or enzymatic activity or its ability to
bind to other molecules or compounds. DNA shuffling is a process by which a library of gene
variants is produced using PCR-mediated recombination of gene fragments. The library is then
subjected to selection or screening procedures that identify those gene variants with the desired
properties. These preferred variants may then be pooled and further subjected to recursive rounds of
dna shuffling and selection/screening. Thus, genetic diversity is created through "artificial"
breeding and rapid molecular evolution. For example, fragments of a single gene containing random
point mutations may be recombined, screened, and then reshuffled until the desired properties are
optimized. Alternatively, fragments of a given gene may be recombined with fragments of
homologous genes in the same gene family, either from the same or different species, thereby
maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable
manner.

In another embodiment, sequences encoding HTFS may be synthesized, in whole or in part,
using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids
HTFS itself or a fragment thereof may be synthesized using chemical methods. For example, peptide
synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g.,
55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved
using the ABI 431A peptide synthesizer (PE Biosystems). Additionally, the amino acid sequence of
HTFS, or any part thereof, may be altered during direct synthesis and/or combined with sequences from
other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence
of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid
The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing.
(See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active HTFS, the nucleotide sequences encoding HTFS or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTFS. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTFS. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTFS and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTFS and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTFS. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., T7) or pBR322 plasmids; or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, C.A. et al. (1994) Bio/Technology 12:181-184; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105; The

The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTFS. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTFS can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTFS into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTFS are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTFS may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HTFS. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, supra; and Scorer, supra.)

Plant systems may also be used for expression of HTFS. Transcription of sequences encoding HTFS may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, supra; Broglie, supra; and Winter, supra.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)
In mammalian cells, a number of viral-based expression systems may be utilized. In cases
where an adenovirus is used as an expression vector, sequences encoding HTFS may be ligated into an
adenovirus transcription/translation complex consisting of the late promoter and tripartite leader
sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain
Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma
virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-
based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of
DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are
constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers,
or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of
HTFS in cell lines is preferred. For example, sequences encoding HTFS can be transformed into cell
lines using expression vectors which may contain viral origins of replication and/or endogenous
expression elements and a selectable marker gene on the same or on a separate vector. Following the
introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before
being switched to selective media. The purpose of the selectable marker is to confer resistance to a
selective agent, and its presence allows growth and recovery of cells which successfully express the
introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue
culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include,
but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase
genes, for use in tk- and apr- cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232;
Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimitabolite, antibiotic, or herbicide resistance can be
used as the basis for selection. For example, dfr confers resistance to methotrexate; neo confers
resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to
chlorosulfuron and phosphinothricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980)

Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements
85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), \beta
glucuronidase and its substrate \beta-glucuronide, or luciferase and its substrate luciferin may be used.
These markers can be used not only to identify transformants, but also to quantify the amount of

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTFS is inserted within a marker gene sequence, transformed cells containing sequences encoding HTFS can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTFS under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HTFS and that express HTFS may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HTFS using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTFS is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTFS include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTFS, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates,
cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HTFS may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTFS may be designed to contain signal sequences which direct secretion of HTFS through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTFS may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTFS protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTFS activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTFS encoding sequence and the heterologous protein sequence, so that HTFS may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HTFS may be achieved in
in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.

HTFS of the present invention or fragments thereof may be used to screen for compounds that specifically bind to HTFS. At least one and up to a plurality of test compounds may be screened for specific binding to HTFS. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of

HTFS, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) Current Protocols in Immunology, 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which HTFS binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express HTFS, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing HTFS or cell membrane fractions which contain HTFS are then contacted with a test compound and binding, stimulation, or inhibition of activity of either HTFS or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with HTFS, either in solution or affixed to a solid support, and detecting the binding of HTFS to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

HTFS of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of HTFS. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for HTFS activity, wherein HTFS is combined with at least one test compound, and the activity of HTFS in the presence of a test compound is compared with the activity of HTFS in the absence of the test compound. A change in the activity of HTFS in the presence of the test compound is indicative of a compound that modulates the activity of HTFS. Alternatively, a test compound is combined with an in vitro or cell-free system comprising HTFS under conditions suitable for HTFS activity, and the
assay is performed. In either of these assays, a test compound which modulates the activity of HTFS may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding HTFS or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding HTFS may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding HTFS can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding HTFS is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress HTFS, e.g., by secreting HTFS in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTFS and human transferase molecules. In addition, the expression of HTFS is
closely associated with proliferating tissues and inflammation. Therefore, HTFS appears to play a role in cell proliferative disorders and immune system disorders. In the treatment of disorders associated with increased HTFS expression or activity, it is desirable to decrease the expression or activity of HTFS. In the treatment of disorders associated with decreased HTFS expression or activity, it is desirable to increase the expression or activity of HTFS.

Therefore, in one embodiment, HTFS or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTFS. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune system disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn’s disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polynephritis, psoriasis, Reiter’s syndrome, rheumatoid arthritis, scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma.

In another embodiment, a vector capable of expressing HTFS or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTFS including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified HTFS in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a
disorder associated with decreased expression or activity of HTFS including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HTFS may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTFS including, but not limited to, those listed above.

In a further embodiment, an antagonist of HTFS may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTFS. Examples of such disorders include, but are not limited to, those cell proliferative disorders and immune system disorders described above. In one aspect, an antibody which specifically binds HTFS may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express HTFS.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HTFS may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTFS including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HTFS may be produced using methods which are generally known in the art. In particular, purified HTFS may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTFS. Antibodies to HTFS may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTFS or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG
(bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTFS have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of HTFS amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for HTFS may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either
polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTFS and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTFS epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTFS. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of HTFS-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTFS epitopes, represents the average affinity, or avidity, of the antibodies for HTFS. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTFS epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the HTFS-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTFS, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of HTFS-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al., supra.)

In another embodiment of the invention, the polynucleotides encoding HTFS, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding HTFS. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTFS. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense

In another embodiment of the invention, polynucleotides encoding HTFS may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystall, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystall, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassemias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in HTFS expression or regulation causes disease, the expression of HTFS from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in HTFS are treated by constructing mammalian expression vectors encoding HTFS and introducing these vectors by mechanical means into HTFS-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vivo include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the

Expression vectors that may be effective for the expression of HTFS include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). HTFS may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding HTFS from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to HTFS expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding HTFS under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armantano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polymucleotides encoding HTFS to cells which have one or more genetic abnormalities with respect to the expression of HTFS. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544; and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polymucleotides encoding HTFS to target cells which have one or more genetic abnormalities with respect to the expression of HTFS. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing HTFS to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res.169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus
sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding HTFS to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for HTFS into the alphavirus genome in place of the capsid-coding region results in the production of a large number of HTFS-coding RNAs and the synthesis of high levels of HTFS in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of HTFS into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example,
engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTFS.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTFS. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5’ and/or 3’ ends of the molecule, or the use of phosphorothioate or 2’ O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding HTFS. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased HTFS expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding HTFS may be therapeutically useful, and in the treatment of disorders associated with decreased HTFS expression or activity, a compound which specifically promotes expression of the polynucleotide encoding HTFS may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding HTFS is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding HTFS are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding HTFS. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
Excipients may include, for example, sugars, starches, cellulosates, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of HTFS, antibodies to HTFS, and mimetics, agonists, antagonists, or inhibitors of HTFS.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising HTFS or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, HTFS or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HTFS or fragments thereof, antibodies of HTFS, and agonists, antagonists or inhibitors of HTFS, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by
standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED$_{50}$ (the dose therapeutically effective in 50% of the population) or LD$_{50}$ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD$_{50}$/ED$_{50}$ ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED$_{50}$ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.

Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HTFS may be used for the diagnosis of disorders characterized by expression of HTFS, or in assays to monitor patients being treated with HTFS or agonists, antagonists, or inhibitors of HTFS. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTFS include methods which utilize the antibody and a label to detect HTFS in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HTFS, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTFS expression. Normal or standard values for HTFS expression are established by combining body fluids or cell extracts taken
from normal mammalian subjects, for example, human subjects, with antibody to HTFS under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of HTFS expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HTFS may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNA. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of HTFS may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTFS, and to monitor regulation of HTFS levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTFS or closely related molecules may be used to identify nucleic acid sequences which encode HTFS. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding HTFS, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the HTFS encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:43-84 or from genomic sequences including promoters, enhancers, and introns of the HTFS gene.

Means for producing specific hybridization probes for DNAs encoding HTFS include the cloning of polynucleotide sequences encoding HTFS or HTFS derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HTFS may be used for the diagnosis of disorders associated with expression of HTFS. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in
particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and an immune system disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocytopenia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma. The polynucleotide sequences encoding HTFS may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTFS expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HTFS may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HTFS may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTFS in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HTFS, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTFS, under conditions suitable for hybridization or amplification.
Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTFS may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTFS, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTFS, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding HTFS may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding HTFS are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as
DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of HTFS include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, incorporated herein by reference. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, antibodies specific for HTFS, or HTFS or fragments thereof may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number
5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples
are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for HTFS to quantify the levels of HTFS expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lucking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or aminoreactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid
degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

In another embodiment of the invention, nucleic acid sequences encoding HTFS may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, e.g., Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)
Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding HTFS on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HTFS, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTFS and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTFS, or fragments thereof, and washed. Bound HTFS is then detected by methods well known in the art. Purified HTFS can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HTFS specifically compete with a test compound for binding HTFS. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTFS.

In additional embodiments, the nucleotide sequences which encode HTFS may be used in any
molecular biology techniques that have yet to be developed, provided the new techniques rely on
properties of nucleotide sequences that are currently known, including, but not limited to, such
properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding
description, utilize the present invention to its fullest extent. The following preferred specific
embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder
of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, in
particular U.S. Serial No. 60/163,595, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues
were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed
in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic
solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl
cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol
or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA
purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated
using oligo d(T)-coupled paramagnetic particles (Promega), Oligotex latex particles (Qiagen,
Chatsworth CA), or an OLIGOTEX mRNA purification kit (Qiagen). Alternatively, RNA was
isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA
purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA
libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP
vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the
recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units
5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic
oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the
appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000
bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column
chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs
were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g.,
PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid
(Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled nucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions,
references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:43-84. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related
molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.

The basis of the search is the product score, which is defined as:

\[
\text{BLAST Score} \times \text{Percent Identity} = 5 \times \min (\text{length}(\text{Seq. 1}), \text{length}(\text{Seq. 2}))
\]

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTFS occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Chromosomal Mapping of HTFS Encoding Polynucleotides

The cDNA sequences which were used to assemble SEQ ID NO:43-84 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:43-84 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for
Genome Research (WIGR), and Génétion were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

The genetic map locations of SEQ ID NO:44, 46, 48, 49, 52, 59, 60, 62, 68, 78, 85, and 86 are described in The Invention as ranges, or intervals, of human chromosomes. More than one map location is reported for SEQ ID NO:59, 78, 85, and 86, indicating that previously mapped sequences having similarity, but not complete identity, to SEQ ID NO:59, 78, 85, and 86 were assembled into their respective clusters. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Génétion which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VI. Extension of HTFS Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:43-84 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2:
94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).

In like manner, the polynucleotide sequences of SEQ ID NO:43-84 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic library.

VII. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:43-84 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is
specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VIII. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra), mechanical microspotting technologies, and derivates thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), supra). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser
desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

5 Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 μl volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 μl of the array element DNA, at an average
concentration of 100 ng/μl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples
from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore’s emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

IX. Complementary Polynucleotides

Sequences complementary to the HTFS-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTFS. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using Oligo 4.06 software (National Biosciences) and the coding sequence of HTFS. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTFS-encoding transcript.

X. Expression of HTFS

Expression and purification of HTFS is achieved using bacterial or virus-based expression systems. For expression of HTFS in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (lac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTFS upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HTFS in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTFS
by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HTFS is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTFS at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified HTFS obtained by these methods can be used directly in the assays shown in Examples XI and XV.

XI. Demonstration of HTFS Activity

Galactosyltransferase activity is determined by measuring the transfer of galactose from UDP-galactose to a GlcNAc-terminated oligosaccharide chain in a radioactive assay. (Kolbinger, F. et al. (1998) J. Biol. Chem. 273:58-65.) The HTFS sample is incubated with 14 μl of assay stock solution (180 mM sodium cacodylate, pH 6.5, 1 mg/ml bovine serum albumin, 0.26 mM UDP-galactose, 2 μl of UDP-[H]galactose, 1 μl of MnCl₂ (500 mM), and 2.5 μl of GlcNAcβO-(CH₂)₆-CO₂Me (37 mg/ml in dimethyl sulfoxide) for 60 minutes at 37°C. The reaction is quenched by the addition of 1 ml of water and loaded on a C18 Sep-Pak cartridge (Waters), and the column is washed twice with 5 ml of water to remove unreacted UDP-[H]galactose. The [H]galactosylated GlcNAcβO-(CH₂)₆-CO₂Me remains bound to the column during the water washes and is eluted with 5 ml of methanol. Radioactivity in the eluted material is measured by liquid scintillation counting and is proportional to galactosyltransferase activity in the starting sample.

Alternatively, methyltransferase activity is determined using a method that measures transfer of radiolabeled methyl groups from a donor substrate to an acceptor substrate (Bokar, J.A. et al. (supra)). Reaction mixtures (50 μl final volume) contain 15 mM HEPES, pH 7.9, 1.5 mM MgCl₂, 10 mM dithiothreitol, 3% polyvinylalcohol, 1.5 μCi [methyl-³H]AdoMet (0.375 μM AdoMet) (DuPont-NEN),
0.6 µg HTFS, and acceptor substrate (0.4 µg [35S]RNA or 6-mercaptopurine (6-MP) to 1 mM final concentration). Reaction mixtures are incubated at 30°C for 30 minutes, then 65°C for 5 minutes.

Analysis of [methyl-3H]RNA is as follows: 1) 50 µl of 2 x loading buffer (20 mM tris-HCl, pH 7.6, 1 M LiCl, 1 mM EDTA, 1% sodium dodecyl sulphate (SDS)) and 50 µl oligo d(T)-cellulose (10 mg/ml in 1 x loading buffer) are added to the reaction mixture, and incubated at ambient temperature with shaking for 30 minutes. 2) Reaction mixtures are transferred to a 96-well filtration plate attached to a vacuum apparatus. 3) Each sample is washed sequentially with three 2.4 ml aliquots of 1 x oligo d(T) loading buffer containing 0.5% SDS, 0.1% SDS, or no SDS. and 4) RNA is eluted with 300 µl of water into a 96-well collection plate, transferred to scintillation vials containing liquid scintillant, and radioactivity determined.

Analysis of [methyl-3H]6-MP is as follows: 1) 500 µl 0.5 M borate buffer, pH 10.0, and then 2.5 ml of 20% (v/v) isooctyl alcohol in toluene are added to the reaction mixtures. 2) The samples are mixed by vigorous vortexing for ten seconds. 3) After centrifugation at 700g for 10 minutes, 1.5 ml of the organic phase is transferred to scintillation vials containing 0.5 ml absolute ethanol and liquid scintillant, and radioactivity determined. and 4) Results are corrected for the extraction of 6-MP into the organic phase (approximately 41%).

XII. Functional Assays

HTFS function is assessed by expressing the sequences encoding HTFS at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules in the diagnosis of events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in

The influence of HTFS on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTFS and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTFS and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIII. Production of HTFS Specific Antibodies

HTFS substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the HTFS amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (PE Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-HTFS activity by, for example, binding the peptide or HTFS to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIV. Purification of Naturally Occurring HTFS Using Specific Antibodies

Naturally occurring or recombinant HTFS is substantially purified by immunoaffinity chromatography using antibodies specific for HTFS. An immunoaffinity column is constructed by covalently coupling anti-HTFS antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing HTFS are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTFS (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTFS binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTFS is collected.

XV. Identification of Molecules Which Interact with HTFS

HTFS, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTFS, washed, and any wells with labeled HTFS complex are assayed. Data obtained using different concentrations of HTFS are used to calculate values for the number, affinity, and association of HTFS with the candidate molecules.

Alternatively, molecules interacting with HTFS are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

HTFS may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments.

Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
<table>
<thead>
<tr>
<th>Library</th>
<th>Clone ID</th>
<th>Nucleotide SEQ ID NO.</th>
<th>Polypeptide SEQ ID NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUYELB01</td>
<td>063633</td>
<td>078336</td>
<td>32</td>
</tr>
<tr>
<td>SYG5ROB01</td>
<td>036433</td>
<td>078336</td>
<td>5</td>
</tr>
<tr>
<td>TES5N01</td>
<td>021317</td>
<td>078336</td>
<td>45</td>
</tr>
<tr>
<td>KNP52001</td>
<td>078336</td>
<td>130117</td>
<td>3</td>
</tr>
<tr>
<td>B35850201</td>
<td>078336</td>
<td>130117</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th>Polypeptide SEQ ID NO:</th>
<th>Nucleotide SEQ ID NO:</th>
<th>Clone ID</th>
<th>Library</th>
<th>Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>53</td>
<td>1308125</td>
<td>COLNFT02</td>
<td>937858H1 (CERVNOT01), 1308125F6 (COLNFT02), 1308125H1 (COLNFT02),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>264074H1 (HNT2AGT01), 1438620F1 (PANCNOT08), 1439670H1 (PANCNOT08), 2671159F6 (ESOGTUT02), 4970569H1 (KIDEUNC10),</td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>1439670</td>
<td>PANCNOT08</td>
<td>1439532T1 (PANCNOT08), 1444281F1 (THYRNOT03), 1444281H1 (THYRNOT03), 5203108H1 (STOMN008),</td>
</tr>
<tr>
<td>13</td>
<td>55</td>
<td>1444281</td>
<td>THYRNOT03</td>
<td>1439532T1 (PANCNOT08), 1444281F1 (THYRNOT03), 1444281H1 (THYRNOT03), 5203108H1 (STOMN008),</td>
</tr>
<tr>
<td>14</td>
<td>56</td>
<td>1450140</td>
<td>PLACNOT02</td>
<td>1424388R1 (BEPIN01), 1450140F6 (PLACNOT02), 1450140H1 (PLACNOT02), 2102011H1 (BRAITU02), 2159622H1 (ENDCN02), 2187314F6 (PROSN026), 2288117H1 (BRAIN01), 3326995H1 (HEAON04), 3504033H1 (ADREN01),</td>
</tr>
<tr>
<td>15</td>
<td>57</td>
<td>1604828</td>
<td>LUNGNOT15</td>
<td>0787114F1 (SYNORAB01), 476529R6 (NMLR2DT01), 7916289R (PROSTUT03), 564828H1 (LUNGNOT15), 2849341H1 (BRSTUT13),</td>
</tr>
<tr>
<td>16</td>
<td>58</td>
<td>1644023</td>
<td>HEARFET01</td>
<td>1644023CT1 (HEARFET01), 1644023H1 (HEARFET01), 1820555F6 (GGLATUT1), 1930930F6 (COLNTUT03),</td>
</tr>
<tr>
<td>17</td>
<td>59</td>
<td>1723402</td>
<td>BLADN06</td>
<td>1358156F1 (LUNGNOT09), 1378995F1 (LUNGNOT10), 1476828F1 (CORPN02), 1723402H1 (BLADNOT06), 4380622H1 (LUNGNOT37),</td>
</tr>
<tr>
<td>18</td>
<td>60</td>
<td>1740585</td>
<td>HIPON01</td>
<td>1740585H1 (HIPON01), 2816878F6 (BRSTNOT14), 2816878T6 (BRSTNOT14), 4511074H1 (EPIMNOT01),</td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>1810925</td>
<td>PROSTUT12</td>
<td>087350R6 (LIVRN01), 1810925F6 (PROSTUT12), 1810925H1 (PROSTUT12), 1811144F6 (PROSTUT12), 1928529R6 (BRSTUT02), 2764684H1 (BRSTUT12), 4642657H1 (PROSTUT03), SXAF04161V1, SXAF03292V1,</td>
</tr>
<tr>
<td>20</td>
<td>62</td>
<td>1915064</td>
<td>PROSTUT04</td>
<td>726814R1 (SYNOAT01), 1404593H1 (LATRTUT02), 1496266F1 (PROSNOT01), 1533375F6 (SPLNN004), 1915064H1 (PROSTUT04), 2127869H1 (KIDN005), 2722924H1 (LUNGNOT10),</td>
</tr>
<tr>
<td>21</td>
<td>63</td>
<td>2185608</td>
<td>PROSN026</td>
<td>762593F1 (BRAITUT02), 1393863F1 (THYRNOT03), 2070989X15C1 (ISLNTUT01), 2185608H1 (PROSN026), 2449814X13D2 (ENDNOT01),</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Polypeptide SEQ ID NO:</th>
<th>Nucleotide SEQ ID NO:</th>
<th>Clone ID</th>
<th>Library</th>
<th>Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>64</td>
<td>2228862</td>
<td>PROSNOT16</td>
<td>1510361F6 (LUNGNOT14), 151036176 (LUNGNOT14), 1812107F6 (PROSTUT12), 2288682H1 (PROSNOT16), 2718666F6 (THYRNOT09), 2989512H1 (KIDNFT02), 2995876H1 (OVARTUT07), 3520458R6 (LUNGNOT03), 3594956H1 (FIBPNOT01), 4071960H1 (KIDNNOT26), 4871845H1 (COLDNTO1),</td>
</tr>
<tr>
<td>23</td>
<td>65</td>
<td>2235577</td>
<td>PANCTUT02</td>
<td>1570357F1 (UTRSNOT05), 2157703F6 (BRAINOT09), 2235577H1 (PANCTUT02), SBFA00645F1, SBFA02725F1,</td>
</tr>
<tr>
<td>24</td>
<td>66</td>
<td>2271680</td>
<td>PROSNON01</td>
<td>223521R1 (PANCNOT01), 1726945T6 (PROSNOT14), 2271680H1 (PROSNON01), 2660011F6 (LUNGNOT09), 2863738H1 (KIDNNOT20), 2866674F6 (KIDNNOT20), 3142517F6 (SMCCNOT02),</td>
</tr>
<tr>
<td>25</td>
<td>67</td>
<td>2325603</td>
<td>OVRNOT02</td>
<td>320787R6 (EOSIHE02), 1594544F1 (BRAINOT14), 1597366F6 (BRAINOT14), 2325603H1 (OVRNOT02),</td>
</tr>
<tr>
<td>26</td>
<td>68</td>
<td>2356055</td>
<td>LUNGNOT20</td>
<td>2356055H1 (LUNGNOT20), 2356055T6 (LUNGNOT20), 3390020H1 (LUNGNOT17), SBFA00796F1, SBFA00170F1,</td>
</tr>
<tr>
<td>27</td>
<td>69</td>
<td>2448909</td>
<td>ENDANOT01</td>
<td>2448909H1 (ENDANOT01), 2615665F6 (GBLAN01), 2937323F6 (THYFETO2), g12414F2</td>
</tr>
<tr>
<td>28</td>
<td>70</td>
<td>2631212</td>
<td>COLNOT15</td>
<td>159493H1 (ADENINB01), 1439529F6 (PANCNOT08), 1626907F6 (COLNOT01), 1746019H1 (STOTMTUT02), 2631212F6 (COLNOT15), 2631212H1 (COLNOT15), 2671521H1 (ESOGTUT02), 2871743H1 (THYRNOT10), 2909832H1 (KIDNNOT15), 3077960H1 (BONEUT01), 3689194H1 (HEAANOT01), 4583971H1 (OVRNOT13), 5674918H1 (293TF2T01),</td>
</tr>
<tr>
<td>29</td>
<td>71</td>
<td>2678733</td>
<td>KIDNFT02</td>
<td>4304046R6 (THYRNOT10), 2678733H1 (KIDNFT02), 3536993H1 (KIDNNOT25), 3585231H1 (293TF4T01), 3843364H1 (DENNST01), 4729211H1 (GBLANOT1), 5535276H1 (HEARFET05),</td>
</tr>
<tr>
<td>30</td>
<td>72</td>
<td>2768571</td>
<td>COLANOT02</td>
<td>609405R6 (COLNNOT01), 782088R6 (MYOMNOT01), 2598685F6 (UTRSNOT10), 2768571P6 (COLANOT02), 2768571H1 (COLANOT02), 5058513H1 (COLATMT01), SAQA02758F1, SAQA03638F1, SAQA00977F1,</td>
</tr>
<tr>
<td>Polypeptide SEQ ID NO:</td>
<td>Nucleotide SEQ ID NO:</td>
<td>Clone ID</td>
<td>Library</td>
<td>Fragments</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>31</td>
<td>73</td>
<td>3189062</td>
<td>THYMNON04</td>
<td>2018279F6 (THP1NOT01), 2759759H1 (THP1AZS08), 277307T6 (OVARTUT03), 3189062H1 (THYMNON04), 3269328F6 (BRAINOT20), 4289573H1 (BRABDIR01), 5275252F6 (OVARDIN02),</td>
</tr>
<tr>
<td>32</td>
<td>74</td>
<td>3243884</td>
<td>BRAINOT19</td>
<td>266876T6 (HNT2NOT01), 606598H1 (BRSTTUT01), 220358X49C1 (SPLNFET02), 2837749T6 (DRG1NOT01), 3037267F6 (SMCCNOT02), 3243884H1 (BRAINOT19), 4009730H1 (MUSCNOT10),</td>
</tr>
<tr>
<td>33</td>
<td>75</td>
<td>3400578</td>
<td>UTRSNOT16</td>
<td>966455T6 (BRSTNOT05), 2049034T6 (LIVRFET02), 2640820H1 (LUNOTUT08), 3400578CT1 (UTRSTUT16), 3400578H1 (UTRSTUT16),</td>
</tr>
<tr>
<td>34</td>
<td>76</td>
<td>3422577</td>
<td>UCMCN04</td>
<td>019009X308V1 (HUVELPB01), 019009X312D1 (HUVELPB01), 934792H1 (CERNNOT01), 1493507R6 (PROSNON01), 1554828H1 (BLADTUT04), 2751872H1 (THP1AZS08), 3422577H1 (UCMCN04), 5019159H1 (PANCNOT22),</td>
</tr>
<tr>
<td>35</td>
<td>77</td>
<td>3706809</td>
<td>PENCN07</td>
<td>292348H1 (TMLR3DT01), 1319573T1 (BLADN04), 1444394F6 (THYRN03), 1456216P6 (COLNFET02), 1456216R1 (COLNFET02), 2414862P6 (HNT3AZT01), 2717052H1 (THRN09), 3706809H1 (PENCN07),</td>
</tr>
<tr>
<td>36</td>
<td>78</td>
<td>3745914</td>
<td>THYMNOT08</td>
<td>440059R6 (THYRN01), 463957R6 (LATRN01), 3745914H1 (THYMNOT08), SBOA16668D1, SBOA00128D1,</td>
</tr>
<tr>
<td>37</td>
<td>79</td>
<td>4000776</td>
<td>HNT2AZS07</td>
<td>2888759F6 (LUNFET04), 4000776H1 (HNT2AZS07), 4000776R6 (HNT2AZS07), 4000776T6 (HNT2AZS07),</td>
</tr>
<tr>
<td>38</td>
<td>80</td>
<td>4071304</td>
<td>KIDNNOT26</td>
<td>1427681F1 (SINTBST01), 4071304H1 (KIDNNOT26), 4333229H1 (KIDCMT01), 5342286H1 (CONFNOT05), 5390966H1 (KIDNNOT32), g1102520</td>
</tr>
<tr>
<td>39</td>
<td>81</td>
<td>4344970</td>
<td>LYMBTXT01</td>
<td>1215288R6 (BRSTTUT01), 1749984T6 (STOTUT02), 4187556H1 (BRSTNOT31), 4344970H1 (LYMBTXT01),</td>
</tr>
<tr>
<td>40</td>
<td>82</td>
<td>5392302</td>
<td>KIDNNOT32</td>
<td>1748734T6 (STOTUT02), 2703005P6 (OVARTUT0), 3697713H1 (SININOT05), 5392302H1 (KIDNNOT32),</td>
</tr>
<tr>
<td>Polypeptide SEQ ID NO.</td>
<td>Nucleotide SEQ ID NO.</td>
<td>Clone ID</td>
<td>Library</td>
<td>Fragments</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>41</td>
<td>83</td>
<td>5555235</td>
<td>TONSDIT01</td>
<td>1503473T1 (BRAINTUT07), 3199747T6 (PENCNOT02), 4556633H1 (KERAUNT01), 5208015H1 (BRAFNOT02), 5555235H1 (TONSDIT01),</td>
</tr>
<tr>
<td>42</td>
<td>84</td>
<td>5573296</td>
<td>TLYMNOT08</td>
<td>130117R6 (TESTNOT01), 873599R1 (LUNGAST01), 1356271P6 (LUNGNOT09), 1844333T6 (COLNNOT08), 3115426H1 (BRSTNOT17), 3673668H1 (PLACNOT07), 4339255H1 (BRAUNOT02), 5573296H1 (TLYMNOT08), SBXA05492D1, SBXA02308D1,</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>Amino Acid Residues</th>
<th>Potential Phosphorylation Sites</th>
<th>Potential Glycosylation Sites</th>
<th>Signature Sequences, Motifs, and Domains</th>
<th>Identification</th>
<th>Analytical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>197</td>
<td>S37</td>
<td>N82</td>
<td>g2104536 predicted glycosyl transferase [Arabidopsis thaliana]</td>
<td></td>
<td>BLAST-GenBank MOTIFS</td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5</td>
<td>301</td>
<td>S101 S166 T185 S26 T219 T233</td>
<td></td>
<td>CDP-alcohol phosphatidyl transferase profile: P133-A187 CDP-alcohol phosphatidyl transferase-like region: W107-A207</td>
<td>g2414601 phosphatidyl synthase (transferase) [Schizosaccharomyces pombe]</td>
<td>BLAST-GenBank MOTIFS PROFILES-SCAN BLAST-DOMO</td>
</tr>
<tr>
<td>6</td>
<td>253</td>
<td>T3 S12 T63 T96 S135 T108 T122 T137</td>
<td></td>
<td>SH3 domain: E33-H87 Arginine N-methyltransferase 2-like regions (EC 2.1.1.4): G85-T137 M1-E34</td>
<td>g1655625 arginine methyltransferase [Homo sapiens]</td>
<td>BLAST-GenBank MOTIFS HMMER-PFAK BLAST-PRODOM</td>
</tr>
</tbody>
</table>
|-------------------|---------|-----------------------------|-------|-------|------|------|------|------|------|------|------|------|-----|---
<table>
<thead>
<tr>
<th>SEQ ID NO:</th>
<th>Amino Acid Residues</th>
<th>Potential Phosphorylation Sites</th>
<th>Potential Glycosylation Sites</th>
<th>Signature Sequences, Motifs, and Domains</th>
<th>Identification</th>
<th>Analytical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>357</td>
<td>S6 S223 S302 T26 T254 S346</td>
<td></td>
<td>Protein-L-isoaspartate (D-aspartate) O- methyltransferase signatures: C67-H114 (score: strength=0.73) G148-I191 (score: strength=0.60) Protein-L-isoaspartate (D-aspartate) O- methyltransferase -like region: L14-L219</td>
<td>g2621917 L- isoaspartyl protein carboxyl methyltransferase</td>
<td>BLAST-GenBank MOTIFS BLIMPS-BLOCKS BLAST-PRODOM</td>
</tr>
<tr>
<td>16</td>
<td>199</td>
<td>S130 T131 S34 S43 T84 S88 T171 S173 S14 T47 S76 S130</td>
<td>N29 N113</td>
<td>Uridine kinase signatures: T3-A20 S31-E42 ATP/GTP binding site motif A (P-loop): G10-T17</td>
<td>g6224931 uridine kinase [Danio rerio].</td>
<td>BLAST-GenBank MOTIFS BLIMPS-PRINTS</td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>17</td>
<td>244</td>
<td>S73 T95 S110 S53 S69 S149 S208</td>
<td>N203</td>
<td>Signal peptide: M1-S29 Transmembrane domain: I7-G26 ubiE/COQ5 methyltransferase signature: Q132-V176 (score: strength=0.67)</td>
<td>g5458322 ubiquinone/maenoinone biosynthesis methyl transferase (ubiE) [Pyrococcus abyssi].</td>
<td>BLAST-GenBank MOTIFS BLIMPS-BLOCKS HMMER</td>
</tr>
<tr>
<td>19</td>
<td>302</td>
<td>S20 S48 S109 S151 S265 S7 S24 S122 S144 S273</td>
<td>N5 N142</td>
<td>g2828262 aralkyl acyl-CoA:amino acid N-acyltransferase [Bos taurus]</td>
<td>BLAST-GenBank MOTIFS</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>21</td>
<td>403</td>
<td>S116 S129 T212 T218 S231 S363 T53 S178 T218 T247 T286 Y176 Y257</td>
<td>N134</td>
<td>Glycosyl transferase/queine tRNA-ribosyltransferase-like region: M17-M377</td>
<td>g7415808 tRNA-guanine transglycosylase [Mus musculus].</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>25</td>
<td>253</td>
<td>S71 S171 S244 S16 T81 T223 S240 S244</td>
<td>N2</td>
<td>g2414623 putative phosphotransferase [Schizosaccharomyces pombe]</td>
<td></td>
<td>BLAST-GenBank MOTIFS</td>
</tr>
<tr>
<td>27</td>
<td>307</td>
<td>S67 S76 S172 T8 S28 T58 S116 S154 S172 T259</td>
<td>N26</td>
<td>g6466950 putative ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit N-methyltransferase I [Arabidopsis thaliana].</td>
<td></td>
<td>BLAST-GenBank MOTIFS</td>
</tr>
<tr>
<td>28</td>
<td>169</td>
<td>S4 S30 S119 T134</td>
<td>N117</td>
<td>g7688322 putative GNAT family acetyltransferase with 2 zinc fingers [Schizosaccharomyces pombe].</td>
<td></td>
<td>BLAST-GenBank MOTIFS BLIMPS-PFAM BLAST-PRODOM</td>
</tr>
<tr>
<td>29</td>
<td>389</td>
<td>T200 T341 S90 T282 T369 T374</td>
<td>N292</td>
<td>g3288685 mitochondrial methionyl-tRNA transformylase [Bos taurus]</td>
<td></td>
<td>BLAST-GenBank MOTIFS BLAST-DOMO</td>
</tr>
<tr>
<td>SEQ NO.</td>
<td>Residues 600</td>
<td>Potential Glycosylation Sites</td>
<td>Potential Phosphorylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>T194 M175 T96</td>
<td>N120 T131 N212 N175</td>
<td>S131 S154</td>
<td>Signal peptide: delta Glycophosphoryltransferase family</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T189 S177 Y136</td>
<td>N121 T131 T175</td>
<td>S157 D168</td>
<td>delta monoclonal antibody, 1991</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Table 2** includes specific residues and sites relevant to potential glycosylation and phosphorylation, along with associated signature sequences, motifs, and domains.
- The table lists various analytical methods such as BLAST-GenBank, MOTIFS, TMHMM, MEMSAT-SVM, and BLAST-PRODOM.
<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>Amino Acid Residues</th>
<th>Potential Phosphorylation Sites</th>
<th>Potential Glycosylation Sites</th>
<th>Signature Sequences, Motifs, and Domains</th>
<th>Identification</th>
<th>Analytical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>173</td>
<td>S38 S101</td>
<td>N113</td>
<td>Signal peptide: M1-A24</td>
<td>g3228530 type 6 nucleoside diphosphate kinase</td>
<td>BLAST-GenBank MOTIFS HMMER HMMER-PFAM PROFILESCAN BLAST-PRODOM BLAST-DOMO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nucleoside diphosphate kinase domain: K76-E143</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nucleoside diphosphate kinases-active site profile: A94-W140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nucleoside diphosphate kinase (transferase)-like region: L11-D134</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphatidate cytidylyltransferase domain: L59-I401</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphatidate cytidylyltransferase signatures: G221-I252 K253-G266 L342-C385</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cytidylyltransferase-like region: W124-I401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>37</td>
<td>198</td>
<td>S6 T147 S160 S165 S183 S190 S2 S3 S51 T55 S128 S152 T165</td>
<td></td>
<td>Phosphoribosylglycinamid e formyltransferase active site profile: S48-G105</td>
<td>g2828262 aralkyl acyl-CoA:amino acid N-acyltransferase [Bos taurus]</td>
<td>MOTIFS PROFILESCAN</td>
</tr>
<tr>
<td>38</td>
<td>296</td>
<td>S110 T139 S171 T233 S263 S17 S25 S123 T129 T139 S193</td>
<td></td>
<td></td>
<td>g5052364 putative N6-DNA-methyltransferase; NGAMT1 [Homo sapiens]</td>
<td>BLAST-GenBank MOTIFS PROFILESCAN BLIMPS-PRINTS</td>
</tr>
<tr>
<td>39</td>
<td>214</td>
<td>T173 T89 T113 S164 T173</td>
<td></td>
<td>N-6 adenine-specific DNA methylase signature (N-terminal region)and motif: V100-A143, L119-Y125</td>
<td>g5052364 putative N6-DNA-methyltransferase; NGAMT1 [Homo sapiens]</td>
<td>BLAST-GenBank MOTIFS PROFILESCAN BLIMPS-PRINTS</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Amino Acid Residues</td>
<td>Potential Phosphorylation Sites</td>
<td>Potential Glycosylation Sites</td>
<td>Signature Sequences, Motifs, and Domains</td>
<td>Identification</td>
<td>Analytical Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>41</td>
<td>87</td>
<td>T12</td>
<td>Rhodanese (thiosulfate sulfurtransferase) (E.C.2.8.1.1) C-terminal profile: G33-H86</td>
<td></td>
<td></td>
<td>MOTIFS PROFILESCAN</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease or Condition (Fraction of Total)</td>
<td>Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Reproductive (0.286)</td>
<td>Cancer (0.500)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.250)</td>
<td>Cell Proliferation (0.321)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hematopoietic/Immune (0.179)</td>
<td>Inflammation (0.214)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Nervous (0.276)</td>
<td>Cancer (0.448)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive (0.276)</td>
<td>Cell Proliferation (0.207)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.172)</td>
<td>Inflammation (0.207)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Reproductive (0.269)</td>
<td>Cancer (0.346)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Musculoskeletal (0.192)</td>
<td>Inflammation (0.269)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.154)</td>
<td>Cell Proliferation (0.269)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Reproductive (0.269)</td>
<td>Cancer (0.462)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.135)</td>
<td>Cell Proliferation (0.365)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hematopoietic/Immune (0.135)</td>
<td>Inflammation (0.173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Reproductive (0.317)</td>
<td>Cancer (0.633)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.183)</td>
<td>Cell Proliferation (0.200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.167)</td>
<td>Inflammation (0.200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Reproductive (0.252)</td>
<td>Cancer (0.437)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.175)</td>
<td>Cell Proliferation (0.223)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.175)</td>
<td>Inflammation (0.223)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Nervous (0.250)</td>
<td>Cancer (0.469)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproductive (0.156)</td>
<td>Inflammation (0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endocrine (0.156)</td>
<td>Cell Proliferation (0.125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Reproductive (0.278)</td>
<td>Cancer (0.556)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.222)</td>
<td>Inflammation (0.389)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.222)</td>
<td>Trauma (0.167)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Reproductive (0.238)</td>
<td>Cancer (0.488)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.214)</td>
<td>Inflammation (0.238)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.143)</td>
<td>Cell Proliferation (0.179)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Reproductive (0.302)</td>
<td>Cancer (0.472)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.151)</td>
<td>Cell Proliferation (0.226)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.132)</td>
<td>Inflammation (0.132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Reproductive (0.500)</td>
<td>Inflammation (0.500)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.250)</td>
<td>Cancer (0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developmental (0.250)</td>
<td>Cell Proliferation (0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease or Condition (Fraction of Total)</td>
<td>Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Gastrointestinal (0.375) Reproductive (0.250) Cardiovascular (0.188)</td>
<td>Cancer (0.625) Cell Proliferation (0.250) Trauma (0.188)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Endocrine (0.250) Gastrointestinal (0.250) Hematopoietic/Immune (0.250) Urologic (0.250)</td>
<td>Cancer (0.750) Inflammation (0.250)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Reproductive (0.286) Nervous (0.143) Cardiovascular (0.179)</td>
<td>Cancer (0.500) Inflammation (0.179) Cell Proliferation (0.179)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Reproductive (0.235) Musculoskeletal (0.235) Cardiovascular (0.176)</td>
<td>Cancer (0.588) Inflammation (0.294)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Reproductive (0.269) Gastrointestinal (0.135) Cardiovascular (0.135)</td>
<td>Cancer (0.558) Cell Proliferation (0.135) Trauma (0.115) Inflammation (0.115)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Reproductive (0.245) Nervous (0.286) Cardiovascular (0.143)</td>
<td>Cancer (0.490) Inflammation (0.224) Cell Proliferation (0.122)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Reproductive (0.385) Nervous (0.231) Cardiovascular (0.154)</td>
<td>Cancer (0.538) Inflammation (0.154) Trauma (0.231)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Reproductive (0.474) Urologic (0.263) Gastrointestinal (0.211)</td>
<td>Cancer (0.579) Inflammation (0.158) Cell Proliferation (0.158)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Reproductive (0.270) Nervous (0.140) Gastrointestinal (0.160)</td>
<td>Cancer (0.472) Inflammation (0.160) Cell Proliferation (0.151)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Reproductive (0.245) Nervous (0.286)</td>
<td>Cancer (0.510) Inflammation (0.180) Cell Proliferation (0.130)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleotide</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease or Condition (Fraction of Total)</td>
<td>Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Reproductive (0.341) Nervous (0.136) Cardiovascular (0.136)</td>
<td>Cancer (0.591) Inflammation (0.114) Cell Proliferation (0.250)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Reproductive (0.310) Nervous (0.190) Cardiovascular (0.121) Hematopoietic/Immune (0.121)</td>
<td>Cancer (0.483) Inflammation (0.276) Cell Proliferation (0.155)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Reproductive (0.304) Nervous (0.174) Cardiovascular (0.130) Urologic (0.130)</td>
<td>Cancer (0.522) Inflammation (0.174) Cell Proliferation (0.261)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Reproductive (0.169) Nervous (0.271) Hematopoietic/Immune (0.203)</td>
<td>Cancer (0.339) Inflammation (0.322) Cell Proliferation (0.169)</td>
<td>PSPORT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Cardiovascular (0.429) Reproductive (0.286) Nervous (0.143) Developmental (0.143)</td>
<td>Cancer (0.571) Cell Proliferation (0.143) Trauma (0.143)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Developmental (0.375) Cardiovascular (0.250) Hematopoietic/Immune (0.125) Reproductive (0.250)</td>
<td>Cancer (0.375) Inflammation (0.125) Cell Proliferation (0.625)</td>
<td>PBLUESCRIPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Reproductive (0.198) Nervous (0.148) Gastrointestinal (0.210)</td>
<td>Cancer (0.494) Inflammation (0.247) Cell Proliferation (0.185)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Urologic (0.182) Nervous (0.182) Endocrine (0.182)</td>
<td>Cancer (0.273) Inflammation (0.273) Cell Proliferation (0.273)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Gastrointestinal (0.500) Reproductive (0.367) Nervous (0.100)</td>
<td>Cancer (0.567) Inflammation (0.233) Trauma (0.100)</td>
<td>PINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease or Condition (Fraction of Total)</td>
<td>Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Reproductive (0.333)</td>
<td>Cancer (0.476)</td>
<td>PSPORTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.143)</td>
<td>Inflammation (0.143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hematopoietic/Immune (0.238)</td>
<td>Cell Proliferation (0.190)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trauma (0.143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Reproductive (0.300)</td>
<td>Cancer (0.467)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.200)</td>
<td>Inflammation (0.300)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.133)</td>
<td>Cell Proliferation (0.233)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Reproductive (0.250)</td>
<td>Cancer (0.458)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.250)</td>
<td>Inflammation (0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.167)</td>
<td>Cell Proliferation (0.292)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Reproductive (0.333)</td>
<td>Cancer (0.544)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.140)</td>
<td>Inflammation (0.193)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.140)</td>
<td>Cell Proliferation (0.158)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Reproductive (0.184)</td>
<td>Cancer (0.447)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.211)</td>
<td>Inflammation (0.237)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal (0.132)</td>
<td>Cell Proliferation (0.184)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hematopoietic/Immune (0.132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urologic (0.132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Reproductive (0.167)</td>
<td>Cancer (0.333)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.333)</td>
<td>Inflammation (0.333)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.333)</td>
<td>Cell Proliferation (0.167)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endocrine (0.167)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Nervous (0.500)</td>
<td>Cell Proliferation (1.000)</td>
<td>PSPORTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developmental (0.500)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Urologic (0.500)</td>
<td>Cancer (0.750)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nervous (0.250)</td>
<td>Inflammation (0.250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Reproductive (0.400)</td>
<td>Cancer (0.667)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Musculoskeletal (0.133)</td>
<td>Inflammation (0.067)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.133)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Gastrointestinal (0.318)</td>
<td>Cancer (0.455)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hematopoietic/Immune (0.227)</td>
<td>Inflammation (0.364)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular (0.182)</td>
<td>Cell Proliferation (0.182)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleotide SEQ ID NO:</td>
<td>Tissue Expression (Fraction of Total)</td>
<td>Disease or Condition (Fraction of Total)</td>
<td>Vector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Reproductive (0.227) Nervous (0.170) Cardiovascular (0.182)</td>
<td>Cancer (0.500) Inflammation (0.239) Cell Proliferation (0.205)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Reproductive (0.269) Nervous (0.154) Musculoskeletal (0.192)</td>
<td>Cancer (0.346) Inflammation (0.269) Cell Proliferation (0.269)</td>
<td>pINCY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>HUVELPB01</td>
<td>Library was constructed using RNA isolated from HUV-EC-C (ATCC CRL 1730) cells that were stimulated with cytokine/LPS. RNA was isolated from two pools of HUV-EC-C cells that had been treated with either gamma IFN and TNF-alpha or IL-1 beta and LPS. In the first instance, HUV-EC-C cells were treated with 4 units/ml TNF and 2 units/ml IFNG for 96 hours. In the second instance, cells were treated with 1 units/ml IL-1 and 100 ng/ml LPS for 5 hours.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>SYNORAB01</td>
<td>Library was constructed using RNA isolated from the synovial membrane tissue of a 68-year-old Caucasian female with rheumatoid arthritis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>TESTNOT01</td>
<td>Library was constructed using RNA isolated from the testicular tissue of a 37-year-old Caucasian male, who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>HNT2NOT01</td>
<td>Library was constructed at Stratagene (STR937230), using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>BRSTNOT01</td>
<td>Library was constructed using RNA isolated from the breast tissue of a 56-year-old Caucasian female who died in a motor vehicle accident.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>NGANNO101</td>
<td>Library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglion excrescence. Family history included asthma.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>MUSCNOT02</td>
<td>Library was constructed using RNA isolated from the psoas muscle tissue of a 12-year-old Caucasian male.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>KIDNTUT01</td>
<td>Library was constructed using RNA isolated from the kidney tumor tissue removed from an 8-month-old female during nephroureterectomy. Pathology indicated Wilms' tumor (nephroblastoma), which involved 90 percent of the renal parenchyma. Prior to surgery, the patient was receiving heparin anticoagulant therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>COLNNOT16</td>
<td>Library was constructed using RNA isolated from sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>PGANNOT03</td>
<td>Library was constructed using RNA isolated from paraganglionic tumor tissue removed from the intra-abdominal region of a 46-year-old Caucasian male during exploratory laparotomy. Pathology indicated a benign paraganglioma and was associated with a grade 2 renal cell carcinoma, clear cell type, which did not penetrate the capsule. Surgical margins were negative for tumor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>COLNFET02</td>
<td>Library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus, who died at 20 weeks' gestation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>PANCNOT08</td>
<td>Library was constructed using RNA isolated from pancreatic tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology for the associated tumor tissue indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, benign neoplasm in the large bowel, and a cataract. Previous surgeries included a total splenectomy, cholecystectomy, and abdominal hysterectomy. Family history included cardiovascular disease, type II diabetes, and stomach cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>THYRNOT03</td>
<td>Library was constructed using RNA isolated from thyroid tissue removed from the left thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology indicated a small nodule of adenomatous hyperplasia present in the left thyroid. Pathology for the associated tumor tissue indicated dominant follicular adenoma, forming a well-encapsulated mass in the left thyroid. >THYRNOT08 pINCY The THYRNOT08 library was constructed isolated from the diseased left thyroid tissue removed from a 13-year-old Caucasian female during a complete thyroidectomy. Pathology indicated lymphocytic thyroiditis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>PLACNOT02</td>
<td>Library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks’ gestation. Serologies of the mother’s blood were positive for CMV (cytomegalovirus).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>LUNGNOT15</td>
<td>Library was constructed using RNA isolated from lung tissue removed from a 69-year-old Caucasian male during a segmental lung resection. Pathology for the associated tumor tissue indicated residual grade 3 invasive squamous cell carcinoma. Patient history included acute myocardial infarction, prostatic hyperplasia, and malignant skin neoplasm. Family history included cerebrovascular disease, type I diabetes, acute myocardial infarction, and arteriosclerotic coronary disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>HEARFET01</td>
<td>Library was constructed using RNA isolated from heart tissue removed from a Hispanic male fetus, who died at 18 weeks’ gestation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>BLADNOT06</td>
<td>Library was constructed using RNA isolated from the posterior wall bladder tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy and urinary diversion. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma on the anterior wall of the bladder and urothelium. Patient history included lung neoplasm, and tobacco abuse in remission. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>HIPON01</td>
<td>Normalized hippocampus library was constructed from 1.13M independent clones from the HIPON01 library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9228).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>PROSTUT12</td>
<td>Library was constructed using RNA isolated from prostate tumor tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2+2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>PROSTUT04</td>
<td>Library was constructed using RNA isolated from prostate tumor tissue removed from a 57-year-old Caucasian male during radical prostatectomy, removal of both testes and excision of regional lymph nodes. Pathology indicated adenocarcinoma (Gleason grade 3+3). Patient history included a benign neoplasm of the large bowel and type I diabetes. Family history included a malignant neoplasm of the prostate and type I diabetes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>PROSN026</td>
<td>Library was constructed using RNA isolated from prostate tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology for the matched tumor tissue indicated an adenocarcinoma (Gleason grade 3+4) forming a predominant mass involving the right and left sides anteriorly. The right and left apex and right and left bladder base surgical margins were positive for tumor. The patient presented with elevated PSA. Patient history included benign hypertension. Family history included malignant stomach neoplasm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>PROSN016</td>
<td>Library was constructed using RNA isolated from diseased prostate tissue removed from a 68-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+4). The patient presented with elevated prostate specific antigen (PSA). During this hospitalization, the patient was diagnosed with myasthenia gravis. Patient history included osteoarthritis, and type II diabetes. Family history included benign hypertension, acute myocardial infarction, hyperlipidemia, and atherosclerotic coronary artery disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>PANCUT02</td>
<td>Library was constructed using RNA isolated from pancreatic tumor tissue removed from a 45-year-old Caucasian female during radical pancreaticoduodenectomy. Pathology indicated a grade 4 anaplastic carcinoma. Family history included benign hypertension, hyperlipidemia and atherosclerotic coronary artery disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>PROSNON01</td>
<td>Normalized prostate library was constructed from 4.4 M independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>OVARNOT02</td>
<td>Library was constructed using RNA isolated from ovarian tissue removed from a 59-year-old Caucasian female who died of a myocardial infarction. Patient history included cardiomyopathy, coronary artery disease, previous myocardial infarctions, hypercholesterolemia, hypotension, and arthritis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>LUNGNOT20</td>
<td>Library was constructed using RNA isolated from right upper lobe lung tissue removed from a 61-year-old Caucasian male. Pathology indicated panacinal emphysema with blebs in the right anterior upper lobe and apex, as well as emphysema in the right posterior upper lobe. Patient history included angina pectoris, and gastric ulcer. Family history included a subdural hemorrhage, cancer of an unidentified site, atherosclerotic coronary artery disease, and pneumonia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>ENDANOT01</td>
<td>Library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>COLNTUT15</td>
<td>Library was constructed using RNA isolated from colon tumor tissue obtained from a 64-year-old Caucasian female during a right hemicolectomy with ileostomy and bilateral salpingo-oophorectomy (removal of the fallopian tubes and ovaries). Pathology indicated an invasive grade 3 adenocarcinoma. Patient history included hypothyroidism, depression, and anemia. Family history included colon cancer and uterine cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>KIDNFET02</td>
<td>Library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>COLANOT02</td>
<td>Library was constructed using RNA isolated from diseased ascending colon tissue removed from a 25-year-old Caucasian female during a multiple segmental resection of the large bowel. Pathology indicated moderately to severely active chronic ulcerative colitis, involving the entire colectomy specimen and sparing 2 cm of the attached ileum. Grossly, the specimen showed continuous involvement from the rectum proximally; marked mucosal atrophy and no skip areas were identified. Microscopically, the specimen showed dense, predominantly mucosal inflammation and crypt abscesses. Patient history included benign large bowel neoplasm. Previous surgeries included a polypectomy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>THYMNON04</td>
<td>Normalized thymus library was constructed from 1.48 million independent clones from a thymus tissue library. Starting RNA was made from thymus tissue removed from a 3-year-old Caucasian male who died of anoxia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>BRAINOT19</td>
<td>Library was constructed using RNA isolated from diseased brain tissue removed from the left frontal lobe of a 27-year-old Caucasian male during a brain lobectomy. Pathology indicated a focal deep white matter lesion, characterized by marked gliosis, calcifications, and hemosiderin-laden macrophages, consistent with a remote perinatal injury. This tissue also showed mild to moderate generalized gliosis, predominantly subpial and subcortical, consistent with chronic seizure disorder. The left temporal lobe, including the mesial temporal structures, showed focal, marked pyramidal cell loss and gliosis in hippocampal sector CA1, consistent with mesial temporal sclerosis. GFAP was positive for astrocytes. Family history included brain cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>UTRSNOT16</td>
<td>Library was constructed using RNA isolated from uterine endometrial tissue removed from a 48-year-old Caucasian female during a vaginal hysterectomy, rectocele repair, and bilateral salpingo-oophorectomy. Pathology indicated chronic cervicitis, and the endometrium was weakly proliferative. The uterus, tubes, ovaries, and specimen from the peritoneum indicated endometriosis focally involving the surface of the right ovary and the peritoneum. Pathology for the associated tumor tissue indicated a single submucosal leiomyoma, which exhibited extensive hyalin change with hyalin-type necrosis. The left ovary contained a corpus luteum cyst. Patient history included hyperlipidemia and meningitis. Family history included benign hypertension, hyperlipidemia, atrial fibrillation, atherosclerotic coronary artery disease, and type II diabetes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>UCMCNOT04</td>
<td>Library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of multiple individuals of mixed age and sex. The cells were treated with G-CSF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>PENCNOT07</td>
<td>Library was constructed using RNA isolated from penis right corpora cavernosa tissue removed from a male.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>THYMNOT08</td>
<td>Library was constructed using RNA isolated from thymus tissue removed from a 4-month-old Caucasian male during a total thyrectomy and open heart repair of atroventricular canal defect using hypothermia. Patient presented with congenital heart anomaly, congestive heart failure, and Down syndrome. Patient history included abnormal thyroid function study and premature birth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO.</td>
<td>Library</td>
<td>Library Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>HNT2AZS07</td>
<td>Subtracted library was constructed from RNA isolated from an hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor) treated for three days with 0.35 micromolar AZ. The hybridization probe for subtraction was derived from a similarly constructed library from untreated hNT2 cells. 3.08M clones from the AZ-treated library were subjected to three rounds of subtractive hybridization with 3.04M clones from the untreated library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (NAR (1991) 19:1954) and Bonaldo et al. (Genome Research (1996) 6:791).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>KIDNNT26</td>
<td>Library was constructed using RNA isolated from left kidney medulla and cortex tissue removed from a 53-year-old Caucasian female during a nephroureterectomy. Pathology for the associated tumor tissue indicated grade 2 renal cell carcinoma involving the lower pole of the kidney. Patient history included hyperlipidemia, cardiac dysrhythmia, metrorrhagia, normal delivery, cerebrovascular disease, atherosclerotic coronary artery disease, and tobacco abuse. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>LYMBTXT01</td>
<td>Library was constructed using RNA isolated from a treated K-562 cell line, derived from chronic myelogenous leukemia precursor cells removed from a 53-year-old female. The cells were treated with 9cis retinoic acid (RA), 1 micromolar, for 13 days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>KIDNNT32</td>
<td>Library was constructed using RNA isolated from kidney tissue removed from a 49-year-old Caucasian male who died from an intracranial hemorrhage and cerebrovascular accident. Patient history included tobacco abuse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>TONSĐT01</td>
<td>Library was constructed using RNA isolated from the tonsil tissue of a 6-year-old Caucasian male during adenotonsillectomy. Pathology indicated lymphoid hyperplasia of the tonsils. Family history included hypothyroidism and benign skin neoplasm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>TLYMNOT08</td>
<td>Library was constructed using RNA isolated from anergic allogeneic T-lymphocyte tissue removed from an adult (40-50-year-old) Caucasian male. The cells were incubated for 3 days in the presence of OKT3 mAb (1 microgram/mlOKT3) and 5% human serum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
<td>Reference</td>
<td>Parameter Threshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI FACTURA</td>
<td>A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI/PARACEL FDF</td>
<td>A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.</td>
<td>Mismatch <50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI AutoAssembler</td>
<td>A program that assembles nucleic acid sequences.</td>
<td>Perkin-Elmer Applied Biosystems, Foster City, CA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLAST</td>
<td>A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.</td>
<td>Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.</td>
<td>ESTs: Probability value= 1.0E-8 or less
Full Length sequences: Probability value= 1.0E-10 or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
<td>Reference</td>
<td>Parameter Threshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motifs</td>
<td>A program that searches amino acid sequences for patterns that matched those defined in Prosite.</td>
<td>Bairoch et al. supra; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
<110> INCYTE GENOMICS, INC.
        TANG, Y. Tom
        YUE, Henry
        HILLMAN, Jennifer L.
        LAL, Preeti
        BANDMAN, Olga
        PATTERSON, Chandra
        SHIH, Leo
        AZIMZAI, Yalda
        LU, Dyung Aina M.
        BAUGHN, Mariah R.

<120> HUMAN TRANSFERASE MOLECULES

<130> PF-0753 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/163,595
(151) 1999-11-04

<160> 84
<170> PERL Program

<210> 1
<211> 261
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 016233CD1

<400> 1
Met Ala Gly Asp Ser Glu Gln Thr Leu Gln Asn His Gln Gln Pro
     1  5 10 15
Asn Gly Gly Glu Pro Phe Leu Ile Gly Val Ser Gly Gly Thr Ala
     20 25 30
Ser Gly Lys Ser Ser Val Cys Ala Lys Ile Val Gln Leu Leu Gly
     35 40 45
Gln Asn Glu Val Asp Tyr Arg Gln Lys Gln Val Val Ile Leu Ser
     50 55 60
Gln Asp Ser Phe Tyr Arg Val Leu Thr Ser Glu Gln Lys Ala Lys
     65 70 75
Ala Leu Lys Gly Gln Phe Asn Phe Asp His Pro Asp Ala Phe Asp
     80 85 90
Asn Glu Leu Ile Leu Lys Thr Leu Lys Glu Ile Thr Glu Gly Lys
     95 100 105
Thr Val Gln Ile Pro Val Tyr Asp Phe Val Ser His Ser Arg Lys
    110 115 120
Glu Thr Val Thr Val Tyr Pro Ala Asp Val Val Leu Phe Glu
    125 130 135
Gly Ile Leu Ala Phe Tyr Ser Gln Glu Val Arg Asp Leu Phe Glu
    140 145 150
Met Lys Leu Phe Val Asp Thr Asp Ala Thr Arg Leu Ser Arg
    155 160 165
Arg Val Leu Arg Ile Ser Glu Arg Gly Arg Asp Leu Glu Gln
    170 175 180
Ile Leu Ser Gln Tyr Ile Thr Phe Val Lys Pro Ala Phe Glu Glu
    185 190 195
Phe Cys Leu Pro Thr Lys Lys Tyr Ala Asp Val Ile Ile Pro Arg
    200 205 210
Gly Ala Asp Asn Leu Val Ala Ile Asn Leu Ile Val Gln His Ile
```
<table>
<thead>
<tr>
<th>215</th>
<th>220</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>Asp</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 210> 2 |
| 211> 197 |
| 212> PRT |
| 213> Homo sapiens |

| 220> |
| 221> misc_feature |
| 223> Incyte ID No: 078336CD1 |

| 400> 2 |
| Met | Phe | Tyr | Leu | Val | Val | Val | Phe | Leu | Asn | Ser | Gly | Asp | Ile | Gln | Glu |
| 1 | 5 | 10 | | | | | | | | | | | | |
| Leu | Tyr | Asp | Thr | Thr | Leu | Ala | Leu | Gly | His | Ala | Ala | Ala | Phe | Ser |
| 20 | 25 | 30 | | | | | | | | | | | |
| Asp | Asp | Cys | Asp | Leu | Pro | Ser | Ala | Gln | Asp | Ile | Asn | Arg | Leu | Val |
| 25 | 30 | | | | | | | | | | | | |
| Gly | Leu | Gln | Asn | Thr | Tyr | Met | Gly | Tyr | Leu | Asp | Tyr | Arg | Lys | Lys |
| 35 | 40 | 45 | | | | | | | | | | | |
| Ala | Ile | Lys | Asp | Leu | Gly | Ile | Ser | Pro | Ser | Thr | Cys | Ser | Phe | Asn |
| 50 | 55 | 60 | | | | | | | | | | | |
| Pro | Gly | Val | Ile | Val | Ala | Met | Thr | Glu | Trp | Lys | His | Gln | Arg | |
| 65 | 70 | 75 | | | | | | | | | | | |
| Ile | Thr | Lys | Gln | Leu | Glu | Lys | Trp | Met | Gln | Lys | Asn | Val | Glu | Glu |
| 80 | 85 | 90 | | | | | | | | | | | |
| Asn | Leu | Tyr | Ser | Ser | Ser | Leu | Gly | Gly | Gly | Val | Ala | Thr | Ser | Pro |
| 95 | 100 | 105 | | | | | | | | | | | |
| Met | Leu | Ile | Val | Phe | His | Gly | Lys | Tyr | Ser | Thr | Ile | Asn | Pro | Leu |
| 110 | 115 | 120 | | | | | | | | | | | |
| Trp | His | Ile | Arg | His | Leu | Gly | Trp | Asn | Pro | Asp | Ala | Arg | Tyr | Ser |
| 125 | 130 | 135 | | | | | | | | | | | |
| Glu | His | Phe | Leu | Gln | Glu | Ala | Lys | Leu | Leu | His | Trp | Asn | Gly | Arg |
| 140 | 145 | 150 | | | | | | | | | | | |
| His | Lys | Pro | Trp | Asp | Phe | Pro | Ser | Val | His | Asn | Asp | Leu | Trp | Glu |
| 155 | 160 | 165 | | | | | | | | | | | |
| Ser | Trp | Phe | Val | Asp | Pro | Ala | Gly | Ile | Phe | Lys | Leu | Asn | His | |
| 185 | 190 | 195 | | | | | | | | | | | |

| 210> 3 |
| 211> 378 |
| 212> PRT |
| 213> Homo sapiens |

| 220> |
| 221> misc_feature |
| 223> Incyte ID No: 130117CD1 |

| 400> 3 |
| Met | Asp | Leu | Ala | Gly | Leu | Leu | Lys | Ser | Gln | Phe | Leu | Cys | His | Leu |
| 1 | 5 | 10 | 15 | | | | | | | | | |
| Val | Phe | Cys | Tyr | Val | Phe | Ile | Ala | Ser | Gly | Leu | Ile | Ile | Asn | Thr |
| 20 | 25 | 30 | | | | | | | | | | | |
| Ile | Gln | Leu | Phe | Thr | Leu | Leu | Leu | Trp | Pro | Ile | Asn | Lys | Gln | Leu |
| 35 | 40 | 45 | | | | | | | | | | | |
| Phe | Arg | Lys | Ile | Asn | Cys | Arg | Leu | Ser | Tyr | Cys | Ile | Ser | Ser | Gln |
| 50 | 55 | 60 | | | | | | | | | | | |
| Leu | Val | Met | Leu | Leu | Glu | Trp | Trp | Ser | Gly | Thr | Glu | Cys | Thr | Ile |
| 65 | 70 | 75 | | | | | | | | | | | | |
Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Glu Asn Ala 85 80 90
Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly 95 100 105
Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val 110 115 120
Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met 125 130 135
Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln 140 145 150
Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr 155 160 165
Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe 170 175 180
Thr Glu Lys Lys His Glu Ile Ser Met Gin Val Ala Arg Ala Lys 185 190 195
Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly 200 205 210
Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val 215 220 225
Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu 230 235 240
Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Asp Leu Tyr Val 245 250 255
Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Glu Cys 260 265 270
Ser Ala Trp Leu His Lys Leu Tyr Gin Glu Lys Asp Ala Phe Gln 275 280 285
Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val 290 295 300
Pro Pro Arg Arg Pro Trp Thr Leu Val Asn Trp Leu Phe Trp Ala 305 310 315
Ser Leu Val Leu Tyr Pro Phe Phe Gin Phe Leu Val Ser Met Ile 320 325 330
Arg Ser Gly Ser Ser Leu Thr Leu Ala Ser Phe Ile Leu Val Phe 335 340 345
Phe Val Ala Ser Val Gly Val Arg Trp Met Ile Gly Val Thr Glu 350 355 360
Ile Asp Lys Gly Ser Ala Tyr Gly Asn Ser Asp Ser Lys Gln Lys 365 370 375
Leu Asn Asp

<210> 4
<211> 285
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 267495CD1

<400> 4
Met Leu Tyr Leu Ile Gly Leu Gly Leu Gly Asp Ala Lys Asp Ile 1 10 15
Thr Val Lys Gly Leu Glu Val Arg Arg Cys Ser Arg Val Tyr 20 25 30
Leu Glu Ala Tyr Thr Ser Val Leu Thr Val Gly Lys Glu Ala Leu 35 40 45
Glu Glu Phe Tyr Gly Arg Lys Leu Val Val Ala Asp Arg Glu Glu 50 55 60
Val Glu Gin Glu Ala Asp Asn Ile Leu Lys Asp Ala Asp Ile Ser 65 70 75
Asp Val Ala Phe Leu Val Val Gly Asp Pro Phe Gly Ala Thr Thr 80 85 90
His Ser Asp Leu Val Leu Arg Ala Thr Lys Leu Gly Ile Pro Tyr 95 100 105

3/55
Arg Val Ile His Asn Ala Ser Ile Met Asn Ala Val Gly Cys Cys
115 110 120
Gly Leu Gln Leu Tyr Lys Phe Gly Glu Thr Val Ser Ile Val Phe
125 130 135
Trp Thr Asp Thr Trp Arg Pro Glu Ser Phe Phe Asp Lys Val Lys
140 145 150
Lys Asn Arg Glu Asn Gly Met His Thr Leu Cys Leu Leu Asp Ile
155 160 165
Lys Val Lys Glu Glu Ser Leu Glu Asn Leu Ile Lys Gly Arg Lys
170 175 180
Ile Tyr Glu Pro Pro Arg Tyr Met Ser Val Asn Gln Ala Ala Gln
185 190 195
Gln Leu Leu Glu Ile Val Gln Asn Gln Arg Ile Arg Gly Glu Glu
200 205 210
Pro Ala Val Thr Glu GluThr Leu Cys Val Gly Leu Ala Arg Val
215 220 225
Gly Ala Asp Asp Gln Lys Ile Ala Ala Gly Thr Leu Arg Glu Glu Met
230 235 240
Cys Thr Val Asp Leu Gly Glu Pro Leu His Ser Leu Ile Ile Thr
245 250 255
Gly Gly Ser Ile His Pro Met Glu Met Glu Met Leu Ser Leu Phe
260 265 270
Ser Ile Pro Glu Asn Ser Ser Glu Ser Gln Ser Ile Asn Gly Leu
275 280 285

<210> 5
<211> 301
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 410533CD1

<400> 5
Met Leu Ala Leu Arg Val Ala Arg Gly Ser Trp Gly Ala Leu Arg
1 5 10 15
Gly Ala Ala Trp Ala Pro Gly Thr Arg Pro Ser Lys Arg Arg Ala
20 25 30 35
Cys Thr Pro Ala Leu Leu Pro Pro Val Pro Cys Cys Leu Gly Cys Cys
30 35 40 45
Ala Glu Arg Trp Arg Leu Arg Pro Ala Ala Leu Gly Leu Arg Leu
50 55 60 65
Pro Gly Ile Gly Gln Arg Asn His Cys Ser Gly Ala Gly Lys Ala
65 70 75 80
Ala Pro Arg Pro Ala Gly Ala Gly Ala Ala Ala Glu Ala Pro
80 85 90
Gly Gly Gln Trp Gly Pro Ala Ser Thr Pro Ser Leu Tyr Glu Asn
95 100 105 110
Pro Thr Thr Ile Pro Asn Met Leu Ser Met Thr Arg Ile Gly Leu
125 130 135 140
Ala Pro Val Leu Gly Tyr Leu Ile Ile Glu Asp Phe Asn Ile
145 150 155 160
Ala Leu Gly Val Phe Ala Leu Ala Gly Thr Asp Leu Leu Ala
170 175 180
Gly Phe Ile Ala Arg Asn Trp Ala Asn Gln Arg Ser Ala Leu Gly
185 190 195 200
Ser Ala Leu Asp Pro Leu Ala Asp Lys Ile Leu Ile Ser Ile Leu
205 210 215 220
Tyr Val Ser Leu Thr Tyr Ala Ser Leu Ile Pro Val Pro Leu Thr
225 230 235 240
Tyr Met Ile Ile Ser Arg Val Met Leu Ile Ala Ala Val Phe
245 250 255 260
Tyr Val Arg Tyr Arg Thr Leu Pro Thr Pro Arg Thr Leu Ala Lys
270 275 280 285
Tyr Phe Asn Pro Cys Tyr Ala Thr Arg Leu Lys Pro Thr Phe

4/55
<210> 6
<211> 253
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 852708CD1

<400> 6
Met Ala Thr Ser Gly Asp Cys Pro Arg Ser Glu Ser Gln Gly Glu
1 5 10 15
Glu Pro Ala Glu Cys Ser Glu Ala Gly Leu Leu Gln Glu Gly Val
20 25 30
Gln Pro Glu Glu Phe Val Ala Ile Ala Asp Tyr Ala Ala Thr Asp
35 40 45
Glu Thr Gln Leu Ser Phe Leu Arg Gly Glu Lys Ile Leu Ile Leu
50 55 60
Arg Gln Thr Thr Ala Asp Trp Trp Trp Gly Glu Arg Ala Gly Cys
65 70 75
Cys Gly Tyr Ile Pro Ala Asn His Val Gly Lys His Val Asp Glu
80 85 90
Tyr Asp Pro Glu Asp Thr Trp Gln Asp Glu Glu Tyr Phe Gly Ser
95 100 105
Tyr Gly Thr Leu Lys Leu His Leu Glu Met Leu Ala Asp Gln Pro
110 115 120
Arg Thr Thr Lys Tyr His Ser Val Ile Leu Gln Asn Lys Glu Ser
125 130 135
Leu Thr Asp Lys Val Ile Leu Asp Val Gly Cys Gly Thr Gly Ile
140 145 150
Ile Ser Leu Phe Cys Ala His Tyr Ala Arg Pro Arg Ala Val Tyr
155 160 165
Ala Val Glu Ala Ser Glu Met Ala Gln Asp His Thr Gly Gln Leu Val
170 175 180
Leu Glu Asn Gly Phe Ala Asp Ile Ile Thr Val Tyr Gln Gln Lys
185 190 195
Val Glu Asp Val Leu Pro Glu Lys Val Asp Val Leu Val Ser
200 205 210
Glu Trp Met Gly Thr Cys Leu Leu Val Arg Ala Gly Val Arg Ala
215 220 225
Ala Gly Gly Arg Ser Trp Gly Ala Ser Glu His Gly Leu Gly Trp
230 235 240
Ala Asn Leu Arg Ile Ser Arg Val Val Arg Asp Ser Phe
245 250

<210> 7
<211> 390
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 972944CD1

<400> 7

5/55
Met Ser Val Arg Val Ala Arg Val Ala Trp Val Arg Gly Leu Gly
 1 5
Ala Ser Tyr Arg Gly Ala Ser Ser Phe Pro Val Pro Pro Pro
 20 25 30
Gly Ala Gln Gly Val Ala Glu Leu Leu Arg Asp Ala Thr Gly Ala
 35 40 45
Glu Glu Glu Ala Pro Trp Ala Ala Thr Glu Arg Arg Met Pro Gly
 50 55 60
Gln Cys Ser Val Leu Leu Phe Pro Gly Gin Gly Ser Gin Val Val
 65 70 75
Gly Met Gly Arg Gly Leu Leu Asn Tyr Pro Arg Val Arg Glu Leu
 80 85 90
Tyr Ala Ala Ala Arg Arg Val Leu Gly Tyr Asp Leu Leu Glu Leu
 95 100 105
Ser Leu His Gly Pro Glu Glu Thr Leu Asp Arg Thr Val His Cys
110 115 120
Gln Pro Ala Ile Phe Val Ala Ser Leu Ala Ala Val Glu Lys Leu
125 130 135
His His Leu Gln Pro Ser Val Ile Glu Asn Cys Val Ala Ala Ala
140 145 150
Gly Phe Ser Val Gly Glu Ala Ala Leu Val Phe Ala Gly Ala
155 160 165
Met Glu Phe Ala Gly Leu Tyr Ala Val Lys Ile Arg Ala Glu
170 175 180
Ala Met Gln Glu Ala Ser Glu Ala Val Pro Ser Gly Met Leu Ser
185 190 195
Val Leu Gly Gln Pro Glu Ser Lys Phe Asn Phe Ala Cys Leu Glu
200 205 210
Ala Arg Glu His Cys Lys Ser Leu Gly Ile Glu Asn Pro Val Cys
215 220 225
Glu Val Ser Asn Tyr Leu Phe Pro Asp Cys Arg Val Ile Ser Gly
230 235 240
His Gln Glu Ala Leu Arg Phe Leu Gln Lys Asn Ser Ser Lys Phe
245 250 255
His Phe Arg Arg Thr Arg Met Leu Pro Val Ser Gly Ala Phe His
260 265 270
Thr Arg Leu Met Glu Pro Ala Val Glu Pro Leu Thr Gln Ala Leu
275 280 285
Lys Ala Val Asp Ile Lys Lys Pro Leu Val Ser Val Tyr Ser Asn
290 295 300
Val His Ala His Arg Tyr Arg His Pro Gly His Ile His Lys Leu
305 310 315
Leu Ala Gln Gln Leu Val Ser Pro Val Lys Trp Glu Gln Thr Met
320 325 330
His Ala Ile Tyr Glu Arg Lys Gly Arg Arg Gly Phe Pro Gln Thr
335 340 345
Phe Glu Val Gly Pro Gly Arg Gin Leu Gly Ala Ile Leu Lys Ser
350 355 360
Cys Asn Met Gln Ala Trp Lys Ser Tyr Ser Ala Val Asp Val Leu
365 370 375
Gln Thr Leu Glu His Val Asp Leu Asp Pro Gln Glu Pro Pro Arg
380 385 390

<210> 8
<211> 373
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 997730CD1

<400> 8
Met Leu Ile Pro Phe Ser Met Lys Asn Cys Phe Glu Leu Leu Cys
1 5 10 15
Asn Cys Gln Val Pro Ala Ala Gly Phe Lys Thr Val Lys Asn

6/55
<table>
<thead>
<tr>
<th>Residue</th>
<th>Leu</th>
<th>Ile</th>
<th>Leu</th>
<th>Gln</th>
<th>Ser</th>
<th>Ile</th>
<th>Ser</th>
<th>Asn</th>
<th>Asp</th>
<th>Val</th>
<th>Tyr</th>
<th>Gln</th>
<th>Asn</th>
<th>Leu</th>
<th>Gly</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Asp</td>
<td>Trp</td>
<td>Ile</td>
<td>His</td>
<td>Asp</td>
<td>His</td>
<td>Met</td>
<td>Asn</td>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>Phe</td>
<td>Trp</td>
<td>Gln</td>
<td>Asn</td>
<td>Ser</td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td>Ile</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>His</td>
<td>Gln</td>
<td>Asn</td>
<td>Pro</td>
<td>Trp</td>
<td>Gln</td>
<td>Gln</td>
<td>Cys</td>
<td>Asn</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
<td>Met</td>
<td>Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Ile</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>His</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Asn</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
<td>Asp</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Ala</td>
<td>Thr</td>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Gly</td>
<td>Gln</td>
<td>Phe</td>
<td>Lys</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Lys</td>
<td>Ile</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>His</td>
<td>Cys</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Cys</td>
<td>Ser</td>
<td>Thr</td>
<td>Asp</td>
<td>Gly</td>
<td>Thr</td>
<td>Phe</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Lys</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>190</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Tyr</td>
<td>Gln</td>
<td>Gly</td>
<td>Ile</td>
<td>Arg</td>
<td>Ser</td>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Ile</td>
<td>Pro</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Asn</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
<td>Asp</td>
<td>Pro</td>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
<td>Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Met</td>
<td>Asn</td>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
<td>Thr</td>
<td>Glu</td>
<td>Tyr</td>
<td>Ala</td>
<td>Tyr</td>
<td>His</td>
<td>Gln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Asp</td>
<td>Asn</td>
<td>His</td>
<td>Ile</td>
<td>His</td>
<td>Leu</td>
<td>Ile</td>
<td>Asn</td>
<td>Pro</td>
<td>Thr</td>
<td>Asp</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Pro</td>
<td>Gly</td>
<td>Ile</td>
<td>Asn</td>
<td>Ser</td>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
<td>Glu</td>
<td>Leu</td>
<td>Gln</td>
<td>Thr</td>
<td>Trp</td>
<td>Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Ile</td>
<td>Tyr</td>
<td>Gly</td>
<td>Lys</td>
<td>Thr</td>
<td>Pro</td>
<td>Lys</td>
<td>Phe</td>
<td>Ser</td>
<td>Ile</td>
<td>Asn</td>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Val</td>
<td>Leu</td>
<td>Tyr</td>
<td>Glu</td>
<td>Gln</td>
<td>Ser</td>
<td>His</td>
<td>Leu</td>
<td>Glu</td>
<td>Ile</td>
<td>Lys</td>
<td>Val</td>
<td>Phe</td>
<td>Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ile</td>
<td>Lys</td>
<td>Asn</td>
<td>Gly</td>
<td>Arg</td>
<td>Ile</td>
<td>Glu</td>
<td>Ile</td>
<td>Cys</td>
<td>Asn</td>
<td>Ile</td>
<td>Glu</td>
<td>Ala</td>
<td>Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>His</td>
<td>Trp</td>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
<td>Glu</td>
<td>Ile</td>
<td>Arg</td>
<td>Asp</td>
<td>Lys</td>
<td>Leu</td>
<td>Asn</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ile</td>
<td>Gly</td>
<td>Ser</td>
<td>Lys</td>
<td>Phe</td>
<td>Cys</td>
<td>Pro</td>
<td>Thr</td>
<td>Glu</td>
<td>Thr</td>
<td>Thr</td>
<td>Met</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
<td>Thr</td>
<td>Cys</td>
<td>Pro</td>
<td>Gln</td>
<td>Asp</td>
<td>His</td>
<td>Lys</td>
<td>Leu</td>
<td>Asn</td>
<td>Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Trp</td>
<td>Asn</td>
<td>Ile</td>
<td>Leu</td>
<td>Cys</td>
<td>Glu</td>
<td>Lys</td>
<td>Ile</td>
<td>Lys</td>
<td>Gly</td>
<td>Ile</td>
<td>Met</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>365</td>
<td></td>
</tr>
</tbody>
</table>

9 Homo sapiens

7/55
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
</tr>
<tr>
<td>2</td>
<td>Phe</td>
</tr>
<tr>
<td>3</td>
<td>Asn</td>
</tr>
<tr>
<td>4</td>
<td>Phe</td>
</tr>
<tr>
<td>5</td>
<td>Thr</td>
</tr>
<tr>
<td>6</td>
<td>Phe</td>
</tr>
<tr>
<td>7</td>
<td>Trp</td>
</tr>
<tr>
<td>8</td>
<td>Lys</td>
</tr>
<tr>
<td>9</td>
<td>Ser</td>
</tr>
<tr>
<td>10</td>
<td>Lys</td>
</tr>
<tr>
<td>11</td>
<td>Ser</td>
</tr>
<tr>
<td>12</td>
<td>Ala</td>
</tr>
<tr>
<td>13</td>
<td>Ala</td>
</tr>
<tr>
<td>14</td>
<td>Ala</td>
</tr>
<tr>
<td>15</td>
<td>Ala</td>
</tr>
<tr>
<td>16</td>
<td>Ala</td>
</tr>
<tr>
<td>17</td>
<td>Ala</td>
</tr>
<tr>
<td>18</td>
<td>Ala</td>
</tr>
<tr>
<td>19</td>
<td>Ala</td>
</tr>
<tr>
<td>20</td>
<td>Ala</td>
</tr>
<tr>
<td>21</td>
<td>Ala</td>
</tr>
<tr>
<td>22</td>
<td>Ala</td>
</tr>
<tr>
<td>23</td>
<td>Ala</td>
</tr>
<tr>
<td>24</td>
<td>Ala</td>
</tr>
<tr>
<td>25</td>
<td>Ala</td>
</tr>
<tr>
<td>26</td>
<td>Ala</td>
</tr>
<tr>
<td>27</td>
<td>Ala</td>
</tr>
<tr>
<td>28</td>
<td>Ala</td>
</tr>
<tr>
<td>29</td>
<td>Ala</td>
</tr>
<tr>
<td>30</td>
<td>Ala</td>
</tr>
<tr>
<td>31</td>
<td>Ala</td>
</tr>
<tr>
<td>32</td>
<td>Ala</td>
</tr>
<tr>
<td>33</td>
<td>Ala</td>
</tr>
<tr>
<td>34</td>
<td>Ala</td>
</tr>
<tr>
<td>35</td>
<td>Ala</td>
</tr>
<tr>
<td>36</td>
<td>Ala</td>
</tr>
<tr>
<td>37</td>
<td>Ala</td>
</tr>
<tr>
<td>38</td>
<td>Ala</td>
</tr>
<tr>
<td>39</td>
<td>Ala</td>
</tr>
<tr>
<td>40</td>
<td>Ala</td>
</tr>
<tr>
<td>41</td>
<td>Ala</td>
</tr>
<tr>
<td>42</td>
<td>Ala</td>
</tr>
<tr>
<td>43</td>
<td>Ala</td>
</tr>
<tr>
<td>44</td>
<td>Ala</td>
</tr>
<tr>
<td>45</td>
<td>Ala</td>
</tr>
<tr>
<td>46</td>
<td>Ala</td>
</tr>
<tr>
<td>47</td>
<td>Ala</td>
</tr>
<tr>
<td>48</td>
<td>Ala</td>
</tr>
<tr>
<td>49</td>
<td>Ala</td>
</tr>
<tr>
<td>50</td>
<td>Ala</td>
</tr>
<tr>
<td>51</td>
<td>Ala</td>
</tr>
<tr>
<td>52</td>
<td>Ala</td>
</tr>
<tr>
<td>53</td>
<td>Ala</td>
</tr>
<tr>
<td>54</td>
<td>Ala</td>
</tr>
<tr>
<td>55</td>
<td>Ala</td>
</tr>
<tr>
<td>56</td>
<td>Ala</td>
</tr>
<tr>
<td>57</td>
<td>Ala</td>
</tr>
<tr>
<td>58</td>
<td>Ala</td>
</tr>
<tr>
<td>59</td>
<td>Ala</td>
</tr>
<tr>
<td>60</td>
<td>Ala</td>
</tr>
<tr>
<td>61</td>
<td>Ala</td>
</tr>
<tr>
<td>62</td>
<td>Ala</td>
</tr>
<tr>
<td>63</td>
<td>Ala</td>
</tr>
<tr>
<td>64</td>
<td>Ala</td>
</tr>
<tr>
<td>65</td>
<td>Ala</td>
</tr>
<tr>
<td>66</td>
<td>Ala</td>
</tr>
<tr>
<td>67</td>
<td>Ala</td>
</tr>
<tr>
<td>68</td>
<td>Ala</td>
</tr>
<tr>
<td>69</td>
<td>Ala</td>
</tr>
<tr>
<td>70</td>
<td>Ala</td>
</tr>
<tr>
<td>71</td>
<td>Ala</td>
</tr>
<tr>
<td>72</td>
<td>Ala</td>
</tr>
<tr>
<td>73</td>
<td>Ala</td>
</tr>
<tr>
<td>74</td>
<td>Ala</td>
</tr>
<tr>
<td>75</td>
<td>Ala</td>
</tr>
</tbody>
</table>

<210> 10

<211> 123

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1293207CD1

<400> 10

```
Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser Lys Leu
 1         10
Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asn Gln Val Pro Pro
 20        30
Pro Ser Thr Ala Leu Tyr Phe Ser Arg Leu Trp Glu Asp
 35        45
Phe Lys Gln Asn Pro Phe Leu Asn Trp Lys Ala Ile Ile Glu
 50        60
Gly Ala Asp Ala Ser Leu Gln Lys Arg Ala Gly Arg Ala Asp
 65        75
Gln Asn Tyr Asn Gly His Ala Tyr Pro Thr Ala Tyr Gly
 80        90
Gly Lys Tyr Ser Val Lys Thr Pro Ala Lys Gly Gly Val Ser Pro
 95       105
Ser Ser Ser Ala Ser Arg Val Gin Pro Gly Leu Leu Gln Trp Val
```
Lys Phe Trp

<210> 11
<211> 85
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1308125CD1

<400> 11
Met Ser Ser Ser Arg Met Glu Gly Lys Ala Lys Tyr Ile Leu Pro
 1 5 10 15
Thr Glu Thr Ile Tyr Val Gly Glu Met Lys Asp Gly Met Phe His
 20 25 30
Gly Trp Gly Thr Leu Tyr Phe Pro Ser Gly Ser Gln Tyr Asp Ala
 35 40 45
Ile Trp Glu Asn Gly Leu Ala Ile Lys Val Trp Leu Asn Ser Pro
 50 55 60
Ile Trp Thr His Leu Glu Lys Ser Pro Arg Ala Ile Thr Ile Val
 65 70 75
Glu Thr Ala Ser Ile Thr Gln Ser Arg Gly
 80 85

<210> 12
<211> 184
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1439670CD1

<400> 12
Met Lys Pro Asp Glu Thr Pro Met Phe Asp Pro Ser Leu Leu Lys
 1 5 10 15
Glu Val Asp Trp Ser Gln Asn Thr Ala Thr Phe Ser Pro Ala Ile
 20 25 30
Ser Pro Thr His Pro Gly Glu Gly Leu Val Leu Arg Pro Leu Cys
 35 40 45
Thr Ala Asp Leu Asn Arg Gly Phe Phe Lys Val Leu Gly Gln Leu
 50 55 60
Thr Glu Thr Gly Val Ser Pro Glu Gln Phe Met Lys Ser Phe
 65 70 75
Glu His Met Lys Ser Gly Asp Tyr Tyr Val Thr Val Val Glu
 80 85 90
Asp Val Thr Leu Gly Gln Ile Val Ala Thr Ala Thr Leu Ile Ile
 95 100 105
Glu His Lys Phe Ile His Ser Cys Ala Lys Arg Gly Arg Val Glu
 110 115 120
Asp Val Val Ser Asp Gly Cys Arg Gly Lys Gln Leu Gly Lys
 125 130 135
Leu Leu Leu Ser Thr Leu Thr Leu Leu Ser Lys Leu Asn Cys
 140 145 150
Tyr Lys Ile Thr Leu Glu Cys Leu Pro Gln Asn Val Gly Phe Tyr
 155 160 165
Lys Lys Phe Gly Tyr Thr Val Ser Glu Glu Asn Tyr Met Cys Arg
 170 175 180
Arg Phe Leu Lys

<210> 13
<211> 169
<212> PRT
<210> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1444281CD1

<400> 13
Met Ala Asn Tyr Ile His Val Pro Pro Gly Ser Pro Pro Glu Val Pro
 1 5 10 15
Lys Leu Asn Val Thr Val Gln Asp Gln Glu Glu His Arg Cys Arg
 20 25 30
Glu Gly Ala Leu Ser Leu Leu Gln His Leu Arg Pro His Trp Asp
 35 40 45
Pro Gln Glu Val Thr Leu Gln Leu Phe Thr Asp Gly Ile Thr Asn
 50 55 60
Lys Leu Ile Gly Cys Tyr Val Gln Asn Thr Met Glu Asp Val Arg
 65 70 75
Leu Val Arg Ile Tyr Gly Asn Lys Thr Glu Leu Leu Asp Arg
 80 85 90
Asp Glu Glu Val Lys Ser Phe Arg Val Leu Gln Ala His Gly Cys
 95 100 105
 Ala Pro Gln Leu Tyr Cys Thr Phe Asn Asn Gly Leu Cys Tyr Glu
110 115 120
Phe Ile Gln Gly Glu Ala Leu Asp Pro Lys His Val Cys Asn Pro
125 130 135
 Ala Ile Phe Ser Leu Ser Ser Leu Thr Leu Cys Lys Gly Lys Thr
140 145 150
Thr Arg Cys Phe Gly Leu Thr Gly Cys Arg Gly Ser Arg Leu Leu
155 160 165
Leu Ser Phe Phe

<210> 14
<211> 357
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1450140CD1

<400> 14
Met Gly Gly Ala Val Ser Ala Gly Glu Asp Asn Asp Asp Leu Ile
 1 5 10 15
Asp Asn Leu Lys Glu Ala Gln Tyr Ile Arg Thr Glu Arg Val Glu
 20 25 30
Gln Ala Phe Arg Ala Ile Asp Arg Gly Asp Tyr Tyr Leu Glu Gly
 35 40 45
Tyr Arg Asp Asn Ala Tyr Lys Asp Leu Ala Trp Lys His Gly Asn
 50 55 60
Ile His Leu Ser Ala Pro Cys Ile Tyr Ser Glu Val Met Glu Ala
 65 70 75
Leu Lys Leu Gln Pro Gly Leu Ser Phe Leu Asn Leu Gly Ser Gly
 80 85 90
Thr Gly Tyr Leu Ser Thr Met Val Gly Leu Ile Leu Gly Pro Phe
 95 100 105
Gly Ile Asn His Gly Ile Glu Leu His Ser Asp Val Val Glu Tyr
110 115 120
 Ala Lys Glu Leu Glu Ser Phe Ile Lys Asn Ser Asp Ser Phe
125 130 135
Asp Lys Phe Glu Cys Glu Pro Ala Phe Val Val Gly Asn Cys
140 145 150
Leu Gln Ile Ala Ser Asp Ser His Gln Tyr Asp Arg Ile Tyr Cys
155 160 165
Gly Ala Gly Val Gln Lys Asp His Glu Asn Tyr Met Lys Ile Leu
170 175 180
Leu Lys Val Gly Gly Ile Leu Val Met Pro Ile Glu Asp Gln Leu

10/55
Thr Gln Ile Met Arg Thr Gly Gln Asn Thr Trp Glu Ser Lys Asn
205 210
Ile Leu Ala Val Ser Phe Ala Pro Leu Val Gln Pro Ser Lys Asn
220 225
Asp Asn Gly Lys Pro Asp Ser Val Gly Leu Pro Pro Cys Ala Val
235 240
Arg Asn Leu Gln Asp Leu Ala Arg Ile Tyr Ile Arg Arg Thr Leu
250 255
Arg Asn Phe Ile Asn Asp Glu Met Gln Ala Lys Gly Ile Pro Gln
265 270
Arg Ala Pro Pro Lys Arg Lys Arg Lys Gln Arg Ile
280 285
Asn Thr Tyr Val Phe Val Gly Asn Gln Leu Ile Pro Pro Gln Pro Leu
295 300
Asp Ser Glu Glu Asp Glu Lys Met Glu Glu Asp Ile Lys Glu Glu
310 315
Glu Glu Lys Asp His Asn Glu Ala Met Lys Pro Glu Glu Pro Pro
325 330
Gln Asn Leu Leu Arg Glu Lys Ile Met Lys Leu Pro Leu Pro Glu
340 345
Ser Leu Lys Ala Tyr Leu Thr Tyr Phe Arg Asp Lys
350 355

<210> 15
<211> 100
<212> PRT
<213> Homo sapiens

<misc_feature>

<220>
<221> Incyte ID No: 1604828CD1

<400> 15
Met Asn Val Arg Gly Lys Val Ile Leu Ser Met Leu Val Val Ser
1 5 10 15
Thr Val Ile Val Phe Trp Glu Phe Ile Asn Ser Thr Glu Asp
20 25 30
Ser Phe Leu Trp Ile Tyr His Ser Lys Asn Pro Glu Val Asp
35 40 45
Ser Ser Ala Gln Lys Gly Trp Trp Phe Leu Ser Trp Phe Asn Asn
50 55 60
Gly Ile His Asn Tyr Gin Gin Gly Glu Glu Asp Ile Asp Lys Glu
65 70 75
Lys Gly Arg Glu Thr Lys Gly Arg Lys Met Thr Gln Gln Ser
80 85 90
Phe Gly Tyr Gly Thr Gly Leu Ile Gln Thr
95 100

<210> 16
<211> 199
<212> PRT
<213> Homo sapiens

<misc_feature>

<220>
<221> Incyte ID No: 1644023CD1

<400> 16
Met Lys Thr Phe Ile Ile Gly Ile Ser Gly Val Thr Asn Ser Gly
1 5 10 15
Lys Thr Thr Leu Ala Lys Asn Leu Gln Lys His Leu Pro Asn Cys
20 25 30
Ser Val Ile Ser Gin Asp Asp Phe Phe Lys Pro Glu Ser Glu Ile
35 40 45
Glu Thr Asp Lys Asn Gly Phe Leu Gln Tyr Asp Val Leu Glu Ala
50 55 60
Leu Asn Met Glu Lys Met Met Ser Ala Ile Ser Cys Trp Met Glu
65 75
Ser Ala Arg His Ser Val Val Ser Thr Asp Gln Glu Ser Ala Glu
80 90
Glu Ile Pro Ile Leu Ile Ile Glu Gly Phe Leu Leu Phe Asn Tyr
95 100 105
Lys Pro Leu Asp Thr Ile Trp Asn Arg Ser Tyr Phe Leu Thr Ile
110 115 120
Pro Tyr Glu Glu Cys Lys Arg Arg Arg Ser Thr Arg Val Tyr Gln
125 130 135
Pro Pro Asp Ser Pro Gly Tyr Phe Asp Gly His Val Trp Pro Met
140 145 150
Tyr Leu Lys Tyr Arg Gln Glu Met Gln Asp Ile Thr Trp Glu Val
155 160 165
Val Tyr Leu Asp Gly Lys Ser Glu Glu Asp Leu Phe Leu Gln
170 175 180
Val Tyr Glu Asp Leu Ile Gln Glu Leu Ala Lys Gln Lys Cys Leu
185 190 195
Gln Val Thr Ala

<210> 17
<211> 244
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1723402CD1

<400> 17
Met Glu Leu Thr Ile Phe Ile Leu Arg Leu Ala Ile Tyr Ile Leu
1 5 10 15
Thr Phe Pro Leu Tyr Leu Leu Asn Phe Leu Gly Leu Trp Ser Trp
20 25 30
Ile Cys Lys Lys Trp Phe Pro Tyr Phe Leu Val Arg Phe Thr Val
35 40 45
Ile Tyr Asn Glu Gln Met Ala Ser Lys Lys Arg Glu Leu Phe Ser
50 55 60
Asn Leu Gln Glu Phe Ala Gly Pro Ser Gly Lys Leu Ser Leu Leu
65 70 75
Glu Val Gly Cys Gly Thr Gly Ala Asn Phe Lys Phe Tyr Pro Pro
80 85 90
Gly Cys Arg Val Thr Cys Ile Asp Pro Asn Pro Asn Phe Glu Lys
95 100 105
Phe Leu Ile Lys Ser Ile Ala Glu Arg His Leu Gln Phe Glu
110 115 120
Arg Phe Val Val Ala Ala Gly Glu Asn Met His Gln Val Ala Asp
125 130 135
Gly Ser Val Asp Val Val Cys Thr Leu Val Leu Cys Ser Val
140 145 150
Lys Asn Gln Glu Arg Ile Leu Arg Glu Val Cys Arg Val Leu Arg
155 160 165
Pro Gly Gly Ala Phe Tyr Phe Met Glu His Val Ala Ala Glu Cys
170 175 180
Ser Thr Trp Asn Tyr Phe Trp Glu Gln Val Leu Asp Pro Ala Trp
185 190 195
His Leu Leu Phe Asp Gly Cys Asn Leu Thr Arg Glu Ser Trp Lys
200 205 210
Ala Leu Glu Arg Ala Ser Phe Ser Lys Leu Lys Leu Gln His Ile
215 220 225
Gln Ala Pro Leu Ser Trp Glu Leu Val Arg Pro His Ile Tyr Gly
230 235 240
Tyr Ala Val Lys

<210> 18
<400> 19
Met Ile Leu Leu Asn Asn Ser His Leu Leu Ala Leu Tyr Lys
 1 10 15
Ser Leu Ala Arg Ser Ile Pro Glu Ser Leu Lys Val Tyr Gly Ser
 20 25 30
Val Tyr His Ile Asn His Gly Asn Pro Phe Asn Met Glu Val Leu
 35 40 45
Val Asp Ser Trp Pro Glu Tyr Glu Met Val Ile Ile Arg Pro Gln
 55 60
Lys Gln Glu Met Thr Asp Asp Met Asp Ser Tyr Thr Asn Val Tyr
 65 70 75
Arg Met Phe Ser Lys Glu Pro Gln Lys Ser Gly Glu Val Leu Lys
 80 85 90
Asn Cys Glu Ile Val Asn Trp Lys Gln Asn Leu Gln Ile Gln Gly
 95 100 105
Leu Gln Glu Ser Leu Gly Glu Gly Ile Arg Val Ala Thr Phe Ser
 110 115 120
Lys Ser Val Lys Val Glu His Ser Arg Ala Leu Leu Leu Val Thr
 125 130 135
Glu Asp Ile Leu Lys Leu Asn Ala Ser Lys Ser Lys Ser Lys Gly
 140 145 150
Ser Trp Ala Glu Thr Gly His Pro Asp Asp Glu Phe Glu Ser Gly
 155 160 165
Thr Pro Asn Phe Lys Tyr Ala Gln Leu Asp Val Ser Tyr Ser Gly
 170 175 180
Leu Val Asn Asp Asn Trp Lys Arg Gly Lys Asn Glu Arg Ser Leu
 185 190 195
His Tyr Ile Lys Arg Cys Ile Glu Asp Leu Pro Ala Ala Cys Met
 200 205 210
Leu Gly Pro Glu Gly Val Pro Val Ser Trp Val Thr Met Asp Pro
 215 220 225
Ser Cys Glu Val Gly Met Ala Tyr Ser Met Glu Lys Tyr Arg Arg
 230 235 240
Thr Gly Asn Met Ala Arg Val Met Val Arg Tyr Met Lys Tyr Leu
 245 250 255
Arg Gln Lys Asn Ile Pro Phe Tyr Ile Ser Val Leu Glu Glu Asn
 260 265 270
Glu Asp Ser Arg Arg Phe Val Gly Gln Phe Gly Phe Phe Phe Ala
 275 280 285
Ser Cys Glu Val His Gln Trp Thr Cys Tyr Pro Gln Asn Leu Val
 290 295 300
Pro Phe

<210> 20
<211> PRT
<212> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1915064CD1

<400> 20
Met Ser Ser Glu Val Ser Ala Arg Arg Asp Ala Lys Lys Leu Val
 1 10 15
Arg Ser Pro Ser Gly Leu Arg Met Val Pro Glu His Arg Ala Phe
 20 25 30
Gly Ser Pro Phe Gly Leu Glu Glu Pro Gln Trp Val Pro Asp Lys
 35 40 45
Glu Cys Arg Arg Cys Met Gln Cys Asp Ala Lys Phe Asp Phe Leu
 50 55 60
Thr Arg Lys His His Cys Arg Arg Cys Gly Lys Cys Phe Cys Asp
 65 70 75
Arg Cys Cys Ser Glu Val Pro Leu Arg Arg Met Cys Phe Val
 80 85 90
Asp Pro Val Arg Gln Cys Ala Glu Cys Ala Leu Val Ser Leu Lys

14/55
Glu Ala Glu Phe Tyr Asp Lys Gln Leu Lys Val Leu Leu Ser Gly
Ala Thr Phe Leu Val Thr Phe Gly Asn Ser Glu Lys Pro Glu Thr
Met Thr Cys Arg Leu Ser Asn Asn Gln Arg Tyr Leu Phe Leu Asp
Gly Asp Ser His Tyr Glu Ile Glu Ile Val His Ile Ser Thr Val
Gln Ile Leu Thr Glu Gly Phe Pro Pro Gly Gly Gly Asn Ala Arg
Ala Thr Gly Met Phe Leu Gln Tyr Thr Val Pro Gly Thr Gly
Val Thr Gln Leu Lys Leu Thr Val Val Glu Asp Val Thr Val Gly
Arg Arg Gln Ala Val Ala Trp Leu Val Ala Met His Lys Ala Ala
Lys Leu Leu Tyr Glu Ser Arg Asp Gln

<210> 21
<211> 403
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2185608CD1

<400> 21
 Met Ala Gly Ala Ala Thr Gln Ala Ser Leu Glu Ser Ala Pro Arg
 1 5 10 15
 Ile Met Arg Leu Val Ala Glu Cys Ser Arg Ser Arg Ala Arg Ala
 20 25 30
 Gly Leu Trp Leu Pro His Gly Thr Val Ala Thr Pro Val Phe
 35 40 45
 Met Pro Val Gly Thr Gln Ala Thr Met Lys Gly Ile Thr Thr Glu
 50 55 60
 Gln Leu Asp Ala Gly Cys Arg Ile Cys Leu Gly Asn Thr Tyr
 65 70 75
 His Leu Gly Leu Arg Pro Gly Pro Glu Leu Ile Gln Lys Ala Asn
 80 85 90
 Gly Leu His Gly Phe Met Asn Trp Pro His Asn Leu Thr Asp
 95 100 105
 Ser Gly Gly Phe Gln Met Val Ser Leu Val Ser Leu Ser Glu Val
 110 115 120
 Thr Glu Gly Val Arg Phe Arg Ser Pro Tyr Asp Gly Asn Glu
 125 130 135
 Thr Leu Leu Ser Pro Glu Lys Ser Val Gln Ile Gln Asn Ala Leu
 140 145 150
 Gly Ser Asp Ile Ile Met Gln Leu Asp Asp Val Val Ser Ser Thr
 155 160 165
 Val Thr Gly Pro Arg Val Glu Glu Ala Met Tyr Arg Ser Ile Arg
 170 175 180
 Trp Leu Asp Arg Cys Ile Ala Ala His Gln Arg Pro Asp Lys Gln
 185 190 195
 Asn Leu Phe Ala Ile Ile Gln Gly Gly Leu Asp Ala Asp Leu Arg
 200 205 210
 Ala Thr Cys Leu Glu Glu Met Thr Lys Arg Asp Val Pro Gly Phe
 215 220 225
 Ala Ile Gly Gly Leu Ser Gly Gly Glu Ser Lys Ser Gln Phe Trp
 230 235 240
 Arg Met Val Ala Leu Ser Thr Ser Arg Leu Pro Lys Asp Lys Pro
 245 250 255
 Arg Tyr Leu Met Gly Val Gly Tyr Ala Thr Asp Leu Val Val Cys
 260 265 270
 Val Ala Leu Gly Cys Asp Met Phe Asp Cys Val Phe Pro Thr Arg

15/55
Thr Ala Arg Phe Gly Ser Ala Leu Val Pro Thr Gly Asn Leu Gln
275 280 285
Leu Arg Lys Lys Val Phe Glu Lys Asp Phe Gly Pro Ile Asp Pro
290 300 315
Glu Cys Thr Cys Pro Thr Cys Glu Lys His Ser Arg Ala Phe Leu
310 320 325
His Ala Leu Leu His Ser Asp Asn Thr Ala Ala Leu His His Leu
330 335 340 345
Thr Val His Asn Ile Ala Tyr Glu Leu Gln Leu Met Ser Ala Val
350 355 360
Arg Thr Ser Ile Val Glu Lys Arg Phe Pro Al Phe Val Arg Asp
365 370 375
Phe Met Gly Ala Met Tyr Gly Asp Pro Thr Leu Cys Pro Thr Trp
380 385 390
Ala Thr Asp Ala Leu Ala Ser Val Gly Ile Thr Leu Gly
390 395 400

<210> 22
<211> 487
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2228862CD1

Met Arg Arg Gly Glu Arg Arg Asp Ala Gly Arg Pro Arg Pro Glu
1 2 3 4 5 6 7 8 9
Ser Pro Val Pro Ala Gly Arg Ala Ser Leu Glu Glu Pro Pro Asp
10 11 12 13 14 15 16 17 18
Gly Pro Ser Ala Gly Gln Ala Thr Gly Pro Gly Glu Gly Arg Arg
19 20 21 22 23 24 25 26 27
Ser Thr Glu Ser Glu Val Tyr Asp Asp Gly Thr Asn Thr Phe Phe
28 29 30 31 32 33 34 35 36
Trp Arg Ala His Thr Leu Thr Val Leu Phe Ile Leu Thr Cys Thr
37 38 39 40 41 42 43 44 45
Leu Gly Tyr Val Thr Leu Leu Glu Glu Thr Pro Gln Asp Thr Ala
46 47 48 49 50 51 52 53 54
Tyr Asn Thr Lys Arg Gly Ile Val Ala Ser Ile Leu Val Phe Leu
55 56 57 58 59 60 61 62 63
Cys Phe Gly Val Thr Gln Ala Lys Asp Gly Pro Phe Ser Arg Pro
64 65 66 67 68 69 70 71 72
His Pro Ala Tyr Trp Arg Phe Trp Leu Cys Val Ser Val Val Tyr
73 74 75 76 77 78 79 80 81
Glu Leu Phe Leu Ile Phe Ile Leu Phe Gln Thr Val Glu Glu Arg
82 83 84 85 86 87 88 89 90
Arg Gln Phe Leu Lys Tyr Val Asp Pro Lys Leu Gly Val Pro Leu
91 92 93 94 95 96 97 98 99
Pro Glu Arg Asp Tyr Gly Gly Asn Cys Leu Ile Tyr Asp Pro Asp
100 101 102 103 104 105 106 107 108
Asn Glu Thr Asp Pro Phe His Asn Ile Trp Asp Lys Leu Asp Gly
109 110 111 112 113 114 115 116 117
Phe Val Pro Ala His Phe Leu Gly Trp Tyr Leu Lys Thr Leu Met
118 119 120 121 122 123 124 125 126
Ile Arg Asp Trp Trp Met Cys Met Ile Ile Ser Val Met Phe Glu
127 128 129 130 131 132 133 134 135
Phe Leu Glu Tyr Ser Leu Glu His Gin Leu Pro Asn Phe Ser Glu
136 137 138 139 140 141 142 143 144
Cys Trp Trp Asp His Trp Ile Met Asp Val Leu Val Cys Asn Gly
145 146 147 148 149 150 151 152 153
Leu Gly Ile Tyr Cys Gly Met Lys Thr Leu Glu Trp Leu Ser Leu
154 155 156 157 158 159 160 161 162
Lys Thr Tyr Lys Trp Glu Gly Leu Trp Asn Ile Pro Thr Tyr Lys
163 164 165 166 167 168 169 170 171
Gly Lys Met Lys Arg Ile Ala Phe Gin Phe Thr Pro Tyr Ser Trp
172 173 174 175 176 177 178 179 180
Val Arg Phe Glu Trp Lys Pro Ala Ser Ser Leu Arg Arg Trp Leu 300 310 315
Ala Val Cys Gly Ile Leu Val Phe Leu Leu Ala Glu Leu Asn 320 325 330 335
Thr Phe Tyr Leu Lys Phe Val Leu Trp Met Pro Pro Glu His Tyr 340 345
Leu Val Leu Arg Leu Val Phe Phe Val Asn Val Gly Gly Val 350 355 360 365
Ala Met Arg Glu Ile Tyr Asp Phe Met Asp Asp Pro Lys Pro His 370 375
Lys Lys Leu Gly Pro Gln Ala Trp Leu Val Ala Ala Ile Thr Ala 380 385 390 395
Thr Glu Leu Ile Val Leu Tyr Asp Pro His Thr Leu Thr 400 405
Leu Ser Leu Pro Phe Tyr Ile Ser Gln Cys Thr Thr Leu Gly Ser 410 415 420
Val Leu Ala Leu Thr Trp Thr Val Trp Arg Phe Phe Leu Arg Asp 420 430 435
Ile Thr Leu Arg Tyr Lys Glu Thr Arg Trp Gln Lys Trp Gln Asn 440 445 450
Lys Asp Asp Gln Gly Ser Thr Val Gly Asn Gly Asp Gln His Pro 455 460 465
Leu Gly Leu Asp Glu Asp Leu Leu Gly Pro Gly Val Ala Glu Gly 470 475 480
Glu Gly Ala Pro Thr Pro Asn 485

<210> Homo sapiens

<400> Met Asn Asp Met Met Ser Leu Gly Ile His Arg Val Trp Lys Asp 1 5 10 15
Leu Leu Leu Trp Lys Met His Pro Leu Pro Gly Thr Gln Leu Leu 20 25 30
Asp Val Ala Gly Gly Thr Gly Asp Ile Ala Phe Arg Phe Leu Asn 35 40 45
Tyr Val Gln Ser Gln His Gln Arg Lys Gln Lys Arg Glu Leu Arg 50 55 60
Ala Gln Gln Asn Leu Ser Trp Glu Glu Ile Ala Lys Glu Tyr Gln 65 70 75
Asn Glu Glu Asp Ser Leu Gly Gly Ser Arg Val Val Val Cys Asp 80 85 90
Ile Asn Lys Gly Met Leu Lys Val Gly Lys Glu Lys Lys Ala Leu Ala 95 100 105 110
Gln Gly Tyr Arg Ala Gly Leu Ala Trp Val Leu Gly Asp Ala Glu 115 120
Glu Leu Pro Phe Asp Asp Lys Phe Asp Ile Tyr Thr Ile Ala 125 130 135
Phe Gly Ile Arg Asn Val Thr His Ile Asp Gln Ala Leu Gln Glu 140 145 150
Ala His Arg Val Leu Lys Pro Gly Gly Arg Phe Leu Cys Leu Glu 150 160 165
Phe Ser Glu Val Asn Pro Leu Ile Ser Arg Leu Tyr Asp Leu 170 175 180
Tyr Ser Phe Gln Val Ile Pro Val Leu Gly Glu Val Ile Ala Gly 185 190 195
Asp Trp Lys Ser Tyr Glu Tyr Val Leu Val Glu Ser Ile Arg Arg Phe 200 205 210
Pro Ser Gln Glu Gln Phe Lys Asp Met Ile Glu Asp Ala Gly Phe

17/55
<212> PRT
<213> Homo sapiens

<222> misc_feature
<223> Incyte ID No: 2271680CD1

<400> 24
Met Trp Ser Gly Arg Lys Leu Gly Ser Ser Gly Gly Gly Trp Phe Leu
 1 5 10 15
Arg Val Leu Gly Pro Gly Gly Asn Thr Lys Ala Ala Arg Pro
 20 25 30
Leu Ile Ser Ser Ala Val Tyr Val Lys Asn Gln Leu Ser Gly Thr
 35 40 45
Leu Gln Ile Lys Pro Gly Val Phe Asn Glu Tyr Arg Thr Ile Trp
 50 55 60
Phe Lys Ser Tyr Arg Thr Ile Phe Ser Cys Leu Asn Arg Ile Lys
 65 70 75
Ser Phe Arg Trp Ser Phe Thr Ser Val Ala Gln Ala Gly Val Gln
 80 85 90
Trp Cys Asp Leu Gly Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys
 95 100 105
Arg Phe Ser Cys Leu Ser Leu Leu Ser His Trp Asp Tyr Arg Tyr
 110 115 120
Pro Trp Ala Arg Leu Tyr Ser Thr Ser Gln Thr Thr Val Asp Ser
 125 130 135
Gly Glu Val Lys Thr Phe Leu Ala Leu Ala His Lys Trp Trp Asp
 140 145 150
Glu Gln Gly Val Tyr Ala Pro Leu His Ser Met Asn Asp Leu Arg
 155 160 165
Val Pro Phe Ile Arg Asp Asn Leu Leu Lys Thr Ile Pro Asn His
 170 175 180
Gln Pro Gly Lys Pro Leu Leu Gly Met Lys Ile Leu Asp Val Gly
 185 190 195
Cys Gly Gly Gly Leu Leu Thr Glu Pro Leu Gly Arg Leu Gly Ala
 200 205 210
Ser Val Ile Gly Ile Asp Pro Val Asp Glu Asn Ile Lys Thr Ala
 215 220 225
Gln Cys His Lys Ser Phe Asp Pro Val Leu Asp Lys Arg Ile Glu
 230 235 240
Tyr Arg Val Cys Ser Leu Glu Glu Ile Val Glu Glu Thr Ala Glu
 245 250 255
Thr Phe Asp Ala Val Val Ala Ser Glu Val Val Glu His Val Ile
 260 265 270
Asp Leu Glu Thr Phe Leu Gln Cys Cys Gln Val Leu Lys Pro
 275 280 285
Gly Gly Ser Leu Phe Ile Thr Thr Ile Asn Lys Thr Gln Leu Ser
 290 295 300
Tyr Ala Leu Gly Ile Val Phe Ser Glu Gln Ile Ala Gly Ile Val
 305 310 315
Pro Lys Gly Thr His Thr Trp Glu Lys Phe Val Ser Pro Glu Thr
 320 325 330
Leu Glu Ser Ile Leu Gly Ser Asn Gly Leu Ser Val Gln Thr Val
 335 340 345
Val Gly Met Leu Tyr Asn Pro Phe Ser Gly Tyr Trp His Trp Ser
 350 355 360
Glu Asn Thr Ser Leu Asn Tyr Ala Ala His Ala Val Lys Ser
 365 370 375
Val Gln Glu His Pro Ala Ser Ala Glu Phe Val Leu Lys Gly Glu

18/55
<210> 25
<211> 253
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2325603CD1

<400> 25
Met Asn Phe Ser Gly Gly Gly Arg Gln Glu Ala Ala Gly Ser Arg
 1 5 10 15
Ser Arg Arg Ala Pro Arg Pro Arg Glu Glu Asp Arg Asp Val Gln
 20 25 30
Leu Ser Lys Ala Leu Ser Tyr Ala Leu Arg His Gly Ala Leu Lys
 40 45
Leu Gly Leu Pro Met Gly Ala Asp Gly Phe Val Pro Leu Gly Thr
 50 55 60
Leu Leu Gln Leu Pro Gln Phe Arg Gly Phe Ser Ala Glu Asp Val
 65 70 75
Gln Arg Val Val Asp Thr Asn Arg Lys Gln Arg Phe Ala Leu Gln
 80 85 90
Leu Gly Asp Pro Ser Thr Gly Leu Leu Ile Arg Ala Asn Gln Gly
 95 105
His Ser Leu Gln Val Pro Lys Leu Gln Leu Met Pro Leu Glu Thr
 110 115 120
Pro Gln Ala Leu Pro Pro Met Leu Val His Gly Thr Phe Trp Lys
 125 130 135
His Trp Pro Ser Ile Leu Leu Lys Gly Leu Ser Cys Gln Gly Arg
 140 145 150
Thr His Ile His Leu Ala Pro Gly Leu Pro Gly Asp Pro Gly Ile
 155 160 165
Ile Ser Gly Met Arg Ser His Cys Gly Ile Ala Val Phe Ile Asp
 170 175 180
Gly Pro Leu Ala Leu Ala Asp Gly Ile Pro Phe Phe Arg Ser Ala
 185 190 195
Asn Gly Val Ile Leu Thr Pro Gly Asn Thr Asp Gly Phe Leu Leu
 200 205 210
Pro Lys Tyr Phe Lys Glu Ala Leu Gln Leu Arg Pro Thr Arg Lys
 215 220 225
Pro Leu Ser Leu Ala Gly Asp Glu Glu Thr Glu Cys Gln Ser Ser
 230 235 240
Pro Lys His Ser Ser Arg Glu Arg Arg Arg Ile Gln Gln
 245 250

<210> 26
<211> 303
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2356055CD1

<400> 26
Met Lys Gly Gly Phe Thr Gly Gly Asp Glu Tyr Gln Lys His Phe
 1 5 10 15
Leu Pro Arg Asp Tyr Leu Ala Thr Tyr Tyr Ser Phe Asn Gly Ser
 20 30
Pro Ser Pro Glu Ala Glu Met Leu Lys Phe Asn Leu Glu Cys Leu
 35 40 45

19/55
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>His Lys Thr Phe Gly Pro Gly Gly Leu Gln Gly Asp Thr Leu Ile</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Asp Ile Gly Ser Gly Pro Thr Ile Tyr Gln Val Leu Ala Ala Cys</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Asp Ser Phe Gln Asp Ile Thr Leu Ser Asp Phe Thr Asp Arg Asn</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Arg Glu Glu Leu Glu Lys Trp Leu Lys Lys Glu Pro Gly Leu Tyr</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Asp Trp Thr Pro Ala Val Lys Phe Ala Cys Glu Leu Glu Gly Asn</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>Ser Gly Arg Trp Glu Glu Lys Glu Glu Lys Leu Arg Ala Ala Val</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>Lys Arg Val Leu Lys Cys Asp Val His Leu Gly Asn Pro Leu Ala</td>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>Pro Ala Val Leu Pro Leu Ala Asp Cys Val Leu Thr Leu Leu Ala</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Met Glu Cys Ala Cys Cys Ser Leu Asp Ala Tyr Arg Ala Ala Leu</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Cys Asn Leu Ala Ser Leu Leu Lys Gly Gly His Leu Val Thr</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Thr Val Thr Leu Arg Leu Pro Ser Tyr Val Gly Lys Arg Glu</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Phe Ser Cys Val Ala Leu Lys Glu Glu Val Ala Ala Arg Gln</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Cys Pro Gly Glu Ile Ala Lys Arg Leu Gln Met Pro</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Pro Pro Cys Asp Val Arg Thr Ser Leu Ser Glu Arg Ser Gly Glu</td>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td>Asp Thr Gly Lys Arg His Arg Ile Gln Thr Arg Gly Ser Ala Pro</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Trp Thr Ala Gln Cys Arg Glu Ser Ala Gly Cys Leu Glu Gly Glu</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>Ser Arg Gln Gly Cys Gly Ile Phe Gly Cys Gly Ser Cys</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>Ser Thr Leu</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

<210> 27
<211> 307
<212> PRT
<213> Homo sapiens
<220> misc_feature
<223> Incyte ID No: 2448909CD1

<400> 27

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Gln Lys Gly Lys Gly Arg Thr Ser Arg Ile Arg Arg Arg Lys</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Leu Cys Gly Ser Ser Glu Ser Arg Gly Val Asn Glu Ser His Lys</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Ser Glu Phe Ile Glu Leu Arg Lys Trp Leu Lys Ala Arg Lys Phe</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Gln Asp Ser Asn Leu Ala Pro Ala Cys Phe Pro Gly Thr Gly Arg</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Gly Leu Met Ser Gln Thr Ser Leu Gln Gly Gly Glu Met Ile Ile</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Ser Leu Pro Glu Ser Cys Leu Leu Thr Thr Asp Thr Val Ile Arg</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Ser Tyr Leu Gly Ala Tyr Ile Thr Lys Trp Lys Pro Pro Pro Ser</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Pro Leu Leu Ala Leu Cys Thr Phe Leu Val Ser Glu Lys His Ala</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>Gly His Arg Ser Leu Trp Lys Pro Tyr Leu Glu Ile Leu Pro Lys</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>Ala Tyr Thr Cys Pro Val Cys Leu Glu Pro Gly Val Val Val Asn Leu</td>
<td>140</td>
<td>145</td>
</tr>
</tbody>
</table>
Leu Pro Lys Ser Leu Lys Ala Lys Ala Glu Glu Gln Arg Ala His 155 160 165
Val Gln Glu Phe Phe Ala Ser Ser Arg Asp Phe Phe Ser Ser Leu 170 175 180
Gln Pro Leu Phe Ala Glu Ala Val Asp Ser Ile Phe Ser Tyr Ser 185 190 195
Ala Leu Leu Trp Ala Trp Cys Thr Val Asn Thr Arg Ala Val Tyr 200 205 210
Leu Arg Pro Arg Gln Arg Glu Cys Leu Ser Ala Glu Pro Asp Thr 215 220 225
Cys Ala Leu Ala Ala Pro Tyr Leu Asp Leu Leu Asn His Ser Pro His 230 235 240
Val Gln Val Lys Ala Ala Phe Asn Glu Glu Thr His Ser Tyr Glu 245 250 255
Ile Arg Thr Thr Ser Arg Trp Arg Lys His Glu Glu Val Phe Ile 260 265 270
Cys Tyr Gly Pro His Asp Asn Gln Arg Leu Phe Leu Glu Tyr Gly 275 280 285
Phe Val Ser Val His Asn Pro His Ala Cys Val Tyr Val Ser Arg 290 295 300
Gly Trp Asn Gln Leu Cys Ser 305

<210> 28
<211> 169
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2631212CD1

<400> 28
Met Lys Gly Ser Arg Ile Glu Leu Gly Asp Val Thr Pro His Asn 1 5 10 15
Ile Lys Gln Leu Lys Arg Leu Asn Gln Val Ile Phe Pro Val Ser 20 25 30
Tyr Asn Asp Lys Phe Tyr Lys Asp Val Leu Glu Val Gly Glu Leu 35 40 45
Ala Lys Leu Ala Tyr Phe Asn Asp Ile Ala Val Gly Ala Val Cys 50 55 60
Cys Arg Val Asp His Ser Gln Asn Gln Lys Arg Leu Tyr Ile Met 65 70 75
Thr Leu Gly Cys Leu Ala Pro Tyr Arg Arg Leu Gly Ile Gly Thr 80 85 90
Lys Met Leu Asn His Val Leu Asn Ile Cys Glu Lys Asp Gly Thr 95 100 105
Phe Asp Asn Ile Tyr Leu His Val Gln Ile Ser Asn Glu Ser Ala 110 115 120
Ile Asp Phe Tyr Arg Lys Phe Gly Phe Glu Ile Ile Glu Thr Lys 125 130 135
Lys Asn Tyr Tyr Lys Arg Ile Glu Pro Ala Asp Ala His Val Leu 140 145 150
Gln Lys Asn Leu Lys Val Pro Ser Gly Glu Asn Ala Asp Val Glu 155 160 165
Lys Thr Asp Asn

<210> 29
<211> 389
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2678733CD1
<400> 29
Met Arg Val Leu Val Arg Arg Cys Trp Gly Pro Pro Leu Ala His
1 5 10 15
Gly Ala Arg Arg Gly Arg Pro Ser Pro Gln Trp Arg Ala Leu Ala
20 25 30
Arg Leu Gly Trp Glu Asp Cys Arg Asp Ser Arg Val Arg Glu Lys
35 40 45
Pro Pro Trp Arg Val Leu Phe Phe Gly Thr Asp Gln Phe Ala Arg
50 55 60
Glu Ala Leu Arg Ala Leu His Ala Ala Arg Glu Asn Lys Glu Glu
65 70 75
Glu Leu Ile Asp Lys Leu Glu Val Val Thr Met Ser Pro Ser
80 85 90
Pro Lys Gly Leu Pro Pro Lys Gly Tyr Ala Val Gln Ser Glu Leu
95 100 105
Pro Val Tyr Glu Trp Pro Asp Val Gln Ser Gly Tyr Asp Val
110 115 120
Gly Val Val Ala Ser Phe Gly Arg Leu Leu Asn Glu Ala Leu Ile
125 130 135
Leu Lys Phe Pro Tyr Gly Ile Leu Asn Val His Pro Ser Cys Leu
140 145 150
Pro Arg Trp Arg Gly Pro Ala Pro Val Ile His Thr Val Leu His
155 160 165
Gly Asp Thr Val Thr Gly Val Thr Ile Met Gln Ile Arg Pro Lys
170 175 180
Arg Phe Asp Val Gly Pro Ile Leu Lys Gln Glu Thr Val Pro Val
185 190 195
Pro Pro Lys Ser Thr Ala Lys Glu Leu Glu Ala Val Leu Ser Arg
200 205 210
Leu Gly Ala Asn Met Leu Ile Ser Val Leu Lys Asn Leu Pro Glu
215 220 225
Ser Leu Ser Asn Gly Arg Gln Gln Pro Met Gly Ala Thr Tyr
230 235 240
Ala Pro Lys Ile Ser Ala Gly Thr Ser Cys Ile Lys Trp Glu Glu
245 250 255
Gln Thr Ser Glu Gln Ile Phe Arg Leu Tyr Arg Ala Ile Gly Asn
260 265 270
Ile Ile Pro Leu Gln Thr Leu Trp Met Ala Asn Thr Ile Lys Leu
275 280 285
Leu Asp Leu Val Glu Val Asn Ser Ser Val Leu Ala Asp Pro Lys
290 295 300
Leu Thr Gly Gln Ala Leu Ile Pro Gly Ser Val Ile Tyr His Lys
305 310 315
Gln Ser Gln Ile Leu Leu Val Tyr Cys Lys Asp Gly Trp Ile Gly
320 325 330
Val Arg Ser Val Met Leu Lys Lys Ser Met Thr Ala Thr Asp Phe
335 340 345
Tyr Asn Gly Tyr Leu His Pro Thr Tyr Gln Lys Asn Ser Gln Ala
350 355 360
Gln Pro Ser Gln Cys Arg Phe Glu Thr Leu Arg Leu Pro Thr Lys
365 370 375
Lys Lys Gln Lys Lys Thr Val Ala Met Gln Gln Cys Ile Glu
380 385

<210> 30
<211> 500
<212> PRT
<213> Homo sapiens

<222> misc_feature
<223> Incyte ID No: 2768571CD1

<400> 30
Met Arg Ser Cys Leu Trp Arg Cys Arg His Leu Ser Gln Gly Val
1 5 10 15
Gln Trp Ser Leu Leu Ala Val Leu Val Phe Phe Leu Phe Ala
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Gln</td>
<td>Thr</td>
</tr>
<tr>
<td>Lys</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>His</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Gln</td>
<td>Arg</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Leu</td>
<td>Gln</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Arg</td>
<td>Gln</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Arg</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Pro</td>
<td>Trp</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>His</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Arg</td>
<td>Trp</td>
<td>Asp</td>
</tr>
<tr>
<td>Phe</td>
<td>Pro</td>
<td>Gln</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe</td>
<td>Asp</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Pro</td>
<td>Phe</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Phe</td>
<td>Met</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>Gln</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Met</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Gln</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Pro</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>335</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>365</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>395</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>405</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>415</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>425</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>435</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>445</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>455</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>475</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>485</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>495</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>510</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
</tbody>
</table>
Asn Leu Gln Ala Leu Gly Val Ser Lys Val Glu Lys Glu His Trp
Leu Tyr Pro Gln Gln Ile Thr Thr Asn Gln Trp Lys Asn Gly Ala
Thr Arg Asp Ser Arg Gly Lys Met Leu Ser Pro Ala Thr Lys Pro
Glu Trp Gln Arg Trp Ala Glu Ser Ala Glu Thr Arg Ile Ala Thr
Leu Leu Gln Gln Val His Gly Lys Pro Trp Lys Thr Gln Ile Leu
His Ile Gln Pro Val Lys Ser Tyr Ala Pro His Val Asp His Ile
Val Leu Asp Leu Glu Cys Cys Pro Cys Pro Ser Val Gly

<210> 32
<211> 346
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3243884CD1

<400> 32
Met Ala Ala Ser Gly Lys Leu Ser Thr Cys Arg Leu Pro Pro Leu
1 5 10 15
Pro Thr Ile Arg Glu Ile Ile Lys Leu Leu Arg Leu Gln Ala Ala
20 25 30
Lys Gln Leu Ser Gln Asn Phe Leu Leu Asp Leu Arg Leu Thr Asp
35 40 45
Lys Ile Val Arg Lys Ala Gly Asn Leu Thr Asn Ala Tyr Val Tyr
50 55 60
Glu Val Gly Pro Gly Pro Gly Gly Ile Thr Arg Ser Ile Leu Asn
65 70 75
 Ala Asp Val Ala Glu Leu Leu Val Val Glu Lys Asp Thr Arg Phe
80 85 90
Ile Pro Gly Leu Gln Met Leu Ser Asp Ala Ala Pro Gly Lys Lys
95 100 105
Arg Ile Val His Gly Asp Val Leu Thr Phe Lys Val Glu Lys Ala
110 115 120
Phe Ser Glu Ser Leu Lys Arg Pro Trp Glu Asp Asp Pro Pro Asn
125 130 135
Val His Ile Ile Gly Asn Leu Pro Phe Ser Val Ser Thr Pro Leu
140 145 150
Ile Ile Lys Trp Leu Glu Asn Ile Ser Cys Arg Asp Gly Pro Phe
155 160 165
Val Tyr Gly Arg Thr Gln Met Thr Leu Thr Phe Gln Lys Glu Val
170 175 180
Ala Glu Arg Leu Ala Ala Asn Thr Gly Ser Lys Glu Arg Ser Arg
185 190 195
Leu Ser Val Met Ala Gln Tyr Leu Cys Asn Val Arg His Ile Phe
200 205 210
Thr Ile Pro Gly Gln Ala Phe Val Pro Lys Pro Glu Val Asp Val
215 220 225
Gly Val Val His Phe Thr Pro Leu Ile Gln Pro Lys Ile Glu Gln
230 235 240
Pro Phe Lys Leu Glu Val Val Glu Asn Val Phe Gln Phe
245 250 255
Arg Arg Lys Tyr Cys His Arg Gly Leu Arg Met Leu Phe Pro Glu
260 265 270
Ala Gln Arg Leu Glu Ser Thr Gly Arg Leu Leu Glu Ala Asp
275 280 285
Ile Asp Pro Thr Leu Arg Pro Arg Glu Leu Ser Ile Ser His Phe
290 295 300
Lys Ser Leu Cys Asp Val Tyr Arg Lys Met Cys Asp Glu Asp Pro

25/55
<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln Leu Phe Ala Tyr Asn Phe Arg Glu Glu Leu Lys Arg Arg Lys</td>
<td>305</td>
</tr>
<tr>
<td>Ser Lys Asn Glu Glu Lys Glu Glu Asp Asp Ala Glu Asn Tyr Arg</td>
<td>310</td>
</tr>
<tr>
<td>Leu</td>
<td>315</td>
</tr>
</tbody>
</table>

<210> 33
<211> 173
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3400578CD1

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Ala Ser Ile Leu Arg Thr Pro Glu Ala Leu Glu Leu Thr Leu</td>
<td>305</td>
</tr>
<tr>
<td>Ala Leu Ile Lys Pro Asp Ala Val Ala His Pro Leu Ile Leu Glu</td>
<td>310</td>
</tr>
<tr>
<td>Ala Val His Gln Gln Ile Leu Ser Asn Lys Phe Leu Ile Val Arg</td>
<td>315</td>
</tr>
<tr>
<td>Met Arg Glu Leu Leu Trp Arg Lys Glu Asp Cys Gln Arg Phe Tyr</td>
<td>320</td>
</tr>
<tr>
<td>Arg Glu His Glu Ala Gly Pro Ile Arg Ala Tyr Ile Leu Ala His</td>
<td>325</td>
</tr>
<tr>
<td>Lys Asp Ala Ile Gln Leu Trp Arg Thr Leu Met Gly Pro Thr Arg</td>
<td>330</td>
</tr>
<tr>
<td>Val Phe Arg Ala Arg His Val Ala Pro Asp Ser Ile Arg Gly Ser</td>
<td>335</td>
</tr>
<tr>
<td>Phe Gly Leu Thr Asp Thr Arg Asn Thr Thr His Gly Ser Asp Ser</td>
<td>340</td>
</tr>
<tr>
<td>Val Val Ser Ala Ser Arg Glu Ile Ala Ala Phe Phe Pro Asp Phe</td>
<td>345</td>
</tr>
<tr>
<td>Ser Glu Gln Arg Trp Tyr Glu Glu Glu Glu Pro Gln Leu Arg Cys</td>
<td>350</td>
</tr>
<tr>
<td>Gly Pro Val Cys Tyr Ser Pro Glu Gly Gly Val His Tyr Val Ala</td>
<td>355</td>
</tr>
<tr>
<td>Gly Thr Gly Gly Leu Gly Pro Ala</td>
<td>360</td>
</tr>
</tbody>
</table>

<210> 34
<211> 445
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3422577CD1

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Thr Glu Leu Arg Gln Arg Val Ala His Glu Pro Val Ala Pro</td>
<td>305</td>
</tr>
<tr>
<td>Pro Glu Asp Lys Glu Ser Glu Ser Glu Ala Lys Val Asp Gly Glu</td>
<td>310</td>
</tr>
<tr>
<td>Thr Ala Ser Asp Ser Glu Ser Arg Ala Glu Ser Ala Pro Leu Pro</td>
<td>315</td>
</tr>
<tr>
<td>Val Ser Ala Asp Thr Pro Glu Val Leu Asn Arg Ala Leu Ser</td>
<td>320</td>
</tr>
<tr>
<td>Asn Leu Ser Ser Arg Trp Lys Trp Trp Val Arg Gly Ile Leu</td>
<td>325</td>
</tr>
<tr>
<td>Thr Leu Ala Met Ile Ala Phe Phe Phe Ile Ile Tyr Leu Gly</td>
<td>330</td>
</tr>
<tr>
<td>Pro Met Val Leu Met Ile Ile Val Met Cys Val Gln Ile Lys Cys</td>
<td>335</td>
</tr>
</tbody>
</table>

26/55
Phe His Glu Ile Ile Thr Ile Gly Tyr Asn Val Tyr His Ser Tyr
110 115 120
Asp Leu Pro Trp Phe Arg Thr Leu Ser Trp Tyr Phe Leu Leu Cys
125 130 135
Val Asn Tyr Phe Phe Tyr Gly Glu Thr Val Thr Asp Tyr Phe Phe
140 145 150
Thr Leu Val Gln Arg Glu Glu Pro Leu Arg Ile Ser Leu Lys Tyr
155 160 165
His Arg Phe Ile Ser Phe Thr Leu Tyr Leu Ile Gly Phe Cys Met
170 175 180
Phe Val Leu Ser Leu Val Lys Lys His Tyr Arg Leu Gln Phe Tyr
185 190 195
Met Phe Gly Trp Thr His Val Thr Leu Leu Ile Val Val Thr Glu
200 205 210
Ser His Leu Val Ile His Asn Leu Phe Glu Gly Met Ile Trp Phe
215 220 225
Ile Val Pro Ile Ser Cys Val Ile Cys Asn Asp Ile Met Ala Tyr
230 235 240
Met Phe Gly Phe Phe Phe Gly Arg Thr Pro Leu Ile Lys Leu Ser
245 250 255
Pro Lys Lys Thr Trp Glu Gly Phe Ile Gly Gly Phe Phe Ala Thr
260 265 270
Val Val Phe Gly Leu Leu Leu Ser Tyr Val Met Ser Gly Tyr Arg
275 280 285
Cys Phe Val Cys Pro Val Glu Tyr Asn Asp Thr Asn Ser Ser Phe
290 295 300
Thr Val Asp Cys Glu Pro Ser Asp Leu Phe Arg Leu Gln Glu Tyr
305 310 315
Asn Ile Pro Gly Val Ile Gln Ser Val Ile Gly Trp Lys Thr Val
320 325 330
Arg Met Tyr Pro Phe Glu Ile His Ser Ile Ala Leu Ser Thr Phe
335 340 345
Ala Ser Leu Ile Gly Pro Phe Gly Gly Phe Phe Ala Ser Gly Phe
350 355 360
Lys Arg Ala Phe Lys Ile Lys Asp Phe Ala Asn Thr Ile Pro Gly
365 370 375
His Gly Gly Ile Met Asp Arg Phe Asp Cys Gln Tyr Leu Met Ala
380 385 390
Thr Phe Val Asn Val Tyr Ile Ala Ser Phe Ile Arg Gly Pro Asn
395 400 405
Pro Ser Lys Leu Ile Gln Gln Phe Leu Thr Leu Arg Pro Asp Glu
410 415 420
Gln Leu His Ile Phe Asn Thr Leu Arg Ser His Leu Ile Asp Lys
425 430 435
Gly Met Leu Thr Ser Thr Thr Glu Asp Glu
440 445

<210> 35
<211> 420
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3706809CD1

<400> 35
Met Ala Ala Leu Val Arg Pro Ala Arg Phe Val Val Arg Pro Leu
1 5 10 15
Leu Gln Val Val Gln Ala Trp Leu Asp Ala Arg Arg Trp Val
20 25 30
Arg Ala Leu Arg Arg Ser Pro Val Lys Val Val Phe Pro Ser Gly
35 40 45
Glu Val Val Glu Gln Lys Arg Ala Pro Gly Lys Gln Pro Arg Lys
50 55 60
Ala Pro Ser Glu Ala Ser Ala Gln Glu Gln Arg Glu Lys Gln Pro
65 70 75

27/55
Leu Glu Glu Ser Ala Ser Arg Ala Pro Ser Thr Trp Glu Glu Ser 80 85 80
Gly Leu Arg Tyr Asp Lys Ala Tyr Pro Gly Asp Arg Arg Leu Ser 90 90 95 100
Ser Val Met Thr Ile Val Lys Ser Arg Pro Phe Arg Glu Lys Gln 110 115 120 110
Gly Lys Ile Leu Leu Glu Gly Arg Arg Leu Ile Ser Asp Ala Leu 125 130 135 120
Lys Ala Gly Ala Val Pro Lys Met Phe Phe Ser Arg Leu Leu Glu 140 145 150 140
Tyr Leu Lys Glu Leu Pro Val Asp Lys Leu Lys Gly Val Ser Leu 155 160 165 155
Ile Lys Val Lys Phe Gly Asp Ile Lys Asp Thr Ser Asp Leu Val 170 175 180 170
Thr Pro Gln Gly Ile Met Gly Ile Phe Ala Lys Pro Asp His Val 185 190 195 180
Lys Met Thr Tyr Pro Lys Thr Gln Leu Gln His Ser Leu Pro Leu 200 205 210 200
Leu Leu Ile Cys Asp Asn Leu Arg Asp Pro Gly Asn Leu Gly Thr 215 220 225 215
Ile Leu Arg Ser Ala Gly Ala Gly Cys Ser Lys Val Leu Leu 230 235 240 220
Thr Lys Gly Cys Val Asp Ala Trp Glu Pro Lys Val Leu Arg Ala 245 250 255 240
Gly Met Gly Ala His Phe Arg Met Pro Ile Ile Asn Asn Leu Glu 260 265 270 260
Trp Glu Thr Val Pro Asn Tyr Leu Pro Pro Asp Thr Arg Val Tyr 275 280 285 275
Val Ala Asp Asn Cys Gly Leu Tyr Ala Gin Ala Glu Met Ser Asn 290 295 300 290
Lys Ala Ser Asp His Gly Trp Val Cys Asp Gln Arg Val Met Lys 305 310 315 305
Phe His Lys Tyr Glu Glu Glu Glu Asp Val Glu Thr Gly Ala Ser 320 325 330 300
Gln Asp Trp Leu Pro His Val Glu Val Gin Ser Tyr Asp Ser Asp 335 340 345 335
Trp Thr Glu Ala Pro Ala Ala Val Val Ile Gly Gly Glu Thr Tyr 350 355 360 350
Gly Val Ser Leu Gln Ser Leu Gln Leu Val Ala Glu Ser Thr Gly Gly 365 370 375 360
Lys Arg Leu Leu Ile Pro Val Pro Gly Val Asp Ser Leu Asn 380 385 390 380
Ser Ala Met Ala Ala Ser Ile Leu Leu Phe Glu Gly Lys Arg Gin 395 400 405 395
Leu Arg Gly Arg Ala Glu Asp Leu Ser Arg Asp Arg Ser Tyr His 410 415 420 410

<210> 36
<211> 354
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3745914CD1

<400> 36
Met Ala Pro Ala Lys Ala Thr Asn Val Val Arg Leu Leu Leu Gly 1 5 10 15
Ser Thr Ala Leu Trp Leu Ser Gln Leu Gly Ser Gly Thr Val Ala 20 25 30 20
Ala Ser Lys Ser Val Thr Ala His Leu Ala Ala Lys Trp Pro Glu 35 40 45 35
Thr Pro Leu Leu Leu Glu Ala Ser Glu Phe Met Ala Glu Glu Ser 50 55 60 50
Asn Glu Lys Phe Trp Gln Phe Leu Glu Thr Val Gln Glu Leu Ala

28/55
65
Ile Tyr Lys Gln Thr Glu Ser Asp Tyr Ser Tyr Tyr Asn Leu Ile
 85
80
90

Leu Lys Ala Gly Glu Phe Leu Asp Asn Leu His Ile Asn Leu
 95
100
105

Leu Lys Phe Ala Phe Ser Ile Arg Ala Tyr Ser Pro Ala Ile Gln
 110
115
120

Met Phe Gln Gln Ile Ala Ala Asp Glu Pro Pro Pro Asp Gly Cys
 125
130
135

Asn Ala Phe Val Val Ile His Lys Lys His Thr Cys Lys Ile Asn
 140
145
150

Glu Ile Lys Leu Leu Lys Lys Ala Ser Arg Thr Arg Pro
 155
160
165

Tyr Leu Phe Lys Gly Asp His Lys Phe Pro Thr Asn Lys Glu Asn
 170
175
180

Leu Pro Val Val Ile Leu Tyr Ala Glu Met Gly Thr Arg Thr Phe
 185
190
195

Ser Ala Phe His Lys Val Leu Ser Glu Lys Ala Gln Asn Glu Glu
 200
205
210

Ile Leu Tyr Val Leu Arg His Tyr Ile Glu Lys Pro Ser Ser Arg
 215
220
225

Lys Met Tyr Leu Ser Gly Tyr Gly Val Glu Leu Ala Ile Lys Ser
 230
235
240

Thr Glu Tyr Lys Ala Leu Asp Asp Thr Glu Val Lys Thr Val Thr
 245
250
255

Asn Thr Thr Val Glu Asp Glu Thr Glu Thr Asn Glu Val Gln Gly
 260
265
270

Phe Leu Phe Gly Lys Leu Lys Ile Tyr Ser Asp Leu Arg Asp
 275
280
285

Asn Leu Thr Ala Phe Gln Lys Tyr Leu Ile Glu Ser Asn Lys Gln
 290
295
300

Met Met Pro Leu Lys Val Trp Glu Leu Gln Asp Leu Ser Phe Gln
 305
310
315

Ala Ala Ser Gln Ile Met Ser Ala Pro Val Tyr Asp Ala Ile Lys
 320
325
330

Leu Met Lys Asp Ile Ser Gln Asn Phe Pro Ile Lys Ala Arg Val
 335
340
345

Gln Met Ile Gly Asn Val Leu Ile Gly
 350

<210> 37
<211> 198
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No: 4000776CD1

<400> 37
Met Ser Ser Lys Arg Ser His Tyr Asp Ser Ala Leu Lys Arg Lys
 1
5
10
15

Val Ile Val Tyr Ala Glu Lys His Gly Asn Arg Ala Ala Gly Arg
 20
25
30

Thr Phe Asp Ile Ser Glu Ala Asn Ile Arg Arg Trp Arg Asn Asp
 40
45

Arg Asn Ser Ile Phe Ser Cys Lys Ala Thr Thr Lys Cys Phe Thr
 50
55
60

Gly Pro Lys Lys Gly Arg Tyr Pro Gln Val Asp Glu Ala Val Leu
 65
70
75

Arg Phe Val Ser Glu Thr Arg Ala Lys Gly Leu Pro Ile Thr Arg
 80
85
90

Gln Ala Met Gln Leu Lys Ala Gly Glu Val Ala Lys Thr Leu Gly
 95
100
105

Ile Asp Glu Thr Lys Phe Lys Ala Thr Arg Gly Trp Cys Asp Arg
110
115
120

Phe Met Arg Arg Ala Gly Leu Ser Leu Arg His Gln Thr Ser Phe

29/55
<table>
<thead>
<tr>
<th></th>
<th>125</th>
<th>130</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Ala</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Phe</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Cys</td>
<td>Cys</td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Trp</td>
<td>Lys</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Ser</td>
<td>Asp</td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ile</td>
<td>Thr</td>
<td></td>
</tr>
</tbody>
</table>

<210> 38
<211> 296
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4071304CD1

<400> 38

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Met</td>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
<td>Ala</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Lys</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Val</td>
<td>Tyr</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Phe</td>
<td>His</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>His</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Asp</td>
<td>Leu</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Asp</td>
<td>Lys</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Pro</td>
<td>Asp</td>
<td>Phe</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Asp</td>
<td>Met</td>
<td>Thr</td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Asp</td>
<td>His</td>
<td>Tyr</td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Gln</td>
<td>Ile</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Arg</td>
<td>Cys</td>
<td>Gln</td>
<td>Glu</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Glu</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Met</td>
<td>Phe</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Met</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>His</td>
<td>Ala</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Asn</td>
<td>Lys</td>
<td>Phe</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>His</td>
<td>Phe</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
<td>Ser</td>
<td>Glu</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td>Glu</td>
<td>Arg</td>
<td>Cys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Glu</td>
<td>Thr</td>
<td>Phe</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Cys</td>
<td>Cys</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Glu</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Pro</td>
<td>Val</td>
<td>Cys</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Met</td>
<td>Asp</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>215</td>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Met</td>
<td>Arg</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Gly</td>
<td>Thr</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Glu</td>
<td>Tyr</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td>His</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Val</td>
<td>Lys</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td>His</td>
<td>Ala</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Tyr</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Asp</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Gln</td>
<td>Lys</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Gln</td>
<td>His</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Lys</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Leu</td>
<td>Gln</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Pro</td>
<td>Ile</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Trp</td>
<td>Asn</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Asp</td>
<td>Cys</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 39
<211> 214
<212> PRT
<213> Homo sapiens

30/55
<220> 39
Met Ala Gly Glu Asn Phe Ala Thr Pro Phe His Gly His Val Gly
1 5 10 15
Arg Gly Ala Phe Ser Asp Val Tyr Glu Pro Ala Glu Asp Thr Phe
20 25 30
Leu Leu Leu Asp Ala Leu Glu Ala Ala Ala Glu Leu Ala Gly
35 40 45
Val Glu Ile Cys Leu Glu Val Gly Ser Gly Ser Gly Val Val Ser
50
Ala Phe Leu Ala Ser Met Ile Gly Pro Gln Ala Leu Tyr Met Cys
65 70 75
Thr Asp Ile Asn Pro Glu Ala Ala Ala Cys Thr Leu Glu Thr Ala
80 85 90
Arg Cys Asn Lys Val His Ile Gin Pro Val Ile Thr Asp Leu Val
95 100 105
Lys Gly Leu Leu Pro Arg Leu Thr Glu Lys Val Asp Leu Val
110 115 120
Phe Asn Pro Pro Tyr Val Thr Val Pro Gln Glu Val Gly Ser
125 130 135
His Gly Ile Glu Ala Ala Trp Ala Gly Gly Arg Asn Gly Arg Glu
140 145 150
Val Met Asp Arg Phe Phe Pro Leu Val Pro Asp Leu Leu Ser Pro
155 160 165
Arg Gly Leu Phe Tyr Leu Val Thr Ile Lys Glu Asn Pro Glu
170 175 180
Glu Ile Leu Lys Ile Met Lys Thr Lys Gly Leu Gln Gly Thr
185 190 195
Ala Leu Ser Arg Gin Ala Gly Gin Glu Thr Leu Ser Val Leu Lys
200 205 210
Phe Thr Lys Ser

<210> 40
<211> 322
<212> PRT
<213> Homo sapiens

<220> 40
Met Ala Ala Ser Gly Glu Pro Gin Arg Gln Trp Gln Glu Glu Val
1 5 10 15
Ala Ala Val Val Val Val Gly Ser Cys Met Thr Asp Leu Val Ser
20 25 30
Leu Thr Ser Arg Leu Pro Lys Thr Gly Glu Thr Ile His Gly His
35 40 45
Lys Phe Phe Ile Gly Phe Gly Lys Gly Ala Asn Gin Cys Val
50 55 60
Gln Ala Ala Arg Leu Gly Ala Met Thr Ser Met Val Cys Lys Val
65 70 75
Gly Lys Asp Ser Phe Gly Asn Asp Tyr Ile Gin Gin Leu Lys Gin
80 85 90
Asn Asp Ile Ser Thr Glu Phe Thr Tyr Gin Thr Lys Asp Ala Ala
95 100 105
Thr Gly Thr Ala Ser Ile Ile Val Asn Gin Gin Glu Gin Gin Gin
110 115 120
Ile Val Ile Val Ala Gly Asn Leu Leu Leu Asn Thr Glu Asp
125 130 135
Leu Arg Ala Ala Asn Val Ile Ser Arg Ala Lys Val Met Val
140 145 150
Cys Gin Leu Gin Ile Gin Thr Pro Gin Thr Ser Leu Gin Leu Leu Thr

31/55
155 160 165
Met Ala Arg Arg Ser Gly Val Lys Thr Leu Phe Asn Pro Ala Pro
170 175 180
Ala Ile Ala Asp Leu Asp Pro Glu Phe Tyr Thr Leu Ser Asp Val
185 190 195
Phe Cys Cys Asn Glu Ser Glu Ala Glu Ile Leu Thr Gly Leu Thr
200 205 210
Val Gly Ser Ala Ala Asp Ala Gly Glu Ala Ala Leu Val Leu Leu
215 220 225
Lys Arg Gly Cys Gln Val Val Ile Ile Thr Leu Gly Ala Glu Gly
230 235 240
Cys Val Leu Val Ser Glu Thr Leu Pro Glu Pro Lys His Ile Pro
245 250 255
Thr Glu Lys Val Ala Ala Val Asp Thr Thr Gly Ala Gly Asp Ser
260 265 270
Phe Val Gly Ala Leu Ala Phe Tyr Leu Ala Tyr Tyr Pro Asn Leu
275 280 285
Ser Leu Glu Asp Met Leu Asn Arg Ser Asp Thr Gly Ala Ala Leu Val
290 295 300
Ser Val Gln Ala Ala Gly Thr Gln Ser Ser Tyr Pro Tyr Lys Lys
305 310 315
Asp Leu Pro Leu Thr Leu Leu Phe
320

<210> 41
<211> 87
<212> PRT
<213> Homo sapiens

<400> 41
1 5 10 15
Met Ser Thr Ser Val Pro Gln Gly His Thr Trp Thr Gln Arg Val
10 20 25 30
Lys Ser Gly Asp Ala Glu Glu Glu Pro Gln Leu Leu Gln Ser
35 40 45
Arg Ser Gly Cys Ala Ala Ser His Phe Ala Val Gln Glu Cys Met
40 50 55 60
Phe Lys Asp Cys Met Trp Arg Gln Cys Gln Pro Gln Val Gln Ala
65 70 75
Leu Gln Arg Arg Glu Glu Gln Ala Gly Ala His His
80 85

<210> 42
<211> 378
<212> PRT
<213> Homo sapiens

<400> 42
1 5 10 15
Met Asp Leu Ala Gly Leu Leu Ser Gln Phe Leu Cys His Leu
20 25 30
Val Phe Cys Tyr Val Phe Ile Ala Ser Gly Leu Ile Ile Asn Thr
35 40 45
Ile Gln Leu Phe Thr Leu Leu Leu Trp Pro Ile Asn Lys Gln Leu
50 55 60
Phe Arg Lys Ile Asn Cys Arg Leu Ser Tyr Cys Ile Ser Ser Gln
65 70 75
Leu Val Met Leu Leu Glu Trp Trp Ser Gly Thr Glu Cys Thr Ile
Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Gly Lys Val 80 85 90
Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly 90 95 105
Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val 110 115 120
Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met 125 130 135
Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln 140 145 150
Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr 155 160 165
Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Gly Gly Thr Arg Phe 170 175 180
Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys 185 190 195
Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly 200 205 210
Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val 215 220 225
Tyr Asp Cys Thr Leu Phe Phe Arg Asn Asp Glu Asn Pro Thr Leu 230 235 240
Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Leu Asp Tyr Val 245 250 255
Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Glu Asp Cys 260 265 270
Ser Ala Thr Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gin 275 280 285
Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val 290 295 300
Pro Pro Arg Arg Pro Trp Leu Val Asn Trp Leu Phe Trp Ala 305 310 315
Ser Leu Val Leu Tyr Pro Phe Phe Gin Phe Leu Val Ser Met Ile 320 325 330
Arg Ser Gly Ser Ser Leu Thr Leu Ala Ser Phe Ile Leu Val Phe 335 340 345
Phe Val Ala Ser Val Gly Val Arg Trp Met Ile Gly Val Thr Glu 350 355 360
Ile Asp Lys Gly Ser Ala Tyr Gly Asn Ser Asp Ser Lys Gin Lys 365 370 375
Leu Asn Asp

<210> 43
<211> 1322
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 016233CB1

<400> 43

gcagcacac gctgacctct gcctggggagt taacccggac cagccgctgc gggcaagaga 60
aggtctttgg ctccttcggg aaacccagcc cgcgtacccg gctccgagcg gttcgcagac 120
gacgcagac gcacctcagc ccggcagcgc ccacgaggcc cgctccagag ccggcgggag 180
cgggcagcgg gcgtcgggag gcgtcggctg cgtctgcac gggcagcgac ggttgactcg 240
gcggaacagc gccggggcgc cgacgcagca acctgcacga accactcgaa accagcagca 300
gggacggcct tcccttataag ctgacagcgg ggaacagcct ggccgaagtc ttccggttgt 360
gctagtatgg tcgagctcct gggccgagga gattgagatc atgccgaaag ggaggggtg 420
atgccgagc aggtagctct tcatgctgtg cttcacttcga gacagaaagc ctaagccctg 480
aagggccagt tcaacctttga ccacccggat gcccttgaca atgaacctat cttcaaaaac 540
cctcgaagaa ttcagaaaaa gaaacagatc cagatcccgg gtgtatgacct tgtccctccct 600
tcggcagaaa ggatcgagct gatgttgctctt cccgcaagac tggctctctg aagaggacct 660
cggtcgttcc actccctgag ggtatcagac cttgtctcag tgaagcttcc tggtaataca 720
gatgcggagc ccggcgttct ccgagagta ttaagggaca tcagcggagac cggaggggt 780
cctggaccaga ttttagtctca tttatctatt gcggccatagc ccgcctttgag gcgggggctc 840
gcttgaagaa ttagttttca gctgtatatg aactgtacact caatcccaga aataactgaa 900
atccaacact ctgaggagct ccacaaagga aagaaatcag tgcagatattg tagtattgga 960
ggtcccccag gcagaagatat actaaaagagct ctgcccagttg cctgactcagacc 1020
tccactaggc gaagagatgg ctttcagagag aagctatccag gacgggcacc tccccagaga 1080
cggtggtaggc gccccccgag gcggcctgga cctccggtaa cttggctgctt tgggctctgc 1140
tggtgtctca cccctttcct gcattccttg acctctctct ccatctgatg cctgagcgcc tctcttcctg 1200
cgctgtgccag ctctcatcct gctctttttg tggcctcttg gggagttcag aaggtgattc 1260
gtgcgtacag taatcgagaa gtcctgcctct aagccgaactc tcagcagccag caagaactca 1320
atgactgact caggagaggt tcaccatcgc aagaggaacct tggggaactgt gttgcctctg 1380
catatccttc ttatttggagc accggctgaa ctggctgctg agggccccgc tgggcaccgc 1440
gaagtaacaa ccatttccagc cagggatgttg gtctctcaaggg ccaggtagggg aggaagatgt 1500
tttgtaactct tttttttccttc atgtcggtta gtggcctcttg tttttttttt tttcagatg 1560
tgtgtagagaa tgtcgggttaggt gtagatgtcg aacgttgtctg tgtgcctagag aaaaaggtatt 1620	ttgtagctgca ggagagggccac gggtctggga ccagagagga caagtttccc tttcactctc 1680
tggtagctggc ttttgctttga ccccttgggt ccagagatata agttgaaagt gttcctagtg 1740
agatgactaa attatgcatct caagaaaaa a 1771

<210> 46
<211> 1755
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 267495CB1

<400> 46
cacccgagag gcagggggagc cgactacggct tcagttgatag gatcagatgtt ccacctgatct 60
gggaagagag ccctgagcagc aggtgctgctg aggctgcagc tcattctctc tctctctct 120
ttccagagac aacacaggttc ttccatacaaca gcacaggttt ggcagctcctt ccagacagct 180
gttgaagagct ggagttggttg ggctggtagc agcggcagat cctctctctc agctgataag 240
agcgtttgcag caggagccct cctctcgtcct ccagcgcgag cctcgccgcag ggcacgctg 300
gggctgggttc ctctctgtag gagagccagc ccttctctgc ctgctcgctc ccagacagct 360
gccctccct gcagctgtgc tctcgctct gcgtgcagtc gggtggggcag ggggtccgag 420
aggcccggag agcggctgctt gcagctgcag ctgcttctcg cctttttcgt ggttcctctcg 480
ggagagttgt agttagaata ggtagagaga aacacagact cctacagttc tctcagcggtg 540
tttgcgtcct cctcgagggc ctcatgcttg gggcctggct ggagctgccaa gaggctgaca 600
gccggctcagt gcgcttcctg tggagtttgg cttcctgagc tagctgtgtg tctcagttgg 660
tggctagatcg tctctcagag agcttggcag aacacatgtg ggtttttag tggagtacaa 720
gatcagctgc actcctctcct ggtgctttct tgtttttagg ggcaccaaa cagcacagt 840
tgtgcttttca agagctgagct aagcttggag aacactcttg aatgtcctcttct ctgcttctct 900
agtataacgc ctgctgctct ttggagagag gcagggagct gttgaggggg cgacagagat 1080
ttttcttggg acagacatgc gcagagcttttg ccacaaatag gaaagtctta attgggtttg 1140
gggggtggtgc ctgctgcctg ccgggttgct ggagacaggt gcagagcttttg ccacaaatag 1200
agcgtttgcag cggtaactct ggtgctcagc ggcagactg gcacagttgg gcacagaggt 1260
acaataagat cagactgctct ggtagatcagc gtcgtttactg tggagaggtt ccagctgttc 1320
ttttttttttc caactcgtgg cagaaaatgg caactgtgg ccagacagag ctggttccttt 1380
aggtgcttga aacactgcag ttgagagatg ggcagcttgg cactcacaag caacagtaccag 1440
tttttttttt ctacattcctt gccctcctct ttgagaggtc gtcgttacctt cagggctgagg 1500
ttctctctttc tggagtttgg ttcagagggc aggctggcttt tggagaggtc gtcgtttactt 1560
ggtgcttga aacactgcag ttgagagatg ggcagcttgg cactcacaag caacagtaccag 1620
agaatagtcc tctcttctct aacactgcag ttgagagatg ggcagcttgg cactcacaag 1680
agaagatagtc tggagagatg ggcagcttgg cactcacaag caacagtaccag 1740
agaagatagtc tggagagatg ggcagcttgg cactcacaag caacagtaccag 1755

<210> 47
<211> 1811
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 410533CB1

35/55
<210> 47
gcgccgcag gcgcgcgtaa gcctgtgccg ccctggccgc gctgccgcgc ggcgccgccc 60
gcgcgcgcttg gcgcgcgctgg ccggcgcgctgg cggcgcgcgc ggcgcgccc gcggccgcgg 120
gcgcgcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 180
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 240
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 300
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 360
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 420
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 480
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 540
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 600
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 660
tgcggcgcgc gcgcgcgcttt gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 720
rttcacgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 780
cctggtgcccc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 840
cctggtgcccc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 900
cctggtgcccc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 960
ttcacgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1020
ttcacgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1080
ttcacgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1140
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1200
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1260
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1320
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1380
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1440
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1500
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1560
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1620
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1680
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1740
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1800
atgtaggcag ataagacgctg aagagcagctg aagagacgcgc gcgcgcgcgc gcgcgcgcgc 1860

<210> 48
<211> 1003
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 852708CB1

<400> 48
tccacgcgct gcgcgacgcgc gtcggtgccgac gtcggtgctgg aacgcctggg cgggtcttaca 60
ggcgcctgaa gcgcgacgcgc gtcggtgctgg aacgcctggg cgggtcttaca gcggggcggc 120
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 180
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 240
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 300
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 360
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 420
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 480
gacgacgggt aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg cgggtcttaca 540

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 600

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 660

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 720

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 780

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 840

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 900

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 960

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1020

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1080

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1140

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1200

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1260

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1320

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1380

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1440

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1500

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1560

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1620

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1680

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1740

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1800

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1860

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1920

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 1980

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 2040

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 2100

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 2160

cggcaacctt ggcggtgctgg aacgcctggg gttgggcgcgc gtcggtgctgg aacgcctggg 2220

<210> 49
<211> 1687
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<222> Incyte ID No: 1285944CB1

<400> 51

gtccggacgcc taacccaggg tatctcttgag cctgttgagga tccccggagc gtcaactcac 60
tttccgctaca cttccaaagtg aataattata tgcagagaag aaaaagattc 120
atccctgaaa gtaacataca tcaccttggct cctgctgttt gtctcttctct tactgttatt 180
gcaccataac ttctctagct tgacagcttt gttaagagat gaggtttaag attcaggaat 240
tgtagggcct caacctctag actcttgcc ccccttgcca aaactgtcct gcagctagtc tagatgaggg 300
acaagaggg atctctcttg tctactgctgc atctgaaagca agqctgctggg ggccatgtgc 360
agctataaac agcatttcgc caaacactgc ctctgattgt atttttctaca tttgggtactc 420
caaacaatac agcagactctc tccggtcttg gcctcaagact gattccccgtga aagagactcag 480
atacacaatt gtcaaatattg acctctaaactc tttggaaggt aaaaagataag aggatctctga 540
ccaggggag tccagtaaacc ctttaacttc tgcaggttctc tctgctcaca tctggttccc 600
cagcgcaagar aaggcctcat acatggtata tgatgtaatt gtgcaaggtg atattcttgc 660
cctttcataa acagacactg acgcagcaga tgcagctgca tttctcagaga atttgtgatt 720
actgcagag tctccttgag acgcagcag gcagctgctg tcctcagcag ggctgcaaga 780
tgactataaa aagagaaggt ttttctgagtc tttctgatga gcagcactct gcctataattg 840
ttccttggtt tttgggtcaca acctggatag atgagacagag cagatattcata ctacacacact 900
gagaaaaagtt atgaaataatc gtttgtaagttc gggcacgacct agcagccaccc ttggttctgag 960
catcacacaa cctctctctgc ttatttgattt ttatcacaag cactctaca tgcgtcttcat 1020
gtggagtgtc cgcaccccttg gttcgctagtc tgagaaaccgtc tattccacttc agttggtaaa 1080
ggctgcaagc ttatcttggtt gtaagggata tttggaagcta tggggaagagg ctgcttccata 1140
tactgtatgt tgggaaaaatg gtattatccg acgaccaaca ggcattacac gcttaattcg 1200
aagatatattcc gagatctcaa acataatgtc aacaacatgt tggatcttgg gcagacttgc 1260
tctcaggaatg cttctgagatg agcatggttctg gagaatcaca gtgtctgaggc tttcaatgctt 1320
atcggtagac agcctgacgaa aaaaagttgtct cagctcttagta aagatgcaaactc gctgcctctgc 1380
tcgccagctc gttctctcaca gcagctatag actattataa tttgcctcact tcgcttacca 1440
agtgtttctc tactaatagtt gtttgaagag gcagatgtag cgatgctttag 1500
tagctgtagct agataatatta cacatgtgtc ttgatcctaat ttggatcact tgggtccgact 1560
tgtaaatataa aaccttacatt ttctaaaaaaa aaaa 1594

<210> 52
<211> 700
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 1293207CB1

<400> 52

cccgccctgagc ggtggccacgc agctcgagttt ctctcaatcta ttgcgtaggct ccgaatatcc 60
tcgcccaacac ttctgctcttc ctgctgctctc aataaactctt tgccagccaga aacagatct 120
agagggggaag ggagccaccgc cccggctctct cccggccacaa cccagtttggg aggcggccag 180
gaattggcgc ttggttaagaac cggagatagtc agggcaggctg ccacagggaa 240
tgtagcttcac gaaacttcgag atctctctcttt ggatgtatgata ctttcagcttc tctcgggaaga 300
attttataacta caagctctgctt ttctactaacct ggagttgcacat aacaagaaacc caggttcccgc 360
ccccacgcagc ccagccgcttc ctctctccactc gcgcctctgctg ccgaggtatcttc aacagagaca 420
ccccctctctct caacttggag atatgatagttc aggctccgag cctggctacta ctgctgataac 480
ctgtcgcggcag acgagccagc aclactataactc aacaacagcaca tgctgatccaca actcgcctatgc 540
ggagttgcagc tccggtctgcc gcaaggggatg cccctccatctc tccgtcggctg 600
ccccggtgcaca acctggctctg ctgcaagtcctg tcaagtttttgc tggagttgagttc gctgagttgc 660
gcgcgaccgac cacactcactc gcgcagtttgg ggcagcttggc gcagctctccgc 720

<210> 53
<211> 536
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1308125CB1

<400> 53
gttttaggcc agtggagagt gtctgtgaga ggtctgaaaca gtgtatgtcaca gtccaagagat 60
gagaagcaca gccacagtaca cccctccccac gaaacaaata taagttggcg aatagagaag 120
tggcactttct cagccggtgg gaaacccagaa cttccctagcagt ctctgaagtga gttgagcgtggtggt 180
ttggaacccca ggtattagctt taattacatc aagtaatgtaat cctatcctacttaa 240
aaatatcata cgtggtttctta gttctttgctt cctttcttctata ataatgcctttt tttttgct 300
gtgagagct gttttggtga ctgggtcattac gtttttcttcttt ggcggggttt ggcgaagggc 360
agtcttggca gttctttgctt aatctttctttt aatctttctttt gtttctttcata gtttttttcttttt 420
dgaaagcact ggtttggtga gtttttctttt aatctttctttt gtttctttcata gtttttttcttttt 480
cattaacaattt
tctgccaaagc catcctcttaa tattaagcga gacaccacag aatagatttc ttcaacctca 1260
aatgcataatt gggccacttatt aataacagcg gaactctctct cacctggagc ctgtagttta 1320
aaagacacag ctactgtcttt gaggagcta caactctgtgc tggagccagg gggaggtata 1380
ttcgctttaat atgcctgaaagt gtttaagggaa aagacgaggtg tccataagaa aatgctaa 1440
gaagacccag ctctaggcttc acctctggga atccgaaact tttgaaacc aatggattaa 1500
gaatctacta ttttgaggt attt
actatatagtaa tatgctctgg atatctctagt ttcttccaaa ataagaaatgt acaatttt tacct 1320
cttctagagca gaaatcatgaa gaaagagaaag tcaatataaaaa gggcataaac cttgaaaaa 1380
aaaagaaaaa 1390

<210> 67
<211> 899
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 2325603CB1

<400> 67

ttcattgcccct ggtcagccgc cggcgtaggt ccaacattgta ttaaccctgaa actttctcggg 60
agagggag gagggagcag caggtgtagc gatcagaaag gctcggagac ccgcacag 120
ggacagac gtcgacgctt ccaagctgct ctctctagcct ctgctcagat ggcctgtaga 180
gctgtgcttt cccatgggag ctgtgtgcttt cttgccccct ggcacccctc tcgcagttgcc 240
cagtcctgcc gcctctctgt gcagctcagc gcgtggctgtg gtcgacacca atcaggagca 300
gcgctgcccc cgtgctcagc gggatcggg cactggcctt ctctccggcg ccaacagggg 360
gcccctcagc caggtgcttc caggtggcgct gagctgccccct gcagccagcc gcgcctgcc 420
cgccgctgct gcctcctgctt gcagctgcttc gcctcagcct gcctctcgtc tcaaggctcc 480
gctgctgccag ggacagagcc acatactcct gcgacctagga ctgctcagag acccgggtat 540
catcagctgc atctgcgtctc atttgtaaat agctggtttc atcgctagtc cttgctcctc 600
ggcagatggag tgcctctctg cctcagctgtc gattgtggtt atcctgcttc cagggatattc 660
tgatgtgtcct cttctctctca aggactctca gaggccctct cagctctctat ccgctcggaa 720
gcccttcctc tttgtgctgtg atggtgacat cagagtctag cagtgccgca agcaagactc 780
cagagacaagg agggagatcc aacatataaaa tatattattaa aaaaaaaaaa attttttaaaa 840
gtacacaagag aaggaatctct tgaagactgag ttttctctct tctgttaaaa aaataaaaa 899

<210> 68
<211> 1041
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 2356055CB1

<400> 68

gagtgtagcct ctgatagcaca ggaggagggc cattctaggc acaccatgaa ggggtgcttc 60
actggggggttg atgatgatc aagaaacaccct ctgctccagg ccactctggct cttatatcac 120
agctcactctg gacgcccctt accggagccc gagatgctgta aagttatacct ggaatgtctc 180
cacaaagccct cttgcccctgg agggcccata tggatgacat tggctctaggt 240
tctacactct accaaattgc ttgctctgctg atctctctcc aagacatcact ctgtctccagc 300
ctctcttccc tggagctggc aagttatacct ggaatgtctc 360
gactttagc ggcaggggtgg agggtggccag atgtctgctg cagatcagac gggggcctat 420
gagagggagg aagacatgctg gccaggggct aggctggttt gcacaggtgc tcaagtggctg 480
gcagccctgg cttgccccctt tgtgtgcttg ctcgctcact gtgtgtgctgc cccttctgccc 540
atgaggtgtg ccgtgctgctt tgaagctgaa taccggctgg cctgctgact ccctgctcga 600
cctgtcagcct ggggttgagcc cctgctgact atcgtgctcc tgcctgcttc gtccttgactg 660
gttgagggagct gttgatctcttg ccgtgctgctt tggagatatagc aagaggggtgg aggaggtgctg 720
tgttgctagag aagaggtgctg aggctgatcag aagttatacct ggaatgtctc 780
agaagccctct ccagctgcttc ctgctgctagc aagttatacct ggaatgtctc 840
cgagttcctgt ctcgctgctt ctgctgctagc aagaggtggct gtcgtctgctg ggcagagagctg 900
agtctccttc ggtctgtttct gcctcctgctt tggagatatagc aagttatacct ggaatgtctc 960
ggcagctggag tgggagcagt gactgtatgcct gtcctgcttg cttgtgctgc gttgcctgatg 1020
gctaatctgg atgaggtgtgt g 1041

<210> 69
<211> 1106
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 2448909CB1

46/55
WO 01/32888

<400> 69
cagcgcacgcg tggctgcgag gcggcagcgg gggacgccaag agacgcaagt gcagcgatgg 60
tgggtcctgtag cagcggcctg cggcgagcgg gcacgcctgg ccagccggag tcggagctgg 120
gctgccggtc gacgctggag ccgctggagc ggcgagcctg gccgacgcct gggcagcggg 180
ttttattttattt
<table>
<thead>
<tr>
<th>Gene/Feature</th>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggcgatgaggg ggtggttgagc</td>
<td>TGGCGCAGGCTGGGCTGATGGC</td>
<td>60</td>
</tr>
<tr>
<td>tggagcgcgg gttggaagc</td>
<td>GCGGCCACCTGTGGGTTGGC</td>
<td>120</td>
</tr>
<tr>
<td>ctccacgagtc cagcagcgc</td>
<td>GCCGCTCGCCCTGGGGTGGC</td>
<td>180</td>
</tr>
<tr>
<td>ccgagcggc cggcagcgc</td>
<td>GGCAGCCTGCGTGGGCTGATGGC</td>
<td>240</td>
</tr>
<tr>
<td>caaatgttag ctatcatgtagc</td>
<td>TGGTATCTGGCCTGGGCTGATGGC</td>
<td>300</td>
</tr>
<tr>
<td>tggcagagc ggcaggcggc</td>
<td>GGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>360</td>
</tr>
<tr>
<td>tgggatgagc ggtggttgagc</td>
<td>TGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>420</td>
</tr>
<tr>
<td>aactgcttgct tgcgtatcggc</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>480</td>
</tr>
<tr>
<td>aactgcttgct tgcgtatcggc</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>540</td>
</tr>
<tr>
<td>tggagcgcgg gttggaagc</td>
<td>GCGGCCACCTGTGGGTTGGC</td>
<td>600</td>
</tr>
<tr>
<td>cagtcttggc aagactgcttgct</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>660</td>
</tr>
<tr>
<td>tggagcgcgg gttggaagc</td>
<td>GCGGCCACCTGTGGGTTGGC</td>
<td>720</td>
</tr>
<tr>
<td>ccacagcagc cgcaagcttggcg</td>
<td>TGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>780</td>
</tr>
<tr>
<td>caaatgctt tagcagcaccctgc</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>840</td>
</tr>
<tr>
<td>gcaaacctg acatacaagctgct</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>900</td>
</tr>
<tr>
<td>agctctgaag cgccttgctgctgactgcttgctg</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>960</td>
</tr>
<tr>
<td>aagacctgag ggcagcagc</td>
<td>GCCGCTCGCCCTGGGGTGGC</td>
<td>1080</td>
</tr>
<tr>
<td>tggagcgcgg gttggaagc</td>
<td>GCGGCCACCTGTGGGTTGGC</td>
<td>1140</td>
</tr>
<tr>
<td>ccacagcagc cgcaagcttggcg</td>
<td>TGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>1200</td>
</tr>
<tr>
<td>gctagcttgct gctatcggc</td>
<td>TGGCGGCGAGGCGGCCAGGCTGGGCTGATGGC</td>
<td>1239</td>
</tr>
</tbody>
</table>

Accession Numbers:
- **WO 01/32888**
- **PCT/US00/30485**

Incyte ID No: 2678733CB1

Homo sapiens

misc_feature

Incyte ID No: 2768571CB1

Accession Numbers:
- **WO 01/32888**
- **PCT/US00/30485**
ctctctggtg ccagaaggtcg tgacagctctt ccctccagtg ccaccagcagc aggtccgctct 1200
ggccgaccttc gctccgtgct catcaccctt ggcgtggttg ggacaggggg 1260
catcctgaaac aacctcccaa ggccgaggt gataagacgt cagacactcg tggctgcattt 1320
gacgcggtgcct cgtgggtgga actggacgtaa ccacagcattc ggtgcggttgc 1380
cattacgccc ttttcctctga ccacagctac cccttatattt gcaccatcgg gttcttcagca 1440
cgtgctctttt ggagggagc tccgctactt gccactctcttg gaagcgcacc cgggactatga 1500
gtggctggga gcactgttta tgaatcacag gggtgaagtc gcctggctcag 1560
gcaccagccac cagacagcgt tgtcgggaag ccctggcagcag gaagactcag ttgtagtgcga 1620
cccagactttt ctctcgaata caaagaagac ggttctgcgag ttaaatccgtt 1680
ccaactgagg atataacgcc cca cacactgcg gctgccctcg tctgcacctc ccttctccag 1740
cgcttgaccc ctctgggatg caatgactcc gttctcttctg ttcctaacacg ggcagcagcct 1800
cacatcattt ggagcttcag gatgtcttcc aacatcactt ttaaatggagc cgctgcttggc 1860
gagagagagc cggagcagc tgccgagacgc taccacagta anagtataac cgcctgccgag 1920
tctggacaccc gcctttacag gacagctggc cggagcagc cggagcagc ggtctcttctg 1980
gctttcagcc ccacagcagc atcgttctcttg ttcacgcagcc ttcgagcttc gctttcagcc 2040
gactaactgc cgaccccttc aagaatcctca gggagggagc tggagcagc attagact.cc 2100
tcaagatggg caatatggtca attagaggtcg tggagctctgt caatgactttttcg 2160
tggagccagg ttatattttta aataggggtgt gatgtggtgag ccatacacaaca attccgctgtc 2220
aaaaacaccttc tttcagcttca aatagcctttt gagccagaaa aagaggtcctg gattttacaga 2280
acactagata ccctgg

<210> 73
<211> 2182
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3189062CB1

<400> 73
cagogccctgcc gggtgtagct gcggcttcccg ttatattaaga ccgggaaattt aggtcagcctt 60
tgagccggac ccgggacagc cccttgccttg ccctagtatc ggcagagagtt gttcttggtga 120
gcaacatggg gagagaaagt gggagccggt ggcgccgcctcg cccagccctg tgcgggtgag 180
gttatccacca aatcttcccg aatctgagct ccctacgcag tggaggagagc gctttcaggag 240
tgtggaaaat gatgcggatc gcggccgctgc cggccgccgtt gctggagagt gcctcttcccg 300
agcatcgcct gcgggaacgtc agggactgtc gtcttccagg ttgctctgtt ccacgcgggtt 360
aggtagcttc tcggaggagc cccaggggtt tggactctcc cgggctttgg ccctcttgctgc 420
tggccggggac gacccactgg cgggagcttc ccctctggcc ggtggtgggt gggaggcccag 480
tgctagcgtct ccctgacccg ccctccagccg gccggctcgg ttggtgatgc ggaagccttg 540
tcagggtgaaa gcgtctctctt gtctcttttc ccttcagctg tggagggagt gttctggcag 600
tggccgctgca cccctctgcc caaagagggc ggttatcacc gcctgctgtg ccctcccacg 660
cagtgacact gcctgccgcttg ggcctctcttg gggtttagaag ttgttagataa ggtttccttg 720
ataaagttgga cggtgcaacc tgcgttggtat cctctggggag cacactgcag aagtctggcg 780
tgcgcgctgtcc ctgttgtttt gcagtctggt tgggtgtgag gttcttggttg aggattgcttg 840
atatcgtgctg tccctctatc gtatcggctag cgtctgggtg ctgctccttt tgggcttgatc 900
ccacagctcc gatgcgggcc tggaggtttc acgttccttc tggacgctgtc gcttttctcc 960
aatcacttcg ggccgagttt cgggctttgg gttgtgctctg tatccagagt ggcgggactc 1020
tggtagcttct tccacgcttc caaatggagc cggccggttg cccttttcag gcctagctttc 1080
atgtgtcagg cctcttccgg gttgatcagg gacccgctgg ccctttccag tgcctctttt 1140
aggtctcttggt tccctgagcag tggaggtggtg atcgcgttctt cctcttctcag ggcgcttttc 1200
ccacacagtc gcctccatgc aacaggggca gctttcgccg ttgctgctgg gttctttcagc 1260
ccagcggtggt ccggagccag cggagccggt ccctgtcatct gtcctgcttg tgcctgcagct 1320
agctgtgcgtc ggccgagagc gacgctgcgt ccgggctgcc ggcctctttg gttcttttctc 1380
agctcgcgca tggagacagg cgggcttttc ccctggcctg tccctctggg tctttcctttt 1440
gcggtggttg cccttttggc cggagctctct ccctttcctgt tcgacgtttc tgcctttcctc 1500
cgctgttcgt gcctcctctt tccttctctct ttcctttctct cttttgttgg gttcttctttt 1560
tgacgcttgc cggagcgtttt cggagccggc cccctttcctg ctttttttctt cccttttcctc 1620
agaatgatat ccctgttcctt gggtgagaag cgcctcttgctt cttctctcctt cctctttcctt 1680
acaaatatcg cctggttcag cgtcggttcag ctttgagagt gttcttttctt cccttttttt 1740
ccctggtggtg cgttgaggtt tgcgctcttt ggtgagcttt cttttcctct cttttcctttg 1800
ccacagtcgt acagaagact cggagtgttg ggccttttg ccctggccttc ctttttctttt 1860
ccgcgctgcat gtatgggctc cccttttccct ccctttttttt ctttttttttt ctttttttttt 1920
ccgcgctgcttc gccttcccttt ccctttccttt ttccttttttt ttcttttttttt ttcttttttttt 1980
ccgcgctgcttt ttcttctttt tttcttttttt ttttttttttt ttttttttttt ttttttttttt 2040
ccgcgctgtttt ccctttttttt ttcttttttttt ttttttttttt ttttttttttt ttttttttttt 2100
ccgcgctgtttt ttcttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 2160
WO 01/32888

PCT/US00/30485

ggttggttct tataaatgtt gtt 2182

<210> 74
<211> 1288
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3243884CB1

<400> 74

cgttctcttgc ggacggcgctt gtaaggctttc tgggtgagta tgggtggtag tggctctggcg 60
cgtatcaag tctgcctccgg aaaaacctag cttcgccgct tccctcggtt gcgacagatt 120
cggagacatca ttagaagggtt aagaactgcca gacgagccag acgctacaca gaatttctctc 180
cgtgacatcc ggtgacagaa taagattgta agagagctgt gcaaatctgca aatgcttat 240
gttcaagag tgggcccccttg gcacgggagga atccaaatgca atatattttaa tgcgcagctg 300
gctgacacctc tggtgtggtgca aaaaagcaact cagatattacct gttggattca gcgcttcctc 360
gatggcgacag ctggggaaact gtattgagt tatgggagtct tctgacattt taaagctggag 420
aagcccttttt cagaagacttct taagaagacc cgggagatgt atctcctcaag tgcacactatt 480
atccgaaaatc tgctcccttag tgggtctctag ccaagctgta aagatggctg tgaataattt 540
ttcggttaa atggagactct tggcttttgc agaactcgcag tgaaccttgct cccctttt gc 600
agaagctcag cagagagctcag aagcagacaa aacgtgatac ccccttttgc cccctttt 660
atctggaatg aagcagacaa aagcagacaa aacgtgatac ccccttttgc cccctttt 720
ccccacacag aagggcctgtg ggggtgagct ccccttttgc ccccttttgc ccccttttgc 780
gaggacccct tcaagcctgttg gacgatagtt cttgacagtt aatttaaaac 840

tactgcctac gaggctctcag ggagagtttc ctgagatctc aagcagacaa aagcagacaa 900
agaatgcttag aatgtggcagc acaagagact ccccttttgc ccccttttgc ccccttttgc 960
ccaattcactc tcaattcactc tcaattcactc tcaattcactc tcaattcactc tcaattcactc 1020

gcataatttt ccaagagactc aagcagacaa aagcagacaa aagcagacaa aagcagacaa 1080

gatggcgacag ctggggaaact gtattgagt tatgggagtct tctgacattt taaagctggag 1140

gggtcaggtc cagagagctcag aagcagacaa aacgtgatac ccccttttgc ccccttttgc 1200
acaaatgcca atggagactct tggcttttgc agaactcgcag tgaaccttgct ccccttttgc ccccttttgc 1260
ataaatgctc aagcagacaa aagcagacaa aagcagacaa aagcagacaa aagcagacaa 1320

<210> 75
<211> 1130
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3400578CB1

<400> 75

gtgtaaccccg cagccccacctc tctgctgcagct tggggctccg aatgacccag aatctggggt 60
ggtggtttgac gccggcgagtg agattgctcttc aatctgctcaag acgcttgaagg ctctgcacagct 120
caccttcgc tgaatcagtc ctgtagctttg tggcttcgac aataagttttttt ccccttttttcctcgctcag 180
tcagcagattc ccagacacag agctctggagt tggcaagatgc cagagactcag tgggaggactcag 240
ggggagctct gacagctgca acggcagctgt gcacacgagc acacgacagcag gacgagcagcag 300
tgccccacac gtcctgttccg ggcgccacccc ggcgggagca gcacaggtttc ccccttttgc 360
agaagccccct tgggctcagcag atctggttcag tgggctcagcag aagcagacaa aagcagacaa 420
cacacacagct ggtgctggact ctgggttgct tcgagctgca ggcgagcagcag ccccttttgc 480
tgcaccactgt cagagagactc aagcagacaa aagcagacaa aagcagacaa aagcagacaa 540
gtggctgatgc agctgctgcag cagagagactc aagcagacaa aagcagacaa aagcagacaa 600
ctgtagctgtct gctgacagctg caagagactc aagcagacaa aagcagacaa aagcagacaa 660
agaatcagtc ctgtagctttg tgggagctgtgc ccccttttgc ccccttttgc ccccttttgc 720
acccctgccag gggctgtcagct caccctagca ctacagcctact cgcctctcct ccccttttgc 780
ctctgctctgg aagctagtttg tgggctcagcag atctggttcag tgggctcagcag aagcagacaa 840
tctataacgc tctgagagcc ggcgagcgagtc gtcctgcacag ccccttttgc ccccttttgc 900
agaagccccct tgggctcagcag atctggttcag tgggctcagcag aagcagacaa aagcagacaa 960
caacatgtgct aaaaacccactc tccatcacta atacaacccat tagacccagcag tgggcttgcag 1020
tacctctctgc tgggctcagcag atctggttcag tgggctcagcag aagcagacaa aagcagacaa 1080

ggggagctct gacagctgca acggcagctgt gcacacgagc acacgacagcag gacgagcagcag 1140
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3422577CB1

<400> 76

gacgccacgt ggtggcgcaggg acgtccagg gcgtcctgct ggtgctcaag ggacactgtga 60
gccgcctcag gccgcgggcss tccgggctggg ggcggggcgcc gcgtctggag tcgcgctagt 120
cgccgcgcgg ctcgctccgt cgcgcgtcgg ctcgctcgcgc gtcgccccgc gcgcggggca 180
ttttgcacag agctgagcag tggcggcagc gcgtgctgctt ggcggcgctt gggcgccgct 240
ggacagcag tccagttctg aacaagcagc agatggcagc acgtcactgg acagtgaagac 300
cgccggcagaa tcgcggacccc tcgccccgcct gccagttgct gcctgatag acceggagagc 360
gcccctcccc aaactgcttc taacagggaa gaaactgctt ggtgagagg ccctgactat 420
gccatcatt gccctttttt tcattcattta ttccgctgag ccataagttg 480
cggatgtcgt gcctcagtgat acgttggcctt cggactcattt ttcctctctc 540
cctacttatg gttcagtctt gagcagtctt ttcctctccc tttgtgattaa 600
daatccttc tattcattca cttacttctcc atcccttctctt ttatcacttg 660
taattctttt atcgttcagag cggctacagtt cggctggcgct ttcctctctct 720
gccgcttttt gttggcagag tctctctctt ctctctctct tgcctctctct 780
gccgcttttt gttggcagag tctctctctt ctctctctct tgcctctctct 840

gagacacgg ggaggtcctag gcctggttgct cggctgttcag 900
tgcctgcttt ttttatttag attttttttta cgtgctctttttt 960
gcagctactc tcgggccagc ggggctgttg ttccttctttt 1020
gcagctactc tcgggccagc ggggctgttg ttccttctttt 1080

gacccagctc cactcgcactctc tgcgttatttt gttgtgttgtta 1140
tccggagtcacctctc ttccttctttt gttgtgttgtta 1200
tccggagtcacctctc ttccttctttt gttgtgttgtta 1260

ttcctttt cggctggttgt gcctctttttt 1320
ttcctttt cggctggttgt gcctctttttt 1380
ttcctttt cggctggttgt gcctctttttt 1440
	gcctgtgggct cggctggttgt gcctctttttt 1500
ttcctttt cggctggttgt gcctctttttt 1560
	gcctgtgggct cggctggttgt gcctctttttt 1620

ttcctttt cggctggttgt gcctctttttt 1680
	gcctgtgggct cggctggttgt gcctctttttt 1740

ttcctttt cggctggttgt gcctctttttt 1800

ttcctttt cggctggttgt gcctctttttt 1865

<210> 77
<211> 1740
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3706809CB1

<400> 77
tgacgcgaccc ccgtgctcag ggaacatggc gcggctgttg gcggccgctcag gcggctgttg 60
gccgctgcttg ttcacggctc tgcggctgctg gccgcgctgc ggcggcgctg gcgcgctgctg 120
gcgggctggc cgtgctgctg ggcggcgcgg gggcgcggcgg gcgcgctgctg gcgcgctgctg 180
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 240
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 300
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 360
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 420
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 480
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 540
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 600
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 660
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 720
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 780
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 840
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 900
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 960
gccgcggcgg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg gcgcgctgctg 1020

51/55
ttggctgccct catggttggag gccacaggtta gtagctcggac cgcctcgggaa 1080
tttgtgtatt cagccgggagaacctcgagtc gtagctgtgac cgcctcgggaa 1140
tgactgtggc aggactgctgc tcagcaatcctgctgactgg 1200
taxgtgggca ggcctcgggg gactgctgc tcagcaatcctgctgactgg 1260
tggcagcagc gacagacctgc gcctccagcagcctgctgc tcagcaatcctgctgactgg 1320
ttcacgtctt gttgctgtaat cagcatcgtttgctgactgctgc tcagcaatcctgctgactgg 1380
ttcgagctgc gcctcgggg gactgctgc tcagcaatcctgctgactgg 1440
tttggtccaggg cagcctcggg gactgctgc tcagcaatcctgctgactgg 1500
tttggtcgaactttggaggttgcctctt gttgctgtaat cagcatcgtttgctgactgg 1560
tagctggaactttggaggttgcctctt gttgctgtaat cagcatcgtttgctgactgg 1620
tttggtcgaactttggaggttgcctctt gttgctgtaat cagcatcgtttgctgactgg 1680
tttggtcgaactttggaggttgcctctt gttgctgtaat cagcatcgtttgctgactgg 1740

<210> 78
<211> 1225
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 3745914CB1

<400> 78
cggagaagagc cggcggagaagc gtggcgcggca cagactctgc gtagcactggt gcggagactgc 60
ggactctcggc cagcggcgcac gaaagcagcag cagcggcgcag cagcggcgcag cagcggcgcag 120
aggccccca gacctctgcgg ttcgctgccc gtaggggttg tggaggttagc tggaggttagc 180
agtgcgctgg ccactctggg cagacgtgccc gtaggggttg tggaggttagc tggaggttagc 240
attgattcct gaaagactg cttctgatct gttgctgctgc gttgctgctgc gttgctgctgc 300
aatctatgt aacacccggc cagctcaggc gactgccgtc gactgccgtc gactgccgtc 360
tggcattagagct gaaagactg cttctgatct gttgctgctgc gttgctgctgc gttgctgctgc 420
ttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc 480
ttgcctggctg tttggtttgggtttggtt cttcggagggctgctgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc 540
gtgctgtgg accaggactag accttctatc ttttaaggag agttcctaatc ttttaaggag 600
atctctcagct ttacctaatc gttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc 660
attgatgctg ctcctcctggtg gttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc 720
tttggtttgggtttggtt cttcggagggctgctgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc gttgctgctgc 780

<210> 79
<211> 800
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 4000776CB1

<400> 79
atattgacgct ttgctcagctt ttttccccctttaaaccacatg ttttctttttggtg ttttctttttggtg 60
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 120
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 180
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 240
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 300
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 360
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 420
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 480
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 540
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 600
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 660
ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg ttttctttttggtg 720
WO 01/32888

PCT/US00/30485

attgatggtga taanaaatctg tttaacctca aagcgtctgtt caataaatat aacaattttc 780
tgtgatagta aaaaaaaaa

<210> 80
<211> 1163
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 4071304CB1

<400> 80
atccaatatt actctggccag actctgctga acctggctga tcaaggagaa atttcatctc 60
cagcagggct gttctctcctc ctctctcccc cgcacaactt cgggacgct 120
gaggtgccca gatgtcgcag atgtctggaga 180
taatcctgag gaagacgctc cccagactct taaaggttta tgggaacctc 240
tactcgtgg acaagcattt ccagcacttt gttctggcag 300
tgtgatagta cccctgcaag cagagctatg cagatgacct tggatcatct 360
tccacactta ccccaacagt ccccaacact gtcagacatc ctgctgctgaa 420
tcaactggga acacatttt cagattcact gtcacaccgc tgcctgtgaa 480
taatcctgag agcccataaag tctcctcaag cccccaaacat ttaaaggtta 540
tctctgctga aacccagcct atccagccat tctctcctt gcagctgtctt 600
tgtggagcct atccagcaag agatgttttt acttctacat ttcagttgaa 660
tccagcttct ccctctggtaa actttgcctg atatgtggtt taaaaggtta 720
tctctagcct ggccttccca cggctttcttt ctgctgtgctt gtcagcag 780
tgtgtcgcct gcgctctctt gattagctgct tggctgctgta 840
tacccacagc ctaaggaggag agtcagcagc atgggatggtttt 900
aatctgctgct ggtcttcttt ggtttcagctgattagctgct 960
attgggttc actctttctc caaaaactc ttcaggtcttg aatcagtcag 1020
ttttggctt gggcacttcc tttaaagtct cccagcacttt ggcctttcttt 1080
tctctcttgtgtt tgggcaagct cctctgtgttt tggctgctgta 1140
ttttattttgt ttcagcgcct agg 1163

<210> 81
<211> 888
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 4344970CB1

<400> 81
aagactatgc ggcagggaga actctggcttc gccgttcacc cggccacgctt cggccggttct 60
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 120
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 180
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 240
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 300
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 360
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 420
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 480
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 540
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 600
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 660
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 720
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 780
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 840
tttctctgctcg cgcgcggtgtg ggcagcagct tctgcgggtag 888

<210> 82
<211> 1163
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5392302CB1

<400> 82
gtgccgctc tggattcggg gccggccaaa gggcagcaggt cacggtccag gttggacacgc 60
gagcaacattg acgctgattg gctgcctgaa gaaaaaaggt cgacggtgcc gggaggttgg 120
cggccggttgg cggcgtgtgc ggctgctctac cgcaagcttt acgggtcttg cggcgtcttg 180
caaaaacgag tagaagacatct tagagtttcat tggagttgaa gggcagcttg 240
caccgatcgc tggctgatgt tggatcgcaga gacggttgcag gggacagggc 300
gcaagatggc tgggctgcttg ttttttaga ttttttaga ttttttaga 360
aatattacata tcaagctacta gatgctgctact tggagctgaa gggcagcttg 420
aaggccctaga tattactgctg caaggtctgt gctgctcttact gttggagactg caaggttcatg 480
tgagggcacc agagcaagagg atatagagct gaaaaaaggt cgacggtgcc gggaggttgg 540
tccagcagcg tattctctttat cggagagctaa gggcagcttg 600
tccagcagcg tattctctttat cggagagctaa gggcagcttg 600
tctgtgctgg tacgtaagcttt gctgtgatgt tggatcgcaga gacggttgcag gggacagggc 720
atggtggggac ggtctgccatt gttgcttctag aaggggctcgt caggtgtggca atctattact tcagggctgctcggctcgcag 780
tagaggttgtg agagcctgctg ttttttaga ttttttaga ttttttaga 840
cagagagttct cattgctctttat cggagagctaa gggcagcttg 900
cctctctctct cgccgctctttt cggagagctaa gggcagcttg 960
tcattcgcagc gcgctgcttg cggagagctaa gggcagcttg 1020
acccctcgcgt tcattctctttat cggagagctaa gggcagcttg 1080
aatggcagctg ggtgggtggct cggctctgcttg ttttttaga ttttttaga ttttttaga 1140
ttttggtcag tattctctttat cggagagctaa gggcagcttg 1163

<210> 83
<211> 931
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 5555235CB1

<400> 83
gcgagcccag agtggggtgac aacaccaaga gggcaccact gggcagcaggt cacggtccag gttggacacgc 60
tccagcagcg tattctctttat cggagagctaa gggcagcttg 120
gagcaacattg acgctgattg gctgcctgaa gaaaaaaggt cgacggtgcc gggaggttgg 180
cggccggttgg cggcgtgtgc ggctgctctac cgcaagcttt acgggtcttg cggcgtcttg 240
caaaaacgag tagaagacatct tagagtttcat tggagttgaa gggcagcttg 300
caccgatcgc tggctgatgt tggatcgcaga gacggttgcag gggacagggc 360
tgagggcacc agagcaagagg atatagagct gaaaaaaggt cgacggtgcc gggaggttgg 420
tccagcagcg tattctctttat cggagagctaa gggcagcttg 480
tccagcagcg tattctctttat cggagagctaa gggcagcttg 540
acccctcgcgt tcattctctttat cggagagctaa gggcagcttg 600
tccagcagcg tattctctttat cggagagctaa gggcagcttg 660
atggtggggac ggtctgccatt gttgcttctag aaggggctcgt caggtgtggca atctattact tcagggctgctcggctcgcag 720
tagaggttgtg agagcctgctg ttttttaga ttttttaga ttttttaga 780
acccctcgcgt tcattctctttat cggagagctaa gggcagcttg 840
aatggcagctg ggtgggtggct cggctctgcttg ttttttaga ttttttaga ttttttaga 900
ttttggtcag tattctctttat cggagagctaa gggcagcttg 963

<210> 84
<211> 1794
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> Incyte ID No: 5573296CB1

<400> 84
ggaggggctg ggtgctgatgt tggagttgaa gggcagcttg 60
tccagcagcg tattctctttat cggagagctaa gggcagcttg 120
tccagcagcg tattctctttat cggagagctaa gggcagcttg 180
tccagcagcg tattctctttat cggagagctaa gggcagcttg 240
tccagcagcg tattctctttat cggagagctaa gggcagcttg 300
tccagcagcg tattctctttat cggagagctaa gggcagcttg 360
cagctgggtga tgctgctggga gtgggtggtcg ggccacggaat gcaccatatc caccgccccc 420
cgcgcttacc tcaagtatgg gaaggaaaat gccatcgtgg ttctcaacca caagtttgaa 480
attgacctctt tgtgtggctg gagcctgccc gaacgcttttg ggcctgttaag ggccctcaca 540
gtctcgccca aagaaagaacct ggccctgctc ccaaatttacg gctggatgtg gtactccacc 600
agagttggct tgtgtgctgg cagagtgggg aagactgccg cagacgcggc caaccagttgg 660
caagcacccct ggagactacc ccgagaagttat tttttcctca ttctagtgta ggccacacgg 720
ttcagccgga aagaagcattga gatcagcactg caggtggccc gggccaaggg gctgcctcgc 780
tctaaagcatt actgctgctcc aggaaccacag ggcttcgccca tcaacgttag gacgcttga 840
aatgtgtttt cagctgttata tgacgttaca ctcaaatctca gaaataatga aaataccaaca 900
tgctgtggag tccctaaacg gaagaaatac cacagcagatt ttatgttttag gaggatcaca 960
cttggagaca tccctgaaga cgatagcgag cgtctcgcctt ggtctgcaaca cgtctacca 1020
gagaaggtgt cccttcagga ggagactacta aggcagggca gtttcaccaga acgcctcatt 1080
gttgtcccccgg ggcggctcctg gacccctgatt aaccctggtct ttggggttcct gcgtggtgctc 1140
tacgtttttt ccagctgtcct ggctcagcatt atccagggctt ggcttcctcc acgctggtcc 1200
agccttcatcc tgtgctctctt tgtggccccct tgtggaggtcc gatggagttg tttgtgtgac 1260
gaaattgaca aagggtctcg ctcagcgcacc tctgacagca acgccaaact gaattcactga 1320
tctagggagg tgtcaccctc cgaagggcaac cttgggggaac tttggtggcttc tggatatcct 1380
ccttagtggg ccaaaattttt gccaaatggtg cttggccccct gggggagcgg cggaagttca 1440
gaccttttca gccaggagt ttggtctcaa ggccgctagtt ggaggagatg tttggggatat 1500
ctttttttt ccagttgctt cagtgctgctt tgtttccccct tttttgctgaa ctggtggtgag 1560
aatgggttgtt tgtgtgcagtt gaaactttgtt cttgtgactat aggaagggta tttttggtgt 1620
caggggaggg caggggtgctg gacccgaaggg gccaacttttc gttctcatcc tttgggtggtc 1680
agtgttttttta aaacccctggtc ttgcaagagtt aaattggtcgg ggtcttttgag tgaattcact 1740
aatattgtcc tccaagaaaa aaaaattaaa tgtgttttctt ggtgtcacaatt aaaa 1794
What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-42,
 b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-42,
 c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42, and
 d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-42.

2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-42.

3. An isolated polynucleotide encoding a polypeptide of claim 1.

4. An isolated polynucleotide encoding a polypeptide of claim 2.

5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:43-84.

6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.

7. A cell transformed with a recombinant polynucleotide of claim 6.

9. A method for producing a polypeptide of claim 1, the method comprising:
 a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 b) recovering the polypeptide so expressed.
10. An isolated antibody which specifically binds to a polypeptide of claim 1.

11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84,
b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:43-84,
c) a polynucleotide sequence complementary to a),
d) a polynucleotide sequence complementary to b), and
e) an RNA equivalent of a)-d).

12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.

13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.

15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

16. A composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
17. A composition of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-42.

18. A method for treating a disease or condition associated with decreased expression of functional HTFS, comprising administering to a patient in need of such treatment the composition of claim 16.

19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting agonist activity in the sample.

20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.

21. A method for treating a disease or condition associated with decreased expression of functional HTFS, comprising administering to a patient in need of such treatment a composition of claim 20.

22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting antagonist activity in the sample.

23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.

24. A method for treating a disease or condition associated with overexpression of functional HTFS, comprising administering to a patient in need of such treatment a composition of claim 23.

25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:

 a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
 b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a
compound that specifically binds to the polypeptide of claim 1.

26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:
5 a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
 b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
 c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
15 a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
 b) detecting altered expression of the target polynucleotide, and
 c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

28. A method for assessing toxicity of a test compound, said method comprising:
20 a) treating a biological sample containing nucleic acids with the test compound;
 b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;
 c) quantifying the amount of hybridization complex; and
 d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.