WO 01/91868 Al

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

6 December 2001 (06.12.2001) PCT WO 01/91868 Al
(51) International Patent Classification’: A63F 13/00, ARDON, S., [Mitra]; 1053 Noe, San Francisco, CA 94114
GO6F 15/16 Us).
(21) International Application Number: PCT/US00/14828 (74) Agents: TAGLIAFERRI, Daniel, D. et al.; Townsend and
Townsend and Crew LLP, Two Embarcadero Center, Eighth
(22) International Filing Date: 26 May 2000 (26.05.2000) Floor, San Francisco, CA 94111-3834 (US).
- . . (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(25) Filing Language: English AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
L . DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
(26) Publication Language: Enghsh ID, HJ, IN, IS, JP, KE, KG, KR KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
(71) Applicant: WORLDS INC. [US/US]; 15 Union Wharf, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
Boston, MA 02109 (US). TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(72) Inventors: LEAHY, Dave; 6056 Romany Road, Oakland, (84) Designated States (regional): ARIPO patent (GH, GM,

CA 94618 (US). CHALLINGER, Judith; 244 Northrop
Place, Santa Cruz, CA 95060 (US). ADLER, B., Thomas;
Suite 530, 510 Third Street, San Francisco, CA 94107 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: SCALABLE VIRTUAL WORLD CHAT CLIENT-SERVER SYSTEM

§0
________ Y U | S
i“\ ROOMS/ '7‘;: il CLENT 8 ROOMS 7 76!
| AV'},EAR WORLD | | ! AV?,LAR WORLD | |
| 08 - 08 I
| ; | 1
| i i !
! I (04!
|| sHorT NETWORK [NETWORK |
Il 0BJ 1D |~ MESSAGE Pt eI [Messace
1| Lookup | | PROGESSOR [v [Loowp PROCESSOR | |
- _L_ ————a L _______ [
00 -0
] !
| NETHORK LAYER]
[
‘_!r“ 62 rl .63
PROTOCOL PROTOCOL
= OBJECT A 82 82 0BJECT B =
"" B & I”m (64
USER USER
0BJECT A : 0BJECT B
" 83
84
65 /66
ROOM OBJECT ROOM OBJECT
86
% (86
: WORLD 0BJECT 8
90 9
8 USER STATE ROOMS/WORLD
0B D8
B

(57) Abstract: A highly scalable architecture for a
three-dimensional graphical, multi-user, interactive
virtual world system. In a preferred embodiment
a plurality of users interact in a three-dimensional,
computer-generated graphical space where each user
executes a client process (60) to view a virtual world
from the perspective of that user. The virtual world
shows avatars representing the other users who are
neighbors of the user viewing the virtual word. In
order that the view can be updated to reflect the motion
of the remote user’s avatars, motion information is
transmitted to a central server process (61) which
provides positions updates to client processes for
neighbors of the user at that client process. The client
process also uses an environment database (92) to
determine which background objects to render as well
as to limit the movement of the user’s avatar.

wO 01/91868 A1 I HIID 00000 0RO O

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828

SCALABLE VIRTUAL WORLD CHAT CLIENT-SERVER SYSTEM

BACKGROUND OF THE INVENTION
The present invention relates to the field of packet

communications. More gpecifically, in one embodiment the

invention provides an efficient coémmunications network for
client-server networks with large numbers of clients.

A client-server network is a network where one or
more servers are coupled to cone or more clients over a
communications channel. Typically, each server and each
client is assigned an address so that each can determine which
network messages are directed to it. While such a system may
have only one server, it typically has many clients. A seérver
object is one which waits for a request from a client obﬁﬁct
and then performs some service in response to the client
request. A client is an object that makes the request. The
designation of a particular object (computer hardware and/or
software process) as a "serxrver" object or a "client" object is
not fixed. Thus, a given object can be a server for some
services and a client of other services.

A typical computer network has one or more file and
print servers with a number of clients, where the clients are
the desktop computers or workstations of the computer users,
all coupled to a high-speed network cable. Client-server
communications in such a network are easily handled for
several reasons. When clients are not all communicating with
the server at once the server need not be designed to handle
all the clients at one time. Another reason is that the
network traffic is much less than the network capacity
furthermore, the clients in a typical computer network need
not necessarily be commuriicating in real-time with the server.
However, where many client machines or processes are
communicating with each other in real-time through the server,
several problems arise.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828

2

For example, where a client-server system is used
for real-time exchange of information, such as a distributed
virtual reality network wheré users at client machines
visually and auraily interact with other users at other client
machines, communication is much more difficult, especially
where the information is high-bandwidth data such as audio
streams, graphic images and image streams. One application of
such a client-server system is for game playing, where the
positions and actions of each user need to be communicated
between all the'élayers to inform each client of the state
changes (position, actions, etc.) which occurred at the other
clients. The server might maintain global state information
and serve as a data gerver for the clients as they request
visual, program and other data as the game progresses.

Some game systems use a peer-to-peer architecture.
In a peer-to-peer architecture, a copy of the data which is
common to all clients is kept by the client and information
which needs to pass between clients is broadcast over the
network. This limits the number of clients which can be
connected to the netWork, because the number of messages
passing between clients is on the order of the square of the
number of clients. With true broadcasting, one message is
sent and all clients listen for it, but not all network
topologies can handle broadcasts. Where less than all the
clients are participating in a game, for example, messages
cannot be broadcast because there are clients which should not
be receiving the broadcast message. Instead, the broadcast
between the players is handled by generating one message to
each player client.

This architecture is further limited where the
network is not a dedicated network, but is an open network,
guch as the Internet. As used herein, the term "Internet"
refers to the global inter-network of networks which
communicates‘primarily using packets sent according to TCP/IP
(Transport Control Protocol/Internet Protocol) standards well
known in the art of computer intercommunication. With
Internet communications, true broadcasting is not even

possible because the network’s extent is not known or fixed.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
3

Thus, messages to ail players must be sent as separate
messages. - An additional problem with Internet communications
ig that packet delivery is not guaranteed nor is it even as
reliable as a dedicated network.

Therefore, what is needed is an efficient system for
communication between many client systems over dedicated or
open networks to provide graphical interaction between users

operating the client systems.

SUMMARY OF THE INVENTION

The present invention provides a highly scalable

architecture for a three-dimensional graphical, multi-user,
interactive virtual world system. In a preferred embodiment a
plurality of‘users interact in the three-dimensional,
computer-generated graphical space where each user executes a
client process to view a virtual world from the perspective of
that user. The virtual world shows avatars representing the
other users who are neighbors of the user viewing the virtual
word. In order that the view can be updated to reflect the
motion of the remote user’s avatars, motion information is
transmitted to a central server process which provides
positions updates to client processes for neighbors of the
user at that client process. The client process also uses an
environment database to determine which background objects to

render as well as to limit the movement of the user’s avatar.

A further understanding of the nature and advantages
of the inventions herein may be realized by reference to the
remaining portions of the specification and the attached

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a client screen view in a virtual world

system according to the present invention.
FIG. 2 is a logical block diagram of the hardware

elements of a virtual world system.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
4

FIG. 3 is a block diagram of the elements of one
embodiment. of a virtual world system, showing two clients and
one server. 4

FIG. 4 is a more detailed block diagram of a client
system according to one embodiment of the present invention.

FIG.5-1s an illustration of an avatar.

DESCRIPTION OF THE PREFERRED EMBODIMENT
Although the preferred embodiment of the present

invention can be used in a variety of applications, as will be
apparent after reading the below description,uthe preferred
embodiment is described herein using the “example of a
client-server architecture for use in a virtual world "chat™"
system. In this chat system, a user at each client system
interacts with one or more. other users at other client systems
by inputting messages and sounds and by performing actions,
where these messages and actions are seen and acted upon by
other clients. FIG. 1 is an example of what such a client
might display. -

Each user interacts with a client system and the
client system is networked to a virtual world server. The
client system are desktop computers, terminals, dedicated game
controllers, workstations, or similar devices which have
graphical displays and user input devices. The term "client"
generally refers to a client machine, system and/or process,
but is also used to refer to the client and the user
controlling the client.

FIG. 1 is an illustration of a client screen display
10 seen by one user in the chat system. Screen display 10 is
shown with several stationary objects (wall, floor, ceiling
and clickable object 13) and two "avatars" 18. Each avatar 18
ig a three dimensional figure chosen by a user to represent
the user in the virtual world. Each avatar 18 optionally
includes a label chosen by the user. In this example, two
users are shown: "Paula" and "Ken", who have chosen the
nrobot" avatar and the penguin avatar, respectively. Each
uger interacts with a client' machine (not shown) which

produces a display similar to screen display 10, but from the

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
5

perspective of the avatar for that client/user. Screen
display 10 is the view from the perspective of a third user,
D, whose avatar is not shown since D’s avatar is not within
D’s own view. Typilcally, a user cannot - -see his or her own
avatar unless the chat system allows "our of body" viewing 6r
the avatar’s image is reflected in a mirrored object in the
virtual world.

Fach user is free to move his or her avatar around
in the virtual world. 1In order that each user see the correct
location of each-of the other avatars, each client machine
sends its curfentAlocation, or changes in its current
location, to the server and receives updated position
information of the other clients.

While FIG. 1 shows two avatars (and implies a
third), typically many more avatars will be present. A
typical virtual world will also be more complex than a single
room. The wvirtual world view shown in FIG. 1 is part of a
virtual world of several rooms and connecting hallways as
indicated in a world map panel 19, and may include hundreds or
users and their avatars. So that the virtual world is
scalable to a large number of clients, the virtual world
server must be much more discriminating as to what data is
provided to each clients. In the example of FIG. 1, although
a status panel 17 indicates that six other avatars are
present, many other avatars are in the room, but are filtered
out for crowd control.

FIG. 2 is a simplified block diagram of the physical
architecture of the virtual world chat system. Several
clients 20 are shown which correspond with the users
controlling avatars 18 shown in screen display 10. These
clients 20 interact with the virtual world server 22 as well
as the other clients 20 over a network 24 which, in the
specific embodiment discussed here, is a TCP/IP network such
as the Internet. Typically, the link from the client is
narrowband, such as 14.4 kbps (kilobits/second) .

Typically, but not always, each client 20 is
implemented as a separate computer and one or more computer

systems are used to implement virtual world server 22. AS

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
6

used here, the computer system could be a desktop computer as
are well known in the art, which use CPU’s available from
Intel Corporation, Motorola, SUN Microsystems, Inc.,
International Business Machines (IBM), or the 1ike.and are
controlled by operation systems such as the Windows® program
which runs under the MS-DOS operating system available from
Microsoft Corporation, the Macintosh® 0/S from Apple Computer,

or the Unix®_operating system available from a variety of

vendors. Other suitable computer systems include notebook

computers, palmtop computers, hand-held programmable computing
devices, special purpose graphical game machines (e.g., those
sold by Sony, SEGA, Nintendo, etc.), workstations, terminals,
and the like. i

. The virtual world chat system is described below
with reference to at least two hypothetical users, A and B.
Generally, the actions of the system are described with

reference to the perspective of user A. It is to be

‘understood that, where appropriate, what is said about user A

applies to user B, and vice versa, and that the description
below also holds for a system with more than two users (by
having multiple users A and/or B). Therefore, where an
interaction between user A and user B is described, implied
therein is that the interaction could take place just as well
with users A and B having their roles reversed and could take
place in the same manner between user A and user C, user D,
etc. The architecture is described with reference to a system
where each user is associated with their own client computer
system separate from the network and servers, however a person
of ordinary skill in the art of network configuration would
understand, after reading this description, how to vary the
architecture to fit other physical arrangements, such as
multiple users per computer system or a system using more
complex network routing structures than those shown here. A
person of ordinary skill in the art of computer programming
will also understand that where a process is described with
reference to a client or server, that prooess could be a
program executed by a CPU in that client or server system and

the program could be stored in a permanent memory, such as a

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
' 7

hard drive or read-only memory (ROM), or in temporary memory,
such as random access meméry (RAM). A person of ordinary
skill in the art of computer programming will also understand
how to store, modify and access data structures which are
shown to be accessible by a client or server.

Referring now to FIG. 3, a block diagram is shown of
a world system 54 in which a user A, at a first client system
60 (client Aj, interacts with a user B at a second client
system 60 (client B) via a server 61. Client system 60
includes several databases, some of which are fixed and some
of which are modifiable. Client system 60 also includes
storage for program routines. Mechanisms for storing, reading
and modifying data on‘computers such as client system 60 are
well known in the art, as are methods and means for executing
programs and displaying graphical results thereof. One such
program executed by client system 60 1s a graphical rendering
engine which géﬁerates the user’s view of the virtual world.

Referring now to FIG. 4, a detailed block diagram of
client 60 used by'a user, A is shown. The other clients used
by other users are similar to client 60.

The various components of client 60 are controlled
by CPU 100. A network packet processor 102 sends and receives
packets over network connection 80. Incoming packets are
passed to a network message processor 104 which routes the
message, as appropriate to, a chat processor 106, a custom
avatar images-database 108, a short object ID lookup table
110, or a remote avatar position table 112. Outgoing packets
are passed to network packet processor 102 by network message
processor in response to messages received from chat processor
106, short object ID lookup table 110 or a current avatar
position register 114.

Chat processor 106 receives messages which contain

conversation (text and/or audio) or other data received from

other users and sends out conversation or other data directed
to other users. The particular outgoing conversation is
provided to chat processor 106 by input devices 116, which
might include a keyboard,~microphonesJ,digital~video cameras,

and the like. The routing of the conversation message depends

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
8

on a selection by user A. User A can select to send a text
message to everyone whose client is currently on line
("broadcast"), to only those users whose avatars are "in
range" of A’'s avatar ("talk"); or to only a specific user
("whispering"). The conversation received by chat processor
106 is typically received with an indication of the
distribution of the Qonﬁersation.‘ For example, a text message
might have a "whispéf" label prepended to it. TIf the received
conversation is audio, chat processor 106 routes it to an
audio output device 118. Audio output device 118 is a speaker
coupled to a sound card, or the like, as ié well known in the
art of personal computer audio systems. If the received
conversafion is textual, it is routed to a rendering engine
120 where the text is integrated into a graphical display 122.
Alternatively, the text might be displayed in a region of
display 122 distincf from a graphically rendered region.

Current avatar position register 114 contains the
current position and orientation of A’s avatar in the virtual
world. This position is communicated to other clients via
network message processor 104. The position stored in
register 114 is updated in response to input from input
devices 116. For example, a mouse movement might be
interpreted as a change in the current position of A’s avatar.
Register 114 also provides the current position to rendering
engine 120, to inform rendering engine 120 of the correct view
point for rendering.

Remote avatar position table 112 contains the
current positions of the "in raﬁge" avatars near A’s avatar.
Whether another avatar is in range is determined a "crowd
control" function, which is needed in some cases to ensure
that neither client 60 nor user A get overwhelmed by the
crowds of avatars likely to occur in a popular virtual world.

Server 61 maintains a variable, N, which sets the
maximum number of other avatars A will see. Client 60 also
maintains a variable, N’, which might be less than N, which
indicates the maximum number of avatars client 60 wants to see
and/or hear. The value of N’ can be sent by client 0 to

server 61. One reason for setting N’ less than N is where

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
9

client 60 is executed by a computer with less computing power
than an average machine and tracking N avataré would make
processing and rendering of the virtual world too slow. Once
the number of avatars to be shown is determined, server 61
determines which N avatars are closest to A’s avatar, based on
which room of the world A’s avatar is in and the coordinates
of the avatars., This process is explained in further detail
below. If there are less than N avatars in a room which does
not have opén doors or transparent walls and client 60 has not
limited the view to less than N avatars, A will see all the
avatars in the room. Those avatars are thus "neighboring"
which means that client 60 will display them. '

- Generally, the limit set by server 61 of N avatars

“and the limit set by client 60 of N’ avatars control how many

avatars A sees. If server 61 sets a very high value for N,
then the limit set by client 60 is the only controlling
factor. 1In some cases, the definition of "neighboring" might
be controlled by other factors besides proximity. For .
example, the virtual world might have a video telephone object
where A can speak with and see a remote avatar. Also, where N
or more unfriendly avatars are in close proximity to A’s
avatar and they persist in following A’s avatar, A will not be
able to see or communicate with other, friendly avatars. To
prevent this problem, user A might have a way to filter out
avatars on other variables in addition to proximity, such as
user ID. |

In any case, remote avatar position table 112
contains an entry for each neighboring avatar. That entry
indicates where the remote avatar is (its position), its
orientation, a pointer to an avatar image, and possible other
data about the avatar such as its user’s ID and name. The
position of the avatar is needed for rendering the avatar in
the correct place. Where N’ is less than N, the client also
usesg position data to select N’ avatars from the N avatars
provided by .the server. The orientation is needed for
rendering because the avatar images are three-dimensional and
look different (in most cases) from different angles. The

pointer to an avatar image is an index into a table of

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828

10

preselected avatar images, fixed avatar image database 71, or
custom avatar images database 108. In a simple embodiment,

each avatar image comprises M panels (where M is greater than

two with eight being a suitable number) and-the i-th panel is
the view of the avatar at an angle of 360*%*i/M degrees. Custom
avatar images are created by individual users and sent out
over network connectlon 80 to other clients 60 whlch are
nelghbors of the custom avatar user.

Short object ID lookup table 110 is used to make
communications over network connectlon_ﬁo more efflqlent.
Instead of fully specifyingyan object, such as a particular
panel in a particular room of a world avatar, a message is
éent from server 61 associating an objéct’s full
identification with a short code. These associations are
stored in short object ID lookup table 110. In addition to
speéifying avatars, the short object ID’s can be used to
identify other objects, such as a panel in a particular room.

) Short object ID lookup table 110 might also store
purely local associations. Although not shown in FIG. 4, it
is to be understood that connections are present between
elements shown and CPU 100 as needed to perform the operations
described herein. For example, an unshown connection would
exist between CPU 100 and short object ID lookup table 110 to
add, modify and delete local shoft object ID associations.
Similarly, CPU 100 has unshown connections to rendering engine
120, current avatar position register 114 and the like.

Client 60 includes a rooms database 70, which
describes the rooms in the virtual world and the
interconnecting passageways. A room need not be an actual
room with four walls, a floor and a ceiling, but might be
simply a logical open space with constraints on where a user
can move his or her avatar. CPU 100, or a specific motion
control process, limits the motion of an avatar,
notwithstanding commands from input deviceé 116 to do so, to
obey the constraints indicated in rooms database 70. A user
may direct his or her avatar through a doorway between two
rooms, and if provided in the virtual world, may teleport from

one room to another.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
11

Client 60 also includes an audio
compressor/decompressor 124 and a graphics
compressor/decompressor 126. These allow for efficient
transport of audio and graphics data over network connection
80. |

In operation, client 60 starts a virtual world
session with user A selecting an avatar from fixed avatar
image database 71 or generating a custom avatar image. 1In
practice, custom avatar image database 108 might be combined
with fixed avatar image database 71 into a modifiable avatar
image database. In either case, user A selects an avatar
image and a pointer to the selected image is stored in current
avatar position register 114. The pointer is also
communicated to server 61 via network comnection 80. Client
60 also sends server 61 the current position and orientation
of A’s avatar, which is typically fixed during the
initialization of register 114 to be the same position and
orientation each time. :

Rooms database 70 in a fixed virtual world is
provided to the user with the software required to instantiate
the client. Rooms database 70 specifies a list of rooms,
including walls, doors and other connecting passageways.
Client 60 uses the locations of walls and other objects to
determine how A’s avatar’s position is constrained. Rooms
database 70 also contains the texture maps used to texture the
walls and other objects. Avatar database 71 specifies the
bitmaps used to render various predefined avatars provided

with the client system. Using rooms database 70 and the

.locations, tags and images of all the neighboring avatars,

i'then a view of objects and other avatars in the virtual world

can be rendered using the room primitives database and the
avatar primitives database.

Instead of storing all the information needed for
rendering each room separately, a primitives database can be
incorporated as part of rooms database 70. The entries in
this primitives database describe how to render an object
(e.g., wall, hill, tree, light, door, window, mirror, sign,
floor, road). With the mirrored primitive, the world is not

-

-.10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
12

actually mirrored, just the avatar is. This is done by
mapping the avatar to another location on the other side of
the mirrored surface and making the mirror transparent. This
will be particularly useful where custom avatars are created,
or where interaction with the environment changes the look of
the avatar (shark bites off arm, etc.).

The typical object is inactive, in that its only
effect is being'viewed. Some objects cause an action to occur
when the user clicks on the object, while some objects just
take an action when their activating condition occurs. An
example of the former is the clickable objects 13 shown in
FIG. 1 which brings up a help screen.An example of the latter
is the escalator object. When a user’s avatar enters the
escalator’s zone of control, the avatar’s location is changed
by the escalator object automatically (like a real escalator).

The avatars in fixed avatar image database 71 or
custom avatar images database 108 contain entries which are
used to render the avatars. A typical entry in the database
comprises N two-dimensional panels, where the i-th panel is
the view of the avatar from an angle of 360 * i/N degrees.

Each entry includes a tag used to specify the avatar.

In rendering a view, client 60 requests the
locations, orientations and avatar image pointers of
neighboring remote avatars from server 61 and the server’s
responses are stored in remote avatar position table 112.
Server 61 might also respond with entries for short object ID
lookup table 110. Alternatively, the updates can be done
asynchronously, with server 61 sending periodic updates in
response to a client request or automatically without request.

Rendering engine 120 then reads register 114, remote
avatar position table 112, rooms database 70 and avatar image
databases as required, and rendering engine 120 renders a view
of the virtual world from the view point (position and
orientation) of A’s avatar. As input devices 116 indicate
motion, the contents of register 114 are updated and rendering

engine 120 re-renders the view. Rendering engine 120 might

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
13

periodigaliy update the view, or it may only update the view
upon movement of either A’é avatar or remote avatars.

Chat processor 106 accepts chat instructions from
user A via input devices 116 and sends conversation messages
to servex 61 for distribution to the appropriate remote
clients. If chat processor 106 receives chat messages, it
either routes them to audio output device 118 or to rendering
engine 120 for display. ‘ o

Input devices 116 supply various inputs from the
user to signal motion. To make movement easier and more
natural, client 60 performs several unique operations. One
such operation is "squared forward movement" which makes it
easier for the user to move straight. Unlike ordinary mouse
movements, where one mouse tick forward results in an avatar
movement forward one unit and one mouse tick to the left or

right results in side movement of one unit, squared forward

- movement squares the forward/backward ticks or takes the

square root of the sideways ticks or divides by the number of .
forward/backward ticks. For example, if the user moves the
mouse F mouse ticks forward, the avatar moves F screen units
forward, whereas 1f the user moves the mouse F mouse units
forward and L mouse units to the left, the avatar moves F
units fofward and L/F screen units to the left. For covering
non-linear distances, (F,L) mouse units (i.e., F forward, L to
the side) might translate to (F?,L) screen units.

As mentioned above, user input could also be used to
signal a desire for interaction with the environment (e.g.
clicking on a clickable object). User input could also be
used to signal for a viewpoint change (e.g. head rotation
without the avatar moving, chat inputs and login/logout
inputs. o

In summary, client 60 provides an efficient way to
display a virtual, gréphical, three-dimensional world in which
a user interacts with other users by manipulating the
positions of his or her avatar and sends chat messages to
other users.

Network connection 80 will now be further described.

Commonly, network connection 80 is a TCP/IP network connection

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
14

between client 60 and server 61. This éonnection stays open
as long as client 60 is logged in. This connection might be
over a dedicated line from client 60, or might be a SLIP/PPP
connection as is well known in thé“art of network connection.
The network messages which pass over network
connection 80 between client 60 and éérver 61 are described
immediately below briefly, with a more detailed description in

Appendix A. Three main protocols exist for messaging between

. client 60 and sexrver 61: 1) A control protocol, 2) a document

protocol, and 3) a stream protocol. The control protocol is
used to pass position updates and state changes back and forth
between client 60 and server 61. The control protocol works
with a very low bandwidth connection.

The document protocol is used between client 60 and
server 61 to download documents (text, graphics, sound, etc.)
based on Uniform Resource Locators (URLs). This protocol is a
subset of the well-known HTTP (Hyper-Text Transport Protocol).
This protocol is used relatively sparingly, and thus bandwidth
is not as much of a concern as it i1s with the control
protocol. In the document protocol, client 60 sends a
document request specifying the document’s URL and server 61
returns a copy of the specified document or returns an error
(the URL was malformed, the requested URL was not ﬁound,
etc.).

The stream protocol is used to transfer real-time
video and audio data between client 60 and server 61.
Bandwidth is not as much a concern here as it is with the
control protocol.

Each room, object, and user in a virtual world is
uniquely identified by a string name and/or numerical
identifier. For efficient communications, string names are
not passed with each message between client 60 and server 61,
but are sent once, if needed, and stored in short object ID
lookup table 110. Thereafter, each message referring to an

object or a user need only refer to the short object ID which,

.. for 256 or less objects, is only an 8-bit value. Rooms are

identified by a unique numerical value contained in two bytes
(16 bits).

10

15

20

25

30

WO 01/91868 PCT/US00/14828
15

The control protocol is used by client 60 to report
the location and state information, such a "on" and "off"
states for a light object or other properties, for user A to
server 61 and is used by server 61 to send updates to client.
60 for remote avatar position table 112 and updates of
characteristics of. other objects in the virtual world
environment. Server 61 also uses the control protocol to
update client 61 on which avatars are in range of A’s avatar.
To allow for piecemeal upgrading of a virtual world system,
client 60 will not err upon receipt of a message it does not
understand, but will ignore such as message, as it is likely
to be ‘a message for a later version of client 60.

Each message is formed into a control packet and
control packets assume a very brief form so that many packets
can be communicated quickly o&er a narrowband channel. These
control packetskare not to be confused with TCP/IP or UDP
packets, although a control packet might be communicated in
one or more TCP/IP or UDP packets or more than one control
packet might be communicated in one TCP/IP packet.. The

format of a control packet is shown in Table 1.

TABLE 1.
FIELD SIZE DESCRIPTION
PktSize UInts Number of bytes in the control

packet (including Pktsize byte)

ObjID UInt8 (ShortObjID) Identifies the object to which
Ostring (LongObjID) the command is directed

Command UInt8 + arguments Describes what to do with the
object
"UJInt8" is an 8-bit unsigned integer. . "Ostring" is a byte

containing zero (indicating that a long object identifier is
to follow) followed by a string (which is defined to be a byte
containing the size of the string followed by the characters

10

15

20

25

30

WO 01/91868 PCT/US00/14828
16

- of the g;ring). Each control packet contains one command or

one set of combined commands. The ObjID field is one of two
formats: either a ShortObjID (0 to 255) or a LongObjID (a
string). The ObjID field determines which object in the
client’s world will handle the command. Several ShortObjID

values are preassigned as shown in Table 2.

TARLE 2.
ShortObjID dbject
0 A short ObjID of 0 indicates

that a Long ObjID follows

1 The Client’s Avatar
254 CO - Combine Object
255 PO - Protocol Object

The other ShortObjID values are assigned by server
61 to represent objects in the virtual world. These
assignments are communicated to client 60 in a control packet
as explained below. The assignments are stored by client 60
in short object ID lookup table 110. The ShortObjID
references are shorthand for an object which can also be
referenced by a LongObjID. '

When commands are directed at the CO object
(ShortObjID=254), those commands are interpreted as a set of
more than one command. When commands are directed at the PO
object, the command applies to the communications process
itself. For'example, the REGOBJIDCMD command, which registers
an association between a ShortObjID and a LongObjID, is
directed at the PO object. Upon receipt of this command,
client 60 registers the association in the short object ID
lookup table.

A command takes the form of a command type, which is
a number between 0 and 255, followed by a string of arguments

as needed by the particular command.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
17

The CO object is the recipient of sets of commands.
One use of a set of commands is to update the positions of
several avatars without requiring a separate control packet
for each avatar, thus further saving network bandwidth. The
form of the command is exemplified by the following command to

move objects 2 and 4 (objects 2 and 4 are remote avatars):
S>C CO SHORTLOCCMD [2 -10 -20 -90] [4 0 O 90]

In the above control packet, "S>C" indicates the
direction of the packet (from server to client), CO is the
object, SHORTLOCCMD is the command type, and the command type
is followed by three abbreviated commands. The above control

packet requires only fifteen bytes: one for packet size (not

-shown), one for the CO object ID, one for the command type and

twelve for the three abbreviated commands. Note that the
"gsC" indicator is not part of the control packet. The
position of the boundaries between commands (indicated above
with brackets, which are not actually communicated) is
inferred from the fact that the SHORTLOCCMD command type
requires four byte-wide arguments. Each abbreviated command
in a command set is the same size, for easy parsing of the
commands by the CO. Examples of abbreviated commands for
which a CO command is useful are.the Teleport, Appear,
Disappear, and ShortLocation commands. These commands, and

other commands, are described in more detail in Appendix A.

Appendix A also shows the one byte representation of

SHORTLOCCMD as well as the one byte representations of other
command types. The contents of control packets described

herein are shown in a readable form, however when transmitted
over network connection 80, the control packets are compacted

using the values shown in Appendix A.

The following examples show various uses of control
packets. In the following sequences, a line beginning with
ngsC" denotes a control packet sent from server 61 to client-
60, which operates user ‘A’s avatar and interacts with user A.

Similarly, a line beginning with "C>S" denotes a control

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
18

packet sent from client 60 to server 61. Note that all of the
iines shown below omit the packet size, which is assumed to be
present at the start of the control packet, and that all of
the lines are shown in readable format,'not the compaéﬁ,

efficient format discussed above and shown in Appendix A.

The following is a control packet for associating
ShortObjIDs with Long Object names:

S>C PO REGOBJIDCMD "Maclen" 5

Server 61 determines what short object ID (ShortObjID) to
use for a given object. With four pre-allocated Short ObjID
values, server 61 can set up 252 other ID values. In the
above command, the ocbject whose long name is "Maclen" is
assigned the ShortObjID of 5. This association is stored by
client 60 in short object ID lookup table 110. The first two
fields of the above command line, "PO" and "REGORBJIDCMD"
indicate that the protocol object (PO)'is to handle the
command and indicate the command type (REGOBJIDCMD). The
actual binary for the command is, in hexadecimal (except for

the string):
S>C FF 0D 06 Maclen 05

The following is a control packet containing a chat

message:
C>S CLIENT TEXTCMD "" "Kyle, How is the weather?"

The ObjID field is set to CLIENT. The field following the
command type (TEXCMD) is unused in a text command from client
to server. Server 61 will indicate the proper ObjID of user
A’s avatar when sending this message back out to the remote
clients who will receive this chat message. Thus, server 61
might respond to the above command by sending out the
following control packet to the remote clients (assuming user
A is named "Judy"):

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
19

S>C CLIENT TEXTCMD "Judy" "Kyle, How is the weather?"

Of course, the text "Judy" need not be sent. If a short
object identifier has been registered with the client for
Judy's aﬁatar, only the ShortObjID for "Judy" need be sent.
User A may also whisper a command to a single user who may or
may not be in the same room, or even in the same virtual

world. For example:
C>S CLIENT WHISPERCMD "Kyle" "Kyle, How are you?"

Server 61 will route this message directly to the recipient
user. On the recipient client, the control packet for the
message will arrive with the ObjID of the sender (just like a
TEXTCMD), however, that client will know that it is a privéte

 message because of the command type. The remote client

receives the following control packet from server 61:
S>C CLIENT WHISPERCMD "Judy" "Kyle, How are you?"

Other examples of control packets, such as those for entering
and exiting sessions and applications, are shown in Appendix .
B. For state and property changes, objects have two kinds of
attribute variables. The first kind of attribute values are
"gtates" which represent boolean values. The second kind of
attribute values are called "properties" and may contain any
kind of information. Client 60 reports local attribute
changes to server 61 as needed and server 61 reports to client
60 the attribute changes which might affect client 60. A
different command is used for each kind of attribute, as shown
in Appendix B.

From user A’s point of view, avatars will appear and
disappear from A’s view in a number of circumstances. For
example, avatars enter and leave fooms and move in and out of
visual range (as handled by crowd control rules described
below). Avatars also teleport from room to room, which is

different than moving in and out of rooms. Client 60 will

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
' 20

send server 61 the following location and/or room change

commands under the circumstances indicated:

- LOCATIONCMD: normal movement of A’s avatar
- ROOMCHGCMD: changing rooms by walking
- TELEPORTCMD: changing rooms and/or location by
teleporting
- TELEPORTCMD, ExitType=0: entering the application
© - TELEPORTCMD, EntryType=0: exiting the application.

When other, remote clients take such actions, server 61 sends

control packets to client 60, such as:

- TELEPORTCMD: remote avatar teleported (EntryType or
ExitType may be 0 if the exit or entry was not visible to user
A) _

- DISAPPEARACTORCMD: remote avatar was previously visible
(in range), but is now invisible (out of range) due to normal
(non-teleport) movement including having walked out of the
room

- APPEARACTORCMD: remote avatar was not visible, and is
now visible (command includes the remote avatar’s Location and
Room)

- SHORTLOCCMD or LONGLOCCMD: remote avatar was visible

before, and is still now, but has moved.

Two methods exist for updating the position of an

actor (avatar). The LONGLOCCMD method uses full absolute

position (X, Y, and Z) and orientation. The SHORTLOCCMD only
updates the X and Y coordinates and the orientation. In
addition, the short method limits the change in position to
plus or minus 127 in the X and/or Y coordinates and/or +/- 127
in the orientation. Client 60 sends a LONGLOCCMD to sexrver 61
to update the client’s position. Whenever possible, server 61
uses the combined SHORTLOCCMD to update all of the visible

avatars at once. If an avatar has moved too great a distance,

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
21

or his moved in the Z direction, server 61 then uses a

LONGLOCCMD for that avatar.

The following is an example of a control packet sent

from client 60 to server 61 to update user A’'s location:
C>S CLIENT LONGLOCCMD 2134 287 7199 14003

In the binary (given in hex), this is:
C>8 01 01 0856 011F 1C1F 36B3

Note that bytes are two digits and shorts (16-bits) are four
digits. They are separated by spaces here for clarity. The
actual packet would contain no spaces.

The Server often uses the combined short location
update command. This command concatenates several
ShortLocationCommands. Rather than sending a command to each
of the objects in question, a single combined command is sent
to the combine object (CO). This object takes the command and
applies it to a list of truncated commands. The truncated
commands contain a ShortObjID reference to the object to be
moved and a change in the X and Y positions and orientation.
If server 61 wants to update the positions of objects 56, 42

and 193, it would send the following:
S>C CO SHORTLOCCMD 56 -4 6 -10 42 21 3 -50 193 -3 -21 10

This command can contain a variable number of subcommands.
Each subcommand is of fixed length so that the CO can find the
length of it from a table check or other quick lookup method.

The binary form of this command is:
S>C FE 04 38 FC 06 F6 2A 15 03 CD C1 FD EB 10
When user A changes rooms by walking through a door,

a RoomChangeCommand control packet is sent by client 60 to

server 61 to inform server 61 that the room change occurred.

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
22

The command specifies the new room and location for user A’s

avatar as follows:
C>38 CLIENT ROOMCHNGCMD 01 25 1200 150 180
The first argument is the ObjID of the avatar that

is -leaving the room, the second argument is the command type

(room change), and the third argument is the room that the

.avatar is entering. The next three arguments are the X, Y and

Z positions at which to place the avatar in the room. The
last argument is the direction the actor is facing
(orientation). Note that the first argument is always the
ObjID for the local avatar, CLIENT = 1.

When user A teleports from one room to énother, the
TeleportCommand is sent by client 60 to sexrver 61 to inform
server 61 that the teleport occurred. The method of leaving
the room and entering the new one is sent to sexver 61. This
allows server 61 to inform other clients to display explosions
or clouds, smoke or other indications of the teleportation
appearance/disappearance of the avatar. The teleport command

is as follows:
C>S CLIENT TELEPORTCMD 01 02 02 25 1200 150 180

The first argument is the ObjID of the avatar that is
teleporting, the second argument is the command type
(teleport), and the third argument is the room that the avatar
is entering. The next two arguments are the leaving method
and the entering method respectively. The next three
arguments are the X, Y and Z positions at which to place the
actor in the room. The last argument is the direction the
actor is facing (orientation). Note that the first argument
is always the 0Ob3jID for the local avatar, CLIENT = 1.

Client 60 is responsible for implementing some sort
of caching mechanism for actors. When client 60 receives a
TeleportCommand or AppearCommand for an avatar that is
appearing, it must first determine if it currently has

information for the specified object cached. If not, client

10

15

20

25

30

35

WO 01/91868 PCT/US00/14828
23

60 can issue a request for any needed information pertaining
to the object. Suppose client 60 receives the following

command specifying that "Mitra" has arrived at room 15:
S>C "Mitra" TELEPORTCMD 15 3 3 0 0 0 0

If client 60 does not have an entry cached for this object
("Mitra"), or if the entry is dated, a request may be made for
pertinent information (here, the long object ID is used since
client 60 does not have the short object Id association for -
this object) :

C>S "Mitra" PROPREQCMD VAR BITMAP

Server 61 will respond with a PropertyCommand as necessary to
communicate the required information. An example of pertinent
information above is a request for the avatar bitmap to use to

represent mitra.

Crowd control is one of the tougher problems solved
by the present system. Crowd control is handled using a
number of commands. In a typical situation, the number of
avatars in a room is too large to be handled by client 60 and
displayed on display 122. The maximum number of avatars, N,
is determined by server 61, but might also be determined for
each client.

Server 61 addresses this problem by maintaining, for
each user, a list of the N avatars nearest to the location of
that user’s avatar. This list may be managed by the server in
any of a number of ways. When an avatar (B, for example) is
removed from another user’s (C, for example) list because
avatar B can no longer be seen by C (i.e., B is no longer one
of the N nearest.avatars), Server 61 sends a DISAPPEARACTORCMD
to the object for avata