wo 2010/031001 A1 I T IA0F 0 O 00RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
18 March 2010 (18.03.2010)

(10) International Publication Number

WO 2010/031001 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

International Patent Classification:
GO6F 15/16 (2006.01)

International Application Number:
PCT/US2009/056855

International Filing Date:
14 September 2009 (14.09.2009)

Filing Language: English
Publication Language: English
Priority Data:

61/096,688 12 September 2008 (12.09.2008) US

Applicant (for all designated States except US): NET-
WORK FOUNDATION TECHNOLOGIES, LLC
[US/US]; 818 Nelson Avenue, Ruston, Louisiana 71270

(US).

Inventors; and

Inventors/Applicants (for US only): O'NEAL, Mike
[US/US]; 2215 Cooktown Road, Ruston, Louisiana
71270 (US). FRANCIS, Joel [US/US]; Rt. 2, Box 2205,
Coushatta, Louisiana 71019 (US). JOHNSON, Tara
[US/US]; 301 E. Reynolds Dr. #7D, Ruston, Louisiana
71270 (US). STROUD, Ben [US/US]; 4326 Hwy 167,

74

62y

84)

Agents: KURTZ, Richard ct al; Greenberg Traurig
LLP, 2101 L Street NW, Suite 1000, Washington, District
of Columbia 20037 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FIL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Dubach, Louisiana 71235 (US). WRIGHT, Landon [US/ Yublished:

US]; 1309 West Kentucky Avenue, Ruston, Louisiana
71270 (US).

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SYSTEM FOR DISTRIBUTING CONTENT DATA OVER A COMPUTER NETWORK AND METHOD OF AR-
RANGING NODES FOR DISTRIBUTION OF DATA OVER A COMPUTER NETWORK

N

ui
%{1 U

P
NG

.

FIG. 1

(57) Abstract: Described is a method for improving both the bandwidth efficiency and bit rate of data streams flowing through bi-
nary tree networks. In an embodiment, the invention provides a method for efficiently utilizing end-consumer computers possess-
ing a variety of upstream bandwidth capabilities to deliver online streaming video in a distributed manner.

WO 2010/031001 PCT/US2009/056855

SYSTEM OF DISTRIBUTING CONTENT DATA OVER A COMPUTER NETWORK AND
METHOD OF ARRANGING NODES FOR DISTRIBUTION OF DATA OVER A
COMPUTER NETWORK

[0001] This application is a non-provisional application that claims priority to U.S. Provisional
Patent Application No. 61/096,688 filed September 12, 2008, the entire disclosure of which is
incorporated by reference in its entirety. This application relates to the disclosure of US Patent
No. 7,035,933 issued April 25, 2006 entitled "System of Distributing Content Data over a
Computer Network and Method of Arranging Nodes for Distribution of Data over a Computer

Network,” which is incorporated herein by reference in its entirety.

[0002] This application includes material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright

rights whatsoever.

FIELD OF THE INVENTION

[0003] This invention relates to a system for distributing content data over a computer network

and a method for arranging nodes for distribution of data over a computer network. The system
and method of the present invention are particularly useful for the distribution of streaming audio

and video over the Internet.

BACKGROUND OF THE INVENTION
[0004] U.S. Patent No. 7,035,933 describes a system and method that has proved useful for

online distributed broadcasting of audio and video material. The disclosed system and method
can reduce the amount of bandwidth consumed by video streaming servers by limiting the
server’s number of direct connections over the Internet to only a small number of end-consumer
computers, and then utilizing a portion of the end-consumer computers that are tuned to the
broadcast over the Internet as “repeater nodes” to help propagate the online broadcast to other
viewers’ computers. This approach to online broadcasting is in contrast to industry standard
content delivery networks wherein each end-consumer’s computer that is to receive an
audio/video stream must establish a direct connection to a server. These servers are typically
owned or operated on behalf of the broadcaster and thus the broadcaster is responsible for the

bandwidth costs associated with each of these direct connections.

[0005] Various embodiments of the system and method disclosed in U.S. Patent 7,035,933
display the following highly desirable traits:

WO 2010/031001 PCT/US2009/056855

The network architecture is based on a balanced binary tree and as such is tailored to
deliver live broadcasts, not simply pre-recorded material as is the case with peer-to-peer

networks, such as BitTorrent and the like.

The network architecture supports the addition of nodes (computers) as end-consumers
tune in to the broadcast and the removal of nodes (computers) as end-consumers exit the
broadcast. As a result, the invention does not need to run as a “background task” nor
continuously tap into end-consumer’s bandwidth as with peer-to-peer file sharing
technologies. Instead the invention of US Patent 7,035,933 need only use an end-

consumer’s bandwidth while that end-consumer is tuned to a program.

The system and method disclosed in U.S. Patent 7,035,933 does not store audio video
content files on end-consumers’ computers. This is in contrast to peer-to-peer file sharing

systems which to work effectively must cache content throughout the network.

Because the system and method disclosed in US Patent 7,035,933 is based on a balanced
binary tree, only one half of the nodes (end-consumer computers) in the network need act
as repeater nodes in order for the system to achieve maximum bandwidth savings
efficiency. This enables software applications incorporating this invention to be “polite”
in the sense that whenever an end-consumer’s computer is acting as a repeater node and
that end-consumer needs to use his or her upstream bandwidth for other purposes (such as
email, gaming, or Voice Over IP [VOIP] applications) that end-consumer’s computer is
moved to the edge of the network where it will no longer be expected to retransmit the
broadcast. This reorganization of the network can take place without interrupting the
end-consumer’s viewing experience. The end result is a polite system that immediately
relinquishes use of the end-consumer’s upstream bandwidth the moment the end-
consumer has need of that bandwidth for other purposes. In other words, the invention
does not interfere with the end-consumers use of his or her Internet connection since the
moment the end-consumer tries to send off a file (or otherwise use the upstream Internet
connection) applications incorporating the invention relinquish control of the upstream
Internet connection immediately. The bottom line is that end-consumer see no

degradation in their Internet service when using applications based on the invention.

The system and method disclosed in U.S. Patent 7,035,933 spreads the bandwidth needs
of the system thinly throughout the network — never requiring an end-consumer computer

to supply more than two copies of the video stream to other viewers. As a result the

.

WO 2010/031001 PCT/US2009/056855

system avoids “super-noding” in which nodes (computers) with access to large amounts
of bandwidth are expected to provide copies of the broadcast stream to large numbers of
viewers. Not only is expecting certain computers to act as super nodes impolite, there are
two very important reasons for avoiding it. First, if an application attempts to appropriate
a large amount of bandwidth when running on corporate or university LANs the system
administrators of those networks will take steps to block the application — which will
result in potential viewers on corporate and university LANs from being able to run the
application to watch video. The second reason to avoid designating certain computers as
super nodes is that systems which depend on a small number of nodes to support a large
percentage of the system’s viewers are fragile in the sense that when a super node departs
the system a large “hole” is created in the network that must somehow be “filled in”
almost immediately or large numbers of viewers will experience signal degradation and

loss of video stream.

e The system and method of US Patent 7,035,933 delivers an exceptional Quality of
Service. In addition to the characteristics described above, the reconfiguration algorithms
covered by the patent use the turnover inherent in distributed networks (as viewers tune in
and tune out) to promote the most reliable nodes to the most critical regions of the
network, driving the network towards highly stable configurations which improve the

quality of service delivered by the system.

[0006] The system and method of US Patent 7,035,933 also suffers from certain limitations,
including the fact that the reconfiguration algorithms are described in detail only for binary trees
in which all internal nodes must be capable of supporting two children nodes. This means that
for a node (an end-consumer computer) to be used to repeat the broadcast stream to even a single
additional computer, the node must have the upstream bandwidth capacity to support two
additional computers. As a result, nodes (end-consumer computers) that only have access to
Internet connections with upstream bandwidth capacity to send out a single copy of the broadcast

stream are underutilized — they are never allowed to repeat the broadcast to anyone.

[0007] The practical consequences of these limitations are that for a given video streaming bit
rate and a collection of nodes (end-consumer computers) possessing a variety of different
upstream bandwidth capabilities, some nodes that could have been employed to rebroadcast the
video stream will not be asked to do so, reducing the overall bandwidth efficiency that could

have been otherwise achieved. Likewise for a given bandwidth efficiency target, a higher bit

WO 2010/031001 PCT/US2009/056855

rate video stream could be supported, resulting in better picture quality and/or audio for the end-

consumer.

[0008] Incorporating such a change into the system and method of US Patent 7,035,933 requires
addressing the difficult problem of how to build and maintain a binary broadcast tree with repeat
capable nodes of differing abilities must be addressed. In order to create a useful and practical
online broadcasting system, algorithms must be designed to build and maintain binary broadcast
trees consistent with promoting the most reliable nodes to the most critical regions of the network
(to promote stability) while maintaining overall tree balance (to limit propagation delays) and
employing nodes that lack the ability to repeat to two children but possess the ability to repeat to

a single child (to increase overall network efficiency).

SUMMARY OF THE INVENTION

[0009] In an embodiment, the invention provides a method for efficiently utilizing end-
consumer computers possessing a variety of upstream bandwidth capabilities to deliver online

streaming video in a distributed manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The foregoing and other objects, features, and advantages of the invention will be
apparent from the following more particular description of preferred embodiments as illustrated
in the accompanying drawings, in which reference characters refer to the same parts throughout
the various views. The drawings are not necessarily to scale, emphasis instead being placed upon

illustrating principles of the invention.

FIG. 1 is a schematic drawing of an embodiment of a computer information distribution network

formed pursuant to an embodiment of the present system and method;

FIG. 2 is an illustration of the method used to merge two linear chains of nodes upon the

departure of a Type 2 node;

FIG. 3 is an illustration of the general method used to reconfigure the network in the case of the

graceful departure of a Type 2 node;

FIG. 4 is an illustration of the general method used to reconfigure the network in the case of the

graceful departure of a Type 2 node with two Type 2 children;

WO 2010/031001 PCT/US2009/056855

FIG. § is an illustration of the general method used to reconfigure the network in the case of the
graceful departure of a Type 2 node with one Type 2 child and one Type 1 Child, where the Type
2 Child is the preferred (green) child;

FIG. 6 is an illustration of the general method used to reconfigure the network in the case of the

graceful departure of a Type 2 node with two Type 1 children;

FIG. 7 is an illustration of the general method used to reconfigure the network in the case of the
graceful departure of a Type 2 node with one Type 1 child and one Type 0 Child, where the Type
1 Child is the preferred (green) child;

FIG. 8 is an illustration of the general method used to reconfigure the network in the case of the

graceful departure of a Type 2 node with two Type 0 children;

FIG. 9 is an illustration of the general method used to reconfigure the network in the case of the
graceful departure of a Type 2 node with one Type 2 child and one Type 0 Child, where the Type
2 Child is the preferred (green) child;

FIG. 10 is an illustration of the general method used to reconfigure the network in the case of the

graceful departure of a Type 1 node where that Type 1 node has a child;

FIG. 11 is an illustration of the general method used to reconfigure the network in the case of the

unexpected (non-graceful) departure of a Type 2 node;

FIG. 12 is an illustration of the general method used to reconfigure the network in the case of the

unexpected (non-graceful) departure of a Type 2 node with two Type 2 children;

FIG. 13 is an illustration of the general method used to reconfigure the network in the case of the
unexpected (non-graceful) departure of a Type 2 node with one Type 2 child and one Type 1
Child, where the Type 2 Child is the preferred (green) child;

FIG. 14 is an illustration of the general method used to reconfigure the network in the case of the

unexpected (non-graceful) departure of a Type 2 node with two Type 1 children;

FIG. 15 is an illustration of the general method used to reconfigure the network in the case of the
unexpected (non-graceful) departure of a Type 2 node with one Type 1 child and one Type 0
Child, where the Type 1 Child is the preferred (green) child;

FIG. 16 is an illustration of the general method used to reconfigure the network in the case of the

unexpected (non-graceful) departure of a Type 2 node with two Type O children;

WO 2010/031001 PCT/US2009/056855

FIG. 17 is an illustration of the general method used to reconfigure the network in the case of the
unexpected (non-graceful) departure of a Type 2 node with one Type 2 child and one Type 0
Child, where the Type 2 Child is the preferred (green) child;

FIG. 18 is an illustration of the general method used to reconfigure the network in the case of the

unexpected (non-graceful) departure of a Type 1 node where that Type 1 node has a child;

FIG. 19 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where the depart message is not received by the
non-preferred (red) child;

FIG. 20 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where the depart message is not received by the
preferred (green) child;

FIG. 21 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where the depart message is not received by the
parent of the departing node;

FIG. 22 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where depart messages are not received by either of

the two children;

FIG. 23 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where depart messages are not received by either

the parent of the departing node nor the departing node’s non-preferred (red) child;

FIG. 24 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where depart messages are not received by either

the parent of the departing node nor the departing node’s preferred (green) child;

FIG. 25 is an illustration of the general method used to reconfigure the network in the case of a
departure of a Type 2 node with two children where depart messages are not received by either

the parent of the departing node nor the departing node’s two children;
FIG. 26 is an illustration of a network in which Node B is departing gracefully;

FIG. 27 is an illustration of the first two steps in the reconfiguration of the network illustrated in
Figure 26 following the departure of Node B;

FIG. 28 is an illustration of the state of the network following the connection of Node C to Node
A and Node D to Node C;

WO 2010/031001 PCT/US2009/056855

FIG. 29 is an illustration of the final state of the network of Figure 26 following the departure of
Node B;

FIG. 30 (a-f) illustrates the reconfigurations that result from the graceful departure of a node;
FIG. 31 (a-d) illustrates the reconfigurations that result from the unexpected (non-graceful)

departure of a node.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0011] Reference will now be made in detail to the preferred embodiments of the present

invention, examples of which are illustrated in the accompanying drawings.

[0012] The invention is described below with reference to block diagrams and operational
illustrations of methods and devices for distributing content data over a computer network. It is
understood that each block of the block diagrams or operational illustrations, and combinations
of blocks in the block diagrams or operational illustrations, may be implemented by means of
analog or digital hardware and computer program instructions. These computer program
instructions may be provided to a processor of a general purpose computer, special purpose
computer, ASIC, or other programmable data processing apparatus, such that the instructions,
which execute via the processor of the computer or other programmable data processing
apparatus, implements the functions/acts specified in the block diagrams or operational block or
blocks. In some alternate implementations, the functions/acts noted in the blocks may occur out
of the order noted in the operational illustrations. For example, two blocks shown in succession
may in fact be executed substantially concurrently or the blocks may sometimes be executed in

the reverse order, depending upon the functionality/acts involved.

[0013] Node Types

[0014] In the system and method of US Patent 7,035,933 there were essentially two kinds of
nodes: repeat capable nodes and non-repeat capable nodes. A node was deemed “repeat capable”
if it possessed the upstream bandwidth capacity to support two outgoing audio/video streams plus
some pre-defined additional capacity for overhead and margin. If a node did not have the

capacity to support two children it was deemed non-repeat capable.

[0015] As pointed out above, this bifurcation of nodes was somewhat wasteful in that nodes fully
capable of supporting a single child were not utilized by the system due to the inability of the

reconfiguration algorithms to accommodate nodes capable of supporting only a single child.

[0016] In the present system and method there are three main types of nodes: Type 2 nodes,
Type 1 nodes, and Type 0 nodes. As their names imply, Type 2 nodes are capable of supporting

-7-

WO 2010/031001 PCT/US2009/056855

two children, Type 1 nodes are capable of supporting a single child, and Type 0 nodes are
incapable of supporting any children.

[0017] In addition to these three major types, within a type various priorities may exist. The
defined priorities are High, Normal, and Low. Each of these priorities does not necessarily exist

for each of the types.

[0018] The type and priority of a node together define that node’s preference level. The defined

preference levels for nodes are as follows:

[0019] Type 2, Normal Priority (sometimes written as T2N) is the highest priority node known to
the system. These nodes are capable of supporting two children and are roughly equivalent to

“repeat capable” nodes in the previous system and method.

[0020] Type 1, High Priority (sometimes written as T1H) are capable of supporting a single
child. At some point in their past TIH nodes were categorized as Type 2, but were later
“demoted” to Type 1 — generally as a result of poor performance when serving as the parent of
two children. Type 1 High Priority are given preference over other Type 1 nodes in order to keep
the Type 1 High Priority nodes as high in the tree as possible (just below the Type 2). This is due
to the fact that we expect these nodes to be “stronger” than normal Type 1’s and also so that if a
Type 1 High Priority converts back to a Type 2 Normal node it will already be situated “near” the
Type 2 nodes.

[0021] Type 1 Normal Priority is the third preference level of node that the system recognizes.
Nodes whose upstream bandwidth tested capable of supporting one child but not two are given

this rating when they join the network.

[0022] Type 0 High Priority is the fourth preference level of node that the system recognizes.
These nodes are currently judged incapable of repeating to even a single child, however they
were at one time Type 1. Type 0 High Priority are given preference over Type 0 Normal and
Type 0 Low as they have a history of having been a productive node and therefore should be

retained in the tree as much as possible in case they reconvert to Type 1 status again.

[0023] Type 0 Normal Priority is the fifth preference level of node that the system recognizes.
The only type of node a Type 0 Normal can theoretically bump is a Type O Low priority. Type 0
Normal priority nodes correspond to the “non-repeat capable” nodes from the previous system
and method. Nodes whose upstream bandwidth test too low to act as a repeater of even a single

stream when the node joins the network are given this designation.

WO 2010/031001 PCT/US2009/056855

[0024] Type 0 Low Priority nodes are the sixth and lowest preference level of node recognized
by the system. These nodes are incapable of bumping nodes of any type. A Type 0 node may be
assigned “low priority” status for a number of reasons, such as an inability to reliably receive

data from its parent node.

[0025] The fundamental rule concerning node type is that a node of a particular preference level
may not bump a node at an equal or greater preference level, but may always bump a node at a
lesser preference level. (The one exception to this rule is that Type 2 Normal nodes may cause
other Type 2 Normal nodes to be bumped when executing priority and system joins, as explained

below.)

[0026] Thus, except as stipulated in the previous paragraph, Type 2 Normal nodes may bump all
nodes except other Type 2 Normal nodes. A Type 1 High Priority may not bump Type 2 Normal
or other Type 1 High Priority nodes, but may bump Type 1 Normal Priority, Type 0 High
Priority, Type O Normal Priority, and Type 0 Low priority. Likewise, Type 1 Normal Priority
nodes cannot bump Type 2 Normal, Type 1 High, or other Type 1 Normal Priority nodes, but are
free to bump all Type 0 nodes regardless of their “priority”. Similarly, Type 0 High priority
nodes cannot bump Type 2, Type 1, or other Type 0 High Priority nodes, but can bump Type 0
Normal and Type 0 Low priority nodes. Type 0 Normal can only bump Type 0 Low, and Type 0

Low can bump no one.

[0027] Introduction of Dynamic VTT and Definition of Primary and Secondary Sides of the

Broadcast Tree

[0028] Figure 1 illustrates a complete distributed broadcast tree constructed according to the

methods of the present system and method.

[0029] An innovation present in this system and method over that of U.S. Patent No. 7,035,933 is
the ability to form and maintain linear chains of nodes composed of nodes that are capable of
broadcasting to only one child. These linear chains may be capped by nodes that are incapable of

broadcasting to any nodes

[0030] Another innovation present in this system and method is the demarcation of one side of
the binary tree as “Primary” and the other side as “Secondary”. The primary side of the tree,
shown as the left, or green, side of the tree in Figure 1, is where the system prefers to place
nodes. The secondary side of the tree, shown as the right, or red, side of the tree in Figure 1 is
used to temporarily hold excess linear chains that cannot be accommodated in the Primary side of

the tree.

WO 2010/031001 PCT/US2009/056855

[0031] A difference between the primary and secondary sides of the tree is that the capacity of
the secondary side can be increased on an as-needed basis by the addition of VIT (Virtual Tree
Top) nodes. VTT nodes are “virtual” nodes introduced into the binary tree to expand the
“capacity” of the tree. VTT nodes map in the physical world to additional connections to the
server. Hence, while a classical binary tree can only have two nodes connected directly to the
root node / physical server, the use of VIT nodes allow for an arbitrary number of physical
connections to the server. While VTT nodes have been described in previous applications related
to U.S. Patent No. 7,035,933, we extend their use to being generated dynamically based on the
number and type of nodes present in a broadcast network. Previous applications related to U.S.
Patent No. 7,035,933 include U.S. Patent Application Nos. 11/176,956, 11/179,041, 11/179,063,
11/408,169, and 11/746,494, which are incorporated herein by reference.

[0032] An important use of the Secondary side of the tree and use of dynamic VTT is to prevent

individual linear chains from growing exceedingly long leading to an unbalanced tree.

[0033] As described elsewhere in this document, it is frequently desirable in the present system
and method to merge linear chains of Type 1 nodes. If left unchecked, networks with few Type 2
nodes and many Type 1 nodes could devolve into a small number of very long chains. Long
chains should be avoided as they lead to propagation delays. Additionally, large numbers of
repeaters between an individual node (such as an edge node or node near the edge of the tree) and
the server increase the likelihood of Quality of Service issues — since the “signal” is passing

through a large number of “repeaters” each given to failure.

[0034] To limit the length of Type 1 chains in networks with few Type 2 repeaters, we define the
concept of “long”. Long, which may be a dynamic definition that is dependent on the total
number of nodes, the total number of a particular type of node, the percentage of certain node
types, ratios of the various node types, or other dynamic features of the network, is used to limit
the total length of Type 1 chains. Whenever a merger of two linear chains is to be performed, if
the length of the chain resulting from the merger were to exceed “long” the merge will not be

performed and instead one of the linear chains would be moved to the Secondary side of the tree.

[0035] To prevent the secondary side of the tree from becoming saturated, additional VTT nodes
are created as necessary to act as docking locations for additional linear Type 1 chains.
However, a maximum saturation point may be defined which specifies the maximum number of

VTT nodes allowable on the Secondary side of the tree.

[0036] The Basics of Reconfiguration

-10 -

WO 2010/031001 PCT/US2009/056855

[0037] Whenever a node with children leaves the broadcast network (or tree), the reconfiguration
algorithms decide where to place the children of the departing node as well any node chains

associated with those children.

[0038] There are two basic types of ways in which a node may leave the broadcast network (or
tree) : Graceful Departs, and Unexpected or Non-Graceful Departs.

[0039] The term “Graceful Depart” refers to a normal or procedural shutdown of the client
application — the type of departure that is generated when the end-user clicks on the “x” in the
upper right hand corner of the client interface in order to exit the application. When a graceful
depart is initiated, all shutdown procedures are then completed. The departing node sends a
depart message to its children and parent with instructions on how they are to proceed. The
children of the departing node send out depart propagate packets to their children. These packets

are updated at each level and propagated throughout the sub-trees.

[0040] The term “Unexpected or Non-Graceful Depart” refers to a node leaving the system in an
unexpected manner — without the normal shutdown procedures being performed. A non-graceful
depart can occur for any number of reasons: the computer that is running the client application
may lose its Internet connection, or the machine running the client application may crash, or the
end-user abnormally terminates the client application by “killing” it with Task Manager, etc.
Generally, when an unexpected depart occurs, the children of the departing node will climb to

their grandparent for instructions on how to proceed.

[0041] In addition to nodes leaving the network altogether by way of graceful and non-graceful
departs, a node that remains in the network (tree) can change its position by disconnecting from
its current parent and reconnecting to some other parent. These reconnections can be voluntary

or involuntary in response to changing conditions in the network.

[0042] One type of reconfiguration event is a “Bump”. The term “Bump” refers to a node being
forcibly kicked by its parent so that the parent can accept a higher priority node in the bumped
node’s place. When the parent kicks the bumped node, it also tells the bumped node where to go

next.

[0043] A “Priority Join” is a way to force reconfiguration. When a node registers with the
priority join flag set, the node that it registers to kicks its red child and accepts the registering

node as its new red child. Priority joins are only allowed for Type 2 nodes.

[0044] A “System Join” 1is a way to force a priority join in a non-graceful reconfiguration. A

system join is triggered when a Type 2 node with children registers with a node that cannot

“11 -

WO 2010/031001 PCT/US2009/056855

accept it as a child. During a system join, the joining node is told to priority join to the red child

of the node with which it is trying to register.

[0045] Two additional terms that are frequently used when discussing reconfiguration are: the

“Recommended Parent List” and the “Network Topology Model” or NTM.

[0046] A node’s Recommended Parent list is a list of all nodes known to that node that can act as
parent nodes. The Recommended Parent list will vary from node to node as an individual node
can only recommend parents that are within its own sub-tree. The Recommended Parent list is
usually sorted (or organized in some way) so as to make finding the “best” recommended parent
easy to accomplish. The “best” recommended parent will generally be the recommended parent

that is closest to the server (the root of the broadcast tree).

[0047] The Network Topology Model (or NTM) is a node’s internal model of the structure of the
portion of the network of which the node is aware. A node’s NTM generally consists of a path
from the root / server node down to the node in question, together with the sub-tree of the overall
network tree that is rooted at the node. Network Topology Models are generally annotated with
state information about the nodes contained in the model, such as the recommended parent lists
of all nodes in the sub-tree. A node uses its NTM to determine where to place incoming nodes

that attempt to connect to the node in question.

[0048] Merging Chains of Type 1 Nodes

[0049] Merging is the process of combining two chains of Type 1 Nodes where each chain may
or may not be capped with a Type 0 node. When a node directly supporting two node chains
departs the network, either gracefully or non-gracefully, its two chains may be merged as long as

their combined length does not exceed the pre-defined value for “long”.

[0050] Figure 2 illustrates the node chain merger process. Initially Node 2 is the parent of two
Type 1 nodes, Node 4, a Type 1 High Priority, is the green child of the departing node and Node
5, also a Type 1 High Priority, is the red child of the departing node. Node 4 is the root of a
chain of Type 1 nodes (Node 4, Node 8,and Node 12) capped by a Type 0 node, Node 14.
Similarly, Node 5 is the root of a Type 1 chain (Node 5 and Node 9) capped by a Type 0 node,
Node 13.

[0051] Node 2 departs the network leaving behind the two node chains. As Node 4 is the green
child of the departing node it will be instructed to connect to its former grandparent, Node 1.
Node 5 will be instructed to connect into the chain rooted by Node 4 immediately below the
lowest Type 1 High Priority node. Since there is only one Type 1 High Priority node in the chain
rooted at Node 4, Node 5 will connect to that node, which happens to be Node 4.

12 -

WO 2010/031001 PCT/US2009/056855

[0052] In order to accept Node 5, Node 4 was forced to bump its Type 1 Normal child, node 8.
During the bump of Node 8 by Node 4, Node 4 will have instructed Node 8 to connect to Node 5
for further instructions. Since Node 8 is Type 1 Normal it cannot become a child of Node 5,
instead Node 5 instructs Node 8 to connect as a child of Node 9. Node 8 connects to Node 9,

causing Node 13 a Type 0 Low Priority node to be bumped.

[0053] Node 13 then attempts to connect to Node &, but since Node 13 is Type 0 Low which is
incapable of bumping anyone and the chain headed by Node 8 terminates in a Type 0 High
(Node 14), Node 13 is rejected and must climb its path, beginning at the first Type 2 node and
working upwards towards the root server until it can either be placed or rejected completely from

this broadcast tree.

[0054] Thus the two linear chains have now been completely merged into a single chain, with the
level of nodes respected — Type 1 High Priority nodes situated above Type 1 Normal Priority
Nodes and Type 0 High Priority retained in preference to Type 0 Normal or Low priority.

[0055] Handling Graceful Node Departures

[0056] Whenever a departing node completes its shutdown procedure, it sends a depart message
to its children and parent. The green child of the departing node is instructed to connect to the
parent of the departing node. If there is a red child, a decision has to be made as to what to do
with this red child based upon the type of the red child. If the red child is a Type 2, the departing
node may tell the red child to priority join to its sibling. If the child is a Type 1 or a Type 0, then
the departing node sends the red child a connection path based on the recommended parent list of
its green sibling. If there is no place for the Type 1 or Type O red child to be placed in the green
child’s sub-tree, then the departing node will tell the Type 1 or Type O red child to climb its path.

[0057] Figure 3 through Figure 10 illustrate the expected reconfiguration behavior resulting from

nodes departing the network in a graceful manner.

[0058] In Figure 3, the end-user whose client application is identified as Node 2 clicks the “X” in
the upper right hand corner of the client or otherwise instructs the application to exit. As part of
its close out procedure, Node 2 constructs depart messages which contain information instructing
the nodes surrounding Node 2 what actions they are to take. Node 3 receives a message from
Node 2 instructing it to connect to its former grandparent, Node 1. Node 1 receives a message
from Node 2 instructing it to expect Node 3 to connect to it as a replacement for Node 2. Node 4
receives a message from Node 2 containing instructions as to where it should connect as
described above. Depending on the type and number of children Node 3 already supports as well
as the type of Node 4, Node 4 may connect directly as a child of Node 3, somewhere in the sub-

-13 -

WO 2010/031001 PCT/US2009/056855

tree rooted at Node 3, elsewhere in the network, or even under rare circumstances be rejected

completely if there is no available location to which it can dock.

[0059] Figure 4 illustrates the case in which both children (Node 3 and Node 4) of the departing
node, Node 2, are Type 2. In this case Node 3 is instructed to connect to Node 1 and Node 4 is
instructed to connect to Node 3. This type of reconfiguration is similar to standard

reconfiguration in the U.S. Patent No. 7,035,933.

[0060] Figure 5 illustrates the case in which the preferred (green) child (Node 3) of the departing
node is Type 2, while the non-preferred (red) child (Node 4) of the departing node is Type 1. In
this case, Node 3 will connect to its former grandparent Node 1, while Node 4 will be instructed

to connect to a node in Node 3’s sub-tree based on Node 3’s recommended parent list.

[0061] Figure 6 illustrates the case in which both children of the departing node are Type 1
nodes. In this case, Node 3 will connect to Node 1 and Node 4 will be instructed to connect to a
node in Node 3’s sub-tree based on Node 3’s recommended parent list. Note that if Node 3 and
Node 4 were the heads of linear chains, a chain merger would occur using the method illustrated

in Figure 2 and described above.

[0062] Figure 7 illustrates the case in which Node 3, the green child of departing Node 2 is Type
1 while the red child of the departing node (Node 4) is Type 0. Node 3 is instructed to connect to
Node 1 and Node 4 will be instructed to connect to a node in Node 3’s sub-tree based on Node

3’s recommended parent list.

[0063] Figure 8 illustrates the case in which both children of departing Node 2 are of Type 0.
The green child, Node 3, is instructed to connect to Node 1. However the red child, Node 4,
must climb its path looking for a home. Tt first connects to Node 1 and if Node 1 cannot place it,
will climb to higher levels of the tree until it reaches the server. If the server cannot place Node

4 it will be rejected from the broadcast tree.

[0064] Figure 9 illustrates the case where Node 3, the green child of departing Node 2, is of Type
2; while Node 4, the red child of the departing node, is of Type 0. In this case, Node 3 will be
instructed by Node 2’s depart message to connect to Node 1. Node 1 will expect Node 3 based
on its own message from Node 2. Node 4 will be directed to connect to a location in Node 3’s
sub-tree (assuming a location is available for a Type 0 to dock) based on Node 3’s recommended

parent list.

[0065] Figure 10 illustrates a graceful depart of a Type 1 node. Node 2, a Type 1 node, executes

a graceful client shutdown. As a result Node 2 transmits depart messages to its parent, Node 1,

-14 -

WO 2010/031001 PCT/US2009/056855

and its child, Node 3. Node 2’s depart message instructs Node 3 to connect to its former

grandparent, Node 1.

[0066] Handling Unexpected (Non-Graceful) Node Departures

[0067] When an unexpected or non-graceful depart occurs, such as happens when a node loses
its connection to its parent, the children of the departing node will climb their path to their former
grandparent for placement. The first child that registers with its former grandparent is accepted.
The second child that registers with its grandparent will take different actions based on its type.
If the slower child is a Type 2 and has children, that node will do a system join to its grandparent.
The grandparent will instruct the joining node to priority join to the grandparent’s red child.
Otherwise, the second child will follow the normal registration procedure. If the second child is
a Type 1 or Type 0, the grandparent places it as if it were just entering the network. The node
may not priority join, as priority join functionality is reserved only for Type 2 nodes. Type 1 and
Type 0 nodes must register normally at all times. The reason behind this restriction is to prevent
Type 1 nodes from bumping Type 2 nodes or higher priority Type 1 nodes. Since nodes that
priority join are automatically accepted as a node’s red child and that red child is bumped, Type 1
nodes could bump Type 2 nodes if they were allowed to priority join. Since this would work
counter to the notion of placing higher level nodes closer to the server, only Type 2 nodes are

allowed to priority join.

[0068] Figure 11 through Figure 18 illustrate the reconfiguration behaviors resulting from nodes

departing the network in an unexpected (non-graceful) manner.

[0069] Figure 11 illustrates the general method for handling unexpected or non-graceful node
departures. Node 2, the parent of two nodes, Node 3 and Node 4, and the child of Node 1,
departs the network in an unexpected and non-graceful manner. Since no depart messages were
genecrated and sent by Node 2 prior to its departure, Node 3 and Node 4 simply lose their
connections to Node 2. As each of these nodes become aware that Node 2 no longer exists in the
network, via connection time outs or some other means, they will climb to their former
grandparent, Node 1. The node that reaches Node 1 first will be connected to Node 1 as its child,
replacing the departed Node 2. The slower of the two nodes will be dealt with as described

above.

[0070] Figure 12 illustrates the case where both children of the unexpectedly departing node are
Type 2. Figure 13 illustrates the case where the green child of the unexpectedly departing node
is Type 2 and the red child is Type 1. Figure 14 illustrates the case where both children of the
departing node are Type 1. Figure 15 illustrates the case where the green child is Type 1 and the

-15-

WO 2010/031001 PCT/US2009/056855

red child is Type 0. Figure 16 illustrates the case where both child nodes of the departing node
are Type 0. Figure 17 illustrates the case where the green child is Type 2 and the red child is
Type 0.

[0071] Figure 18 illustrates a unexpected (non-graceful) depart of a Type 1 node. Node 2, a
Type 1 node, departs unexpectedly from the network in a non-graceful manner. Node 3 becomes
aware of the departure of Node 2 via the connection between the two nodes timing out or by
some other means. Node 3 climbs its path to its former grandparent Node 1 and Node 1 accepts

Node 3 as its child.

[0072] Handling Message Loss in Graceful Departs

[0073] When a client is shutdown gracefully, it sends out the depart messages to each of its kids
and its parent. However, there is no guarantee that these messages will be received by their
intended recipients. Figure 19 through Figure 25 illustrate the consequences of the failure of

various messages to reach their intended recipients.

[0074] Figure 19 illustrates the case in which the depart message fails to reach the non-preferred
(red) child. Figure 20 illustrates the case in which the depart message fails to reach the preferred
(green) child. Figure 21 illustrates the case in which the depart message fails to reach the parent.
Figure 22 illustrates the case in which the depart messages fail to reach both children. Figure 23
illustrates the case in which the depart message fails to reach both the parent and the non-
preferred (red) child. Figure 24 illustrates the case in which the depart message fails to reach
both the parent and the preferred (green) child.

[0075] Figure 25 illustrates the case in which all three messages fail to reach their intended
recipients. In this case the graceful depart reverts to the standard non-graceful depart described

above.

[0076] Determining Placement During Reconfiguration & Maintaining Accurate Network
Topology Models

[0077] When Node A sends a message to Node B requesting that Node A be placed in the
broadcast tree, it is necessary that Node B have access to an internal Network Topology Model
(NTM) that reflects the overall state of the network with enough fidelity to assign Node A to a
parent node consistent with maintaining the key properties of the network, such as maintaining
approximate tree balance and placing stronger nodes as high in the tree (as close to the server) as

practical.

- 16 -

WO 2010/031001 PCT/US2009/056855

[0078] This NTM must be maintained even during times of high turnover when nodes are
frequently joining and departing the network. To that end, the parent of a departing node must be
able to effectively predict the likely effect on the overall topology of the network its departing
child will have. In other words, the parent node must update its internal NTM to account for
connections that will likely be broken and new connections that will likely be formed as a result
of the departure of its child from the network. These effects are not necessarily localized and

may propagate throughout the sub-tree rooted at the parent all the way to the edge of the network.

[0079] In the system and method of US Patent 7,035,933 reconfigurations to a node’s local copy
of the NTM for the parent of a departing node involved recursively following the green path of
the parent’s sub-tree and having red children connect to their green siblings. This elegant
approach emerged from the system requirement that all nodes could either repeat to two children
or not at all -- and that, aside from greenness / redness, all repeaters were essentially equal. Thus,
a red child (Node C) was assumed able to connect to its green sibling (Node B), and the green
child (Node B) was assumed able to accept its red sibling (Node C) as a child, provided the green
child (Node B) did not already have two children of its own (Node D and Node E) or if it (Node
B) did it (Node B) would be required to bump its existing red child (either Node D or Node E)
making room for its (Node B’s) incoming red sibling (Node C). In cases where the red sibling
was not capable of repeating to two children and the red child of the green sibling was also a not
capable of repeating to two children, reconfigurations were allowed to continue as described
above with the understanding that the green sibling in reality would simply reject the connection
request from the red sibling as a non-repeat capable node was not allowed to bump another non
repeat capable node. The difference between the outcomes of the NTM reconfiguration and the
reality of the network-level request logic was allowed to persist, because the difference did not

affect the structure of the NTM as far as placement of new nodes was concerned.

[0080] With the complexity of the new placement logic for the present system and method,
reconfiguration must solve issues that didn’t exist before. In the present system and method, all
repeat capable nodes are not essentially equal as they were in US Patent 7,035,933. Some repeat
capable nodes can support two children (Type 2 nodes) while other repeat capable nodes can
support only one child (Type 1 nodes). Of the repeat capable nodes that can only support one
child, there is the additional consideration of its priority. A Type 1 node of normal priority (e.g.,
a TIN) cannot be the parent of a Type 1 of a higher priority (e.g., a T1H), and no Type 1 node,

regardless of its priority, may become the parent of a Type 2 node.

[0081] Consider the situation illustrated in Figure 26. Node B is departing the network in a
graceful manner. The parent of Node B, Node A, needs to update its internal Network Topology

-17-

WO 2010/031001 PCT/US2009/056855

Model to account for the reconfigurations that are likely to occur as a result of Node B’s

departure.

[0082] In one embodiment, the method of U.S. Patent No. 7,035,933 would be: (1) the green
child of the departing node connects to its former grandparent, in this particular case Node C
connects to Node A, (2) the red child of the departing node cross connects to its green sibling, in
this particular case Node D cross connects to Node C, (3) the green child bumps its own red child
to make room for its incoming red sibling, in this particular case Node C bumps Node F to
accept Node D, (4) the bumped red grandchild of the departing node cross connects to its own
green sibling, in this particular case Node F would cross connect to Node E, (5) the green-green
grandchild of the departing node would bump its own red child to make room for its incoming
red sibling, in this particular case Node E bumps Node J to accept Node F, and finally (6) the
bumped red great grandchild of the departing node cross connects to its own green sibling, in this

case Node J cross connects to Node 1.

[0083] The problem with the method of U.S. Patent No. 7,035,933 is that it does not account for
the fact that Node F cannot connect to Node E since Node F is a Type 1 node and both of Node
E’s children are Type 2. In the system of the present system and method Type 1 nodes cannot
bump Type 2 nodes.

[0084] Thus the present system and method includes the following method that allows higher
level nodes (such as Node A) to predict the reconfiguration behavior of lower level nodes (such
as Node E) in order for the higher level node to update its internal Network Topology Model to
reflect the most likely result of a reconfiguration caused by the departure of its child (Node B).

[0085] The method consists of having each node periodically propagate up to its parent a
description of that node’s state (including that node’s recommended parent list) together with the
state of all nodes located beneath that node and the structure of their relationship to the node in
question. Thus for example referring to Figure 26, Node’s 1 and J would propagate their
information up to Node E; Node K its information to Node F; Nodes L and M up to Node G;
Nodes N and O up to Node H. Node E would propagate its information and its children’s
information (including the fact that Node I is the green child of Node E and Node J is the Red
Child of E) to Node C. Likewise Node F would propagate its information and its child’s
information to Node C; Nodes G and H their information and their children’s information to
Node D. Nodes C and D would propagate their information and the information of all of their
descendants to Node B, and likewise Node B its information and its descendants information to
Node A.

- 18 -

WO 2010/031001 PCT/US2009/056855

[0086] In this manner, Node A will have received information from all of the nodes in its entire
sub-tree with which to populate its internal network topology model. Thus, when Node B
departs the network, Node A will be able to determine the likely result of this departure by

consulting the recommended parent lists of the various nodes in its sub-tree.

[0087] It should be noted at this point, that a particular node’s internal model of the network may
not be completely accurate as configuration changes may have taken place at lower levels and
those changes may not have yet propagated up to the node in question. Regardless of this
limitation, the information provided is judged “good enough” for making placement decisions

and predictions as to network state following child departure.

[0088] Continuing with the example begun in Figure 26, Figure 27 illustrates the first two steps
of the reconfiguration begun by the graceful departure of Node B. Node C connects to Node A,
corresponding to the green child connecting to the parent of the departing node; and Node D
connects to Node C, corresponding to the red child of the departing node cross connecting to its
green sibling. In point of fact, as illustrated in Figure 4, Node B instructs Node C to connect to

Node A, and Node D to connect to Node C.

[0089] Figure 28 illustrates the state of the network immediately following the connection of
Node C to Node A and Node D to Node C. Note that Node F, the green-red grandchild of the

departing node, has been bumped by Node C in order to make room for Node D to connect.

[0090] Node F wishes to connect to Node E, but unfortunately since Node F is Type 1 and both
of Node E’s children are Type 2, Node F cannot connect directly to Node E. This issue can be
resolved in the following way. When Node F is bumped by Node C, Node C can consult its
Network Topology Model and determine that Node E’s recommend parent for incoming nodes
will be Node T (as Node I is the green child of Node E) and pass this recommended parent
directly to Node F as part of the depart / bump message Node C sends to Node F.

[0091] Node A, when updating its own internal Network Topology Model, can predict that Node
C will instruct Node F to connect to Node I, as Node A can determine the recommended parents
associated with every node in its sub-tree. This allows Node A to update its internal model in

accordance with what is likely to happen in the actual network during the reconfiguration events.

[0092] Figure 29 illustrates the final state of the network of Figure 26 following the departure of
Node B. Assuming all reconfiguration events resulting from the departure of Node B proceed as
planned and there are no other node additions, deletions, or reconfigurations that take place
during this time period Figure 29 should be an accurate reflection of both the physical network

and Node A’s internal Network Topology Model.

-19-

WO 2010/031001 PCT/US2009/056855

[0093] A Complete Example of Network Reconfiguration Following Graceful Depart

[0094] Figure 30, parts (a) — (f), provide a complete example of network reconfiguration
following the graceful departure of a node.

[0095] Figure 30 (a) shows the complete network (full tree) prior to the departure of a node.
Figure 30 (b) illustrates the graceful departure of Node 2 from the network. Node 4 is instructed
by the departing node to connect to Node 1 and the result can be seen in Figure 30 (c). Node 5 is
instructed by the departing node to connect to Node 4. The particular type of join Node 5 is
instructed to perform with Node 4 is a “priority join” meaning that Node 4 must accept Node 5
(and therefore Node 4 must bump its red child to make room for Node 4). Figure 30 (d)
illustrates the state of the network after Node 5 is accepted by Node 4. Note that Node 9, the
former red child of Node 4, has been bumped. When Node 4 bumped Node 9 it provided Node 9
with a connection path. That connection path included the recommended parent that Node 9
should attempt to connect to. In this case Node 9 is told by Node 4 to connect to Node 25. The
reason Node 4 chose Node 25 for Node 9 is that Node 25 is the highest node (closest node to the
server) that Node 4 is aware of that can accept a node of Node 9’s type. Note that being of Type
IN, all that can be bumped by Node 9 are Type 0 nodes — resulting in the candidate parents for
Node 9 being Node 35, Node 28, Node 29, and Node 25, of which Node 25 is the closest to the
server. Figure 30 (e) illustrates the state of the network after Node 9 connects to Node 25. Note
that in order for Node 25 to accept Node 9 as a child, it was necessary for node 25 to bump Node
34, a Type 0 Normal Priority node. As part of the bump message, Node 25 instructs Node 34 to
attempt to connect to Node 9 (either for a direct connection or for instructions as to where it can
connect). Node 34 attempts to connect to Node 9, the root of a Type 1 chain that terminates in a
Type 0 Low Priority node (Node 26). Since Node 34’s Type 0 Normal Priority out ranks Node
26’s Type 0 Low Priority, Node 9 instructs Node 34 to connect to Node 26’s parent, Node 17.
Since Node 26 cannot connect to Node 34 or Node 17, Node 26 must climb it parent path,
beginning with the first Type 2 node in the path, Node 4, and, if necessary, working back up the
parent path towards the server. In this case, however, Node 4 is able to recommend connection
to Node 29 and the reconfiguration cascade concludes. Figure 30 (f) illustrates the final
configuration of the network.

[0096] A Complete Example of Network Reconfiguration Following Unexpected (Non-Graceful)

Depart

[0097] Figure 31, parts (a) — (d), provide a complete example of network reconfiguration

following the unexpected (non-graceful) departure of a node.

-20 -

WO 2010/031001 PCT/US2009/056855

[0098] Figure 31 (a) illustrates a complete network prior to an unexpected departure of Node 6, a
Type 2 Normal Priority node. After the departure of Node 6, its children, Nodes 12 and 13, note
its absence. Both Node 12 and Node 13 connect to their grandparent, Node 3. At this point a
“race condition” exists between Node 12 and Node 13. Whichever node first connects to Node 3
will be allowed to join as its child. In this case we assume that Node 12 arrives first and is added
as a child of Node 3. Figure 31 (b) illustrates the state of affairs at this point. Node 13 then
attempts to connect to Node 3. Since Node 13 is a Type 1 High Priority node, Node 3 has three
potential slots at which it could place Node 13. These are: (1) as a child of Node 12, (2) as a
child of Node 23, or (3) as a child of Node 15. Since Node 12 is the closest potential parent to
the root of the tree, Node 3 tells Node 13 to connect to Node 12. Node 13 then connects to Node
12 causing it to bump Node 21, a Type 1 Normal Priority Node. As Node 12 bumps Node 21, it
tells the node to connect to Node 13 for a connection path. The situation at this point is
illustrated in Figure 31 (¢). Node 13 tells Node 21 to connect to Node 22. Node 21 does so,
causing Node 22 to bump its Type 0 Normal Priority child, Node 31. Node 31 attempts to
connect to Node 21 but is rejected and must climb its path. Eventually, Node 31 finds a home as
a child of Node 32.

[0099] While the invention has been particularly shown and described with reference to a
preferred embodiment thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the spirit and scope of

the invention.

-21 -

WO 2010/031001 PCT/US2009/056855

CLAIMS

What is claimed is:
1. A distributed broadcast network, comprising:

a plurality of nodes organized into a binary tree structure where the connections
between nodes represent communication paths over a communications network,
said network further organized to include three types of nodes, designated: t0, t1,
and t2;

the TO nodes having a single parent node that feeds the TO node with one or more
data streams, the TO node having no (zero) child nodes that receive data from the

TO node;

the T1 nodes having a single parent node that feeds the T1 node with one or more
data streams, the T1 node being configured to have no more than one child node

that receives data from the T1 node; and,

the T2 nodes having a single parent node that feeds the T2 node with one or more
data streams, the T2 node being configured to have no more than two children

nodes that receive data from the T2 node.

2. The system of claim 1, restricted such that no T2 node can receive data from a node

designated as T1.

3. The system of claim 1, wherein said nodes comprise one or more computers, set top box
devices, game consoles, routers, or other physical devices, or some combination of these

devices.

4. The system of claim 1, wherein said communications network comprises the Internet, a local

area network, a wide area network, or a combination of such networks.

2.

PCT/US2009/056855

WO 2010/031001

1/21

., = \1 =
© Z VYoo = Z
P =y
A..IQ\\\\

| S—— ¥
e

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

T1H

TalI

S G erreecreed, S U6 L

Lz

{
{
{
{
{
{
A

(4

(&}

/

T4

: O
22 D Jrecerech 22 B Y,

TOr

PCT/US2009/056855

NRKNIlA T lamuias L+ an

At tha Aana)
rarnanfiniiratin

N NlA A nants ’.

NlAFAAsAnnanta /ar
hiimme S KA sdalle 1S4,
At FuihilrinC

ANALArnrnnantan bk

I~ ltn nna i CanAd hain
1A ANAlCtalla 11 A Anrm)

c

FNMIlACEAllas 11 4 £ An
niad e1 Aalimalas A4 70

12 nath and ~rAntin
ir1 o nle Tha A -~

newas Areomnla

WO 2010/031001 PCT/US2009/056855
3/21

(1) (@) ©)

\\\

N
\\\\ \\\ ‘

1. User clicks X or file/close on node 2. Node 2 constructs the depart packet which contains information telling each node what
actions to take. It will tell node 3 to connect to its (node 2's) parent which is Node 1. It will tell node 4 where to go based on the
recommended parent list for node 3. It constructs a path for node 4 and places it in the depart packet. This path would be [Node
3,Node 1, ...].

2. Node 2 sends the depart packet to its children and its parent. This packet tells its recipients the id of the parent, green child,
and red child of the departing node. Each node then compares its id with the id’s of the parent, green child and red child to
determine its relationship with the departing node. Each node then takes the action corresponding to its relationship with the
departing node.

3. Node 3 constructs and sends the depart propagate packet to its children. This packet is propagated to node 3's subtree. The
depart propagate packet is altered at each level and customized for the particular node’s children. In other words, upon receipt
of the depart propagate packet, each node modifies the packet based on what its children should do and sends it if it deems
sending is necessary. The purpose of the depart propagate packet is to reconfigure the subtree of the departing node. Each T2
child of the departing node may construct and send a depart propagate packet based on its subtree.

Fig. 3

—
N
~—

.
%,

<
“
\\\
I
“

W
o
_
o
o

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is told to cross connect to node 3.

O\

2. Node 3 climbs to node 1 and node 4 cross connects to node 3.

Fig. 4

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

4/21

N
\\\\\
N

S
o
o
R
o
@ '

PCT/US2009/056855

this case.

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is placed by node 2 in node 3's subtree based

on node 3's recommended parent list.

2. Node 3 climbs to node 1 and node 4 connects to its recommended parent which is 3 in

Fig, 5

o
\\\\\
o
L

such as is described in Figure 2.

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is placed by node 2 in node 3's subtree based
on node 3's recommended parent list.

2. Node 3 climbs to node 1 and node 4 connects to its recommended parent which is 3 in
this case. Note that if 4 and 3 were dragging chains, a chain reconfiguration would occur

SUBSTITUTE SHEET (RULE 26)

Fig. 6

WO 2010/031001 PCT/US2009/056855
521

(1) (2)

©
©

@ Jw),
%,

J

S
\\\
N

=
o
RO
o
@ ’

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is placed by node 2 in node 3's subtree based
on node 3's recommended parent list.

2. Node 3 climbs to node 1 and node 4 connects to its recommended parent which is 3 in
this case.

Fig. 7

S

o

\\\\\\
™o

=
o
o
=
o I

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is told to climb its path.

2. Node 3 climbs to node 1 and node 4 climbs its path.

Fig. 8

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
6/21

o
N
“

N

o N

o N

T N

™ N

o N
o N

1. Node 2 gracefully departs. Node 2 sends the depart packet to its parent and its children.
Node 3 is told to climb to node 1 and node 4 is placed by node 2 in node 3's subtree based
on node 3's recommended parent list.

2. Node 3 climbs to node 1 and node 4 connects to its new parent which is 3 in this case.

Fig. 9

(1)
1)
T
@ 1. Node 2 is shutdown gracefully. Node 2
¢ v sends out the depart packets.
T1 2. Node 3 connects to node 2's old parent
@ which is his grandparent, node 1.
3

Fig. 10

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

PCT/US2009/056855
7/21

M

.«“‘J lE

H

& A

3
o b
H
3

H

H

3

H

H

H

3

i

3

H

]

&
&
&

1. Node 2 is shutdown non-gracefully (e.g. client loses internet).

2. Nodes 3 and 4 lose connection to node 2. Thus, they climb their path to node 1.

3. Node 1 places them in the order in which they arrive. Image (3) shows one possible outcome.

Fig. 11

N
\\\\\
N
o

N
Ca N
0.““ ' N

1. Node 2 non-gracefully departs. Node 3 and node 4 detect that their parent has departed.
Both climb their path to their grandparent (node 1).

2. Node 1 places nodes 3 and 4 based on its recommended parent list. They will end up in
different places depending on who registers with node 1 first. Image (2) shows one possible
scenario.

Fig. 12

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
8/21

o
N
\\\\\
N
o

B Y

1. Node 2 non-gracefully departs. Nodes 3 and 4 detect that their parent has departed.

2. Nodes 3 and 4 climb their path to their grandparent (node 1). Node 1 places nodes 3 and
4 based on its recommended parent list. They will end up in different places depending on
who gets to node 1 first. Image (2) shows one possible scenario.

Fig. 13

2,
“,
%
%,

1. Node 2 non-gracefully departs. Nodes 3 and 4 detect that their parent has departed.
2. Nodes 3 and 4 climb their path to their grandparent (node 1). Node 1 places nodes 3 and

4 based on its recommended parent list. They will end up in different places depending on
who gets to node 1 first. Image (2) shows one possible scenario.

Fig. 14

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
9/21

(2)

R
o B
o~ .

d

S
\\\
N

o
o
S
S
o
@ .

1. Node 2 non-gracefully departs. Nodes 3 and 4 detect that their parent has departed.
2. Nodes 3 and 4 climb their path to their grandparent (node 1). Node 1 places nodes 3 and

4 based on its recommended parent list. They will end up in different places depending on
who gets to node 1 first. Image (2) shows one possible scenario.

Fig. 15

"
\\\
o
~

o
o
=
‘\&‘ i

1. Node 2 non-gracefully departs. Nodes 3 and 4 detect that their parent has departed.

2. Nodes 3 and 4 climb their path to their grandparent (node 1). Node 1 places nodes 3 and
4 based on its recommended parent list. They will end up in different places depending on
who gets to node 1 first. Image (2) shows one possible scenario.

Fig. 16

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
10/21

N
= ™
o \\\ H
= N N
oy §

1. Node 2 non-gracefully departs. Nodes 3 and 4 detect that their parent has departed.

2. Nodes 3 and 4 climb their path to their grandparent (node 1). Node 1 places nodes 3 and
4 based on its recommended parent list. They will end up in different places depending on
who gets to node 1 first. Image (2) shows one possible scenario.

Fig. 17

(1)
1 @)
T
1. Node 2 is shutdown non-gracefully.
Node 3 times out on its connection to node
2 :<> 2. Node 3 climbs its path to his
LT < grandparent, node 1.
@ 2. Node 1 accepts node 3 as its child.

Fig. 18

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

PCT/US2009/056855

M

@ ©)

)

1. Node 2 is shutdown gracefully.
2. Node 2 sends out the depart packets but node 4 fails to receive it.

3. Node 3 connects to node 1 correctly. Node 4 waits until its connection to node 2 times out and
then climbs its path to node 1.

4. Node 1 places node 4 in its sub tree if it can. If it can’t place node 4, it rejects node 4. Image (4)
shows one possible outcome.

Fig. 19

M

@ ©)

C)

1. Node 2 is shutdown gracefully.
2. Node 2 sends out the depart packets but node 3 fails to receive it.

3. Node 4 connects to the first node in the path it was given in the depart packet from node 2, which is
Node 3. Node 3's connection to node 2 times out and it climbs its path to node 1.

4. Node 1 places node 3 in its sub tree if it can. If it can't place node 3, it rejects node 3 and node 3
climbs its path, dragging node 4 with it. Node 1 should be able to accept node 3 as it should have an
open slot. Image (4) shows one possible outcome.

Fig. 20

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855

) @)

& =

\\\\
\\\\

K
: : “,
“,
%,
%,
K3

)

1. Node 2 is shutdown gracefully.
2. Node 2 send out the depart packets, but node 1 fails to receive it.

3. Node 4 connects to the first node in the path in the depart packet it was given by node 2, i.e. Node 3.
Node 3 connects to node 1. Node 1 clears node 3 from its NTM. If node 1's connection to node 2 has
timed out, it will place node 3 in its subtree correctly. If node 1's connection to node 2 has not timed out, it
will place node 3 based on its subtree which contains a node that has already left the network. In this
case, it will send node 3 to node 2. This connection will fail. Node 3 will then climb to node 1's parent for
placement.

4. Image (4) shows one possible outcome.

OO

™)
/?\@ ‘
< 74
| = /;/
\\\\\\\ / /

1. Node 2 is shutdown gracefully.

(4)
2. Node 2 sends out the depart packets but nodes 3 and 4 fail to receive it.
3. Nodes 3 and 4 timeout on their connections to node 2 and climb to their grandparent, node 1, for
N placement. Node 1 has been told by node 2's depart packet that it should expect node 3 to connect

™ to it. Thus, node 1 will wait for a certain window for node 3 to connect. If this window has not expired,
regardless of which node arrives first, node 3 will be accepted and node 4 will be placed normally
6 because node 1 has reconfigured its internal Network Topology Model based on the assumed
acceptance of node 3. Note that if this window expires, all registers are treated normally.

4. Image (4) shows one possible outcome.

Fig. 22

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

13/21

M

Ny
\\\
\\

PCT/US2009/056855
©)

©,

1. Node 2 is shutdown gracefully.
2. Node 2 sends out the depart packets but nodes 1 and 4 fail to receive it.

3. Node 3 connects to node 1. Node 1 is not expecting node 3. When node 1 gets the register from
node 3 it will remove node 3 and its sub tree from its NTM. It will the place node 3. If node 1 has
timed out on its connection to node 2, node 2 will not be in node 1's NTM nor its rp_list. Thus, node 3
will be placed correctly. If node 1 has not timed out on its connection to node 2, then node 3 may be
sent to node 2. This connection would fail and node 3 would climb to node 1's parent for placement.
Node 4 would timeout on its connection to node 2 and would climb to its grandparent, node 1, for
placement. Node 1 is not expecting node 4. Node 1 removes node 4 and its sub tree from its NTM
and places node 4 based on its updated NTM.

4. Image (4) shows one possible outcome.

N
"
I
N
N,

©)

@

@

1. Node 2 is shutdown gracefully.
2. Node 2 sends out the depart packets but nodes 1 and 3 fail to receive it.

3. Node 4 connects to the first node in the path given it by node 2 in the depart packet which, in this
case, is hode 3. Node 3 will receive the register from node 4 and place it normally. Node 3 will time
out on its connection to node 2 and climb its path to its grandparent, node 1, for placement. Node 1
will not be expecting node 3. Node 1 will remove node 3 and its sub tree from its NTM. It will then
place node 3.

4. Image (4) shows one possible outcome.

Fig. 24

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001

(1

N
™
\\\\
N
R

PCT/US2009/056855

1. Node 2 is shutdown gracefully.
2. Node 2 sends out the depart packets but hodes 1, 3 and 4 fail to receive it.

3. If all three nodes fail to receive the depart packet, the depart becomes non-graceful and acts
accordingly.

4. Image (4) shows one possible outcome.

Fig. 25

(=
N
)

i T0 < T2 T2
\K L M
i N

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
15/21

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855
16/21

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001
17/21

PCT/US2009/056855

//

O O-0-6
@ O-&

1
T2N
T
O .
™ N
— S—_
. ..
e i,
o o
o g
e o
= e,
e e
3
T2N
e R,
o s e 2
R g - vy
e R ot M
Rt S e o
7
T2N

14 15
TIH TIH
\ \
A A
23 24
TIH TIN

Full Tree

£

@-@-O-O
@-@-@

N N N
N N N
22 23 24
TIN TiH TIN
N N N
N N N
31 32 33
TON TIN TIN
N
N

D,

Node 2 leaves the tree

Fig. 30 (a)and (b)

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855

Node 5 is told to priority join to Node 4.

Node 4 is told to connect to Node 1 by the departing Node 2. @

Node 5 connects to Node 4, which bumps Node 9 and its subtree.
Node 9 is given a connection path from Node 4

Fig. 30 (¢)and (&)

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855

e e,
- o~
o g
ot e,
o o
oo Ly
..«-I\\ W
o ~ S S
o N s M
- .,
. .
TN
SN } >
o " § o = \\
; S

o .
Sag

N TIH : %
Q TD LTON S

N
N

OO

O-@-O-@,
O-@-@
O-O-O—@

GICEON
glelese

Node 9 connects to Node 25, which bumps Node 34
Node 25 tells Node 34 to go to Node 9 for its connection path.

F
F

EXS
S

Rl Ry
o , o .
o N o o
Mo, o N

“
. RN
18
TiH
.
N

I
2
7
O-@-@-C

OO OO
O-O-O-@

Node 34 connects to Node 17, which bumps Node 26.
Node 17 doesn't have a place for 26, so Node 26 climbs up its path until it finds a place to go.
Node 26 reaches Node 4 which connects Node 26 to Node 29.

Fig. 30 (¢) and (§)

SUBSTITUTE SHEET (RULE 26)

WO 2010/031001 PCT/US2009/056855

20/21

1
T2N

A

S
s,
anan
o
R N
SRRRERE g
Y A
o g

o
3
T2N

)O-@-O-@

TIN

A
21
TIN TIN
\
N
0
TIN
Y
i

O-O-O-@

Node 6 Non-Graceful Depart

{F

1
T2N

S,
ana
s
. s
WERR .
L e
o

s
3
T2N

-
RS S
o e
N v

12
TiH

N
T =N

[TV

-@-@-@

O-O-@-@

29
TIN TIN

26 17
TIN TOL TIN

clefefoRone

4

©@-@-@

Node 12's and Node 13's connections to 6 time out.
They both go to their grandparent and then get placed as a new register.
In this case, Node 12 gets there first and is placed in the open slot of Node 3.
Node 13 gets its new connection path from Node 3.

Fig. 31 (a) and (b)

{a

SUBSTITUTE SHEET (RULE 26)

e

WO 2010/031001 PCT/US2009/056855
21/21

1
T2N

S,

S

AR A

RN R SR

IR S
g,

nrnsnins,

=
L Z O

TIN

@ OO

TIN

O®
-0

Node 13 connects to Node 12, which bumps Node 21 and its subtree.
@7 Node 21 is given its new connection path by Node 12. @7

Node 12 sends Node 21 to Node 13 for placement.

1
T2N

e
s
S,
.
e
e
s

®

TIN

TOL

OO

Node 21 connects to Node 22, which bumps Node 31.
Node 31 climbs its path until it reaches a node where it can be placed.
Node 3 places Node 31 at Node 32.

Fig. 31 (¢)and (&)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 09/56855

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 15/16 (2009.01)
USPC - 709/233

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC - 709/233

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 370/323; 370/325; 370/395.2; 709/201; 709/216; 709/225 -- text search, see search terms below

console, router, configuration, type

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (PGPB,USPT,EPAB,JPAB); Google; Search Terms Used:
network, broadcast, distribution, repeat, forward, binary tree, node, parent, child, one, two, no, capability, support, stream, set top,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006/0212596 A1 (O'Neal et al.) 21 September 2006 (21.09.2006), especially Fig 5, 21 and | 1-4
para [0015], [0055]-[0058], [0093], [0095]{0101], [0141], [0154]-[0157]
A US 2006/0282405 A1 (Koffron) 14 December 2006 (15.12.2006), entire document 1-4
A US 7,260,716 B1 (Srivastava) 21 August 2007 (21.08.2007), entire document 1-4
A US 7,180,887 B1 (Schwaderer et al.) 20 February 2007 (20.02.2007), entire document 1-4

[:l Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the intemational filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

12 November 2009 (12.11.2009)

Date of mailing of the international Gearch report

13 JANZ01

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

