(54) 发明名称
一种沙坦联苯的制备方法

(57) 摘要
本发明公开了一种沙坦联苯的制备方法。本发明的技术方案要点为：一种沙坦联苯的制备方法，步骤如下：在氯气保护下，无水的条件下，以对氯甲苯为原料与镁粉在溶剂中进行格氏反应，然后在催化剂催化作用下再与氯苯胺偶联，即制得沙坦联苯。本发明在沙坦联苯合成反应体系中加入Ni(II)/Mn(II) 复合催化剂提高了反应活性，增强了反应的选择性，催化剂价格相对较低，易于回收，减少了后处理的难度，降低了生产成本，后处理精制过程采用重结晶方法，进一步提高了产品纯度，得到白色产品，更易于工业化操作。
1. 一种沙坦联苯的制备方法，其特征在于步骤如下：在氨气保护、无水的条件下，以对氯甲苯为原料与镁粉在溶剂中进行格氏反应，然后在镍锰复合催化剂的催化作用下再与邻氯苯腈相偶联，即制得沙坦联苯。

2. 根据权利要求1所述的沙坦联苯的制备方法，其特征在于包括以下具体步骤：(1)、格氏反应，在氨气保护、无水的条件下，以对氯甲苯为原料与镁粉在溶剂中进行格氏反应制得格氏试剂；(2)、偶联反应，在镍锰复合催化剂的催化作用下，将步骤(1)制得的格氏试剂与邻氯苯腈在溶剂中发生偶联反应，制得沙坦联苯，然后用酸性溶液调至酸性，直接蒸馏，得粗品；(3)、精制，将步骤(2)制得的沙坦联苯在重结晶溶剂的作用下重结晶得到白色产物沙坦联苯，主要反应方程式为：

步骤(1)

步骤(2)

3. 根据权利要求1或2所述的沙坦联苯的制备方法，其特征在于所述的对氯甲苯、镁粉和邻氯苯腈的物质的量之比为n(对氯甲苯)：m(镁粉)：n(邻氯苯腈)=1:1-4:1-4。

4. 根据权利要求1或2所述的沙坦联苯的制备方法，其特征在于所述的对氯甲苯与镍锰复合催化剂的质量比为m(对氯甲苯)：m(镍锰复合催化剂)=1:0.02-5。

5. 根据权利要求1或2所述的沙坦联苯的制备方法，其特征在于所述的溶剂为乙醚、甲苯、二甲苯或四氢呋喃中的一种或两种以上任意比例混合的混合物。

6. 根据权利要求1或2所述的沙坦联苯的制备方法，其特征在于所述的镍锰复合催化剂为Ni(II)/Mn(II)复合催化剂，其中镍锰为镍化镍、氯化镍、硫酸镍、氨基磺酸镍或溴化镍，锰锰为氯化镍或硫酸镍。

7. 根据权利要求2所述的沙坦联苯的制备方法，其特征在于所述步骤(1)中的反应温度为30-80℃，反应时间为1-5h。

8. 根据权利要求2所述的沙坦联苯的制备方法，其特征在于所述步骤(2)中的反应温度为-20-20℃，反应时间为1-7h。

9. 根据权利要求2所述的沙坦联苯的制备方法，其特征在于所述步骤(2)中的酸性溶液为盐酸、硫酸或醋酸中的一种或两种以上任意比例混合的混合物。

10. 根据权利要求2所述的沙坦联苯的制备方法，其特征在于所述步骤(3)中的重结晶溶剂为乙酸乙酯、石油醚、丙酮或二甲苯中的一种或两种以上任意比例混合的混合物。
一种沙坦联苯的制备方法

技术领域
[0001] 本发明涉及催化合成药物中间体领域，具体涉及一种沙坦联苯的制备方法。

背景技术
[0002] 沙坦联苯的分子结构式：

目前治疗高血压、心脏病、中风、肾炎等循环系统疾病疗效较好的药物是血管紧张素Ⅱ[简称 A（Ⅱ）]拮抗体药品，如洛沙坦、替米沙坦、缬沙坦、伊普沙坦、伊贝沙坦。而沙坦联苯（2-氰基-4’-甲基联苯，OTBN）是合成这些优秀的拮抗体药品的基础中间体，在我国制药行业已经大量使用，同时它是合成液晶材料的中间体。

[0003] 随着国内抗高血压沙坦类药物市场的不断扩大，目前国内外对于药物中间体—沙坦联苯的需求量逐年增长。但由于其生产技术难度大、设备繁杂、可操作性差、工业生产投入高、专利保护等原因，只有少数外国公司拥有此项产品的生产技术，国内尚处于开发及小量生产阶段。因此这种中间体的开发研究和生产，备受国内各化工、制药企业的重视。

[0004] 查阅近几十年的国内外文献可知，沙坦联苯有多种合成方法，主要的合成方法有保护基多步法，芳构化闭环合成法和过渡金属催化还原法。

[0005] （1）保护基多步法

以邻甲氧基苯甲酸或茴香醛为原料，通过 Meyer 反应，首先生成嗪啉加以保护，再和对溴甲苯制成的格氏试剂发生消除甲氧负离子合成沙坦联苯。该方法缺点为污染较大，总收率低，反应路线较长，辅助材料消耗多，反应试剂多，设备要求高，不宜进行产业化生产。

[0006] 以邻甲氧基苯甲酸为原料的反应合成路线如下：
（2）芳香化闭环合成法

Dormoy 等人用 2-氯-N-环己基苯甲醛亚胺或 2-氯-N-正丁基苯甲醛亚胺经三步反应制备了沙坦联苯。该方法合成步骤较少，原料廉价易得，但总体收率不高（约 65%）。

[0007] 以 2-氯-N-正丁基苯甲醛亚胺为原料的合成路线如下：

（3）过渡金属催化还原法

以过渡金属作催化剂催化有机合成反应具有选择性高、反应步骤短、条件温和、收率高及环境污染少等优点，随着催化科学的发展，已经成为研发的热点。主要的催化剂体系有 Mn(0)/Mn(II) 催化、Ni(II)/Zn(0) 催化、Zn(II)/Ni(0) 催化和 Pd(0) 催化等。但该方法也存在一定的缺点，例如反应副产物较多，有的催化剂价格昂贵，利用率低，回收困难等。

[0008] 具体合成路线如下：
通过对以上沙坦联苯的合成方法比较，可以看出过渡金属催化偶联反应步骤简单，原料易得，催化效果较好，在沙坦联苯的合成中日益凸显出重要的地位，引起了广泛的关注，人们通过研究，不断地对金属催化剂进行改良进而提高产率，减少污染。因此，过渡金属催化偶联法制备沙坦联苯具有广阔的市场前景。

发明内容

[0009] 本发明的目的在于克服现有生产工艺上的不足，以金属催化法制为基础，采用
Ni(II)/Mn(II) 复合催化剂制得沙坦联苯，提供了一种产品收率高，操作简单，污染小，生产
成本低的沙坦联苯的制备方法。

[0010] 本发明的技术方案为：一种沙坦联苯的制备方法，其特征在于步骤如下：在氮气
保护，无水的条件下，以对氯甲苯为原料与镁粉在溶剂中进行格氏反应，然后在镍锰复合催
化剂的催化作用下再与邻氯苯腈相偶联，即制得沙坦联苯。

[0011] 本发明所述的沙坦联苯的制备方法，其特征在于包括以下具体步骤：（1）格氏反
应，在氮气保护，无水的条件下，以对氯甲苯为原料与镁粉在溶剂中进行格氏反应制得格式
试剂；（2）偶联反应，在镍锰复合催化剂的催化作用下，将步骤（1）制得的格式试剂与邻氯
苯腈在溶剂中发生偶联反应，制得沙坦联苯，然后用酸性溶液调至酸性，直接蒸馏，得粗品；
（3）、精制，将步骤（2）制得的沙坦联苯在重结晶溶剂的作用下重结晶得到白色产物沙坦联
苯，主要反应方程式为：

步骤（1）

步骤（2）

[0012] 本发明沙坦联苯的制备方法中，所述的对氯甲苯、镁粉和邻氯苯腈的物质的量之
比为 n（对氯甲苯）：n（镁粉）：n（邻氯苯腈）=1:1-4:1-4。

[0013] 本发明沙坦联苯的制备方法中，所述的对氯甲苯与镍锰复合催化剂的质量比为 m
（对氯甲苯）：m（镍锰复合催化剂）=1：0.02-5。

[0014] 本发明沙黄联苯的制备方法中，所述的溶剂为乙醚、甲苯、二甲苯或四氢呋喃中的一种或两种以上任意比例混合的混合物。

[0015] 本发明沙黄联苯的制备方法中，所述的镍锰复合催化剂为Ni（II）/Mn（II）复合催化剂，其中镍盐为硝酸镍、氯化镍、硫酸镍、氯化亚硝酸镍或氧化镍，锰盐为氯化锰或硫酸锰。

[0016] 本发明沙黄联苯的制备方法中，所述步骤（1）中的反应温度为30-80℃，反应时间为1-5h。

[0017] 本发明沙黄联苯的制备方法中，所述步骤（2）中的反应温度为-20-20℃，反应时间为1-7h。

[0018] 本发明沙黄联苯的制备方法中，所述步骤（2）中的酸性溶液为盐酸、硫酸或醋酸中的一种或两种以上任意比例混合的混合物。

[0019] 本发明沙黄联苯的制备方法中，所述步骤（3）中的重结晶溶剂为乙酸乙酯、石油醚、丙酮或二甲苯中的一种或两种以上任意比例混合的混合物。

[0020] 本发明与现有的技术相比，具有如下优点：

（1）采用的Ni（II）/Mn（II）复合催化剂，成本低，活性高，用量少，性质稳定，易于回收，大大简化了后处理操作及金属催化剂残余问题；（2）本发明原料易得，操作简单，产品收率高，选择性好；（3）本发明后处理方法无须使用有机溶剂萃取，直接蒸馏，降低了工业生产成本，减少了三废污染等问题。

[0021] 综上所述，本发明工艺路线先进，绿色环保，操作简单，具有工业推广应用价值。

具体实施方式

[0022] 以下通过实施例形式的具体实施方式，对本发明的上述内容做进一步详细说明，但不应该将此理解为本发明上述主题的范围仅限于以下的实施例。凡基于本发明上述内容实现的技术均属于本发明的范围。

[0023] 实施例1

在氮气保护，无水条件下，向已经充分烘干的反应器里，加入四氢呋喃790.6ml，搅拌，再投入镁屑47.9g，升温至80℃，开始滴加对氯甲苯252g，控制滴加速度，使温度保持在80℃左右，滴加完毕，保温反应5h，降至室温，得格氏试剂直接作下步反应。

[0024] 在反应器中加入四氢呋喃790.6ml，邻氯苯腈274g，氯化镍2.52g，氯化锰2.52g，搅拌，降温至-20℃，滴加上一步格氏试剂，控温-20℃左右，滴加完毕，反应7h，滴加质量浓度为30%的盐酸，调节至酸性，蒸出溶剂，得粗品。所得粗品用乙酸乙酯重结晶，所得固体用真空干燥箱干燥后，得产品沙黄联苯，性状为白色结晶性粉末。总收率为87.2%，熔点为49℃。

[0025] 实施例2

在氮气保护，无水条件下，向已经充分烘干的反应器里，加入乙醚1870ml，搅拌，再投入镁屑384.0g，升温至30℃，开始滴加对氯甲苯504.1g，控制滴加速度，使温度保持在30℃左右，滴加完毕，保温反应1h，降至室温，得格氏试剂直接作下步反应。

[0026] 在反应器中加入乙醚1870ml，邻氯苯腈548.6g，氯化镍126.1g，硫酸锰126.1g，搅拌，控温至20℃，滴加上一步格氏试剂，控温20℃左右，滴加完毕，反应1h，滴加质量浓度为
30%的硫酸，调节至酸性，蒸出溶剂，得粗品。所得粗品用丙酮重结晶，所得固体用真空干燥箱干燥后，得产品沙坦联苯，性状为白色结晶性粉末。总收率为88.1%，熔点为48℃。

【0027】实施例3
在氨气保护，无水条件下，向已经充分烘干的反应器里，加入甲苯5L，搅拌，再投入镁屑384g，升温至50℃，开始滴加对氯甲苯1kg，控制滴加速度，使温度保持在50℃左右，滴加完毕，保温反应3h，降至室温，得格氏试剂直接用作下步反应。

【0028】在反应器中加入甲苯4L，邻氯苯腈3.4kg，硫酸锰2.5kg，氯化钠2.5kg，搅拌，控温至0℃，滴加上步骤格氏试剂，控温0℃左右，滴加完毕，反应3h，滴加质量浓度为30%的硫酸和醋酸的混合酸性溶液，调节至酸性，蒸出溶剂，得粗品。所得粗品用二甲苯重结晶，所得固体用真空干燥箱干燥后，得产品沙坦联苯，性状为白色结晶性粉末。总收率为88.1%，熔点为48℃。

【0029】实施例4
在氨气保护，无水条件下，向已经充分烘干的反应器里，加入二甲苯4.6L，搅拌，再投入镁屑381g，升温至60℃，开始滴加对氯甲苯1kg，控制滴加速度，使温度保持在60℃左右，滴加完毕，保温反应4h，降至室温，得格氏试剂直接用作下步反应。

【0030】在反应器中加入二甲苯4.5L，邻氯苯腈3.9kg，氨基磺酸钠500g，硫酸锰500g，搅拌，控温至0℃，滴加上步骤格氏试剂，控温0℃左右，滴加完毕，反应4h，滴加质量浓度为30%的醋酸溶液，调节至酸性，蒸出溶剂，得粗品。所得粗品用丙酮和二甲苯的混合溶剂重结晶，所得固体用真空干燥箱干燥后，得产品沙坦联苯，性状为白色结晶性粉末。总收率为88.5%，熔点为48℃。

【0031】实施例5
在氨气保护，无水条件下，向已经充分烘干的反应器里，加入二甲苯4.6L，搅拌，再投入镁屑381g，升温至60℃，开始滴加对氯甲苯1kg，控制滴加速度，使温度保持在60℃左右，滴加完毕，保温反应2h，降至室温，得格氏试剂直接用作下步反应。

【0032】在反应器中加入二甲苯4.6L，邻氯苯腈3.9kg，溴化钠1500g，硫酸锰1500g，搅拌，控温至10℃，滴加上步骤格氏试剂，控温10℃左右，滴加完毕，反应3h，滴加质量浓度为30%的硫酸和盐酸的混合酸性溶液，调节至酸性，蒸出溶剂，得粗品。所得粗品用石油醚和二甲苯的混合溶剂重结晶，所得固体用真空干燥箱干燥后，得产品沙坦联苯，性状为白色结晶性粉末。总收率为87.9%，熔点为49℃。

【0033】以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解，本发明不受上述实施例的限制，上述实施例和说明书中描述的只是说明本发明的原理，在不脱离本发明原理的范围内，本发明还会有各种变化和改进，这些变化和改进均落入本发明保护的范围内。