

US 20030221441A1

(19) United States

(12) **Patent Application Publication** (10) **Pub. No.: US 2003/0221441 A1 Hong** (43) **Pub. Date: Dec. 4, 2003**

(54) OPERATIONAL STRUCTURE OF IMPELLER ASSEMBLY FOR AIR COOLER

(75) Inventor: Soon Il Hong, Suwon-Si (KR)

Correspondence Address: Frank Chau F. Chau & Associates, LLP 1900 Hempstead Turnpike, Suite 501 East Meadow, NY 11554 (US)

(73) Assignee: PASECO CO., LTD.

(21) Appl. No.: 10/452,676

(22) Filed: May 30, 2003

(30) Foreign Application Priority Data

May 30, 2002 (KR)......2002-30433

Publication Classification

(57) ABSTRACT

An operational structure of an impeller assembly for an air cooler is provided. The operational structure of an impeller

assembly for an air cooler includes: a casing having a water collector provided on the bottom thereof; a moisture absorption pad provided in the casing, for absorbing water; an air blowing fan which is disposed in front of the moisture absorption pad and rotates; a water spreader provided in the upper portion of the casing, spraying water to the moisture absorption pad; a connection tube connecting the water spreader and the water collector with each other; and an impeller assembly supplying water contained in the water collector to the water spreader through the connection tube. The impeller assembly includes: impeller wings rotatably provided in the water collector; a rotational shaft whose one end is combined with the impeller wings to rotate the impeller wings and other end is disposed in the casing; a driven gear combined with the other end of the rotational shaft; and a driving gear integrally installed on the driving shaft of a driving motor rotating the air blowing fan, and mutually combined with the driven gear to rotate the driven gear. Accordingly, an air cooler adopting the operational structure of the impeller assembly can rotate impeller wings consistently irrespective of the temperature change in the atmosphere, which is advantageous for high-speed rotation of impeller wings, and which thus remarkably suppress its durability from lowering due to wear of the parts.

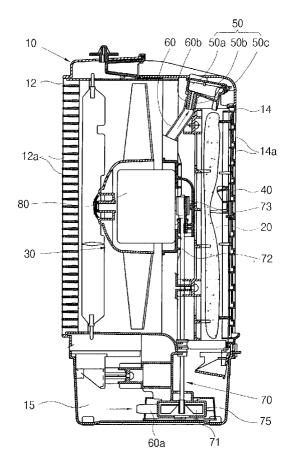


FIG. 1

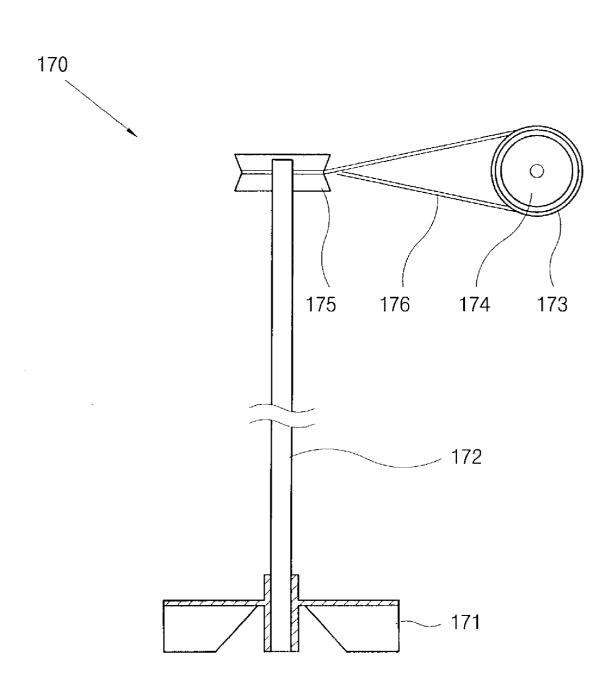


FIG. 2

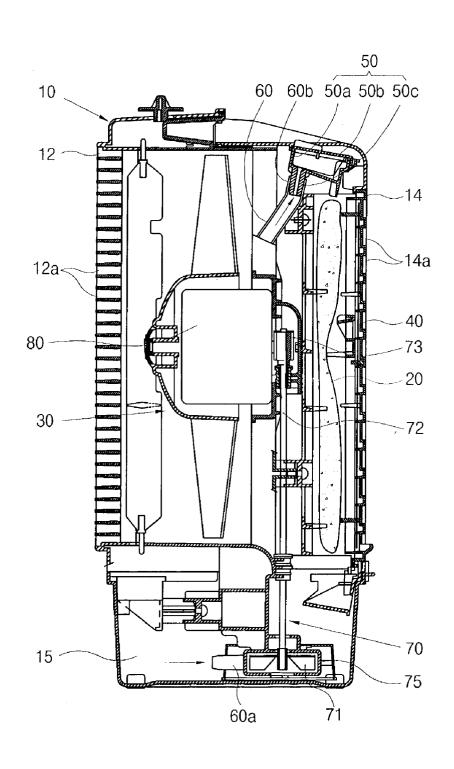


FIG. 3

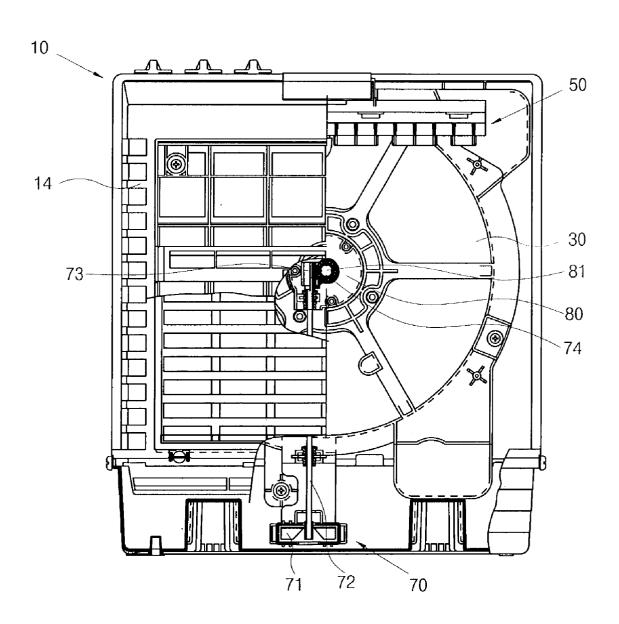


FIG. 4

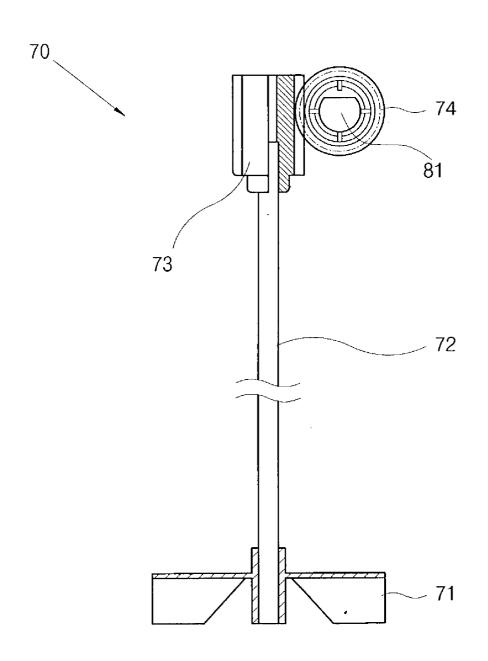
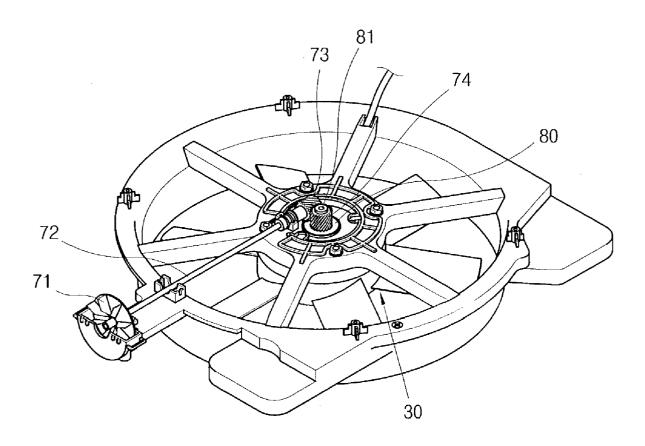



FIG. 5

OPERATIONAL STRUCTURE OF IMPELLER ASSEMBLY FOR AIR COOLER

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to an operational structure of an impeller assembly for an air cooler, and more particularly, to an impeller assembly operational structure for an air cooler, which can rotate impeller wings consistently irrespective of the temperature change in the atmosphere, which is advantageous for high-speed rotation of impeller wings, and which thus remarkably suppress its durability from lowering due to wear of the parts.

[0003] 2. Description of the Related Art

[0004] As is well known, an air cooler uses a latent heat evaporated by water and air-blows cooled air whose temperature is lower than the normal temperature, through an air blower

[0005] The air cooler includes: a casing having a water collector provided on the bottom thereof; a moisture absorption pad provided in the casing, for absorbing water; an air blowing fan which is disposed in front of the moisture absorption pad and rotates; a water spreader provided in the upper portion of the casing, spraying water to the moisture absorption pad; a connection tube connecting the water spreader and the water collector with each other; and an impeller assembly supplying water contained in the water collector to the water spreader through the connection tube.

[0006] The detailed description of the air cooler will be described later. Here, only an impeller assembly disclosed in a conventional air cooler will be described below.

[0007] As shown in FIG. 1, a conventional impeller assembly 170 includes: impeller wings 171 rotatably provided in a water collector (not shown); a rotational shaft 172 whose one end is combined with the impeller wings 171 and other end is disposed in a casing; a driven pulley 175 combined with the other end of the rotational shaft 172; a driving motor 174; and a driving pulley 173 installed on the driving shaft of the driving motor 174; and a belt 176 mutually combining the driving pulley 173 and the driven pulley 175.

[0008] When power is applied to the impeller assembly 170, the driving motor 174 rotates, and then the driving pulley 173 coupled to the driving shaft of the driving motor 174 rotates. The rotational force of the driving pulley 173 is transferred to the driven pulley 175 via the belt 176, and then makes the rotational shaft 172 rotate via the driven pulley 175.

[0009] As the rotational shaft 172 rotates, the impeller wings 171 provided in the lower portion of the rotational shaft 172 also rotate. Then, water contained in the water collector is forwarded to a water spreader (not shown) via a connection tube (not shown) by a pumping method.

[0010] By the way, in the air cooler having the conventional impeller assembly, a belt can grow longer according to the temperature change in the atmosphere. As a result, the rotational speed of the impeller wings varies.

[0011] Also, since the conventional impeller assembly employs a pulley and belt structure, it is disadvantageous for

high speed rotation because of the belt. Also, durability of the impeller assembly is lowered due to wear of the belt. Also, the belt may be cut off due to the internal vibration or other external factors.

[0012] Accordingly, an air cooler adopting a pump motor has been proposed in order to solve the above conventional problems. However, in the case of the air cooler having a pump motor, an impeller assembly should be additionally provided.

SUMMARY OF THE INVENTION

[0013] To solve the above problems, it is an object of the present invention to provide an operational structure of an impeller assembly for an air cooler, which can operate through driving of gears, which can rotate impeller wings consistently irrespective of the temperature change in the atmosphere, which is advantageous for high-speed rotation of impeller wings, and thus remarkably suppress its durability from lowering due to wear of the parts.

[0014] To accomplish the above object of the present invention, there is provided an operational structure of an impeller assembly for an air cooler including: a casing having a water collector provided on the bottom thereof; a moisture absorption pad provided in the casing, for absorbing water; an air blowing fan which is disposed in front of the moisture absorption pad and rotates; a water spreader provided in the upper portion of the casing, spraying water to the moisture absorption pad; a connection tube connecting the water spreader and the water collector with each other; and an impeller assembly supplying water contained in the water collector to the water spreader through the connection tube, wherein said impeller assembly comprises: impeller wings rotatably provided in the water collector; a rotational shaft whose one end is combined with the impeller wings to rotate the impeller wings and other end is disposed in the casing; a driven gear combined with the other end of the rotational shaft; and a driving gear integrally installed on the driving shaft of a driving motor rotating the air blowing fan, and mutually combined with the driven gear to rotate the driven gear.

[0015] Here, the driving gears on the driving shaft and the driven gear on the rotational shaft are made of a pair of bevel gears combined with each other so as to rotate mutually and whose rotational direction varies.

[0016] Also, a worm is provided in one side of the driving gear on the driving shaft and the driven gear on the rotational shaft, and a worm gear is provided in the other side thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The above and other objects and advantages of the present invention will become more apparent by describing the preferred embodiment thereof in more detail with reference to the accompanying drawings in which:

[0018] FIG. 1 is a partially exploded sectional view of a conventional impeller assembly for an air cooler;

[0019] FIG. 2 is a lateral sectional view of an air cooler according to the present invention;

[0020] FIG. 3 is a partial rear view of the FIG. 2 air cooler;

[0021] FIG. 4 is a partial exploded sectional view of an impeller assembly according to the present invention; and

[0022] FIG. 5 is a perspective view of the assembled state of the impeller assembly according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0023] Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The same or like elements are assigned with the same or like reference numerals.

[0024] FIG. 2 is a lateral sectional view of an air cooler according to the present invention. FIG. 3 is a partial rear view of the FIG. 2 air cooler. FIG. 4 is a partial exploded sectional view of an impeller assembly according to the present invention. FIG. 5 is a perspective view of the assembled state of the impeller assembly according to the present invention.

[0025] As shown in FIGS. 2 through 5, an air cooler according to the present invention includes: a casing 10 forming an external appearance, having a water collector 15 provided on the bottom thereof; a moisture absorption pad 20 provided in the casing 10, for absorbing water; an air blowing fan 30 which is disposed in front of the moisture absorption pad 20 and rotates by a driving motor 80; a water spreader 50 provided in the upper portion of the casing 10, spraying water to the moisture absorption pad 20; a connection tube 60 connecting the water spreader 50 and the water collector 15 with each other; and an impeller assembly 70 supplying water contained in the water collector 15 to the water spreader 50 through the connection tube 60.

[0026] A plurality of cooled air discharging exits 12a are formed in the front surface 12 of the casing 10, and a plurality of air inhaling entrances 14a for inhaling external air into the casing 10 are formed in the rear surface 14 of the casing 10.

[0027] The moisture absorption pad 20 is provided in the casing 10 to be adjacent to the air inhaling entrances 14a, and disposed lengthily along the up-and-down direction of the casing 10.

[0028] The moisture absorption pad 20 is made of a material which possesses a property of easily absorbing moisture, for example, a synthetic fiber, sponge, etc.

[0029] An air filter 40 is mounted between the moisture absorption pad 20 and the rear surface 14 of the casing 10.

[0030] The air filter 40 is provided to filter air inhaled into the casing 10 through a plurality of air inhaling entrances 14a formed on the rear surface 14 of the casing 10.

[0031] Here, in order to prevent multiplication of bacteria and maintain cleanness of blown cooled air, the moisture absorption pad 20 and the air filter 40 should be washed or replaced every period since they can be detached from the casing 10.

[0032] The one end of the connection tube 60 is connected to an inhaling nozzle 60a disposed in the water collector 15, and the other end thereof is connected to a supply nozzle 60b connected to the water spreader 50.

[0033] Also, the water spreader 50 includes a spreader body 50a, a cover member 50b opening and closing the upper opening surface of the spreader body 50a, a nozzle 50c provided in the spreader body 50a, and combined with the supply nozzle 60b of the connection tube 60, and a plurality of spraying nozzles (not shown) provided in the side of the spreader body 50a, supplying water to the moisture absorption pad 20.

[0034] Accordingly, when the impeller assembly 70 is activated, the water contained in the water collector 15 is introduced via the inhaling nozzle 60a, and then is introduced into the spreader body 50a. via the supply nozzle 60b and the nozzle 50c of the water spreader 50, in turn.

[0035] The water introduced into the spreader body 50a is sprayed to the moisture absorption pad 20 via the plurality of spraying nozzles formed in the side of the spreader body 50a

[0036] Meanwhile, the impeller assembly 70 for pumping the water contained in the water collector 15 into the spreader body 50a via the connection tube 60 is schematically shown in FIGS. 4 and 5.

[0037] As shown in FIGS. 4 and 5, the impeller assembly includes: impeller wings 71 rotatably provided in the water collector 15; a rotational shaft 72 whose one end is combined with the impeller wings 71 to rotate the impeller wings 71 and other end is disposed at the central portion in the casing 10; a driven gear 73 combined with the other end of the rotational shaft 72; and a driving gear 74 integrally installed on the driving shaft 81 of a driving motor 80 rotating the air blowing fan 30, and mutually combined with the driven gear 73 to rotate the driven gear 73.

[0038] An impeller cap 75 is installed in the outer side of the impeller wings 71.

[0039] In order to rotate the impeller wings 71, the conventional art employs a pulley and belt structure. However, the air cooler adopting the operational structure of the impeller assembly according to the present invention connects the driven gear 73 directly with the driving gear 74 installed on the driving shaft 81 of the driving motor 80, in order to rotate impeller wings 71 consistently irrespective of the temperature change in the atmosphere, which is advantageous for high-speed rotation of impeller wings 71, and which thus remarkably suppress its durability from lowering due to wear of the parts.

[0040] As an embodiment, the driving gear 74 installed on the driving shaft 81 of the driving motor 80 and the driven gear installed on the rotational shaft 72 are rotatably combined with each other, and implemented by a pair of bevel gears whose rotational direction is varied.

[0041] In this case, when the driving motor 80 is driven, the driving gear 74 and the driven gear 73 which are implemented by a pair of bevel gears which are slantly engaged with each other are rotated directly, to thereby rotate the impeller wings 71.

[0042] Also, as another embodiment of the present invention, a worm is provided in one side of the driving gear 74 installed on the driving shaft 81 of the driving motor 80 and the driven gear installed on the rotational shaft 72, and a worm gear is provided in the other side thereof.

[0043] The worm and worm gear structure can also rotate the impeller wings 71 consistently by a gear operation of a mutual combination of a worm and a worm gear irrespective of the external air temperature change, and is advantageous for a high speed rotation of the impeller wings 71.

[0044] As described above, since the present invention rotates the impeller wings by using the mutually engaged gears, it can remarkably suppress lowering of the durability due to wear of the belt occurring in the belt and pulley structure of the conventional art.

[0045] The operational process of the air cooler in which the present invention is applied will be described as follows.

[0046] First, when power is applied, the driving motor 80 is rotated, and then the driving shaft 81 of the driving motor 80 is rotated. Then, the driven gear 73 mutually engaged with the driving gear 74 integrally installed on the driving shaft 81 is rotated.

[0047] Accordingly, the rotational shaft 72 supported and engaged with the driven gear 73 is also rotated together with the driven gear 73.

[0048] As a result, as the rotational shaft 72 rotates, the impeller wings 71 provided in the lower portion of the rotational shaft 72 also start to rotate.

[0049] Thus, when the impeller wings 71 starts to rotate, the water contained in the water collector 15 is introduced via the inhaling nozzle 60a, and then is introduced via the supply nozzle 60b and the nozzle 50c of the water spreader 50, in turn.

[0050] As the water introduced into the spreader body 50a is sprayed into the moisture absorption pad 20 via the plurality of spraying nozzles formed in the side of the spreader body 50a, the moisture absorption pad 20 is soaked by the sprayed water.

[0051] Meanwhile, as an air blowing fan 30 provided in the casing 10 rotates according to rotation of the driving motor 80, the external air is inhaled via the air inhaling entrances 14a formed in the rear surface 14 of the casing 10 according to the rotational force of the air blowing fan 30.

[0052] The inhaled air is filtered by the air filter 40, and then is transferred to the moisture absorption pad 20.

[0053] When air is supplied to the moisture absorption pad 20 via the air inhaling entrances 14a, an evaporation phenomenon occurs on the outer surface of the moisture absorption pad 20 by the supplied air, to thereby deprive the peripheral portion of latent heat.

[0054] The cooled air in the periphery of the moisture absorption pad 20 owing to the evaporated latent heat is discharged into the cooled air discharging exits 12a formed in the front surface 12 of the casing 10 by the air blowing fan 30. As a result, users can feel the cooled air.

[0055] As described above, the air cooler adopting the operational structure of the impeller assembly according to the present invention can rotate the impeller wings 71 consistently by improving the structure of the impeller

assembly 71, irrespective of the external air temperature change, and is advantageous for a high speed rotation of the impeller wings 71. Also, the present invention can remarkably suppress lowering of the durability due to wear of parts.

[0056] As described above, the present invention drives an impeller assembly of an air cooler through a gear structure, and provides an effect of maintaining a consistent rotation of the impeller wings irrespective of the external air temperature change, providing an advantageous high speed rotation thereof, and a remarkable suppression of its durability due to wear of parts, in comparison of the case that the impeller assembly is driven by using a conventional belt and pulley assembly.

[0057] The present invention is not limited in the above-described embodiments. It is apparent to one who is skilled in the art that there are many variations and modifications without departing off the spirit of the present invention and the scope of the appended claims.

What is claimed is:

1. An operational structure of an impeller assembly for an air cooler comprising: a casing having a water collector provided on the bottom thereof; a moisture absorption pad provided in the casing, for absorbing water, an air blowing fan which is disposed in front of the moisture absorption pad and rotates; a water spreader provided in the upper portion of the casing, spraying water to the moisture absorption pad; a connection tube connecting the water spreader and the water collector with each other; and an impeller assembly supplying water contained in the water collector to the water spreader through the connection tube,

wherein said impeller assembly comprises:

impeller wings rotatably provided in the water collector:

- a rotational shaft whose one end is combined with the impeller wings to rotate the impeller wings and other end is disposed in the casing;
- a driven gear combined with the other end of the rotational shaft; and
- a driving gear integrally installed on the driving shaft of a driving motor rotating the air blowing fan, and mutually combined with the driven gear to rotate the driven gear.
- 2. The operational structure of an impeller assembly for an air cooler as claimed in claim 1, wherein the driving gear on the driving shaft and the driven gear on the rotational shaft are made of a pair of bevel gears combined with each other so as to rotate mutually and whose rotational direction varies.
- 3. The operational structure of an impeller assembly for an air cooler as claimed in claim 1, wherein a worm is provided in one side of the driving gear on the driving shaft and the driven gear on the rotational shaft, and a worm gear is provided in the other side thereof.

* * * * *