
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0258977 A1

BAGHER et al.

US 20140258977A1

(43) Pub. Date: Sep. 11, 2014

(54)

(71)

(72)

(73)

(21)

(22)

METHOD AND SYSTEM FOR SELECTING
SOFTWARE COMPONENTS BASED ON A
DEGREE OF COHERENCE

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION, (US)

Inventors: Saeed BAGHERI, Croton On Hudson,
NY (US); Yi-Min CHEE, Yorktown
Heights, NY (US); Fan Jing MENG,
Beijing (CN); Piede ZHONG, Briarcliff
Manor, NY (US); Nianjun ZHOU,
Danbury, CT (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 13/787,164

Filed: Mar. 6, 2013

Software
Component ? Network(s)
Grouping
Manager

Information Processing
System

Y-102

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl.
CPC .. G06F 8/70 (2013.01)
USPC .. T17/120

(57) ABSTRACT
Disclosed is a novel system and method to select software
components. A set of available software components are
accessed. Next, one or more dimensions are defined. Each
dimension is an attribute to the set of available software
components. A set of coherence distances between each pair
of the available software components in the set of available
Software components is calculated for each of the dimensions
that have been defined. Each of the coherence distances are
combined between each pair of the available software com
ponents that has been calculated in the set of the coherence
distances into an overall coherence degree for each of the
available Software components. Using the overall coherence
degree, one or more software components are selected to be
included in a software bundle.

Software
Components

Information Processing
System

\ -104

Software
Components

Information Processing
System

N106

US 2014/0258977 A1 Patent Application Publication

Patent Application Publication Sep. 11, 2014 Sheet 2 of 7 US 2014/0258977 A1

FIG. 2

US 2014/0258977 A1 2014. Sheet 3 Of 7 9 Sep. 11 Patent Application Publication

US 2014/0258977 A1

dX

Sep. 11, 2014 Sheet 4 of 7 Patent Application Publication

US 2014/0258977 A1

Z 0|pung

Sep. 11, 2014 Sheet 5 of 7

0

Gsmsn?umqn ~g-******,**

Patent Application Publication

Patent Application Publication Sep. 11, 2014 Sheet 6 of 7 US 2014/0258977 A1

802

split IT Products into sets based On deduced rules streasino is never
Apply access analysis in different Sets

806

1 Any W Calculate Coherence
< other dimension? factor in this dimension

X y for different Sets - 808
s 810

Compute average coherence factors
812

Find IT products With Coherence
factors above threshold

814

Output IT product bundles
816

US 2014/0258977 A1 Sep. 11, 2014 Sheet 7 of 7 Patent Application Publication

F^) 806

US 2014/0258977 A1

METHOD AND SYSTEM FOR SELECTING
SOFTWARE COMPONENTS BASED ON A

DEGREE OF COHERENCE

BACKGROUND

0001. The present invention relates to software distribu
tions and more particularly to software selection and Software
grouping.
0002. A common practice in business is to have software
grouping for providing solutions to customers. Bundling or
grouping of Software components is quite a successful mar
keting strategy. For example, Software providers typically
bundle a word processor, a spreadsheet, and a database into a
single office suite, rather than offer these products individu
ally.
0003. With the development of cloud computing, it is
easier to provision Software through a virtualized environ
ment without the traditional installation and manual configu
ration. In cloud environments, IT solution providers offer
users a variety of Software components bundled together to
meet their business needs. In cloud computing environments,
there are multiple categories of software components that are
grouped or bundled together. A first category of Software
components bundled together is Software as a Service (SaaS).
Software components are bundled together under SaaS to
meet specific requirements of users, with Such bundles typi
cally hiding the underlying infrastructure from the end-users.
A second category of software components bundled together
is the images themselves used to build the virtualized envi
ronment. A third category of Software components bundled
together is the middleware bundles which can be composed
into any images to pre-build the software stacks for SaaS.
0004 Providing each of these categories of bundled soft
ware components to meet user requirements has resulted in a
large proliferation of custom software bundles. This prolif
eration of customized software bundles is costly. Each cus
tom Software bundle or custom Software image must be cre
ated, configured, tested, and maintained though upgrade and
Software maintenance practices such as installing Software
patches. Accordingly, a need exists to easily select and create
software bundles.

BRIEF SUMMARY

0005 Disclosed is a novel system and method to select
Software components. The method begins with accessing a
set of available software components, the set of available
Software components containing at least two software com
ponents. Next, one or more dimensions are defined. Each
dimension is an attribute to the set of available software
components. The dimensions at least include a provider of a
Software component, an industry a software component is
Supported, a function a software component performs, an
implementation of a software component, and an operating
system Support for a Software component. A set of coherence
distances between each pair of the available software com
ponents in the set of available software components. A coher
ence distance is calculated along each of the dimensions that
have been defined. An overall coherence degree for each pair
of the available Software components is computed by com
bining each distance of the pair of Software components.
Using the overall coherence degree, one or more Software
components are selected to be included in a software bundle.

Sep. 11, 2014

0006. In one example, the set of coherence distances
between each pair of software components is calculated using
a relationship ontology, assigning similarity factors for each
relationship kind in the relationship ontology, and construct
ing a semantic tree of the set of Software components.
0007. In another example, the set of a plurality of available
Software components being accessed includes one or more
binary coded operating systems, middleware applications,
and Software applications.
0008. In still another example, the software bundle is
assembled into a disk image with a specific operating system
for use on a cloud-enabled system.
0009. In yet another example, each of the coherence dis
tances are combined that has been calculated in the set of the
coherence distances into an overall coherence degree for each
of the available software components only when each of the
coherence distances are above a predefined threshold.
Optionally, the software components selected to be included
in a software bundle is performed only when there is no
conflict therebetween.

0010. The set of coherence distances may be calculated
between each pair of the available software components in the
set of available Software components along each of the
dimensions that have been defined by a coherence distance
d,' between each pair (II, II,) of the available software
components, using an equation d'-3'-f, where 3,
(B.) is a scalar metric value assigned to the component i (i.)
a dimension.
0011 Alternatively, the set of coherence distances are cal
culated between each pair of the available software compo
nents in the set of available software components along each
of the dimensions j that have been defined by a coherence
distanced, (1) along path 1 for each pair (TI, II) (from II, &2 1- 2
to II,) of the available software components, using an equa
tion

df = X (1 -a;) (sum),
lePi

O

d = (1 - a)
lePi

(product) where 0<C,<1. There is an ontology defining the
relationships of software components using a directed graph.
P, is a set of paths from II, to II, on the ontology graph, and
1 is a specific path in the set of paths. The value of C, is a
non-negative similarity/compatibility factor to define the
relationship of two directed neighboring components in path.
The distance of d itself is the minimum value of all the
paths.

0012. The combining each of the coherence distances
between each pair (II, II) of the available software compo
nents that has been calculated in the set of the coherence

distances into an overall coherence degreed, for each of the
available Software components includes using an equation

US 2014/0258977 A1

i k
i sk

dii -X. (d) i=l

m is a number of dimensions.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0013 The accompanying figures where like reference
numerals refer to identical or functionally similar elements
throughout the separate views, and which together with the
detailed description below are incorporated in and form part
of the specification, serve to further illustrate various embodi
ments and to explain various principles and advantages all in
accordance with the present invention, in which:
0014 FIG. 1 is a block diagram illustrating an operating
environment for grouping Software;
0.015 FIG. 2 is an illustration of a coherence factor in
different dimensions;
0016 FIG. 3 is an illustration of a relationship tree or a
relationship ontology;
0017 FIG. 4 is a specific example of a semantic tree of
FIG.3:
0018 FIG. 5 is a directed graph of the example from FIG.
4:
0019 FIG. 6 is a two-dimensional illustration of using the
coherence degree calculated to bundle Software components;
0020 FIG. 7 is a three-dimensional illustration of using
the coherence degree calculated to bundle Software compo
nents;
0021 FIG. 8 is a flow chart of an operational phase of
carrying out the present invention; and
0022 FIG.9 is a block diagram illustrating a detailed view
of an information processing system for carrying out the
operation of FIG. 8.

DETAILED DESCRIPTION

Overview of Common Selection Algorithms
0023. An “apriori algorithm, as used herein, refers to an
algorithm for learning association rules. See online URL
(http://en.wikipedia.org/wiki/Apriori algorithm) which is
hereby incorporated by reference in its entirety. Apriori algo
rithm is designed to operate on databases containing transac
tions for example, collections of items bought by customers,
or details of a website visits. Web-retailers want to cross-sell
or up-sell consumers and users. Stated differently, when a
user purchases an item A, the retailer is interested in present
ing other items the user would want to purchase as well—
Such as presenting an HDMI cable when a user purchases a
flat screen television. This type of selection identifies corre
lations between purchased items and other items based on a
user's transaction record. When the correlation between two
items is above a threshold, these two items are considered to
be related and hence presented together to the user. See for
example, C. Borgelt. Apriori-Finding Association Rules
with the apriori algorithm, free computer software under the
GLPL, at online URL (http://fuzzy.cs.uni-magdeburg.de/
borgelt/apriori/). Apriori algorithm is used to promote other
related products if users buy one product.
0024 “Correlation analysis’, as used herein, refers to cal
culating the spatial or temporal distance between two vari

Sep. 11, 2014

ables. See online URL (http://en.wikipedia.org/wiki/Correla
tion and dependence) which is hereby incorporated by
reference in its entirety. Correlation analysis has been applied
to find other key words related to a users input. Correlation
analysis has also been applied to determine user similarity.
Typically, Pearson’s correlation coefficient is used to calcu
late user similarity. If two people are similar, they may have
similar preferences for product items. Based on the similarity,
product providers recommend products for users.
0025 “Profit maximization', as used herein, refers to the
process of determining the price and output level the returns
the greatest profit. See online URL (http://en.wikipedia.org/
wiki/Profit maximization) which is hereby incorporated by
reference in its entirety. Profit Maximization is used to get
maximal profit by product providers. They get the maximal
profit mainly through sale’s policy. And they bundle the prod
ucts that is not based on user's preference but for economic
purpose.
0026. With any of these technologies such as apriori algo
rithm from data mining domain, correlation analysis from
information retrieval domain, and profit maximization. It is a
challenge to set a proper threshold. For example, two items
may be transitively related even though their correlation is
low.

Overview

0027. Unlike traditional correlation analysis, the present
invention selects Software components to bundle based on a
coherence degree. The present invention is not based on his
tory data of software usage. The coherence of software com
ponents themselves is analyzed, but not from the historical
data from users. The use of coherence factors describes the
inner relationship between software components more
exactly. Unlike profit maximization, the present invention
does not select Software components to group based on profit,
but rather from their inner relationship.
0028. The present invention identifies software to bundle
based on coherence distance analysis between Software prod
ucts. In order to identify the software to bundle, a coherence
degree is used to compute the feasibility ofbundling software
components together by considering multiple dimensions
Such as provider, industry and function. Some dimensions can
be analyzed using simple Euclidean distance values. Other
dimensions can be characterized by a relationship tree, where
each Software product is modeled as a node of a graph struc
ture represented by a semantic tree. For these dimensions,
relationships are defined and a similarity/compatibility factor
is used to calculate a coherence distance for two components.
Product bundles are defined based on this coherence analysis.

Operating Environment

0029 FIG. 1 illustrates one example of an operating envi
ronment according to one embodiment of the present inven
tion. In particular, FIG. 1 shows a plurality of information
processing systems 102, 104,106 communicatively coupled
to one or more networks 108. For example, system 102 runs
a software program to carry out a selection of software com
ponents being assessed from file systems such as Software
repositories 104 and 106 over the network(s) 108. The soft
ware repositories 104 and 106 can include preconfigured
software bundles or just software components or both. Users
access/interact with an interactive environment on system
102 via a user interface or programmatically via an applica

US 2014/0258977 A1

tion programming interface(s) (API). Examples of the user
interface are a web browser, an application, etc. The interac
tive environment, in one embodiment, is a web page, appli
cation, service, etc., that allows a user to specify requirements
for a software bundle.

Modeling Examples

0030. First, a bundled software solution is modeled as a
graph structure represented by a semantic tree. Each leaf of
the semantic tree represents an individual enablement arti
fact, such as a product from a software vendor. The top of the
tree represents the Software capabilities and functions to sat
isfy specific business goals. The traversing from the top to
bottom reflects the specification process of finding a Software
product. The process of coherence analysis start from defin
ing a threshold and is completed by creating multiple parti
tions of the graph. Coherence degrees are calculated between
any two products by combining all the coherence distances
from different dimension. Second, a threshold is defined such
that two products can be combined together if their coherence
is bigger than the defined threshold. Third, a starting point is
found and the semantic tree is searched for all software prod
ucts that can coexist with it. Fourth, all software products that
can coexist for all leafnodes of the semantic tree are identified
by repeating the second step. Last, all product sets that their
items can coexist each other are outputs as possible product
bundles.

0031. The present invention provides the advantage of
performing coherence analysis directly based on Software
products without needing any customer or user data. This
saves a tremendous amount of time and the attendant costs by
eliminating the requirement to collect this user data. The
results of the coherence analysis are provided to cloud solu
tion providers to more efficiently bind software products.
0032. The following mathematical symbols are used to
describe the coherence analysis.

0033 n is the number of total software components.
0034) II, is the software component i, i=1,..., n.
0035 T is a set of all available software components,

where T-II, II,..., II, T=n.

0.036 d., is a coherence distance for a specific dimen
sion j, which is the distance within the dimension of
coherence space between software component II and
II.

(0037 d is a coherence degree, which is the overall
distance in coherence space between Software compo
nent II and II. It is measured along multiple dimen
sions.

0038. The process of coherence analysis from provider's
dimension will be used as an example to illustrate how to
calculate a coherence degreed. A similar process to calculate
the coherence degree in different dimensions. An example of
a coherence degree in different dimensions is illustrated in
FIG 2. d' is the coherence distance between software
component II and II along coherence dimension j. The
following mathematical equation is used to compute coher
ence degreed, with multiple dimensions,

Sep. 11, 2014

l EQ. 1
i ; : *

dii -(). ii)

0039. In the case of k=2, it is just a well-known Euclidean
norm used for geographic distance. Here, m represents the
number of coherence dimensions. For example, Suppose we
have coherence dimensions such as j=1: provider-2: imple
mentation: 3: industry and 4: function. In this case, m 4.
Furthermore, this model (Equation 1) can also be extended by
adding weights to each dimension. Then

EQ. 2 i k
i k

dii = (). w; (b)
i=l

where w, is the weight chosen for dimension j, and each
weight must have a non-positive value. It is important to note
that the distance need not be symmetric (i.e. d, is not nec
essarily equal to d.).
0040. The selection of the norm k typically relies on the
characteristics of the dimension. For those dimensions that
can be measured in Scalar non-negative values with linear
scale, k can be chosen to be 1. Examples of such dimensions
include cost/expense range, the memory requirement for
components, and bandwidth requirements. In this case, the
equation for coherence distance between components i and
i in dimension becomes the L. (k-1) norm, which is given
by:

where f3, and B.' are simply the measurement of the attribute
in the dimension. For example, if the dimension represents
memory requirement, and software component i requires
512 megabytes of memory and Software component is
requires 768 megabytes, then B, 512MB, B, 768 MB, and
d'–1512-768|=256. The use of this distance measure
implies that components with similar memory requirements
should stay together.
0041. In the case of choosing k=2, then

EQ. 4
h. i)+(1,2- 4.2)

where each component i in dimension is characterized by a
pair of values (Bi’, (3,5). For example, if components have
been developed for a particular geographic location, the B
values could represent the latitude and longitude of that loca
tion.

0042. Notall the dimensions can be measured using scalar
distance like cost, memory and bandwidth. One very impor
tant dimension is the manageability (due to compatibility and
business functionality) of two candidate Software compo
nents which co-exist in one bundle. For example, if you have
components requiring different operating systems, then bun
dling those components together will cause manageability
problems, and make the bundle not feasible to be consumed.

US 2014/0258977 A1

For Such dimensions, concepts of relationship, such as class,
subclass, conflict and so on, will be used to define the rela
tionship of two components.
0043 Turning now to FIG. 3 shown is an example rela
tionship tree 300. This relationship tree 300 is defined as a
generic Solution in our algorithm; therefore, it can be used by
a specific example (coherence graph—CG) 400 in FIG. 4. A
specific example 400 should be constrained by the relation
ship ontology. The relationship property of an edge can be
converted to directed edge with similarity/compatibility
value assigned according to the relationship property. A
coherence graph (CG) is used to calculate the coherence
distance d', along each dimension j. To build the CG, a
relationship tree is used along with understanding of the
software component relationship in that dimension j. We will
use relationship ontology from Software products dimension
as an example to illustrate how to build relationship ontology.
Furthermore, a similarity factor C, for each relationship to
show how similar two software components are with this
relationship.
0044 Turning to FIG. 5, shown is a directed graph. 500 of
the specific example in FIG. 4. Once the CG is built, the
similarity factors C, are used along with the CG to calculate
the coherence distance. A value is assigned to each edge of the
graph. For example, for different versions of the Windows
operating system, backwards compatibility relationships
exist from Windows 95 to Windows XP, Windows XP to
Windows 7, and Windows 7 to Windows 8. That means appli
cations developed for Windows 95, Windows XP, and Win
dows 7 are still being able to execute in a Windows 8 envi
ronment. We assign edge value 1 for Windows 95 to Windows
XP, Windows XP to Windows 7, and Windows 7 to Window
8. However, since forwards compatibility is not typically
maintained, we assign the value 100 to edges for Windows 8
to Windows 7, Windows 7 to Windows XP, and Windows XP
to Windows 95, as we have to modify any applications devel
oped specifically for Windows 8 if we want it to be executable
on Windows 7 (and the same relationship holds for Windows
7, Windows XP and Windows 95). For different Linux oper
ating systems, as an application developed for RedHat,
Ubuntu and SUSE can be executed on other Linux OSes, we
assign an edge value of 0 for these compatibility relation
ships.
I0045. In particular, for thei" CG, and software component
II, and II, the following equation is used:

F: (l) = a a EQ. 5
liRii

where P, is a set of paths from II, to II, on the ontology
graph, and 1 is a specific path in the set of paths. The value of
C, is a non-negative similarity/compatibility factor to define
the relationship of two directed neighboring components in
path. The distance of d' itself is the minimum value of all
the paths. For example: path 310 from Windows to Linux of
software ontology is Put {subclassof conflict}. In
case there are multiple path between II and II, the path
which results in the Smallest computed coherence distance
d., is selected.
0046 Based on the specific business requirements that are
driving the grouping of software components, the user deter
mines both the set of dimensions for the coherence analysis

Sep. 11, 2014

and the specific function to be used for measuring coherence
distanced, in each of the dimensions.
0047 Next, the user determines the method for computing
coherence degreed, from the coherence distances. After,
the coherence degree is found, the Software components can
be bundled by using coherence degree illustrated in FIGS. 6
and 7 as follows.
0048 Turning to FIG. 8, shown is a flow chart of software
component selection and grouping. The process begins in
step 802 and immediate proceeds to step 804 in which soft
ware and hardware (IT Products) are split into two or more
sets based on deduced rules. It is important to note that this is
done without the need to considering pre-existing image or
pre-existing bundle.
0049 Step 806 is an optional step to make certain restric
tions to candidates. By applying certain restrictions will
reduce the number of candidate components that need to be
considered for bundling. Some obvious restrictions could be
the characteristics of the potential clients, and the software
components themselves. For example, the industry sectors,
Vendor of software, the Supporting operating system, and so
O.

0050 Coherence distances are calculated in all dimen
sions in steps 808 and 810 by rendering the mathematical
model on same set. The coherence degree of two candidate
components considering all the dimensions can be computed
using Equation 1, where we can simply choose k=2.
0051. In step 812, an average coherence degree is com
puted for all the coherence distances calculated in steps 804
through 810. The average coherence degree is computed as
the average coherence distance of all the pair-wise candidate
components, this number reflects the coherence degree based
on selected dimension and the measurement chosen.
0.052 Next, in step 814, a set of pre-defined software com
ponents which must be grouped together as a cloud image. We
can repeat above steps to create multiple sets of Software
components into multiple cloud images. This bundling input
could come from client requirements, or existing packaging
practice. A set of pre-defined software is not a null or empty
set. In one example, neighbors with coherence degree con
strained by a threshold are found. Alternatively, find the k
nearest neighbors, where k is chosen based on Some business
or technical constraint on the maximum size of a grouping.
0053. The process completes in step 816 in which the IT
product bundles are presented to a user as an output and the
process ends in step 818.
0054. In another example, a new component is added into
one or more of the existing portfolio of images. The new
component is added by computing and Sorting the coherence
degrees to each Software image or Software bundle. Then
those software images or software bundles with minimal
coherence degrees are selected to the candidate component to
update the images to create new images. The computation of
the coherence degree of a component to an image (with mul
tiple components) as following: 1) Compute the coherence
degree pair-wise for each component of existing image with
the candidate component; and 2) compute the average of the
coherence degrees of above step as the coherence degree of a
Software component to an existing image.

Information Processing System

0055 FIG. 9 illustrates one example of a detailed view of
an information processing system for carrying out the opera
tion of FIG. 8, which can be deployed in the software com

US 2014/0258977 A1

ponent grouping manager server 102. Any Suitably config
ured processing system can be used as the information
processing system 902 in embodiments of the present inven
tion. The components of the information processing system
902 can include, but are not limited to, one or more processors
or processing units 904, a system memory 906, and a bus 908
that couples various system components including the system
memory 906 to the processor 904.
0056. The bus 908 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.
0057 The system memory 906 can also include computer
system readable media in the form of volatile memory, such
as random access memory (RAM) 910 and/or cache memory
912. The information processing system 902 can further
include other removable/non-removable, volatile/non-vola
tile computer system storage media. By way of example only,
a storage system 914 can be provided for reading from and
writing to a non-removable or removable, non-volatile media
Such as one or more Solid state disks and/or magnetic media
(typically called a “hard drive”). A magnetic disk drive for
reading from and writing to a removable, non-volatile mag
netic disk (e.g., a "floppy disk’), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In Such instances, each can be connected to
the bus 908 by one or more data media interfaces. The
memory 906 can include at least one program product having
a set of program modules that are configured to carry out the
functions of an embodiment of the present invention.
0058 Program/utility 916, having a set of program mod
ules 918, may be stored in memory 906 by way of example,
and not limitation, as well as an operating system, one or more
application programs (e.g., the Software component grouping
manager 102), other program modules, and program data.
Each of the operating system, one or more application pro
grams, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 918 generally
carry out the functions and/or methodologies of embodiments
of the present invention.
0059. The information processing system 902 can also
communicate with one or more external devices 920 such as
a keyboard, a pointing device, a display 922, etc.; one or more
devices that enable a user to interact with the information
processing system 902; and/or any devices (e.g., network
card, modem, etc.) that enable computer system/server 902 to
communicate with one or more other computing devices.
Such communication can occur via I/O interfaces 924. Still
yet, the information processing system 902 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 926. As
depicted, the network adapter 926 communicates with the
other components of information processing system 902 via
the bus 908. Other hardware and/or software components can
also be used in conjunction with the information processing

Sep. 11, 2014

system 902. Examples include, but are not limited to: micro
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data archi
Val storage systems.

Non-Limiting Examples
0060. The OS fingerprinting in the present invention can
be leveraged for other business cases including: Bring Your
Own Device (BYOD) business policies, and enhances mobile
security. Add layers for finer grain classification and identi
fication of VMs. Differential DHCP Lease does not require
any protocol changes: Canbe deployed as a software solution
in DHCP servers; and removes the burden of updating all
leases when new devices are introduced.
0061. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit’.” “mod
ule', or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0062) Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of non-transitory computer program product
or computer readable storage medium would include the fol
lowing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
0063 A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0064 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0065 Computer program code for carrying out operations
for aspects of the present invention may be written in any

US 2014/0258977 A1

combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0066 Aspects of the present invention have been dis
cussed above with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and com
puter program products according to various embodiments of
the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0067. These computer program instructions may also be
stored in a computer readable medium or computer program
storage product that can direct a computer, other program
mable data processing apparatus, or other devices to function
in a particular manner, Such that the instructions stored in the
computer readable medium produce an article of manufacture
including instructions which implement the function/act
specified in the flowchart and/or block diagram block or
blocks.
0068. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0069. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0070 The description of the present invention has been
presented for purposes of illustration and description, but is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing

Sep. 11, 2014

from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.

1. A computer-implemented method to select software
components, the method comprising:

accessing a set of available Software components, the set of
available software components containing at least two
Software components;

defining one or more dimensions, each dimension being an
attribute to the set of available software components,
wherein the dimensions include at least one of a provider
of a software component, an industry a software com
ponent is deployed, a function a software component
performs, an implementation of a Software component,
and an operating system used for a software component;

calculating, with a processor, a set of coherence distances
between each pair of the available software components
in the set of available Software components along each
of the dimensions that have been defined;

combining each of the coherence distances between each
pair of the available software components that has been
calculated in the set of the coherence distances into an
overall coherence degree for each of the available soft
ware components; and

selecting, using the overall coherence degree, one or more
Software components to be included in a Software
bundle.

2. The computer-implemented method of claim 1, wherein
the calculating, with the processor, the set of coherence dis
tances between each pair of Software components includes
using a relationship ontology, assigning similarity factors for
each relationship kind in the relationship ontology, and con
structing a semantic tree of the set of software components.

3. The computer-implemented method of claim 1, wherein
the accessing a set of a plurality of available software com
ponents, includes accessing one or more binary coded

operating Systems,
middleware applications, and
Software applications.
4. The computer-implemented method of claim 1, further

comprising:
assembling the software bundle into a pre-configured

image or multiple images for use on a cloud-enabled
system.

5. The computer-implemented method of claim 1, wherein
the combining each of the coherence distances that has been
calculated in the set of the coherence distances into an overall
coherence degree for each of the available software compo
nents only when the coherence degrees of each pair of com
ponents are constrained by predefined threshold.

6. The computer-implemented method of claim 1, wherein
the selecting, using the overall coherence degree, one or more
software components to be included in a software bundle only
when there is no conflict therebetween.

7. The computer-implemented method of claim 1, wherein
the calculating, with the processor, the set of coherence dis
tances between each pair of the available software compo
nents in the set of available software components along each
of the dimensions j that have been defined by a coherence

US 2014/0258977 A1

distance d' between each pair II, and II, of the available
Software components, using an equation

d;=lf, '-?,

where B is a metric measurement assigned to a dimension.
8. The computer-implemented method of claim 1, wherein

the calculating, with the processor, the set of coherence dis
tances between each pair of the available software compo
nents in the set of available Software components along each
of the dimensions j that have been defined by a coherence
distanced,? between each pair II, II, of the available soft
ware components, using an equation

Sep. 11, 2014

, where 0<C,<1 and an ontology is defined to describe soft
ware using above relationships, and P is a set of all simi
larity factors indices that lie on a path from II, to II, on a
coherence graph.

9. The computer-implemented method of claim 1, wherein
the combining each of the coherence distances between each
pair II, to II, of the available software components that has
been calculated in the set of the coherence distances into an
Overall coherence degreed, 2 for each of the available soft
ware components includes using an equation

in k

dii = (). 4.

where k is 2., m is a number of dimensions.
10-20. (canceled)

