WO 2013/109228 A1

(54) Title: FORMULATIONS COMPRISING CEFIXIME AS ACTIVE AGENT

(57) Abstract: The present invention relates to pharmaceutical tablet formulations comprising cefixime to be used in the treatment of infectious diseases caused by gram positive and gram negative bacteria.
FORMULATIONS COMPRISING CEFIXIME AS ACTIVE AGENT

The present invention relates to pharmaceutical tablet formulations comprising cefixime to be used in the treatment of infectious diseases caused by gram positive and gram negative bacteria.

Cefixime was first disclosed in the patent application numbered EP0030630 (B1). In said document, cefixime was indicated to be effective in the treatment of infectious diseases caused by gram positive and gram negative bacteria.

Cefixime is available in the form of 200 and 400 mg oral tablets or oral suspension on the market.

In the sense of pharmaceutical technology, physical properties of the dosage form for every type of tablet dosage form are directly related to durability in storage conditions; dissolution and bioavailability of the dosage form obtained.

Tablet hardness is an important physical parameter in pharmaceutical tablet formulations and is related to resistance of tablets to storage, transport, coating and erosion-breakage before usage. Tablets with low hardness are more exposed to erosion, friability or breakage and this case leads;

I. To loss of active agent and thus decrease of the amount of dose taken;

II. To erosion of tablet surface during coating process and to dosage forms which have uneven surfaces and variable amounts of active agent in the final product while producing coated tablet forms.

On the other hand, there is a close connection between tablet hardness and dispersibility and solubility of a tablet. Tablets that are too hard do not disperse or dissolve adequately; in this case, bioavailability of said dosage forms will decrease and therefore the time for desired biological response to occur will extend. The same case is also true for all types of tablets such as effervescent, film-coated, soluble, extended-release, modified-release, delayed-release tablets etc.

Attaining appropriate tablet hardness is influenced by many parameters such as the types of active agents and excipients used, particle sizes thereof, flowability of the powder or granules prepared for tablet compressing and tablet compression force.
As a result of the development studies they conducted on pharmaceutical tablet formulations comprising cefixime, the inventors have found that the most perfect mechanical tablet resistance, the most appropriate dissolution rate and accordingly the highest bioavailability are attained with the tablet formulations that have a tablet hardness value between 3 kPa and 50 kPa.

According to this, another characteristic of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent and at least one pharmaceutically acceptable excipient, and the value of tablet hardness is between 3 kPa and 50 kPa.

Another characteristic of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent and at least one pharmaceutically acceptable excipient, and the value of tablet hardness is between 4 kPa and 40 kPa.

Another characteristic of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent and at least one pharmaceutically acceptable excipient, and the value of tablet hardness is between 5 kPa and 30 kPa.

The word "tablet" used throughout the text refers to tablet types such as tablet, effervescent tablet, film-coated tablet, enteric-coated tablet, orodispersible tablet, water-soluble tablet, extended-release tablet, modified-release tablet, delayed-release tablet. The tablet forms to be used in a preferred embodiment of the invention are film tablet, effervescent tablet and/or orodispersible tablet forms.

Cefixime comprised in the pharmaceutical formulations of the present invention can be in the form of its pharmaceutically acceptable salts, hydrates, solvates, esters, enantiomers, diastereomers or combinations thereof in terms of chemical structure; and in crystalline, amorphous forms or combinations thereof in terms of polymorphic structure. Cefixime is preferably in the form of hydrate, more preferably in the form of cefixime trihydrate.

The pharmaceutical formulations of the present invention comprise at least one pharmaceutically acceptable excipient selected from a group comprising disintegrant, diluent, lubricant, glidant, binder, effervescent couple composed of at least one effervescent acid and at least one effervescent base, coloring agent, pH regulating agent, surfactant, stabilizing agent, sweetener and/or taste regulating agent, flavoring agent.
The diluent that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising calcium carbonate, dibasic calcium phosphate, tribasic calcium phosphate, microcrystalline cellulose, dextrose, fructose, lactitol, lactose, magnesium carbonate, magnesium oxide, maltitol, maltodextrin, maltose, mannitol, simethicone, sorbitol, starch, sodium chloride, sucrose, talc, xylitol or combinations thereof.

The lubricant that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising calcium stearate, magnesium stearate, polyethylene glycol, sodium benzoate, potassium benzoate, sodium lauryl sulphate, talc, stearic acid, zinc stearate or combinations thereof.

The glidant that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising tribasic calcium phosphate, colloidal silicon dioxide, magnesium silicate, magnesium trisilicate, talc or combinations thereof.

The binder that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising carboxymethyl cellulose sodium, ethyl cellulose, gelatin, hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hypromellose, magnesium aluminum silicate, maltodextrin, methyl cellulose, povidone, starch or combinations thereof.

The effervescent acids that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising organic acids such as malic acid, citric acid, tartaric acid, fumaric acid; and said effervescent bases can be selected from a group comprising agents such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate or combinations thereof.

The pH regulating agent that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising citrate, phosphate, carbonate, tartrate, fumarate, acetate and amino acid salts or combinations thereof.

The surfactant that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising sodium lauryl sulphate, polysorbate, polyoxyethylene, polyoxypropylene glycol or combinations thereof.

The sweetener and/or the taste regulating agent that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising acesulfame, aspartame,
dextrose, fructose, maltitol, maltose, mannitol, saccharine, saccharine sodium, sodium cyclamate, sorbitol, sucralose, sucrose, xylitol, sodium chloride or combinations thereof.

The flavoring agent that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising flavors such as menthol, lemon, orange, vanilla, strawberry, raspberry, caramel and the like or combinations thereof.

The solvents that can be used in the pharmaceutical formulations of the invention can be selected from a group comprising ethyl alcohol, methyl alcohol, propyl alcohol, benzene, toluene, acetone, deionized water or combinations thereof.

The pharmaceutical formulations of the invention comprising cefixime as active agent comprise cefixime in the range of 0.1-99.9%, preferably in the range of 1-99%, more preferably in the range of 5-95% by weight.

The pharmaceutical formulations of the invention comprising cefixime as active agent can optionally comprise a second active agent in addition to cefixime. The second active agent can be selected from a group comprising antacid, anticholinergic, antispazmodic, antiemetic, antidiabetic, antipropulsive, antiallergic, antidiarrheal, antiobesity, antithrombotic, antifibrinolytic, antianemic, antihypertensive, antifungal, antipruritic, antibiotic, antiseptic, antiacne, antibacterial, antymycotic, antiviral, antineoplastic, antiarithmetic, antiadrenergic, antiepileptic, anti-parkinson, antiprotozoal, anthelmintic, anti-inflammatory, diuretic, laxative, sulphonamide, imidazole, corticosteroid, tiazolidinedione, biguanide, immunostimulant, immunosuppressant, muscle relaxant, analgesic, psycholeptic, psychoanalectic peripheral vasodilatör, beta blocker, calcium channel blocker and lipid modifying agents; alpha-glucosidase inhibitors, aldose reductase inhibitors, ACE inhibitors; multivitamins and minerals, vitamin A, vitamin D and its analogues, vitamin B₃, vitamin C, vitamin E, vitamin B₆, vitamin B₂, vitamin K, calcium, potassium, sodium, zinc, magnesium, fluoride, selenium.

The pharmaceutical tablet formulations of the invention comprising cefixime as active agent preferably comprise clavulanic acid as an optional second active agent in addition to cefixime.

Said tablet formulations can optionally be treated with film-coating agents, for instance sugar-based coating agents, water-soluble film-coating agents, enteric coating agents, coating agents prepared to provide various release properties (such as fast release, slow release, controlled release) or coating compositions comprising any combination thereof.
As sugar-based coating agent, saccharose can be used on its own or optionally with any of the agents such as talc, calcium carbonate, calcium phosphate, calcium sulphate, gelatin, gum arabic, polyvinylpyrrolidone and pullulan or any combination thereof.

The water-soluble film-coating agents can be selected from cellulose derivatives such as hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, methyl hydroxyethyl cellulose and sodium carboxymethyl cellulose; synthetic polymers such as polyvinyl acetal diethyl aminoacetate, aminoalkyl methacrylate copolymers and polyvinylpyrrolidone and polysaccharides such as pullulan; or combinations thereof.

The enteric coating agents can be selected from cellulose derivatives such as hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, carboxymethyl ethyl cellulose, cellulose acetate phthalate; acrylic acid derivatives such as methacrylic acid copolymer L, methacrylic acid copolymer LD and methacrylic acid copolymer S; and natural substances such as shellac; or combinations thereof.

When the tablet formulations of the invention are desired to be coated so as to provide a release property such as fast, slow or controlled release, release rate determining polymers that can be comprised in coating composition or pharmaceutical tablet composition can be selected from a group comprising pH dependent polymers, pH independent polymers, swellable polymers, non-swellable polymers, hydrophilic polymers, hydrophobic polymers, and/or one or more hydrophobic substances, sodium alginate, polyactides, polyglycolides, polycaprolactone, polycarbonates, polyesteramides, polyanhydrides, polyamino acids, polyorthoesters, polyacetylts, polycyanoacrylates, polyetheresters, polydioxanones, polyalkylene alkylates, polyethylene glycol and polyorthoester copolymers, biodegradable polyurethanes, hydrogels, mixtures and copolymers thereof, high molecular weight watersoluble polymers such as polyethylene oxide, ionic polymers such as carboxer, calcium carboxy methyl cellulose or carboxy methyl cellulose; non-ionic polymers such as hydroxy propyl methyl cellulose; natural or synthetic polysaccharides such as alkyl celluloses, hydroxy alkyl celluloses, cellulose ethers, nitro cellulose, dextrine, agar, carrageenan, pectin, starch and starch derivatives or mixtures thereof; hydrophilic polysaccharide polimers such as xanthan gum, chitosan; polyvinyls such as cellullosic polymers, methacrylate polymers, methacrylate copolymers, polyvinyl pyrrolidone, polyvinylpyrrolidone- polyvinyl acetate copolymers, polyvinyl alcohol; natural resins such as polyacrylic acids, alginates, gelatin,
guar gum; ethyl cellulose, cellulose acetate, cellulose propionate (with high, medium or low molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose triacetate, polyvinyl acetate, polyvinyl chloride, sodium bicarbonate or combinations thereof.

The preparation method of the formulations of the invention comprises formulating the active agent with an appropriate excipient composition and compressing said formulation in the form of tablets under an appropriate compression force.

A characteristic of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent, at least one pharmaceutically acceptable excipient and the tablet compression force used for compressing said formulations in the form of tablets is between 3 kN and 50 kN.

A characteristic feature of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent, at least one pharmaceutically acceptable excipient and the tablet compression force used for compressing said formulations in the form of tablets is between 4 kN and 45 kN.

Another characteristic of the tablet formulations of the present invention is that said tablet formulations comprise cefixime as active agent, at least one pharmaceutically acceptable excipient and the tablet compression force used for compressing said formulations in the form of tablets is between 5 kN and 40 kN.

The tablet formulations of the invention can be produced in accordance with any of the production methods given below;

1. Mixing cefixime as active agent with, if present, the second active agent homogenously and, when necessary, adding at least one of the excipients stated above; treating the mixture optionally with at least one pharmaceutically acceptable lubricant; compressing this mixture in the form of tablets under an appropriate compression force according to the invention,

2. Wet-granulating the mixture obtained by mixing cefixime as active agent with, if present, the second active agent homogenously and, when necessary, adding at least one of the excipients stated above with the granulation solution optionally comprising at least one excipient; drying the obtained granules; treating the mixture optionally with at least one pharmaceutically acceptable lubricant and compressing the granules
in the form of tablets under an appropriate compression force according to the invention,

3. Wet-granulating at least one of the excipients stated above with the granulation solution optionally comprising at least one excipient; drying obtained granules; adding cefixime and, if present, the second active agent and optionally at least one excipient to the dry granules and mixing them together; treating the granules optionally with at least one pharmaceutically acceptable lubricant and compressing the granules in the form of tablets under an appropriate compression force according to the invention,

4. Dry-granulating the mixture obtained by mixing cefixime as active agent with, if present, the second active agent homogenously and, when necessary, adding at least one of the excipients stated above and compressing the obtained granules in the form of tablets under an appropriate compression force according to the invention,

5. In the case that two active agents are used, the production can be made through a method composed of using any of said methods above separately for active agent compositions and combining the obtained formulations together.

The pharmaceutical composition of the invention can be used in the prevention and treatment of the infectious diseases caused by gram positive and gram negative bacteria.

The examples below are given to explain the pharmaceutical compositions of the invention and the preparation methods thereof; the scope of the invention cannot be limited to these examples.
EXAMPLE

1. Film-Coated Tablet Formulation

<table>
<thead>
<tr>
<th>Content</th>
<th>% amount in unit dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefixime Trihydrate</td>
<td>44</td>
</tr>
<tr>
<td>Diluent</td>
<td>52.5</td>
</tr>
<tr>
<td>Lubricant</td>
<td>2</td>
</tr>
<tr>
<td>Coating Agent</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The production method to be applied for the tablet formulations to be prepared according to the formulation given above is as follows;

1. Dry-mixing cefixime trihydrate and the diluent,
2. Wet-granulating the mixture with the granulation solution comprising solvent
3. Drying the granules, treating them with the lubricant and coating them with a solution comprising coating agent,
4. Compressing the obtained mixture in the form of tablets under a compression force of 15 kN.
CLAIMS

1. A pharmaceutical tablet formulation comprising cefixime as active agent with at least one pharmaceutically acceptable excipient, characterized in that
 • tablet hardness value of said tablet formulation is between 3 and 50 kP and
 • tablet compression force used for tablet compression is between 3 and 50 kN.

2. The pharmaceutical tablet formulation according to claim 1, characterized in that tablet hardness value of said tablet formulation is between 4 and 40 kP.

3. The pharmaceutical tablet formulation according to claims 1 and 2, characterized in that tablet hardness value of said tablet formulation is between 5 and 30 kP.

4. The pharmaceutical tablet formulation according to claims 1-3, characterized in that the tablet compression force used for tablet compression is between 4 and 45 kN.

5. The pharmaceutical tablet formulation according to claim 4, characterized in that the tablet compression force used for tablet compression is between 5 and 40 kN.

6. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that said tablet formulation is in the form of any of tablet, effervescent tablet, film-coated tablet, enteric-coated tablet, orodispersible tablet, water-soluble tablet, extended-release tablet, modified-release tablet, delayed-release tablet dosage forms.

7. The pharmaceutical tablet formulation according to claim 6, characterized in that said formulation is in the forms of film-coated tablet, effervescent tablet and orodispersible tablet.

8. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that cefixime is in the form of its pharmaceutically acceptable salts, hydrates, solvates, esters, enantiomers, diastereomers or combinations thereof in terms of chemical structure; and in amorphous or crystalline forms or combinations thereof in terms of polymorphic structure.

9. The pharmaceutical tablet formulation according to claim 8, characterized in that cefixime is in the form of cefixime trihydrate.

10. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that at least one pharmaceutically acceptable excipient to be used with cefixime is selected from the group comprising diluent, lubricant, glidant, binder, effervescent couple composed of at least one effervescent acid and at least one
effervescent base, coloring agent, pH regulating agent, surfactant, stabilizing agent, sweetener and/or taste regulating agent, flavoring agent.

11. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that said tablet formulation comprises cefixime in the range of 0.1% to 99.9% by weight.

12. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that said tablet formulation comprises cefixime in the range of 1% to 99% by weight.

13. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that said tablet formulation comprises cefixime in the range of 5% to 95% by weight.

14. The pharmaceutical tablet formulation according to any of the preceding claims, characterized in that said tablet formulation comprises at least a second active agent, in addition to cefixime, selected from a group comprising antacid, anticholinergic, antispasmodic, antiemetic, antidiabetic, antipropulsive, antiallergic, antidiarrheal, antiobesity, antithrombotic, antifibrinolytic, anianemic, antihypertensive, antifungal, antipruritic, antipsoriatic, antibiotic, antiseptic, antiacne, antibacterial, antimycotic, antiviral, antineoplastic, antiarithmetic, antiseptic, antiepileptic, anti-parkinson, antiprtozoal, anthelmintic, anti-inflammatory, diuretic, laxative, sulphonamide, imidazole, corticosteroid, tiazolidinedione, biguanide, immunostimulant, immunosuppressant, muscle relaxant, analgesic, psycholeptic, psychoanalatic peripheral vasodilator, beta blocker, calcium channel blocker and lipid modifying agents; alpha-glucosidase inhibitors, aldose reductase inhibitors, ACE inhibitors; multivitamins and minerals, vitamin A, vitamin D and its analogues, vitamin B1, vitamin C, vitamin E, vitamin B6, vitamin B2, vitamin K, calcium, potassium, sodium, zinc, magnesium, fluoride, selenium.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A61K9/20</th>
<th>A61K31/545</th>
</tr>
</thead>
</table>

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, EMBASE, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

13 June 2013

Date of the actual completion of the international search

04/07/2013

Date of mailing of the international search report

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2005/181051 A1 (KHANDELWAL SANJEEV [IN]) 18 August 2005 (2005-08-18) page 7 - paragraph 78 page 10 - page 11; example 1 claims</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/093822 A1 (BILIC MAHMUT [TR]) 4 August 2011 (2011-08-04) page 8; example claims</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>US 2004/005361 A1 (KHANDELWAL SANJEEV [IN] ET AL) 8 January 2004 (2004-01-08) page 1, paragraph 16 page 3; example 1 claims</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>CN 1 850 087 A (CHINA PHARMACEUTICAL UNIV [CN]) 25 October 2006 (2006-10-25) page 5, line 28 - page 6, line 14; example 1 claims</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>CN 1 803 138 A (SHENZHEN PHARMACEUTICAL FACTOR [CN] SHENZHEN ZHIJUN PHARMACEUTICAL [CN]) 19 July 2006 (2006-07-19) page 2, line 1 - line 5 page 15; example 1 claims</td>
<td>1-14</td>
</tr>
<tr>
<td>X</td>
<td>CN 101 606 913 A (GUANGZHOU BAIYUNSHAN PHARMACEU [CN] GUANGZHOU BAIYUNSHAN PHARMACEUTICA) 23 December 2009 (2009-12-23) page 2, line 1 - line 4 page 9, line 1 - line 6; table 1 page 11, line 10 - page 12, line 1; example 1</td>
<td>1-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2005181051 A1</td>
<td>18-08-2005</td>
<td>AT 401074 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1566176 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005181051 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 201000687 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011093822 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011093829 A1</td>
</tr>
<tr>
<td>US 2004005361 A1</td>
<td>08-01-2004</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 1850087 A</td>
<td>25-10-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 1803138 A</td>
<td>19-07-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 101606913 A</td>
<td>23-12-2009</td>
<td>NONE</td>
</tr>
</tbody>
</table>