N. F. BROWN

PLUG FOR USE IN WELLS

Filed Aug. 26, 1938

INVENTOR,
NORMAN FRASER BROWN,
BY Frank H. Borden
ATTORNEY.
This invention relates to a plug for use in forcing material through pipes, for example for forcing cement down in the casing of an oil well, but the plug is not restricted to use in oil wells and is capable of other applications.

When a well, for example an oil well, is sunk it is usually necessary to guard against the risk of water from superposed water carrying strata from flowing down outside the well casing and the separation of two strata is effected by what is known as back cementation. This operation consists in forming a cement joint between the exterior of the casing and an impervious stratum which has been reached by drilling and to which the casing has been lowered, such stratum, of course, being below the water carrying stratum. In carrying out the operation a quantity of cement is inserted at the top of the casing and a plug is inserted in the casing above the charge of cement. Mud is then introduced above the plug and is pumped into the casing in order to force the plug, and with it the cement, down towards the bottom of the casing. At the bottom the cement finds its way, under the force exerted on it by the plug, into the annular space between the casing and the material of the surrounding impervious stratum where it sets and makes a water-tight joint between the casing and the material. The plug which has hitherto been used has a cup-shaped portion made of a flexible material such as leather or rubber which is so dimensioned that the rim of the cup presses slightly against the inner walls of the casing, the base and the remainder of the plug passing easily through the casing. The apparent reason for designing the cup in this way was to allow the pressure exerted on the upper face of the plug, i.e. on the inner walls of the cup during its downward movement to cause the sides of the plug to press with increased pressure against the sides of the casing. Owing, however, to the small difference in pressure on the upper and lower faces of the plug the pressure exerted on the sides of the casing cannot be great. Whatever it may be I have discovered that the known type of plug does not prevent a substantial quantity of cement from finding its way past the plug to the casing space above the plug. Actual measurements have shown that, using a well-known rubber plug, as much as 27 cubic feet of cement per 1" diameter of casing per length of 1000 ft. has formed as a film on the casing and thus been wasted. This waste of cement has been masked by its admixture with the mud which is almost universally used as a displacement fluid in casing cementation and consequently the wastage has gone unperceived.

An object of the present invention is to provide a plug which, in use, prevents the large wastage of jointing material which occurs in the known practice.

Another object of the invention is to provide a plug which is capable of exerting a scraping action on the interior walls of pipes in deep wells as it is moved down in the pipes.

A further object of the invention is to provide a plug which will exert a scraping action on the interior walls of pipes in deep wells as it is moved down in the pipes independently of the pressures exerted on the end, the upper and lower faces of the plug.

A further object is to provide a plug which is adapted to exert a scraping action on the inside walls of a pipe independently of the pressures on the opposite faces of the plug whereby the plug is adapted, by its passage through the pipe, to clear a pipe of viscous fluid, for example crude oil, which tends to adhere to the walls of the pipe.

A still further object of the invention is to provide a plug having scraping edges adapted to press resiliently on the walls of a pipe independently of fluid pressures exerted on opposite ends of the plug.

Examples of plugs constructed according to the present invention are shown in the accompanying drawing in which—

Fig. 1 is a part sectional elevation of a plug disposed inside a pipe.

Fig. 2 is a fragmentary sectional elevation showing the form assumed by the rings of the plug on application of a force tending to reverse its direction of travel.

Referring to the drawing, the plug 1 comprises a body portion 2 of a resilient material such, for example, as rubber. From the body portion 2 project annular ring-shaped portions 3 which, as shown, are integral with the body portion. The preferred form of cross-section of the portions 3 are shown in Figs. 1 and 5, and this cross-section is generally rectangular in form with the sides 4, 5 converging slightly and terminating in a side 6 which is obliquely disposed with respect to the axis of the plug. As is shown in Fig. 1, the portions 3 form a circular edge 7 which presses against the inner walls of the pipe 8. It will be appreciated that the maxi-
A plug for use in forcing material through a pipe which comprises a body portion of resilient material, at least one annular ring portion terminating outwardly in a circular edge defining the greatest diameter of the plug, said edge being defined by two converging surfaces which extend respectively from the edge towards opposite ends of the plug and inwardly towards the body portion, a core portion of relatively rigid and friable material, a cylindrical guide member of relatively rigid and friable material concentric with the axis of the plug and adjacent an end face of the body portion, and means connecting said guide member with said core portion.

A plug for use in forcing materials through pipes which comprises a body portion and at least one annular ring portion of resilient material projecting outwardly from said body portion, each said annular ring portion having a cross-section defined by two flat sides extending outwardly and upwardly from said body portion and terminating in a flat side extending inwardly towards the upper end of the plug, each said ring portion having a thickness of the same order of magnitude as its radial extension and having a stiffness sufficient to hold said scraping edge in scraping relation to said pipe when no pressure is exerted on the plug.

A plug for use in forcing materials through pipes which comprises a body portion and at least one annular ring portion of resilient material projecting outwardly from said body portion, each said annular ring portion having a cross-section defined by two flat sides extending outwardly and upwardly from said body portion and converging towards and terminating in a flat side extending inwardly towards the upper end of the plug, each said ring portion having a thickness of the same order of magnitude as its radial extension and having a stiffness sufficient to hold said scraping edge in scraping relation to said pipe when no pressure is exerted on the plug.

NORMAN FRASER BROWN.