(12) 发明专利申请

(21) 申请号 201310633150.1
(22) 申请日 2013.11.30
(71) 申请人 海利尔药业集团股份有限公司
 地址 266109 山东省青岛市城阳区国城路
 216 号
(72) 发明人 葛尧伦 吕文东 陈鹏

(51) Int.Cl.
 A01N 47/18 (2006.01)
 A01P 3/00 (2006.01)
 A01N 47/90 (2006.01)

(54) 发明名称
 一种含有四霉素与中生菌素的杀菌组合物

(57) 摘要
 一种含有四霉素与中生菌素的杀菌组合物，该杀菌组合物的有效成分四霉素与中生菌素二元复配，其余为辅助成分。其中所述农药组合物中有效成分四霉素与中生菌素的质量份数比为 1～50：50～1，制剂中有效成分四霉素与中生菌素的质量份数比1% ～80%，其余为农药中允许使用的和接受的辅助成分。本发明所述农药组合物的剂型为乳油、悬浮剂、可湿性粉剂、水分散粒剂、水乳剂、微乳剂、颗粒剂、微囊剂，主要用于防治果树腐烂病、斑点落叶病、稻瘟病、大豆根腐病、瓜类枯萎病、棉花黄萎病、枣树锈病、葡萄白腐病、人参三七黑斑病、茶叶茶饼病、林木腐烂病、溃疡病、溃疡病、落叶病、林苗期立枯病、软腐病菌、黄瓜角斑病菌、水稻白叶枯病菌、苹果轮纹腐病菌、小麦赤霉病菌等。
1. 一种含有四霉素与中生菌素的杀菌组合物，其特征在于：该农药组合物的有效成分
为四霉素与中生菌素二元复配，其余为辅助成分，其中有效成分四霉素与中生菌素的质量
比为1 : 50 ～ 50 : 1。

2. 根据权利要求1所述的农药组合物，其特征在于：四霉素与中生菌素在制剂中的总
重量占整个制剂质量的1% ～ 80%。

3. 根据权利要求2所述的农药组合物，其特征在于：四霉素与中生菌素在制剂中的总
重量占整个制剂质量的1% ～ 50%。

4. 根据权利要求1或2或3所述的农药组合物，其特征在于：该农药组合物的剂型为
乳油、悬浮剂、可湿性粉剂、水分散剂、水乳剂、微乳剂、微胶囊剂、颗粒剂。
一种含有四霉素与中生菌素的杀菌组合物

技术领域
【0001】本发明涉及农药复配技术领域，特别是涉及一种含有四霉素与中生菌素的杀菌组合物。

背景技术
【0002】四霉素（米宁霉素）为不吸水链霉菌梢生亚种的发酵代谢产物。杀菌谱广，对根毛菌、子囊菌和半知菌类真菌等三大门类二十六种已知病原真菌均有极强的杀灭作用。适用各种作物的多种真菌、细菌病害的防治。尤其对果树腐烂病斑点落叶病、稻瘟病、大豆根腐病、瓜类枯萎病、棉花黄萎病、枣树锈病、葡萄白腐病、人参三七黑斑病、茶叶茶饼病、林木腐烂病、溃疡病、流胶病、落叶病、林木期立枯病等真菌病害特效。
【0003】中生菌素是中国农科院生防所研制成功的一种新型农用抗生素，是由淡紫灰链霉菌海南变种产生的抗生素，属N－糖苷类碱性水溶性物质。其抗菌谱广，能够抗革兰氏阳性、阴性细菌，分枝杆菌，酵母菌及丝状真菌。特别对农作物致病菌如镰孢腐病菌、黄瓜角斑病菌、水稻白叶枯病菌、苹果轮纹病病菌、小麦赤霉病菌等均具有明显的抗菌活性。通过抑制病原菌细胞壁的肽键生成，最终导致细菌死亡；对真菌可抑制菌丝的生长、抑制孢子的萌发，起到防治真菌性病害的作用；可刺激植物体内植保素及木质素的前体物质的生成，从而提高植物的抗病能力。
【0004】在农业生产的实际过程中，施用化学药剂是防治植物病虫害最为有效的手段，但通过化学防治病害最容易产生的问题是病害抗药性的产生。在植物细菌病的药剂防治上，国内外已经进行了多年的研阻，虽然一些抗细菌药剂已经开始进入实用化阶段，但化学合成的药剂具有周期长、成本高、毒性大、环境污染严重等缺点，远远不能满足农业可持续发展的要求。而且长期连续高剂量地施用单一的农药制剂，容易造成药剂的残留、环境污染以及耐药性真菌等发展等问题。而相比之下，开发与研究高效、低毒、低残留的复配与混配具有投资少、研制周期短而受到国内外重视，纷纷加大开发研制力度。我们在此筛选和田间试验的基础上，筛选出四霉素与中生菌素进行复配，具有明显的增效作用。且关于四霉素与中生菌素的复配的农药组合物及应用目前尚无人报道过。

发明内容
【0005】基于以上情况，本发明目的在于提供一种新型高效的农药组合物，主要用于防治果树腐烂病、斑点落叶病、稻瘟病、大豆根腐病、瓜类枯萎病、棉花枯萎病、枣树锈病、葡萄白腐病、人参三七黑斑病、茶叶茶饼病、林木腐烂病、溃疡病、流胶病、落叶病、林木期立枯病、菜软腐病菌、黄瓜角斑病菌、水稻白叶枯病菌、苹果轮纹病病菌、小麦赤霉病菌等。
【0006】本发明所述技术方案是通过以下措施来实现的：
一种含有四霉素与中生菌素的杀菌组合物，该农药组合物的有效成分四霉素与中生菌素两元复配，其中作为辅助成分。其中所述农药组合物中有效成分四霉素与中生菌素的质量比为1～50：50～1，所述的本发明农药组合物经毒力测定实验验证，四霉素与中生菌素
的质量比为 1～20：20～1时，增效效果较好。
[0007] 所述的本发明农药组合物可以配制的农药剂型为乳油、悬浮剂、可湿性粉剂、水分散粒剂、水乳剂、微乳剂、颗粒剂、微胶囊剂。其中有效成分四霉素与中生菌素在制剂中的总质量占整个制剂质量的1%～80%，其中占1%～20%时，毒性和残留达到较好的平衡，成本也较低。
[0008] 本发明所述的农药组合物配制成为农药剂型的具体实施方案如下：
所述的杀菌组合物为乳油制剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；常规乳化剂 10～30 份；常规溶剂 20～50 份；常规增效剂 1～5 份。该乳油制剂的具体生产步骤为先将有效成分四霉素与中生菌素加入溶剂中完全溶解后再加入乳化剂、增效剂搅拌均匀后制成一定透明的油状液体，灌装，即可制成本发明组合物的乳油制剂。
[0009] 所述的杀菌组合物为悬浮剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；分散剂 5～20 份；防冻剂 1～5 份；增稠剂 0.1～2 份；增溶剂 0.1～0.8 份；乳化剂 0～10 份；pH 值调节剂 0.1～5 份；水，余量。该悬浮剂的具体生产步骤为先将其他助剂混合，经高速剪切混合均匀，加入有效成分四霉素与中生菌素，在磨球机中研磨 2～3 小时，使粒径直径均在 5mm 以下，即可制成本发明组合物的悬浮剂制剂。
[0010] 所述的杀菌组合物是可湿性粉剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；分散剂 3～10 份；湿润剂 1～5 份；填料，余量。该可湿性粉剂的具体生产步骤为：按上述配方将所有成分四霉素与中生菌素以及分散剂、湿润剂和填料混合，在搅拌釜中均匀搅拌，经气流粉碎机后在混合均匀，即可制成本发明组合物的可湿性粉剂。
[0011] 所述的杀菌组合物为水分散粒剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；分散剂 3～10 份；湿润剂 1～10 份；崩解剂 1～5 份；填料，余量。该水分散粒剂的具体生产步骤为：按上述配方将所有成分四霉素与中生菌素以及分散剂、湿润剂、崩解剂以及填料混合均匀，用超微气流粉碎机粉碎，经揉合，然后加入流化床造粒干燥机中进行造粒、干燥、筛分后经取样分析，即可制成本发明组合物的水分散粒剂。
[0012] 所述的杀菌组合物为水乳剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；乳化剂 3～30 份；溶剂 5～15 份；稳定剂 2～15 份；防冻剂 1～5 份；消泡剂 0.1～8 份；增稠剂 0.2～2 份；水，余量。该水乳剂的具体生产步骤为：首先将四霉素与中生菌素、溶剂和乳化剂、助溶剂加在一起，使溶液成均匀的油相，将部分水、抗冻剂、抗微生物剂等其他的农药助剂混入在一起成均匀的水相；在反应釜中高速搅拌的同时将油相加入水相，缓缓加入至达到转相点，开启剪切机进行高速剪切，并加入剩余的水，剪切约半小时，形成水包油型的水乳剂，即可制成本发明组合物的水乳剂。
[0013] 所述的杀菌组合物为微乳剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；乳化剂 10～30 份；防冻剂 1～8 份；稳定剂 0.5～10 份；常规溶剂加助溶剂 20～50 份。将四霉素与中生菌素用助溶剂完全溶解，再加入乳化剂、防冻剂稳定剂等其他成分，均匀混合，最后加入水，充分搅拌后即可配成微乳剂。
[0014] 所述的杀菌组合物为颗粒剂，组分的质量份数为：四霉素 1～20 份；中生菌素 1～20 份；湿润分散剂 1～10 份；增稠剂 0.1～5 份；增溶剂 0.1～5 份；膨松剂，余量补足。将有效成分四霉素与中生菌素、分散剂、稳定剂、溶剂和悬浮剂等各组分按配方的比例混合，放入砂磨釜内研磨后，送入均质混合器中混匀即得成品。
所述的杀菌组合物为微胶囊剂，组分的质量份数为：四霉素 1 ～ 20 份，中生菌素 1 ～ 20 份，尿素 5 ～ 20 份；甲基 5 ～ 20 份；氧化分散剂 5 ～ 20 份；防冻剂 1 ～ 5 份；增稠剂 0.1 ～ 2 份；消泡剂 0.1 ～ 0.8 份；水，余量。在装有搅拌装置的三口烧瓶中加入尿素和甲醇（物质的质量比约为 1 ：1.5 ～ 2.0），用氢氧化钠溶液调节溶液的 pH 值到 8 ～ 9 左右，然后升温至 70 ～ 80℃，反应得到稳定的脲醛树脂预聚体。取一定量的四霉素与中生菌素的原料溶于环己烷中，并在溶液中加入乳化分散剂，伴随剧烈搅拌，配成以含乳化分散剂的水溶液为水相的 W/O 型稳定乳液。将上述的脲醛树脂预聚体加入乳液中，调节 PH 值，在酸催化条件下发生聚凝反应，使油相物质被包裹起来，形成微胶囊颗粒。缓慢升温，固化，温度控制在 40 ～ 50℃，固化时间 1h。选择加入适量的助剂，即可得稳定的微囊悬浮剂。

其中以上所述的乳化剂选自十二烷基苯磺酸钙与脂肪酸聚氧乙烯醚，烷基酚聚氧乙烯醚磺基琥珀酸酯，苯乙烯基苯酚聚氧乙烯醚，壬基酚聚氧乙烯醚，蓖麻油聚氧乙烯醚，脂肪酸聚氧乙烯醚酯，聚氧乙烯脂肪醇醚中的任何一种或一种以上任意比例组成的混合物。

所述的溶剂为二甲苯或生物柴油，甲苯，柴油，甲醇，乙醇，正丁醇，异丙醇，松脂基植物油代号为 ND-45，溶剂油，二甲基亚砜，二甲基亚砜，水等溶剂中的一种或一种以上任意比例组成的混合物。

所述的分散剂选自聚羧酸盐代号为 LG-3，GY-D1252，GY-D1256，SNWGF-01，木质素磺酸盐代号为 201107，201108，烷基酚聚氧乙烯醚甲醇缩合物硫酸酯，烷基磺酸盐钙盐，萘磺酸甲醇缩合物钠盐，烷基酚聚氧乙烯醚，脂肪酸聚氧乙烯酯，脂肪胺聚氧乙烯醚，甘油脂肪酸酯聚氧乙烯醚中的一个或多个。

所述的湿润剂选自十二烷基硫酸钠，十二烷基苯磺酸钙，拉开粉 BX，湿润渗透剂 F，烷基苯磺酸盐聚氧乙烯三苯依稀苯基磷酸盐，皂角粉，蚕沙，无患子粉中的一种或多种。

所述的崩解剂选自膨润土，尿素，硫酸铵，氯化铝，柠檬酸，丁二酸，碳酸氢钠中的一种或多种。

所述的增稠剂选自黄原胶，羧甲基纤维素，羧乙基纤维素，甲基纤维素，硅酸铝镁，聚乙烯醇中的一种或多种。

所述的稳定剂选自柠檬酸钠，间苯二酚中的一种。

所述的防冻剂选自乙二醇，丙二醇，丙三醇中的一种或多种。

所述的消泡剂选自硅油，硅酮类化合物，C_{10-20} 饱和脂肪酸类化合物，C_{8-10} 脂肪醇中的一种或多种。

所述的填充料选自高岭土，硅藻土，膨润土，凹凸棒土，高碳黑，淀粉，轻质碳酸钙中的一种或多种。

本发明以四霉素与中生菌素为有效成分的复配杀菌剂具有明显的增效作用，延缓药害抗药性的产生，并降低了生产成本和使用成本，可适用于其他病害的防治。主要用于防治果树腐烂病，斑点落叶病，稻瘟病；大豆根腐病；瓜类枯萎病；棉花黄萎病；枣树锈病；葡萄白腐病；人参三七黑斑病；茶叶茶饼病，林木腐烂病，溃疡病，溃疡病，落叶病，林木期立枯病，软腐病病菌，黄瓜角斑病菌，水稻白叶枯病菌，苹果轮纹病病菌，小麦赤霉病病菌等。

具体实施方式

为使本发明的技术方案，目的以及优点更加清楚明白，本发明用以下具体实施例
进行说明，但本发明并非局限于这些例子。本发明的效果实验采用室内生测和田间试验相结合的方式，如无特别说明，以下提及的比例都为质量比。

【0028】实施例：四霉素与中生菌素不同配比联合毒力实验。

【0029】1.1 试验靶标
黄瓜细菌性角斑病菌（病菌菌种采自山东省青岛市即墨移风镇黄瓜大棚，经海利尔药业集团股份有限公司研发中心生测实验室分离纯化而得）。

【0030】1.2 试验方法
15%四霉素母药，15%中生菌素母药，由山东海利尔化工有限公司提供。将纯化过的斜面试管菌种中加入灭菌水，配成原菌悬液，再稀释成107个/升菌悬液，备用。先将四霉素与中生菌素母药用无菌水溶解后配成1000mg/L母液，使用时再用无菌水稀释。（单位：毫克/升）

四霉素与中生菌素混用共设定5组配比，在预试验的基础上，各单剂以及每个配比分别设5个浓度处理，以不含药液的体系为空白对照（参照药剂处理的最高浓度稀释）。每个浓度处理重复4次。在无菌操作条件下，将各浓度梯度药剂分别从低浓度到高浓度依次吸取4ml，加入含36ml灭菌培养基的预先融化的无菌锥形瓶中，充分摇匀，然后立即倒入直径9cm的培养皿中，制成相应的含药平板。每皿加入107个/升细菌悬液200μl，再用灭菌后的三角玻璃棒将皿内菌悬液推匀，置于28℃恒温箱中培养。另设不加药剂的处理作为空白对照。每个处理重复4次。

【0031】1.3 调查方法
培养48小时后将培养皿取出，根据空白对照，观察各浓度皿内细菌菌落数。

【0032】根据各处理细菌菌落数计算相对抑制率：

相对抑制率（%）= \frac{空白对照菌落数 - 药剂处理菌落数}{空白对照菌落数} \times 100%

1.4 增效作用评价
根据 Sun & Johnson（1960）的共毒系数法（CTC）来评价药剂混用的增效作用，即 CTC ≤ 80 为拮抗作用，80 < CTC < 120 为相加作用，CTC ≥ 120 为增效作用。

【0033】实测毒力指数（ATI）= 标准药剂 EC₅₀/ 供试药剂 EC₅₀ × 100

混剂理论毒力指数（TTI）= 药剂 A 的毒力指数 × 100 + 药剂 B 的毒力指数 × 100 混剂中 A 药剂的百分含量 + 药剂 B 的毒力指数 × 100 混剂中 B 药剂的百分含量

共毒系数（CTC）= 实测毒力指数（ATI）/ 混剂理论毒力指数（TTI）× 100。

【0034】2.1 毒力测定结果

表 1 四霉素与中生菌素对黄瓜细菌性角斑病菌的毒力测定
从表中可以看出，不同比例配比的试验结果表明，按有效成分比例分别稀释均表现出较强的增效作用，其中以四霉素：中生菌素为 1:20 ～ 20:1 的时候增效效果最佳，建议对适宜配比 1:20 ～ 20:1 左右混配制剂进行进一步的田间药效试验，以评价其田间实际应用效果。

0035 3 田间试验防治水稻白叶枯病、黄瓜细菌性角斑病的实验结果
3.田间试验防治水稻白叶枯病
3.1.1 试验方法
试验在山东省青岛市即墨区小麦基点，试验品种为杂交水稻品种，每处理4次重复，每小区对角线调查5个点，调查时分别取全部叶片，统计病害发生情况。

[0036] 用分级法记载发病程度，分级标准如下：

0 级：无病；
1 级：病斑面积占整叶面积的5%以下；
3 级：病斑面积占整叶面积的6%~10%以下；
5 级：病斑面积占整叶面积的11%~20%以下；
7 级：病斑面积占整叶面积的21%~50%以下；
9 级：病斑面积占整叶面积的50%以上。

[0037] 3.1.2 调查时间和方法

试验共调查4次，即药前病情指数调查，第1次药后7天防效调查，2次药后7天及15天防效调查。

[0038] 3.1.3 药效计算方法

病叶率(%) = 病叶数 / 调查总叶数 × 100

病情指数 = Σ(各级病叶数 × 相对级别值) / (调查总叶数 × 9) × 100

防治效果(%) = (1 - (空白对照区药前病情指数 × 处理区药后病情指数)) / (空白对照区药后病情指数 × 处理区药前病情指数) × 100。

[0039] 3.1.3 药害调查方法

施药后连续7d后测药剂对作物是否有药害。

[0040] 3.2 试验结果及分析

<table>
<thead>
<tr>
<th>药剂</th>
<th>剂量 (g/亩)</th>
<th>基数病指</th>
<th>第一次药后7d</th>
<th>第二次药后7d</th>
<th>第二次药后15d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>病指</td>
<td>防效/%</td>
<td>病指</td>
<td>防效/%</td>
</tr>
<tr>
<td>四霉素·中生</td>
<td>15</td>
<td>5.67</td>
<td>1.53</td>
<td>74.53</td>
<td>1.35</td>
</tr>
<tr>
<td>5:1</td>
<td>20</td>
<td>5.62</td>
<td>1.45</td>
<td>75.35</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.59</td>
<td>1.38</td>
<td>76.72</td>
<td>1.19</td>
</tr>
<tr>
<td>0.15%四霉素AS</td>
<td>25</td>
<td>5.66</td>
<td>2.04</td>
<td>65.89</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5.61</td>
<td>1.92</td>
<td>67.64</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>5.64</td>
<td>1.84</td>
<td>69.07</td>
<td>1.81</td>
</tr>
<tr>
<td>25%中生菌素</td>
<td>25</td>
<td>5.69</td>
<td>1.87</td>
<td>68.93</td>
<td>1.73</td>
</tr>
<tr>
<td>EC</td>
<td>35</td>
<td>5.61</td>
<td>1.81</td>
<td>69.54</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>5.63</td>
<td>1.78</td>
<td>70.07</td>
<td>1.57</td>
</tr>
</tbody>
</table>

由表2可知四霉素与中生菌素以5:1比例复配杀菌剂对水稻白叶枯病的防效效果明显高于四霉素与中生菌素单剂，杀菌效果随剂的增加而递增。根据田间试验，在试验剂的范围内，作物生长正常，各处理药剂均未出现对水稻的药害现象，证明其对水稻是安全的，对于农业增产具有重要意义，值得推广。
3.2.1 试验方法

试验在山东平度市黄瓜地，试验品种为中农 8 号，每处理 4 次重复，每小区双对角线调查 5 个点，每点调查 3 株黄瓜，用分级法记载发病程度，分级标准如下：
0 级：无病；
1 级：病斑面积占整叶面积的 5% 以下；
3 级：病斑面积占整叶面积的 6%-10% 以下；
5 级：病斑面积占整叶面积的 11%-20% 以下；
7 级：病斑面积占整叶面积的 21%-50% 以下；
9 级：病斑面积占整叶面积的 50% 以上。

3.2.2 调查时间和次数

试验共调查 4 次，药前基数调查，第一次药后 7 天，第二次 7 天及药后 15 天进行调查。

3.2.3 药效计算方法

病叶率 (%) = 病叶数 / 调查总叶数 × 100

病情指数 = Σ（各级病叶数 × 相对级数值）/（调查总叶数 × 9）× 100

防治效果 (%) = (1-（空白对照区药前病情指数 × 处理区药后病情指数）/（空白对照区药后病情指数 × 处理区药前病情指数）) × 100。

3.2.4 药害调查方法

施药后连续 15d 目测药剂对作物是否有药害。

3.2.5 试验结果及分析

表 3 不同处理对黄瓜细菌性角斑病防治测定结果

<table>
<thead>
<tr>
<th>药剂</th>
<th>基数</th>
<th>第一次药后</th>
<th>第二次药后</th>
<th>第二次药后</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7d</td>
<td>7d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>病指</td>
<td>防效 (%)</td>
<td>病指</td>
<td>防效 (%)</td>
</tr>
<tr>
<td>四霉素·中生</td>
<td>15</td>
<td>6.78</td>
<td>1.79</td>
<td>75.76</td>
</tr>
<tr>
<td>芽孢 AS</td>
<td>20</td>
<td>6.73</td>
<td>1.71</td>
<td>76.98</td>
</tr>
<tr>
<td>5:1</td>
<td>25</td>
<td>6.7</td>
<td>1.6</td>
<td>77.95</td>
</tr>
<tr>
<td>0.1%四霉素</td>
<td>35</td>
<td>6.77</td>
<td>2.41</td>
<td>67.12</td>
</tr>
<tr>
<td>AS</td>
<td>45</td>
<td>6.75</td>
<td>2.27</td>
<td>68.87</td>
</tr>
<tr>
<td>25%中生菌素</td>
<td>35</td>
<td>6.72</td>
<td>2.13</td>
<td>70.77</td>
</tr>
<tr>
<td>EC</td>
<td>45</td>
<td>6.74</td>
<td>2.09</td>
<td>71.31</td>
</tr>
<tr>
<td>CK</td>
<td>—</td>
<td>6.74</td>
<td>7.32</td>
<td>—</td>
</tr>
</tbody>
</table>

通过以上大田试验表明，四霉素与中生菌素复配制剂对于黄瓜细菌性角斑病的防效明显优于单剂，杀菌效果随剂量的增加而递增。根据田间目测，在试验剂量范围内，作物生长正常，无药害情况发生，对于农业增产具有重要意义，值得推广。

综上所述，本发明含有四霉素与中生菌素的杀菌组合物，对水稻白叶枯病和黄瓜细菌性角斑病都有很好的防治效果，且其对靶标作物安全。复配制剂不仅提高了防效，而且
扩大了对细菌的防治，所以本复配组合在生产实践中具有十分重要的意义。