(54) 发明名称
一种人脸识别方法及系统

(57) 摘要
本发明适用于计算机视觉技术领域，提供了一种人脸识别方法及系统。所述方法包括：将待识别人脸图像与人脸图像数据库中的二维人脸图像进行匹配；获得最匹配的二维人脸图像，并结合最匹配的二维人脸图像对应的三维人脸模型获得待识别人脸图像和三维人脸模型之间的投影矩阵，基于投影矩阵和三维人脸模型生成新的二维人脸图像，将所述待识别人脸图像的 SIFT 特征向量与所述新的二维人脸图像的 SIFT 特征向量进行匹配，获得最匹配的 SIFT 特征向量，并将最匹配的 SIFT 特征向量对应的二维人脸图像的身份作为最终识别身份。本发明通过将二维和三维方法相结合的方式对人脸图像进行识别，可有效解决现有技术在人脸姿态变换较大时，人脸识别率较低的问题。
1. 一种人脸识别方法，其特征在于，所述方法包括：

建立人脸图像数据库，所述人脸图像数据库包括二维人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型；

获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维人脸模型；

根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵；

基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二维人脸图像，其中每个三维人脸模型对应一个新的二维人脸图像；

提取所述待识别人脸图像的SIFT特征向量以及所述新的二维人脸图像的SIFT特征向量，将提取的所述待识别人脸图像的SIFT特征向量与所述新的二维人脸图像的SIFT特征向量进行匹配，获得最匹配的SIFT特征向量对应的二维人脸图像，并将该二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。

2. 如权利要求1所述的方法，其特征在于，所述提取所述新的二维人脸图像中的SIFT特征向量包括：

对所述新的二维人脸图像进行分块，并提取每一个分块的SIFT特征向量；

合每个分块的SIFT特征向量，将每个分块合并后的SIFT特征向量作为对应新的二维人脸图像的特征向量。

3. 如权利要求2所述的方法，其特征在于，所述方法还包括：

对每个分块合并后的SIFT特征向量进行归一化处理。

4. 如权利要求2或3所述的方法，其特征在于，所述方法还包括：

基于新的二维人脸图像的SIFT特征向量，获取新的二维人脸图像的强SIFT特征向量，其公式具体为：

\[V_i = W^T V_{SIFT1} \]

其中，\(V_i \) 表示第i个新的二维人脸图像的强SIFT特征向量，\(V_{SIFT1} \) 表示第i个新的二维人脸图像的SIFT特征向量，\(W = [q_1, q_2, \ldots, q_k] \)，为 \(M = \frac{1}{n} \sum_{i=1}^{n} (V_{SIFT1i} - \mu)(V_{SIFT1i} - \mu)^T \) 前k个最大特征值，\(\mu = \frac{1}{n} \sum_{i=1}^{n} V_{SIFT1i} \)，\(i=1, 2, \ldots, n, k < n \)，n表示新的二维人脸图像的个数。

5. 如权利要求1所述的方法，其特征在于，所述将提取的所述待识别人脸图像的SIFT特征向量与所述新的二维人脸图像的SIFT特征向量进行匹配的公式为：

\[f = 1 - \frac{V_{SIFT1}}{V_{SIFT2}} \]

其中，\(V_{SIFT1} \) 为所述待识别人脸图像的SIFT特征向量，\(V_{SIFT2} \) 为所述新的二维人脸图像的SIFT特征向量，f值越小表示匹配度越高。

6. 一种人脸识别系统，其特征在于，所述系统包括：

数据库建立单元，用于建立人脸图像数据库，所述人脸图像数据库包括二维人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型；

匹配单元，用于获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维
人脸模型；

计算单元，用于根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算
获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵；

新图像生成单元，用于基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模
型生成多个新的二维人脸图像，其中每一个三维人脸模型对应一个新的二维人脸图像；

识别单元，用于提取所述待识别人脸图像的 SIFT 特征向量以及所述新的二维人脸图
像的 SIFT 特征向量，对提取的所述待识别人脸图像的 SIFT 特征向量与所述新的二维人脸图
像的 SIFT 特征向量进行匹配，获得最匹配的 SIFT 特征向量对应的二维人脸图像，并将该
二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。

7. 如权利要求 6 所述的系统，其特征在于，所述识别单元包括：

特征提取模块，用于对所述新的二维人脸图像进行分块，并提取每一个分块的 SIFT 特
征向量；

合并模块，用于合并每个分块的 SIFT 特征向量，将每个分块合并后的 SIFT 特征向量作
为对应新的二维人脸图像的特征向量。

8. 如权利要求 7 所述的系统，其特征在于，所述合并模块还用于：

对每个分块合并后的 SIFT 特征向量进行归一化处理。

9. 如权利要求 7 或 8 所述的系统，其特征在于，所述识别单元还包括：

强特征提取模块，用于基于新的二维人脸图像的 SIFT 特征向量，获取新的二维人脸图
像的强 SIFT 特征向量，其公式具体为：

\(V_i = W^T V_{SIFT, i} \)

其中，**记为第 i 个新的二维人脸图像的强 SIFT 特征向量，**表示第 i 个新的二维人
脸图像的 SIFT 特征向量，**W** 表示**q 个特征向量的矩阵，**q 个特征向量
与所述新的二维人脸图像的 SIFT 特征向量进行匹配的公式为：

\(f = 1 - V_{SIFT, 1}^T V_{SIFT, 2} \)

其中，**V_{SIFT, 1}** 为所述待识别人脸图像的 SIFT 特征向量，**V_{SIFT, 2}** 为所述新的二维人脸图像的
SIFT 特征向量，f 值越小表示匹配度越高。
一种人脸识别方法及系统

技术领域
[0001] 本发明属于计算机视觉技术领域，尤其涉及一种人脸识别方法及系统。

背景技术
[0002] 现有的人脸识别都是基于二维图像的人脸识别，即从二维人脸图像中提取能够表征人脸的特征信息，将提取的所述特征信息与预存储的二维人脸图像的特征信息进行匹配以达到人脸识别的目的。现有基于二维图像的人脸识别在预存储的二维人脸图像与待识别的二维人脸图像的姿态差异较大时，提取到的人脸特征信息会有非常大的差别，导致人脸识别不准确。

发明内容
[0003] 本发明实施例在于提供一种人脸识别方法及系统，以解决现有基于二维图像的人脸识别，在人脸姿态变换较大时识别准确率较低的问题。
[0004] 本发明实施例的第一方面，提供一种人脸识别方法，所述方法包括：
[0005] 建立人脸图像数据库，所述人脸图像数据库包括二维人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型；
[0006] 获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维人脸模型；
[0007] 根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵；
[0008] 基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二维人脸图像，其中每一个三维人脸模型对应一个新的二维人脸图像；
[0009] 提取所述待识别人脸图像的SIFT特征向量以及所述新的二维人脸图像的SIFT特征向量，将提取的所述待识别人脸图像的SIFT特征向量与所述新的二维人脸图像的SIFT特征向量进行匹配，获得最匹配的SIFT特征向量对应的二维人脸图像，并将该二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。
[0010] 本发明实施例的另一方面，提供一种人脸识别系统，所述系统还包括：
[0011] 数据库建立单元，用于建立人脸图像数据库，所述人脸图像数据库包括二维人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型；
[0012] 匹配单元，用于获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维人脸模型；
[0013] 计算单元，用于根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵；
[0014] 新图像生成单元，用于基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二维人脸图像，其中每一个三维人脸模型对应一个新的二维人脸图
附图说明
[0017] 为了更清楚地说明本发明实施例中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动性的前提下，还可以根据这些附图获得其他的附图。
[0018] 图 1 是本发明第一实施例提供的人脸识别方法的实现流程图；
[0019] 图 2 是本发明第一实施例提供的对新的二提及人脸图像进行分块的示例图；
[0020] 图 3 是本发明第二实施例提供的人脸识别系统的组成结构图。

具体实施方式
[0021] 为了使本发明的目的、技术方案及优点更加清楚明白，以下结合附图及实施例，对本发明进行进一步详细说明。应当理解，此处所描述的具体实施例仅仅用以解释本发明，并不用于限定本发明。
[0022] 为了说明本发明所述的技术方案，下面通过具体实施例来进行说明。
[0023] 实施例一：
[0024] 图 1 显示了第一实施例提供的人脸识别方法的实现流程，该方法过程详述如下：
[0025] 在步骤 S101 中，建立人脸图像数据库，所述人脸图像数据库包括二提及人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型。
[0026] 在本实施例中，为每个身份的用户存储一张二提及人脸图像，即每一张二提及人脸图像对应一个唯一身份，并基于所述二提及人脸图像通过三维建模技术进行建模，在建模时把人脸的纹理信息保存下来并映射到最终的三维人脸模型上。因此，所述人脸图像数据库中
保存有每个身份的一张二维人脸图像以及对应的三维人脸模型。
[0027] 在步骤 S102 中，获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维人脸模型。
[0028] 在本实施例中，可将所述图像通过图像处理后，将所述图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像。基于所述二维人脸图像与所述三维人脸模型的对应关系，获取最匹配的二维人脸图像对应的带有纹理的三维人脸模型。
[0029] 本实施例可以通过内设或者外置的摄像头采集图像序列，并通过人脸检测算法检测采集的图像序列中是否存在人脸，当采集的图像序列中存在人脸时，对该图像序列进行一定比例的裁剪，使得裁剪后的图像包括人脸的一小部分特征点，例如，眼睛、鼻子、嘴等。其中，所述人脸检测算法包括但不限于有限类矩形特征的 Adaboost 算法。
[0030] 进一步的，本实施例还包括对采集的待识别人脸图像进行预处理，所述预处理的过程包括但不限于采用腐蚀运算将孤立的小区域去除，再用膨胀运算将小间隙填充。例如，把人脸从背景中分离出来，并对因摄像头或其它因素所造成的图像退化现象进行复原，以保证人脸图像的相关数据（如 RGB 颜色数据）更加准确。
[0031] 在步骤 S103 中，根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵。
[0032] 在本实施例中，通过步骤 S102 的匹配过程，可以获取待识别人脸图像与其最匹配图像之间的对应关系，再基于最匹配图像和其三维人脸模型之间的对应关系，可以获取待识别人脸图像与三维人脸模型之间的对应关系，通过所述对应关系获得投影矩阵，其具体过程属于计算机视觉领域的常用技术手段，在此不再赘述。
[0033] 在步骤 S104 中，基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成新的二维人脸图像，其中每一个三维人脸模型对应一个新的二维人脸图像。
[0034] 在本实施例中，所述投影矩阵计算出来后，将三维人脸模型上的视点左乘以该投影矩阵即获得二维人脸图像的视点。再基于三维模型的纹理信息，可获得投影到所述二维人脸图像的视点的颜色，所述二维人脸图像的视点和颜色，最终生成一张新的二维人脸图像。其中所述视点是指人脸图像相对于摄像头的位置。
[0035] 在步骤 S105 中，提取所述待识别人脸图像的 SIFT 特征向量（即表示所述待识别人脸图像的特征的向量）以及所述新的二维人脸图像的 SIFT 特征向量，将提取的所述待识别人脸图像的 SIFT 特征向量与所述新的二维人脸图像的 SIFT 特征向量进行匹配，获得最匹配的 SIFT 特征向量对应的二维人脸图像，并将该二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。
[0036] 其中，所述提取所述新的二维人脸图像中的 SIFT 特征向量包括：
[0037] 对所述新的二维人脸图像进行分块（如图 2 所示，假定二维人脸图像大小为 m×h 像素，其中 m 为图像的宽度，h 为图像的高度，每个块的大小定为 16×16 像素，那么该二维人脸图像最终被分成 (m/16) × (h/16) 个小块），并对每个分块提取尺度不变特征转换（Scale-Invariant Feature Transform，SIFT）特征向量，获得的 SIFT 特征向量为 128 维的向量，作为所述分块对应的 SIFT 特征向量；
合并每个分块的 SIFT 特征向量，将每个分块合并后的 SIFT 特征向量作为对应新的二维人脸图像的特征向量。如上示例，将每个分块的 SIFT 特征向量合并成一个维数为 \((w/16) \times (h/16) \times 128\) 的向量，并对该向量进行归一化处理，归一化处理后的向量标示为 \(V_{SIFT}^i\)。所述 \(V_{SIFT}^i\) 即为新的二维人脸图像对应的 SIFT 特征向量。

进一步的，为减少新的二维人脸图像对应的 SIFT 特征向量的燥声，本实施例还包括：

基于新的二维人脸图像的 SIFT 特征向量，获取新的二维人脸图像的强 SIFT 特征向量，其公式具体为：

\[V_i = W_i V_{SIFT}^i \]

其中，\(V_i\) 表示第 \(i\) 个新的二维人脸图像的强 SIFT 特征向量，\(V_{SIFT}^i\) 表示第 \(i\) 个新的二维人脸图像的 SIFT 特征向量，\(W_i\)=[\(q_1, q_2, \ldots, q_k\)]，\(q_k\) 为

\[M = \frac{1}{n} \sum_{i=1}^{n} (V_{SIFT}^i - \mu)(V_{SIFT}^i - \mu)^T \]

前 \(k\) 个最大特征值，\(\mu = \frac{1}{n} \sum_{i=1}^{n} V_{SIFT}^i\)，\(i=1, 2, \ldots, n, k < n\) 表示新的二维人脸图像的个数，\(k, n\) 为大于或等于 1 的整数，\(W_i\) 表示向量 \(W\) 的转换。

本实施例提取 SIFT 特征向量的目的是 SIFT 特征向量可以更有效的保留人脸局部区域的边缘信息，提高人脸识别的准确率。

进一步的，本实施例所述将提取的所述待识别人脸图像的 SIFT 特征向量与所述新的二维人脸图像的 SIFT 特征向量进行匹配的公式为：

\[f = 1 - V_{SIFT1}^i V_{SIFT2}^i \]

其中，\(V_{SIFT1}^i\) 为所述待识别人脸图像的 SIFT 特征向量，\(V_{SIFT2}^i\) 为所述新的二维人脸图像的 SIFT 特征向量，\(f\) 值越小表示匹配度越高。

需要说明的是，本实施例提取所述待识别人脸图像 SIFT 特征向量的方式与提取所述新的二维人脸图像 SIFT 特征向量的方式相同，在此不再赘述。

本实施例将 \(f\) 值最小的新的二维人脸图像对应的二维人脸图像的身份作为所述待识别人脸图像的身份。由于新的二维人脸图像与三维人脸模型对应，而三维人脸模型与二维人脸图像对应，从而可获得新的二维人脸图像与二维人脸图像的对应关系，最终确定所述待识别人脸图像的身份。

本发明实施例通过将二维和三维方法相结合的方式对人脸图像进行识别，可有效解决现有技术在人脸姿态变换较大时，单纯通过二维图像提取特征方式导致人脸识别率较低的问题。

实施例二：

图 3 显示了本发明第二实施例提供的人识别系统的组成结构，为了便于说明，图示出了与本发明实施例相关的部分。

该人脸识别系统包括数据库建立单元 31、匹配单元 32、计算单元 33、新图像生成单元 34 以及识别单元 35。其中，各单元的具体功能如下：

数据库建立单元 31，用于建立人脸图像数据库，所述人脸图像数据库包括二位人脸图像以及与所述二位人脸图像对应的带有纹的三维人脸模型；

匹配单元 32，用于获取待识别人脸图像，并将获取的所述待识别人脸图像与所述
人脸识别数据库中的二维人脸图像进行匹配，获得最匹配的二二维人脸图像对应的带有纹理的三维人脸模型；

[0055] 计算单元 33，用于根据所述最匹配的二二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵；

[0056] 新图像生成单元 34，用于基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二二维人脸图像，其中每一个三维人脸模型对应一个新的二二维人脸图像。

[0057] 识别单元 35，用于提取所述待识别人脸图像的 SIFT 特征向量以及所述新的二二维人脸图像的 SIFT 特征向量，将提取的所述待识别人脸图像的 SIFT 特征向量与所述新的二二维人脸图像的 SIFT 特征向量进行匹配，获得最匹配的 SIFT 特征向量对应的二二维人脸图像，并将该二二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。

[0058] 进一步的，所述识别单元 35 包括：

[0059] 特征提取模块 351，用于对所述新的二二维人脸图像进行分块，并提取每一个分块的 SIFT 特征向量；

[0060] 合并模块 352，用于合并每个分块的 SIFT 特征向量，将每个分块合并后的 SIFT 特征向量作为对应新的二二维人脸图像的特征向量。

[0061] 进一步的，所述合并模块 352 还用于：

[0062] 对每个分块合并后的 SIFT 特征向量进行归一化处理。

[0063] 进一步的，所述识别单元 35 还包括：

[0064] 强特征获取模块 353，用于基于新的二二维人脸图像的 SIFT 特征向量，获取新的二二维人脸图像的强 SIFT 特征向量，其公式具体为：

$$V_i = W_i V_{SIFT}$$

[0065] 其中，V_i 表示第 i 个新的二二维人脸图像的强 SIFT 特征向量，V_{SIFT} 表示第 i 个新的二二维人脸图像的 SIFT 特征向量，$W = [q_1, q_2, \ldots, q_k]$，$q_k$ 为 $\mu = \frac{1}{n} \sum_{i=1}^{n} (V_{SIFT} - \mu)(V_{SIFT} - \mu)^T$ 前 k 个最大特征值，$\mu = \frac{1}{n} \sum_{i=1}^{n} V_{SIFT}$，$i = 1, 2, \ldots, n$，$k < n$，$n$ 表示新的二二维人脸图像的个数。

[0066] 进一步的，所述识别单元 35 还包括提取所述待识别人脸图像的 SIFT 特征向量与所述新的二二维人脸图像的 SIFT 特征向量进行匹配的公式为：

$$f = 1 - V_{SIFT1} \cdot V_{SIFT2}$$

[0067] 其中，V_{SIFT1} 为所述待识别人脸图像的 SIFT 特征向量，V_{SIFT2} 为所述新的二二维人脸图像的 SIFT 特征向量，f 值越小表示匹配度越高。

[0068] 所属领域的技术人员可以清楚地了解到，为描述的方便和简洁，仅以上述各功能单元、模块的划分进行举例说明，实际应用中，可以根据需要而将上述功能分配由不同的功能单元、模块完成，即所述系统的内部结构划分成不同的功能单元或模块，以完成以上描述的全部或者部分功能。实施例中的各功能单元或模块可以集成在一个处理单元中，也可以是各个单元单独物理存在，也可以两个或两个以上单元集成在一个单元中，上述集成的单元或模块既可以采用硬件的形式实现，也可以采用软件功能单元的形式实现。另外，各功能单元、模块的具体名称只是为了便于相互区分，并不用于限制本申请的保护范围。上述系
综上所述，本发明实施例将待识别人脸图像与人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像，并结合最匹配的二维人脸图像对应的三维人脸模型获得待识别人脸图像和三维人脸模型之间的投影矩阵，基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二维人脸图像，提取所述新的二维人脸图像的SIFT特征向量并存储至人脸图像数据库，提取所述待识别人脸图像的SIFT特征向量，并将所述待识别人脸图像的SIFT特征向量与所述新的二维人脸图像的SIFT特征向量进行匹配，获得最匹配的SIFT特征向量对应的二维人脸图像，将该二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。本发明实施例通过将二维和三维方法相结合的方式对人脸图像进行识别，可有效解决现有技术中人脸姿态变换较大时，单纯通过二维图像提取特征方式导致人脸识别率较低的问题。本发明实施例人脸识别准确、高效，对硬件要求较低，从而有利于降低产品成本，使得产品适用面更广，具有较强的易用性和实用性。

本领域普通技术人员还可以理解，实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成，所述的程序可以在存储于一计算机可读取存储介质中的，所述的存储介质，包括ROM/RAM、磁盘、光盘等。

以上内容是结合实施例的具体实施方式对本发明所作的进一步详细说明，不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下做出若干等同替代或明显变型，而且性能或用途相同，都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。
图 1

建立人脸图像数据库。所述人脸图像数据库包括二维人脸图像以及与所述二维人脸图像对应的带有纹理的三维人脸模型。

图 2

获取待识别人脸图像，并将获取的所述待识别人脸图像与所述人脸图像数据库中的二维人脸图像进行匹配，获得最匹配的二维人脸图像对应的带有纹理的三维人脸模型。

根据所述最匹配的二维人脸图像对应的带有纹理的三维人脸模型计算获得所述待识别人脸图像与该三维人脸模型之间的投影矩阵。

基于所述投影矩阵和所述人脸图像数据库中的每个三维人脸模型生成多个新的二维人脸图像，其中每个三维人脸模型对应一个新的二维人脸图像。

提取待识别人脸图像的SIFT特征向量以及新的二维人脸图像的SIFT特征向量，将提取的所述待识别人脸图像的SIFT特征向量与所述新的二维人脸图像的SIFT特征向量进行匹配，获得最匹配的SIFT特征向量对应的二维人脸图像，并将该二维人脸图像的身份作为所述待识别人脸图像的最终识别身份。
图 3