
(12) STANDARD PATENT 
(19) AUSTRALIAN PATENT 01

(11) Application No. AU
-FICE

2010298321 B2

(54) Title
Enhanced block-request streaming using URL templates and construction rules

(51) International Patent Classification(s)
H04L 29/06 (2006.01) H04N 7/24 (2006.01)

(21) Application No: 2010298321 (22) Date of Filing: 2010.09.22

(87) WIPONo: WO11/038032

(30) Priority Data

(31) Number (32) Date (33) Country
12/887,492 2010.09.21 US
61/296,725 2010.01.20 US
61/258,088 2009.11.04 US
61/257,719 2009.11.03 US
61/285,779 2009.12.11 US
61/244,767 2009.09.22 US
61/372,399 2010.08.10 US

(43) Publication Date: 2011.03.31
(44) Accepted Journal Date: 2014.07.24

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Luby, Michael G.;Watson, Mark;Vicisano, Lorenzo; Pakzad, Payam;Wang,
Bin;Stockhammer, Thomas

(74) Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001

(56) Related Art
US 2009/0164653
US 2009/0089445



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/038032 A3PCT

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
31 March 2011 (31.03.2011)

(51) International Patent Classification:
H04L 29/06 (2006.01) H04N 7/24 (2011.01)

(21) International Application Number:
PCT/US2010/049869

(22) International Filing Date:
22 September 2010 (22.09.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/244,767 22 September 2009 (22.09.2009) US
61/257,719 3 November 2009 (03.11.2009) US
61/258,088 4 November 2009 (04.11.2009) US
61/285,779 11 December 2009 (11.12.2009) US
61/296,725 20 January 2010 (20.01.2010) US
61/372,399 10 August 2010 (10.08.2010) US
12/887,492 21 September 2010 (21.09.2010) US

(71) Applicant (for all designated States except US): QUAL­
COMM INCORPORATED [US/US]; International IP 
Administration, 5775 Morehouse Drive, San Diego, Cali­
fornia 92121-1714 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): LUBY, Michael G. 

[US/US]; 5775 Morehouse Drive, San Diego, California 
92121-1714 (US). WATSON, Mark [GB/US]; 5775 
Morehouse Drive, San Diego, California 92121-1714 
(US). VICISANO, Lorenzo [US/US]; 5775 Morehouse 
Drive, San Diego, California 92121-1714 (US).

PAKZAD, Payam [US/US]; 5775 Morehouse Drive, San 
Diego, California 92121-1714 (US). WANG, Bin 
[CN/US]; 5775 Morehouse Drive, San Diego, California 
92121-1714 (US). STOCKHAMMER, Thomas
[DE/DE]; 5775 Morehouse Drive, San Diego, CA 
92121-1714 (US).

(74) Agent: JACOBS, Jeffrey, D.; International IP Adminis­
tration, 5775 Morehouse Drive, San Diego, CA 
92121-1714 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, 
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, 
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ENHANCED BLOCK-REQUEST STREAMING USING URL TEMPLATES AND CONSTRUCTION RULES

W
O

 20
11

/0
38

03
2 A

3

102

(57) Abstract: A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of 
such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, 
FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file 
server, which might include a cache. A client device can be adapted to take advantage of the ingestion process as well as improve­
ments that make for a better presentation independent of the ingestion process. The client devices and ingestion system can be co­
ordinated to have a predefined mapping and template for making block requests to HTTP file names that a conventional file server 
can accept through the use of URL construction rules. Segment size might be specified in an approximate manner for more effi­
cient organization.



wo 2011/038032 A31 Hill 1111IIII liillllllilliiililli II III lllllli
Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted 

a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of 
the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))

(88) Date of publication of the international search report:
24 November 2011



WO 2011/038032 1 PCT/US2010/049869

ENHANCED BLOCK-REQUEST STREAMING USING URL 
TEMPLATES AND CONSTRUCTION RULES

CROSS-REFERENCES TO RELATED APPLICATIONS 

[0001] This application is a Nonprovisional Patent Application claiming benefit of the 

following provisional applications, each naming Michael G. Luby, et al. and each 

entitled “Enhanced Block-Request Streaming System”:

[0002] U.S. Provisional Patent Application No. 61/244,767, filed September 22, 2009,

[0003] U.S. Provisional Patent Application No. 61/257,719, filed November 3, 2009,

[0004] U.S. Provisional Patent Application No. 61/258,088, filed November 4, 2009,

[0005] U.S. Provisional Patent Application No. 61/285,779, filed December 11,2009,

and

[0006] U.S. Provisional Patent Application No. 61/296,725, filed January 20, 2010.

[0007] This application also claims benefit of U.S. Provisional Patent Application No. 

61/372,399, filed August 10, 2010, naming Ying Chen, et al. and entitled “HTTP 

Streaming Extensions”.

[0008] Each provisional application cited above is hereby incorporated by reference 

for all purposes. The present disclosure also incorporates by reference, as if set forth in 

full in this document, for all purposes, the following commonly assigned

applications/patents:

[0009] U.S. Patent No. 6,307,487 to Luby (hereinafter “Luby I”);

[0010] U.S. Patent No. 7,068,729 to Shokrollahi, et al. (hereinafter “Shokrollahi I”);

[0011] U.S. Patent Application No. 11/423,391 filed June 9, 2006 and entitled 

“Forward Error-Correcting (FEC) Coding and Streaming” naming Luby, et al. 

(hereinafter “Luby II”);

[0012] U.S. Patent Application No. 12/103,605 filed April 15, 2008 entitled 

“Dynamic Stream Interleaving and Sub-Stream Based Delivery” naming Luby, et al. 

(hereinafter “Luby III”);



WO 2011/038032 PCT/US2010/049869
2

[0013] U.S. Patent Application No. 12/705,202 filed February 12, 2010 entitled 

“Block Partitioning for a Data Stream” naming Pakzad, et al. (hereinafter “Pakzad”); 

and

[0014] U.S. Patent Application No. 12/859,161 filed August 18, 2010 entitled 

“Methods and Apparatus Employing FEC Codes with Permanent Inactivation of 

Symbols for Encoding and Decoding Processes” naming Luby, et al. (hereinafter “Luby 

IV”).

FIELD OF THE INVENTION

[0015] The present invention relates to improved media streaming systems and 

methods, more particularly to systems and methods that are adaptive to network and 

buffer conditions in order to optimize a presentation of streamed media and allows for 

efficient concurrent, or timely-distributed, delivery of streamed media data.

BACKGROUND OF THE INVENTION

[0016] Streaming media delivery may become increasingly important as it becomes 

more common for high quality audio and video to be delivered over packet-based 

networks, such as the Internet, cellular and wireless networks, powerline networks, and 

other types of networks. The quality with which the delivered streaming media can be 

presented may depend on a number of factors, including the resolution (or other 

attributes) of the original content, the encoding quality of the original content, the 

capabilities of the receiving devices to decode and present the media, timeliness and 

quality of the signal received at the receivers, etc. To create a perceived good streaming 

media experience, transport and timeliness of the signal received at receivers may be 

especially important. Good transport may provide fidelity of the stream received at the 

receiver relative to what a sender sends, while timeliness may represent how quickly a 

receiver can start playing out the content after an initial request for that content.

[0017] A media delivery system can be characterized as a system having media 

sources, media destinations, and channels (in time and/or space) separating sources and 

destinations. Typically, a source includes a transmitter with access to media in 

electronically manageable form, and a receiver with an ability to electronically control 

receipt of the media (or an approximation thereof) and provide it to a media consumer 

(e.g., a user having a display device coupled in some way to the receiver, a storage 

device or element, another channel, etc.).



WO 2011/038032 PCT/US2010/049869
3

[0018] While many variations are possible, in a common example, a media delivery 

system has one or more servers that have access to media content in electronic form, 

and one or more client systems or devices make requests for media to the servers, and 

the servers convey the media using a transmitter as part of the server, transmitting to a 

receiver at the client so that the received media can be consumed by the client in some 

way. In a simple example, there is one server and one client, for a given request and 

response, but that need not be the case.

[0019] Traditionally, media delivery systems may be characterized into either a 

“download” model or “streaming” model. The “download” model might be 

characterized by timing independence between the delivery of the media data and the 

playout of the media to the user or recipient device.

[0020] As an example, media is downloaded for enough in advance of when it is 

needed or will be used and when it is used, as much as is needed is already available at 

the recipient. Delivery in the download context is often performed using a file transport 

protocol, such as HTTP, FTP or File Delivery over Unidirectional Transport (FLUTE) 

and the delivery rate might be determined by an underlying flow and/or congestion 

control protocol, such as TCP/IP. The operation of the flow or congestion control 

protocol may be independent of the playout of the media to the user or destination 

device, which may take place concurrently with the download or at some other time.

[0021] The “streaming” mode might be characterized by a tight coupling between the 

timing of the delivery of the media data and the playout of the media to the user or 

recipient device. Delivery in this context is often performed using a streaming protocol, 

such as the Real Time Streaming Protocol (RTSP) for control and the Real Time 

Transport Protocol (RTP) for the media data. The delivery rate might be determined by 

a streaming server, often matching the playout rate of the data.

[0022] Some disadvantages of the “download” model may be that, due to the timing 

independence of the delivery and playout, either media data may not be available when 

it is needed for playout (for example due to the available bandwidth being less than the 

media data rate), causing playout to stop momentarily (“stalling”), which results in a 

poor user experience, or media data may be required to be downloaded very far in 

advance of playout (for example due to the available bandwidth being greater than the 

media data rate), consuming storage resources on the receiving device, which may be



WO 2011/038032 PCT/US2010/049869
4

scarce, and consuming valuable network resources for the delivery which may be 

wasted if the content is not, eventually, played out or otherwise used.

[0023] An advantage of the “download” model may be that the technology needed to

perform such downloads, for example HTTP, is very mature, widely deployed and 

applicable across a wide range of applications. Download servers and solutions for 

massive scalability of such file downloads (for example, HTTP Web Servers and 

Content Delivery Networks) may be readily available, making deployment of services 

based on this technology simple and low in cost.

[0024] Some disadvantages of the “streaming” model may be that generally the rate of 

delivery of media data is not adapted to the available bandwidth on the connection from 

server to client and that specialized streaming servers or more complex network 

architecture providing bandwidth and delay guarantees are required. Although 

streaming systems exist which support variation of the delivery data rate according to 

available bandwidth (for example Adobe Flash Adaptive Streaming), these are generally 

not as efficient as download transport flow control protocols such as TCP at utilizing all 

the available bandwidth.

[0025] Recently, new media delivery systems based on a combination of the 

“streaming” and “download” models have been developed and deployed. An example 

of such a model is referred to herein as a “block-request streaming” model, wherein a 

media client requests blocks of media data from serving infrastructure using a download 

protocol, such as HTTP. A concern in such systems may be the ability to start playing 

out a stream, for example decoding and rendering received audio and video streams 

using a personal computer and displaying the video on a computer screen and playing 

the audio through built in speakers, or as another example decoding and rendering 

received audio and video streams using a set top box and displaying the video on a 

television display device and playing the audio through a stereo system.

[0026] Other concerns, such as being able to decode the source blocks fast enough to 

keep up with the source streaming rate, to minimize the decoding latency and to reduce 

the use of available CPU resources are issues. Another concern is to provide a robust 

and scalable streaming delivery solution that allows components of the system to fail 

without adversely affecting the quality of the streams delivered to receivers. Other



5
20

10
29

83
21

 
02

 Ju
n2

01
4 problems might occur based on rapidly changing information about a presentation, as it is 

being distributed. Thus, it is desirable to have improved processes and apparatus.

BRIEF SUMMARY OF THE INVENTION 

[0027] A block request streaming system provides for improvements in the user 

experience and bandwidth efficiency of such systems, typically using an ingestion system 

that generates data in a form to be served by a conventional file server (HTTP, FTP, or the 

like), wherein the ingestion system intakes content and prepares it as files or data elements 

to be served by the file server, which might or might not include a cache. A client device 

can be adapted to take advantage of the ingestion process as well as including 

improvements that make for a better presentation independent of the ingestion process. In 

one aspect, the client devices and ingestion system are coordinated in that there is a 

predefined mapping and template for making block requests to HTTP file names that a 

conventional file server can accept through the use of URL construction rules. In some 

embodiments, novel improvements to methods for specifying segment size in an 

approximate manner for more efficient organization are provided.

[0027a] According to a first aspect of the present invention there is provided a method for 

requesting segments including media data of a media presentation from a media delivery 

system using a client device, the method including:

constructing, at the client device, one or more file identifiers of the segments of 

the media presentation based on file identifier construction rules, wherein the file identifier 

construction rules enable specification of required media and associated metadata in the file 

identifier;

sending a request for a segment of the media presentation to the media delivery 

system, wherein the request includes a constructed file identifier of the one or more 

constructed file identifiers, wherein the constructed file identifier specifies required media 

and associated metadata of the segment.

[0027b] According to a second aspect of the present invention there is provided a client 

device for obtaining segments including media data of a media presentation from a media 

delivery system, including:

a transmitter for sending file requests, wherein a file request includes a file 

indicator and a byte range within an indicated file;

a receiver for receiving responses to the file requests; and



5a
20

10
29

83
21

 
02

 Ju
n 

20
14 logic for constructing a file identifier of the segments of the media presentation 

based on file identifier construction rules, wherein the file identifier construction rules 

enable specification of required media and associated metadata in the file identifier,

wherein file requests include the constructed file identifier, wherein the 

constructed file identifier specifies required media and associated metadata of the segment.

[0028] The following detailed description together with the accompanying drawings will 

provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS 

[0029] Fig. 1 depicts elements of a block request streaming system according to 

embodiments of the present invention.

[0030] Fig. 2 illustrates the block request streaming system of Fig. 1, showing greater 

detail in the elements of a client system that is coupled to a block serving infrastructure 

(“BSI”) to receive data that is processed by a content ingestion system.

[0031] Fig. 3 illustrates a hardware/software implementation of an ingestion system.

[0032] Fig. 4 illustrates a hardware/software implementation of a client system.

[0033] Fig. 5 illustrates possible structures of the content store shown in Fig. 1, 

including segments and media presentation descriptor (“MPD”) files, and a breakdown of 

segments, timing, and other structure within an MPD file. -------------------------------------7



WO 2011/038032 PCT/US2010/049869
6

[0034] Fig. 6 illustrates details of a typical source segment, as might be stored in the 

content store illustrated in Figs. 1 and 5.

[0035] Figs. 7a and 7b illustrate simple and hierarchical indexing within files.

[0036] Fig. 8(a) illustrates variable block sizing with aligned seek points over a 

plurality of versions of a media stream.

[0037] Fig. 8(b) illustrates variable block sizing with non-aligned seek points over a 

plurality of versions of a media stream.

[0038] Fig. 9(a) illustrates a Metadata Table.

[0039] Fig. 9(b) illustrates the transmission of Blocks and Metadata Table from server 

to client.

[0040] Fig. 10 illustrates blocks that are independent of RAP boundaries.

[0041] Fig. 11 illustrates continuous and discontinuous timing across segments.

[0042] Fig. 12 is a figure showing an aspect of scalable blocks.

[0043] Fig. 13 depicts a graphical representation of the evolution of certain variables 

within a block-request streaming system over time.

[0044] Fig. 14 depicts another graphical representation of the evolution of certain 

variables within a block-request streaming system over time.

[0045] Fig. 15 depicts a cell grid of states as a function of threshold values.

[0046] Fig. 16 is a flowchart of a process that might be performed in a receiver that 

can request single blocks and multiple blocks per request.

[0047] Fig. 17 is a flowchart of a flexible pipeline process.

[0048] Fig. 18 illustrates an example of a candidate set of requests, their priorities, 

and which connections that they can be issued on, at a certain time.

[0049] Fig. 19 illustrates an example of a candidate set of requests, their priorities, 

and which connections that they can be issued on, that has evolved from one time to 

another.



WO 2011/038032 PCT/US2010/049869
7

[0050] Fig. 20 is a flowchart of consistent caching server proxy selection based on a 

file identifier.

[0051] Fig. 21 illustrates a syntax definition for a suitable expression language.

[0052] Fig. 22 illustrates an example of a suitable hash function.

[0053] Fig. 23 illustrates examples of file identifier construction rules.

[0054] Figs. 24(a) - (e) illustrate bandwidth fluctuations of TCP connections.

[0055] Fig. 25 illustrates multiple HTTP requests for source and repair data.

[0056] Fig. 26 illustrates example channel zapping time with and without FEC.

[0057] Fig. 27 illustrates details of a repair segment generator that, as part of the 

ingestion system shown in Fig. 1, generates repair segments from source segments and 

control parameters.

[0058] Fig. 28 illustrates relationships between source blocks and repair blocks.

[0059] Fig. 29 illustrates a procedure for live services at different times at the client.

[0060] In the figures, like items are referenced with like numbers and sub-indices are 

provided in parentheses to indicate multiple instances of like or identical items. Unless 

otherwise indicated, the final sub-index (e.g., “N” or “M”) is not intended to be limiting 

to any particular value and the number of instances of one item can differ from the 

number of instances of another item even when the same number are illustrated and the 

sub-index is reused.

DETAILED DESCRIPTION OF THE INVENTION 

[0061] As described herein, a goal of a streaming system is to move media from its 

storage location (or the location where it is being generated) to a location where it is 

being consumed, i.e., presented to a user or otherwise “used up” by a human or 

electronic consumer. Ideally, the streaming system can provide uninterrupted playback 

(or more generally, uninterrupted “consumption”) at a receiving end and can begin 

playing a stream or a collection of streams shortly after a user has requested the stream 

or streams. For efficiency reasons, it is also desirable that each stream be halted once 

the user indicates that the stream is no longer needed, such as when the user is switching 

from one stream to another stream or it obeys the presentation of a stream, e.g., the



WO 2011/038032 PCT/US2010/049869
8

“subtitle” stream. If the media component, such as the video, is continued to be 

presented, but a different stream is selected to present this media component, it is often 

preferred to occupy limited bandwidth with the new stream and stop the old stream.

[0062] A block-request streaming system according to embodiments described herein 

provides many benefits. It should be understood that a viable system need not include 

all of the features described herein, as some applications might provide a suitably 

satisfying experience with less than all of the features described herein.

HTTP Streaming

[0063] HTTP streaming is a specific type of streaming. With HTTP streaming, the 

sources might be standard web servers and content delivery networks (CDNs) and might 

use standard HTTP. This technique may involve stream segmentation and the use of 

multiple streams, all within the context of standardized HTTP requests. The media, such 

as video, may by encoded at multiple bitrates to form different versions, or

representations. The terms “version” and “representation” are used synonymously in 

this document. Each version or representation may be broken into smaller pieces, 

perhaps on the order of a few seconds each, to form segments. Each segment may then 

be stored on a web server or CDN as a separate file.

[0064] On the client side, requests may then be made, using HTTP, for individual 

segments that are seamlessly spliced together by the client. The client may switch to 

different data rates based on available bandwidth. The client may also request multiple 

representations, each presenting a different media component, and may present the 

media in these representations jointly and synchronously. Triggers for switching may 

include buffer occupancy and network measurements, for example. When operating in 

the steady state, the client may pace requests to the server to maintain a target buffer 

occupancy.

[0065] Advantages of HTTP streaming may include bit-rate adaptation, fast startup 

and seek, and minimal unnecessary delivery. These advantages come from controlling 

the delivery to be only a short time ahead of the playout, making maximum use of 

available bandwidth (through variable bit rate media), and optimizing stream 

segmentation and intelligent client procedures.

[0066] A media presentation description may be provided to an HTTP streaming 

client such that the client can use a collection of files (for example in formats specified



WO 2011/038032 PCT/US2010/049869
9

by 3GPP, herein called a 3gp segments) to provide a streaming service to the user. A 

media presentation description, and possibly updates of this media presentation 

description, describe a media presentation that is a structured collection of segments, 

each containing media components such that the client can present the included media 

in a synchronized manner and can provide advanced features, such as seeking, 

switching bitrates and joint presentation of media components in different 

representations. The client may use the media presentation description information in 

different ways for the provisioning of the service. In particular, from the media 

presentation description, the HTTP streaming client may determine which segments in 

the collection can be accessed so that that the data is useful to the client capability and 

the user within the streaming service.

[0067] In some embodiments, the media presentation description may be static, 

although segments might be created dynamically. The media presentation description 

may be as compact as possible to minimize access and download time for the service. 

Other dedicated server connectivity may be minimized, for example regular or frequent 

timing synchronization between client and server.

[0068] The media presentation may be constructed to permit access by terminals with 

different capabilities, such as access to different access network types, different current 

network conditions, display sizes, access bitrates and codec support. The client may 

then extract the appropriate information to provide the streaming service to the user.

[0069] The media presentation description may also permit deployment flexibility and 

compactness according to the requirements.

[0070] In a simplest case, each Alternative Representation may be stored in a single 

3GP file, i.e., a file conforming as defined in 3GPP TS26.244, or any other file that 

conforms to the ISO base media file format as defined in ISO/IEC 14496-12 or derived 

specifications (such as the 3GP file format described in 3GPP Technical Specification 

26.244). In the remainder of this document, when referring to a 3GP file, it should be 

understood that ISO/IEC 14496-12 and derived specifications can map all described 

features to the more general ISO base media file format as defined in ISO/IEC 14496-12 

or any derived specifications. The client may then request an initial portion of the file to 

learn the media metadata (which typically is stored in the Movie header box, also



WO 2011/038032 PCT/US2010/049869
10

referred to as “moov” box) together with movie fragment times and byte offsets. The 

client may then issue HTTP partial get requests to obtain movie fragments as required.

[0071] In some embodiments it may be desirable to split each representation into 

several segments, where the segments. In case that the segment format is based on the 

3GP file format, then segments contain non-overlapping time slices of the movie 

fragments, called “time-wise splitting”. Each of these segments may contain multiple 

movie fragments and each may be a valid 3GP file in its own right. In another 

embodiment, the representation is split into an initial segment containing the metadata 

(typically the Movie Header “moov” box) and a set of media segments, each containing 

media data and the concatenation of the initial segment and any media segment forms a 

valid 3GP file as well as the concatenation of the initial segment and all media segments 

of one representation forms a valid 3GP file. The entire presentation may be formed by 

playing out each segment in turn, mapping the local timestamps within the file to the 

global presentation time according to the start time of each representation.

[0072] It should be noted that throughout this description references to a “segment” 

should be understood to include any data object which is fully or partially constructed or 

read from a storage medium or otherwise obtained as a result of a file download 

protocol request, including for example an HTTP request. For example, in the case of 

HTTP, the data objects may be stored in actual files residing on a disk or other storage 

medium connected to or forming part of an HTTP server, or the data objects may be 

constructed by a CGI script, or other dynamically executed program, which is executed 

in response to the HTTP request. The terms “file” and “segment” are used

synonymously in this document unless otherwise specified. In the case of HTTP, the 

segment may be considered as the entity body of an HTTP request response.

[0073] The terms “presentation” and “content item” are used synonymously in this 

document. In many examples, the presentation is an audio, video or other media 

presentation that has a defined “playout” time, but other variations are possible.

[0074] The terms “block” and “fragment” are used synonymously in this document 

unless otherwise specified and generally refer to the smallest aggregation of data that is 

indexed. Based on the available indexing, a client can request different portions of a 

fragment in different HTTP requests, or can request one or more consecutive fragments 

or portions of fragments in one HTTP request. In the case where ISO base media file



WO 2011/038032 PCT/US2010/049869
11

format based segments or 3GP file format based segments are used, a fragment typically 

refers to a movie fragment defined as the combination of a movie fragment header 

(‘moof) box and a media data (‘mdat’) box.

[0075] Herein, a network carrying data is assumed to be packet-based in order to 

simplify the descriptions herein, with the recognition that, after reading this disclosure, 

one skilled in the art can apply embodiments of the present invention described herein 

to other types of transmission networks, such as continuous bit-stream networks.

[0076] Herein, FEC codes are assumed to provide protection against long and variable 

delivery times of data, in order to simplify the descriptions herein, with the recognition 

that, after reading this disclosure, one skilled in the art can apply embodiments of the 

present invention to other types of data transmission issues, such a bit-flip corruption of 

data. For example, without FEC, if the last portion of a requested fragment arrives much 

later or has high variance in its arrival time than previous portions of the fragment then 

the content zapping time can be large and variable, whereas using FEC and parallel 

requests, only the majority of the data requested for a fragment need arrive before it can 

be recovered, thereby reducing content zapping time and the variability in content 

zapping time. In this description, it might be assumed that the data to be encoded (i.e., 

source data) has been broken into equal length “symbols”, which may be of any length 

(down to a single bit), but symbols could be of different lengths for different parts of the 

data, e.g., different symbol sizes might be used for different blocks of data.

[0077] In this description, in order to simplify the descriptions herein, it is assumed 

that the FEC is applied to a “block” or “fragment” of data at a time, i.e., a “block” is a 

“source block” for FEC encoding and decoding purposes. A client device can use the 

segment indexing described herein to help to determine the source block structure of a 

segment. One skilled in the art can apply embodiments of the present invention to other 

types of source block structures, e.g., a source block may be a portion of a fragment, or 

encompass one or more fragments or portions of fragments.

[0078] The FEC codes considered for use with block-request streaming are typically 

systematic FEC codes, i.e., the source symbols of the source block may be included as 

part of the encoding of the source block and thus the source symbols are transmitted.

As one skilled in the art will recognize, the embodiments described herein apply equally 

well to FEC codes that are not systematic. A systematic FEC encoder generates, from a



WO 2011/038032 PCT/US2010/049869
12

source block of source symbols, some number of repair symbols and the combination of 

at least some of the source and repair symbols are the encoded symbols that are sent 

over the channel representing the source block. Some FEC codes may be useful for 

efficiently generating as many repair symbols as needed, such as “information additive 

codes” or “fountain codes” and examples of these codes include “chain reaction codes” 

and “multi-stage chain reaction codes”. Other FEC codes such, as Reed-Solomon codes 

may practically only generate a limited number of repair symbols for each source block.

[0079] It is assumed in many of these examples that a client is coupled to a media 

server or a plurality of media servers and the client requests streaming media over a 

channel or a plurality of channels from the media server or the plurality of media 

servers. However, more involved arrangements are also possible.

Examples of Benefits

[0080] With block-request streaming, the media client maintains a coupling between 

the timing of these block requests and the timing of the media playout to the user. This 

model may retain the advantages of the “download” model described above, while 

avoiding some of the disadvantages that stem from the usual de-coupling of media 

playout from data delivery. The block-request streaming model makes use of the rate 

and congestion control mechanisms available in transport protocols, such as TCP, to 

ensure that the maximum available bandwidth is used for media data. Additionally, the 

division of the media presentation into blocks allows each block of encoded media data 

to be selected from a set of multiple available encodings.

[0081] This selection may be based on any number of criteria, including matching of 

the media data rate to the available bandwidth, even when the available bandwidth is 

changing over time, matching of the media resolution or decoding complexity to client 

capabilities or configuration, or matching to user preferences, such as languages. The 

selection may also include the download and presentation of auxiliary components, such 

as accessibility components, closed captioning, sub-titles, sign language video, etc. 

Examples of existing systems using the block-request streaming model include Move 

Networks ™, Microsoft Smooth Streaming and the Apple iPhone™ Streaming Protocol.

[0082] Commonly, each block of media data may be stored on a server as an 

individual file and then a protocol, such as HTTP, is used, in conjunction with HTTP 

server software executed on the server, to request the file as a unit. Typically, the client



WO 2011/038032 PCT/US2010/049869
13

is provided with metadata files, which may for example be in Extensible Markup 

Language (XML) format or in playlist text format or in binary format, which describe 

features of the media presentation, such as the available encodings (for example, 

required bandwidth, resolutions, encoding parameters, media type, language), typically 

referred to as “representations” in this document, and the manner in which the 

encodings have been divided into blocks. For example, the metadata may include a 

Uniform Resource Locator (URL) for each block. The URLs itself may provide a 

scheme such as being prepended with the string “http://” to indicate that protocol that is 

to be used to access the documented resource is HTTP. Another example is “ftp://” to 

indicate that the protocol that is to be used is FTP.

[0083] In other systems, for example, the media blocks may be constructed 

“on-the-fly” by the server in response to a request from the client that indicates the 

portion of the media presentation, in time, that is requested. For example, in case of 

HTTP with scheme “http://”, the execution of the request of this URL provides a request 

response that contains some specific data in the entity body of this request response.

The implementation in the network on how to generate this request response may be 

quite different, depending on the implementation of the server servicing such requests.

[0084] Typically, each block may be independently decodable. For example in the 

case of video media, each block may begin with a “seek point.” In some coding 

schemes, a seek point is referred to as “Random Access Points” or “RAPs”, although 

not all RAPs may be designated as a seek point. Similarly, in other coding schemes, a 

seek point starts at a “Independent Data Refresh” frame, or “IDR”, in the case of H.264 

video encoding, although not all IDRs may be designated as a seek point. A seek point 

is a position in video (or other) media where a decoder can start decoding without 

requiring any data about prior frames or data or samples, as might be the case where a 

frame or sample that is being decoded was encoded not in a stand-alone fashion, but as, 

for example, the difference between the current frame and the prior frame.

[0085] A concern in such systems may be the ability to start playing out a stream, for 

example decoding and rendering received audio and video streams using a personal 

computer and displaying the video on a computer screen and playing the audio through 

built in speakers, or as another example decoding and rendering received audio and 

video streams using a set top box and displaying the video on a television display device

http://%25e2%2580%259d
ftp://%25e2%2580%259d
http://%25e2%2580%259d


WO 2011/038032 PCT/US2010/049869
14

and playing the audio through a stereo system. A primary concern may be to minimize 

the delay between when a user decides to watch a new content delivered as a stream and 

takes an action that expresses that decision, e.g., the user clicks on a link within a 

browser window or on the play button of a remote control device, and when the content 

starts being displayed on the user’s screen, hereinafter called the “content zapping 

time”. Each of these concerns can be addressed by elements of the enhanced system 

described herein.

[0086] An example of content zapping is when a user is watching a first content 

delivered via a first stream and then the user decides to watch a second content 

delivered via a second stream and initiates an action to start watching the second 

content. The second stream may be sent from the same set or a different set of servers 

as the first stream. Another example of content zapping is when a user is visiting a 

website and decides to start watching a first content delivered via a first stream by 

clicking on a link within the browser window. In a similar manner, a user may decide 

to start playing the content not from the beginning, but from some time within the 

stream. The user indicates to their client device to seek to a time position and the user 

might expect that the selected time is rendered instantaneously. Minimizing content 

zapping time is important for video watching to allow users a high quality fast content 

surfing experience when searching and sampling a wide range of available contents.

[0087] Recently, it has become common practice to consider using Forward Error 

Correction (FEC) codes for protection of streaming media during transmission. When 

sent over a packet network, examples of which include the Internet and wireless 

networks such as those standardized by groups such as 3GPP, 3GPP2 and DVB, the 

source stream is placed into packets as it is generated or made available, and thus the 

packets may be used to carry the source or content stream in the order it is generated or 

made available to receivers.

[0088] In a typical application of FEC codes to these types of scenarios, an encoder 

may use FEC code in the creation of repair packets, which are then sent in addition to 

the original source packets containing the source stream. The repair packets have a 

property that, when source packet loss occurs, received repair packets may be used to 

recover the data contained in the lost source packets. Repair packets can be used to 

recover content of lost source packets that are lost entirely, but might also be used to



WO 2011/038032 PCT/US2010/049869
15

recover from partial packet loss occurs, either entirely received repair packets or even 

partially received repair packets. Thus, wholly or partially received repair packets can 

be used to recover wholly or partially lost source packets.

[0089] In yet other examples, other types of corruption can occur to the sent data, e.g., 

values of bits may be flipped, and thus repair packets may be used to correct such 

corruption and provide as accurate as possible recovery of the source packets. In other 

examples, the source stream is not necessarily sent in discrete packets, but instead may 

be sent for example as a continuous bit stream.

[0090] There are many examples of FEC codes that can be used to provide protection 

of a source stream. Reed-Solomon codes are well known codes for error and erasure 

correction in communication systems. For erasure correction over, for example, packet 

data networks, a well-known efficient implementation of Reed-Solomon codes uses 

Cauchy or Vandermonde matrices as described in L. Rizzo, “Effective Erasure Codes 

for Reliable Computer Communication Protocols”, Computer Communication Review, 

27(2):24-36 (April 1997) (hereinafter “Rizzo”) and Bloemer, et al., “An XOR-Based 

Erasure-Resilient Coding Scheme”, Technical Report TR-95-48, International Computer 

Science Institute, Berkeley, California (1995) (hereinafter “XOR-Reed-Solomon”) or 

elsewhere.

[0091] Other examples of FEC codes include LDPC codes, chain reaction codes such 

as those described in Luby I and multi-stage chain reaction codes such in Shokrollahi I.

[0092] Examples of the FEC decoding process for variants of Reed-Solomon codes 

are described in Rizzo and XOR-Reed-Solomon. In those examples, decoding may be 

applied after sufficient source and repair data packets have been received. The 

decoding process may be computationally intensive and, depending on the CPU 

resources available, this may take considerable time to complete, relative to the length 

of time spanned by the media in the block. The receiver may take into account this 

length of time required for decoding when calculating the delay required between the 

start of reception of the media stream and play-out of the media. This delay due to 

decoding is perceived by the user as a delay between their request for a particular media 

stream and the start of playback. It is thus desirable to minimize this delay.

[0093] In many applications, packets may be further subdivided into symbols on 

which the FEC process is applied. A packet can contain one or more symbol (or less



WO 2011/038032 PCT/US2010/049869
16

than one symbol, but usually symbols are not split across groups of packets unless the 

error-conditions among groups of packets is known to be highly correlated). A symbol 

can have any size, but often the size of a symbol is at most equal to the size of the 

packet. Source symbols are those symbols that encode the data that is to be transmitted. 

Repair symbols are symbols generated from source symbols, directly or indirectly that 

are in addition to the source symbols (i.e., the data to be transmitted can be entirely 

recovered if all of the source symbols are available and none of the repair symbols are 

available.

[0094] Some FEC codes may be block-based, in that encoding operations depend on 

the symbol(s) that are in a block and can be independent of the symbols not in that 

block. With block-based encoding, an FEC encoder can generate repair symbols for a 

block from the source symbols in that block, then move on to the next block and not 

need to refer to source symbols other than those for the current block being encoded. In 

a transmission, a source block comprising source symbols may be represented by an 

encoded block comprising encoded symbols (which might be some source symbols, 

some repair symbols, or both). With the presence of repair symbols, not all of the 

source symbols are required in every encoded block.

[0095] For some FEC codes, notably Reed-Solomon codes, the encoding and 

decoding time may grow impractical as the number of encoded symbols per source 

block grows. Thus, in practice, there is often a practical upper bound (255 is an 

approximate practical limit for some applications) on the total number of encoded 

symbols that can be generated per source block, especially in a typical case where the 

Reed-Solomon encoding or decoding process is performed by custom hardware, e.g., 

the MPE-FEC processes that use Reed-Solomon codes included as part of the DVB-H 

standard for protecting streams against packet loss are implemented in specialized 

hardware within a cell phone that is limited to 255 Reed-Solomon total encoded 

symbols per source block. Since symbols are often required to be placed into separate 

packet payloads, this places a practical upper bound on the maximum length of the 

source block being encoded. For example, if a packet payload is limited to 1024 bytes 

or less and each packet carries one encoded symbol, then an encoded source block can 

be at most 255 kilobytes, and this is also, of course, an upper bound on the size of the 

source block itself.



WO 2011/038032 PCT/US2010/049869
17

[0096] Other concerns, such as being able to decode the source blocks fast enough to 

keep up with the source streaming rate, to minimize the decoding latency introduced by 

FEC decoding, and to only use a small fraction of the available CPU on the receiving 

device at any point in time during FEC decoding are addressed by elements described 

herein, as well as dealing with

[0097] The need to provide a robust and scalable streaming delivery solution that 

allows components of the system to fail without adversely affecting the quality of the 

streams delivered to receivers.

[0098] A block request streaming system needs to support changes to the structure or 

metadata of the presentation, for example changes to the number of available media 

encodings or changes to the parameters of the media encodings such as bit rate, 

resolution, aspect ratio, audio or video codecs or codec parameters of changes in other 

metadata such as URLs associated with the content files. Such changes may be required 

for a number of reasons including editing together content from different sources such 

as advertising or different segments of a larger presentation, modification of URLs or 

other parameters which become necessary as a result of changes in the serving 

infrastructure for example due to configuration changes, equipment failures or recovery 

from equipment failures or other reasons.

[0099] Methods exist in which a presentation may be controlled by a continuously 

updated playlist file. Since this file is continuously updated, then at least some of the 

changes described above can be made within these updates. A disadvantage of a 

conventional method is that client devices must continually retrieve, also referred to as 

“polling”, the playlist file, placing load on the serving infrastructure and that this file 

may not be cached for longer than the update interval, making the task for the serving 

infrastructure much more difficult. This is addressed by elements herein so that updates 

of the kind described above are provided without the need for continuous polling by 

clients for the metadata file.

[0100] Another problem, especially in the live services, typically known from 

broadcast distribution, is the lack of ability for the user to view content that has been 

broadcast earlier than the time when the user joined the program. Typically, local 

personal recording consumes unnecessary local storage or is not possible as the client 

was not tuned to the program or is prohibited by content protection rules. Network



WO 2011/038032 PCT/US2010/049869
18

recording and time-shift viewing is preferred, but requires individual connections of the 

user to the server and a separate delivery protocol and infrastructure than the live 

services, resulting in duplicated infrastructure and significant server costs. This is also 

addressed by elements described herein.

System Overview

[0101] One embodiment of the invention is described with reference to Fig. 1, which 

shows a simplified diagram of a block-request streaming system embodying the 

invention.

[0102] In Fig. 1, a block-streaming system 100 is illustrated, comprising block 

serving infrastructure (“BSI”) 101 in turn comprising an ingestion system 103 for 

ingesting content 102, preparing that content and packaging it for service by an HTTP 

streaming server 104 by storing it into a content store 110 that is accessible to both 

ingestion system 103 and HTTP streaming server 104. As shown, system 100 might 

also include an HTTP cache 106. In operation, a client 108, such as an HTTP streaming 

client, sends requests 112 to HTTP streaming server 104 and receives responses 114 

from HTTP streaming server 104 or HTTP cache 106. In each case, elements shown in 

Fig. 1 might be implemented, at least in part, in software, therein comprising program 

code that is executed on a processor or other electronics.

[0103] The content might comprise movies, audio, 2D planar video, 3D video, other 

types of video, images, timed text, timed metadata or the like. Some content might 

involve data that is to be presented or consumed in a timed manner, such as data for 

presenting auxiliary information (station identification, advertising, stock quotes, 

Flash™ sequences, etc.) along with other media being played out. Other hybrid 

presentations might also be used that combine other media and/or go beyond merely 

audio and video.

[0104] As illustrated in Fig. 2, media blocks may be stored within a block serving 

infrastructure 101(1), which could be, for example, an HTTP server, a Content Delivery 

Network device, an HTTP proxy, FTP proxy or server, or some other media server or 

system. Block serving infrastructure 101(1) is connected to a network 122, which could 

be, for example, an Internet Protocol (“IP”) network such as the Internet. A 

block-request streaming system client is shown having six functional components, 

namely a block selector 123, provided with the metadata described above and



WO 2011/038032 PCT/US2010/049869
19

performing a function of selecting blocks or partial blocks to be requested from among 

the plurality of available blocks indicated by the metadata, a block requestor 124, that 

receives request instructions from block selector 123 and performs the operations 

necessary to send a request for the specified block, portions of a block, or multiple 

blocks, to block serving infrastructure 101(1) over network 122 and to receive the data 

comprising the block in return, as well as a block buffer 125, a buffer monitor 126, a 

media decoder 127 and one or more media transducers 128 that faciliate media 

consumption.

[0105] Block data received by block requestor 124 is passed for temporary storage to 

block buffer 125, which stores the media data. Alternatively, the received block data 

can be stored directly into block buffer 125 as illustrated in Fig. 1. Media decoder 127 

is provided with media data by block buffer 125 and performs such transformations on 

this data as are necessary to provide suitable input to media transducers 128, which 

render the media in a form suitable for user or other consumption. Examples of media 

transducers include visual display devices such as those found in mobile phones, 

computer systems or televisions, and might also include audio rendering devices, such 

as speakers or headphones.

[0106] An example of a media decoder would be a function that transforms data in the 

format described in the H.264 video coding standard into analogue or digital 

representations of video frames, such as a YUV-format pixel map with associated 

presentation timestamps for each frame or sample.

[0107] Buffer monitor 126 receives information concerning the contents of block 

buffer 125 and, based on this information and possibly other information, provides input 

to block selector 123, which is used to determine the selection of blocks to request, as is 

described herein.

[0108] In the terminology used herein, each block has a “playout time” or “duration” 

that represents the amount of time it would take for the receiver to play the media 

included in that block at normal speed. In some cases, the playout of the media within a 

block may depend on having already received data from previous blocks. In rare cases, 

the playout of some of the media in a block may depend on a subsequent block, in 

which case the playout time for the block is defined with respect to the media that can 

be played out within the block without reference to the subsequent block, and the



WO 2011/038032 PCT/US2010/049869
20

playout time for the subsequent block is increased by the playout time of the media 

within this block that can only playout after having received the subsequent block.

Since including media in a block that depends on subsequent blocks is a rare case, in the 

remainder of this disclosure we assume that media in one block does not depend on 

subsequent blocks, but note that those skilled in the art will recognize that this variant 

can be easily added to the embodiments described below.

[0109] The receiver may have controls such as “pause”, “fast forward”, “reverse”, etc. 

that may result in the block being consumed by playout at a different rate, but if the 

receiver can obtain and decode each consecutive sequence of blocks in an aggregate 

time equal to or less than their agreggate playout time excluding the last block in the 

sequence then the receiver can present the media to the user without stalling. In some 

descriptions herein, a particular position in the media stream is referred to as a particular 

“time” in the media, corresponding to the time that would have elapsed between the 

beginning of the media playout and the time when the particular position in the video 

stream is reached. The time or position in a media stream is a conventional concept.

For example, where the video stream comprises 24 frames per second, the first frame 

could be said to have a position or time of t=0.0 seconds and the 241st frame could be 

said to have a position or time of t=l0.0 seconds. Naturally, in a frame-based video 

stream, position or time need not be continuous, as each of the bits in the stream from 

the first bit of the 241st frame to just before the first bit of the 242nd frame might all 

have the same time value.

[0110] Adopting the above terminology, a block-request streaming system (BRSS) 

comprises one or more clients that make requests to one or more content servers (for 

example, HTTP servers, FTP Servers, etc.). An ingestion system comprises one or 

more ingestion processors, wherein an ingestion processor receives content (in real-time 

or not), processes the content for use by the BRSS and stores it into storage accessible 

to the content servers, possibly also along with metadata generated by the ingestion 

processor.

[0111] The BRSS also might contain content caches that coordinate with the content 

servers. The content servers and content caches might be conventional HTTP servers 

and HTTP caches that receive requests for files or segments in the form of HTTP 

requests that include a URL, and may also include a byte range, in order to request less



WO 2011/038032 PCT/US2010/049869
21

than all of the file or segment indicated by the URL. The clients might include a 

conventional HTTP client that makes requests of HTTP servers and handles the 

responses to those requests, where the HTTP client is driven by a novel client system 

that formulates requests, passes them to the HTTP client, gets responses from the HTTP 

client and processes those (or storing, transforming, etc.) in order to provide them to a 

presentation player for playout by a client device. Typically, the client system does not 

know in advance what media is going to be needed (as the needs might depend on user 

input, changes in user input, etc.), so it is said to be a “streaming” system in that the 

media is “consumed” as soon as it is received, or shortly thereafter. As a result, 

response delays and bandwidth constraints can cause delays in a presentation, such as 

causing a pause in a presentation as the stream catches up to where the user is in 

consuming the presentation.

[0112] In order to provide for a presentation that is perceived to be of good quality, a 

number of details can be implemented in the BRSS, either at the client end, at the 

ingestion end, or both. In some cases, the details that are implemented are done in 

consideration of, and to deal with, the client-server interface at the network. In some 

embodiments, both the client system and the ingestion system are aware of the 

enhancement, whereas in other embodiments, only one side is aware of the 

enhancement. In such cases, the entire system benefits from the enhancement even 

though one side is not aware of it, while in others, the benefit only accrues if both sides 

are aware of it but when one side is not aware, it still operates without failing.

[0113] As illustrated in Fig. 3, the ingestion system may be implemented as a 

combination of hardware and software components, according to various embodiments. 

The ingestion system may comprise a set of instructions that can be executed to cause 

the system to perform any one or more of the methodologies discussed herein. The 

system may be realized as a specific machine in the form of a computer. The system 

may be a server computer, a personal computer (PC), or any system capable of 

executing a set of instructions (sequential or otherwise) that specify actions to be taken 

by that system. Further, while only a single system is illustrated, the term “system” 

shall also be taken to include any collection of systems that individually or jointly 

execute a set (or multiple sets) of instructions to perform any one or more of the 

methodologies discussed herein.



WO 2011/038032 PCT/US2010/049869
22

[0114] The ingestion system may include the ingestion processor 302 (e.g., a central 

processing unit (CPU)), a memory 304 which may store program code during 

execution, and disk storage 306, all of which communicate with each other via a bus 

300. The system may further include a video display unit 308 (e.g., a liquid crystal 

display (LCD) or cathode ray tube (CRT)). The system also may include an 

alphanumeric input device 310 (e.g., a keyboard), and a network interface device 312 

for receiving content source and delivering content store.

[0115] The disk storage unit 306 may include a machine-readable medium on which 

may be stored one or more sets of instructions (e.g., software) embodying any one or 

more of the methodologies or functions described herein. The instructions may also 

reside, completely or at least partially, within the memory 304 and/or within the 

ingestion processor 302 during execution thereof by the system, with the memory 304 

and the ingestion processor 302 also constituting machine-readable media.

[0116] As illustrated in Fig. 4, the client system may be implemented as a 

combination of hardware and software components, according to various embodiments. 

The client system may comprise a set of instructions that can be executed to cause the 

system to perform any one or more of the methodologies discussed herein. The system 

may be realized as a specific machine in the form of a computer. The system may be a 

server computer, a personal computer (PC), or any system capable of executing a set of 

instructions (sequential or otherwise) that specify actions to be taken by that system. 

Further, while only a single system is illustrated, the term “system” shall also be taken 

to include any collection of systems that individually or jointly execute a set (or 

multiple sets) of instructions to perform any one or more of the methodologies 

discussed herein.

[0117] The client system may include the client processor 402 (e.g., a central 

processing unit (CPU)), a memory 404 which may store program code during 

execution, and disk storage 406, all of which communicate with each other via a bus 

400. The system may further include a video display unit 408 (e.g., a liquid crystal 

display (LCD) or cathode ray tube (CRT)). The system also may include an 

alphanumeric input device 410 (e.g., a keyboard), and a network interface device 412 

for sending requests and receiving responses.



WO 2011/038032 PCT/US2010/049869
23

[0118] The disk storage unit 406 may include a machine-readable medium on which 

may be stored one or more sets of instructions (e.g., software) embodying any one or 

more of the methodologies or functions described herein. The instructions may also 

reside, completely or at least partially, within the memory 404 and/or within the client 

processor 402 during execution thereof by the system, with the memory 404 and the 

client processor 402 also constituting machine-readable media.

Usage of 3GPP File Format

[0119] The 3GPP File Format or any other file based on the ISO base media file 

format, such as the MP4 file format or the 3GPP2 file format, may be used as the 

container format for HTTP streaming with the following features. A segment index 

may be included in each segment to signal time offsets and byte ranges, such that the 

client can download the appropriate pieces of files or media segments as required. 

Global presentation timing of the entire media presentation and local timing within each 

3GP file or media segment may be accurately aligned. Tracks within one 3GP file or 

media segment may be accurately aligned. Tracks across representations may also be 

aligned by assigning each of them to the global timeline such that switching across 

representation may be seamless and joint presentation of media components in different 

representations may be synchronous.

[0120] The file format may contain a profile for Adaptive Streaming with the 

following properties. All movie data may be contained in movie fragments - the 

“moov” box may not contain any sample information. Audio and Video sample data 

may be interleaved, with similar requirements as for the progressive download profile as 

specified in TS26.244. The “moov” box may be placed at the start of the file, followed 

by fragment offset data, also referred to as a segment index, containing offset 

information in time and byte ranges for each fragment or at least a subset of fragments 

in the containing segment.

[0121] It may also be possible for the Media Presentation Description to reference 

files that follow the existing Progressive Download profile. In this case the client may 

use the Media Presentation Description simply to select the appropriate alternative 

version from amongst multiple available versions. Clients may also use HTTP partial 

get requests with files compliant to the Progressive Download profile to request subsets 

of each alternative version and thereby implement a less efficient form of adaptive



WO 2011/038032 PCT/US2010/049869
24

streaming. In this case the different representations containing the media in the 

progressive download profile may still adhere to a common global timeline to enable 

seamless switching across representations.

Advanced Methods Overview

[0122] In the following sections, methods for improved block-request streaming 

systems are described. It should be understood that some of these improvements can be 

used with or without others of these improvements, depending on the needs of the 

application. In the general operation, a receiver makes requests of a server or other 

transmitter for specific blocks or portions of blocks of data. Files, also called segments, 

may contain multiple blocks and are associated with one representation of a media 

presentation.

[0123] Preferably, indexing information, also called “segment indexing” or “segment 

map”, is generated that provides a mapping from playout or decode times to byte offsets 

of corresponding blocks or fragments within a segment. This segment indexing may be 

included within the segment, typically at the beginning of the segment (at least some of 

the segment map is at the beginning) and is often small. The segment index may also be 

provided in a separate index segment or file. Especially in cases where the segment 

index is contained in the segment, the receiver may download some or all of this 

segment map quickly and subsequently use this to determine the mapping between time 

offsets and corresponding byte positions of fragments associated with those time offsets 

within the file.

[0124] A receiver can use the byte offset to request data from the fragments 

associated with particular time offsets, without having to download all of the data 

associated with other fragments not associated with the time offsets of interest. In this 

way, the segment map or segment indexing can greatly improve the ability of a receiver 

to directly access the portions of the segment that are relevant to the current time offsets 

of interest, with benefits including improved content zapping times, ability to quickly 

change from one representation to another as network conditions vary, and reduced 

wastage of network resources downloading media that is not played out at a receiver.

[0125] In case switching from one representation (referred to herein as the

“switch-from” representation) to another representation (referred to herein as the 

“switch-to” representation) is considered, the segment index may also be used to



WO 2011/038032 PCT/US2010/049869
25

identify the start time of a random access point in the switch-to representation to 

identify the amount of data to be requested in the switch-from representation to ensure 

that seamless switching is enabled in a sense that media in the switch-from 

representation is downloaded up to a presentation time such that the playout of of the 

switch-to representation can start seamlessly from the random access point.

[0126] Those blocks represent segments of the video media or other media that the 

requesting receiver needs in order to generate the output for the user of the receiver.

The receiver of the media can be a client device, such as when the receiver receives 

content from a server that transmits the content. Examples include set-top boxes, 

computers, game consoles, specially-equipped televisions, handheld devices, 

specially-equipped mobile phones, or other client receivers.

[0127] Many advanced buffer management methods are described herein. For 

example, a buffer management method enables clients to request blocks of the highest 

media quality that may be received in time to be played out with continuity. A variable 

block size feature improves compression efficiency. The ability to have multiple 

connections for transmitting blocks to the requesting device while limiting the 

frequency of the requests provides improved transmission performance. Partially 

received blocks of data can be used to continue the media presentation. A connection 

can be re-used for multiple blocks without having to commit the connection at the start 

to a particular set of blocks. Consistency in the selection of servers from among 

multiple possible servers by multiple clients is improved, which reduces the frequency 

of duplicate content in nearby servers and improves the probability that a server 

contains an entire file. Clients can request media blocks based on metadata (such as 

available media encodings) that are embedded in the URLs for the files containing the 

media blocks. A system can provide for calculation and minimization of the amount of 

buffering time required before playout of the content can begin without incurring 

subsequent pauses in media playout. Available bandwidth can be shared among 

multiple media blocks, adjusted as the playout time of each block approaches, so that, if 

necessary, a greater share of available bandwidth can be allocated towards the block 

with the nearest playout time.

[0128] HTTP streaming may employ metadata. Presentation level metadata includes, 

for example, stream duration, available encodings (bitrates, codecs, spatial resolutions,



WO 2011/038032 PCT/US2010/049869
26

frame rates, language, media types), pointers to stream metadata for each encoding, and 

content protection (digital rights management (DRM) information). Stream metadata 

may be URLs for the segment files.

[0129] Segment metadata may include byte range versus time information for requests 

within a segment and identification of Random Access Points (RAPs) or other seek 

points, where some or all of this information may be part of a segment indexing or 

segment map.

[0130] Streams may comprise multiple encodings of the same content. Each 

encoding may then be broken into segments where each segment corresponds to a 

storage unit or file. In the case of HTTP, a segment is typically a resource that can be 

referenced by a URL and the request of such URL results in the return of the segment as 

the entity body of the request response message. Segments may comprise multiple 

groups of pictures (GoPs). Each GoP may further comprise multiple fragments where 

the segment indexing provides time/byte-offset information for each fragment, i.e., the 

unit of indexing is a fragment.

[0131] Fragments or portions of fragments may be requested through parallel TCP 

connections to increase throughput. This can mitigate problems that arise when sharing 

connections on a bottleneck link or when connections are lost due to congestion, thus 

increasing overall speed and reliability of delivery, which can substantially improve the 

speed and reliability of the content zapping time. Bandwidth can be traded for latency 

by over-requesting, but care should be taken to avoid making requests too far into the 

future that can increase the risk of starvation.

[0132] Multiple requests for segments on the same server may be pipelined (making 

next request before current request completes) to avoid repetitious TCP startup delays. 

Requests for consecutive fragments may be aggregated into one request.

[0133] Some CDNs prefer large files and may trigger background fetches of an entire 

file from an origin server when first seeing a range request. Most CDNs will, however, 

serve range requests from cache if the data is available. It may therefore be 

advantageous to have some portion of the client requests be for a whole segment file. 

These requests can later be cancelled if necessary.



WO 2011/038032 PCT/US2010/049869
27

[0134] Valid switch points may be seek points, specifically RAPs for example, in the 

target stream. Different implementations are possible such as fixed GoP structures or 

alignment of RAPs across streams (based on the beginning of the media or based on the 

GoPs).

[0135] In one embodiment, segments and GoPs may be aligned across different rate 

streams. In this embodiment, GoPs may be of variable size and may contain multiple 

fragments, but fragments are not aligned between the different rate streams.

[0136] In some embodiments, file redundancy may be employed to advantage. In 

these embodiments, an erasure code is applied to each fragment to generate redundant 

versions of the data. Preferably, the source formatting is not changed due to the usage 

of FEC, and additional repair segments, for example as dependent representation of the 

original representation, containing FEC repair data are generated and made available as 

an additional step in the ingestion system. The client, which is able to reconstruct a 

fragment using only source data for that fragment, may only request source data for the 

fragment within the segment from the servers. If the servers are unavailable or the 

connection to the servers are slow, which can be determined either before or after the 

request for source data, additional repair data may be requested for the fragment from 

the repair segment, which decreases the time to reliably deliver enough data to recover 

the fragment, possibly using FEC decoding to use a combination of received source and 

repair data to recover the source data of the fragment. Furthermore, additional repair 

data can be requested to allow recovery of the fragment if a fragment becomes urgent, 

i.e., its playout time becomes imminent, which increases the data share for that fragment 

on a link but is more efficient than closing other connections on the link to free up 

bandwidth. This may also mitigate the risk of starvation from the use of parallel 

connections.

[0137] The fragment format may be a stored stream of real time transport protocol 

(RTP) packets with audio/video synchronization achieved through real time transport 

control protocol RTCP.

[0138] The segment format may also be a stored stream of MPEG-2 TS packets with 

audio/video synchronization achieved MPEG-2 TS internal timing.



WO 2011/038032 PCT/US2010/049869
28

Using Signalling and/or Block Creation to Make Streaming More Efficient

[0139] A number of features can be used or not, in a block-request streaming system, 

to provide for improved performance. Performance can be related to the ability to 

playout a presentation without stalling, obtaining media data within bandwidth 

constraints, and/or doing so within limited processor resources at a client, server and/or 

ingestion system. Some of these features will now be described.

Indexing Within Segments

[0140] In order to formulate partial GET requests for Movie Fragments, the client 

may be informed of the byte offset and start time in decoding or presentation time of all 

media components contained in the fragments within the file or segment and also which 

fragments begin or contain a Random Access Points (and so are suitable to be used as 

switch points between alternative representations), wherein this information is often 

referred to as the segment indexing or segment map. The start time in decoding or 

presentation time may be expressed directly or may be expressed as deltas relative to a 

reference time.

[0141] This time and byte offset indexing information may require at least 8 bytes of 

data per movie fragment. As an example, for a two hour movie contained within a 

single file, with 500ms movie fragments, this would be a total of about 112 kilobytes of 

data. Downloading all of this data when starting a presentation may result in a 

significant additional startup delay. However, the time and byte offset data can be 

encoded hierarchically, so that the client can quickly find a small chunk of time and 

offset data relevant to the point in the presentation at which it wishes to start. The 

information may also be distributed within a segment such that some refinement of the 

segment index may be located interleaved with media data.

[0142] Note that if the a representation is segmented timewise into multiple segments, 

the use of this hierarchical coding may not be necessary, as the complete time and offset 

data for each segment may already be quite small. For example, if segments are one 

minute instead of two hours in the above example, the time-byte offset indexing 

information is around 1 kilobyte of data, which can typically fit within a single TCP/IP 

packet.

[0143] Different options are possible to add fragment time and byte offset data to a 

3GPP file:



WO 2011/038032 PCT/US2010/049869
29

[0144] First, the Movie Fragment Random Access Box (“MFRA”) may be used for 

this purpose. The MFRA provides a table, which may assist readers in finding random 

access points in a file using movie fragments. In support of this function, the MFRA 

incidentally contains the byte offsets of MFRA boxes containing random access points. 

The MFRA may be placed at or near the end of the file, but this is not necessarily the 

case. By scanning from the end of the file for a Movie Fragment Random Access Offset 

Box and using the size information in it, one may be able to locate the beginning of a 

Movie Fragment Random Access Box. However, placing the MFRA at the end for 

HTTP streaming requires typically at least 3-4 HTTP requests to access the desired data: 

at least one to request the MFRA from the end of the file, one to obtain the MFRA and 

finally one to obtain the desired fragment in the file. Therefore, placing at the beginning 

may be desirable as then the mfra may be downloaded together with the first media data 

in a single request. Also, using the MFRA for HTTP streaming may be inefficient, 

since none of the information in the “MFRA” is needed apart from the time and 

moofoffset and specifying offsets instead of lengths may require more bits.

[0145] Second, the Item Location Box (“ILOC”) may be used. The “ILOC” provides 

a directory of metadata resources in this or other files, by locating their containing file, 

their offset within that file, and their length. For example, a system might integrate all 

the externally referenced metadata resources into one file, re-adjusting file offsets and 

file references accordingly. However, the “ILOC” is intended for giving the location of 

metadata so it may be difficult for this to coexist with real metadata.

[0146] Last, and perhaps most suitable, is the specification of a new box, referred to 

as Time Index Box (“TIDX”), specifically dedicated to the purpose of providing exact 

fragment times or durations and byte offset in an efficient manner. This is described in 

more detail in the next section. An alternative box with the same functionalities may be 

the Segment Index Box (“SIDX”). Herein, unless otherwise indicated, these two might 

be interchangeable, as both boxes provide the ability to provide exact fragment times or 

durations and byte offset in an efficient manner. The difference between the TIDX and 

the SIDX are provided below. It should be apparent how to interchange the TIDX 

boxes and SIDX boxes, as both boxes implement a segment index.



WO 2011/038032 PCT/US2010/049869
30

Segment Indexing

[0147] A segment has an identified start time and an identified number of bytes. 

Multiple fragments may be concatenated into a single segment and clients may issue 

requests that identify the specific byte range within the segment that correspond to the 

required fragment or subset of the fragment. For example, when HTTP is used as the 

request protocol, then the HTTP Range header may be used for this purpose. This 

approach requires that the client has access to a “segment index” of the segment that 

specifies the position within the segment of the different fragments. This “segment 

index” may be provided as part of the metadata. This approach has the result that far 

fewer files need to be created and managed compared to the approach where every 

block is kept in a separate file. Management of the creation, transfer and storage of very 

large numbers of files (which could extend to many thousands for a 1 hour presentation, 

say) can be complex and error-prone and so reduction in the number of files represents 

an advantage.

[0148] If the client only knows the desired start time of a smaller portion of a 

segment, it might request the whole file, then read the file through to determine the 

appropriate playout starting location. To improve bandwidth usage, segments can 

include an index file as metadata, where the index file maps the byte ranges of 

individual blocks with the time ranges that the blocks correspond to, called segment 

indexing or segment map. This metadata can be formatted as XML data or they may be 

binary, for example following the atom and box structure of the 3 GPP file format. The 

indexing can be simple, wherein the time and byte ranges of each block are absolute 

relative to the start of the file, or they can be hierarchical, wherein some blocks are 

grouped into parent blocks (and those into grandparent blocks, etc.) and the time and 

byte range for a given block is expressed relative to the time and/or byte range of the 

block’s parent block.

Example Indexing Map Structure

[0149] In one embodiment, the original source data for one representation of a media 

stream may be contained in one or more media files herein called a “media segment”, 

wherein each media segment contains the media data used to playback a continuous 

time segment of the media, e.g., 5 minutes of the media playback.



WO 2011/038032 PCT/US2010/049869
31

[0150] Fig. 6 shows an example overall structure of a media segment. Within each 

segment, either at the beginning or spread throughout the source segment, there can also 

be indexing information, which comprises a time/byte-offset segment map. The 

time/byte-offset segment map in one embodiment may be a list of time/byte-offset pairs 

(T(0), B(0)), (T(l), B(l)), ..., (T(i), B(i)),...,(T(n),B(n)), wherein T(i-l) represents a 

start time within the segment for playback of the z'-th fragment of media relative to 

initial start time of the media amongst all media segments, T(i) represents an end time 

for the z-th fragment (and thus the start time for the next fragment), and the byte-offset 

B(i-l) is the corresponding byte index of the beginning of the data within this source 

segment where the z'-th fragment of media starts relative to the beginning of the source 

segment, and B(i) is the corresponding end byte index of the z'-th fragment (and thus the 

index of the first byte of the next fragment). If the segment contains multiple media 

components, then T(i) and B(i) may be provided for each component in the segment in a 

absolute way or they may be expressed relative to another media component that serves 

a reference media component.

[0151] In this embodiment, the number of fragments in the source segment is n, where 

n may vary from segment to segment.

[0152] In another embodiment, the time offset in the segment index for each fragment 

may be determined with absolute start time of the first fragment and the durations of 

each fragment. In this case, the segment index may document the start time of the first 

fragment and the duration of the all fragments that are included in the segment. The 

segment index may also only document a subset of the fragments. In that case, the 

segment index documents the duration of a subsegment that is defined as one or more 

consecutive fragments, ending either at the end of the containing segment, or at the 

beginning of the next subsegment.

[0153] For each fragment, there may also be a value that indicates whether or not the 

fragment starts at or contains a seek point, i.e., at a point wherein no media after that 

point depends on any media previous to that point, and thus the media from that 

fragment forward can be played out independently of previous fragments. Seek points 

are, in general, points in the media where playout can start independently of all previous 

media. Fig. 6 also shows a simple example of possible segment indexing for a source 

segment. In that example, the time offset value is in units of milliseconds, and thus the



WO 2011/038032 PCT/US2010/049869
32

first fragment of this source segment starts 20 seconds from the beginning of the media, 

and the first fragment has a playout time of 485 milliseconds. The byte offset of the 

start of the first fragment is 0, and the byte offset of the end of the first fragment/start of 

the second fragment is 50,245, and thus the first fragment is of size 50,245 bytes. If the 

fragment or the subsegment does not start with a random access point, but the random 

access point is contained in the fragment or subsegment, then the decoding time or 

presentation time difference between the start time and the actual RAP time may be 

given. This enables that in case of switching to this media segment, the client can 

accurately know the time until the switch from representation needs to be presented.

[0154] In addition to, or instead of, simple or hierarchical indexing, daisy-chained 

indexing and/or a hybrid indexing could be used.

[0155] Because the sample durations for different tracks might not be the same (for 

example, video samples might be displayed for 33 ms, whereas an audio sample might 

last 80 ms), the different tracks in a Movie Fragment might not begin and end at 

precisely the same time, i.e., the audio may begin slightly before or slightly after the 

video, with the opposite being true of the preceding fragment, to compensate. To avoid 

ambiguity, the timestamps specified in the time and byte offset data may be specified 

relative to a particular track and this may be the same track for each representation. 

Usually this will be the video track. This allows the client to identify exactly the next 

video frame when it is switching representations.

[0156] Care may be taken during presentation to maintain a strict relationship 

between track timescales and presentation time, to ensure smooth playout and 

maintenance of audio/video synchronisation despite the above issue.

[0157] Fig. 7 illustrates some examples, such as a simple index 700 and a hierarchical 

index 702.

[0158] Two specific example of a box that contains a segment map are provided 

below, one referred to as time index box (‘TIDX’) and one referred to as (‘SIDX’). The 

definition follows the box structure according to the ISO base media file format. Other 

designs for such boxes to define similar syntax and with the same semantics and 

functionality should be apparent to the reader.



WO 2011/038032 PCT/US2010/049869
33

Time Index Box

[0159] Definition

[0160] Box Type: ‘tidx’

[0161] Container: File

[0162] Mandatory: No

[0163] Quantity: Any number zero or one

[0164] The Time Index Box may provide a set of time and byte offset indices that 

associate certain regions of the file with certain time intervals of the presentation. The 

Time Index Box may include a targettype field, which indicates the type of the 

referenced data. For example, a Time Index Box with targettype “moof ’ provides an 

index to the Media Fragments contained in the file in terms of both time and byte 

offsets. A Time Index Box with targettype of Time Index Box can be used to construct 

a hierarchical time index, allowing users of the file to quickly navigate to the required 

portion of the index.

[0165] The segment index may for example contain the following syntax:

[0166] aligned(8) class TimelndexBox

extends FullBox(‘frai’) {

unsigned int(32) targettype;

[0167] unsigned int(32) timereferencetrackID; 

unsigned int(32) numberofelements; 

unsigned int(64) first element offset; 

unsigned int(64) first element time; 

for(i=l; i <= number of elements; i++)

{
bit (1) randomaccessflag; 

unsigned int(31) length; 

unsigned int(32) deltaT;

}

}

[0168] Semantics



WO 2011/038032 PCT/US2010/049869
34

[0169] targettype: is the type of the box data referenced by this Time Index Box. This 

can be either Movie Fragment Header (“moof’) or Time Index Box (“tidx”).

[0170] time-reference track id: indicates the track with respect to which the time 

offsets in this index are specified.

[0171] number of elements: the number of elements indexed by this Time Index 

Box.

[0172] first element offset: The byte offset from the start of the file of the first 

indexed element.

[0173] first element time: The start time of the first indexed element, using the 

timescale specified in the Media Header box of the track identified by the 

timereferencetrackid.

[0174] random access flag: One if the start time of the element is a random access 

point. Zero otherwise.

[0175] length: The length of the indexed element in bytes

[0176] deltaT: The difference in terms of the timescale specified in the Media Header 

box of the track identified by the time reference track id between the start time of this 

element and the start time of the next element.

Segment Index Box

[0177] The Segment Index Box ('sidx') provides a compact index of the movie 

fragments and other Segment Index Boxes in a segment. There are two loop structures 

in the Segment Index Box. The first loop documents the first sample of the subsegment, 

that is, the sample in the first movie fragment referenced by the second loop. The 

second loop provides an index of the subsegment. The container for 'sidx' box is the file 

or segment directly.



WO 2011/038032 PCT/US2010/049869
35

[01781 Syntax

aligned(8) class SegmentlndexBox extends FullBox(‘sidx’, version, 0) { 
unsigned int(32) referencetrackID; 
unsigned int(16) trackcount; 
unsigned int(16) referencecount; 
for (i=l; i<= track count; i++)
{

unsigned int(32) trackID; 
if (version==0)
{

unsigned int(32) decoding_time;
} else 
{

unsigned int(64) decodingtime;

for(i=l; i <= reference_count; i++)
{

bit (1)
unsigned int(31) 
unsigned int(32) 
bit(l)
unsigned int(31)

}

reference_type;
reference_offset;
subsegmentduration;
containsRAP;
RAPdeltatime;

[01791 Semantics:

[0180] reference track ID provides the track ID for the reference track.

[0181] track count: the number of tracks indexed in the following loop (1 or greater);

[0182] reference count: the number of elements indexed by second loop (1 or 

greater);

[0183] track ID: the ID of a track for which a track fragment is included in the first 

movie fragment identified by this index; exactly one track ID in this loop is equal to the 

referencetrackID;

[0184] decoding time: the decoding time for the first sample in the track identified by 

track ID in the movie fragment referenced by the first item in the second loop, 

expressed in the timescale of the track (as documented in the timescale field of the 

Media Header Box of the track);



WO 2011/038032 PCT/US2010/049869
36

[0185] reference type: when set to 0, indicates that the reference is to a movie 

fragment (‘moof) box; when set to 1, indicates that the reference is to a segment index 

(‘sidx’) box;

[0186] referenceoffset: the distance in bytes from the first byte following the 

containing Segment Index Box, to the first byte of the referenced box;

[0187] subsegmentduration: when the reference is to Segment Index Box, this field 

carries the sum of the subsegment duration fields in the second loop of that box; when 

the reference is to a movie fragment, this field carries the sum of the sample durations of 

the samples in the reference track, in the indicated movie fragment and subsequent 

movie fragments up to either the first movie fragment documented by the next entry in 

the loop, or the end of the subsegment, whichever is earlier; the duration is expressed in 

the timescale of the track (as documented in the timescale field of the Media Header 

Box of the track);

[0188] containsRAP: when the reference is to a movie fragment, then this bit may be 

1 if the track fragment within that movie fragment for the track with trackID equal to 

referencetrackID contains at least one random access point, otherwise this bit is set to 

0; when the reference is to a segment index, then this bit is set to 1 only if any of the 

references in that segment index have this bit set to 1, and 0 otherwise;

[0189] RAP delta time: if contains RAP is 1, provides the presentation

(composition) time of a random access point (RAP); reserved with the value 0 if 

contains RAP is 0. The time is expressed as the difference between the decoding time 

of the first sample of the subsegment documented by this entry and the presentation 

(composition) time of the random access point, in the track with track ID equal to 

referencetrackID.

Differences between TIDX and SIDX

[0190] The SIDX and the SIDX provide the same functionality with respect to 

indexing. The first loop of the SIDX provides in addition global timing for the first 

movie fragment, but the global timing may as well be contained in the movie fragment 

itself, either absolute or relative to the reference track.

[0191] The second loop of the SIDX implements the functionality of the TIDX. 

Specifically, the SIDX permits to have a mixture of targets for the reference for each



WO 2011/038032 PCT/US2010/049869
37

index referred to by reference type, whereas the TIDX only references either only 

TIDX or only MOOF. The numberofelements in TIDX corresponds to the 

referemcecount in SIDX, the time-referencetrackid in TIDX corresponds to 

reference track ID in SIDX, the tfirstelementoffset in TIDX corresponds to the 

reference offset in the first entry of the second loop, the first element time in TIDX 

corresponds to the decoding time of the referencetrack in the first loop, the 

randomaccessflag in TIDX corresponds to the contains RAP in the SIDX with the 

additional freedom that in the SIDX the RAP may not necessarily be placed at the start 

of the fragment, and therefore requiring the RAP delta time, the length in TIDX 

corresponds to the reference offset in SIDX and finally the deltaT in TIDX corresponds 

to the subsegment duration in SIDX. Therefore the functionalities of the two boxes are 

equivalent.

Variable Block Sizing and Sub-GoP Blocks

[0192] For video media, the relationship between video encoding structure and the 

block structure for requests can be important. For example, if each block begins with a 

seek point, such as a Random Access Point (“RAP”), and each block represents an equal 

period of video time, then the positioning of at least some seek points in the video 

media is fixed and seek points will occur at regular intervals within the video encoding. 

As is well known to those of skill in the art of video encoding, compression efficiency 

may be improved if seek points are placed according to relationships between video 

frames, and in particular, if they are placed at frames that have little in common with 

previous frames. This requirement that blocks represent equal amounts of time thus 

places a restriction on the video encoding, such that compression may be sub-optimal.

[0193] It is desirable to allow the position of seek points within a video presentation 

to be chosen by the video encoding system, rather than requiring seek points at fixed 

positions. Allowing the video encoding system to choose the seek points results in 

improved video compression and thus a higher quality of video media can be provided 

using a given available bandwidth, resulting in an improved user experience. Current 

block-request streaming systems can require that all blocks be of the same duration (in 

video time), and that each block must begin with a seek point and this is thus a 

disadvantage of existing systems.



WO 2011/038032 PCT/US2010/049869
38

[0194] A novel block-request streaming system that provides advantages over the 

above is now described. In one embodiment, the video encoding process of a first 

version of the video component may be configured to choose the positions of seek 

points in order to optimize compression efficiency, but with a requirement that there is a 

maximum on the duration between seek points. This latter requirement does restrict the 

choice of seek points by the encoding process and thus reduces compression efficiency. 

However, the reduction in compression efficiency is small compared to that incurred if 

regular fixed positions is required for the seek points, provided the maximum on the 

duration between seek points is not too small (for example, greater than around a 

second). Furthermore, if the maximum on the duration between seek points is a few 

seconds, then the reduction in compression efficiency compared to completely free 

positioning of seek points is generally very small.

[0195] In many embodiments, including this embodiment, it may be that some RAPs 

are not seek points, i.e., there may be a frame that is a RAP that is between two 

consecutive seek points that is not chosen to be a seek point, for example because the 

RAP is too close in time to the surrounding seek points, or because the amount of media 

data between the seek point preceding or following the RAP and the RAP is too small.

[0196] The position of seek points within all other versions of the media presentation 

may be constrained to be the same as the seek points in a first (for example, the highest 

media data rate) version. This does reduce the compression efficiency for these other 

version compared to allowing the encoder free choice of seek points.

[0197] The use of seek points typically required a frame to be independently

decodable, which generally results in a low compression efficiency for that frame. 

Frames that are not required to be independently decodable can be encoded with 

reference to data in other frames, which generally increases compression efficiency for 

that frame by an amount that is dependent on the amount of commonality between the 

frame to be encoded and the reference frames. Efficient choice of seek point 

positioning preferentially chooses as a seek point frame a frame that has low 

commonality with previous frames and thereby minimizes the compression efficiency 

penalty incurred by encoding the frame in a way that is independently decodable.

[0198] However, the level of commonality between a frame and potential reference 

frames is highly correlated across different representations of the content, since the



WO 2011/038032 PCT/US2010/049869
39

original content is the same. As a result, the restriction of seek points in other variants 

to be the same positions as the seek points in the first variant does not make a large 

difference in compression efficiency.

[0199] The seek point structure preferably is used to determined the block structure. 

Preferably, each seek point determined the start of a block, and there may be one or 

more blocks that encompass the data between two consecutive seek points. Since the 

duration between seek points is not fixed for encoding with good compression, not all 

blocks are required to have the same playout duration. In some embodiments, blocks are 

aligned between versions of the content - that is, if there is a block spanning a specific 

group of frames in one version of the content, then there is a block spanning the same 

group of frames in another version of the content. The blocks for a given version of the 

content do not overlap and every frame of the content is contained within exactly one 

block of each version.

[0200] An enabling feature that allows the efficient use of variable durations between 

seek points, and thus variable duration GoPs, is the segment indexing or segment map 

that can be included in a segment or provided by other means to a client, i.e., this is 

metadata associated with this segment in this representation that may be provided 

comprising the start time and duration of each block of the presentation. The client may 

use this segment indexing data when determining the block at which to start the 

presentation when the user has requested that the presentation start at a particular point 

that is within a segment. If such metadata is not provided, then presentation can begin 

only at the beginning of the content, or at a random or approximate point close to the 

desired point (for example by choosing the starting block by dividing the requested 

starting point (in time) by the average block duration to give the index of the starting 

block).

[0201] In one embodiment, each block may be provided as a separate file. In another 

embodiment, multiple consecutive blocks may be aggregated into a single file to form a 

segment. In this second embodiment, metadata for each version may be provided 

comprising the start time and duration of each block and the byte offset within the file at 

which the block begins. This metadata may be provided in response to an initial 

protocol request, i.e., available separately from the segment or file, or may be contained 

within the same file or segment as the blocks themselves, for example at the beginning



WO 2011/038032 PCT/US2010/049869
40

of the file. As will be clear to those of skill in the art, this metadata may be encoded in a 

compressed form, such as gzip or delta encoding or in binary form, in order to reduce 

the network resources required to transport the metadata to the client.

[0202] Fig. 6 shows an example of segment indexing where the blocks are variable 

size, and where the scope of blocks is a partial GoP, i.e., a partial amount of the media 

data between one RAP and the next RAP. In this example, the seek points are indicated 

by the RAP indicator, wherein a RAP indicator value of 1 indicates that the block starts 

with or contains a RAP, or seek point, and wherein a RAP indicator of 0 indicates that 

the block does not contain a RAP or seek point. In this example, the first three blocks, 

i.e., bytes 0 through 157,033, comprise the first GoP, which has a presentation duration 

of 1.623 seconds, with a presentation time running from 20 seconds into the content to 

21.623 seconds. In this example, the first of the three first blocks comprises .485 

seconds of presentation time, and comprises the first 50,245 bytes of the media data in 

the segment. In this example, blocks 4, 5, and 6 comprise the second GoP, blocks 7 and 

8 comprise the third GoP, and blocks 9, 10 and 11 comprise the fourth GoP. Note that 

there may be other RAPs in the media data that are not designated as seek points, and 

are thus not signaled as RAPs in the segment map.

[0203] Referring again to Fig. 6, if the client or receiver wants to access the content 

starting at time offset approximately 22 seconds into the media presentation, then the 

client could first use other information, such as the MPD described in more detail later, 

to first determine that the relevant media data is within this segment. The client can 

download the first portion of the segment to obtain the segment indexing, which in this 

case is just a few bytes, for example using an HTTP byte range request. Using the 

segment indexing, the client may determine that the first block that it should download 

is the first block with a time offset that is at most 22 seconds and that starts with a RAP, 

i.e., is a seek point. In this example, although block 5 has a time offset that is smaller 

than 22 seconds, i.e., its time offset is 21.965 seconds, the segment indexing indicates 

that block 5 does not start with a RAP, and thus instead, based on the segment indexing, 

the client selects to download block 4, since its start time is at most 22 seconds, i.e, its 

time offset is 21.623 seconds, and it starts with a RAP. Thus, based on the segment 

indexing, the client will make an HTTP range request starting at byte offset 157,034.



WO 2011/038032 PCT/US2010/049869
41

[0204] If segment indexing were not available then the client might have to download 

all previous 157,034 bytes of data before downloading this data, leading to a much 

longer startup time, or channel zapping time, and to wasteful downloading of data that is 

not useful. Alternatively, if segment indexing were not available, the client might 

approximate where the desired data starts within the segment, but the approximation 

might be poor and it may miss the appropriate time and then requires to go backward 

which again increases the start-up delay.

[0205] Generally, each block encompasses a portion of the media data that, together 

with previous blocks, can be played out by a media player. Thus, the blocking structure 

and the signaling of the segment indexing blocking structure to the client, either 

contained within the segment or provided to the client through other means, can 

significantly improve the ability of the client to provide fast channel zapping, and 

seamless playout in the face of network variations and disruptions. The support of 

variable duration blocks, and blocks that encompass only portions of a GoP, as enabled 

by the segment indexing, can significantly improve the streaming experience. For 

example, referring again to Fig. 6 and the example described above where the client 

wants to start playout at approximately 22 seconds into the presentation, the client may 

request, through one or more requests, the data within block 4, and then feed this into 

media player as soon as it is available to start playback. Thus, in this example, the 

playout begins as soon as the 42,011 bytes of block 4 are received at the client, thus 

enabling a fast channel zapping time. If instead the client needed to request the entire 

GoP before playout was to commence, the channel zapping time would be longer, as 

this is 144,211 bytes of data.

[0206] In other embodiments, RAPs or seek points may also occur in the middle of a 

block, and there may be data in the segment indexing that indicates where that RAP or 

seek point is within the block or fragment. In other embodiments, the time offset may 

be the decode time of the first frame within the block, instead of the presentation time of 

the first frame within the block.

[0207] Figs. 8(a) and (b) illustrate an example of variable block sizing an aligned seek 

point structure across a plurality of versions or representations; Fig. 8(a) illustrates 

variable block sizing with aligned seek points over a plurality of versions of a media



WO 2011/038032 PCT/US2010/049869
42

stream, while Fig. 8(b) illustrates variable block sizing with non-aligned seek points 

over a plurality of versions of a media stream.

[0208] Time is shown across the top in seconds, and the blocks and seek points of the 

two segments for the two representations are shown from left to right in terms of their 

timing with respect to this time line, and thus the length of each block shown is 

proportional to its playout time and not proportional to the number of bytes in the block. 

In this example, the segment indexing for both segments of the two representations 

would have the same time offsets for the seek points, but potentially differing numbers 

of blocks or fragments between seek points, and different byte offsets to blocks due to 

the different amounts of media data in each block. In this example, if the client wants to 

switch from representation 1 to representation 2 at presentation time approximately 23 

seconds, then the client could request up through block 1.2 in the segment for 

representation 1, and start requesting the segment for representation 2 starting at block 

2.2, and thus the switch would occur at the presentation coinciding with seek point 1.2 

in representation 1, which is at the same time as seek point 2.2 in representation 2.

[0209] As should be clear from the foregoing, the block-request streaming system 

described does not constrain the video encoding to place seek points at specific 

positions within the content and this mitigates one of the problems of existing systems.

[0210] In the embodiments described above it is organized so that the seek points for 

the various representations of the same content presentation are aligned. However, in 

many cases, it is preferable to relax this alignment requirement. For example, it is 

sometimes the case that encoding tools have been used to generate the representations 

that do not have the capabilities to generate seek point aligned representations. As 

another example, the content presentation may be encoded into different representations 

independently, without no seek point alignment between different representations. As 

another example, a representation may contain more seek points as it has lower rates 

and more commonly it needs to be switched or it contains seek points to support trick 

modes such fast forward or rewind or fast seeking. Thus, it is desirable to provide 

methods that make a block-request streaming system capable of efficiently and 

seamlessly dealing with non-aligned seek points across the various representations for a 

content presentation.



WO 2011/038032 PCT/US2010/049869
43

[0211] In this embodiment, the positions of seek points across representations may 

not align. Blocks are constructed such that a new block starts at each seek point, and 

thus there might not be alignment between blocks of different versions of the 

presentation. An example of such a non-aligned seek point structure between different 

representations is shown in Fig. 8(b). Time is shown across the top in seconds, and the 

blocks and seek points of the two segments for the two representations are shown from 

left to right in terms of their timing with respect to this time line, and thus the length of 

each block shown is proportional to its playout time and not proportional to the number 

of bytes in the block. In this example, the segment indexing for both segments of the 

two representations would have potentially different time offsets for the seek points, and 

also potentially differing numbers of blocks or fragments between seek points, and 

different byte offsets to blocks due to the different amounts of media data in each block. 

In this example, if the client wants to switch from representation 1 to representation 2 at 

presentation time approximately 25 seconds, then the client could request up through 

block 1.3 in the segment for representation 1, and start requesting the segment for 

representation 2 starting at block 2.3, and thus the switch would occur at the 

presentation coinciding with seek point 2.3 in representation 2, which is in the middle of 

the playout of block 1.3 in representation 1, and thus some of the media for block 1.2 

would not be played out (although the media data for the frames of block 1.3 that are 

not played out may have to be loaded into the receiver buffer for decoding other frames 

of block 1.3 that are played out).

[0212] In this embodiment, the operation of block selector 123 may be modified such 

that whenever it is required to select a block from a representation that is different from 

the previously selected version, the latest block whose first frame is not later than the 

frame subsequent to the last frame of the last selected block is chosen.

[0213] This last described embodiment may eliminate the requirement to constrain the 

positions of seek points within versions other than the first version and thus increases 

compression efficiency for these versions resulting in a higher quality presentation for a 

given available bandwidth and this an improved user experience. A further 

consideration is that video encoding tools which perform the function of seek point 

alignment across multiple encodings (versions) of the content may not be widely 

available and therefore an advantage of this latest described embodiment is that 

currently available video encoding tools may be used. Another advantage is that



WO 2011/038032 PCT/US2010/049869
44

encoding of different versions of the content may proceed in parallel without any need 

for coordination between encoding processes for the different versions. Another 

advantage is that additional versions of the content may be encoded and added to the 

presentation at a later time, without having to provide the encoding tools with the lists 

of specific seek point positions.

[0214] Generally, where pictures are encoded as groups of pictures (GoPs), the first 

picture in the sequence can be a seek point, but that need not always be the case.

Optimal Block Partitioning

[0215] One issue of concern in a block-request streaming system is the interaction 

between the structure of encoded media, for example video media, and the block 

structure used for block requests. As will be known to those of skill in the art of video 

encoding, it is often the case that the number of bits required for the encoded 

representation of each video frame varies, sometimes substantially, from frame to 

frame. As a result the relationship between the amount of received data and the 

duration of media encoded by that data may not be straightforward. Furthermore, the 

division of media data into block within a block-request streaming system adds a further 

dimension of complexity. In particular, in some systems the media data of a block may 

not be played out until the entire block has been received, for example the arrangement 

of media data within a block or dependencies between media samples within a block of 

the use of erasure codes may result in this property. As a result of these complex 

interactions between block size and block duration and the possible need to receive an 

entire block before beginning playout it is common for client systems to adopt a 

conservative approach wherein media data is buffered before playout begins. Such 

buffering results in a long channel zapping time and thus a poor user experience.

[0216] Pakzad describes “block partitioning methods” which are new and efficient 

methods to determine how to partition a data stream into contiguous blocks based on the 

underlying structure of the data stream and further describes several advantages of these 

methods in the context of a streaming system. A further embodiment of the invention to 

apply the block partitioning methods of Pakzad to a block-request streaming system is 

now described. This method may comprise arranging the media data to be presented 

into approximate presentation time order, such that the playout time of any given 

element of media data (for example a video frame or audio sample) differs from that of



WO 2011/038032 PCT/US2010/049869
45

any adjacent media data element by less than a provided threshold. The media data so 

ordered may be considered a data stream in the language of Pakzad and any of the 

methods of Pakzad applied to this data stream identify block boundaries with the data 

stream. The data between any pair of adjacent block boundaries is considered a “Block” 

in the language of this disclosure and the methods of this disclosure are applied to 

provide for presentation of the media data within a block-request streaming system. As 

will be clear to those of skill in the art on reading this disclosure the several advantages 

of the methods disclosed in Pakzad may then be realized in the context of a 

block-request streaming system.

[0217] As described in Pakzad, the determination of the block structure of a segment, 

including the blocks that encompass partial GoPs or portions of more than on GoP, can 

impact the ability of the client to enable fast channel zapping times. In Pakzad, methods 

were provided that, given a target startup time, would provide a block structure and a 

target download rate that would ensure that if the client started downloading the 

representation at any seek point and started playout after the target startup time has 

elapsed then the playout would continue seamlessly as long as at each point in time the 

amount of data the client has downloaded is at least the target download rate times the 

elapsed time from the beginning of the download. It is advantageous for the client to 

have access to the target startup time and the target download rate, as this provides the 

client with a means to determine when to start playing out the representation at the 

earliest point in time, and allows the client to continue to play out the representation as 

long as the download meets the condition described above. Thus, the method described 

later provides a means for including the target startup time and the target download rate 

within the Media Presentation Description, so that it can be used for the purposes 

described above.

Media Presentation Data Model

[0218] Fig. 5 illustrates possible structures of the content store shown in Fig. 1, 

including segments and media presentation description (“MPD”) files, and a breakdown 

of segments, timing, and other structure within an MPD file. Details of possible 

implementations of MPD structures or files will now be described. In many examples, 

the MPD is described as a file, but non-file structures can be used as well.



WO 2011/038032 PCT/US2010/049869
46

[0219] As illustrated there, content store 110 holds a plurality of source segments 510, 

MPDs 500 and repair segments 512. An MPD might comprise period records 501, 

which in turn might comprise representation records 502, that contain segment 

information 503 such as references to initialization segments 504 and media segments 

505.

[0220] Fig. 9(a) illustrates an example metadata table 900, while Fig. 9(b) illustrates 

an example of how an HTTP streaming client 902 obtains metadata table 900 and media 

blocks 904 over a connection to an HTTP streaming server 906.

[0221] In the methods described herein, a “Media Presentation Description” is 

provided that comprises information regarding the representations of the media 

presentation that are available to the client. Representations may be alternatives in a 

sense that the client selects one out the different alternatives, or they may be 

complementary in a sense that the client selects several of the representations, each 

possibly also from a set of alternatives, and presents them jointly. The representations 

may advantageously be assigned to groups, with the client programmed or configured to 

understand that, for representations in one group, they are each alternatives to each 

other, whereas representations from different groups are such that more than one 

representation is to be presented jointly. In other words, if there are more than one 

representation in a group, the client picks one representation from that group, one 

representation from the next group, etc., to form a presentation.

[0222] Information describing representations may advantageously include details of 

the applied media codecs including profiles and levels of those codecs which are 

required to decode the representation, video frame rates, video resolution and data rates. 

The client receiving the Media Presentation Description may use this information to 

determine in advance whether a representation is suitable for decoding or presentation. 

This represents an advantage because if the differentiating information would only be 

contained in the binary data of the representation it would be necessary to request the 

binary data from all representations and to parse and extract the relevant information in 

order to discover information about its suitability. These multiple requests and the 

parsing annex extraction of the data may take some time which would result in a long 

start up time and therefore a poor user experience.



WO 2011/038032 PCT/US2010/049869
47

[0223] Additionally, the Media Presentation Description may comprise information 

restricting the client requests based on the time of day. For example for a live service 

the client may be restricted to requesting parts of the presentation which are close to the 

“current broadcast time”. This represents an advantage since for live broadcast it may 

be desirable to purge data from the serving infrastructure for content that was broadcast 

more than a provided threshold before the current broadcast time. This may be 

desirable for the reuse of storage resources within the serving infrastructure. This may 

also be desirable depending on the type of service offered, e.g., in some cases a 

presentation may be made available only live because of a certain subscription model of 

receiving client devices, whereas other media presentations may be made available live 

and on-demand, and other presentations may be made available only live to a first class 

of client devices, only on-demand to a second class of client devices, and a combination 

of either live or on-demand to a third class of client devices. The methods described in 

the Media Presentation Data Model (below) allow the client to be informed of such 

policies so that the client can avoid making requests and adjusting the offerings to the 

user, for data that may not be available in the serving infrastructure. As an alternative, 

for example, the client may present a notification to the user that this data is not 

available.

[0224] In a further embodiment of the invention the media segments may be 

compliant to the ISO Base Media File Format described in ISO/IEC 14496-12 or 

derived specifications (such as the 3GP file format described in 3 GPP Technical 

Specification 26.244). The Usage of 3GPP File Format section (above) describes novel 

enhancements to the ISO Base Media File Format permitting efficient use of the data 

structures of this file format within a block-request streaming system. As described in 

this reference, information may be provided within the file permitting fast and efficient 

mapping between time segments of the media presentation and byte ranges within the 

file. The media data itself may be structured according to the Movie Fragment 

construction defined in ISO/IEC14496-12. This information providing time and byte 

offsets may be structured hierarchically or as a single block of information. This 

information may be provided at the start of the file. The provision of this information 

using an efficient encoding as described in the Usage of 3GPP File Format section 

results in the client being able to retrieve this information quickly, for example using an 

HTTP partial GET requests, in the case that the file download protocol used by the



WO 2011/038032 PCT/US2010/049869
48

block request streaming system is HTTP, which results in a short start up, seek or 

stream switch time and therefore in an improved user experience.

[0225] The representations in a media presentation are synchronized in a global 

timeline to ensure seamless switching across representations, typically being 

alternatives, and to ensure synchronous presentation of two ore more representations. 

Therefore, sample timing of contained media in representations within an adaptive 

HTTP streaming media presentation can be related to a continuous global timeline 

across multiple segments.

[0226] A block of encoded media containing media of multiple types, for example 

audio and video, may have different presentation end times for the different types of 

media. In a block request streaming system, such media blocks may be played out 

consecutively in such a way that each media type is played continuously and thus media 

samples of one type from one block may be played out before media samples of another 

type of the preceding block, which is referred to herein as “continuous block splicing.” 

As an alternative, such media blocks may be played out in such a way that the earliest 

sample of any type of one block is played after the latest sample of any type of the 

preceding block, which is referred to herein as “discontinuous block splicing.” 

Continuous block splicing may be appropriate when both blocks contain media from the 

same content item and the same representation, encoded in sequence, or in other cases. 

Typically, within one representation continuous block splicing may be applied when 

splicing two blocks. This is advantageous as existing encoding can be applied and 

segmentation can be done without needing to align media tracks at block boundaries. 

This is illustrated in Fig. 10, where video stream 1000 comprises block 1202 and other 

blocks, with RAPs such as RAP 1204.

Media Presentation Description

[0227] A media presentation may be viewed as a structured collection of files on an 

HTTP-Streaming server. The HTTP-Streaming client can download sufficient 

information to present the streaming service to the user. Alternative representations may 

comprise of one or more 3GP files or parts of 3GP files conforming to the 3 GPP file 

format or at least to a well defined set of data structures that can be easily converted 

from or to a 3GP file.



WO 2011/038032 PCT/US2010/049869
49

[0228] A media presentation may be described by a media presentation description. 

The Media Presentation Description (MPD) may contain metadata that the client can 

use to construct appropriate file requests, for example HTTP GET requests, to access 

the data at appropriate time and to provide the streaming service to the user. The media 

presentation description may provide sufficient information for the HTTP streaming 

client to select the appropriate 3GPP files and pieces of files. The units that are 

signalled to the client to be accessible are referred to as segments.

[0229] Among others, a media presentation description may contain elements and 

attributes as follows.

[0230] MediaPresentationDescription Element

[0231] An Element encapsulating metadata used by the HTTP Streaming Client to 

provide the streaming service to the end user. The MediaPresentationDescription 

Element may contain one or more of the following attributes and elements.

[0232] Version: Version number for protocol to ensure extensibility.

[0233] Presentationldentifier: Information such that the presentation may be uniquely 

identified among other presentations. May also contain private fields or names.

[0234] UpdateFrequency: Update frequency of the media presentation description, i.e. 

how often the client may reload the actual media presentation description. If not 

present, the media presentation may be static. Updating the media presentation may 

mean that the media presentation cannot be cached.

[0235] MediaPresentationDescriptionURI: URI for dating the media presentation 

description.

[0236] Stream: Describes the type of the Stream or media presentation: video, audio, 

or text. A video stream type may contain audio and may contain text.

[0237] Service: Describes the service type with additional attributes. Service types 

may be live and on-demand. This may be used to inform the client that seeking and 

access beyond some current time is not permitted.

[0238] MaximumClientPreBufferTime: A maximum amount of time the client may 

pre-buffer the media stream. This timing may differentiate streaming from progressive 

download if the client is restricted to download beyond this maximum pre-buffer time.



WO 2011/038032 PCT/US2010/049869
50

The value may not be present indicating that no restrictions in terms of pre-buffering 

may apply.

[0239] SafetyGuardlntervalLiveService: Information on the maximum turn-around 

time of a live service at the server. Provides an indication to the client what of 

information already accessible at the current time. This information may be necessary if 

the client and the server are expected to operate on UTC time and no tight time 

synchronization is provided.

[0240] TimeShiftBufferDepth: Information on how far back the client may move in a 

live service relative to the current time. By the extension of this depth, time-shift 

viewing and catch-up services may be permitted without specific changes in service 

provisioning.

[0241] LocalCachingPermitted: This flag indicates if the HTTP Client can cache the 

downloaded data locally after it has been played.

[0242] LivePresentationlnterval: Contains time intervals during which the

presentation may be available by specifying StartTimes and EndTimes. The StartTime 

indicates the start time of the services and the EndTime indicates the end-time of the 

service. If the EndTime is not specified, then the end time is unknown at current time 

and the UpdateFrequency may ensure that the clients gets access to the end-time before 

the actual end-time of the service.

[0243] OnDemandAvailabilitylnterval: The presentation interval indicates the 

availability of the service on the network. Multiple presentation intervals may be 

provided. The HTTP Client may not be able to access the service outside any specified 

time window. By the provisioning of the OnDemand Interval, additional time-shift 

viewing may be specified. This attribute may also be present for a live service. In case 

it is present for a live service, the server may ensure that the client can access the 

service as OnDemand Service during all provided availability intervals. Therefore, the 

LivePresentationlnterval may not overlap with any OnDemandAvailabilitylnterval.

[0244] MPDFilelnfoDynamic: Describes the default dynamic construction of files in 

the media presentation. More details are provided below. The default specification on 

MPD level may save unnecessary repetition if the same rules for several or all 

alternative representations are used.



WO 2011/038032 PCT/US2010/049869
51

[0245] MPDCodecDescription: Describes the main default codecs in the media 

presentation. More details are provided below. The default specification on MPD level 

may save unnecessary repetition if the same codecs for several or all representations are 

used.

[0246] MPDMoveBoxHeaderSizeDoesNotChange: A flag to indicate if the MoveBox 

Header changes in size among the individual files within the entire media presentation. 

This flag can be used to optimize the download and may only be present in case of 

specific segment formats, especially those for which segments contain the moov header.

[0247] FileURIPattem: A pattern used by the Client to generate Request messages for 

files within the media presentation. The different attributes permit generation of unique 

URIs for each of the files within the media presentation. The base URI may be an 

HTTP URI.

[0248] Alternative Representation: Describes a list of representations.

[0249] AlternativeRepresentation Element'.

[0250] An XML Element that encapsulates all metadata for one representation. The 

AlternativeRepresentation Element may contain the following attributes and elements.

[0251] RepresentationlD: A unique ID for this specific Alternative Representation 

within the media presentation.

[0252] FilesInfoStatic: Provides an explicit list of the starting times and the URI of all 

files of one alternative presentation. The static provisioning of the list of files may 

provide the advantage of an exact timing description of the media presentation, but it 

may not be as compact, especially if the alternative representation contains many files. 

Also, the file names may have arbitrary names.

[0253] FilesInfoDynamic: Provides an implicit way to construct the list of the starting 

times and the URI of one alternative presentation. The dynamic provisioning of the list 

of files may provide the advantage of a more compact representation. If only the 

sequence of starting times are provided, then the timing advantages also hold here, but 

the file names are to be constructed dynamically based in the FilePattemURI. If only 

the duration of each segment is provided then the representation is compact and may be 

suited for use within live services, but the generation of the files may be governed by 

global timing.



WO 2011/038032 PCT/US2010/049869
52

[0254] APMoveBoxHeaderSizeDoesNotChange: A flag that indicates if the MoveBox 

Header changes in size among the individual files within the Alternative Description. 

This flag can be used to optimize the download and may only be present in case of 

specific segment formats, especially those for which segments contain the moov header.

[0255] APCodecDescription: Describes the main codecs of files in the alternative 

presentation..

[0256] Media Description Element

[0257] MediaDescription: An element that may encapsulate all metadata for the media 

that is contained in this representation. Specifically it may contain information about 

the tracks in this alternative presentation as well as recommended grouping of tracks, if 

applicable. The MediaDescription Attribute contains the following attributes:

[0258] TrackDescription: An XML attribute that encapsulates all metadata for the 

media that is contained in this representation. The TrackDescription Attribute contains 

the following attributes:

[0259] TrackID: A unique ID for the track within the alternative representation. This 

may be used in case the track is part of a grouping description.

[0260] Bitrate: The bitrate of the track.

[0261] TrackCodecDescription: An XML attribute that contains all attributes on the 

codec used in this track. The TrackCodecDescription Attribute contains the following 

attributes:

[0262] MediaName: An attribute defining the media type. The media types include 

"audio", "video", "text", "application", and "message".

[0263] Codec: CodecType including profile and level.

[0264] LanguageTag: LanguageTag if applicable.

[0265] MaxWidth, MaxHeight: For video, Height and Width of contained video in 

pixel.

[0266] SamplingRate: For audio, sampling rate

[0267] GroupDescription: An attribute that provides recommendation to the client for 

appropriate grouping based on different parameters.



WO 2011/038032 PCT/US2010/049869
53

[0268] GroupType: A type based on which the client may decide how to group tracks.

[0269] The information in a media presentation description is advantageously used by 

an HTTP streaming client to perform requests for files/segments or parts thereof at 

appropriate times, selecting the segments from adequate representations that match its 

capabilities, for example in terms of access bandwidth, display capabilities, codec 

capabilities, and so on as well as preferences of the user such as language, and so on. 

Furthermore, as the Media Presentation description describes representations that are 

time-aligned and mapped to a global timeline, the client may also use the information in 

the MPD during an ongoing media presentation for initiating appropriate actions to 

switch across representations, to present representations jointly or to seek within the 

media presentation.

Signalling Segment Start Times

[0270] A representation may be split, timewise, into multiple segments. An 

inter-track timing issue exists between the last fragment of one segment and the next 

fragment of the next segment. In addition, another timing issue exists in the case that 

segments of constant duration are used.

[0271] Using the same duration for every segment may have the advantage that the 

MPD is both compact and static. However, every segment may still begin at a Random 

Access Point. Thus, either the video encoding may be constrained to provide Random 

Access Points at these specific points, or the actual segment durations may not be 

precisely as specified in the MPD. It may be desirable that the streaming system does 

not place unnecessary restrictions on the video encoding process and so the second 

option may be preferred.

[0272] Specifically, if the file duration is specified in the MPD as d seconds, then the 

n-th file may begin with the Random Access Point at or immediately following time 

(n-l)d.

[0273] In this approach, each file may include information as to the exact start time of 

the segment in terms of global presentation time. Three possible ways to signal this 

include:



WO 2011/038032 PCT/US2010/049869
54

[0274] (1) First, restrict the start time of each segment to the exact timing as specified

in the MPD. But then the media encoder may not have any flexibility on the placement 

of the IDR frames and may require special encoding for file streaming.

[0275] (2) Second, add the exact start time to the MPD for each segment. For the

on-demand case, the compactness of MPD may be reduced. For the live case, this may 

require a regular update of the MPD, which may reduce scalability.

[0276] (3) Third, add the global time or the exact start time relative to the announced

start time of the representation or the announced start time of the segment in the MPD to 

the segment in a sense that the segment contains this information. This might be added 

to a new box dedicated to adaptive streaming. This box may also include the 

information as provided by the “TIDX” or “SIDX” box. A consequence of this third 

approach is that when seeking to a particular position near the beginning of one of the 

segments the client may, based on the MPD, choose the subsequent segment to the one 

containing the required seek point. A simple response in this case may be to move the 

seek point forward to the start of the retrieved segment (i.e., to the next Random Access 

Point after the seek point). Usually, Random Access Points are provided at least every 

few seconds (and often there is little encoding gain from making them less frequent) and 

so in the worst case the seek point may be moved to be a few seconds later than 

specified. Alternatively, the client could determine in retrieving the header information 

for the segment that the requested seek point is in fact in the previous segment and 

request that segment instead. This may result in an occasional increase in the time 

required to execute the seek operation.

Accessible Segments List

[0277] The media presentation comprises a set of representations each providing some 

different version of encoding for the original media content. The representations 

themselves advantageously contain information on the differentiating parameters of the 

representation compared to other parameters. They also contain, either explicitly or 

implicitly, a list of accessible segments.

[0278] Segments may be differentiated in time-less segments containing metadata 

only and media segments that primarily contain media data. The Media Presentation 

Description (“MPD”) advantageously identifies and assigns different attributes to each 

of the segments, either implicitly or explicitly. Attributes advantageously assigned to



WO 2011/038032 PCT/US2010/049869
55

each segment comprise the period during which a segment is accessible, the resources 

and protocols through which the segments are accessible. In addition, media segments 

are advantageously assigned attributes such as the start time of the segment in the media 

presentation, and the duration of the segment in the media presentation.

[0279] Where the media presentation is of type “on-demand”, as advantageously 

indicated by an attribute in the media presentation description such as the 

OnDemandAvailabilitylnterval, then the media presentation description typically 

describes the entire segments and also provides indication when the segments are 

accessible and when the segments are not accessible. The start times of segments are 

advantageously expressed relative to the start of the media presentation such that two 

clients starting the play-back of the same media presentations, but at different times, can 

use the same media presentation description as well as the same media segments. This 

advantageously improves the ability to cache the segments.

[0280] Where the media presentation is of type “live”, as advantageously indicated by 

an attribute in the media presentation description such as the attribute Service, then the 

segments comprising the media presentation beyond the actual time of day are generally 

not generated or at least not accessible despite the segments are fully described in the 

MPD. However, with the indication that the media presentation service is of type 

“live”, the client may produce a list of accessible segments along with the timing 

attributes for a client internal time NOW in wall-clock time based on the information 

contained in the MPD and the download time of the MPD. The server advantageously 

operates in a sense that it makes resource accessible such that a reference client 

operating with the instance of the MPD at wall-clock time NOW can access the 

resources.

[0281] Specifically, the reference client produces a list of accessible segments along 

with the timing attributes for a client internal time NOW in wall-clock time based on the 

information contained in the MPD and the download time of the MPD. With time 

advancing, the client will use the same MPD and will create a new accessible segment 

list that can be used to continuously playout the media presentation. Therefore, the 

server can announce segments in an MPD before these segments are actually accessible. 

This is advantageous, as it reduces frequent updating and downloading of the MPD.



WO 2011/038032 PCT/US2010/049869
56

[0282] Assume that a list of segments, each with start time, tS , is described either 

explicitly by a play list in elements such as FilelnfoStatic or implicitly by using an 

element such as FilelnfoDynamic. An advantageous method to generate a segment list 

using FilelnfoDynamic is described below. Based on this construction rule, the client 

has access to a list of URIs for each representation, r, referred to herein as FileURI(r,z), 

and a start time tS(r,i) for each segment with index i.

[0283] The use of information in the MPD to create the accessible time window of 

segments may be performed using the following rules.

[0284] For a service of type “on-demand”, as advantageously indicated by an attribute 

such as Service, if the current wall-clock time at the client NOW is within any range of 

the availability, advantageously expressed by an MPD element such as

OnDemandAvailabilitylnterval, then all described segments of this On-Demand 

presentation are accessible. If the current wall-clock time at the client NOW is outside 

any range of the availability, then none of the described segments of this On-Demand 

presentation are accessible.

[0285] For a service of type “live”, as advantageously indicated by an attribute such 

as Service, the start time tS(r,i) advantageously expresses the time of availability in 

wall-clock time. The availability start time may be derived as a combination of the live 

service time of the event and some turn-around time at the server for capturing, 

encoding, and publishing. The time for this process may, for example, be specified in 

the MPD, for example using a safety guard interval tG specified for example specified 

as SafetyGuardlntervalLiveService in the MPD. This would provide the minimum 

difference between UTC time and the availability of the data on the HTTP streaming 

server. In another embodiment, the MPD explicitly specifies the availability time of the 

segment in the MPD without providing the turn-around time as a difference between the 

event live time and the turn-around time. In the following descriptions, it is assumed 

that any global times are specified as availability times. One or ordinary skill in art of 

live media broadcasting can derive this information from suitable information in the 

media presentation description after reading this description.

[0286] If the current wall-clock time at the client NOW is outside any range of the 

live presentation interval, advantageously expressed by an MPD element such as 

LivePresentationlnterval, then none of the described segments of this live presentation



WO 2011/038032 PCT/US2010/049869
57

are accessible. If the current wall-clock time at the client NOW is within the live 

presentation interval then at least certain segments of the described segments of this live 

presentation may be accessible.

[0287] The restriction of the accessible segments is governed by the following values:

[0288] The wall-clock time NOW (as available to the client).

[0289] The permitted time-shift buffer depth tTSB for example specified as 

TimeShiftBufferDepth in the media presentation description.

[0290] A client at relative event time h may only be allowed to request segments with 

start times tS(r, i) in the interval of (NOW - tTSB) and NOW or in an interval such that 

the end time of the segment with duration d is also included resulting in an interval of 

(NOW - tTSB -d) and NOW.

Updating the MPD

[0291] In some embodiments, the server does not know in advance the file or segment 

locator and start times of the segments as for example the server location will change, or 

the media presentation includes some advertisement from a different server, or the 

duration of the media presentation is unknown, or the server wants to obfuscate the 

locator for the following segments.

[0292] In such embodiments, the server might only describe segments that are already 

accessible or get accessible shortly after this instance of the MPD has been published. 

Furthermore, in some embodiments, the client advantageously consumes media close to 

the media described in the MPD such that the user experiences the contained media 

program as close as possible to the generation of the media content. As soon as the 

client anticipates that it reaches the end of the described media segments in the MPD, it 

advantageously requests a new instance of the MPD to continue continuous play-out in 

the expectation that the server has published a new MPD describing new media 

segments. The server advantageously generates new instances of the MPD and updates 

the MPD such that clients can rely on the procedures for continuous updates. The 

server may adapt its MPD update procedures along with the segment generation and 

publishing to the procedures of a reference client that acts as a common client may act.

[0293] If a new instance of the MPD only describes a short time advance, then the 

clients need to frequently request new instances of MPD. This may result in scalability



WO 2011/038032 PCT/US2010/049869
58

problems and unnecessary uplink and downlink traffic due to unnecessary frequent 

requests.

[0294] Therefore, it is relevant on the one hand to describe segments as far as possible 

into the future without necessarily making them accessible yet, and on the other hand to 

enable unforeseen updates in the MPD to express new server locations, permit insertion 

of new content such as advertisements or to provide changes in codec parameters.

[0295] Furthermore, in some embodiments, the duration of the media segments may 

be small, such as in the range of several seconds. The duration of media segments is 

advantageously flexible to adjust to suitable segment sizes that can be optimized to 

delivery or caching properties, to compensate for end-to-end delay in live services or 

other aspects that deal with storage or delivery of segments, or for other reasons. 

Especially in cases where the segments are small compared to the media presentation 

duration, then a significant amount of media segment resources and start times need to 

be described in the media presentation description. As a result, the size of the media 

presentation description may be large which may adversely affect the download time of 

the media presentation description and therefore affect the start-up delay of the media 

presentation and also the bandwidth usage on the access link. Therefore, it is 

advantageous to not only permit the description of a list of media segments using 

playlists, but also permit the description by using templates or URL construction rules. 

Templates and URL construction rules are used synonymously in this description.

[0296] In addition, templates may advantageously be used to describe segment 

locators in live cases beyond the current time. In such cases, updates of the MPD are 

per se unnecessary as the locators as well as the segment list are described by the 

templates. However, unforeseen events may still happen that require changes in the 

description of the representations or the segments. Changes in an adaptive HTTP 

streaming media presentation description may be needed when content from multiple 

different sources is spliced together, for example, when advertising has been inserted. 

The content from different sources may differ in a variety of ways. Another reason, 

during live presentations, is that it may be necessary to change the URLs used for 

content files to provide for fail-over from one live origin server to another.

[0297] In some embodiments, it is advantageous that if the MPD is updated, then the 

updates to the MPD are carried out such that the updated MPD is compatible with the



WO 2011/038032 PCT/US2010/049869
59

previous MPD in the following sense that the reference client and therefore any 

implemented client generates an identically functional list of accessible segments from 

the updated MPD for any time up to the validity time of the previous MPD as it would 

have done from the previous instance of the MPD. This requirement ensures that (a) 

clients may immediately begin using the new MPD without synchronisation with the old 

MPD, since it is compatible with the old MPD before the update time; and (b) the 

update time need not be synchronised with the time at which the actual change to the 

MPD takes place. In other words, updates to the MPD can be advertised in advance and 

the server can replace the old instance of the MPD once new information is available 

without having to maintain different versions of the MPD.

[0298] Two possibilities may exist for media timing across an MPD update for a set 

of representations or all representations. Either (a) the existing global timeline 

continues across the MPD update (referred to herein as a “continuous MPD update”), or 

(b) the current timeline ends and a new timeline begins with the segment following the 

change (referred to herein as a “discontinuous MPD update”).

[0299] The difference between these options may be evident when considering that 

the tracks of a Media Fragment, and hence of a Segment, generally do not begin and end 

at the same time because of the differing sample granularity across tracks. During 

normal presentation, samples of one track of a fragment may be rendered before some 

samples of another track of the previous fragment i.e. there is some kind of overlap 

between fragments although there is may not be overlap within a single track.

[0300] The difference between (a) and (b) is whether such overlap may be enabled 

across an MPD update. When the MPD update is because of splicing of completely 

separate content, such overlap is generally difficult to achieve as the new content needs 

new encoding to be spliced with the previous content. It is therefore advantageous to 

provide the ability for discontinuously updating the media presentation by restarting the 

timeline for certain segments and possibly also define a new set of representations after 

the update. Also, if the content has been independently encoded and segmented, then it 

is also avoided to adjust timestamps to fit within the global timeline of the previous 

piece of content.



WO 2011/038032 PCT/US2010/049869
60

[0301] When the update is for lesser reasons such as only adding new media segments 

to list of described media segments, or if the location of the URLs is changed then 

overlap and continuous updates may be allowed.

[0302] In the case of a discontinuous MPD update, the timeline of the last segment of 

the previous representation ends at the latest presentation end time of any sample in the 

segment. The timeline of the next representation (or, more accurately, the first 

presentation time of the first media segment of the new part of the media presentation, 

also referred to as new period) typically and advantageously begins at this same instant 

as the end of the presentation of the last period such that seamless and continuous 

playout is ensured.

[0303] The two cases are illustrated in the Fig. 11.

[0304] It is preferred and advantageous to restrict MPD updates to segment 

boundaries. The rationale for restricting such changes or updates to segment boundaries 

is as follows. First, changes to the binary metadata for each representation, typically the 

Movie Header, may take place at least at segment boundaries. Second, the Media 

Presentation Description may contain the pointers (URLs) to the segments. In a sense 

the MPD is the “umbrella” data structure grouping together all the segment files 

associated with the media presentation. To maintain this containment relationship, each 

segment may be referenced by a single MPD and when the MPD is updated, it 

advantageously only updated at a segment boundary.

[0305] Segment boundaries are not generally required to be aligned, however for the 

case of content spliced from different sources, and for discontinuous MPD updates 

generally, it makes sense to align the segment boundaries (specifically, that the last 

segment of each representation may end at the same video frame and may not contain 

audio samples with a presentation start time later than the presentation time of that 

frame). A discontinuous update may then start a new set of representations at a common 

time instant, referred to as period. The start time of the validity of this new set of 

representations is provided, for example by a period start time. The relative start time of 

each representation is reset to zero and the start time of the period places the set of 

representations in this new period in the global media presentation timeline.

[0306] For continuous MPD updates, segment boundaries are not required to be 

aligned. Each segment of each alternative representation may be governed by a single



WO 2011/038032 PCT/US2010/049869
61

Media Presentation Description and thus the update requests for a new instances of the 

Media Presentation Description, generally triggered by the anticipation that no 

additional media segments are described in the operating MPD, may take place at 

different times depending on the consumed set of representations including the set of 

representations that are anticipated to be consumed.

[0307] To support updates in MPD elements and attributes in a more general case, 

any elements not only representations or set of representations may be associated with a 

validity time. So, if certain elements of the MDP need to be updated, for example 

where the number of representations is changed or the URL construction rules are 

changed, then these elements may each be updated individually at specified times, by 

providing multiple copies of the element with disjoint validity times.

[0308] Validity is advantageously associated with the global media time, such that the 

described element associated with a validity time is valid in a period of the global 

timeline of the media presentation.

[0309] As discussed above, in one embodiment, the validity times are only added to a 

full set of representations. Each full set then forms a period. The validity time then 

forms the start time of the period. In other words, in a specific case of the using the 

validity element, a full set of representations may be valid for a period in time, indicated 

by a global validity time for a set of representations. The validity time of a set of 

representations is referred to as a period. At the start of a new period, the validity of the 

previous set representation is expired and the new set of representations is valid. Note 

again that the validity times of periods are preferably disjoint.

[0310] As noted above, changes to the Media Presentation Description take place at 

segment boundaries, and so for each representation, the change an element actually 

takes place at the next segment boundary. The client may then form a valid MPD 

including a list of segments for each instant of time within the presentation time of the 

media.

[0311] Discontinuous block splicing may be appropriate in cases where the blocks 

contain media data from different representations, or from different content, for example 

from a segment of content and an advertisement, or in other cases. It may be required in 

a block request streaming system that changes to presentation metadata take place only 

at block boundaries. This may be advantageous for implementation reasons because



WO 2011/038032 PCT/US2010/049869
62

updating media decoder parameters within a block may be more complex than updating 

them only between blocks. In this case, it may advantageously be specified that validity 

intervals as described above may be interpreted as approximate, such that an element is 

considered valid from the first block boundary not earlier than the start of the specified 

validity interval to the first block boundary not earlier than the end of the specified 

validity interval.

[0312] An example embodiment of the above describes novel enhancements to a 

block-request streaming system is described in the later presented section titled Changes 

to Media Presentations.

Segment Duration Signalling

[0313] Discontinuous updates effectively divide the presentation into a series of 

disjoint intervals, referred to as period. Each period has its own timeline for media 

sample timing. The media timing of representation within a period may advantageously 

be indicated by specifying a separate compact list of segment durations for each period 

or for each representation in a period.

[0314] An attribute, for example referred to as period start time, associated to 

elements within the MPD may specify the validity time of certain elements within the 

media presentation time. This attribute may be added to any elements (attributes that 

may get assigned a validity may be changed to elements) of the MPD.

[0315] For discontinuous MPD updates the segments of all representations may end at 

the discontinuity. This generally implies at least that the last segment before the 

discontinuity has a different duration from the previous ones. Signalling segment 

duration may involve indicating either that all segments have the same duration or 

indicating a separate duration for every segment. It may be desirable to have a compact 

representation for a list of segment durations which is efficient in the case that many of 

them have the same duration.

[0316] Durations of each segment in one representation or a set of representations 

may advantageously be carried out with a single string that specifies all segment 

durations for a single interval from the start of the discontinuous update, i.e., the start of 

the period until the last media segment described in the MPD. In one embodiment, the 

format of this element is a text string conforming to a production that contains a list of 

segment duration entries where each entry contains a duration attribute dur and an



WO 2011/038032 PCT/US2010/049869
63

optional multiplier mult of the attribute indicating that this representation contains 

<mult> of the first entry segments of duration <dur> of the first entry, then <mult> of 

the second entry segments of duration <dur> of the second entry and so on.

[0317] Each duration entry specifies the duration of one or more segments. If the 

<dur> value is followed by the character and a number, then this number specifies 

the number of consecutive segments with this duration, in seconds. If the multiplier 

sign is absent, the number of segments is one. If the is present with no 

following number, then all subsequent segments have the specified duration and there 

may be no further entries in the list. For example, the string “30*” means all segments 

have a duration of 30 seconds. The string “30*12 10.5” indicates 12 segments of 

duration 30 seconds, followed by one of duration 10.5 seconds.

[0318] If segment durations are specified separately for each alternative

representation, then the sum of segment durations within each interval may be the same 

for each representation. In the case of video tracks, the interval may end on the same 

frame in each alternative representation.

[0319] Those of ordinary skill in the art, upon reading this disclosure, may find 

similar and equivalent ways to express segment durations in a compact manner.

[0320] In another embodiment, the duration of a segment is signalled to be constant 

for all segments in the representation except for the last one by a signal duration 

attribute <duration>. The duration of the last segment before a discontinuous update 

may be shorter as long as the start point of the next discontinuous update or the start of a 

new period is provided, which then implies the duration of the last segment reaching up 

to the start of the next period.

Changes and updates to representation metadata

[0321] Indicating changes of binary coded representation metadata such as movie 

header “moov” changes may be accomplished in different ways: (a) there may be one 

moov box for all representation in a separate file referenced in the MPD, (b) there may 

be one moov box for each alternative representation in a separate file referenced in each 

Alternative Representation, (c) each segment may contain a moov box and is therefore 

self-contained, (d) there may be a moov Box for all representation in one 3GP file 

together with MPD.



WO 2011/038032 PCT/US2010/049869
64

[0322] Note that in case of (a) and (b), the single ‘moov’ may be advantageously 

combined with the validity concept from above in a sense that more ‘moov’ boxes may 

be referenced in an MPD as long as their validity is disjoint. For example, with the 

definition of a period boundary, the validity of the ‘moov’ in the old period may expire 

with the start of the new period.

[0323] In case of option (a), the reference to the single moov box may be assigned a 

validity element. Multiple Presentation headers may be allowed, but only one may be 

valid at a time. In another embodiment, the validity time of the entire set of 

representations in a period or the entire period as defined above may be used as a 

validity time for this representation metadata, typically provided as the moov header.

[0324] In case of option (b), the reference to the moov box of each representation may 

be assigned a validity element. Multiple Representation headers may be allowed, but 

only one may be valid at a time. In another embodiment, the validity time of the entire 

representation or the entire period as defined above may be used as a validity time for 

this representation metadata, typically provided as the moov header.

[0325] In case of options (c), no signalling in the MPD may be added, but additional 

signalling in the media stream may be added to to indicate if the moov box will change 

for any of the upcoming segments. This is further explained in the below in the context 

of “Signaling Updates Within Segment Metadata”.

Signaling Updates Within Segment Metadata

[0326] To avoid frequent updates of the media presentation description to get 

knowledge on potential updates, it is advantageous to signal any such updates along 

with the media segments. There may be provided an additional element or elements 

within the media segments themselves which may indicate that updated metadata such 

as the media presentation description is available and has to be accessed to within a 

certain amount of time to successfully continue creation of accessible segment lists. In 

addition, such elements may provide a file identifier, such as a URL, or information that 

may be used to construct a file identifier, for the updated metadata file. The updated 

metadata file may include metadata equal to that provided in the original metadata file 

for the presentation modified to indicate validity intervals together with additional 

metadata also accompanied by validity intervals. Such an indication may be provided in 

media segments of all the available representations for a media presentation. A client



WO 2011/038032 PCT/US2010/049869
65

accessing a block request streaming system, on detecting such an indication within a 

media block, may use the file download protocol or other means to retrieve the updated 

metadata file. The client is thereby provided with information about changes in the 

media presentation description and the time at which they will occur or have occurred. 

Advantageously, each client requests the updated media presentation description only 

once when such a changes occur rather than “polling” and receiving the file many times 

for possible updates or changes.

[0327] Examples of changes include addition or removal of representations, changes 

to one or more representation such as change in bit-rate, resolution, aspect ratio, 

included tracks or codec parameters, and changes to URL construction rules, for 

example a different origin server for an advertisement. Some changes may affect only 

the initialization segment such as the Movie Header (“moov”) atom associated with a 

representation, whereas other changes may affect the Media Presentation Description 

(MPD).

[0328] In the case of on-demand content, these changes and their timing may be 

known in advance and could be signalled in the Media Presentation Description.

[0329] For live content, changes may not be known until the point at which they 

occur. One solution is to allow the Media Presentation Description available at a 

specific URL to be dynamically updated and to require clients to regularly request this 

MPD in order to detect changes. This solution has disadvantage in terms of scalability 

(origin server load and cache efficiency). In a scenario with large numbers of viewers, 

caches may receive many requests for the MPD after the previous version has expired 

from cache and before the new version has been received and all of these may be 

forwarded to the origin server. The origin server may need to constantly process 

requests from caches for each updated version of the MPD. Also, the updates may not 

easily be time-aligned with changes in the media presentation.

[0330] Since one of the advantages of HTTP Streaming is the ability to utilise 

standard web infrastructure and services for scalability, a preferred solution may involve 

only “static” (i.e. cachable) files and not rely on clients “polling” files to see if they 

have changed.



WO 2011/038032 PCT/US2010/049869
66

[0331] Solutions are discussed and proposed to resolve the update of metadata 

including the media presentation description and binary representation metadata such as 

“moov” atoms in an Adaptive HTTP Streaming media presentation.

[0332] For the case of live content, the points at which the MPD or “moov” may 

change might not be known when the MPD is constructed. As frequent “polling” of the 

MPD to check for updates should generally be avoided, for bandwidth and scalability 

reasons, updates to the MPD may be indicated “in band” in the segment files 

themselves, i.e., each media segment may have the option to indicate updates. 

Depending on the segment formats (a) to (c) from above, different updating may be 

signalled.

[0333] Generally, the following indication may advantageously be provided in a 

signal within the segment: an indicator that the MPD may be updated before requesting 

the next segment within this representation or any next segment that has start time 

greater than the start time of the current segment. The update may be announced in 

advance indicating that the update need only to happen at any segment later than the 

next one. This MPD update may also be used to update binary representation metadata 

such as Movie Headers in case the locator of the media segment is changed. Another 

signal may indicate that with the completion of this segment, no more segments that 

advance time should be requested.

[0334] In case segments are formatted according to the segment format (c), i.e., each 

media segment may contain self-initialising metadata such as the movie header, then yet 

another signal may be added indicating that the subsequent segment contains an updated 

Movie Header (moov). This advantageously allows the movie header to be included in 

the segment, but the Movie Header need only be requested by the client if the previous 

segment indicates a Movie Header Update or in the case of seeking or random access 

when switching representations. In other cases, the client may issue a byte range 

request to the segment that excludes the movie header from the download, therefore 

advantageously saving bandwidth.

[0335] In yet another embodiment, if the MPD Update indication is signalled, then the 

signal may also contain a locator such as URL for the updated Media Presentation 

Description. The updated MPD may describe the presentation both before and after the 

update, using the validity attributes such as a new and old period in case of



WO 2011/038032 PCT/US2010/049869
67

discontinuous updates. This may advantageously be used to permit time-shift viewing as 

described further below but also advantageously allows the MPD update to be signalled 

at any time before the changes it contains take effect. The client may immediately 

download the new MPD and apply it to the ongoing presentation.

[0336] In a specific realization, the signalling of the any changes to the media 

presentation description, the moov headers or the end of presentation may be contained 

in a streaming information box that is formatted following the rules of the segment 

format using the box structure of the ISO base media file format. This box may provide 

a specific signal for any of the different updates.

[0337] Streaming Information Box

[0338] Definition

[0339] Box Type: ‘sinf

Container: None

Mandatory: No

Quantity: Zero or one.

[0340] The Streaming Information Box contains information about the streaming 

presentation of which the file is a part.

[03411 Syntax

[0342] aligned(8) class StreaminglnformationBox 

extends FullBox(‘sinf ) {

unsigned int(32) streaminginformationflags;

[0343] /// The following are optional fields

string mpdlocation

}

i03441 Semantics

[0345] streaming information flags contains the logical OR of zero or more of the 

following:

[0346] 0x00000001 Movie Header update follows

[0347] 0x00000002 Presentation Description update



WO 2011/038032 PCT/US2010/049869
68

[0348] 0x00000004 End-of-presentation

[0349] mpd location is present if and only if the Presentation Description update 

flags is set and provides a Uniform Resource Locator for the new Media Presentation 

Description.

Example Use Case for MPD Updates for Live Services

[0350] Suppose a service provider wants to provide a live football event using the 

enhanced block-request streaming described herein. Perhaps millions of users might 

want to access the presentation of the event. The live event is sporadically interrupted 

by breaks when a time out is called, or other lull in the action, during which 

advertisements might be added. Typically, there is no or little advance notice of the 

exact timing of the breaks.

[0351] The service provider might need to provider redundant infrastructure (e.g., 

encoders and servers) to enable a seamless switch-over in case any of the components 

fail during the live event.

[0352] Suppose a user, Anna, accesses the service on a bus with her mobile device, 

and the service is available immediately. Next to her sits another user, Paul, who 

watches the event on his laptop. A goal is scored and both celebrate this event at the 

same time. Paul tells Anna that the first goal in the game was even more exciting and 

Anna uses the service so that she can view the event 30 minutes back in time. After 

having seen the goal, she goes back to the live event.

[0353] To address that use case, the service provider should be able to update the 

MPD, signal to the clients that an updated MPD is available, and permit clients to 

access the streaming service such that it can present the data close to real-time.

[0354] Updating of the MPD is feasible in an asynchronous manner to the delivery of 

segments, as explained herein elsewhere. The server can provide guarantees to the 

receiver that an MPD is not updated for some time. The server may rely on the current 

MPD. However, no explicit signaling is needed when the MPD is updated before the 

some minimum update period.

[0355] Completely synchronous playout is hardly achieved as client may operate on 

different MPD update instances and therefore, clients may have drift. Using MPD 

updates, the server can convey changes and the clients can be alerted to changes, even



WO 2011/038032 PCT/US2010/049869
69

during a presentation. In-band signaling on a segment-by-segment basis can be used to 

indicate the update of the MPD, so updates might be limited to segment boundaries, but 

that should be acceptable in most applications.

[0356] An MPD element can be added that provides the publishing time in wall-clock 

time of the MPD as well as an optional MPD update box that is added at the beginning 

of segments to signal that an MPD update is required. The updates can be done 

hierarchically, as with the MPDs.

[0357] The MPD “Publish time” provides a unique identifier for the MPD and when 

the MPD was issued. It also provides an anchor for the update procedures.

[0358] The MPD update box might be found in the MPD after the “styp” box, and 

defined by a Box Type= “mupe”, needing no container, not being mandatory and having 

a quantity of zero or one. The MPD update box contains information about the media 

presentation of which the segment is a part.

[0359] Example syntax is as follows:

[0360] aligned(8) class MPDUpdateBox

[0361] extends FullBox(‘mupe’) {

[0362] unsigned int(3) mpd information flags;

[0363] unsigned int(l) new-location flag;

[0364] unsigned int(28) latestmpdupdate time;

[0365] /// The following are optional fields

[0366] string mpdlocation

[0367] }

[0368] The semantics of the various objects of the class MPDUpdateBox might be as 

follows:

[0369] mpdinformationflags: the logical OR of zero or more of the following:

[0370] 0x00 Media Presentation Description update now

[0371] 0x01 Media Presentation Description update ahead



WO 2011/038032 PCT/US2010/049869
70

[0372] 0x02 End-of-presentation

[0373] 0x03-0x07 Reserved

[0374] newlocation flag: if set to 1, then the new Media Presentation

Description is available at a new location specified in mpd location.

[0375] latest mpd update time: specifies the time (in ms) by when the MPD

update is necessary relative to the MPD issue time of the latest MPD. The client may 

choose to update the MPD any time between now.

[0376] mpd location: is present if and only if the newlocationflag is set and if

so, mpd location provides a Uniform Resource Locator for the new Media Presentation 

Description.

[0377] If the bandwidth used by updates is an issue, the server may offer MPDs for 

certain device capabilities such that only these parts are updated.

Time-shift Viewing and Network PVR

[0378] When time-shift viewing is supported, it may happen that for the life-time of 

the session two or more MPDs or Movie Headers are valid. In this case by updating the 

MPD when necessary, but adding the validity mechanism or the period concept, a valid 

MPD may exist for the entire time-window. This means that server may ensure that any 

MPD and Movie header are announced for any period of time that is within the valid 

time-window for time-shift viewing. It is up to the client to ensure that its available 

MPD and metadata for its current presentation time is valid. Migration of a live session 

to a network PVR session using only minor MPD updates may also be supported.

Special Media Segments

[0379] An issue when the file format of ISO/IEC 14496-12 is used within a block 

request streaming system is that, as described in the foregoing, it may be advantageous 

to store the media data for a single version of the presentation in multiple files, arranged 

in consecutive time segments. Furthermore it may be advantageous to arrange that each 

file begins with a Random Access Point. Further it may be advantageous to choose the 

positions of the seek points during the video encoding process and to segment the 

presentation into multiple files each beginning with a seek point based on the choice of 

seek points that was made during the encoding process, wherein each Random Access 

Point may or may not be placed at the beginning of a file but wherein each file begins



WO 2011/038032 PCT/US2010/049869
71

with a Random Access Point. In one embodiment with the properties described above, 

the presentation metadata, or Media Presentation Description, may contain the exact 

duration of each file, where duration is taken for example to mean the different between 

the start time of the video media of a file and the start time of the video media of the 

next file. Based on this information in the presentation metadata the client is able to 

construct a mapping between the global timeline for the media presentation and the 

local timeline for the media within each file.

[0380] In another embodiment, the size of the presentation metadata may be 

advantageously reduced by specifying instead that every file or segment have the same 

duration. However in this case and where media files are constructed according to the 

method above the duration of each file may not be exactly equal to the duration 

specified in the media presentation description because a Random Access Point may not 

exist at the point which is exactly the specified duration from the start of the file.

[0381] A further embodiment of the invention to provide for correct operation of the 

block-request streaming system despite the discrepancy mentioned above is now 

described. In this method there may be provided an element within each file which 

specifies the mapping of the local timeline of the media within the file (by which is 

meant the timeline starting from timestamp zero against which the decoding and 

composition timestamps of the media samples in the file are specified according to 

ISO/IEC 14496-12) to the global presentation timeline. This mapping information may 

comprise a single timestamp in global presentation time that corresponds to the zero 

timestamp in the local file timeline. The mapping information may alternatively 

comprise an offset value that specifies the difference between the global presentation 

time corresponding to the zero timestamp in local file timeline and the global 

presentation time corresponding to the start of the file according to the information 

provided in the presentation metadata.

[0382] Example for such boxes may for example be the track fragment decode time 

(‘tfdt’) box or the track fragment adjustment box (‘tfad’) together with the track 

fragment media adjustment (‘tfma’) box.

Example Client including Segment List Generation

[0383] An example client will now be described. It might be used as a reference 

client for the server to ensure proper generation and updates of the MPD.



WO 2011/038032 PCT/US2010/049869
72

[0384] An HTTP streaming client is guided by the information provided in the MPD.

It is assumed that the client has access to the MPD that it received at time T, i.e., the 

time it was able to successfully receive an MPD. Determining successful reception may 

include the client obtaining an updated MPD or the client verifying that the MPD has 

not been updated since the previous successful reception.

[0385] An example client behaviour is introduced. For providing a continuous 

streaming service to the user, the client first parses the MPD and creates a list of 

accessible segments for each representation for the client-local time at a current system 

time, taking into account segment list generation procedures as detailed below possibly 

using play-lists or using URL construction rules. Then, the client selects one or 

multiple representations based on the information in the representation attributes and 

other information, e.g., available bandwidth and client capabilities. Depending on 

grouping representations may be presented standalone or jointly with other 

representations.

[0386] For each representation, the client acquires the binary metadata such as the 

“moov” header for the representation, if present, and the media segments of the selected 

representations. The client accesses the media content by requesting segments or byte 

ranges of segments, possibly using the segment list. The client may initially buffer 

media before starting the presentation and, once the presentation has started, the client 

continues consuming the media content by continuously requesting segments or parts of 

segments taking into account the MPD update procedures.

[0387] The client may switch representations taking into account updated MPD 

information and/or updated information from its environment, e.g., change of available 

bandwidth. With any request for a media segment containing a random access point, 

the client may switch to a different representation. When moving forward, i.e., the 

current system time (referred to as the “NOW time” to represent the time relative to the 

presentation) advancing, the client consumes the accessible segments. With each 

advance in the NOW time, the client possibly expands the list of accessible segments for 

each representation according to the procedures specified herein.

[0388] If the end of the media presentation is not yet reached and if the current 

playback time gets within a threshold for which the client anticipates to run out media of 

the media described in the MPD for any consuming or to be consumed representation,



WO 2011/038032 PCT/US2010/049869
73

then the client may request an update of the MPD, with a new fetch time reception time 

T. Once received, the client then takes into account the possibly updated MPD and the 

new time T in the generation of the accessible segment lists. Figure 29 illustrates a 

procedure for live services at different times at the client.

Accessible Segment List Generation

[0389] Assume that the HTTP streaming client has access to an MPD and may want 

to generate an accessible segment list for a wall-clock time NOW. The client is 

synchronised to a global time reference with certain precision, but advantageously no 

direct synchronization to the HTTP streaming server is required.

[0390] The accessible segment list for each representation is preferably defined as a 

list pair of a segment start time and segment locator where the segment start time may 

be defined as being relative to the start of the representation without loss of generality. 

The start of the representation may be aligned with the start of a period or if this concept 

is applied. Otherwise, the representation start can be at the start of the media 

presentation.

[0391] The client uses URL construction rules and timing as, for example, defined 

further herein. Once a list of described segments is obtained, this list is further 

restricted to the accessible ones, which may be a subset of the segments of the complete 

media presentation. The construction is governed by the current value of the clock at 

the client NOW time. Generally, segments are only available for any time NOW within 

a set of availability times. For times NOW outside this window, no segments are 

available. In addition, for live services, assume the some time checktime provides 

information on how far into the future the media is described. The checktime is defined 

on the MPD-documented media time axis; when the client’s playback time reaches 

checktime, it advantageously requests a new MPD.

[0392] ; when the client’s playback time reaches checktime, it advantageously

requests a new MPD.

[0393] Then, the segment list is further restricted by the checktime together with the 

MPD attribute TimeShiftBufferDepth such that only media segments available are those 

for which the sum of the start time of the media segment and the representation start 

time falls in the interval between NOW minus timeShiftBufferDepth minus the duration 

of the last described segment and the smaller value of either checktime or NOW.



WO 2011/038032 PCT/US2010/049869
74

Scalable Blocks

[0394] Sometimes available bandwidth falls so low that the block or blocks currently 

being received at a receiver become unlikely to be completely received in time to be 

played out without pausing the presentation. The receiver might detect such situations 

in advance. For example, the receiver might determine that it is receiving blocks 

encoding 5 units of media every 6 units of time, and has a buffer of 4 units of media, so 

that the receiver might expect to have to stall, or pause, the presentation, about 24 units 

of time later. With sufficient notice, the receiver can react to such a situation by, for 

example, abandoning the current stream of blocks and start requesting a block or blocks 

from a different representation of the content, such as one that uses less bandwidth per 

unit of playout time. For example, if the receiver switched to a representation where 

blocks encoded for at least 20% more video time for the same size blocks, the receiver 

might be able to eliminate the need to stall until the bandwidth situation improved.

[0395] However, it might be wasteful to have the receiver entirely discard the data 

already received from the abandoned representation. In an embodiment of a 

block-streaming system described herein, the data within each block can be encoded and 

arranged in such a way that certain prefixes of the data within the block can be used to 

continue the presentation without the remainder of the block having been received. For 

example, the well-known techniques of scalable video encoding may be used.

Examples of such video encoding methods include H.264 Scalable Video Coding (SVC) 

or the temporal scalability of H.264 Advanced Video Coding (AVC). Advantageously, 

this method allows the presentation to continue based on the portion of a block that has 

been received even when reception of a block or blocks might be abandoned, for 

example due to changes in the available bandwidth. Another advantage is that a single 

data file may be used as the source for multiple different representations of the content. 

This is possible, for example, by making use of HTTP partial GET requests that select 

the subset of a block corresponding to the required representation.

[0396] One improvement detailed herein is an enchanced segment, a scalable segment 

map. The scalable segment map contains the locations of the different layers in the 

segment such that the client can access the parts of the segments accordingly and extract 

the layers. In another embodiment, the media data in the segment is ordered such that 

the quality of the segment is increasing while downloading the data gradually from the 

beginning of the segment. In another embodiment, the gradual increase of the quality is



WO 2011/038032 PCT/US2010/049869
75

applied for each block or fragment contained in the segment, such that the fragment 

requests can be done to address the scalable approach.

[0397] Fig. 12 is a figure showing an aspect of scalable blocks. In that figure, a 

transmitter 1200 outputs metadata 1202, scalable layer 1 (1204), scalable layer 2 (1206), 

and scalable layer 3 (1208), with the latter being delayed. A receiver 1210 can then use 

metadata 1202, scalable layer 1 (1204), and scalable layer 2 (1206) to present media 

presentation 1212.

Independent Scalability Fayers

[0398] As explained above, it is undesirable for a block-request streaming system to 

have to stall when the receiver is unable to receive the requested blocks of a specific 

representation of the media data in time for its playout, as that often creates a poor user 

experience. Stalls can be avoided, reduced or mitigated by restricting a data rate of the 

representations chosen to be much less than the available bandwidth, so that it becomes 

very unlikely that any given portion of the presentation would not be received in time, 

but this strategy has the disadvantage that the media quality is necessarily much lower 

than could in principle be supported by the available bandwidth. A lower quality 

presentation than is possible also can be interpreted as a poor user experience. Thus, the 

designer of a block-request streaming system is faced with a choice in the design of the 

client procedures, programming of the client or configuration of hardware, to either 

request a content version that has a much lower data rate than the available bandwidth, 

in which case the user may suffer poor media quality, or to request a content version 

that has a data rate close to the available bandwidth, in which case the user may suffer a 

high probability of pauses during the presentation as the available bandwidth changes.

[0399] To handle such situations, the block-streaming systems described herein might 

be configured to handle multiple scalability layers independently, such that a receiver 

can make layered requests and a transmitter can respond to layered requests.

[0400] In such embodiments, the encoded media data for each block may be 

partitioned into multiple disjoint pieces, referred to herein as “layers”, such that a 

combination of layers comprises the whole of the media data for a block and such that a 

client that has received certain subsets of the layers may perform decoding and 

presentation of a representation of the content. In this approach, the ordering of the data



WO 2011/038032 PCT/US2010/049869
76

in the stream is such that contiguous ranges are increasing in the quality and the 

metadata reflects this.

[0401] An example of a technique that may be used to generate layers with the 

property above is the technique of Scalable Video Coding for example as described in 

ITU-T Standards H.264/SVC. Another example of a technique that may be used to 

generate layers with the property above is the technique of temporal scalability layers as 

provided in ITU-T Standard H.264/AVC.

[0402] In these embodiments, metadata might be provided in the MPD or in the 

segment itself that enables the construction of requests for individual layers of any given 

block and/or combinations of layers and/or a given layer of multiple blocks and/or a 

combination of layers of multiple blocks. For example, the layers comprising a block 

might be stored within a single file and metadata might be provided specifying the byte 

ranges within the file corresponding to the individual layers.

[0403] A file download protocol capable of specifying byte ranges, for example 

HTTP 1.1, may be used to request individual layers or multiple layers. Furthermore, as 

will be clear to one of skill in the art on reviewing this disclosure, the techniques 

described above pertaining to the construction, request and download of blocks of 

variable size and variable combinations of blocks may be applied in this context as well.

Combinations

[0404] A number of embodiments are now described which may be advantageously 

employed by a block-request streaming client in order to achieve an improvement in the 

user experience and/or a reduction in serving infrastructure capacity requirements 

compared to existing techniques by use of media data partitioned into layers as 

described above.

[0405] In a first embodiment, the known techniques of a block request streaming 

system may be applied with the modification that different versions of the content are in 

some cases replaced by different combinations of the layers. That is to say that where 

an existing system might provide two distinct representations of the content the 

enhanced system described here might provide two layers, where one representation of 

the content in the existing system is similar in bit-rate, quality and possibly other 

metrics to the first layer in the enhanced system and the second representation of the 

content in the existing system is similar in bit-rate, quality and possibly other metrics to



WO 2011/038032 PCT/US2010/049869
77

the combination of the two layers in the enhanced system. As a result the storage 

capacity required within the enhanced system is reduced compared to that required in 

the existing system. Furthermore, whereas the clients of existing system may issue 

requests for blocks of one representation or the other representation, clients of the 

enhanced system may issue requests for either the first or both layers of a block. As a 

result, the user experience in the two systems is similar. Furthermore, improved 

caching is provided as even for different qualities common segments are used which are 

then cached with higher likelihood.

[0406] In a second embodiment, a client in an enhanced block-request streaming 

system employing the method of layers now described may maintain a separate data 

buffer for each of several layers of the media encoding. As will be clear to those of skill 

in the art of data management within client devices, these “separate” buffers may be 

implemented by allocation of physically or logically separate memory regions for the 

separate buffers or by other techniques in which the buffered data is stored in a single or 

multiple memory regions and the separation of data from different layers is achieved 

logically through the use of data structures which contain references to the storage 

locations of data from the separate layers and so in the follow the term “separate 

buffers” should be understood to include any method in which the data of the distinct 

layers can be separately identified. The client issues requests for individual layers of 

each block based on the occupancy of each buffer, for example, the layers may be 

ordered in a priority order such that a request for data from one layer may not be issued 

if the occupancy of any buffer for a lower layer in the priority order is below a threshold 

for that lower layer. In this method, priority is given to receiving data from the lower 

layers in the priority order such that if the available bandwidth falls below that required 

to also receive higher layers in the priority order then only the lower layers are 

requested. Furthermore, the thresholds associated with the different layers may be 

different, such that for example lower layers have higher thresholds. In the case that the 

available bandwidth changes such that the data for a higher layer cannot be received 

before the playout time of the block then the data for lower layers will necessarily 

already have been received and so the presentation can continue with the lower layers 

alone. Thresholds for buffer occupancy may be defined in terms of bytes of data, 

playout duration of the data contained in the buffer, number of blocks or any other 

suitable measure.



WO 2011/038032 PCT/US2010/049869
78

[0407] In a third embodiment, the methods of the first and second embodiments may 

be combined such that there are provided multiple media representations each 

comprising a subset of the layers (as in the first embodiment) and such that the second 

embodiment is applied to a subset of the layers within a representation.

[0408] In a fourth embodiment the methods of the first, second and/or third 

embodiments may be combined with the embodiment in which multiple independent 

representations of the content are provided such that for example at least one of the 

independent representations comprises multiple layers to which the techniques of the 

first, second and/or third embodiments are applied.

Advanced Buffer Manager

[0409] In combination with buffer monitor 126 (see Fig. 2), an advanced buffer 

manager can be used to optimize a client-side buffer. Block-request streaming systems 

want to ensure that media playout can start quickly and continue smoothly, while 

simultaneously providing the maximum media quality to the user or destination device. 

This may require that the client requests blocks that have the highest media quality, but 

that also can be started quickly and received in time thereafter to be played out without 

forcing a pause in the presentation.

[0410] In embodiments that use the advanced buffer manager, the manager 

determines which blocks of media data to request and when to make those requests. An 

advanced buffer manager might, for example, be provided with a set of metadata for the 

content to be presented, this metadata including a list of representations available for the 

content and metadata for each representation. Metadata for a representation may 

comprise information about the data rate of the representation and other parameters, 

such as video, audio or other codecs and codec parameters, video resolution, decoding 

complexity, audio language and any other parameters that might affect the choice of 

representation at the client.

[0411] Metadata for a representation may also comprise identifiers for the blocks into 

which the representation has been segmented, these identifiers providing the 

information needed for the client to request a block. For example, where the request 

protocol is HTTP, the identifier might be an HTTP URL possibly together with 

additional information identifying a byte range or time span within the file identified by



WO 2011/038032 PCT/US2010/049869
79

the URL, this byte range or time span identifying the specific block within the file 

identified by the URL.

[0412] In a specific implementation, the advanced buffer manager determines when a 

receiver makes a request for new blocks and might itself handle sending the requests. In 

a novel aspect, the advanced buffer manager makes requests for new blocks according 

to the value of a balancing ratio that balances between using too much bandwidth and 

running out of media during a streaming playout.

[0413] The information received by buffer monitor 126 from block buffer 125 can 

include indications of each event when media data is received, how much has been 

received, when playout of media data has started or stopped, and the speed of media 

playout. Based on this information, buffer monitor 126 might calculate a variable 

representing a current buffer size, Bcurrent, ■ In these examples, Bcurrent represents the 

amount of media contained in a client or other device buffer or buffers and might be 

measured in units of time so that Bcurrent represents the amount of time that it would take 

to playout all of the media represented by the blocks or partial blocks stored in the 

buffer or buffers if no additional blocks or partial blocks were received. Thus, Bcurrent 

represents the “playout duration”, at normal playout speed, of the media data available 

at the client, but not yet played.

[0414] As time passes, the value of Bcurrent will decrease as media is played out and 

may increase each time new data for a block is received. Note that, for the purposes of 

this explanation, it is assumed that a block is received when the entire data of that block 

is available at block requestor 124, but other measures might be used instead for 

example to take into account the reception of partial blocks. In practice, reception of a 

block may take place over a period of time.

[0415] Fig. 13 illustrates a variation of the value of Bcurrent over time, as media is 

played out and blocks are received. As shown in Fig. 13, the value of Bcurrent is zero for 

times less than to, indicating that no data has been received. At to, the first block is 

received and the value of Bcurrent increases to equal the playout duration of the received 

block. At this time, playout has not yet begun and so the value of Bcurrent remains 

constant, until time t\, at which a second block arrives and Bcurrent increases by the size 

of this second block. At this time, playout begins and the value of Bcurrent begins to 

decrease linearly, until time /2, at which time a third block arrives.



WO 2011/038032 PCT/US2010/049869
80

[0416] The progression of BCurrent continues in this “sawtooth” manner, increasing 

stepwise each time a block is received (at times ri,I, ri, ri and ri) and decreasing 

smoothly as data is played out in between. Note that in this example, playout proceeds 

at the normal playout rate for the content and so the slope of the curve between block 

reception is exactly -1, meaning that one second of media data is played for each one 

second of real time that passes. With frame-based media played out at a given number 

of frames per second, e.g., 24-frames per second, the slope of-1 will be approximated 

by small step functions that indicate the playout of each individual frame of data, e.g., 

steps of -1/24 of a second when each frame is played out.

[0417] Fig. 14 shows another example of the evolution of //current over time. In that 

example, the first block arrives at t0 and playout begins immediately. Block arrival and 

playout continues until time ri, at which the value of Bcurrent reaches zero. When that 

happens, no further media data is available for playout, forcing a pause in the media 

presentation. At time ri, a fourth block is received and playout can resume. This 

example therefore shows a case where the reception of the fourth block was later than 

desired, resulting in a pause in playout and thus a poor user experience. Thus, a goal of 

the advanced buffer manager and other features is to reduce the probability of this event, 

while simultaneously maintaining high media quality.

[0418] Buffer monitor 126 may also calculate another metric, Bratio(t\ which is the 

ratio of the media received in a given time period to the length of the time period. More 

specifically, Bratio(t) is equal to TrecezW / (Tnow -t), where Treceived is the amount of media 

(measured by its playout time) received in the time period from t, some time earlier than 

the current time up to the current time, Tnow.

[0419] Bratio(tj can be used to measure the rate of change of Bcurrent- BratiO(t)=0 is the 

case where no data has been received since time t; Bcurrent will have been reduced by 

(Tnow ~ t) since that time, assuming media is playing out. Srafto(/)=1 is the case where 

media is received in the same amount as it is being played out, for time (Tnow -t); Bcurrent 

will have the same value at time Tnow as at time t. Bratio(t)>l is the case where more data 

has been received than is necessary to play out for time (Tnow -t); Bcurrent will have 

increased from time t to time Tnow.

[0420] Buffer Monitor 126 further calculates a value State, which may take a discrete 

number of values. Buffer Monitor 126 is further equipped with a function,



WO 2011/038032 PCT/US2010/049869
81

NewState(Bcurrent, Bfatto), which, given the current value of Bcurrent and values of Bratio for 

t < Tnow, provides a new State value as output. Whenever Bcurrent and Bratio cause this 

function to return a value different from the current value of State, the new value is 

assigned to State and this new State value indicated to block selector 123.

[0421] The function NewState may be evaluated with reference to the space of all 

possible values of the pair (Bcurrent, BmtiO(Tnow - TJ) where Tx may be a fixed 

(configured) value, or may be derived from Bcurrent, for example by a configuration table 

which maps from values of Bcurrent to values of Tx, or may depend on the previous value 

of State. Buffer monitor 126 is supplied with a one or more partitionings of this space, 

where each partitioning comprises sets of disjoint regions, each region being annotated 

with a State value. Evaluation of the function NewState then comprises the operation of 

identifying a partitioning and determining the region into which the pair (BCUrrent, 

Bratio(T„ow - TJ) falls. The return value is then the annotation associated with that 

region. In a simple case, only one partitioning is provided. In a more complex case, the 

partitioning may depend on the pair (Bcurrent, Bratio(Tnow - TJ) at the previous time of 

evaluation of the NewState function or on other factors.

[0422] In a specific embodiment, the partitioning described above may be based on a 

configuration table containing a number of threshold values for Bcurrent and a number of 

threshold values for BratiO. Specifically, let the threshold values for Bcurrent be 

BthresdJ) θ, Bthresff), · ··, Bthresh(fh), Bthresh(fiN~T) where /?i is the number of

non-zero threshold values for Bcurrent- Let the threshold values for 7?rafto be

Br-thresh(J) θ, B r_thresJJ), ■ ■·, Br-thresh(ffJ, Br-threshjbff J where Z?2 IS the number of

threshold values for BratiO. These threshold values define a partitioning comprising an 

(/71+1) by (/72+1) grid of cells, where the z'-th cell of they'-th row corresponds to the 

region in which BthreshJ-T) + Bcurrent + B thresh!]) and Br-thresh!j”1) + Bratio + Br-thresh!j) ■ 

Each cell of the grid described above is annotated with a state value, such as by being 

associated with particular values stored in memory, and the function NewState then 

returns the state value associated with the cell indicated by the values Bcurrent and 
Bratio(Tnow - TJ.

[0423] In a further embodiment, a hysteresis value may be associated to each 

threshold value. In this enhanced method, evaluation of the function NewState may be 

based on a temporary partitioning constructed using a set of temporarily modified



WO 2011/038032 PCT/US2010/049869
82

threshold values, as follows. For each BCurrent threshold value that is less than the BCurrent 

range corresponding to the chosen cell on the last evaluation of NewState, the threshold 

value is reduced by subtracting the hysteresis value associated with that threshold. For 

each Bcurrent threshold value that is greater than the Bcurrent range corresponding to the 

chosen cell on the last evaluation of NewState, the threshold value is increased by 

adding the hysteresis value associated with that threshold. For each BratiO threshold 

value that is less than the BratiO range corresponding to the chosen cell on the last 

evaluation of NewState, the threshold value is reduced by subtracting the hysteresis 

value associated with that threshold. For each BratiO threshold value that is greater than 

the Bmtio range corresponding to the chose cell on the last evaluation of NewState, the 

threshold value is increased by adding the hysteresis value associated with that 

threshold. The modified threshold values are used to evaluate the value of NewState 

and then the threshold values are returned to their original values.

[0424] Other ways of defining partitionings of the space will be obvious to those of 

skill in the art upon reading this disclosure. For example, a partitioning may be defined 

by the use of inequalities based on linear combinations of Bratio and Bcurrent, for example 

linear inequality thresholds of the form at· Bratio + a.2· Bcurrent < a0 for real-valued αθ, 

al, and a2, to define half-spaces within the overall space and defining each disjoint set 

as the intersection of a number of such half-spaces.

[0425] The above description is illustrative of the basic process. As will be clear to 

those skilled in the art of real-time programming upon reading this disclosure, efficient 

implementations are possible. For example, at each time that new information is 

provided to buffer monitor 126, it is possible to calculate the future time at which 

NewState will transition to a new value if for example no further data for blocks is 

received. A timer is then set for this time and in the absence of further inputs expiry of 

this timer will cause the new State value to be sent to block selector 123. Asa result, 

computations need only be performed when new information is provided to buffer 

monitor 126 or when a timer expires, rather than continuously.

[0426] Suitable values of State could be “Low”, “Stable” and “Full”. An example of 

a suitable set of threshold values and the resulting cell grid is shown in Fig. 15.

[0427] In Fig. 15, Bcurrent thresholds are shown on the horizontal axis in milliseconds, 

with hysteresis values shown below as “+l-value”. Bratio thresholds are shown on the



WO 2011/038032 PCT/US2010/049869
83

vertical axis in permille (i.e., multiplied by 1000) with hysteresis values shown below as 

“+/-value”. State values are annotated into the grid cells as “L”, “S” and “F” for “Low”, 

“Stable” and “Full” respectively.

[0428] Block selector 123 receives notifications from block requestor 124 whenever 

there is an opportunity to request a new block. As described above, block selector 123 

is provided with information as to the plurality of blocks available and metadata for 

those blocks, including for example information about the media data rate of each block.

[0429] Information about the media data rate of a block may comprise the actual 

media data rate of the specific block (i.e., the block size in bytes divided by the playout 

time in seconds), the average media data rate of the representation to which the block 

belongs or a measure of the available bandwidth required, on a sustained basis, to play 

out the representation to which the block belongs without pauses, or a combination of 

the above.

[0430] Block selector 123 selects blocks based on the State value last indicated by 

buffer monitor 126. When this State value is “Stable”, block selector 123 selects a 

block from the same representation as the previous selected block. The block selected is 

the first block (in playout order) containing media data for a time period in the 

presentation for which no media data has previously been requested.

[0431] When the State value is “Low”, block selector 123 selects a block from a 

representation with a lower media data rate than that of the previously selected block. A 

number of factors can influence the exact choice of representation in this case. For 

example, block selector 123 might be provided with an indication of the aggregate rate 

of incoming data and may choose a representation with a media data rate that is less 

than that value.

[0432] When the State value is “Full”, block selector 123 selects a block from a 

representation with a higher media data rate than that of the previously selected block.

A number of factors can influence the exact choice of representation in this case. For 

example, block selector 123 may be provided with an indication of the aggregate rate of 

incoming data and may choose a representation with a media data rate that is not more 

than that value.



WO 2011/038032 PCT/US2010/049869
84

[0433] A number of additional factors may further influence the operation of block 

selector f 23. In particular, the frequency with which the media data rate of the selected 

block is increased may be limited, even if buffer monitor 126 continues to indicate the 

“Full” state. Furthermore, it is possible that block selector 123 receives a “Full” state 

indication but there are no blocks of higher media data rate available (for example 

because the last selected block was already for the highest available media data rate). In 

this case, block selector 123 may delay the selection of the next block by a time chosen 

such that the overall amount of media data buffered in block buffer 125 is bounded 

above.

[0434] Additional factors may influence the set of blocks that are considered during 

the selection process. For example, the available blocks may be limited to those from 

representations whose encoding resolution falls within a specific range provided to 

block selector 123.

[0435] Block selector 123 may also receive inputs from other components that 

monitor other aspects of the system, such as availability of computational resources for 

media decoding. If such resources become scarce, block selector 123 may choose 

blocks whose decoding is indicated to be of lower computational complexity within the 

metadata (for example, representations with lower resolution or frame rate are generally 

of lower decoding complexity).

[0436] The above-described embodiment brings a substantial advantage in that the use 

of the value Bratio in the evaluation of the NewState function within buffer monitor 126 

allows for a faster increase in quality at the start of the presentation compared to a 

method that considers only BCurrent· Without considering Bratio, a large amount of 

buffered data may be accumulated before the system is able to select blocks with a 

higher media data rate and hence a higher quality. However, when the Bratio value is 

large, this indicates that the available bandwidth is much higher than the media data rate 

of the previously received blocks and that even with relatively little buffered data (i.e., 

low value for Bcurrent), it remains safe to request blocks of higher media data rate and 

hence higher quality. Equally, if the Bratio value is low (<1, for example) this indicates 

that the available bandwidth has dropped below the media data rate of the previously 

requested blocks and thus, even if Bcurrent is high, the system will switch to a lower 

media data rate and hence a lower quality, for example to avoid reaching the point



WO 2011/038032 PCT/US2010/049869
85

where BCurrent = 0 and the playout of the media stalls. This improved behavior may be 

especially important in environments where network conditions and thus delivery 

speeds may vary quickly and dynamically, e.g., users streaming to mobile devices.

[0437] Another advantage is conferred by the use of configuration data to specify the 

partitioning of the space of values of (Bcurrent, Bratik). Such configuration data can be 

provided to buffer monitor 126 as part of the presentation metadata or by other dynamic 

means. Since, in practical deployments, the behavior of user network connections can 

be highly variable between users and over time for a single user, it may be difficult to 

predict partitionings that will work well for all users. The possibility to provide such 

configuration information to users dynamically allows for good configuration settings to 

be developed over time according to accumulated experience.

Variable Request Sizing

[0438] A high frequency of requests may be required if each request is for a single 

block and if each block encodes for a short media segment. If the media blocks are 

short, the video playout is moving from block to block quickly, which provides more 

frequent opportunities for the receiver to adjust or change its selected data rate by 

changing the representation, improving the probability that playout can continue 

without stalling. However, a downside to a high frequency of requests is that they 

might not be sustainable on certain networks in which available bandwidth is 

constrained in the client to server network, for example, in wireless WAN networks 

such as 3G and 4G wireless WANs, where the capacity of the data link from client to 

network is limited or can become limited for short or long periods of time due to 

changes in radio conditions.

[0439] A high frequency of requests also implies a high load on the serving 

infrastructure, which brings associated costs in terms of capacity requirements. Thus, it 

would be desirable to have some of the benefits of a high frequency of requests without 

all of the disadvantages.

[0440] In some embodiments of a block streaming system, the flexibility of high 

request frequency is combined with less frequent requests. In this embodiment, blocks 

may be constructed as described above and aggregated into segments containing 

multiple blocks, also as described above. At the beginning of the presentation, the 

processes described above in which each request references a single block or multiple



WO 2011/038032 PCT/US2010/049869
86

concurrent requests are made to request parts of a block are applied to ensure a fast 

channel zapping time and therefore a good user experience at the start of the 

presentation. Subsequently, when a certain condition, to be described below, is met, the 

client may issue requests which encompass multiple blocks in a single request. This is 

possible because the blocks have been aggregated into larger files or segments and can 

be requested using byte or time ranges. Consecutive byte or time ranges can be 

aggregated into a single larger byte or time range resulting in a single request for 

multiple blocks, and even discontinuous blocks can be requested in one request.

[0441] One basic configuration that can be driven by deciding whether to request a 

single block (or a partial block) or to request multiple consecutive blocks is have the 

configuration base the decision on whether or not the requested blocks are likely to be 

played out or not. For example, if it is likely that there will be a need to change to 

another representation soon, then it is better for the client to make requests for single 

blocks, i.e., small amounts of media data. One reason for this is that if a request for 

multiple blocks is made when a switch to another representation might be imminent is 

that the switch might be made before the last few blocks of the request are played out. 

Thus, the download of these last few blocks might delay the delivery of media data of 

the representation to which the switch is made, which could cause media playout stalls.

[0442] However, requests for single blocks do result in a higher frequency of 

requests. On the other hand, if it is unlikely that there will be a need to change to 

another representation soon, then it can be preferred to make requests for multiple 

blocks, as all of these blocks are likely to be played out, and this results in a lower 

frequency of requests, which can substantially lower the request overhead, especially if 

it is typical that there is no imminent change in representation.

[0443] In conventional block aggregation systems, the amount requested in each 

request is not dynamically adjusted, i.e., typically each request is for an entire file, or 

each request is for approximately the same amount of the file of a representation 

(sometimes measured in time, sometimes in bytes). Thus, if all requests are smaller, 

then the request overhead is high, whereas if all requests are larger, then this increases 

the chances of media stall events, and/or providing a lower quality of media playout if 

lower quality representations are chosen to avoid having to quickly change 

representations as network conditions vary.



WO 2011/038032 PCT/US2010/049869
87

[0444] An example of a condition which, when met, may cause subsequent requests 

to reference multiple blocks, is a threshold on the buffer size, Bcurrent- If Bcurrent is below 

the threshold, then each request issued references a single block. If Bcurrent is greater 

than or equal to the threshold then each request issued references multiple blocks. If a 

request is issued which references multiple blocks, then the number of blocks requested 

in each single request may be determined in one of several possible ways. For example, 

the number may be constant, for example, two. Alternatively, the number of blocks 

requested in a single request may be dependent on the buffer state and in particular on 

Bcurrent- For example, a number of thresholds may be set, with the number of blocks 

requested in a single request being derived from the highest of the multiple thresholds 

that is less than Bcurrent.

[0445] Another example of a condition which, when met, may cause requests to 

reference multiple blocks, is the value State variable described above. For example, 

when State is “Stable” or “Full” then requests may be issued for multiple blocks, but 

when State is “Low” then all requests may be for one block.

[0446] Another embodiment is shown in Fig. 16. In this embodiment, when the next 

request is to be issued (determined in step 1300), the current State value and Bcurrent is 

used to determine the size of the next request. If the current State value is “Low” or the 

current State value is “Full” and the current representation is not the highest available 

(determined in step 1310, answer is “Yes”), then the next request is chosen to be short, 

for example just for the next block (block determined and request made in step 1320). 

The rationale behind this is that these are conditions where it is likely that quite soon 

there will be a change of representations. If the current State value is “Stable” or the 

current State value is “Full” and the current representation is the highest available 

(determined in step 1310, answer is “No”), then the duration of the consecutive blocks 

requested in the next request is chosen to be proportional to an α-fraction of Bcurrent for 

some fixed a < 1 (blocks determined in step 1330, request made in step 1340), e.g., for 

a = 0.4, if Bcurrent = 5 seconds, then the next request might be for approximately 2 

seconds of blocks, whereas if Bcurrent = 10 seconds, then the next request might be for 

approximately 4 seconds of blocks. One rationale for this is that in these conditions it 

might be unlikely that a switch to a new representation will be made for an amount of 

time that is proportional to Bcurrent-



WO 2011/038032 PCT/US2010/049869
88

Flexible pipelining

[0447] Block-streaming systems might use a file request protocol that has a particular 

underlying transport protocol, for example TCP/IP. At the beginning of a TCP/IP or 

other transport protocol connection, it may take some considerable time to achieve 

utilization of the full available bandwidth. This may result in a “connection startup 

penalty” every time a new connection is started. For example, in the case of TCP/IP, 

the connection startup penalty occurs due to both the time taken for the initial TCP 

handshake to establish the connection and the time taken for the congestion control 

protocol to achieve full utilization of the available bandwidth.

[0448] In this case, it may be desirable to issue multiple requests using a single 

connection, in order to reduce the frequency with which the connection startup penalty 

is incurred. However, some file transport protocols, for example HTTP, do not provide 

a mechanism to cancel a request, other than closing the transport layer connection 

altogether and thereby incurring a connection startup penalty when a new connection is 

established in place of the old one. An issued request may need to be cancelled if it is 

determined that available bandwidth has changed and a different media data rate is 

required instead, i.e., there is a decision to switch to a different representation. Another 

reason for cancelling an issued request may be if the user has requested that the media 

presentation be ended and a new presentation begun (perhaps of the same content item 

at a different point in the presentation or perhaps of a new content item).

[0449] As is known, the connection startup penalty can be avoided by keeping the 

connection open and re using the same connection for subsequent requests and as is also 

known the connection can be kept fully utilized if multiple requests are issued at the 

same time on the same connection (a technique known as “pipelining” in the context of 

HTTP). However, a disadvantage of issuing multiple requests at the same time, or more 

generally in such a way that multiple requests are issued before previous requests have 

completed over a connection, may be that the connection is then committed to carrying 

the response to those requests and so if changes to which requests should be issued 

becomes desirable then the connection may be closed if it becomes necessary to cancel 

requests already issued that are no longer desired.

[0450] The probability that an issued request needs to be cancelled may be in part 

dependent on the duration of the time interval between the issuing of the request and the



WO 2011/038032 PCT/US2010/049869
89

playout time of the requested block in the sense that when this time interval is high the 

probability that an issued request needs to be cancelled is also high (because it is likely 

that the available bandwidth changes during the interval).

[0451] As is known, some file download protocols have the property that a single 

underlying transport layer connection can advantageously be used for multiple 

download requests. For example, HTTP has this property, since reuse of a single 

connection for multiple requests avoids the “connection startup penalty” described 

above for requests other than the first. However, a disadvantage of this approach is that 

the connection is committed to transporting the requested data in each issued request 

and therefore if a request or requests need to be cancelled then either the connection 

may be closed, incurring the connection startup penalty when a replacement connection 

is established, or the client may wait to receive data that is no longer needed, incurring a 

delay in the reception of subsequent data.

[0452] We now describe an embodiment which retains the advantages of connection 

reuse without incurring this disadvantage and which also additionally improves the 

frequency with which connections can be reused.

[0453] The embodiments of the block-streaming systems described herein are 

configured to reuse a connection for multiple requests without having to commit the 

connection at the start to a particular set of requests. Essentially, a new request is issued 

on an existing connection when already issued requests on the connection have not yet 

completed, but are close to completion. One reason for not waiting until the existing 

requests complete is that if the previous requests complete, then the connection speed 

could degrade, i.e., the underlying TCP session could go into an idle state, or the TCP 

cwnd variable could be substantially reduced, thereby substantially reducing the initial 

download speed of the new request issued on that connection. One reason for waiting 

until close to completion before issuing an additional request is because if a new request 

is issued long before previous requests complete, then the new issued request may not 

even commence for some substantial period of time, and it could be the case that during 

this period of time before the new issued request commences the decision to make the 

new request is no longer valid, e.g., due to a decision to switch representations. Thus, 

embodiment of clients that implement this technique will issue a new request on a



WO 2011/038032 PCT/US2010/049869
90

connection as late as possible without slowing down the download capabilities of the 

connection.

[0454] The method comprises monitoring the number of bytes received on a 

connection in response to the latest request issued on this connection and applying a test 

to this number. This can be done by having the receiver (or the transmitter, if 

applicable) configured to monitor and test.

[0455] If the test passes, then a further request may be issued on the connection. One 

example of a suitable test is whether the number of bytes received is greater than a fixed 

fraction of the size of the data requested. For example, this fraction could be 80%. 

Another example of a suitable test is based on the following calculation, as illustrated in 

Fig. 17. In the calculation, let R be an estimate of the data rate of the connection, The 

an estimate of the Round Trip Time (“RTT”) and Abe numeric factor that, for example, 

could be a constant set to a value between 0.5 and 2, where estimates of R and T are 

updated on a regular basis (updated in step 1410). Let S be the size of the data 

requested in the last request, B be the number of bytes of the requested data received 

(calculated in step 1420).

[0456] A suitable test would be to have the receiver (or the transmitter, if applicable) 

execute a routine to evaluate the inequality (S-B) < X»R»T (tested in step 1430), and if 

“Yes” then take an action. For example, a test could be made to see if there is another 

request ready to be issued on the connection (tested in step 1440), and if “Yes” then 

issue that request to the connection (step 1450) and if “No” then the process returns to 

step 1410 to continue updating and testing. If the result of the test in step 1430 is “No” 

then the process returns to step 1410 to continue updating and testing.

[0457] The inequality test in step 1430 (performed by appropriately programmed 

elements, for example) causes each subsequent request to be issued when the amount of 

remaining data to be received is equal to X times the amount of data that can be received 

at the current estimated reception rate within one RTT. A number of methods to 

estimate the data rate, R, in step 1410 are known in the art. For example, the data rate 

may be estimated as Dt / t, where Dt is the number of bits received in the preceding t 

seconds and where t may be, for example, Is or 0.5s or some other interval. Another 

method is an exponential weighted average, or first order Infinite Impulse Response



WO 2011/038032 PCT/US2010/049869
91

(HR) filter of the incoming data rate. A number of methods to estimate the RTT, T, in 

step 1410 are known in the art.

[0458] The test in step 1430 can be applied to the aggregate of all active connections 

on an interface, as explained in more detail below.

[0459] The method further comprises constructing a list of candidate requests, 

associating each candidate request with a set of suitable servers to which the request can 

be made and ordering the list of candidate requests in order of priority. Some entries in 

the list of candidate requests may have the same priority. Servers in the list of suitable 

servers associated with each candidate request are identified by hostnames. Each 

hostname corresponds to a set of Internet Protocol addresses which can be obtained 

from the Domain Name System as is well known. Therefore each possible request on 

the list of candidate requests is associated with a set of Internet Protocol addresses, 

specifically the union of the sets of Internet Protocol Addresses associated with the 

hostnames associated with the servers associated with the candidate request. Whenever 

the test described in step 1430 is met for a connection, and no new request has yet been 

issued on that connection, the highest priority request on the lists of candidate requests 

with which the Internet Protocol address of the destination of the connection is 

associated is chosen, and this request is issued on the connection. The request is also 

removed from the list of candidate requests.

[0460] Candidate requests may be removed (cancelled) from the list of candidate 

requests, new requests may be added to the candidate list with a priority that is higher 

than already existing requests on the candidate list, and existing requests on the 

candidate list may have their priority changed. The dynamic nature of which requests 

are on the list of candidate requests, and the dynamic nature of their priority on the 

candidate list, can alter which requests might be issued next depending on when a test of 

the type described in step 1430 is satisfied.

[0461] For example, it could be possible that if the answer to the test described in step 

1430 is “Yes” at some time t then the next request issued would be a request A, whereas 

if the answer to the test described in step 1430 is not “Yes” until some time t' > t then 

the next request issued would instead be a request B, because either request A was 

removed from the list of candidate requests between time t and t', or because request B 

was added to the list of candidate requests with higher priority than request A between



WO 2011/038032 PCT/US2010/049869
92

time t and t', or because request B was on the candidate list at time t but with lower 

priority than request A, and between time t and t' the priority of request B was made 

higher than that of request A.

[0462] Fig. 18 illustrates an example of a list of requests on the candidate list of 

requests. In this example, there are three connections, and there are six requests on the 

candidate list, labeled A, B, C, D, E and F. Each of the requests on the candidate list 

can be issued on a subset of the connections as indicated, e.g., request A can be issued 

on connection 1, whereas request F can be issued on connection 2 or connection 3. The 

priority of each request is also labeled in Fig. 18, and a lower priority value indicates 

that a request is higher priority. Thus, requests A and B with priority 0 are the highest 

priority requests, whereas request F with a priority value of 3 is the lowest priority 

among the requests on the candidate list.

[0463] If, at this point in time t, connection 1 passes the test described in step 1430, 

then either request A or request B is issued on connection 1. If instead connection 3 

passes the test described in step 1430 at this time t, then request D is issued on 

connection 3, since request D is the request with the highest priority that can be issued 

on connection 3.

[0464] Suppose that for all connections the answer to the test described in step 1430 

from time t to some later time t' is “No”, and between time t and t' request A changes its 

priority from 0 to 5, request B is removed from the candidate list, and a new request G 

with priority 0 is added to the candidate list. Then, at time t', the new candidate list 

might be as shown in Fig. 19.

[0465] If at time t' connection 1 passes the test described in step 1430, then request C 

with priority 4 is issued on connection 1, since it is the highest priority request on the 

candidate list that can be issued on connection 1 at this point in time.

[0466] Suppose in this same situation that instead request A would have been issued 

on connection 1 at time t (which was one of the two highest priority choices for 

connection 1 at time t as shown in Fig. 18). Since the answer to the test described in 

step 1430 from time t to some later time t' is “No” for all connections, connection 1 is 

still delivering data up till at least time t' for requests issued prior to time t, and thus 

request A would not have commenced until at least time t'. Issuing request C at time t' 

is a better decision than issuing request A at time t would have been, since request C



WO 2011/038032 PCT/US2010/049869
93

commences at the same time after t' as request A would have commenced, and since by 

that time request C is higher priority than request A.

[0467] As another alternative, if the test of the type described in step 1430 is applied 

to the aggregate of the active connections a connection may be chosen that has a 

destination whose Internet Protocol Address is associated with the first request on the 

list of candidate requests or another request with the same priority as said first request.

[0468] A number of methods are possible for the construction of the list of candidate 

requests. For example, the candidate list could contain n requests representing requests 

for a next n portions of data of the current representation of the presentation in time 

sequence order, where the request for the earliest portion of data has highest priority and 

the request for the latest portion of data has lowest priority. In some cases n may be 

one. The value of n may depend on the buffer size Bcurrent, or the State variable or 

another measure of the state of the client buffer occupancy. For example, a number of 

threshold values may be set for Bcurrent and a value associated with each threshold and 

then the value of n is taken to be the value associated with the highest threshold that is 

leSS than Bcurrent·

[0469] The embodiment described above ensures flexible allocation of requests to 

connections, ensuring that preference is given to reusing an existing connection even if 

the highest priority request is not suitable for that connection (because the destination IP 

address of the connection is not one that is allocated to any of the hostnames associated 

with the request). The dependency of n on Bcurrent or State or another measure of the 

client buffer occupancy ensures that such “out of priority order” requests are not issued 

when the client is in urgent need of issuance and completion of the request associated 

with the next portion of data to be played out in the time sequence.

[0470] These methods can be advantageously combined with cooperative HTTP and 

FEC.

Consistent Server Selection

[0471] As is well known, files to be downloaded using a file download protocol are 

commonly identified by an identifier comprising a hostname and a filename. For 

example this is the case for the HTTP protocol in which case the identifier is a Uniform 

Resource Identifier (URI). A hostname may correspond to multiple hosts, identified by 

Internet Protocol addresses. For example this is a common method of spreading the



WO 2011/038032 PCT/US2010/049869
94

load of requests from multiple clients across multiple physical machines. In particular 

this approach is commonly taken by Content Delivery Networks (CDNs). In this case a 

request issued on a connection to any of the physical hosts is expected to succeed. A 

number of methods are known by which a client may select from amongst the Internet 

Protocol Addresses associated with a hostname. For example, these addresses are 

typically provided to the client via the Domain Name System and are provided in 

priority order. A client may then choose the highest priority (first) Internet Protocol 

Address. However, generally there is no coordination between clients as to how this 

choice is made, with the result that different clients may request the same file from 

different servers. This may result in the same file being stored in the cache of nearby 

multiple servers, which lowers the efficiency of the cache infrastructure.

[0472] This can be handled by a system that advantageously increases the probability 

that two clients requesting the same block will request this block from the same server. 

The novel method described here comprises selecting from amongst the available 

Internet Protocol Addresses in a manner determined by the identifier of the file to be 

requested and in such a way that different clients presented with the same or similar 

choices of Internet Protocol addresses and file identifiers will make the same choice.

[0473] A first embodiment of the method is described with reference to Fig. 20. The 

client first obtains a set of Internet Protocol addresses ΙΡι, IP2, ..., IPn, as shown in step 

1710. If there is a file that requests are to be issued for, as decided in step 1720, then 

the client determines which Internet Protocol address to issue requests for the file, as 

determined in steps 1730-1770. Given a set of Internet Protocol addresses and an 

identifier for a file to be requested the method comprises ordering the Internet Protocol 

addresses in a manner determined by the file identifier. For example, for each Internet 

Protocol address a byte string is constructed comprising the concatenation of the 

Internet Protocol address and the file identifier, as shown in step 1730. A hash function 

is applied to this byte string, as shown in step 1740, and the resulting hash values are 

arranged according to a fixed ordering, as shown in step 1750, for example increasing 

numerical order, inducing an ordering on the Internet Protocol addresses. The same 

hash function can be used by all clients, thereby guaranteeing that the same result is 

produced by the hash function on a given input by all clients. The hash function might 

be statically configured into all clients in a set of clients, or all clients in a set of client 

might obtain a partial or full description of the hash function when the clients obtain the



WO 2011/038032 PCT/US2010/049869
95

list of Internet Protocol addresses, or all clients in a set of client might obtain a partial or 

full description of the hash function when the clients obtain the file identifier, or the 

hash function may be determined by other means. The Internet Protocol address that is 

first in this ordering is chosen and this address is then used to establish a connection and 

issue requests for all or portions of the file, as shown in steps 1760 and 1770.

[0474] The method above may be applied when a new connection is established to 

request a file. It may also be applied when a number of established connections are 

available and one of these may be chosen to issue a new request.

[0475] Furthermore, when an established connection is available and a request may be 

chosen from amongst a set of candidate requests with equal priority an ordering on the 

candidate requests is induced, for example, by the same method of hash values 

described above and the candidate request appearing first in this ordering is chosen.

The methods may be combined to select both a connection and candidate request from 

amongst a set of connections and requests of equal priority, again by computing a hash 

for each combination of connection and request, ordering these hash values according to 

a fixed ordering and choosing the combination which occurs first in the ordering 

induced on the set of combinations of requests and connections.

[0476] This method has advantage for the following reason: a typical approach taken 

by a block serving infrastructure such as that shown in Fig. 1 (BSI 101) or Fig. 2 (BSIs 

101), and in particular an approach commonly taken by CDNs, is to provide multiple 

caching proxy servers which receive client requests. A caching proxy server may not be 

provided with the file requested in a given request and in this case such servers typically 

forward the request to another server, receive the response from that server, typically 

including the requested file, and forward the response to the client. The caching proxy 

server may also store (cache) the requested file so that it can response immediately to 

subsequent requests for the file. The common approach described above has the 

property that the set of files stored on a given caching proxy server is largely determined 

by the set of requests that the caching proxy server has received.

[0477] The method described above has the following advantage. If all clients in a set 

of clients are provided the same list of Internet Protocol addresses then these clients will 

use the same Internet Protocol address for all requests issued for the same file. If there 

are two different lists of Internet Protocol addresses and each client is provided with one



WO 2011/038032 PCT/US2010/049869
96

of these two lists then the clients will use at most two different Internet Protocol 

addresses for all requests issued for the same file. In general, if the lists of Internet 

Protocol addresses provided to clients are similar then the clients will use a small set of 

the provided Internet Protocol addresses for all requests issued for the same file. Since 

proximate clients tend to be provided similar lists of Internet Protocol addresses, it is 

likely that proximate clients issue requests for a file from only a small portion of the 

caching proxy servers available to those clients. Thus, there will be only a small 

fraction of caching proxy servers that cache the file, which advantageously minimizes 

the amount of caching resources used to cache the file.

[0478] Preferably the hash function has the property that a very small fraction of 

different inputs are mapped to the same output, and that different inputs are mapped to 

essentially random outputs, to ensure that for a given set of Internet Protocol addresses, 

the proportion of files for which a given one of the Internet Protocol addresses is first in 

the sorted list produced by step 1750 is approximately the same for all Internet Protocol 

addresses in the list. On the other hand, it is important that the hash function is 

deterministic, in the sense that for a given input the output of the hash function is the 

same for all clients.

[0479] Another advantage of the method described above is the following. Suppose 

that all clients in a set of clients are provided the same list of Internet Protocol 

addresses. Because of the properties of the hash function just described, it is likely that 

the requests for different files from these clients will be evenly spread across the set of 

Internet Protocol addresses, which in turn means that the requests will be spread evenly 

across the caching proxy servers. Thus, the caching resources used for storing these 

files is spread evenly across the caching proxy servers, and the requests for files is 

spread evenly across the caching proxy servers. Thus, the method provides both storage 

balancing and load balancing across the caching infrastructure.

[0480] A number of variations to the approach described above are known to those of 

skill in the art and in many cases these variations retain the property that the set of files 

stored on a given proxy is determined at least in part by the set of requests the caching 

proxy server has received. In the common case in which a given hostname resolves to 

multiple physical caching proxy servers, it will be common that all these servers will 

eventually store a copy of any given file that is frequently requested. Such duplication



WO 2011/038032 PCT/US2010/049869
97

may be undesirable, since storage resources on the caching proxy servers are limited 

and as a result files may be, on occasion, removed (purged) from the cache. The novel 

method described here ensures that requests for a given file are directed to caching 

proxy servers in such a way that this duplication is reduced, thereby reducing the need 

to remove files from the cache and thereby increasing the likelihood that any given file 

is present in (i.e., has not been purged from) in the proxy cache.

[0481] When a file is present in the proxy cache, the response sent to the client is 

faster, which has advantage in reducing the probability that the requested file arrives 

late, which may result in a pause in media playout and therefore a bad user experience. 

Additionally, when a file is not present in the proxy cache the request may be sent to 

another server, causing additional load on both the serving infrastructure and the 

network connections between servers. In many cases the server to which the request is 

sent may be at a distant location and the transmission of the file from this server back to 

the caching proxy server may incur transmission costs. Therefore the novel method 

described here results in a reduction in these transmission costs.

Probabilistic Whole File Requests

[0482] A particular concern in the case that the HTTP protocol is used with Range 

requests is the behavior of cache servers that are commonly used to provide scalability 

in the serving infrastructure. While it may be common for HTTP cache servers to 

support the HTTP Range header, the exact behavior of different HTTP cache servers 

varies by implementation. Most cache server implementations serve Range requests 

from cache in the case that the file is available in the cache. A common implementation 

of HTTP Cache servers always forwards downstream HTTP requests containing Range 

header to an upstream node unless the cache server has a copy of the file (cache server 

or origin server). In some implementations the upstream response to the Range request 

is the entire file, and this entire file is cached and the response to the downstream Range 

request is extracted from this file and sent. However, in at least one implementation the 

upstream response to the Range request is just the data bytes in the Range request itself, 

and these data bytes are not cached but instead just sent as the response to the 

downstream Range request. As a result, use of Range headers by clients may have the 

consequence that the file itself is never brought into caches and the desirable scalability 

properties of the network will be lost.



WO 2011/038032 PCT/US2010/049869
98

[0483] In the foregoing, the operation of caching proxy servers was described and 

also the method of requesting Blocks from a file which is an aggregations of multiple 

blocks was described. For example this can be achieved by the use of the HTTP Range 

request header. Such requests are called “partial requests” in the following. A further 

embodiment is now described which has advantage in the case that the block serving 

infrastructure 101 does not provide complete support for the HTTP Range header. 

Commonly, servers within a block serving infrastructure, for example a Content 

Delivery Network, support partial requests but may not store the response to partial 

requests in local storage (cache). Such a server may fulfill a partial request by 

forwarding the request to another server, unless the entire file is stored in local storage, 

in which case the response may be sent without forwarding the request to another

server.

[0484] A block-request streaming system which makes use of the novel enhancement 

of block aggregation described above may perform poorly if the block serving 

infrastructure exhibits this behavior, since all requests, being partial requests, will be 

forwarded to another server and no requests will be served by caching proxy servers, 

defeating the object of providing the caching proxy servers in the first place. During the 

block-request streaming process as described above, a client may at some point request 

a Block which is at the beginning of a file.

[0485] According to the novel method here described, whenever a certain condition is 

met, such requests may be converted from requests for the first Block in a file to 

requests for the entire file. When a request for the whole file is received by a caching 

proxy server the proxy server typically stores the response. Therefore the use of these 

requests causes the file to be brought into the cache of the local caching proxy servers 

such that subsequent requests, whether for the full file or partial requests may be served 

directly by the caching proxy server. The condition may be such that amongst a set of 

requests associated with a given file, for example the set of requests generated by a set 

of clients viewing the content item in question, the condition will be met for at least a 

provided fraction of these requests.

[0486] An example of a suitable condition is that a randomly chosen number is above 

a provided threshold. This threshold may be set such that the conversion of a single 

Block request into a whole file request occurs on average for a provided fraction of the



WO 2011/038032 PCT/US2010/049869
99

requests, for example one time out of ten (in which case the random number may be 

chosen from the interval [0,1] and the threshold may be 0.9). Another example of a 

suitable condition is that a hash function calculated over some information associated 

with the block and some information associated with the client takes one of a provided 

set of values. This method has the advantage that for a file which is frequently 

requested, the file will be brought into the cache of a local proxy server however the 

operation of the block-request streaming system is not altered significantly from the 

standard operation in which each request is for a single Block. In many cases, where 

the conversion of the request from a single Block request to a whole file request occurs, 

the client procedures would otherwise go on to request the other Blocks within the file. 

If this is the case, then such requests may be suppressed because the Blocks in question 

will be received in any case as a result of the whole file request.

URL Construction and Segment List Generation and Seeking

[0487] The segment list generation deals with the issue of how a client may generate a 

segment list from the MPD at a specific client-local time NOW for a specific 

representation which starts at some start time starttime either relative to the start of the 

media presentation for on-demand cases or expressed in wall-clock time. A segment list 

may comprise a locator, for example a URL to an optional initial representation 

metadata, as well as a list of media segments. Each media segment may have been 

assigned a starttime, a duration and a locator. The starttime typically expresses an 

approximation of the media time of the contained media in a segment, but not 

necessarily a sample accurate time. The starttime is used by the HTTP streaming client 

to issue the download request at the appropriate time. The generation of the segment 

list, including the start time of each, may be done in different ways. The URLs may be 

provided as a play list or a URL construction rule may advantageously be used for a 

compact representation of the segment list.

[0488] A segment list based on URL construction may, for example, be carried out if 

the MPD signals that by a specific attribute or element such as FileDynamicInfo or an 

equivalent signal. A generic way to create a segment list from a URL construction is 

provided below in the “URL Construction Overview” section. A playlist-based 

construction may, for example, be signaled by a different signal. Seeking in segment 

list and getting to an accurate media time is also advantageously implemented in this 

context.



WO 2011/038032 PCT/US2010/049869
100

URL Constructor Overview

[0489] As previously described, in one embodiment of the present invention there 

may be provided a metadata file containing URL construction rules which allow client 

devices to construct the file identifiers for Blocks of the presentation. We now describe 

a further novel enhancement to the block request streaming system which provides for 

changes in the metadata file, including changes to the URL construction rules, changes 

to the number of available encodings, changes to metadata associated with the available 

encodings such as bitrate, aspect ratio, resolution, audio or video codec or codec 

parameters or other parameters.

[0490] In this novel enhancement, there may be provided additional data associated 

with each element of the metadata file indicating a time interval within the overall 

presentation. Within this time interval the element may be considered valid and 

otherwise the time interval the element may be ignored. Furthermore, the syntax of the 

metadata may be enhanced such that elements previously allowed to appear only once 

or at most once may appear multiple times. An additional restriction may be applied in 

this case that provides that for such elements the specified time intervals must be 

disjoint. At any given time instant, considering only the elements whose time interval 

contains the given time instant results in a metadata file that is consistent with the 

original metadata syntax. We call such time intervals validity intervals. This method 

therefore provides for signaling within a single metadata file changes of the kind 

described above. Advantageously, such a method can be used to provide a media 

presentation that supports changes of the kind described at specified points within the 

presentation.

URL Constructor

[0491] As described herein, a common feature of block-request streaming systems is 

the need to provide the client with “metadata” that identifies the available media 

encodings and provides information needed by the client to request the blocks from 

those encodings. For example in the case of HTTP this information might comprise 

URLs for the files containing the media blocks. A playlist file may be provided which 

lists the URLs for the blocks for a given encoding. Multiple playlist files are provided, 

one for each encoding, together with a master playlist-of-playlists that lists the playlists 

corresponding to the different encodings. A disadvantage of this system is that the 

metadata can become quite large and therefore takes some time to be requested when



WO 2011/038032 PCT/US2010/049869
101

the client begins the stream. A further disadvantage of this system is evident in the case 

of live content, when the files corresponding to the media data blocks are generated 

“on-the-fly” from a media stream which is being captured in real time (live), for 

example a live sports event or news program. In this case the playlist files may be 

updated each time a new block is available (for example every few seconds). Client 

devices may repeatedly fetch the playlist file to determine if new blocks are available 

and obtain their URLs. This may place a significant load on the serving infrastructure 

and in particular means that metadata files cannot be cached for longer than the update 

interval, which is equal to the block size which is commonly of the order of a few 

seconds.

[0492] One important aspect of a block-request streaming system is the method used 

to inform clients of the file identifiers, for example URLs, that should be used, together 

with the file download protocol, to request Blocks. For example, a method in which for 

each representation of a presentation there is provided a playlist file which lists the 

URLs of the files containing the Blocks of media data. A disadvantage of this method 

is that at least some of the playlist file itself needs to be downloaded before playout can 

begin, increasing the channel zapping time and therefore causing a poor user 

experience. For a long media presentation with several or many representations, the list 

of file URLs may be large and hence the playlist file may be large further increasing the 

channel zapping time.

[0493] Another disadvantage of this method occurs in the case of live content. In this 

case, the complete list of URLs is not made available in advance and the playlist file is 

periodically updated as new blocks become available and clients periodically request the 

playlist file, in order to receive the updated version. Because this file is frequently 

updated it cannot be stored for long within the caching proxy servers. This means that 

very many of the requests for this file will be forwarded to other servers and eventually 

to the server which generates the file. In the case of a popular media presentation this 

may result in a high load on this server and the network, which may in turn result in a 

slow response time and therefore a high channel zapping time and poor user experience. 

In the worst case the server becomes overloaded and this results in some users being 

unable to view the presentation.



WO 2011/038032 PCT/US2010/049869
102

[0494] It is desirable in the design of a block-request streaming system to avoid 

placing restrictions on the form of the file identifiers that may be used. This is because 

a number of considerations may motivate the use of identifiers of a particular form. For 

example, in the case that the Block Serving Infrastructure is a Content Delivery 

Network there may be file naming or storage conventions related to a desire to distribute 

storage or serving load across the network or other requirements which lead to particular 

forms of file identifier which cannot be predicted at system design time.

[0495] A further embodiment is now described which mitigates the above mentioned 

disadvantages while retaining flexibility to choose appropriate file identification 

conventions. In this method metadata may be provided for each representation of the 

media presentation comprising a file identifier construction rule. The file identifier 

construction rule may for example comprise a text string. In order to determine the file 

identifier for a given block of the presentation, a method of interpretation of the file 

identifier construction rule may be provided, this method comprising determination of 

input parameters and evaluation of the file identification construction rule together with 

the input parameters. The input parameters may for example include an index of the file 

to be identified, where the first file has index zero, the second has index one, the third 

has index two and so on. For example, in the case that every file spans the same time 

duration (or approximately the same time duration), then the index of the file associated 

with any given time within the presentation can easily be determined. Alternatively, the 

time within the presentation spanned by each file may be provided within the 

presentation or version metadata.

[0496] In one embodiment, the file identifier construction rule may comprise a text 

string that may contain certain special identifiers corresponding to the input parameters. 

The method of evaluation of the file identifier construction rule comprises determining 

the positions of the special identifiers within the text string and replacing each such 

special identifier with a string representation of the value of the corresponding input 

parameter.

[0497] In another embodiment, the file identifier construction rule may comprise a 

text string conforming to an expression language. An expression language comprises a 

definition of a syntax to which expressions in the language may conform and a set of 

rules for evaluating a string conforming to the syntax.



WO 2011/038032 PCT/US2010/049869
103

[0498] A specific example will now be described, with reference to Fig. 21 et seq. An 

example of a syntax definition for a suitable expression language, defined in Augmented 

Backus-Naur Form, is as shown in Fig. 21. An example of rules for evaluating a string 

conforming to the <expression> production in Fig. 21 comprises recursively 

transforming the string conformant to the <expression> production (an <expression>) 

into a string conformant to the <literal> production as follows:

[0499] An <expression> conformant to the <literal> production is unchanged.

[0500] An <expression> conformant to the <variable> production is replaced with the 

value of the variable identified by the <token> string of the <variable> production.

[0501] An <expression> conformant to the <function> production is evaluated by 

evaluating each of its arguments according to these rules and applying a transformation 

to these arguments dependent on the <token> element of the <function> production as 

described below.

[0502] An <expression> conformant to the last alternative of the <expression> 

production is evaluated by evaluating the two <expression> elements and applying an 

operation to these arguments dependent on the <operator> element of the last alternative 

of the <expression> production as described below.

[0503] In the method described above it is assumed that the evaluation takes place in a 

context in which a plurality of variables may be defined. A variable is a (name, value) 

pair where “name” is a string conformant to the <token> production and “value” is a 

string conformant to the <literal> production. Some variables may be defined outside 

the evaluation process before evaluation begins. Other variables may be defined within 

the evaluation process itself. All variables are “global” in the sense that only one 

variable exists with each possible “name”.

[0504] An example of a function is the “printf ’ function. This function accepts one or 

more arguments. The first argument may be conformant to the <string> production 

(hereinafter a “string”). The printf function evaluates to a transformed version of its 

first argument. The transformation applied is the same as the “printf’ function of the C 

standard library, with the additional arguments included in the <function> production 

supplying the additional arguments expected by the C standard library printf function.



WO 2011/038032 PCT/US2010/049869
104

[0505] Another example of a function is the “hash” function. This function accepts 

two arguments, the first of which may be a string and the second of which may be 

conformant to the <number> production (hereinafter a “number”). The “hash” function 

applies a hash algorithm to the first argument and returns a results which is a 

nonnegative integer number less than the second argument. An example of a suitable 

hash function is given in the C function shown in Fig. 22, whose arguments are the 

input string (excluding the enclosing quotation marks) and the numeric input value. 

Other examples of hash functions are well known to those of skill in the art.

[0506] Another example of a function is the “Subst” function which takes one, two or 

three string arguments. In the case that one argument is supplied the result of the 

“Subst” function is the first argument. In the case that two arguments are supplied then 

the result of the “Subst” function is computed by erasing any occurrences of the second 

argument (excluding the enclosing quotation marks) within the first argument and 

returning the first argument so modified. In the case that three arguments are supplied 

then the result of the “Subst” function is computed by replacing any occurrences of the 

second argument (excluding the enclosing quotation marks) within the first argument 

with the third argument (excluding the enclosing quotation marks) and returning the 

first argument so modified.

[0507] Some examples of operators are the addition, subtraction, division, 

multiplication and modulus operators, identified by the <operator> productions ‘+’,

7’, ‘%’ respectively. These operators require that the <expression> productions

either side of the <operator> production evaluate to numbers. The evaluation of the 

operator comprises applying the appropriate arithmetic operation (addition, subtraction, 

division, multiplication and modulus respectively) to these two numbers in the usual 

way and returning the result in a form compliant to the <number> production.

[0508] Another example of an operator is the assignment operator, identified by the 

<operator> production ‘=’. This operator requires that the left argument evaluates to a 

string the content of which is compliant to the <token> production. The content of a 

string is defined to be the character string within the enclosing quotation marks. The 

equality operator causes the variable whose name is the <token> equal to the content of 

the left argument to be assigned a value equal to the result of evaluating the right 

argument. This value is also the result of evaluating the operator expression.



WO 2011/038032 PCT/US2010/049869
105

[0509] Another example of an operator is the sequence operator, identified by the 

<operator> production . The result of evaluating this operator is the right argument. 

Note that as with all operators, both arguments are evaluated and the left argument is 

evaluated first.

[0510] In one embodiment of this invention the identifier of a file may be obtained by 

evaluating a file identifier construction rule according to the above rule with a specific 

set of input variables which identify the required file. An example of an input variable 

is the variable with name “index” and value equal to the numeric index of the file within 

the presentation. Another example of an input variable is the variable with name 

“bitrate” and value equal to the average bitrate of the required version of the 

presentation.

[0511] Fig. 23 illustrates some examples of file identifier construction rules, where 

the input variables are “id”, giving an identifier for the representation of the presentation 

desired and “seq”, giving a sequence number for the file

[0512] As will be clear to those of skill in the art upon reading this disclosure, 

numerous variations of the method above are possible. For example, not all the 

functions and operators described above may be provided or additional functions or 

operators may be provided.

URL Construction Rules and Timing

[0513] This section provides basic URI Construction Rules to assign a file or segment 

URI as well as a start time for each segment within a representation and the media 

presentation.

[0514] For this clause the availability of a media presentation description at the client 

is assumed.

[0515] Assume that the HTTP streaming client is playing out media that is

downloaded within a media presentation. The HTTP client’s actual presentation time 

may be defined as to where the presentation time is relative to the start of the 

presentation. At initialization, the presentation time t=0 can be assumed.

[0516] At any point t, the HTTP client may download any data with play-time tP (also 

relative to the start of the presentation) at most MaximumClientPreBufferTime ahead of 

the actual presentation time t and any data that is required due to a user interaction, e.g.



WO 2011/038032 PCT/US2010/049869
106

seek, fast-forward, etc. In some embodiments the MaximumClientPreBufferTime may 

not even be specified in a sense that a client can download data ahead of the current 

play-time tP without restrictions.

[0517] The HTTP client may avoid downloading unnecessary data, e.g. any segments 

from representations that are not expected to be played-out may typically not be 

downloaded.

[0518] The basic process in providing the streaming services may be the downloading 

of data by the generation of appropriate requests to download entire files/segments or 

subset of files/segments, for example by using HTTP GET requests or HTTP partial 

GET requests. This description addresses how to access the data for a specific 

play-time tP but generally the client may download data for a larger time range of 

play-time to avoid inefficient requests. The HTTP client may minimize the 

number/frequency of HTTP requests in providing the streaming service.

[0519] For accessing media data at play-time tP or at least close to the play-time tP in 

a specific representation the client determines the URL to the file that contains this 

play-time and in addition determines the byte range in the file to access this play-time.

[0520] The Media Presentation Description may assign a representation id, r, to each 

representation, for example by the use of the RepresentationlD attribute. In other 

words, the content of the MPD, when written by the ingestion system or when read by 

the client, will be interpreted such that there is an assignment. In order to download 

data for a specific play-time tP for a specific representation with id r, the client may 

construct an appropriate URI for a file.

[0521] The Media Presentation Description may assign each file or segment of each 

representation r the following attributes:

[0522] (a) a sequence number i of the file within the representation r, with i=l, 2, ...,

Nr, (b) the relative start time of the file with represention id r and file index i relative to 

the presentation time, defined as ts(r,i), (c) the file URI for the file/segment with 

representation id r and file index i, denoted as FileURI(r, i).

[0523] In one embodiment the start time of the file and the file URIs may be provided 

explicitly for a representation. In another embodiment, a list of file URIs may be 

provided explicitly where each file URI gets inherently assigned the index i according to



WO 2011/038032 PCT/US2010/049869
107

the position in the list and the start time of the segment is derived as the sum of all 

segment durations for the segments from 1 to i-1. The duration of each segment may be 

provided according to any of the rules discussed above. For example, any skilled in 

basic mathematics may use other methods to derive a methodology to easily derive start 

time from a single element or attribute and the position/index of the file URI in the 

representation.

[0524] If a dynamic URI construction rule is provided in the MPD, then the start time 

of each file and each file URI may be constructed dynamically by using a construction 

rule, the index of the requested file and potentially some additional parameters provided 

in the media presentation description. The information may for example be provided in 

MPD attributes and elements such as FileURIPattem and FilelnfoDynamic. The 

FileURIPattem provides information on how to construct the URIs based on the file 

index sequence number i and the representation ID r. The FileURIFormat is constructed 

as:

[0525] FileURIFormat=sprintf(“%s%s%s%s%s.%s”, BaseURI, BaseFileName,

[0526] RepresentationlDFormat,

S ep ar atorFormat,

[0527] FileSequencelDFormat,

FileExtension);

[0528] and the FileURI(r,i) is constructed as

[0529] FileURI(r,i)=sprintf(FileURIFormat, r, i);

[0530] The relative start time ts(r,i) for each file/segment may be derived by some 

attribute contained in the MPD describing the duration of the segments in this 

representation, for example the FilelnfoDynamic attribute. The MPD may also contain 

a sequence of FilelnfoDynamic attributes that is global for all representations in the 

media presentation or at least for all representations in a period in the same way as 

specified above. If media data for a specific play-time tP in representation r is requested, 

the corresponding index i(r, tP) may be derived as i(r, tp) such that that the play-time of 

this index is in the interval of the start time of ts(r, i(r, tP)) and ts(r, i(r, tP)+l). The 

segment access may be further restricted by cases above, for example the segment is not 

accessible.



WO 2011/038032 PCT/US2010/049869
108

[0531] To access the exact play-time tP once the index and the URI of the

corresponding segment is obtained depends on the actual segment format. In this 

example assume that the media segments has a local time line that starts at 0 without 

loss of generality. To access and present the data at play-time tP the client may 

download the data corresponding to the local time from the file/segment that can be 

accessed through the URI FileURI(r,i) with i= i(r, tp).

[0532] Generally, clients may download the entire file and can then access the 

play-time tP. However, not necessarily all information of the 3GP file needs to be 

downloaded, as the 3GP file provides structures to map the local timing to byte ranges. 

Therefore, only the specific byte ranges to access play-time tP may be sufficient to play 

the media as long as sufficient random access information is available. Also sufficient 

information on structure and mapping of the byte range and the local timing of the 

media segment may be provided in the initial part of the segment, for example using a 

segment index. By having access to the initial e.g., 1200 bytes of the segment, the 

client may have sufficient information to directly access the byte range necessary to 

play time tP.

[0533] In a further example assume that the segment index, possibly specified as the 

“tidx” box as below may be used to identify the byte offsets of the required Fragment or 

Fragments. Partial GET requests may be formed for the required Fragment or 

Fragments. There are other alternatives, for example, the client may issue a standard 

request for the file and cancel this when the first “tidx” box has been received.

Seeking

[0534] A client may attempt to seek to a specific presentation time tp in a

representation. Based on the MPD, the client has access to the media segment start time 

and media segment URL of each segment in the representation. The client may get the 

segment index segment index of the segment most likely to contain media samples for 

presentation time tp as the maximum segment index i, for which the start time tS(r,i) is 

smaller or equal to the presentation time tp i.e. segment index = max { i | tS(r,i) <= tp }. 

The segment URL is obtained as FileURI(r,i).

[0535] Note that timing information in the MPD may be approximate, due to issues 

related to placement of Random Access Points, alignment of media tracks and media 

timing drift. As a result, the segment identified by the procedure above may begin at a



WO 2011/038032 PCT/US2010/049869
109

time slightly after tp and the media data for presentation time tp may be in the previous 

media segment. In the case of seeking, either the seek time may be updated to equal the 

first sample time of the retrieved file, or the preceding file may be retrieved instead. 

However, note that during continuous playout, including cases where there is a switch 

between alternative representations/versions, the media data for the time between tp and 

the start of the retrieved segment is nonetheless available.

[0536] For accurate seeking to a presentation time tp, the HTTP streaming client 

needs to access a random access point (RAP). To determine the random access point in 

a media segment in the case of 3 GPP Adaptive HTTP Streaming, the client may, for 

example, use the information in the ‘tidx’ or ‘sidx’ box, if present, to locate the random 

access points and the corresponding presentation time in the media presentation. In 

cases where a segment is a 3 GPP movie fragment, it is also possible for the client to use 

information within the ‘moof and ‘mdat’ boxes, for example, to locate RAPs and 

obtain the necessary presentation time from the information in the movie fragment and 

the segment start time derived from the MPD. If no RAP with presentation time before 

the requested presentation time tp is available, the client may either access the previous 

segment or may just use the first random access point as the seek result. When media 

segments start with a RAP, these procedures are simple.

[0537] Also note that not necessarily all information of the media segment needs to be 

downloaded to access the presentation time tp. The client may, for example, initially 

request the ‘tidx’ or ‘sidx’ box from the beginning of the media segment using byte 

range requests. By use of the ‘tidx’ or ‘sidx’ boxes, segment timing can be mapped to 

byte ranges of the segment. By continuously using partial HTTP requests, only the 

relevant parts of the media segment need be accessed, for improved user experience and 

low start-up delays.

Segment List Generation

[0538] As described herein, it should be apparent how to implement a straightforward 

HTTP streaming client that uses the information provided by the MPD to create a list of 

segments for a representation that has a signalled approximate segment duration of dur. 

In some embodiments, the client may assign the media segments within a representation 

consecutive indices i=l, 2, 3, ..., i.e., the first media segment is assigned index i=l, the 

second media segment is assigned the index i=2, and so on. Then, the list of media



WO 2011/038032 PCT/US2010/049869
110

segments with segment indices i is assigned startTime[i] and URL[i] is generated, for 

example, as follows. First, the index i is set to 1. The start time of the first media 

segment is obtained as 0, startTime[l] = 0. The URL of the media segment i, URL[i], is 

obtained as FileURI(r, i). The process is continued for all described media segments 

with index i and the startTime[i] of media segment i is obtained as (i-1 )A/z/r and the 

URL[i], is obtained as FileURI(r, i).

Concurrent HTTP/TCP Requests

[0539] A concern in a block-request streaming system is a desire to always request the 

highest-quality blocks that can be completely received in time for playout. However, 

the data arrival rate may not be known in advance and so it may happen that a requested 

block does not arrive in time to be played out. This results in a need to pause the media 

playout, which results in a poor user experience. This problem can be mitigated by 

client algorithms that take a conservative approach to the selection of blocks to request 

by requesting blocks of lower quality (and so of lower size) that are more likely to be 

received in time, even if the data arrival rate falls during the reception of the block. 

However this conservative approach has the disadvantage of possibly delivering a lower 

quality playout to the user or destination device, which is also a poor user experience. 

The problem may be magnified when multiple HTTP connections are used at the same 

time to download different blocks, as described below, since available network 

resources are shared across connections and thus are being simultaneously used for 

blocks with different playout times.

[0540] It may be advantageous for the client to issue requests for multiple blocks 

concurrently, where in this context “concurrently” means responses to requests are 

occurring in overlapping time intervals, and it is not necessarily the case that the 

requests are made at precisely or even approximately the same time. In the case of the 

HTTP protocol, this approach may improve utilization of the available bandwidth due to 

the behavior of the TCP protocol (as is well known). This can be especially important 

to improve the content zapping time, as when a new content is first requested the 

corresponding HTTP/TCP connections over which data for the blocks is requested 

might be slow to start, and thus using several HTTP/TCP connections at this point can 

dramatically speed up the data delivery time of the first blocks. However, requesting 

different blocks or fragments over different HTTP/TCP connections can also lead to 

degraded performance, as the requests for the blocks that are to be played out first are



WO 2011/038032 PCT/US2010/049869
111

competing with the requests for the subsequent blocks, competing HTTP/TCP 

downloads vary greatly in their delivery speed and thus the completion time of the 

request can be highly variable, and it is generally not possible to control which 

HTTP/TCP downloads will completely quickly and which will be slower, and thus it is 

likely that at least some of the time the HTTP/TCP downloads of the first few blocks 

will be the last to complete, thus leading to large and variable channel zapping times.

[0541] Suppose that each block or fragment of a segment is downloaded over a 

separate HTTP/TCP connection, and that the number of parallel connections is n and the 

playout duration of each block is t seconds, and that the streaming rate of the content 

associated with the segment is S. When the client first begins to stream the content, 

requests may be issued for the first n blocks, representing n*t seconds of media data.

[0542] As is known to those of skill in the art, there is a large variation in the data rate 

of TCP connections. However, to simplify this discussion, suppose ideally that all 

connections are proceeding in parallel such that the first block will be completely 

received at about the same time as the other n-1 blocks requested. To simplify the 

discussion further, assume that the aggregate bandwidth utilized by the n download 

connections is fixed to a value B for the entire duration of the download, and that the 

streaming rate S is constant over the entire representation. Suppose further that the 

media data structure is such that playout of a block can be done when the entire block is 

available at the client, i.e., playout of a block can only start after the entire block is 

received, e.g., due to the structure of the underlying video encoding, or because 

encryption is being employed to encrypt each fragment or block separately, and thus the 

entire fragment or block needs to be received before it can be decrypted. Thus, to 

simplify the discussion below, we assume that an entire block needs to be received 

before any of the block can be played out. Then, the time required before the first block 

has arrived and can be played out is approximately n*t*S/B.

[0543] Since it is desirable to minimize content zapping time, it is therefore desirable 

to minimize n*t*S/B. The value of t may be determined by factors such as the 

underlying video encoding structure and how the ingestion methods are utilized, and 

thus t can be reasonably small, but very small values of t lead to an overly complicated 

segment map and possibly may be incompatible with efficient video encoding and 

decryption, if used. The value of n may also affect the value of B, i.e., B may be larger



WO 2011/038032 PCT/US2010/049869
112

for a larger number n of connections, and thus reducing the number of connections, n, 

has the negative side effect of potentially reducing the amount of available bandwidth 

that is utilized, B, and so may not be effective in achieving the goal of reducing the 

content zapping time. The value of S depends on which representation is chosen to 

download and playout, and ideally S should be as close to B as possible in order to 

maximize the playout quality of the media for the given network conditions. Thus, to 

simplify this discussion, assume that S is approximately equal to B. Then, the channel 

zapping time is proportional to n*t. Thus, utilizing more connections to download 

different fragments can degrade the channel zapping time if the aggregate bandwidth 

utilized by the connections is sub-linearly proportional to the number of connections, 

which is typically the case.

[0544] As an example, suppose t = 1 second, and with n = 1 the value of B = 500 

Kbps, and with n = 2 the value of B = 700 Kbps, and with n = 3 the value of B = 800 

Kbps. Suppose that the representation with S = 700 Kbps is chosen. Then, with n = 1 

the download time for the first block is 1 *700/500 = 1.4 seconds, with n=2 the 

download time for the first block is 2*700/700 = 2 seconds, and with n=3 the download 

time for the first block is 3*700/800 = 2.625 seconds. Furthermore, as the number of 

connections increases the variability in the individual download speeds of the 

connections is likely to increase (although even with one connection there is likely to be 

some significant variability). Thus, in this example, the channel zapping time and the 

variability in the channel zapping time increases as the number of connections increases. 

Intuitively, the blocks that are being delivered have different priorities, i.e., the first 

block has the earliest delivery deadline, the second block has the second earliest 

deadline, etc., whereas the download connections over which the blocks are being 

delivered are competing for network resources during the delivery, and thus the blocks 

with the earliest deadlines become more delayed as more competing blocks are 

requested. On the other hand, even in this case, ultimately using more than one 

download connection allows support of a sustainably higher streaming rate, e.g, with 

three connections a streaming rate of up to 800 Kbps can be supported in this example, 

whereas only a stream of 500 Kbps can be supported with one connection.

[0545] In practice, as noted above, the data rate of a connection may be highly 

variable both within the same connection over time and between connections and, as a 

result, the n requested blocks generally do not complete at the same time and in fact it



WO 2011/038032 PCT/US2010/049869
113

can commonly be the case that one block may complete in half the time of another 

block. This effect results in unpredictable behavior since in some cases the first block 

may complete much sooner than other blocks and in other cases the first block may 

complete much later than other blocks, and as a result the beginning of playout may in 

some cases occur relatively quickly and in other cases may be slow to occur. This 

unpredictable behavior may be frustrating for the user and may therefore be considered 

a poor user experience.

[0546] What is needed therefore are methods in which multiple TCP connections can 

be utilized to improve the channel zapping time and the variability in channel zapping 

time, while at the same time supporting a good quality streaming rate possible. What is 

also needed are methods to allow for the share of available bandwidth allocated to each 

block to be adjusted as the playout time of a block approaches, so that, if necessary, a 

greater share of available bandwidth can be allocated towards the block with the nearest 

playout time.

Cooperative HTTP/TCP Requesting

[0547] We now describe methods for using concurrent HTTP/TCP requests in a 

cooperative fashion. A receiver may employ multiple concurrent cooperative 

HTTP/TCP requests, for example using a plurality of HTTP byte-range requests, 

wherein each such request is for a portion of a fragment in a source segment, or all of a 

fragment of a source segment, or a portion or a repair fragment of a repair segment, or 

for all of a repair fragment of a repair segment.

[0548] The advantages of cooperative HTTP/TCP requests together with usage of 

FEC repair data may be especially important to provide consistently quick channel 

zapping times. For example, at a channel zapping time it is likely that the TCP 

connections have either just been started or have been idle for some period of time, in 

which case the congestion window, cwnd, is at its minimal value for the connections, 

and thus the delivery speed of these TCP connections will take several round-trip times 

(RTTs) to ramp up, and there will be high variability in the delivery speeds over the 

different TCP connections during this ramp-up time.

[0549] An overview of the No-FEC method is now described, which is a cooperative 

HTTP/TCP request method wherein only media data of source blocks is requested using 

multiple concurrent HTTP/TCP connections, i.e., no FEC repair data is requested. With



WO 2011/038032 PCT/US2010/049869
114

the No-FEC method, portions of the same fragment are requested over different 

connections, e.g., using HTTP byte range requests for portions of the fragment, and thus 

for example each HTTP byte range request is for a portion of the byte range indicated in 

the segment map for the fragment. It may be the case that an individual HTTP/TCP 

request ramps up it delivery speed to fully utilize the available bandwidth over several 

RTTs (round-trip times), and thus there is a relative long period of time where the 

delivery speed is less than the available bandwidth, and thus if a single HTTP/TCP 

connection is used to download for example the first fragment of a content to be played 

out, the channel zapping time could be large. Using the No-FEC method, downloading 

different portions of the same fragment over different HTTP/TCP connections can 

significantly reduce the channel zapping time.

[0550] An overview of the FEC method is now described, which is a cooperative 

HTTP/TCP request method wherein media data of a source segment and FEC repair 

data generated from the media data is requested using multiple concurrent HTTP/TCP 

connections. With the FEC method, portions of the same fragment and FEC repair data 

generated from that fragment are requested over different connections, using HTTP byte 

range requests for portions of the fragment, and thus for example each HTTP byte range 

request is for a portion of the byte range indicated in the segment map for the fragment. 

It may be the case that an individual HTTP/TCP request ramps up it delivery speed to 

fully utilize the available bandwidth over several RTTs (round-trip times), and thus 

there is a relative long period of time where the delivery speed is less than the available 

bandwidth, and thus if a single HTTP/TCP connection is used to download for example 

the first fragment of a content to be played out, the channel zapping time could be large. 

Using the FEC method has the same advantages as the No-FEC method, and has the 

additional advantage that not all of the requested data needs to arrive before the 

fragment can be recovered, thus further reducing the channel zapping time and the 

variability in the channel zapping time. By making requests over different TCP 

connections, and over-requesting by also requesting FEC repair data on at least one of 

the connections, the amount of time it takes to deliver a sufficient amount of data to for 

example recover the first requested fragment that enables media playback to start, can 

be greatly reduced and made to be much more consistent than if cooperative TCP 

connections and FEC repair data was not used.



WO 2011/038032 PCT/US2010/049869
115

[0551] Figs. 24(a) - (e) show an example of the delivery rate fluctuations of 5 TCP 

connections running over the same link to the same client from the same HTTP web 

server of an emulated evolution data optimized (EVDO) network. In Figs. 24(a) - (e), 

the X-axis shows time in seconds, and the Y-axis shows the rate at which bits are 

received at the client over each of the 5 TCP connections measured over intervals of 1 

second, for each connection. In this particular emulation, there were 12 TCP 

connections in total running over this link, and thus the network was relatively loaded 

during the time shown, which might be typical when more than one client is streaming 

within the same cell of a mobile network. Note that although the delivery rates are 

somewhat correlated over time, there are wide difference in the delivery rates of the 5 

connections at many points in time.

[0552] Fig. 25 shows a possible request structure for a fragment that is 250,000 bits in 

size (approximately 31.25 kilobytes), where there are 4 HTTP byte range requests made 

in parallel for different parts of the fragment, i.e., the first HTTP connection requests the 

first 50,000 bits, the second HTTP connection requests the next 50,000 bits, the third 

HTTP connection requests the next 50,000 bits, and the fourth HTTP connection 

requests the next 50,000 bits. If FEC is not used, i.e., the No-FEC method, then these 

are the only 4 requests for the fragment in this example. If FEC is used, i.e., the FEC 

method, then in this example there is one additional HTTP connection that requests an 

additional 50,000 bits of FEC repair data of a repair segment generated from the 

fragment.

[0553] Fig. 26 is a blowup of the first couple of seconds of the 5 TCP connections 

shown in Fig. Figs. 24(a) - (e), where in Fig. 26 the X-axis shows time at intervals of 

100 milliseconds, and the Y-axis shows the rate at which bits are received at the client 

over each of the 5 TCP connections measured over intervals of 100 milliseconds. One 

line shows the aggregate amount of bits that has been received at the client for the 

fragment from the first 4 HTTP connections (excluding the HTTP connection over 

which FEC data is requested), i.e., what arrives using the No-FEC method. Another 

line shows the aggregate amount of bits that has been received at the client for the 

fragment from all 5 of the HTTP connections (including the HTTP connection over 

which FEC data is requested), i.e., what arrives using the FEC method. For the FEC 

method, it is assumed that the fragment can be FEC decoded from reception of any 

200,000 bits of the 250,000 requested bits, which can be realized if for example a



WO 2011/038032 PCT/US2010/049869
116

Reed-Solomon FEC code is used, and which can be essentially realized if for example 

the RaptorQ code described in Luby IV is used. For the FEC method in this example, 

enough data is received to recover the fragment using FEC decoding after 1 second, 

allowing a channel zapping time of 1 second (assuming that the data for subsequent 

fragments can be requested and received before the first fragment is fully played out). 

For the No-FEC method in this example, all the data for the 4 requests has to be 

received before the fragment can be recovered, which occurs after 1.7 seconds, leading 

to a channel zapping time of 1.7 seconds. Thus, in the example shown in Fig. 26, the 

No-FEC method is 70% worse in terms of channel zapping time than the FEC method. 

One of the reasons for the advantage shown by the FEC method in this example is that, 

for the FEC method, reception of any 80% of the requested data allows recovery of the 

fragment, whereas for the No-FEC method, reception of 100% of the requested data is 

required. Thus, the No-FEC method has to wait for the slowest TCP connection to 

finish delivery, and because of natural variations in the TCP delivery rate there is apt to 

be wide variance in the delivery speed of the slowest TCP connection compared to an 

average TCP connection. With the FEC method in this example, one slow TCP 

connection does not determine when the fragment is recoverable. Instead, for the FEC 

method, the delivery of enough data is much more a function of the average TCP 

delivery rate than the worse case TCP delivery rate.

[0554] There are many variations of the No-FEC method and the FEC method 

described above. For example, the cooperative HTTP/TCP requests may be used for 

only the first few fragments after a channel zap has occurred, and thereafter only a 

single HTTP/TCP request is used to download further fragments, multiple fragments, or 

entire segments. As another example, the number of cooperative HTTP/TCP 

connections used can be a function of both the urgency of the fragments being 

requested, i.e., how imminent is the playout time of these fragments, and of the current 

network conditions.

[0555] In some variations, a plurality of HTTP connections may be used to request 

repair data from repair segments. In other variations, different amounts of data may be 

requested on different HTTP connections, for example depending on the current size of 

the media buffer and the rate of data reception at the client. In another variation, the 

source representations are not independent of one another, but instead represent a 

layered media coding, where for example an enhanced source representation may



WO 2011/038032 PCT/US2010/049869
117

depend on a base source representation. In this case, there may be a repair

representation corresponding to the base source representation, and another repair 

representation corresponding to the combination of the base and enhancement source 

representations.

[0556] Additional overall elements add to the advantages one may realize by the 

methods disclosed above. For example, the number of HTTP connections used may 

vary depending on the current amount of media in the media buffer, and/or the rate of 

reception into the media buffer. Cooperative HTTP requests using FEC, i.e., the FEC 

method described above and variants of that method, can be used aggressively when the 

media buffer is relatively empty, e.g., more cooperative HTTP requests are made in 

parallel for different parts of the first fragment, requesting all of the source fragment and 

a relatively large fraction of the repair data from the corresponding repair fragment, and 

then transitioning to a reduced number of concurrent HTTP requests, requesting larger 

portions of the media data per request, and requesting a smaller fraction of repair data, 

e.g., transitioning to 1, 2 or 3 concurrent HTTP requests, transitioning to making 

requests for full fragments or multiple consecutive fragments per request, and 

transitioning to requesting no repair data, as the media buffer grows.

[0557] As another example, the amount of FEC repair data might vary as a function of 

the media buffer size, i.e., when the media buffer is small then more FEC repair data 

might be requested, and as the media buffer grows then the amount of FEC repair data 

requested might diminish, and at some point when the media buffer is sufficiently large 

then no FEC repair data may be requested, only data from source segments of source 

representations. The benefits of such enhanced techniques is that they may allow faster 

and more consistent channel zapping times, and more resilience against potential media 

stutters or stalls, while at the same time minimizing the amount of additional bandwidth 

used beyond the amount that would be consumed by just delivering the media in the 

source segments by reducing both request message traffic and FEC repair data, while at 

the same time enabling support of the highest media rates possible for the given network 

conditions.

Additional Enhancements When Using Concurrent HTTP Connections

[0558] An HTTP/TCP request may be abandoned if a suitable condition is met and 

another HTTP/TCP request may be made to download data that may replace the data



WO 2011/038032 PCT/US2010/049869
118

requested in the abandoned request, wherein the second HTTP/TCP request may request 

exactly the same data as in the original request, e.g., source data; or overlapping data, 

e.g., some of the same source data and repair data that had not been requested in the first 

request; or completely disjoint data, e.g., repair data that had not been requested in the 

first request. An example of a suitable condition is that a request fails due to the 

absence of a response from the Block Server Infrastructure (BSI) within a provided time 

or a failure in the establishment of a transport connection to the BSI or receipt of an 

explicit failure message from the server or another failure condition.

[0559] Another example of a suitable condition is that receipt of data is proceeding 

unusually slowly, according to a comparison of a measure of the connection speed (data 

arrival rate in response to the request in question) with the expected connection speed or 

with an estimate of the connection speed required to receive the response before the 

playout time of the media data contained therein or another time dependent upon that 

time.

[0560] This approach has advantage in the case that the BSI sometimes exhibits 

failures or poor performance. In this case the approach above increases the probability 

that the client can continue reliable playout of the media data despite failures or poor 

performance within the BSI. Note that in some cases there may be advantage to 

designing the BSI in such a way that it does exhibit such failures or poor performance 

on occasions, for example such a design may have a lower cost than an alternative 

design that does not exhibit such failures or poor performance or which exhibits these 

less often. In this case the method described herein has further advantage in that it 

permits the utilization of such a lower cost design for the BSI without a consequent 

degradation in the user experience.

[0561] In another embodiment, the number of requests issued for data corresponding 

to a given block may be dependent on whether a suitable condition with respect to the 

block is met. If the condition is not met then the client may be restricted from making 

further requests for the block if the successful completion of all currently incomplete 

data requests for the block would allow recovery of the block with high probability. If 

the condition is met then a larger number of requests for the block may be issued, i.e., 

the restriction above does not apply. An example of a suitable condition is that the time 

until the scheduled playout time of the block or another time dependent on that time



WO 2011/038032 PCT/US2010/049869
119

falls below a provided threshold. This method has advantage because additional 

requests for data for a block are issued when receipt of the block becomes more urgent, 

because the play out time of the media data comprising the block is close. In the case of 

common transport protocols such as HTTP/TCP, these additional requests have the 

effect of increasing the share of the available bandwidth dedicated to data that 

contributes to reception of the block in question. This reduces the time required for 

reception of sufficient data to recover the block to complete and therefore reduces the 

probability that the block cannot be recovered before the scheduled play out time of the 

media data comprising the block. As described above, if the block cannot be recovered 

before the scheduled play out time of the media data comprising the block than the 

playout may pause resulting in a poor user experience and therefore the method 

described here advantageously reduces the probability of this poor user experience.

[0562] It should be understood that throughout this specification references to the 

scheduled playout time of a block refers to the time at which the encoded media data 

comprising the block may first be available at the client in order to achieve playout of 

the presentation without pausing. As will be clear to those of skill in the art of media 

presentation systems, this time is in practice slightly before the actual time of the 

appearance of the media comprising the block at the physical transducers used for 

playout (screen, speaker etc.) since several transformation functions may need to be 

applied to the media data comprising the block to effect actual playout of that block and 

these functions may require a certain amount of time to complete. For example media 

data is generally transported in compressed form and a decompression transformation 

may be applied.

Methods for Generating File Structures Supporting Cooperative HTTP/FEC Methods

[0563] An embodiment to generate a file structure that may be used advantageously 

by a client employing cooperative HTTP/FEC methods is now described. In this 

embodiment, for each source segment there is a corresponding repair segment generated 

as follows. The parameter R indicates on average how much FEC repair data is 

generated for the source data in the source segments. For example, R=0.33 indicates 

that if a source segment contains 1,000 kilobytes of data, then the corresponding repair 

segment contains approximately 330 kilobytes of repair data. The parameter S indicates 

the symbol size in bytes used for FEC encoding and decoding. For example, S=64



WO 2011/038032 PCT/US2010/049869
120

indicates that the source data and the repair data comprises symbols of size 64 bytes 

each for the purposes of FEC encoding and decoding.

[0564] The repair segment can be generated for a source segment as follows. Each 

fragment of the source segment is considered as a source block for FEC encoding 

purposes, and thus each fragment is treated as a sequence of source symbols of a source 

block from which repair symbols are generated. The number of repair symbols in total 

generated for the first i fragments is calculated as TNRS(i) = ceiling(R*B(i)/S), wherein 

ceiling(x) is the function that outputs the smallest integer with a value that is at least x. 

Thus, the number of repair symbols generated for fragment i is NRS(i) = TNRS(i) - 

TNRS(i-l).

[0565] The repair segment comprises a concatenation of the repair symbols for the 

fragments, wherein the order of the repair symbols within a repair segment is in the 

order of the fragments from which they are generated, and within a fragment the repair 

symbols are in order of their encoding symbol identifier (ESI). The repair segment 

structure corresponding to a source segment structure is shown in Fig. 27, including a 

repair segment generator 2700.

[0566] Note that by defining the number of repair symbols for a fragment as described 

above, the total number of repair symbols for all previous fragments, and thus the byte 

index into the repair segment, only depends on R, S, B(i-l) and B(i), and does not 

depend on any of the previous or subsequent structure of the fragments within the 

source segment. This is advantageous because it allows a client to quickly compute the 

position of the start of a repair block within the repair segment, and also quickly 

compute the number of repair symbols within that repair block, using only local 

information about the structure of the corresponding fragment of the source segment 

from which the repair block is generated. Thus, if a client decides to start downloading 

and playout of a fragment from the middle of a source segment, it can also quickly 

generate and access the corresponding repair block from within the corresponding repair 

segment.

[0567] The number of source symbols in the source block corresponding to fragment i 

is calculated as NSS(i) = ceiling((B(i)-B(i-l))/S). The last source symbol is padded out 

with zero bytes for the purposes of FEC encoding and decoding if B(i)-B(i-1) is not a 

multiple of S, i.e., the last source symbol is padded out with zero bytes so that it is S



WO 2011/038032 PCT/US2010/049869
121

bytes in size for the purposes of FEC encoding and decoding, but these zero padding 

bytes are not stored as part of the source segment. In this embodiment, the ESIs for the 

source symbol are 0, 1, ..., NSS(i)-l and the ESIs for the repair symbols are NSS(i), ..., 

NSS(i)+NRS(i)-l.

[0568] The URL for a repair segment in this embodiment can be generated from the 

URL for the corresponding source segment by simply adding for example the suffix 

“.repair” to the URL of the source segment.

[0569] The repair indexing information and FEC information for a repair segment is 

implicitly defined by the indexing information for the corresponding source segment, 

and from the values of R and S, as described herein. The time offsets and the fragment 

structure comprising the repair segment are determined by the time offsets and structure 

of the corresponding source segment. The byte offset to the end of the repair symbols in 

the repair segment corresponding to fragment i can be calculated as RB(i) = 

S*ceiling(R*B(i)/S). The number of bytes in the repair segment corresponding to 

fragment i is then RB(i) - RB(i-l), and thus the number of repair symbols corresponding 

to fragment i is calculated as NRS(i) = (RB(i) - RB(i-l))/S. The number of source 

symbols corresponding to fragment i can be calculated as NSS(i) =

ceiling((B(i)-B(i-l))/S). Thus, in this embodiment, the repair indexing information for a 

repair block within a repair segment and the corresponding FEC information can be 

implicitly derived from R, S and the indexing information for the corresponding 

fragment of the corresponding source segment.

[0570] As an example, consider the example shown in Fig. 28, showing a fragment 2 

that starts at byte offset B(l) = 6,410 and ends at byte offset B(2) = 6,770. In this 

example, the symbol size is S = 64 bytes, and the dotted vertical lines show the byte 

offsets within the source segment that correspond to multiples of S. The overall repair 

segment size as a fraction of the source segment size is set to R = 0.5 in this example. 

The number of source symbols in the source block for fragment 2 is calculated as 

NSS(2) = ceiling((6,770-6,410)/64) = ceil(5.625) = 6, and these 6 source symbols have 

ESIs 0, ...,5, respectively, wherein the first source symbol is the first 64 bytes of 

fragment 2 that starts at byte index 6,410 within the source segment, the second source 

symbol is the next 64 bytes of fragment 2 that starts at byte index 6,474 within the 

source segment, etc. The end byte offset of the repair block corresponding to fragment



WO 2011/038032 PCT/US2010/049869
122

2 is calculated as RB(2) = 64 *ceiling(0.5 *6,770/64) = 64*ceiling(52.89...) = 64*53 = 

3,392, and the start byte offset of the repair block corresponding to fragment 2 is 

calculated as RB(1) = 64*ceiling(0.5*6,410/64) = 64*ceiling(50.07...) = 64*51 = 3,264, 

and thus in this example there are two repair symbols in the repair block corresponding 

to fragment 2 with ESIs 6 and 7, respectively, starting at byte offset 3,264 within the 

repair segment and ending at byte offset 3,392.

[0571] Note that, in the example shown in Fig. 28, even though R = 0.5 and there are 

6 source symbols corresponding to fragment 2, the number of repair symbols is not 3, as 

one might expect if one simply used the number of source symbols to calculate the 

number of repair symbols, but instead worked out to be 2 according to the methods 

described herein. As opposed to simply using the number of source symbols of a 

fragment to determine the number of repair symbols, the embodiments described above 

make it possible to calculate the positioning of the repair block within the repair 

segment solely from the index information associated with the corresponding source 

block of the corresponding source segment. Furthermore, as the number, K. of source 

symbols in a source block grows, the number of repair symbols, KR, of the

corresponding repair block is closely approximated by K*R, as in general, KR is at most 

ceil(K*R) and KR is at least floor((K-l)*R), where floor(x) is the largest integer that is 

at most x.

[0572] There are many variations of the above embodiments for generating a file 

structure that may be used advantageously by a client employing cooperative 

HTTP/FEC methods, as one skilled in the art will recognize. As an example of an 

alternate embodiment, an original segment for a representation may be partitioned into 

N > 1 parallel segments, wherein for i = 1,...,N, a specified fraction F; of the original 

segment is contained in the ith parallel segment, and where the sum for i = 1,...,N of F; 

is equal to 1. In this embodiment, there may be one master segment map that is used to 

derive the segment maps for all of the parallel segments, similar to how the repair 

segment map is derived from the source segment map in the embodiment described 

above. For example, the master segment map may indicate the fragment structure if all 

of the source media data was not partitioned in parallel segments but instead contained 

in the one original segment, and then the segment map for the ith parallel segment can 

be derived from the master segment map by calculating that, if the amount of media 

data in a first prefix of fragments of the original segment is L bytes, then the total



123
20

10
29

83
21

 
28

 F
eb

 2
01

4

number of bytes of this prefix in aggregate among the first i parallel segment is ceiI(L*Gi), 

where Gi is the sum over j=l, ..., i of Fj. As another example of an alternate embodiment, 

the segments may consist of the combination of the original source media data for each 

fragment followed immediately by the repair data for that fragment, resulting in a segment 

that contains a mixture of source media data and repair data generated using an FEC code 

from that source media data. As another example of an alternate embodiment, a segment 

that contains a mixture of source media data and repair data may be partitioned into 

multiple parallel segments containing a mixture of source media data and repair data.

[0573] Further embodiments can be envisioned to one of ordinary skill in the art after 

reading this disclosure. In other embodiments, combinations or sub combinations of the 

above disclosed invention can be advantageously made. The example arrangements of 

components are shown for purposes of illustration and it should be understood that 

combinations, additions, re arrangements, and the like are contemplated in alternative 

embodiments of the present invention. Thus, while the invention has been described with 

respect to exemplary embodiments, one skilled in the art will recognize that numerous 

modifications are possible.

[0574] For example, the processes described herein may be implemented using 

hardware components, software components, and/or any combination thereof. In some 

cases, the software components can be provided on tangible, non transitory media for 

execution on hardware that is provided with the media or is separate from the media. The 

specification and drawings are, accordingly, to be regarded in an illustrative rather than a 

restrictive sense. It will, however, be evident that various modifications and changes may 

be made thereunto without departing from the broader spirit and scope of the invention as 

set forth in the claims and that the invention is intended to cover all modifications and 

equivalents within the scope of the following claims.

[0575] It will be understood that the term “comprise” and any of its derivatives (eg 

comprises, comprising) as used in this specification is to be taken to be inclusive of features 

to which it refers, and is not meant to exclude the presence of any additional features unless 

otherwise stated or implied.

[0576] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement of any form of suggestion that such prior art forms part of the 

common general knowledge.



124
20

10
29

83
21

 
02

 Ju
n2

01
4 CLAIMS

1. A method for requesting segments including media data of a media presentation from 

a media delivery system using a client device, the method including:

constructing, at the client device, one or more file identifiers of the segments of the 

media presentation based on file identifier construction rules, wherein the file identifier 

construction rules enable specification of required media and associated metadata in the file 

identifier;

sending a request for a segment of the media presentation to the media delivery 

system, wherein the request includes a constructed file identifier of the one or more 

constructed file identifiers, wherein the constructed file identifier specifies required media 

and associated metadata of the segment.

2. The method of claim 1, wherein the file identifier construction rules are provided to 

the client device in advance of a time where the segment is available.

3. The method of claim 2, wherein the file identifier construction rules include rules 

about timing of future availability of the segment.

4. The method of claim 1, wherein the file identifier construction rules include rules 

about the presentation time play back of a segment relative to the other segments.

5. The method of claim 1, further including receiving a media presentation descriptor 

(“MPD”) file that describes the file identifier construction rules for the segments.

6. The method of claim 5, wherein the MPD includes construction rules for generating a 

list of durations of segments for segments within a representation of the media presentation 

in a period indicating when the segments should be played back in time relative to one 

another.

7. The method of claim 6, wherein the durations are signalled using a text sequence 

defining one or more number of segment sets and durations for each segment in a segment 

set.

8. The method of claim 1, further including determining segment availability, wherein 

segment availability is determined based on a client device clock time and a defined time 

shift buffer depth.



125
20

10
29

83
21

 
02

 Ju
n2

01
4

9. The method of claim 1, further including receiving metadata representing, for each of 

a plurality of representations of the media presentation, a file identifier construction rule.

10. The method of claim 9, wherein the metadata representing the file identifier 

construction rule includes input parameters including an index of a segment to be identified, 

such that the index of the segment can be determined from a desired play time.

11. The method of claim 1, further including computing, using the file identifier 

construction rules and a desired play time, a file identifier for a segment for that play time 

in a desired representation of the media presentation and a byte range of a segment 

indicated by that play time.

12. The method of claim 11, wherein the file identifier for a segment and byte range for 

that segment are determined based on calculated start and end presentation times wherein 

media segments have approximate durations determined by media access points.

13. A client device for obtaining segments including media data of a media presentation 

from a media delivery system, including:

a transmitter for sending file requests, wherein a file request includes a file indicator 

and a byte range within an indicated file;

a receiver for receiving responses to the file requests; and

logic for constructing a file identifier of the segments of the media presentation based 

on file identifier construction rules, wherein the file identifier construction rules enable 

specification of required media and associated metadata in the file identifier,

wherein file requests include the constructed file identifier, wherein the constructed 

file identifier specifies required media and associated metadata of the segment.

14. The client device of claim 13, wherein the file identifier construction rules are 

provided to the client device in advance of a time where the segments are available.

15. The client device of claim 14, wherein the file identifier construction rules include 

rules about timing of future availability of the media presentation.

16. The client device of claim 13, wherein the file identifier construction rules include 

rules about the presentation time play back of a media file relative to other media files.



126
20

10
29

83
21

 
02

 Ju
n2

01
4 17. The client device of claim 13, further including logic for receiving, and storage for, a 

media presentation descriptor (“MPD”) file that describes the file identifier construction 

rules for the segments.

18. The client device of claim 17, wherein the MPD includes a list of durations of 

segments for segments within a representation of the media presentation in a period 

indicating when the segments should be played back in time relative to one another.

19. The client device of claim 18, wherein the durations are signalled using a text 

sequence defining one or more number of segment sets and durations for each segment in a 

segment set.

20. The client device of claim 13, further including logic for determining segment 

availability, wherein segment availability is determined based on a client device clock time 

and a defined time shift buffer depth.

21. The client device of claim 13, further including storage for metadata representing, for 

each of a plurality of representations of the media presentation, a file identifier construction 

rule.

22. The client device of claim 21, wherein the metadata representing the file identifier 

construction rule includes input parameters including an index of a segment to be identified, 

such that the index of the segment can be determined from a desired play time.

23. The client device of claim 13, further including logic for computing, using the file 

identifier construction rules and a desired play time, a file identifier for a segment for that 

play time in a desired representation of the media presentation and a byte range of the 

segment indicated by that play time.

24. The client device of claim 23, wherein the file identifier for a segment and byte range 

for that segment are determined based on calculated start and end presentation times 

wherein segments have approximate durations determined by media access points.



WO 2011/038032 PCT/US2010/049869

1/29

102

FIG. 1

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

2/29
10

8(
1

Ο ο

F
IG

. 2

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

3/29

FIG. 3

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

4/29

z\

402

400

404" Memory

Program
Code

406^

Bus

408

Alphanumeric 
Input Device

Network
Interface

410

.412

-Requests

-Responses

\7

F/G. 4

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

5/29

c
Φ
EO>
φ

CZ)

ro c a) F
ω|

igs

:fa*

JZ 03

=T=
m

ωΜ—»
Ιο

τ-
C & Ο & ■2 η 
re ιι

A
Φ
E
CD
C
c
'cd (Λ

Λ 
CD 
E 
ro 
c 
.c

TO ω

ω oco 
(/)θΌ  ̂
ro ii Xlo 
Έ 5s Ϊ0 ώ

IS E JZ 
2 u)r ro

l-_ IS {JJ
ro «j E ro 
fl) ο o co
Svis

cdjz cd

/
T— CN
LO io
O o
LO LO

o
co (Λ

CD
2z CO
CD ω

o
tA

CD
_C

£
c

X
Φ

TO
O Μ-» II

£ττ c cCD
r

Φ
E

.o
"-4-^

CD
O in1-I—»

T5 ro F (Λ(-
φ Φ mCZ) Q H

o
CN
c
Φ

σ>ο

CD II 
to -e

ω

Λ
Φ
Ε
CD
C

'm ω 2 CD
E co 

-R
=¾ in

JZ CD

CNΟ
LO

coo
LO

ο
CN,
LO
Ο
LO

50
0

50
0

50
0

51
0

M
P

D
M

P
D

M
P

D
M

P
D

o o o
io io io 1

r r r
Cl) CD Cl)
F F F
CD CD CD
fl) fl) CD
w U) U)
a> fl) fl)
y y y
”5 ”5 ”5
o <) C)
ω ω ω

F
IG

. 5

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

6/29

510

Index
information Fragment 1 Fragment 2 Fragment 3

))
■ ■ ■ Fragment n

—«—l

TimeOffset (ms) ByteOffset RAP Indicator
20,000 0 1
20,485 50,245 0
21,100 101,354 0
21,623 157,034 1
21,965 198,045 0
22,540 256,654 0
23,045 301,245 1
24,000 358,436 0
24,605 400,983 1
25,132 465,745 0
25,845 504,103 0

F/G. 6

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

7/29

Simple Index

Γ*

S1 F1 F2 F3 F4 F5 F6

-----------------►

FIG. 7(a)

Hierarchical Index

FIG. 7(b)

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

So
ur

ce
 s

eg
m

en
t s

tru
ct

ur
e 

fo
r r

ep
re

se
nt

at
io

ns
 w

ith
 a

lig
ne

d 
se

ek
 p

oi
nt

s

o©ω
05
CM

(JΦ
(/5

COCM

OΦω
CM

oΦ
(/5

CO
CM

OΦ
(/5

Lf5
CM Φ

O I-Φ
(/5

CM

OΦ
(/5

COCM

OΦ
(/5

CM
CM

OΦω
CM

(JΦ
(/5
OCM

c
o"
CL
jx:ΦΦW

co

o
CL

SZΦΦω

CM
M—»c .o'
CL

SZΦΦω

c
o.
CL

SZΦΦω
c 05 
Φ .F 
F x cl 
05-g Φ 
φ p or 
ω -

CN
C _____

S
ee

k p
oi

CO CM

CO
CNM—«c

S
ee

k p
oi

CO
CO CM

CM
CMM—»c

CM
CO CM

S
ee

k p
oi

T—
CO CN

CM4—»c
'0

S
ee

k p

S
eg

m
en

t
In

de
xi

ng
R

ep
 2

So
ur

ce
 se

gm
en

t f
or

 re
pr

es
en

ta
tio

n 
2

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

So
ur

ce
 se

gm
en

t s
tru

ct
ur

e 
fo

r r
ep

re
se

nt
at

io
ns

 w
ith

 un
al

ig
ne

d 
se

ek
 p

oi
nt

s

o
Φ
(/5

05
CN

O
Φω
co
CN

oΦ
(/5
ft-
CN

O
Φ
(/5

CO
CN

O
Φ
(/5

S ω
ό Η 
φω ....

■'Τ
CN

Ο
Φ
(/5
co
CN

ο
φ
(/5

CN
CN

Ο
Φ
(/5

CN

C5
Φ
(/5
Ο
CN

ο"
Ω.

Φ
Φ
ω

co

ο
Ω.

Φ
φ
ω

CN

Ο
Ω.

ΖΖ
Φ
Φ
(/)

ο.
Ω.

Φ
ΦW

CN4—»C _
ο"
Ω.

Φ
Φω

co
CN

Ο
Ω.

ΖΖ
Φ
Φω

CN
CN

Ο
Ω.

Φ
Φω

CN

Ο.
Ω.

Φ
Φω

ri 
CD CN

CO CN

CO 
CD CN

CN 
CD CN

1- 
OQ CN

C 05 
Φ
Ε X Q- 

Φ 3? CLω -

C 05 
φ C CN 
E X Ω
ra-g Ά φ 3? OL ω -

So
ur

ce
 s

eg
m

en
t f

or
 re

pr
es

en
ta

tio
n 

2
LJ
LL

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

10/29

Presentation Level 
Duration 
Encoding

bit rate 
codec 
resolution 
frame rate
pointer to stream metadata 

Content protection / DRM info

Stream Metadata
URLs for segment files

Segment Metadata
Byte range versus time for requests within segment 
Identification of RAPs

FIG. 9(a)

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

11/29

906

HTTP
Streaming

Server

Metadata
Table Blocks

►
HTTP

Streaming
Client

FIG. 9(b)

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

12/29

1000

Video Stream

1002

Block 1 Block 2 3 4 Block 5

Η M▲ ▲

1004
RAP RAP RAP RAP

FIG. 10

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

13/29

Continuous timing across segments

Video samples OOOOOOOOQ0ODODOOOOOOOOOO
Audio samples

II
Segment boundary

Discontinuous timing across segments

Video samples □□□□□□□□0 0DoooDooaaooooo
Audio samples

Segment boundary

Assumptions:
• Hatched frame chosen as boundary point for independent reasons
• Audio must never begin later than video
Notes:
• In continuous case, second segment is the same content as the first
• In discontinuous case, second segment is different content from the first

FIG. 11

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

14/29

Block
1200 1210

Λ 1204 Λ 1206 Λ 1208 Λ Λ

FIG. 12

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

15/29

F
IG

. 1
3

00

c

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

16/29

F
IG

. 1
4

c

o
GO

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

17/29

c

o R o *5 
o U5 
o <

+

§§ 

°° +

§§

§<

°8 
O CN

+

§!

°ΐ

Fi
g.

 15
 

L=
Lo

w,
 S=

S
ta

bl
e,

 F=
Fu

ll

00

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

18/29

FIG. 16

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

19/29

FIG. 17

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

20/29
O

k 
fo

r
co

nn
ec

tio
n 

3?

X X X

O
k 

fo
r

co
nn

ec
tio

n 
2?

X X

O
k 

fo
r

co
nn

ec
tio

n 
1?

X X X

Pr
io

ri
ty

o o - - CU rc

C
an

di
da

te
 

re
qu

es
t l

ist
Re

qu
es

t A
Re

qu
es

t B
Re

qu
es

t C
Re

qu
es

t D
Re

qu
es

t E
Re

qu
es

t F

oov-

0
c

O
k 

fo
r

co
nn

ec
tio

n 
3?

X X X X

O
k 

fo
r

co
nn

ec
tio

n 
2?

X
O

k 
fo

r
co

nn
ec

tio
n 

1?

X X

Pr
io

ri
ty

o tJ- - cu CO

C
an

di
da

te
 

re
qu

es
t l

ist
Re

qu
es

t A
Re

qu
es

t G
Re

qu
es

t C
Re

qu
es

t D
Re

qu
es

t E
Re

qu
es

t F

F
IG

. 1
9

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

21/29

FIG. 20

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

22/29

<expression> ::= <literal> |
<variable> |
<function> |
‘(‘ <expression> “)’ |
expression > <operator> <expression>

<literal> ::= <string> | <number>

<variable> ::= <token>

<function> ::= <token>‘(‘ [ <expression> *( 7 <expression> ) ] “)’ 

<operator> ::= 1*<opchar>

<token> ::= <tokenchar> *(<tokenchar> | <digit>)

<string> ::= ““ *<char> ““

<number> ::= [ ] 1 *<digit> [ 7 1 *<digit> ]

<digit> ::= Ό-9’

<char> ::= <any ASCII char except ““> | 7’ ““

<tokenchar> ::= ‘A-Z’ | ‘a-z’

<opchar> ::= | “+’ | ‘=‘ | 7’ | 7 I “%’ I I

FIG. 21

unsigned long Hash( const char *p, unsigned long max)
{

unsigned long hash = 0; 
while( *p != 0)
hash = (hash « 5)Λ ((hash & 0xf8000000)» 27)Λ *p++; 

return hash % max;

FIG. 22

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

23/29

Example 1

Title: Simple fixed domain mapping
File identifier
construction
rule:

printf("http ://<domainname>/%s %3d.dfx", id, seq)

File ID: SPEED PAO S2 El 5gsyd75
Sequence #: 22

Result: http://<domainname>/SPEED PAO S2 El 5gsyd75 022.dfx

Example 2

Title: Hash over 1000 domains based on file ID
File identifier
construction
rule:

printf("http ://%3d.<domainname>/%s %3d.dfx", 
hash(id, 1000), id, seq)

File ID: SPEED PAO S2 El 5gsyd75
Sequence #: 22
Result: http ://564.<domainname>/SPEED PAO S2 El 5gsyd75 022 

. dfx

Example 3

Title: Hash over 10 domains and 1000 directories
File identifier 
construction rule:

printf("http ://%2d.<domainname>/%3d/%s %3d.dfx", 
hash(id, 10), hash(id, 1000), id, seq)

File ID: SPEED PAO S2 El 5gsyd75

Sequence #: 22
Result: http ://4.<domainname>/564/SPEED PAO S2 El 5gsyd75 

022.dfx

FIG. 23

SUBSTITUTE SHEET (RULE 26)

http://%253cdomainname%253e/SPEED


WO 2011/038032 PCT/US2010/049869

24/29

Timeline of TCP connections

typical bandwidth fluctuation of 5 TCP connections

FIG. 24

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

25/29

§ g
ω ο ω
φ φ 3 <

CT C 
Φ O

OP. O

re
Ί-»
re

■D
>

ω
O
O
O
O
o'
LO

reo.
φ

s g

φoi_3o(Λ

ω Ο ω 
Φ φ =5 <
F- c ω Λ 
CT C 
Φ O 

OP O

ω
O
O
O
O
o"
LO

>

s g
(Λ
W
Φ
3
σ
φ

co ο ω Φ φ =5 -/ 
= c m > 
CT C 
Φ O 

OP O

φ
Q.

§ g
CO ο Φ . Φ o =5 -/ 
= c ω Λ
CT C 
Φ O 

Ct O

>

§ g
CO ο Φ Φ o =5 -/

m Λ
CT C 
Φ O 
Ct o

o
o
O
CO

ω
o
o
o
o
o"to

CD-t--
o
o
o
o
o"
LO

ω
o
o
o
o
o"
LO

1C
CN

Ο
LL



WO 2011/038032 PCT/US2010/049869

26/29

o o
LJJ LU

o
ra

c £
o=3 ΌCD

CDCDΙ­ ΑέC Tg
οco oi Ο 0_ Η

■ ◄ □ Ξ ό

o
c

Tg
o

Ex
am

pl
e 

of
 c

ha
nn

el
 za

pp
in

g 
tim

e 
w

ith
 

an
d 

w
ith

ou
t F

EC

Ό

CDO
e
42
co

co
C\l

0
LL

ο Ο Ο ο οο Ο Ο ο οο ο Ο ο οο ο Ο ο οιο ο ιο ο ιοCM CM ■τ— ί—

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

27/29

FIG. 27

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

28/29

Byte
6400

Byte 
6410

Byte
6464

Byte
6528

Byte
6592

Byte
6656

Byte
6720

Byte
6784

Byte
6770

----------- 1----------- 11
Fragment 21

SS with SS with SS with SS with SS with
--------- ■-------11

SS v^ith
ESI 0 ESI 1 ESI 2 ESI 3 ESI 4 ESI! 5

11
Source block 2 SS with ESI 5 is 

filled with zeroes 
for encoding/ 
decoding beyond 
this dotted lineRS with RS with

ESI 6 ESI 7

Repair block 2

B^te
3264

Byte
3392

FIG. 28

SUBSTITUTE SHEET (RULE 26)



WO 2011/038032 PCT/US2010/049869

29/29

F
IG

. 2
9

co

ω

■σ
φ

-Ω's_
Ο
coφ
Ω

co

c
φ
Ξ
CD
φco

-- Η Ώ
Ι> * 

co

c 
φ 
Ξ

φ
.Ω
co
ω
φ
ο CD 
ο φ 
< ω

co cm 
Τ3
φ CO

co
TD
CD

co
Η

φ
4077 CCO ωco
φ _ 
ο cdΟ Φ
< co

φ
.Ω
coco
φ
ο
ο
<

c
φ
Ξ
CD
Φ
CO

SUBSTITUTE SHEET (RULE 26)


