(12) STANDARD PATENT

(11) Application No. AU 2010298321 B2

(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)
(44)
(71)

(72)

(74)

(56)

Title
Enhanced block-request streaming using URL templates and construction rules

International Patent Classification(s)
HO4L 29/06 (2006.01) HO4N 7/24 (2006.01)

Application No: 2010298321 (22) Date of Filing: 2010.09.22
WIPO No: WO11/038032
Priority Data
Number (32) Date (33) Country
12/887,492 2010.09.21 us
61/296,725 2010.01.20 us
61/258,088 2009.11.04 us
61/257,719 2009.11.03 us
61/285,779 2009.12.11 us
61/244,767 2009.09.22 us
61/372,399 2010.08.10 us
Publication Date: 2011.03.31
Accepted Journal Date: 2014.07.24
Applicant(s)
Qualcomm Incorporated
Inventor(s)
Luby, Michael G.;Watson, Mark;Vicisano, Lorenzo;Pakzad, Payam;Wang,

Bin;Stockhammer, Thomas

Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001

Related Art
US 2009/0164653
US 2009/0089445

wO 2011/038032 A3 I 00T 000 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A T 0O A 0 OO
(10) International Publication Number

WO 2011/038032 A3

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 March 2011 (31.03.2011)

(51) International Patent Classification: PAKZAD, Payam [US/US]; 5775 Morehouse Drive, San
HO04L 29/06 (2006.01) HO04N 7/24 (2011.01) Diego, California 92121-1714 (US). WANG, Bin

(1) International Application Number: [CN/US]; 5775 Morehouse Drive, San Diego, California
PCT/US2010/049869 92121-1714 (US). STOCKHAMMER, Thomas

[DE/DE]; 5775 Morehouse Drive, San Diego, CA
(22) International Filing Date: 92121-1714 (US).
22 September 2010 (22.09.2010) 74y Agent: JACOBS, Jeffrey, D.; International IP Adminis-

(25) Filing Language: English tration, 5775 Morehouse Drive, San Diego, CA
92121-1714 (US).

(26) Publication Language: English
L. (81) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
61/244,767 22 September 2009 (22.09.2009) usS AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
61/257,719 3 November 2009 (03.11.2009) us CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
61/258,088 4 November 2009 (04.11.2009) usS DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
61/285,779 11 December 2009 (11.12.2009) usS HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
61/296,725 20 January 2010 (20.01.2010) usS KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/372,399 10 August 2010 (10.08.2010) usS ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
12/887,492 21 September 2010 (21.09.2010) usS NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(71) Applicant (for all designated States except US): QUAL- SE, 8G, 8K, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
COMM INCORPORATED [US/US]; International IP TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Admhlistration, 5775 Morehouse Drive, San Diego, Cali- (84) Designated States (unless otherwise indicated, for every
fornia 92121-1714 (US). kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(75) Inventors/Applicants (for US only): LUBY, Michael G. ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
[US/US]; 5775 Morehouse Drive, San Diego, California TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
92121-1714 (US). WATSON, Mark [GB/US]; 5775 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Morehouse Drive, San Diego, California 92121-1714 LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
(US). VICISANO, Lorenzo [US/US]; 5775 Morehouse SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Drive, San Diego, California 92121-1714 (US). GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ENHANCED BLOCK-REQUEST STREAMING USING URL TEMPLATES AND CONSTRUCTION RULES

102
- movies
- audio
Content ?/rlndae oes
n)
ontent - Heal data presentations 100
- hybrid presentations
103 104 106 108
' ~ -~ -~ Request -~
Content ™12
Prepargtlon HTTI? HTTP H'ITE
(Media Streaming Streaming
N Cache -
Ingestion Server Client
System) 14
= 72 2 Request L&
Program Program Program Program
Code Code Code Code
101 Fig. 1

(57) Abstract: A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of
such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP,
FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file
server, which might include a cache. A client device can be adapted to take advantage of the ingestion process as well as improve-
ments that make for a better presentation independent of the ingestion process. The client devices and ingestion system can be co-
ordinated to have a predefined mapping and template for making block requests to HTTP file names that a conventional file server
can accept through the use of URL construction rules. Segment size might be specified in an approximate manner for more effi-
cient organization.

WO 2011/038032 A3 I 00 AT A0 00O

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))

a patent (Rule 4.17(ii)) . . A
(88) Date of publication of the international search report:
— as to the applicant's entitlement to claim the priority of 24 November 2011
the earlier application (Rule 4.17(iii))

WO 2011/038032 1 PCT/US2010/049869

ENHANCED BLOCK-REQUEST STREAMING USING URL
TEMPLATES AND CONSTRUCTION RULES

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application is a Nonprovisional Patent Application claiming benefit of the
following provisional applications, each naming Michael G. Luby, et al. and each

entitled “Enhanced Block-Request Streaming System”:

[0002] U.S. Provisional Patent Application No. 61/244,767, filed September 22, 2009,
[0003] U.S. Provisional Patent Application No. 61/257,719, filed November 3, 2009,
[0004] U.S. Provisional Patent Application No. 61/258,088, filed November 4, 2009,

[0005] U.S. Provisional Patent Application No. 61/285,779, filed December 11, 2009,

and
[0006] U.S. Provisional Patent Application No. 61/296,725, filed January 20, 2010.

[0007] This application also claims benefit of U.S. Provisional Patent Application No.
61/372,399, filed August 10, 2010, naming Ying Chen, et al. and entitled “HTTP

Streaming Extensions”.

[0008] Each provisional application cited above is hereby incorporated by reference
for all purposes. The present disclosure also incorporates by reference, as if set forth in
full in this document, for all purposes, the following commonly assigned

applications/patents:
[0009] U.S. Patent No. 6,307,487 to Luby (hereinafter “Luby I”);
[0010] U.S. Patent No. 7,068,729 to Shokrollahi, et al. (hereinafter “Shokrollahi I”’),

[0011] U.S. Patent Application No. 11/423,391 filed June 9, 2006 and entitled
“Forward Error-Correcting (FEC) Coding and Streaming” naming Luby, et al.
(hereinafter “Luby 1),

[0012] U.S. Patent Application No. 12/103,605 filed April 15, 2008 entitled
“Dynamic Stream Interleaving and Sub-Stream Based Delivery” naming Luby, et al.

(hereinafter “Luby III”);

WO 2011/038032 PCT/US2010/049869

[0013] U.S. Patent Application No. 12/705,202 filed February 12, 2010 entitled
“Block Partitioning for a Data Stream” naming Pakzad, et al. (hereinafter “Pakzad”);

and

[0014] U.S. Patent Application No. 12/859,161 filed August 18, 2010 entitled
“Methods and Apparatus Employing FEC Codes with Permanent Inactivation of
Symbols for Encoding and Decoding Processes” naming Luby, et al. (hereinafter “Luby

V).

FIELD OF THE INVENTION

[0015] The present invention relates to improved media streaming systems and
methods, more particularly to systems and methods that are adaptive to network and
buffer conditions in order to optimize a presentation of streamed media and allows for

efficient concurrent, or timely-distributed, delivery of streamed media data.

BACKGROUND OF THE INVENTION

[0016] Streaming media delivery may become increasingly important as it becomes
more common for high quality audio and video to be delivered over packet-based
networks, such as the Internet, cellular and wireless networks, powerline networks, and
other types of networks. The quality with which the delivered streaming media can be
presented may depend on a number of factors, including the resolution (or other
attributes) of the original content, the encoding quality of the original content, the
capabilities of the receiving devices to decode and present the media, timeliness and
quality of the signal received at the receivers, etc. To create a perceived good streaming
media experience, transport and timeliness of the signal received at receivers may be
especially important. Good transport may provide fidelity of the stream received at the
receiver relative to what a sender sends, while timeliness may represent how quickly a

receiver can start playing out the content after an initial request for that content.

[0017] A media delivery system can be characterized as a system having media
sources, media destinations, and channels (in time and/or space) separating sources and
destinations. Typically, a source includes a transmitter with access to media in
electronically manageable form, and a receiver with an ability to electronically control
receipt of the media (or an approximation thereof) and provide it to a media consumer
(e.g., a user having a display device coupled in some way to the receiver, a storage

device or element, another channel, etc.).

WO 2011/038032 PCT/US2010/049869

[0018] While many variations are possible, in a common example, a media delivery
system has one or more servers that have access to media content in electronic form,
and one or more client systems or devices make requests for media to the servers, and
the servers convey the media using a transmitter as part of the server, transmitting to a
receiver at the client so that the received media can be consumed by the client in some
way. In a simple example, there is one server and one client, for a given request and

response, but that need not be the case.

[0019] Traditionally, media delivery systems may be characterized into either a
“download” model or “streaming” model. The “download” model might be
characterized by timing independence between the delivery of the media data and the

playout of the media to the user or recipient device.

[0020] As an example, media is downloaded for enough in advance of when it is
needed or will be used and when it is used, as much as is needed is already available at
the recipient. Delivery in the download context is often performed using a file transport
protocol, such as HTTP, FTP or File Delivery over Unidirectional Transport (FLUTE)
and the delivery rate might be determined by an underlying flow and/or congestion
control protocol, such as TCP/IP. The operation of the flow or congestion control
protocol may be independent of the playout of the media to the user or destination

device, which may take place concurrently with the download or at some other time.

[0021] The “streaming” mode might be characterized by a tight coupling between the
timing of the delivery of the media data and the playout of the media to the user or
recipient device. Delivery in this context is often performed using a streaming protocol,
such as the Real Time Streaming Protocol (RTSP) for control and the Real Time
Transport Protocol (RTP) for the media data. The delivery rate might be determined by

a streaming server, often matching the playout rate of the data.

[0022] Some disadvantages of the “download” model may be that, due to the timing
independence of the delivery and playout, either media data may not be available when
it is needed for playout (for example due to the available bandwidth being less than the
media data rate), causing playout to stop momentarily (“stalling”), which results in a
poor user experience, or media data may be required to be downloaded very far in
advance of playout (for example due to the available bandwidth being greater than the

media data rate), consuming storage resources on the receiving device, which may be

WO 2011/038032 PCT/US2010/049869

scarce, and consuming valuable network resources for the delivery which may be

wasted if the content is not, eventually, played out or otherwise used.

[0023] An advantage of the “download” model may be that the technology needed to
perform such downloads, for example HTTP, is very mature, widely deployed and
applicable across a wide range of applications. Download servers and solutions for
massive scalability of such file downloads (for example, HTTP Web Servers and
Content Delivery Networks) may be readily available, making deployment of services

based on this technology simple and low in cost.

[0024] Some disadvantages of the “streaming” model may be that generally the rate of
delivery of media data is not adapted to the available bandwidth on the connection from
server to client and that specialized streaming servers or more complex network
architecture providing bandwidth and delay guarantees are required. Although
streaming systems exist which support variation of the delivery data rate according to
available bandwidth (for example Adobe Flash Adaptive Streaming), these are generally
not as efficient as download transport flow control protocols such as TCP at utilizing all

the available bandwidth.

[0025] Recently, new media delivery systems based on a combination of the
“streaming” and “‘download” models have been developed and deployed. An example
of such a model is referred to herein as a “block-request streaming” model, wherein a
media client requests blocks of media data from serving infrastructure using a download
protocol, such as HTTP. A concern in such systems may be the ability to start playing
out a stream, for example decoding and rendering received audio and video streams
using a personal computer and displaying the video on a computer screen and playing
the audio through built in speakers, or as another example decoding and rendering
received audio and video streams using a set top box and displaying the video on a

television display device and playing the audio through a stereo system.

[0026] Other concerns, such as being able to decode the source blocks fast enough to
keep up with the source streaming rate, to minimize the decoding latency and to reduce
the use of available CPU resources are issues. Another concern is to provide a robust
and scalable streaming delivery solution that allows components of the system to fail

without adversely affecting the quality of the streams delivered to receivers. Other

02 Jun 2014

2010298321

problems might occur based on rapidly changing information about a presentation, as it is

being distributed. Thus, it is desirable to have improved processes and apparatus.

BRIEF SUMMARY OF THE INVENTION

[0027] A block request streaming system provides for improvements in the user
experience and bandwidth efficiency of such systems, typically using an ingestion system
that generates data in a form to be served by a conventional file server (HTTP, FTP, or the
like), wherein the ingestion system intakes content and prepares it as files or data elements
to be served by the file server, which might or might not include a cache. A client device
can be adapted to take advantage of the ingestion process as well as including
improvements that make for a better presentation independent of the ingestion process. In
one aspect, the client devices and ingestion system are coordinated in that there is a
predefined mapping and template for making block requests to HTTP file names that a
conventional file server can accept through the use of URL construction rules. In some
embodiments, novel improvements to methods for specifying segment size in an

approximate manner for more efficient organization are provided.

[0027a] According to a first aspect of the present invention there is provided a method for
requesting segments including media data of a media presentation from a media delivery

system using a client device, the method including:

constructing, at the client device, one or more file identifiers of the segments of
the media presentation based on file identifier construction rules, wherein the file identifier
construction rules enable specification of required media and associated metadata in the file

identifier;

sending a request for a segment of the media presentation to the media delivery
system, wherein the request includes a constructed file identifier of the one or more
constructed file identifiers, wherein the constructed file identifier specifies required media

and associated metadata of the segment.

[0027b] According to a second aspect of the present invention there is provided a client
device for obtaining segments including media data of a media presentation from a media

delivery system, including:

a transmitter for sending file requests, wherein a file request includes a file

indicator and a byte range within an indicated file;

a receiver for receiving responses to the file requests; and

02 Jun 2014

2010298321

Sa

logic for constructing a file identifier of the segments of the media presentation
based on file identifier construction rules, wherein the file identifier construction rules

enable specification of required media and associated metadata in the file identifier,

wherein file requests include the constructed file identifier, wherein the

constructed file identifier specifies required media and associated metadata of the segment.

[0028] The following detailed description together with the accompanying drawings will

provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Fig. 1 depicts elements of a block request streaming system according to

embodiments of the present invention.

[0030] Fig. 2 illustrates the block request streaming system of Fig. 1, showing greater
detail in the elements of a client system that is coupled to a block serving infrastructure

(“BSI”) to receive data that is processed by a content ingestion system.
[0031] Fig. 3 illustrates a hardware/software implementation of an ingestion system.
[0032] Fig. 4 illustrates a hardware/software implementation of a client system.

[0033] Fig. S illustrates possible structures of the content store shown in Fig. 1,
including segments and media presentation descriptor (“MPD”) files, and a breakdown of

segments, timing, and other structure within an MPD file.

WO 2011/038032 PCT/US2010/049869

[0034] Fig. 6 illustrates details of a typical source segment, as might be stored in the

content store illustrated in Figs. 1 and 5.
[0035] Figs. 7a and 7b illustrate simple and hierarchical indexing within files.

[0036] Fig. 8(a) illustrates variable block sizing with aligned seek points over a

plurality of versions of a media stream.

[0037] Fig. 8(b) illustrates variable block sizing with non-aligned seek points over a

plurality of versions of a media stream.
[0038] Fig. 9(a) illustrates a Metadata Table.

[0039] Fig. 9(b) illustrates the transmission of Blocks and Metadata Table from server

to client.

[0040] Fig. 10 illustrates blocks that are independent of RAP boundaries.
[0041] Fig. 11 illustrates continuous and discontinuous timing across segments.
[0042] Fig. 12 is a figure showing an aspect of scalable blocks.

[0043] Fig. 13 depicts a graphical representation of the evolution of certain variables

within a block-request streaming system over time.

[0044] Fig. 14 depicts another graphical representation of the evolution of certain

variables within a block-request streaming system over time.
[0045] Fig. 15 depicts a cell grid of states as a function of threshold values.

[0046] Fig. 16 is a flowchart of a process that might be performed in a receiver that

can request single blocks and multiple blocks per request.
[0047] Fig. 17 is a flowchart of a flexible pipeline process.

[0048] Fig. 18 illustrates an example of a candidate set of requests, their priorities,

and which connections that they can be issued on, at a certain time.

[0049] Fig. 19 illustrates an example of a candidate set of requests, their priorities,
and which connections that they can be issued on, that has evolved from one time to

another.

WO 2011/038032 PCT/US2010/049869

[0050] Fig. 20 is a flowchart of consistent caching server proxy selection based on a

file identifier.

[0051] Fig. 21 illustrates a syntax definition for a suitable expression language.
[0052] Fig. 22 illustrates an example of a suitable hash function.

[0053] Fig. 23 illustrates examples of file identifier construction rules.

[0054] Figs. 24(a) — (e) illustrate bandwidth fluctuations of TCP connections.
[0055] Fig. 25 illustrates multiple HTTP requests for source and repair data.
[0056] Fig. 26 illustrates example channel zapping time with and without FEC.

[0057] Fig. 27 illustrates details of a repair segment generator that, as part of the
ingestion system shown in Fig. 1, generates repair segments from source segments and

control parameters.
[0058] Fig. 28 illustrates relationships between source blocks and repair blocks.
[0059] Fig. 29 illustrates a procedure for live services at different times at the client.

[0060] In the figures, like items are referenced with like numbers and sub-indices are
provided in parentheses to indicate multiple instances of like or identical items. Unless
otherwise indicated, the final sub-index (e.g., “N” or “M”) is not intended to be limiting
to any particular value and the number of instances of one item can differ from the

number of instances of another item even when the same number are illustrated and the

sub-index is reused.

DETAILED DESCRIPTION OF THE INVENTION

[0061] As described herein, a goal of a streaming system is to move media from its
storage location (or the location where it is being generated) to a location where it is
being consumed, i.¢., presented to a user or otherwise “used up” by a human or
electronic consumer. Ideally, the streaming system can provide uninterrupted playback
(or more generally, uninterrupted “consumption”) at a receiving end and can begin
playing a stream or a collection of streams shortly after a user has requested the stream
or streams. For efficiency reasons, it is also desirable that each stream be halted once
the user indicates that the stream is no longer needed, such as when the user is switching

from one stream to another stream or it obeys the presentation of a stream, ¢.g., the

WO 2011/038032 PCT/US2010/049869

“subtitle” stream. If the media component, such as the video, is continued to be
presented, but a different stream is selected to present this media component, it is often

preferred to occupy limited bandwidth with the new stream and stop the old stream.

[0062] A block-request streaming system according to embodiments described herein
provides many benefits. It should be understood that a viable system need not include
all of the features described herein, as some applications might provide a suitably

satisfying experience with less than all of the features described herein.

HTTP Streaming

[0063] HTTP streaming is a specific type of streaming. With HTTP streaming, the
sources might be standard web servers and content delivery networks (CDNs) and might
use standard HTTP. This technique may involve stream segmentation and the use of
multiple streams, all within the context of standardized HTTP requests. The media, such
as video, may by encoded at multiple bitrates to form different versions, or
representations. The terms “version” and “representation” are used synonymously in
this document. Each version or representation may be broken into smaller pieces,
perhaps on the order of a few seconds each, to form segments. Each segment may then

be stored on a web server or CDN as a separate file.

[0064] On the client side, requests may then be made, using HTTP, for individual
segments that are seamlessly spliced together by the client. The client may switch to
different data rates based on available bandwidth. The client may also request multiple
representations, each presenting a different media component, and may present the
media in these representations jointly and synchronously. Triggers for switching may
include buffer occupancy and network measurements, for example. When operating in
the steady state, the client may pace requests to the server to maintain a target buffer

occupancy.

[0065] Advantages of HTTP streaming may include bit-rate adaptation, fast startup
and seek, and minimal unnecessary delivery. These advantages come from controlling
the delivery to be only a short time ahead of the playout, making maximum use of
available bandwidth (through variable bit rate media), and optimizing stream

segmentation and intelligent client procedures.

[0066] A media presentation description may be provided to an HTTP streaming

client such that the client can use a collection of files (for example in formats specified

WO 2011/038032 PCT/US2010/049869

by 3GPP, herein called a 3gp segments) to provide a streaming service to the user. A
media presentation description, and possibly updates of this media presentation
description, describe a media presentation that is a structured collection of segments,
each containing media components such that the client can present the included media
in a synchronized manner and can provide advanced features, such as seeking,
switching bitrates and joint presentation of media components in different
representations. The client may use the media presentation description information in
different ways for the provisioning of the service. In particular, from the media
presentation description, the HTTP streaming client may determine which segments in
the collection can be accessed so that that the data is useful to the client capability and

the user within the streaming service.

[0067] In some embodiments, the media presentation description may be static,
although segments might be created dynamically. The media presentation description
may be as compact as possible to minimize access and download time for the service.
Other dedicated server connectivity may be minimized, for example regular or frequent

timing synchronization between client and server.

[0068] The media presentation may be constructed to permit access by terminals with
different capabilities, such as access to different access network types, different current
network conditions, display sizes, access bitrates and codec support. The client may

then extract the appropriate information to provide the streaming service to the user.

[0069] The media presentation description may also permit deployment flexibility and

compactness according to the requirements.

[0070] In asimplest case, each Alternative Representation may be stored in a single
3GP file, i.c., a file conforming as defined in 3GPP TS26.244, or any other file that
conforms to the ISO base media file format as defined in ISO/IEC 14496-12 or derived
specifications (such as the 3GP file format described in 3GPP Technical Specification
26.244). In the remainder of this document, when referring to a 3GP file, it should be
understood that ISO/IEC 14496-12 and derived specifications can map all described
features to the more general ISO base media file format as defined in ISO/IEC 14496-12
or any derived specifications. The client may then request an initial portion of the file to

learn the media metadata (which typically is stored in the Movie header box, also

WO 2011/038032 PCT/US2010/049869
10

referred to as “moov” box) together with movie fragment times and byte offsets. The

client may then issue HTTP partial get requests to obtain movie fragments as required.

[0071] In some embodiments it may be desirable to split each representation into
several segments, where the segments. In case that the segment format is based on the
3GP file format, then segments contain non-overlapping time slices of the movie
fragments, called “time-wise splitting”. Each of these segments may contain multiple
movie fragments and each may be a valid 3GP file in its own right. In another
embodiment, the representation is split into an initial segment containing the metadata
(typically the Movie Header “moov” box) and a set of media segments, each containing
media data and the concatenation of the initial segment and any media segment forms a
valid 3GP file as well as the concatenation of the initial segment and all media segments
of one representation forms a valid 3GP file. The entire presentation may be formed by
playing out each segment in turn, mapping the local timestamps within the file to the

global presentation time according to the start time of each representation.

[0072] It should be noted that throughout this description references to a “segment”
should be understood to include any data object which is fully or partially constructed or
read from a storage medium or otherwise obtained as a result of a file download
protocol request, including for example an HTTP request. For example, in the case of
HTTP, the data objects may be stored in actual files residing on a disk or other storage
medium connected to or forming part of an HTTP server, or the data objects may be
constructed by a CGI script, or other dynamically executed program, which is executed
in response to the HTTP request. The terms “file” and “segment” are used
synonymously in this document unless otherwise specified. In the case of HTTP, the

segment may be considered as the entity body of an HTTP request response.

[0073] The terms “presentation” and “content item” are used synonymously in this
document. In many examples, the presentation is an audio, video or other media

presentation that has a defined “playout” time, but other variations are possible.

[0074] The terms “block” and “fragment” are used synonymously in this document
unless otherwise specified and generally refer to the smallest aggregation of data that is
indexed. Based on the available indexing, a client can request different portions of a
fragment in different HTTP requests, or can request one or more consecutive fragments

or portions of fragments in one HTTP request. In the case where ISO base media file

WO 2011/038032 PCT/US2010/049869
11

format based segments or 3GP file format based segments are used, a fragment typically
refers to a movie fragment defined as the combination of a movie fragment header

(‘moof’) box and a media data (‘mdat’) box.

[0075] Herein, a network carrying data is assumed to be packet-based in order to
simplify the descriptions herein, with the recognition that, after reading this disclosure,
one skilled in the art can apply embodiments of the present invention described herein

to other types of transmission networks, such as continuous bit-stream networks.

[0076] Herein, FEC codes are assumed to provide protection against long and variable
delivery times of data, in order to simplify the descriptions herein, with the recognition
that, after reading this disclosure, one skilled in the art can apply embodiments of the
present invention to other types of data transmission issues, such a bit-flip corruption of
data. For example, without FEC, if the last portion of a requested fragment arrives much
later or has high variance in its arrival time than previous portions of the fragment then
the content zapping time can be large and variable, whereas using FEC and parallel
requests, only the majority of the data requested for a fragment need arrive before it can
be recovered, thereby reducing content zapping time and the variability in content
zapping time. In this description, it might be assumed that the data to be encoded (i.e.,
source data) has been broken into equal length “symbols”, which may be of any length
(down to a single bit), but symbols could be of different lengths for different parts of the

data, e.g., different symbol sizes might be used for different blocks of data.

[0077] In this description, in order to simplify the descriptions herein, it is assumed
that the FEC is applied to a “block™ or “fragment” of data at a time, i.¢c., a “block” is a
“source block” for FEC encoding and decoding purposes. A client device can use the
segment indexing described herein to help to determine the source block structure of a
segment. One skilled in the art can apply embodiments of the present invention to other
types of source block structures, e.g., a source block may be a portion of a fragment, or

encompass one or more fragments or portions of fragments.

[0078] The FEC codes considered for use with block-request streaming are typically
systematic FEC codes, i.¢., the source symbols of the source block may be included as
part of the encoding of the source block and thus the source symbols are transmitted.

As one skilled in the art will recognize, the embodiments described herein apply equally

well to FEC codes that are not systematic. A systematic FEC encoder generates, from a

WO 2011/038032 PCT/US2010/049869
12

source block of source symbols, some number of repair symbols and the combination of
at least some of the source and repair symbols are the encoded symbols that are sent
over the channel representing the source block. Some FEC codes may be useful for
efficiently generating as many repair symbols as needed, such as “information additive
codes” or “fountain codes” and examples of these codes include “chain reaction codes”
and “multi-stage chain reaction codes”. Other FEC codes such, as Reed-Solomon codes

may practically only generate a limited number of repair symbols for each source block.

[0079] It is assumed in many of these examples that a client is coupled to a media
server or a plurality of media servers and the client requests streaming media over a
channel or a plurality of channels from the media server or the plurality of media

servers. However, more involved arrangements are also possible.

Examples of Benefits

[0080] With block-request streaming, the media client maintains a coupling between
the timing of these block requests and the timing of the media playout to the user. This
model may retain the advantages of the “download” model described above, while
avoiding some of the disadvantages that stem from the usual de-coupling of media
playout from data delivery. The block-request streaming model makes use of the rate
and congestion control mechanisms available in transport protocols, such as TCP, to
ensure that the maximum available bandwidth is used for media data. Additionally, the
division of the media presentation into blocks allows each block of encoded media data

to be selected from a set of multiple available encodings.

[0081] This selection may be based on any number of criteria, including matching of
the media data rate to the available bandwidth, even when the available bandwidth is
changing over time, matching of the media resolution or decoding complexity to client
capabilities or configuration, or matching to user preferences, such as languages. The
selection may also include the download and presentation of auxiliary components, such
as accessibility components, closed captioning, sub-titles, sign language video, etc.
Examples of existing systems using the block-request streaming model include Move

Networks ™, Microsoft Smooth Streaming and the Apple iPhone™ Streaming Protocol.

[0082] Commonly, each block of media data may be stored on a server as an
individual file and then a protocol, such as HTTP, is used, in conjunction with HTTP

server software executed on the server, to request the file as a unit. Typically, the client

WO 2011/038032 PCT/US2010/049869
13

1s provided with metadata files, which may for example be in Extensible Markup
Language (XML) format or in playlist text format or in binary format, which describe
features of the media presentation, such as the available encodings (for example,
required bandwidth, resolutions, encoding parameters, media type, language), typically
referred to as “representations” in this document, and the manner in which the
encodings have been divided into blocks. For example, the metadata may include a
Uniform Resource Locator (URL) for each block. The URLSs itself may provide a
scheme such as being prepended with the string “http://” to indicate that protocol that is
to be used to access the documented resource is HTTP. Another example is “ftp://” to

indicate that the protocol that is to be used is FTP.

[0083] In other systems, for example, the media blocks may be constructed
“on-the-fly” by the server in response to a request from the client that indicates the
portion of the media presentation, in time, that is requested. For example, in case of
HTTP with scheme “http://”, the execution of the request of this URL provides a request
response that contains some specific data in the entity body of this request response.
The implementation in the network on how to generate this request response may be

quite different, depending on the implementation of the server servicing such requests.

[0084] Typically, each block may be independently decodable. For example in the
case of video media, each block may begin with a “seek point.” In some coding
schemes, a seek point is referred to as “Random Access Points” or “RAPs”, although
not all RAPs may be designated as a seek point. Similarly, in other coding schemes, a
seek point starts at a “Independent Data Refresh” frame, or “IDR”, in the case of H.264
video encoding, although not all IDRs may be designated as a seek point. A seek point
is a position in video (or other) media where a decoder can start decoding without
requiring any data about prior frames or data or samples, as might be the case where a
frame or sample that is being decoded was encoded not in a stand-alone fashion, but as,

for example, the difference between the current frame and the prior frame.

[0085] A concern in such systems may be the ability to start playing out a stream, for
example decoding and rendering received audio and video streams using a personal
computer and displaying the video on a computer screen and playing the audio through
built in speakers, or as another example decoding and rendering received audio and

video streams using a set top box and displaying the video on a television display device

http://%25e2%2580%259d
ftp://%25e2%2580%259d
http://%25e2%2580%259d

WO 2011/038032 PCT/US2010/049869
14

and playing the audio through a stereo system. A primary concern may be to minimize
the delay between when a user decides to watch a new content delivered as a stream and
takes an action that expresses that decision, e.g., the user clicks on a link within a
browser window or on the play button of a remote control device, and when the content
starts being displayed on the user’s screen, hereinafter called the “content zapping
time”. Each of these concerns can be addressed by elements of the enhanced system

described herein.

[0086] An example of content zapping is when a user is watching a first content
delivered via a first stream and then the user decides to watch a second content
delivered via a second stream and initiates an action to start watching the second
content. The second stream may be sent from the same set or a different set of servers
as the first stream. Another example of content zapping is when a user is visiting a
website and decides to start watching a first content delivered via a first stream by
clicking on a link within the browser window. In a similar manner, a user may decide
to start playing the content not from the beginning, but from some time within the
stream. The user indicates to their client device to seek to a time position and the user
might expect that the selected time is rendered instantaneously. Minimizing content
zapping time is important for video watching to allow users a high quality fast content

surfing experience when searching and sampling a wide range of available contents.

[0087] Recently, it has become common practice to consider using Forward Error
Correction (FEC) codes for protection of streaming media during transmission. When
sent over a packet network, examples of which include the Internet and wireless
networks such as those standardized by groups such as 3GPP, 3GPP2 and DVB, the
source stream is placed into packets as it is generated or made available, and thus the
packets may be used to carry the source or content stream in the order it is generated or

made available to receivers.

[0088] In a typical application of FEC codes to these types of scenarios, an encoder
may use FEC code in the creation of repair packets, which are then sent in addition to
the original source packets containing the source stream. The repair packets have a
property that, when source packet loss occurs, received repair packets may be used to
recover the data contained in the lost source packets. Repair packets can be used to

recover content of lost source packets that are lost entirely, but might also be used to

WO 2011/038032 PCT/US2010/049869
15

recover from partial packet loss occurs, either entirely received repair packets or even
partially received repair packets. Thus, wholly or partially received repair packets can

be used to recover wholly or partially lost source packets.

[0089] In yet other examples, other types of corruption can occur to the sent data, e.g.,
values of bits may be flipped, and thus repair packets may be used to correct such
corruption and provide as accurate as possible recovery of the source packets. In other
examples, the source stream is not necessarily sent in discrete packets, but instead may

be sent for example as a continuous bit stream.

[0090] There are many examples of FEC codes that can be used to provide protection
of a source stream. Reed-Solomon codes are well known codes for error and erasure
correction in communication systems. For erasure correction over, for example, packet
data networks, a well-known efficient implementation of Reed-Solomon codes uses
Cauchy or Vandermonde matrices as described in L. Rizzo, “Effective Erasure Codes
for Reliable Computer Communication Protocols”, Computer Communication Review,
27(2):24-36 (April 1997) (hereinafter “Rizzo”) and Bloemer, et al., “An XOR-Based
Erasure-Resilient Coding Scheme”, Technical Report TR-95-48, International Computer
Science Institute, Berkeley, California (1995) (hereinafter “XOR-Reed-Solomon™) or

elsewhere.

[0091] Other examples of FEC codes include LDPC codes, chain reaction codes such

as those described in Luby I and multi-stage chain reaction codes such in Shokrollahi I.

[0092] Examples of the FEC decoding process for variants of Reed-Solomon codes
are described in Rizzo and XOR-Reed-Solomon. In those examples, decoding may be
applied after sufficient source and repair data packets have been received. The
decoding process may be computationally intensive and, depending on the CPU
resources available, this may take considerable time to complete, relative to the length
of time spanned by the media in the block. The receiver may take into account this
length of time required for decoding when calculating the delay required between the
start of reception of the media stream and play-out of the media. This delay due to
decoding is perceived by the user as a delay between their request for a particular media

stream and the start of playback. It is thus desirable to minimize this delay.

[0093] In many applications, packets may be further subdivided into symbols on

which the FEC process is applied. A packet can contain one or more symbol (or less

WO 2011/038032 PCT/US2010/049869
16

than one symbol, but usually symbols are not split across groups of packets unless the
error-conditions among groups of packets is known to be highly correlated). A symbol
can have any size, but often the size of a symbol is at most equal to the size of the
packet. Source symbols are those symbols that encode the data that is to be transmitted.
Repair symbols are symbols generated from source symbols, directly or indirectly that
are in addition to the source symbols (i.c., the data to be transmitted can be entirely
recovered if all of the source symbols are available and none of the repair symbols are

available.

[0094] Some FEC codes may be block-based, in that encoding operations depend on
the symbol(s) that are in a block and can be independent of the symbols not in that
block. With block-based encoding, an FEC encoder can generate repair symbols for a
block from the source symbols in that block, then move on to the next block and not
need to refer to source symbols other than those for the current block being encoded. In
a transmission, a source block comprising source symbols may be represented by an
encoded block comprising encoded symbols (which might be some source symbols,
some repair symbols, or both). With the presence of repair symbols, not all of the

source symbols are required in every encoded block.

[0095] For some FEC codes, notably Reed-Solomon codes, the encoding and
decoding time may grow impractical as the number of encoded symbols per source
block grows. Thus, in practice, there is often a practical upper bound (255 is an
approximate practical limit for some applications) on the total number of encoded
symbols that can be generated per source block, especially in a typical case where the
Reed-Solomon encoding or decoding process is performed by custom hardware, e.g.,
the MPE-FEC processes that use Reed-Solomon codes included as part of the DVB-H
standard for protecting streams against packet loss are implemented in specialized
hardware within a cell phone that is limited to 255 Reed-Solomon total encoded
symbols per source block. Since symbols are often required to be placed into separate
packet payloads, this places a practical upper bound on the maximum length of the
source block being encoded. For example, if a packet payload is limited to 1024 bytes
or less and each packet carries one encoded symbol, then an encoded source block can
be at most 255 kilobytes, and this is also, of course, an upper bound on the size of the

source block itself.

WO 2011/038032 PCT/US2010/049869
17

[0096] Other concerns, such as being able to decode the source blocks fast enough to
keep up with the source streaming rate, to minimize the decoding latency introduced by
FEC decoding, and to only use a small fraction of the available CPU on the receiving
device at any point in time during FEC decoding are addressed by elements described

herein, as well as dealing with

[0097] The need to provide a robust and scalable streaming delivery solution that
allows components of the system to fail without adversely affecting the quality of the

streams delivered to receivers.

[0098] A block request streaming system needs to support changes to the structure or
metadata of the presentation, for example changes to the number of available media
encodings or changes to the parameters of the media encodings such as bit rate,
resolution, aspect ratio, audio or video codecs or codec parameters of changes in other
metadata such as URLs associated with the content files. Such changes may be required
for a number of reasons including editing together content from different sources such
as advertising or different segments of a larger presentation, modification of URLs or
other parameters which become necessary as a result of changes in the serving
infrastructure for example due to configuration changes, equipment failures or recovery

from equipment failures or other reasons.

[0099] Methods exist in which a presentation may be controlled by a continuously
updated playlist file. Since this file is continuously updated, then at least some of the
changes described above can be made within these updates. A disadvantage of a
conventional method is that client devices must continually retrieve, also referred to as
“polling”, the playlist file, placing load on the serving infrastructure and that this file
may not be cached for longer than the update interval, making the task for the serving
infrastructure much more difficult. This is addressed by elements herein so that updates
of the kind described above are provided without the need for continuous polling by

clients for the metadata file.

[0100] Another problem, especially in the live services, typically known from
broadcast distribution, is the lack of ability for the user to view content that has been
broadcast earlier than the time when the user joined the program. Typically, local
personal recording consumes unnecessary local storage or is not possible as the client

was not tuned to the program or is prohibited by content protection rules. Network

WO 2011/038032 PCT/US2010/049869
18

recording and time-shift viewing is preferred, but requires individual connections of the
user to the server and a separate delivery protocol and infrastructure than the live
services, resulting in duplicated infrastructure and significant server costs. This is also

addressed by elements described herein.

System Overview

[0101] One embodiment of the invention is described with reference to Fig. 1, which
shows a simplified diagram of a block-request streaming system embodying the

invention.

[0102] In Fig. 1, a block-streaming system 100 is illustrated, comprising block
serving infrastructure (“BSI”) 101 in turn comprising an ingestion system 103 for
ingesting content 102, preparing that content and packaging it for service by an HTTP
streaming server 104 by storing it into a content store 110 that is accessible to both
ingestion system 103 and HTTP streaming server 104. As shown, system 100 might
also include an HTTP cache 106. In operation, a client 108, such as an HTTP streaming
client, sends requests 112 to HTTP streaming server 104 and receives responses 114
from HTTP streaming server 104 or HTTP cache 106. In each case, elements shown in
Fig. 1 might be implemented, at least in part, in software, therein comprising program

code that is executed on a processor or other electronics.

[0103] The content might comprise movies, audio, 2D planar video, 3D video, other
types of video, images, timed text, timed metadata or the like. Some content might
involve data that is to be presented or consumed in a timed manner, such as data for
presenting auxiliary information (station identification, advertising, stock quotes,
Flash™ gsequences, etc.) along with other media being played out. Other hybrid
presentations might also be used that combine other media and/or go beyond merely

audio and video.

[0104] Asillustrated in Fig. 2, media blocks may be stored within a block serving
infrastructure 101(1), which could be, for example, an HTTP server, a Content Delivery
Network device, an HTTP proxy, FTP proxy or server, or some other media server or
system. Block serving infrastructure 101(1) is connected to a network 122, which could
be, for example, an Internet Protocol (“IP”’) network such as the Internet. A
block-request streaming system client is shown having six functional components,

namely a block selector 123, provided with the metadata described above and

WO 2011/038032 PCT/US2010/049869
19

performing a function of selecting blocks or partial blocks to be requested from among
the plurality of available blocks indicated by the metadata, a block requestor 124, that
receives request instructions from block selector 123 and performs the operations
necessary to send a request for the specified block, portions of a block, or multiple
blocks, to block serving infrastructure 101(1) over network 122 and to receive the data
comprising the block in return, as well as a block buffer 125, a buffer monitor 126, a
media decoder 127 and one or more media transducers 128 that faciliate media

consumption.

[0105] Block data received by block requestor 124 is passed for temporary storage to
block buffer 125, which stores the media data. Alternatively, the received block data
can be stored directly into block buffer 125 as illustrated in Fig. 1. Media decoder 127
is provided with media data by block buffer 125 and performs such transformations on
this data as are necessary to provide suitable input to media transducers 128, which
render the media in a form suitable for user or other consumption. Examples of media
transducers include visual display devices such as those found in mobile phones,
computer systems or televisions, and might also include audio rendering devices, such

as speakers or headphones.

[0106] An example of a media decoder would be a function that transforms data in the
format described in the H.264 video coding standard into analogue or digital
representations of video frames, such as a YUV-format pixel map with associated

presentation timestamps for each frame or sample.

[0107] Buffer monitor 126 receives information concerning the contents of block
buffer 125 and, based on this information and possibly other information, provides input
to block selector 123, which is used to determine the selection of blocks to request, as is

described herein.

[0108] In the terminology used herein, each block has a “playout time” or “duration”
that represents the amount of time it would take for the receiver to play the media
included in that block at normal speed. In some cases, the playout of the media within a
block may depend on having already received data from previous blocks. In rare cases,
the playout of some of the media in a block may depend on a subsequent block, in
which case the playout time for the block is defined with respect to the media that can

be played out within the block without reference to the subsequent block, and the

WO 2011/038032 PCT/US2010/049869
20

playout time for the subsequent block is increased by the playout time of the media
within this block that can only playout after having received the subsequent block.
Since including media in a block that depends on subsequent blocks is a rare case, in the
remainder of this disclosure we assume that media in one block does not depend on
subsequent blocks, but note that those skilled in the art will recognize that this variant

can be easily added to the embodiments described below.

ER Y

[0109] The receiver may have controls such as “pause”, “fast forward”, “reverse”, etc.
that may result in the block being consumed by playout at a different rate, but if the
receiver can obtain and decode each consecutive sequence of blocks in an aggregate
time equal to or less than their agreggate playout time excluding the last block in the
sequence then the receiver can present the media to the user without stalling. In some
descriptions herein, a particular position in the media stream is referred to as a particular
“time” in the media, corresponding to the time that would have elapsed between the
beginning of the media playout and the time when the particular position in the video
stream is reached. The time or position in a media stream is a conventional concept.
For example, where the video stream comprises 24 frames per second, the first frame
could be said to have a position or time of t=0.0 seconds and the 241st frame could be
said to have a position or time of t=10.0 seconds. Naturally, in a frame-based video
stream, position or time need not be continuous, as each of the bits in the stream from
the first bit of the 241st frame to just before the first bit of the 242nd frame might all

have the same time value.

[0110] Adopting the above terminology, a block-request streaming system (BRSS)
comprises one or more clients that make requests to one or more content servers (for
example, HTTP servers, FTP Servers, etc.). An ingestion system comprises one or
more ingestion processors, wherein an ingestion processor receives content (in real-time
or not), processes the content for use by the BRSS and stores it into storage accessible
to the content servers, possibly also along with metadata generated by the ingestion

processor.

[0111] The BRSS also might contain content caches that coordinate with the content
servers. The content servers and content caches might be conventional HTTP servers
and HTTP caches that receive requests for files or segments in the form of HTTP

requests that include a URL, and may also include a byte range, in order to request less

WO 2011/038032 PCT/US2010/049869
21

than all of the file or segment indicated by the URL. The clients might include a
conventional HTTP client that makes requests of HTTP servers and handles the
responses to those requests, where the HTTP client is driven by a novel client system
that formulates requests, passes them to the HTTP client, gets responses from the HTTP
client and processes those (or storing, transforming, etc.) in order to provide them to a
presentation player for playout by a client device. Typically, the client system does not
know in advance what media is going to be needed (as the needs might depend on user
input, changes in user input, etc.), so it is said to be a “streaming” system in that the
media is “consumed” as soon as it is received, or shortly thereafter. As a result,
response delays and bandwidth constraints can cause delays in a presentation, such as
causing a pause in a presentation as the stream catches up to where the user is in

consuming the presentation.

[0112] In order to provide for a presentation that is perceived to be of good quality, a
number of details can be implemented in the BRSS, either at the client end, at the
ingestion end, or both. In some cases, the details that are implemented are done in
consideration of, and to deal with, the client-server interface at the network. In some
embodiments, both the client system and the ingestion system are aware of the
enhancement, whereas in other embodiments, only one side is aware of the
enhancement. In such cases, the entire system benefits from the enhancement even
though one side is not aware of it, while in others, the benefit only accrues if both sides

are aware of it but when one side is not aware, it still operates without failing.

[0113] Asillustrated in Fig. 3, the ingestion system may be implemented as a
combination of hardware and software components, according to various embodiments.
The ingestion system may comprise a set of instructions that can be executed to cause
the system to perform any one or more of the methodologies discussed herein. The
system may be realized as a specific machine in the form of a computer. The system
may be a server computer, a personal computer (PC), or any system capable of
executing a set of instructions (sequential or otherwise) that specify actions to be taken
by that system. Further, while only a single system is illustrated, the term ““system”
shall also be taken to include any collection of systems that individually or jointly
execute a set (or multiple sets) of instructions to perform any one or more of the

methodologies discussed herein.

WO 2011/038032 PCT/US2010/049869
22

[0114] The ingestion system may include the ingestion processor 302 (e.g., a central
processing unit (CPU)), a memory 304 which may store program code during
execution, and disk storage 306, all of which communicate with each other via a bus
300. The system may further include a video display unit 308 (e.g., a liquid crystal
display (LCD) or cathode ray tube (CRT)). The system also may include an
alphanumeric input device 310 (e.g., a keyboard), and a network interface device 312

for receiving content source and delivering content store.

[0115] The disk storage unit 306 may include a machine-readable medium on which
may be stored one or more sets of instructions (e.g., software) embodying any one or
more of the methodologies or functions described herein. The instructions may also
reside, completely or at least partially, within the memory 304 and/or within the
ingestion processor 302 during execution thereof by the system, with the memory 304

and the ingestion processor 302 also constituting machine-readable media.

[0116] Asillustrated in Fig. 4, the client system may be implemented as a
combination of hardware and software components, according to various embodiments.
The client system may comprise a set of instructions that can be executed to cause the
system to perform any one or more of the methodologies discussed herein. The system
may be realized as a specific machine in the form of a computer. The system may be a
server computer, a personal computer (PC), or any system capable of executing a set of
instructions (sequential or otherwise) that specify actions to be taken by that system.
Further, while only a single system is illustrated, the term “system” shall also be taken
to include any collection of systems that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of the methodologies

discussed herein.

[0117] The client system may include the client processor 402 (e.g., a central
processing unit (CPU)), a memory 404 which may store program code during
execution, and disk storage 406, all of which communicate with each other via a bus
400. The system may further include a video display unit 408 (e.g., a liquid crystal
display (LCD) or cathode ray tube (CRT)). The system also may include an
alphanumeric input device 410 (e.g., a keyboard), and a network interface device 412

for sending requests and receiving responses.

WO 2011/038032 PCT/US2010/049869
23

[0118] The disk storage unit 406 may include a machine-readable medium on which
may be stored one or more sets of instructions (e.g., software) embodying any one or
more of the methodologies or functions described herein. The instructions may also
reside, completely or at least partially, within the memory 404 and/or within the client
processor 402 during execution thereof by the system, with the memory 404 and the

client processor 402 also constituting machine-readable media.

Usage of 3GPP File Format
[0119] The 3GPP File Format or any other file based on the ISO base media file
format, such as the MP4 file format or the 3GPP2 file format, may be used as the

container format for HTTP streaming with the following features. A segment index
may be included in each segment to signal time offsets and byte ranges, such that the
client can download the appropriate pieces of files or media segments as required.
Global presentation timing of the entire media presentation and local timing within each
3GP file or media segment may be accurately aligned. Tracks within one 3GP file or
media segment may be accurately aligned. Tracks across representations may also be
aligned by assigning each of them to the global timeline such that switching across
representation may be seamless and joint presentation of media components in different

representations may be synchronous.

[0120] The file format may contain a profile for Adaptive Streaming with the
following properties. All movie data may be contained in movie fragments — the
“moov’” box may not contain any sample information. Audio and Video sample data
may be interleaved, with similar requirements as for the progressive download profile as
specified in TS26.244. The “moov’ box may be placed at the start of the file, followed
by fragment offset data, also referred to as a segment index, containing offset
information in time and byte ranges for each fragment or at least a subset of fragments

in the containing segment.

[0121] It may also be possible for the Media Presentation Description to reference
files that follow the existing Progressive Download profile. In this case the client may
use the Media Presentation Description simply to select the appropriate alternative
version from amongst multiple available versions. Clients may also use HTTP partial
get requests with files compliant to the Progressive Download profile to request subsets

of each alternative version and thereby implement a less efficient form of adaptive

WO 2011/038032 PCT/US2010/049869
24

streaming. In this case the different representations containing the media in the
progressive download profile may still adhere to a common global timeline to enable

seamless switching across representations.

Advanced Methods Overview

[0122] In the following sections, methods for improved block-request streaming
systems are described. It should be understood that some of these improvements can be
used with or without others of these improvements, depending on the needs of the
application. In the general operation, a receiver makes requests of a server or other
transmitter for specific blocks or portions of blocks of data. Files, also called segments,
may contain multiple blocks and are associated with one representation of a media

presentation.

[0123] Preferably, indexing information, also called “segment indexing” or “segment
map”, is generated that provides a mapping from playout or decode times to byte offsets
of corresponding blocks or fragments within a segment. This segment indexing may be
included within the segment, typically at the beginning of the segment (at least some of
the segment map is at the beginning) and is often small. The segment index may also be
provided in a separate index segment or file. Especially in cases where the segment
index is contained in the segment, the receiver may download some or all of this
segment map quickly and subsequently use this to determine the mapping between time
offsets and corresponding byte positions of fragments associated with those time offsets

within the file.

[0124] A receiver can use the byte offset to request data from the fragments
associated with particular time offsets, without having to download all of the data
associated with other fragments not associated with the time offsets of interest. In this
way, the segment map or segment indexing can greatly improve the ability of a receiver
to directly access the portions of the segment that are relevant to the current time offsets
of interest, with benefits including improved content zapping times, ability to quickly
change from one representation to another as network conditions vary, and reduced

wastage of network resources downloading media that is not played out at a receiver.

[0125] In case switching from one representation (referred to herein as the
“switch-from” representation) to another representation (referred to herein as the

“switch-to” representation) is considered, the segment index may also be used to

WO 2011/038032 PCT/US2010/049869
25

identify the start time of a random access point in the switch-to representation to
identify the amount of data to be requested in the switch-from representation to ensure
that seamless switching is enabled in a sense that media in the switch-from
representation is downloaded up to a presentation time such that the playout of of the

switch-to representation can start scamlessly from the random access point.

[0126] Those blocks represent segments of the video media or other media that the
requesting receiver needs in order to generate the output for the user of the receiver.
The receiver of the media can be a client device, such as when the receiver receives
content from a server that transmits the content. Examples include set-top boxes,
computers, game consoles, specially-equipped televisions, handheld devices,

specially-equipped mobile phones, or other client receivers.

[0127] Many advanced buffer management methods are described herein. For
example, a buffer management method enables clients to request blocks of the highest
media quality that may be received in time to be played out with continuity. A variable
block size feature improves compression efficiency. The ability to have multiple
connections for transmitting blocks to the requesting device while limiting the
frequency of the requests provides improved transmission performance. Partially
received blocks of data can be used to continue the media presentation. A connection
can be re-used for multiple blocks without having to commit the connection at the start
to a particular set of blocks. Consistency in the selection of servers from among
multiple possible servers by multiple clients is improved, which reduces the frequency
of duplicate content in nearby servers and improves the probability that a server
contains an entire file. Clients can request media blocks based on metadata (such as
available media encodings) that are embedded in the URLs for the files containing the
media blocks. A system can provide for calculation and minimization of the amount of
buffering time required before playout of the content can begin without incurring
subsequent pauses in media playout. Available bandwidth can be shared among
multiple media blocks, adjusted as the playout time of each block approaches, so that, if
necessary, a greater share of available bandwidth can be allocated towards the block

with the nearest playout time.

[0128] HTTP streaming may employ metadata. Presentation level metadata includes,

for example, stream duration, available encodings (bitrates, codecs, spatial resolutions,

WO 2011/038032 PCT/US2010/049869
26

frame rates, language, media types), pointers to stream metadata for each encoding, and
content protection (digital rights management (DRM) information). Stream metadata

may be URLSs for the segment files.

[0129] Segment metadata may include byte range versus time information for requests
within a segment and identification of Random Access Points (RAPs) or other seck
points, where some or all of this information may be part of a segment indexing or

segment map.

[0130] Streams may comprise multiple encodings of the same content. Each
encoding may then be broken into segments where each segment corresponds to a
storage unit or file. In the case of HTTP, a segment is typically a resource that can be
referenced by a URL and the request of such URL results in the return of the segment as
the entity body of the request response message. Segments may comprise multiple
groups of pictures (GoPs). Each GoP may further comprise multiple fragments where
the segment indexing provides time/byte-offset information for each fragment, i.e., the

unit of indexing is a fragment.

[0131] Fragments or portions of fragments may be requested through parallel TCP
connections to increase throughput. This can mitigate problems that arise when sharing
connections on a bottleneck link or when connections are lost due to congestion, thus
increasing overall speed and reliability of delivery, which can substantially improve the
speed and reliability of the content zapping time. Bandwidth can be traded for latency
by over-requesting, but care should be taken to avoid making requests too far into the

future that can increase the risk of starvation.

[0132] Multiple requests for segments on the same server may be pipelined (making
next request before current request completes) to avoid repetitious TCP startup delays.

Requests for consecutive fragments may be aggregated into one request.

[0133] Some CDNs prefer large files and may trigger background fetches of an entire
file from an origin server when first seeing a range request. Most CDNs will, however,
serve range requests from cache if the data is available. It may therefore be
advantageous to have some portion of the client requests be for a whole segment file.

These requests can later be cancelled if necessary.

WO 2011/038032 PCT/US2010/049869
27

[0134] Valid switch points may be seek points, specifically RAPs for example, in the
target stream. Different implementations are possible such as fixed GoP structures or
alignment of RAPs across streams (based on the beginning of the media or based on the

GoPs).

[0135] In one embodiment, segments and GoPs may be aligned across different rate
streams. In this embodiment, GoPs may be of variable size and may contain multiple

fragments, but fragments are not aligned between the different rate streams.

[0136] In some embodiments, file redundancy may be employed to advantage. In
these embodiments, an erasure code is applied to each fragment to generate redundant
versions of the data. Preferably, the source formatting is not changed due to the usage
of FEC, and additional repair segments, for example as dependent representation of the
original representation, containing FEC repair data are generated and made available as
an additional step in the ingestion system. The client, which is able to reconstruct a
fragment using only source data for that fragment, may only request source data for the
fragment within the segment from the servers. If the servers are unavailable or the
connection to the servers are slow, which can be determined either before or after the
request for source data, additional repair data may be requested for the fragment from
the repair segment, which decreases the time to reliably deliver enough data to recover
the fragment, possibly using FEC decoding to use a combination of received source and
repair data to recover the source data of the fragment. Furthermore, additional repair
data can be requested to allow recovery of the fragment if a fragment becomes urgent,
1.c., its playout time becomes imminent, which increases the data share for that fragment
on a link but is more efficient than closing other connections on the link to free up
bandwidth. This may also mitigate the risk of starvation from the use of parallel

connections.

[0137] The fragment format may be a stored stream of real time transport protocol
(RTP) packets with audio/video synchronization achieved through real time transport

control protocol RTCP.

[0138] The segment format may also be a stored stream of MPEG-2 TS packets with

audio/video synchronization achieved MPEG-2 TS internal timing.

WO 2011/038032 PCT/US2010/049869
28

Using Signalling and/or Block Creation to Make Streaming More Efficient

[0139] A number of features can be used or not, in a block-request streaming system,
to provide for improved performance. Performance can be related to the ability to
playout a presentation without stalling, obtaining media data within bandwidth
constraints, and/or doing so within limited processor resources at a client, server and/or

ingestion system. Some of these features will now be described.

Indexing Within Segments

[0140] In order to formulate partial GET requests for Movie Fragments, the client
may be informed of the byte offset and start time in decoding or presentation time of all
media components contained in the fragments within the file or segment and also which
fragments begin or contain a Random Access Points (and so are suitable to be used as
switch points between alternative representations), wherein this information is often
referred to as the segment indexing or segment map. The start time in decoding or
presentation time may be expressed directly or may be expressed as deltas relative to a

reference time.

[0141] This time and byte offset indexing information may require at least 8 bytes of
data per movie fragment. As an example, for a two hour movie contained within a
single file, with 500ms movie fragments, this would be a total of about 112 kilobytes of
data. Downloading all of this data when starting a presentation may result in a
significant additional startup delay. However, the time and byte offset data can be
encoded hierarchically, so that the client can quickly find a small chunk of time and
offset data relevant to the point in the presentation at which it wishes to start. The
information may also be distributed within a segment such that some refinement of the

segment index may be located interleaved with media data.

[0142] Note that if the a representation is segmented timewise into multiple segments,
the use of this hierarchical coding may not be necessary, as the complete time and offset
data for each segment may already be quite small. For example, if segments are one
minute instead of two hours in the above example, the time-byte offset indexing
information is around 1 kilobyte of data, which can typically fit within a single TCP/IP
packet.

[0143] Different options are possible to add fragment time and byte offset data to a
3GPP file:

WO 2011/038032 PCT/US2010/049869
29

[0144] First, the Movie Fragment Random Access Box (“MFRA”) may be used for
this purpose. The MFRA provides a table, which may assist readers in finding random
access points in a file using movie fragments. In support of this function, the MFRA
incidentally contains the byte offsets of MFRA boxes containing random access points.
The MFRA may be placed at or near the end of the file, but this is not necessarily the
case. By scanning from the end of the file for a Movie Fragment Random Access Offset
Box and using the size information in it, one may be able to locate the beginning of a
Movie Fragment Random Access Box. However, placing the MFRA at the end for
HTTP streaming requires typically at least 3-4 HTTP requests to access the desired data:
at least one to request the MFRA from the end of the file, one to obtain the MFRA and
finally one to obtain the desired fragment in the file. Therefore, placing at the beginning
may be desirable as then the mfra may be downloaded together with the first media data
in a single request. Also, using the MFRA for HTTP streaming may be inefficient,
since none of the information in the “MFRA” is needed apart from the time and

moof offset and specifying offsets instead of lengths may require more bits.

[0145] Second, the Item Location Box (“ILOC”) may be used. The “ILOC” provides
a directory of metadata resources in this or other files, by locating their containing file,
their offset within that file, and their length. For example, a system might integrate all
the externally referenced metadata resources into one file, re-adjusting file offsets and
file references accordingly. However, the “ILOC” is intended for giving the location of

metadata so it may be difficult for this to coexist with real metadata.

[0146] Last, and perhaps most suitable, is the specification of a new box, referred to
as Time Index Box (“TIDX”), specifically dedicated to the purpose of providing exact
fragment times or durations and byte offset in an efficient manner. This is described in
more detail in the next section. An alternative box with the same functionalities may be
the Segment Index Box (“SIDX”). Herein, unless otherwise indicated, these two might
be interchangeable, as both boxes provide the ability to provide exact fragment times or
durations and byte offset in an efficient manner. The difference between the TIDX and
the SIDX are provided below. It should be apparent how to interchange the TIDX

boxes and SIDX boxes, as both boxes implement a segment index.

WO 2011/038032 PCT/US2010/049869
30

Segment Indexing

[0147] A segment has an identified start time and an identified number of bytes.
Multiple fragments may be concatenated into a single segment and clients may issue
requests that identify the specific byte range within the segment that correspond to the
required fragment or subset of the fragment. For example, when HTTP is used as the
request protocol, then the HTTP Range header may be used for this purpose. This
approach requires that the client has access to a “segment index” of the segment that
specifies the position within the segment of the different fragments. This “segment
index” may be provided as part of the metadata. This approach has the result that far
fewer files need to be created and managed compared to the approach where every
block is kept in a separate file. Management of the creation, transfer and storage of very
large numbers of files (which could extend to many thousands for a 1 hour presentation,
say) can be complex and error-prone and so reduction in the number of files represents

an advantage.

[0148] If the client only knows the desired start time of a smaller portion of a
segment, it might request the whole file, then read the file through to determine the
appropriate playout starting location. To improve bandwidth usage, segments can
include an index file as metadata, where the index file maps the byte ranges of
individual blocks with the time ranges that the blocks correspond to, called segment
indexing or segment map. This metadata can be formatted as XML data or they may be
binary, for example following the atom and box structure of the 3GPP file format. The
indexing can be simple, wherein the time and byte ranges of each block are absolute
relative to the start of the file, or they can be hierarchical, wherein some blocks are
grouped into parent blocks (and those into grandparent blocks, etc.) and the time and
byte range for a given block is expressed relative to the time and/or byte range of the

block’s parent block.

Example Indexing Map Structure

[0149] In one embodiment, the original source data for one representation of a media
stream may be contained in one or more media files herein called a “media segment”,
wherein each media segment contains the media data used to playback a continuous

time segment of the media, e.g., 5 minutes of the media playback.

WO 2011/038032 PCT/US2010/049869
31

[0150] Fig. 6 shows an example overall structure of a media segment. Within each
segment, either at the beginning or spread throughout the source segment, there can also
be indexing information, which comprises a time/byte-offset segment map. The
time/byte-offset segment map in one embodiment may be a list of time/byte-offset pairs
(T(0), B(0)), (T(1), B(1)), ..., (T(@i), B(1)),...,(T(n),B(n)), wherein T(i-1) represents a
start time within the segment for playback of the i-th fragment of media relative to
initial start time of the media amongst all media segments, T(i) represents an end time
for the i-th fragment (and thus the start time for the next fragment), and the byte-offset
B(i-1) is the corresponding byte index of the beginning of the data within this source
segment where the i-th fragment of media starts relative to the beginning of the source
segment, and B(i) is the corresponding end byte index of the i-th fragment (and thus the
index of the first byte of the next fragment). If the segment contains multiple media
components, then T(i) and B(i) may be provided for each component in the segment in a
absolute way or they may be expressed relative to another media component that serves

a reference media component.

[0151] In this embodiment, the number of fragments in the source segment is n, where

n may vary from segment to segment.

[0152] In another embodiment, the time offset in the segment index for each fragment
may be determined with absolute start time of the first fragment and the durations of
each fragment. In this case, the segment index may document the start time of the first
fragment and the duration of the all fragments that are included in the segment. The
segment index may also only document a subset of the fragments. In that case, the
segment index documents the duration of a subsegment that is defined as one or more
consecutive fragments, ending either at the end of the containing segment, or at the

beginning of the next subsegment.

[0153] For cach fragment, there may also be a value that indicates whether or not the
fragment starts at or contains a seek point, i.e., at a point wherein no media after that
point depends on any media previous to that point, and thus the media from that
fragment forward can be played out independently of previous fragments. Seek points
are, in general, points in the media where playout can start independently of all previous
media. Fig. 6 also shows a simple example of possible segment indexing for a source

segment. In that example, the time offset value is in units of milliseconds, and thus the

WO 2011/038032 PCT/US2010/049869
32

first fragment of this source segment starts 20 seconds from the beginning of the media,
and the first fragment has a playout time of 485 milliseconds. The byte offset of the
start of the first fragment is 0, and the byte offset of the end of the first fragment/start of
the second fragment is 50,245, and thus the first fragment is of size 50,245 bytes. If the
fragment or the subsegment does not start with a random access point, but the random
access point is contained in the fragment or subsegment, then the decoding time or
presentation time difference between the start time and the actual RAP time may be
given. This enables that in case of switching to this media segment, the client can

accurately know the time until the switch from representation needs to be presented.

[0154] In addition to, or instead of, simple or hierarchical indexing, daisy-chained

indexing and/or a hybrid indexing could be used.

[0155] Because the sample durations for different tracks might not be the same (for
example, video samples might be displayed for 33 ms, whereas an audio sample might
last 80 ms), the different tracks in a Movie Fragment might not begin and end at
precisely the same time, i.e., the audio may begin slightly before or slightly after the
video, with the opposite being true of the preceding fragment, to compensate. To avoid
ambiguity, the timestamps specified in the time and byte offset data may be specified
relative to a particular track and this may be the same track for each representation.
Usually this will be the video track. This allows the client to identify exactly the next

video frame when it is switching representations.

[0156] Care may be taken during presentation to maintain a strict relationship
between track timescales and presentation time, to ensure smooth playout and

maintenance of audio/video synchronisation despite the above issue.

[0157] Fig. 7 illustrates some examples, such as a simple index 700 and a hierarchical

index 702.

[0158] Two specific example of a box that contains a segment map are provided
below, one referred to as time index box (‘TIDX’) and one referred to as (‘SIDX”). The
definition follows the box structure according to the ISO base media file format. Other
designs for such boxes to define similar syntax and with the same semantics and

functionality should be apparent to the reader.

WO 2011/038032 PCT/US2010/049869
33

Time Index Box

[0159] Definition

[0160] Box Type: ‘tidx’

[0161] Container: File

[0162] Mandatory: No

[0163] Quantity: Any number zero or one

[0164] The Time Index Box may provide a set of time and byte offset indices that
associate certain regions of the file with certain time intervals of the presentation. The
Time Index Box may include a targettype field, which indicates the type of the
referenced data. For example, a Time Index Box with targettype “moof” provides an
index to the Media Fragments contained in the file in terms of both time and byte
offsets. A Time Index Box with targettype of Time Index Box can be used to construct
a hierarchical time index, allowing users of the file to quickly navigate to the required

portion of the index.

[0165] The segment index may for example contain the following syntax:

[0166] aligned(8) class TimeIndexBox
extends FullBox(‘frai’) {
unsigned int(32) targettype;

[0167] unsigned int(32) time reference track ID;
unsigned int(32) number_of elements;
unsigned int(64) first_element_offset;
unsigned int(64) first_element time;
for(i=1; 1 <= number of elements; i++)
{
bit (1) random_access_flag;
unsigned int(31) length;
unsigned int(32) deltaT;
}
}

[0168] Semantics

WO 2011/038032 PCT/US2010/049869
34

[0169] targettype: is the type of the box data referenced by this Time Index Box. This
can be either Movie Fragment Header (“moof”) or Time Index Box (“tidx”).

[0170] time-reference track id: indicates the track with respect to which the time

offsets in this index are specified.

[0171] number of elements: the number of elements indexed by this Time Index

Box.

[0172] first element offset: The byte offset from the start of the file of the first

indexed element.

[0173] first element time: The start time of the first indexed element, using the
timescale specified in the Media Header box of the track identified by the

time_reference track id.

[0174] random access flag: One if the start time of the element is a random access

point. Zero otherwise.
[0175] length: The length of the indexed element in bytes

[0176] deltaT: The difference in terms of the timescale specified in the Media Header
box of the track identified by the time reference track id between the start time of this

element and the start time of the next element.

Segment Index Box

[0177] The Segment Index Box ('sidx") provides a compact index of the movie
fragments and other Segment Index Boxes in a segment. There are two loop structures
in the Segment Index Box. The first loop documents the first sample of the subsegment,
that is, the sample in the first movie fragment referenced by the second loop. The
second loop provides an index of the subsegment. The container for 'sidx' box is the file

or segment directly.

WO 2011/038032

[0178]

35

Syntax

PCT/US2010/049869

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {

unsigned int(32) reference _track ID;
unsigned int(16) track count;
unsigned int(16) reference count;
for (i=1; i<= track_count; i++)

{
unsigned int(32) track ID;
if (version==0)
{
unsigned int(32) decoding_time;
} else
{
unsigned int(64) decoding_time;
}
}
for(i=1; 1 <= reference_count; i++)
{
bit (1) reference_type;
unsigned int(31) reference offset;
unsigned int(32) subsegment_duration;
bit(1) contains RAP;
unsigned int(31) RAP delta time;
}
}
[0179] Semantics:
[0180] reference track ID provides the track ID for the reference track.
[0181] track count: the number of tracks indexed in the following loop (1 or greater);
[0182] reference count: the number of elements indexed by second loop (1 or
greater);
[0183] track ID: the ID of a track for which a track fragment is included in the first

movie fragment identified by this index; exactly one track ID in this loop is equal to the

reference track ID;

[0184]

decoding_time: the decoding time for the first sample in the track identified by

track ID in the movie fragment referenced by the first item in the second loop,

expressed in the timescale of the track (as documented in the timescale field of the

Media Header Box of the track);

WO 2011/038032 PCT/US2010/049869
36

[0185] reference type: when set to 0, indicates that the reference is to a movie
fragment (‘moof”) box; when set to 1, indicates that the reference is to a segment index
(“sidx’) box;

[0186] reference offset: the distance in bytes from the first byte following the

containing Segment Index Box, to the first byte of the referenced box;

[0187] subsegment duration: when the reference is to Segment Index Box, this field
carries the sum of the subsegment duration fields in the second loop of that box; when
the reference is to a movie fragment, this field carries the sum of the sample durations of
the samples in the reference track, in the indicated movie fragment and subsequent
movie fragments up to either the first movie fragment documented by the next entry in
the loop, or the end of the subsegment, whichever is earlier; the duration is expressed in
the timescale of the track (as documented in the timescale field of the Media Header

Box of the track);

[0188] contains RAP: when the reference is to a movie fragment, then this bit may be
1 if the track fragment within that movie fragment for the track with track ID equal to
reference track ID contains at least one random access point, otherwise this bit is set to
0; when the reference is to a segment index, then this bit is set to 1 only if any of the

references in that segment index have this bit set to 1, and 0 otherwise;

[0189] RAP delta time: if contains RAP is 1, provides the presentation
(composition) time of a random access point (RAP); reserved with the value 0 if
contains RAP is 0. The time is expressed as the difference between the decoding time
of the first sample of the subsegment documented by this entry and the presentation
(composition) time of the random access point, in the track with track ID equal to

reference track ID.

Differences between TIDX and SIDX
[0190] The SIDX and the SIDX provide the same functionality with respect to

indexing. The first loop of the SIDX provides in addition global timing for the first
movie fragment, but the global timing may as well be contained in the movie fragment

itself, either absolute or relative to the reference track.

[0191] The second loop of the SIDX implements the functionality of the TIDX.

Specifically, the SIDX permits to have a mixture of targets for the reference for each

WO 2011/038032 PCT/US2010/049869
37

index referred to by reference type, whereas the TIDX only references either only
TIDX or only MOOF. The number of elements in TIDX corresponds to the

referemce _count in SIDX, the time-reference track id in TIDX corresponds to
reference track ID in SIDX, the tfirst_element offset in TIDX corresponds to the
reference offset in the first entry of the second loop, the first element time in TIDX
corresponds to the decoding_time of the reference track in the first loop, the
random_access_flag in TIDX corresponds to the contains RAP in the SIDX with the
additional freedom that in the SIDX the RAP may not necessarily be placed at the start
of the fragment, and therefore requiring the RAP_delta time, the length in TIDX
corresponds to the reference offset in SIDX and finally the deltaT in TIDX corresponds
to the subsegment_duration in SIDX. Therefore the functionalities of the two boxes are

equivalent.

Variable Block Sizing and Sub-GoP Blocks

[0192] For video media, the relationship between video encoding structure and the
block structure for requests can be important. For example, if each block begins with a
seek point, such as a Random Access Point (“RAP”), and each block represents an equal
period of video time, then the positioning of at least some seek points in the video
media is fixed and seck points will occur at regular intervals within the video encoding.
As is well known to those of skill in the art of video encoding, compression efficiency
may be improved if seek points are placed according to relationships between video
frames, and in particular, if they are placed at frames that have little in common with
previous frames. This requirement that blocks represent equal amounts of time thus

places a restriction on the video encoding, such that compression may be sub-optimal.

[0193] It is desirable to allow the position of seek points within a video presentation
to be chosen by the video encoding system, rather than requiring seek points at fixed
positions. Allowing the video encoding system to choose the seek points results in
improved video compression and thus a higher quality of video media can be provided
using a given available bandwidth, resulting in an improved user experience. Current
block-request streaming systems can require that all blocks be of the same duration (in
video time), and that each block must begin with a seek point and this is thus a

disadvantage of existing systems.

WO 2011/038032 PCT/US2010/049869
38

[0194] A novel block-request streaming system that provides advantages over the
above is now described. In one embodiment, the video encoding process of a first
version of the video component may be configured to choose the positions of seek
points in order to optimize compression efficiency, but with a requirement that there is a
maximum on the duration between seek points. This latter requirement does restrict the
choice of seek points by the encoding process and thus reduces compression efficiency.
However, the reduction in compression efficiency is small compared to that incurred if
regular fixed positions is required for the seek points, provided the maximum on the
duration between seek points is not too small (for example, greater than around a
second). Furthermore, if the maximum on the duration between seck points is a few
seconds, then the reduction in compression efficiency compared to completely free

positioning of seek points is generally very small.

[0195] In many embodiments, including this embodiment, it may be that some RAPs
are not seek points, i.¢., there may be a frame that is a RAP that is between two
consecutive seek points that is not chosen to be a seek point, for example because the
RAP is too close in time to the surrounding seck points, or because the amount of media

data between the seek point preceding or following the RAP and the RAP is too small.

[0196] The position of seek points within all other versions of the media presentation
may be constrained to be the same as the seek points in a first (for example, the highest
media data rate) version. This does reduce the compression efficiency for these other

version compared to allowing the encoder free choice of seek points.

[0197] The use of seek points typically required a frame to be independently
decodable, which generally results in a low compression efficiency for that frame.
Frames that are not required to be independently decodable can be encoded with
reference to data in other frames, which generally increases compression efficiency for
that frame by an amount that is dependent on the amount of commonality between the
frame to be encoded and the reference frames. Efficient choice of seek point
positioning preferentially chooses as a seek point frame a frame that has low
commonality with previous frames and thereby minimizes the compression efficiency

penalty incurred by encoding the frame in a way that is independently decodable.

[0198] However, the level of commonality between a frame and potential reference

frames is highly correlated across different representations of the content, since the

WO 2011/038032 PCT/US2010/049869
39

original content is the same. As a result, the restriction of seek points in other variants
to be the same positions as the seek points in the first variant does not make a large

difference in compression efficiency.

[0199] The seek point structure preferably is used to determined the block structure.
Preferably, each seek point determined the start of a block, and there may be one or
more blocks that encompass the data between two consecutive seek points. Since the
duration between seek points is not fixed for encoding with good compression, not all
blocks are required to have the same playout duration. In some embodiments, blocks are
aligned between versions of the content — that is, if there is a block spanning a specific
group of frames in one version of the content, then there is a block spanning the same
group of frames in another version of the content. The blocks for a given version of the
content do not overlap and every frame of the content is contained within exactly one

block of each version.

[0200] An enabling feature that allows the efficient use of variable durations between
seek points, and thus variable duration GoPs, is the segment indexing or segment map
that can be included in a segment or provided by other means to a client, i.e., this is
metadata associated with this segment in this representation that may be provided
comprising the start time and duration of each block of the presentation. The client may
use this segment indexing data when determining the block at which to start the
presentation when the user has requested that the presentation start at a particular point
that is within a segment. If such metadata is not provided, then presentation can begin
only at the beginning of the content, or at a random or approximate point close to the
desired point (for example by choosing the starting block by dividing the requested
starting point (in time) by the average block duration to give the index of the starting
block).

[0201] In one embodiment, each block may be provided as a separate file. In another
embodiment, multiple consecutive blocks may be aggregated into a single file to form a
segment. In this second embodiment, metadata for each version may be provided
comprising the start time and duration of each block and the byte offset within the file at
which the block begins. This metadata may be provided in response to an initial
protocol request, i.¢., available separately from the segment or file, or may be contained

within the same file or segment as the blocks themselves, for example at the beginning

WO 2011/038032 PCT/US2010/049869
40

of the file. As will be clear to those of skill in the art, this metadata may be encoded in a
compressed form, such as gzip or delta encoding or in binary form, in order to reduce

the network resources required to transport the metadata to the client.

[0202] Fig. 6 shows an example of segment indexing where the blocks are variable
size, and where the scope of blocks is a partial GoP, i.e., a partial amount of the media
data between one RAP and the next RAP. In this example, the seek points are indicated
by the RAP indicator, wherein a RAP indicator value of 1 indicates that the block starts
with or contains a RAP, or seek point, and wherein a RAP indicator of 0 indicates that
the block does not contain a RAP or seek point. In this example, the first three blocks,
i.e., bytes 0 through 157,033, comprise the first GoP, which has a presentation duration
of 1.623 seconds, with a presentation time running from 20 seconds into the content to
21.623 seconds. In this example, the first of the three first blocks comprises .485
seconds of presentation time, and comprises the first 50,245 bytes of the media data in
the segment. In this example, blocks 4, 5, and 6 comprise the second GoP, blocks 7 and
8 comprise the third GoP, and blocks 9, 10 and 11 comprise the fourth GoP. Note that
there may be other RAPs in the media data that are not designated as seek points, and

are thus not signaled as RAPs in the segment map.

[0203] Referring again to Fig. 6, if the client or receiver wants to access the content
starting at time offset approximately 22 seconds into the media presentation, then the
client could first use other information, such as the MPD described in more detail later,
to first determine that the relevant media data is within this segment. The client can
download the first portion of the segment to obtain the segment indexing, which in this
case is just a few bytes, for example using an HTTP byte range request. Using the
segment indexing, the client may determine that the first block that it should download
is the first block with a time offset that is at most 22 seconds and that starts with a RAP,
1.e., is a seek point. In this example, although block 5 has a time offset that is smaller
than 22 seconds, i.¢., its time offset is 21.965 seconds, the segment indexing indicates
that block 5 does not start with a RAP, and thus instead, based on the segment indexing,
the client selects to download block 4, since its start time is at most 22 seconds, i.€, its
time offset is 21.623 seconds, and it starts with a RAP. Thus, based on the segment

indexing, the client will make an HTTP range request starting at byte offset 157,034.

WO 2011/038032 PCT/US2010/049869
41

[0204] If segment indexing were not available then the client might have to download
all previous 157,034 bytes of data before downloading this data, leading to a much
longer startup time, or channel zapping time, and to wasteful downloading of data that is
not useful. Alternatively, if segment indexing were not available, the client might
approximate where the desired data starts within the segment, but the approximation
might be poor and it may miss the appropriate time and then requires to go backward

which again increases the start-up delay.

[0205] Generally, each block encompasses a portion of the media data that, together
with previous blocks, can be played out by a media player. Thus, the blocking structure
and the signaling of the segment indexing blocking structure to the client, either
contained within the segment or provided to the client through other means, can
significantly improve the ability of the client to provide fast channel zapping, and
seamless playout in the face of network variations and disruptions. The support of
variable duration blocks, and blocks that encompass only portions of a GoP, as enabled
by the segment indexing, can significantly improve the streaming experience. For
example, referring again to Fig. 6 and the example described above where the client
wants to start playout at approximately 22 seconds into the presentation, the client may
request, through one or more requests, the data within block 4, and then feed this into
media player as soon as it is available to start playback. Thus, in this example, the
playout begins as soon as the 42,011 bytes of block 4 are received at the client, thus
enabling a fast channel zapping time. If instead the client needed to request the entire
GoP before playout was to commence, the channel zapping time would be longer, as

this is 144,211 bytes of data.

[0206] In other embodiments, RAPs or seek points may also occur in the middle of a
block, and there may be data in the segment indexing that indicates where that RAP or
seek point is within the block or fragment. In other embodiments, the time offset may
be the decode time of the first frame within the block, instead of the presentation time of

the first frame within the block.

[0207] Figs. 8(a) and (b) illustrate an example of variable block sizing an aligned seek
point structure across a plurality of versions or representations; Fig. 8(a) illustrates

variable block sizing with aligned seek points over a plurality of versions of a media

WO 2011/038032 PCT/US2010/049869
42

stream, while Fig. 8(b) illustrates variable block sizing with non-aligned seck points

over a plurality of versions of a media stream.

[0208] Time is shown across the top in seconds, and the blocks and seek points of the
two segments for the two representations are shown from left to right in terms of their
timing with respect to this time line, and thus the length of each block shown is
proportional to its playout time and not proportional to the number of bytes in the block.
In this example, the segment indexing for both segments of the two representations
would have the same time offsets for the seek points, but potentially differing numbers
of blocks or fragments between seek points, and different byte offsets to blocks due to
the different amounts of media data in each block. In this example, if the client wants to
switch from representation 1 to representation 2 at presentation time approximately 23
seconds, then the client could request up through block 1.2 in the segment for
representation 1, and start requesting the segment for representation 2 starting at block
2.2, and thus the switch would occur at the presentation coinciding with seek point 1.2

in representation 1, which is at the same time as seek point 2.2 in representation 2.

[0209] As should be clear from the foregoing, the block-request streaming system
described does not constrain the video encoding to place seek points at specific

positions within the content and this mitigates one of the problems of existing systems.

[0210] In the embodiments described above it is organized so that the seek points for
the various representations of the same content presentation are aligned. However, in
many cases, it is preferable to relax this alignment requirement. For example, it is
sometimes the case that encoding tools have been used to generate the representations
that do not have the capabilities to generate seek point aligned representations. As
another example, the content presentation may be encoded into different representations
independently, without no seek point alignment between different representations. As
another example, a representation may contain more seek points as it has lower rates
and more commonly it needs to be switched or it contains seek points to support trick
modes such fast forward or rewind or fast seeking. Thus, it is desirable to provide
methods that make a block-request streaming system capable of efficiently and
seamlessly dealing with non-aligned seek points across the various representations for a

content presentation.

WO 2011/038032 PCT/US2010/049869
43

[0211] In this embodiment, the positions of seek points across representations may
not align. Blocks are constructed such that a new block starts at each seck point, and
thus there might not be alignment between blocks of different versions of the
presentation. An example of such a non-aligned seek point structure between different
representations is shown in Fig. 8(b). Time is shown across the top in seconds, and the
blocks and seek points of the two segments for the two representations are shown from
left to right in terms of their timing with respect to this time line, and thus the length of
each block shown is proportional to its playout time and not proportional to the number
of bytes in the block. In this example, the segment indexing for both segments of the
two representations would have potentially different time offsets for the seek points, and
also potentially differing numbers of blocks or fragments between seek points, and
different byte offsets to blocks due to the different amounts of media data in each block.
In this example, if the client wants to switch from representation 1 to representation 2 at
presentation time approximately 25 seconds, then the client could request up through
block 1.3 in the segment for representation 1, and start requesting the segment for
representation 2 starting at block 2.3, and thus the switch would occur at the
presentation coinciding with seek point 2.3 in representation 2, which is in the middle of
the playout of block 1.3 in representation 1, and thus some of the media for block 1.2
would not be played out (although the media data for the frames of block 1.3 that are
not played out may have to be loaded into the receiver buffer for decoding other frames

of block 1.3 that are played out).

[0212] In this embodiment, the operation of block selector 123 may be modified such
that whenever it is required to select a block from a representation that is different from
the previously selected version, the latest block whose first frame is not later than the

frame subsequent to the last frame of the last selected block is chosen.

[0213] This last described embodiment may eliminate the requirement to constrain the
positions of seek points within versions other than the first version and thus increases
compression efficiency for these versions resulting in a higher quality presentation for a
given available bandwidth and this an improved user experience. A further
consideration is that video encoding tools which perform the function of seek point
alignment across multiple encodings (versions) of the content may not be widely
available and therefore an advantage of this latest described embodiment is that

currently available video encoding tools may be used. Another advantage is that

WO 2011/038032 PCT/US2010/049869
44

encoding of different versions of the content may proceed in parallel without any need
for coordination between encoding processes for the different versions. Another
advantage is that additional versions of the content may be encoded and added to the
presentation at a later time, without having to provide the encoding tools with the lists

of specific seek point positions.

[0214] Generally, where pictures are encoded as groups of pictures (GoPs), the first

picture in the sequence can be a seek point, but that need not always be the case.

Optimal Block Partitioning

[0215] One issue of concern in a block-request streaming system is the interaction
between the structure of encoded media, for example video media, and the block
structure used for block requests. As will be known to those of skill in the art of video
encoding, it is often the case that the number of bits required for the encoded
representation of each video frame varies, sometimes substantially, from frame to
frame. As a result the relationship between the amount of received data and the
duration of media encoded by that data may not be straightforward. Furthermore, the
division of media data into block within a block-request streaming system adds a further
dimension of complexity. In particular, in some systems the media data of a block may
not be played out until the entire block has been received, for example the arrangement
of media data within a block or dependencies between media samples within a block of
the use of erasure codes may result in this property. As a result of these complex
interactions between block size and block duration and the possible need to receive an
entire block before beginning playout it is common for client systems to adopt a
conservative approach wherein media data is buffered before playout begins. Such

buffering results in a long channel zapping time and thus a poor user experience.

[0216] Pakzad describes “block partitioning methods” which are new and efficient
methods to determine how to partition a data stream into contiguous blocks based on the
underlying structure of the data stream and further describes several advantages of these
methods in the context of a streaming system. A further embodiment of the invention to
apply the block partitioning methods of Pakzad to a block-request streaming system is
now described. This method may comprise arranging the media data to be presented
into <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>