F. J. HOOVEN

TIMING DEVIGE

2 Sheots-Sheet 1

Irwentor

UNTTE STATRS PATENT ORTRCE
 2,38ํํ용

Applicktion Jruy 22, 1339 , Scricl N®。 2
16 CHBiPS. (CI

This invention relates to timing devices and more particularly to devices for establishing elecfrically a series of periodic impulses adapted for the control of a periodically recurrent function.

It is a principal cbject of the invention to prowide a timing device which is simple in construction and operation, light in weight, and which grovides for establishing accurate, unfiorm and predetermined time intervals.
It is a further object to provide such a device in which the time intervals are controllable over a Wide range with simplicily and accuracy.

It is also an object to provide a device of this character for producing a series of timed impulses aciapled for the control of a periodicelly recurrent function where both the time between the impulses and the actual duration of the impulses are predetermined and controllable.

It is a further object to provide a control device for use with a tomb rack for effecting the rapid sequential release of a plurality of bombs at uniform time intervels apart and at a desired irequency, and in predetermined number as determined by the operator.
Other objects and advantages will be apparent from the following description, the accompanyting drawings, and the appended claims.
In the drawings-
Fig. I shows schematically a simple timing arrangement for securing periodic operation at predetermined time intervals of a plurality of relays;
Fig. 2 is a diagrammatic representation of a similar circuit incorporating a control circuit and a frequeacy multiplying control; and
Fig. 3 is a diagrammatc showing of a complete system as arranged for the sequential release of a plurality of bombs.

In accordance with the present invention a timing device is provided which is adapted to effect the generation of a series of periodic timed impulses, the impulses being of predetermined durathon, and at properly spaced uniform intervals. Such series of impulses may be utilized for the control of a periodically recurrent function, where such timed seguence of operations is desired, for effecting suitable operation of a device. Since the invention provides for producing a series of impulses electrically and with extremely simpie apparatus, and embodies very simple and readiiy operable means for the control of the timing period thereof, the device is highly useful where simplicity, reliability and low weight are important factors.

A preferred field of application of the device is for the control of the dropping of a plurality of bombs from an aircraft or the like. Where it is desirable to provide for the dropping of a plurality of bombs in predetermined timed sequence, at relatively brief time intervals apart, the preseat
iavention provides a highly satisfactory control for this purpose, which is highly simple in construction and opergtion, and which involves only a low welght and substantial freedon from complexity in operating mechanism. It provides for example for the cropping of bombs at a predetermined desired rate such for example at rates varying from two per second to twenty per second under simple manuel control on the part of the operator; and such limits and range oí speeds may be subject to substantial variation as desired. It further provides for the preselection by the operator of a predetermined number of impulses to ba generated, and heace of a predetermined numeer of bomiss to be cropped, following which the device ceases its functioning, while providing visual indication to the operator at all times of the number of operations completed and remaining to be completed. The device elso preferably incorporates a manual control by means of which the operator may individually efiect the release of the bombs wher that operation is de-sired. While not, limited to the utilitation of the periodic timed mpulses for the releasing of bombs, that function forms a preferred field of applicafion for the device, and will be referred to hereinaiter in connection with the detailed description of the ogeration of the mechanism.
Referring to Fig. 1 of the drawings, this figure shows diasrammatically a simple timing circult for securing the alternate operation of a plurality of relays 10 and 82 , in timed relation one with the other. A source of electrical energy is shown at IS as comprising a battery, such as utilized upon an aircraft, though other suitable sources of direct current potentiel may likewise be utilized.
One side of the power source shown as the negative is connected through a condenser with each of the eargizing coils $10 a$ and $12 a$ of the two relays 10 and 18 . The relays have armatures 100 and $12 b$ each of which carries a pair of contact arms loc, 100 and 12c, 12d. Eized contacts Joe and lie are arranged to be closed by switch arms lec and lic respectively upon the actuafion of the relays, while switch contacts $10 f$ and 125 are arranged to be closed by switch arms $10 \bar{d}$ and $18 d^{2}$ respectively upon deenergization and release of the respective relays. Retractile springs $10 g$ and $12 g$ cause the return of the armatures and associated switch arms to the non-actuated position upon the deenergization of the respective relays, to positively open contacts toc, I2c and lee, lae, and, to cause the closing of contacts lod, 1jf and $12 d, 18 f$.

The energizing circuit through coil 1 a is completed through contacts $12 f, 820$ of relay 12 so that relay 10 mag be energized oxly when relay 12 is deenergized. Similarly the energizing circuit for coil $12 a$ is completed through contacts lof and lide of relay 10 so that relay 12 may be
energized only during the time that the relay 10 is deenergized.

Thus the circuit for relay 10 includes condenser 14, coil $10 a$, contacts $12 f$ and $12 d$, manual control switch 15 , and back to the positive side of the power source 13. And upon closing of switch 15 current flow takes place to cause the building up of a charge upon condenser 14. The rate of such flow of charging current will vary with the actual values of capacitance and resistance in the circuit, beginning at a high value and progressively decreasing in amount as the charge on the condenser builds up.

Contacts $10 c$ and $10 e$ upon closing establish a shunt circuit around the coil $10 a$ of relay 10 which includes a variable resistor 16 through which a portion of the charging current flowing through condenser 14 may pass following actuation of the relay. Similarly contacts $12 c$ and $12 e$ upon closing establish a shunt circuit around the coil $12 a$ which includes variable resistor 17 through which a portion of the current passing through condenser 14 may pass.

The operation of this device is as follows. Upon the closing of manual switch 15, and with both relays deenergized, an energizing circuit for relay 10 is established through condenser 14, coil 10a, switch contacts $12 f, 12 d$, through switch 15 , and back to the opposite side of the power source. A circuit is also closed through coil $12 a$, but since there is no difference of potential in this circuit, relay 12 does not operate, A maximum flow of current takes place through the circuit of relay 10 as described, beginning the charging of condenser 14, this flow resulting in the operation of relay 10 to strongly attract armature $10 b$, thereby closing contacts $10 c$, $10 e$, and opening contacts $10 d$ and $10 f$. The opening of the latter contacts opens the circuit through relay 12 , and makes it impossible for that relay to be actuated. The closing of contacts $10 c$, $10 e$ establishes the shunt circuit around the coil $10 a$ including variable resistor 16 . The effect of thus placing a resistor in parallel with the coil $10 a$ is to reduce the effective resistance in the charging circuit of condenser 14, thereby reducing the time required for the building up of the charge within the condenser. As the charge increases, the s.ow of current will decrease, and ultimately reach a point at which there is insufficient current flow to maintain the relay in actuated condition. When such point is reached relay 10 releases, opening contact $10 c, 10 e$, and closing contacts $10 d, 10 f$. The latter establishes a circuit through coil $12 a$ and the now charged condenser 14. The condenser immediately begins to discharge at a maximum rate, resulting in actuation of relay 12 , thereby opening the circuit through coil $10 a$ at contacts $12 f, 12 d_{r}$ and closing the shunt circuit through resistor 17 at contacts $12 c, 12 e$. Thus as soon as the relay has been actuated, the shunt circuit for controlling the time required for the discharge of the condenser is established, and the relay remains energized as long as there is a sufficient flow of discharging current. When the value of the discharge current falls below a predetermined point, it is no longer sufficient to maintain relay 12 in actuated condition, and this relay then releases, again establishing the charging circuit through relay 10 . Such operations thereafter continue as described and because the periods of time between suc eessive operations are dependent upon the electrical characteristics of capacitance and resistance, they are subject to predetermined control and are maintained with considerable accuracy as so selected.

In order to effect regulation of the period during which the relays remain energized, and hence controlling the time intervals between actuation of the two relays, resistors 16 and 17 may be properly adjusted. Upon increasing the values thereof, up to the maximum point where the shunt circuit would be entirely open, it will be apparent that the characteristics of the charging and discharging circuits will be determined by the values of capacity of the condenser, and the flxed resistance in the circuit, primarily that of the relay coils themselves; and that under such circumstances the maximum time to effe et charging and discharging will be required hence resulting in longer time intervals between operations. If desired, it will be clear that additional resistance can be inserted in series with the condenser to further extend the time required for charging and discharging thereof.

On the other hand when the values of resistance are decreased to the minimum which represents a short circult around the respective relay coils, which however is not established until after the completion of actuation thereof, it will be clear that the minimum time will be required thereafter to complete the charging or discharging of the condenser, since the charging resistance has been substantially eliminated, and hence this results in producing shorter time intervals between operations.
It will also be clear that the actual period necessary for these operations will vary with the capacitance of condenser 14, and that this may be varied as well as the resistance in the charging circuit, to secure a variable time of actuation. Using very large values of capacity discharging through small resistances at a high rate results in high currents and consequent probability of deterioration of the contacts. Likewise an amount of internal resistance in the condenser comparable with the resistance of the charging or discharging circuit may cause faulty operation so that it is generally found desirable, in attaining the higher operating speeds; to reduce the capacity of the timing condenser rather than by the use of a very low adjusting resistor. This is readily accomplished by the use of a plurality of electrolytic condensers arranged to be selectively included in the circuit, the use of such condensers being desirable in view of their relatively large capacity and small space requirements. However because it is usually not practicable to secure extreme accuracy in the capacity of such condensers, the concurrent use of adjustable resistors has also been found desirable.

It will thus be observed that each relay, assuming it to have similar electrical and physical characteristics, will require substantially the same length of time to actually close following initiation of flow of the charging or discharging current, and will be maintained in actuated condition by substantially the same rate of current flow through the two coils. Thus there is a constant factor in the timing period represented by that time required for the release of one relay and the operation of the other; and a variable factor representing the time during which each of the relays remains in its actuated condition. This latter factor is subject to variation and control as described above, and may be made relatively short in proportion to the first factor such as an interval corresponding approximately with or even less than the time required for the mechanical movements, or may be made substan-
tially longer than this period, for example up to many times that period.
It will llkewise be understood that where the two relays have similar characteristics, and where it is not necessary to secure separate control over the time during which one of the relays remains in actuated condition with respect to the other, a single resistor may be incorporated in place of the two variable resistors 16, 17, which single resistor is placed in circuit with both the charging and the discharging circuits, to give similar co-pacitance-resistance characteristics therein, and to bring about a similar time during which each of the relays remains in energized condition.
Such an arrangement is shown diagrammatically in Fig, 2 in which the relays 10 and 12 are each provided as described above with the actuating coils and other parts $10 a$ to $10 g$ and $12 a$ to $12 g$ respectively. However in place of the separate resistors 16,17, a single resistor 20 is provided, made suitably variable, and connected to be placed in shunt circuit with the respective relay coils $10 a$ and $12 a$ so as to be alternately incorporated in the charging and the discharging circuits of condenser if following actuation of the respective relays. Variation of this resistor produces variation in the length of time during which the flow of charging current or discharging current continues in excess of that minimum value required to maintain the relay armature in actuated condition, and hence provides for regulating the period of actuation and the frequency of operation in the same manner as resistors 10,17 described above.
Furthermore Fig. 2 shows additional contacts $10 h$ and $12 h$ arranged to be closed respectively by contact arms $10 d$ and $12 d$ upon actuation of the respective relays 10 and 12. These contacts $10 h$ and $12 h$ are connected in a circuit which includes a solenoid 22, a multiplying condenser 23, and one side of the power source 13. A control switch 24 is arranged to short circuit condenser 28 and thus to effectively remove it from the circuit of solenoid 22. This condenser performs the function of multiplying the effective frequency of generated impulses in a manner hereinafter described.

Considering first the case owhere switch 22 is closed, and hence condenser 23 removed from the circuit of solenoid 22, it will be apparent that upon actuation of relay 10, closing contacts $10 d$ and 10h, a circuit is completed through the power source, said contacts, solenoid 22, closed switch 24, and back to the other side of the power source. As a result thereof current flows through solenoid 22, producing a timed electrical impulse for effecting a control operation as desired. Upon the release of relay 10 , and the subsequent actuation of relay 12, it will be seen that the power source is no longer included in the circuit of solenoid 22, and hence no energization of the solenoid takes place upon actuation of relay 12. Consequently, a timed actuation of solenoid 22 occurs once for each operation of relay 10, with no corresponding energization upon operation of relay 12.

However when switch 24 is open thereby including multiplying condenser 23 in the circuit, the closing of switch contacts $10 d$ and 10 h estabHishes a flow of charging current through condenser 23 which energizes solenoid 22. Upon release of relay 10 and actuation of relay 12, closing contacts $12 d$ and $12 h$, a discharging circuit is established through said contacts, and the solenoid 22, through which there occurs a flow of
discharging current from the charged condenser 28. This flow of discharging current produces a second energization of solenold" 22 . Thus under these conditions solenoid 22 is energized in definite timed relation to the actuation of both relays 10 and 12, and as will be clear, any change in the frequency of operation of said relays will result in a corresponding change in the timing of the energizations of solenoid 22. Thus by the simple utilization of switch 24 , the frequency of energization of solenoid 22 can be multiplied or doubled if desired.

It will also be apparent that the actual duration of flow of charging and discharging current in the circuit of solenoid 22 may be made independent of the contacts $10 \bar{a}, 10 \mathrm{~h}$ and $12 a, 12 h$ when condenser 23 is included in the circuit. Thus by suitable selection of the electrical characteristics, i. e., capacitance and resistance, in the circuit of solenoid 22, the charging and discharging currents may be so regulated as to have decreased to a substantially low value at the time of opening of the respective switch contacts in the circuit; as a result therefore arcing and injury to the contact points may be reduced to a minimum. Further it will be also clear that where it is desired to effect the actuation of an auxiliary device under the control of solenoid 22, particularly where such device has parts requiring any material period of time for resetting after one actuation in preparation for the next, this circuit provides for a strong timed operating pulse through solenoid 22, which can then be terminated promptly, by reason of the substantial completion of flow of charging or discharging current, affording the mechanism ample time for resetting, prior to the subsequent operation of the other relay and the generation of a subsequent operating pulse through the solenoid. Hence the beginning of each timed pulse is accurately controlled, but the solenoid is not unnecessarily maintained in energized condition during the time interval that the timing relays continue to be energized. By terminating the flow of current through the solenoid in a lesser period of time, the mechanism controlled thereby is given adequate time for resetting, and damage to the switch points is substantially eliminated.
Where an odd number of impulses is desired, that is where the operation terminates with the energization of relay 10, it is clear that a charge might be left upon condenser 23, and if not dissipated, would interfere with the beginning of a subsequent cycle of operations, delaying those operations by a half cycle. Accordingly it is preferred to place a high resistance 25 across condenser 23 through which any residual charge thereon can be dissipated, but which is of such high resistance as to not materially alter the characteristics of the system during normal operation.
F'g. 3 shows the application of the present invention to an arrangement for dropping bombs in predetermined timed sequence. The relay parts and switch contacts 10 to 10 h and 12 to $12 h$ are as described above, and are similarly identified for easy reference. In order to secure predetermined timed operation of the device at a rate to be manually selected, a plurality of condensers $14 a, 14 b$ and $14 c$ are utilized. Likewise a tapped resistor 20 is arranged to be incorporated in the charging and discharging circuits of said condensers in the manner of relay 20 described above. A manual control switch 30 is provided comprising an indicating dial 30 a upon which the speeds are shown, and three switch arms $30 b, 30 c$, and

30d, preferably arranged in separate planes or decks and actuated by a common shaft indicated at $30 e$. The switches have a series of positions shown as eleven in number, corresponding to the indicated speeds on the dial 30a, a representative series of such speeds being $2,3,4,5,6,8,10,12$, 14. 16 and 20 operations per second. In order to secure such variable range of operations, these switches are made to selectively control the incorporation of the several condensers and variable resistors in circuit as will be described more in detail hereinafter.
The bomb rack is shown diagrammatically at 35, comprising a series of release arms 36 having depending fingers 37 upon which the bombs 38 are retained. A compression spring 39 acting against a collar 40 fastened to the arms 36 normally tends to withdraw said arms and to effect the release of the bomb. However a cam plate 41 is arranged in line with each of the arms 36 , and has a cam face 42 thereon of varying length, which normally engages the arms 36 and prevents their movement to release the respective bombs. Cam plate 41 is provided with ratchet teeth 43, and a pivotally mounted pawl member 44 is arranged to engage said teeth to effect the notching of the cam plate upwardly. Operation of the pawl 44 is effected electrically by means of a solenoid 45, each actuation of which causes the pawl to lift the cam plate by one notch. As shown the several faces 42 are such that the lowermost arm 36 will be released upon the first actuation of pawl 44, and since the face in contact with the next uppermost arm 36 is proportionately wider. it will be released upon the second pawl operation. Similarly each successively higher bomb will be caused to be released upon each additional pawl operation. It will be understood that other suitable mechanism for effecting sequential operat ons of the character described, upon a series of energizations of solenoid 45, may be utilized as desired.
In some cases it may be desired by the operator to secure complete manual control of the release of the bombs, and in others to secure the timed sequence operation as described herein. To provide for securing such selective operations, a double-pole, double-throw control switch 48 is provided which when thrown to one position as shown to the left, provides for securing timed sequential operation, and when thrown to the right provides for individual control of the operations by manual means. The description will be directed primarily to the former type of operation with the switch 48 thrown to the left to establish the predetermined and timed sequential operation of the system.
In order that the operator may manually control the operations of the system and also receive an indication of the exact status of the operation at any time, a manually controlled preselector device 50 is provided having an indicating dial 50a upon which are indicated the total number of operations to be performed, for example the total number of bombs held in the rack. A manually adjustable pointer arm $50 b$ is arranged for cooperation with such scale, and upon manual operation, is adapted to effect rotation of a shaft 50c. This shaft carries a cam disk $50 d$ having a cam pin $50 e$ thereon which is arranged to effect the opening of a limit switch 52 when the desired number of operations have been completed. The pin 50e is related to the indicating arm $50 b$ in such manner that when arm $50 b$ stands at the zero or off position, switch 52 is open but at any
operative position at which arm 506 may be set, switch 52 is closed.
The shaft likewise carries a toothed wheel $50 f$ with which there engages a notching pawl 54 and 6 a non-reverse pawl 55. A solenoid 56, corresponding in function and operation with solenoid 22 as described above in connection with Fig. 2, is provided with armature 56a, which carries switch arms $56 b$ and 56c. The armature likewise is connected to the pivoted pawl member 54 so that upon each actuation of solenoid 56 the pawl is actuated, and the toothed wheel is advanced one step.

Ưpon adjustment of the preselector device 50 to move the indicating hand away from the off position, limit switch 52 closes, and a circuit for an indicating light 60 is closed, indicating to the operator that the system is preconditioned for operation. The arm $50 b$ is adjusted to a position corresponding to the number of operations which it is desired to secure, and as will be clear the adjustment of this arm to a proper indicating value on the dial will indicate the number of operations which will take place before the limit pin $50 e$ opens the limit switch 52.

With the preselector device thus adjusted, and the indicator device 60 operated, the operator may depress a manual push button 61 which closes an energizing circuit through hold-in relay 62, such circuit being completed through the closed contacts of limit switch 52. Upon operation relay 62 closes its contact arm $62 a$ upon contact $62 b$, and thereby establishes a holding circuit around push button switch 61 so that the latter may be released after its initial operation. Relay 62 also carries a switch arm 62c which closes upon contact 62d, thereby closing a circuit from one side of the power source through switch contacts 10d, $10 h$, or $12 d, 12 h$, through the switch 48, and to one side of relay 56, which in turn is connected to the opposite side of the line by one of the arms of switch 30, and back to the opposite side of the power source either directly or through one of the doubling condensers $14 b$ or 14c, depending upon the setting of switch 30. Accordingly energization of solenoid 56 occurs, in definite timed relation with the operation of relays 10 and 12. Upon each operation of relay 56 , switch arm $56 b$ closes contact $56 d$, and connects the operating solenoid 45 with the power source so as to secure the release of a bomb.
In order to avoid unnecessary arcing of the contacts $56 b$ and $56 d$, an arc-suppressing condenser 51 is connected across such contacts to avoid objectionable arcing therein. Likewise upon operation relay 56 closes switch arm $56 c$ upon contact $56 e$, the latter establishing a shunt circuit around the contacts $10 d, 10 b$ and $12 d, 12 h$ so that assurance will be provided that the last operation will be certain of being completed, regardless of the exact point in the cycle at which the limit switch 52 opens.
Operation of relay 56 continues in predetermined timed sequence under the control of the relays 10 and 12 , each operation effecting the notching of the preselector device 50 by another step. Finally when the predetermined number of operations has been completed, as determined by the initial setting of control arm 50b, limit pin $50 e$ engages the movable contact of the limit switch 52, thereby opening the circuit through the control relay 62 and extinguishing the indicating light 60 and deenergizing both relays 10 and 12. As above described however the last cycle of operation is continued through contacts
 the entre sysiem is discomnected srom the power source snd further operation is terminated．
In order to secure contral over the speed at which the bombs are dropped，switch 3 ．is man－ ually adjusted to the desired rate as indicated On lace plate 3ica．In the indial position corre－ sponding for example to 2 ogerations per second， the several switch srms 3003 ，30c and $30 d$ are so connected as to include all three coadensers ifa，有b and lac in parollel as timing condensers，the capacities of these units being suitably selected as required．For exsmple condenser lite and $14 b$ zany have a capacity of 250 mm ．1．and condenser sic of 500 m ． f ．Under these conditions the total capacities in circuit with releys 16 and 18 is 1000 za .8.
In the second pestition in order to obtain a speed of three operations per second，the switches are arraged to dilsconnect condenser 106 from the timing circuit，thereby giving \＆net capac－ itence of 750 m． 8 ．
In the neat position corresponding to four oper－ ations per second，condenser lab is reconnected in the timing circuit and condenser lise is dis－ connected，thereby providing a timing capacity of 500 m ． f ．
In order to secure speeds of ive and sts oper－ ations per second，the seme cerpacity is uthized， and varinble values or sesigtence se are incor－ porated in the shunt circult sor the relays 10 and 12，these verues beling selected to give a roore raple fall in the charging and discharging currents as deschbed ebove，so es to secure deen－ ergization and release of the relays at proper controlled time intervais．

In order to zecurs speeds of eight，ten and twelve operetions rer second，the same capac－ itance and resistance conditions as established for the timing tatervals of four，five and six opera－ tions per second，respectlvely，are obtalned，with the incorporation of condenser fice into the cir－ cutit of coil bey，as a multiplying comdenser to obtain the doubling action as described＇above． That is to say，with the manual control member sdjusted in any of its positions from two to sis operations iper second，the circuib does not incorporate a doubliag condenser in circuit with
 curs only once for each operation of relay ti，and does not occur upon actuation of relsy 12．How－ ever switch 38，when adjusted to give speeds of eight，ten and tweive operations per second，ef－ fects the jacorporestion of condenser ife in cire cuit with the coll 50 where it acts as a speed doubling device，so that coin $\begin{gathered}6 \\ \text { is energlaed upon }\end{gathered}$ each energizetion of．relay 10 and lizewise of relay 18.
In order to secure speeds of fourceen，sifteen and twenty operations per second，the switch 36 is arranged to include onis condenser ofe in cir－ cult with the relay coils and with suitably ad－ justable values of resistance 30 included in the shund circuit therewith upon each actustion of the relays 1 or 12 ．Syltoh 30 in these positions ifewise effects the subsititution of the smaller capecity condensar fab in the circuit as a doubling condenser so thot relay ${ }^{2}$ en is energized upon ench actuation of elther relay 16 or 18 ，the smaller capaciby condeaser $\begin{aligned} & \text { an requing } \& \text { shorter time to }\end{aligned}$ become chmoged ant discharged．
If will of course ba clear terat the actual values mad speads of operation are given as illustrative， and that tiact an is be vaxied over substantially Thicis limits fx arder to secure froperiy timed
seriodic trapulses for whatever control purposes are ciesired．
As explained above，the throwing of switch 69 to its right－hand position disconnects the tim－ ing device from the actuating circuit of relay 65 ， and malses the energizetion of this latter relay dependent solely upon manual control button ©l． Since switch 68 when in the right－hand posi－ tion，with the preselector device 域 in its of position，opens the circuit from the power source to the limit switch 58 and the coll of hold－in re lay 62，it will be clear that hold－in relay © 20 will not be energized upon the closing of the push button 6月，and hence in this condition the de－ vice provides for the individual operation of rem lay 69, and the consequent dropping of a bomb， ta direct relation to each oparation of the manual push button．

The device therefore provides a highly satis－ factory and extremely simple timing device in which there is generated os series of timed im pulses accurately spsced as to time，and of pre－ determined controlled duration．Such impouses may be uthized as desired，for efiecting control of a recurrent function，and sie of especial Qdaptebility for controlling the release of \＆series of bowbs of the lise．Proper control is supplied for the operator，and likewise suitable indication is givea at all thmes of the status of the device． It is simpie in construction，and does not add weight which might be objectionable for use upon exs arcraft．Similmily it is adapted for operetion by the power source usually present in an aircraft．

While the process herein described，and the forse of spparatus for carrying this process into exect，constitute a preferred embodiment of the inveation，it is to be understood that the inven－ tion is not limited to this precise process and Lorm of apparatus，and that changes may be made in sither without deporting from the scope of the invention which is defined in the sppended claimas．

What is claimed is：
1．A timing device of the charecter gescribed adapted to be energized from a scurce of elec－ trical energy and to esioblish predetermined uniform time intervals comprising a plurality of electromagnetic relay meanss，a circuit for each said relay mehaling control contacts actuated by the other relay and arranged to be closed only unon deenergization of said other relay，a timing condenser，connections for estab－ lishing a chargiag circuit for said condenser through one of said relays to effect actuation thereof，said relay being maintained in actuated condition during continuance of the fow of charging current in excess of a predetermined value，connections effective upon release of said reley for establishing a circuit for the other of seid relays for the discharge of said condenser， sald other relay being maintained in actuated condition during continuance of the fiow of said discharge current in excess of a predetermined vaise，resistance means separate from and adapted to be associated with said relays respec－ tively for controlling the time of charge and of discharge thereof，and means for including the same resistance means alternately in circuit with each of said relays after the actuation thereos．

2．A timing device of the character described adapted to be energized from a source os elec－ trical energy and to establish predeterained uni－ form thme intervals comprising oplurality of
electromagnetic relay means, a circuit for each said relay including control contacts actuated by the other relay and arranged to be closed only upon deenergization of said other relay, a condenser, connections for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof, said relay being maintained in actuated condition during continuance of the flow of charging current in, excess of a predetermined value, and connections effective upon release of said relay for establishing a circuit for the other of said relays for the discharge of said condenser, said other relay being maintained in actuated condition during continuance of the flow of said discharge current in excess of a predetermined value, means adapted to be placed in circuit with said relay and said condenser for varying the time required for the charging current and discharging current of said condenser to fall below said predetermined minimum value to thereby vary the length of time during which each of said relays remains energized, and means for excluding said time varying means from the charging and discharging circuits for said relays until affer initial actuation thereof and for then including said time varying means in said circuits to provide for said timing control while assuring positive actuation of said relays.
3. A timing device of the character described adapted to be energized from a source of electrical energy and to establish predetermined uniform time intervals comprising a plurality of electromagnetic relay means, a circuit for each said relay including control contacts actuated by the other relay and arranged to be closed only upon deenergization of said other relay, a timing condenser, connections for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof, said relay being maintained in actuated condition during continuance of the flow of charging current in excess of a predetermined value, and connections effective upon release of said relay for establishing a circuit for the other of said relays for the discharge of said condenser, said other relay being maintained in actuated condition during continuance of the flow of said discharge current in excess of a pretictermined value, a single resistance means for controlling the time required for the charging and discharging of said condenser, and means for connecting said same resistance means in circuit with șaid condenser and said relays alternately upon the actuation thereof to thereby vary the length of time required for the current through said relay to fall below said predetermined minimum value with resultant release thereof.
4. A timing device of the character described for controlling the periodic dropping of bombs and the like adapted to be energized from a source of electrical energy and to establish predetermined uniform time intervals comprising a plurality of electromagnetic relay means, a circuit for each said relay including control contacts actuated by the other relay and arranged to be closed only upon deenergization of said other relay, a timing condenser, connections for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof, said relay being maintained in actuated condition during continuance of the flow of charging current in excess of a predetermined value, and connections effective upon release of said relay for establishing a circuit for the other
of said relays for the discharge of said condenser. said other relay being maintained in actuated condition during continuance of the flow of said discharge current in excess of a predetermined value, means for varying the time required for the charging and discharging currents to fall below said predetermined minimum including means for varying the capacitance-resistance characteristics of the circuit, and means for including the same time varying means in circuit with one and then the other of said relays immediately following the actuation thereof in order to provide said timing control with positive actuation thereof.
5. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed impulses which comprises a plurality of relay means each.having circuit control means associated therewith, a condenser, circuit connections providing for establishing a charging circuit for said condenser for one of said relays to effect actuation thereof while the other relay remains deenergized, said first relay remaining energized while the flow of charging current therethrough exceeds a predetermined value, circuit connections effective upon release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, and means associated with said charging and discharging circuits for varying the capacityresistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a single control circuit, and switch means operated by said relays for effecting periodic alternate introduction of said single control circuit into the circuit of said first and second relays.
6. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed impulses which comprises a plurality of relay means each having circuit control means associated therewith, a timing condenser, circuit connections providing for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof while the other relay remains deenergized, said first relay remaining energized while the flow of charging current therethrough exceeds a predetermined value, circuit connections effective upon release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, and means associated with said charging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a control circuit, a solenoid in the control circuit, a multiplying condenser in circuit with said solenoid and adapted to be charged from the source of electric energy, switch contacts operated by said relay means for effecting closing of a charging circuit through said solenoid and said multiplying condenser, and switch ${ }^{\text {a }}$ means carried by the other of said relay means for closing a discharge circuit of said multiply-
lag condenser through said solenoid to effect timen actuation thereof upon actuation of each of said relays.
7. A timing device of the character described adapted to be energized from a source of electrical energy and to establish pertodic timed impulses which comprises a plurality of relay means each having circuit control means associated therewith, a timing condenser, circuit connections providing for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof while the other relay remains deenergized, ssid arst relay remaining energized while the flow of charging current therethrough exceeds a predetermined volue, circuit connections effective upon a release of seid first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined velue, thereby securing alternate timed operation of said relays, and means associated with seid charging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a control circuit, \& solenoid in the control circuit, a maulthplying condenser in circuit with said solemold and adapted to be charged from the source of electric energy, switch contacts carried by said relay means for effecting closing of a charging circuit through said solenoid and said condenser, and switch means operated by the other of said relay means for closing a discharge circuit of said multiplying condenser through said solenoid to effect actuation thereof upon actuation of each of said relays, and control means for removing said multiplying condenser from the solenoid circuit to provide for actuation thereof in response to operation of only one of said reiays.
8. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed impulses which comprises a plurality oit relay means each having circuit control means assoclated therewith, a timing concienser, circuit comnections providing for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof while the other relay remains deenergized, said first relay remaining energized while the flow of charging current therethrough exceeds a predetermined value, circuit connections effective upon a release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the fiow of discharging curreat therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, and means associated with said charging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a control circuit, a solenoid in the control circuit, a muiliplying condenser in circuit with said solenold and adapted to be charged from the source of electric energy. switch contacts carried by said relay means for effecting closing of a charging circuit through said solemoid and said condenser, and switch means operated by the other of said relay means for closing a discherge circuit of sald multiplying condenser through
said solenoid to effect actuation thereof upon actuation of each of sald relays, the flow of current through said solenold during charging and discharging of said condenser being maintrined for a period of the order of or less than the period during which said relays remain in actuated condition.
9. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed impulses for controlling the dropping of bombs and the like which comprises a plurality of relay means each having circuit control means associated therewith, \& condenser, circuit connections providing for establishing a charging circuit for said condenser through ome of sald relays to effect actuation thereof while the other relay remains deenergized, said first relay remaining energized while the flow of charging current therethrough exceeds a predetermined value, circuit connections effective upon release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, means associated with said cherging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a control circuit, a solenoid in seid control circuit adapted to be repeatedly energized at uniform intervals corresponding to the timed operation of said relays, counter-mechanism actuated by said solencid at each energetation thereof to count the number of such actuations, and means controlled by said counter mechanism for effecting the opening of said relay circuits to terminate the operation of said relays after completion of a predetermined number of such operations.
10. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed inspulses for controlling the dropping of bombs and the like which comprises a piurality of reley means each having circuic control means associated therewith, a condenser, circuit connections providing for establishing a charging circuit for said condenser through one of said relays to effect actuation thereot wille the other relay remains deenergized, said hirst relay remaining energized while the fow of charglag current therethrough exceeds a predetermined vaiue, circuit connections effective upon release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, means associated with © 03 said charging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said cherging and discharging operations, a control circuit, a solenoid in said control circult admoted to be repeatedly energized at uaiform intervals corresponding to the timed operztion of said relays, counter-mechanism actuated by sada solenoid at each energlzation thereof to count the number of such actuations, means operable to effect deenergization of said relays
when said solenoid has been actuated a predetermined number of times, and additional circuit control means to assure completion of each actuation of said counter mechanism including the last actuation thereof.
11. A timing device of the character described adapted to be energized from a source of electrical energy and to establish periodic timed impulses for controlling the dropping of bombs and the like which comprises a plurality of relay means each having circuit control means associated therewith, a condenser, circuit connections providing for establishing a charging circuit for said condenser through one of said relays to effect actuation thereof while the other relay remains deenergized, said first relay remaining energized while the flow of charging current therethrough exceeds a predetermined value, circuit connections effective upon release of said first relay for establishing a circuit through said second relay for the discharge of said charged condenser, said second relay remaining energized while the flow of discharging current therethrough exceeds a predetermined value, thereby securing alternate timed operation of said relays, means associated with said charging and discharging circuits for varying the capacity-resistance characteristics thereof to predetermine the length of time required in said charging and discharging operations, a control circuit, a solenoid in said control circuit adapted to be repeatedly energized at uniform intervals corresponding to the timed operation of said relays, counter-mechanism actuated by said solenoid at each energization thereof to count the number of such actuations, limit switch means actuable after a predetermined number of operations of said solenoid to deenergize said relays, manually operable means for setting said limit switch to a position corresponding to a desired number of operations indicative of the number of bomios to be dropped, and' means operable only after said manually operable means has been set to a predetermined operative position for indicating that said device is preconditioned for operation.
12. A timing device for use in the sequential dropping of bombs and the like comprising a timing circuit adapted upon being energized to produce a series of periodic impulses of preselected variable frequency at uniform intervals following such energization, a counter mechanism adapted to be set for a predetermined number of operations, means for actuating said counter mechanism at each of said periodic impuises, means controlled by the operation of the counter mechanism for opening and disabling the timing circuit following said predetermined number of actuations thereof, and means for by-passing said circuit opening means during the operating movement of said counter mechanism to assure completion of each actuation thereof including the last actuation.
13. A timing device for use in the sequential dropping of bombs and the like comprising a timing circuit adapted upon being energized to produce a series of periodic impulses of preselected variable frequency uniformly commencing immediately following such energization, counter mechanism having a zero position and a series of operative positions corresponding to the desired number of bombs to be dropped, means for effecting step by step operation of said counter mechanism from any of its said operative
positions to its zero position in response to said periodic impulses, a limit switch in the timing circuit actuated by sald counter mechanism selectively in relation to the position of said mechanism in its said operative or in its said zero position, and circuit control means under manual control for closing the circuit through said limit switch to energize and initiate operation of said timing circuit to produce said timed impulses until the desired predetermined number of operations have been completed, said circuit being maintained through said limit switch until the return of said counter mechanism to its said zero position.
14. A timing device for use in the sequential dropping of bombs and the like comprising a timing circuit adapted upon being energized to produce a series of periodic impulses of preselected variable frequency uniformly commencing immediately following such energization, counter mechanism having a zero position and a series of operative positions corresponding to the desired number of bombs to be dropped, means for effecting step by step operation of said counter mechanism from any of its said operative positions to its zero position in response to said periodic impulses, a limit switch in the timing circuit actuated by said counter mechanism selectively in relation to the position of said mechanism in its said operative or in its said zero position, means controlled by said limit switch means and adapted to be actuated upon adjustment of said counter mechanism to any of its operative positions to effect control of an indicator showing said device to be preconditioned for operation, and circuit control means under manual control for closing the circuit through said limit switch to energize and initiate operation of said timing circuit until the desired predetermined number of operations have been completed, said circuit being maintained through said limit switch until the return of said counter mechanism to its said zero position.
15. A timing device for use in the sequential dropping of bombs and the like comprising a timing circuit adapted upon being energized to produce a series of periodic impulses of preselected variable frequency uniformly commencing immediately following such energization, counter mechanism having a zero position and a series of operative positions corresponding to the desired number of bombs to be dropped, means for effecting step by step operation of said counter mechanism from any of its said operative positions to its zero position in response to said periodic impulses, a limit switch in the timing circuit actuated by said counter mechanism selectively in relation to the position of said mechanism in its said operative or in its said zero position, circuit control means under manual control for closing the circuit through said limit switch to energize and initiate operation of said timing circuit to produce said timed impulses, means for maintaining said limit switch circuit closed until the desired predetermined number of operations have been completed, said circuit being maintained through said limit switch until the return of said counter mechanism to its said zero position, and a selector switch operable to disable said maintaining means to provide for individual control of said operations by said manual control.

