International Application Published Under the Patent Cooperation Treaty (PCT)

Title: ELASTIC TUBULAR DEVICE AND INFLATABLE HEAD HARNESS FOR AIRCRAFT BREATHING MASK

Abstract: An elastic tubular device comprising - an inner tube (23) made of an elastic and gas impermeable material; and, - an sheath (21) surrounding the inner tube and made of a woven cloth of flame resistant meta-aramid yarns, wherein the tubular device has a longitudinal extension of at least approximately 1.4 when inflated by a gas having a pressure of at least approximately 0.5 bar.
ELASTIC TUBULAR DEVICE AND INFLATABLE HEAD HARNESS FOR
AIRCRAFT BREATHING MASK.

Field of the invention

The invention relates to an elastic tubular device and an inflatable head harness for aircraft breathing mask which used the same.

Background of the invention

The respiratory mask typically worn by aircraft crewmembers must be attached surely and rapidly on the crewmember head. And it must be attached on an one-handed basis, since the user's other hand is frequently occupied in some other essential task.

For example, if because of a pressurization failure, the pilot of an aircraft is required rapidly to don his respiratory mask to provide the necessary oxygen for breathing, he often must do so with one hand while his other hand is occupied in controlling the aircraft. Thus, the use of an inflatable head harness has been suggested in order to permit the respiratory mask to be donned using only one hand. The head harness is expanded diametrically by the introduction of pressurized gas to cause the harness to increase in size so that it can be positioned over the head of the user. The gas flow is controlled by a valve attached to the respiratory mask, and, after enlargement, the respiratory mask is placed in position over the nose and mouth, with the head harness extended over and spaced from the back of the head. Once the respiratory mask has been properly positioned, the pressure in the head harness is released, causing the harness to contract and to contact the head of the pilot, whereby the respiratory mask is securely held in its proper position. Meanwhile, the pilot's other hand is free to control the aircraft or to perform such other tasks as may be required.

An inflatable head harness is shown and described in U.S. Pat No. 3,599,636 in which the harness is defined by a pair of spaced,
expandable rubber tubes which are housed within an outer casing of material which has limited yieldability and which is initially in pleated form.

The disclosed harness needs to work a minimum pressure of 6 bars at the arrival of breathing gas.

However, more and more often, the breathing gas supply system of aircraft uses Onboard Oxygen Generating System, or OBOGS, which delivers breathing gas at a maximum pressure of 4 to 5 bars. This pressure is not sufficient to inflate correctly the usual inflatable harness for allowing the crewmember to install the mask easily.

Therefore, there is a need for an apparatus which allows the use of inflatable harness with the pressure level delivered by OBOGS.

Summary of the invention

To better address one or more concerns, in a first aspect of the invention, an elastic tubular device comprising;
- an inner tube made of an elastic and gas impermeable material; and,
- an sheath surrounding the inner tube and made of a woven cloth of flame resistant meta-aramid yarns, wherein the tubular device has a longitudinal extension of at least approximately 1.4 when inflated by a gas having a pressure of at least approximately 0.5 bar.

The tubular device has advantageously the same longitudinal extension ratio than a standard tubular device for inflatable harness but this extension ratio is achieved with a pressure level which can be obtained from OBOGS.

In particular embodiments,
- the tubular device has a longitudinal extension of at least approximately 1.5 when inflated by a gas having a pressure of at least approximately 0.7 bar.
- the inner tube is molded in silicon material, said silicon having a hardness of less than 75 shore A, and Young's modulus of less than
200MPa.
- said silicon has a hardness of less than 35 shore A.
- internal diameter of the inner tube is at least approximately 17 millimeters.

- the sheath is woven so that its longitudinal stretch ratio is approximately 3.

In another aspect of the invention, a breathing mask for aircraft comprises an inflatable harness composed of elastic tubular devices as disclosed hereabove.

Therefore, the user may advantageously inflate the harness with the pressure level achieved by OBOGS to don the breathing mask using only one hand.

In particular embodiment of the breathing mask:
- the tubular devices are connected to a gas source through nozzles, said nozzles comprising a cylindrical cover which gets wider in the direction of the tubular devices.
- the ends of the inner tube of said tubular devices are fixed inside the cylindrical cover are thicker than the other part of the inner tube.

Depending on the type of the breathing mask and tubular device, a particular embodiment may be preferred as easier to adapt. Aspects of these particular embodiments may be combined or modified as appropriate or desired, however.

Brief description of the drawings

These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment described hereafter where:

- Fig. 1 is an isometric view of a breathing mask with its inflatable harness according to an embodiment of the invention;
- Fig. 2 is an isometric view of a portion of a tube used in the harness of Fig. 1; and
- Fig. 3 is a section view of a connection of the tube of Fig. 2 with the
breathing mask of Fig. 1.

Description of embodiments of the invention

In reference to Fig. 1, a head harness 1 is utilized in conjunction with a respiratory mask 3 of the type intended to provide oxygen to aircraft crewmembers under high altitude conditions or under conditions in which the aircraft cabin pressurization has for some reason been lost.

Mask 3 includes a flexible, generally cup-shaped face member 5 adapted to fit over and cover the mouth and nose of the user, and which is suitably shaped to provide a comfortable fit.

Positioned at the forward outer end of face member 3 is a control valve 6 having a slidable valve member 7, 9 positioned on each side of control valve 5, each of which is adapted to selectively open and close a passage way to admit a pressurized fluid to the harness structure, all will hereinafter be described. Control valve 6 can be a two-position valve, wherein in one position it permits communication between the head harness and the atmosphere while it simultaneously prevents the entry of pressurized gas to the harness structure. As it is apparent, control valve 6 is adapted for one-handed use, thereby permitting the other hand of the user to be occupied with other tasks. Although a specific structure of control valve is shown and described, it will be apparent to those skilled in the art that other types of control valve structure could be successfully utilized together with the head harness structure of the invention, and the control valve structure shown is for illustrative purposes only.

Control valve 6 includes a valve housing 11, which fits over and is secured to forward position 13 of face member 3, and to which is attached two tubular members 15, 17, each tubular member having the form of a loop, each end of which is securely received in housing in substantially gas-tight relationship. Tubular members 15, 17 are adapted to encircle the head of the user and, when properly positioned they securely hold face member 3 in its operative position. Space members 19 are positioned there between to hold tubular elements 15, 17 in a predetermined, spaced angular relationship.
relative to each other for maximum comfort on the part of the user.

Tubular members 15, 17 include, Fig. 2, a first, outer tube 21, or sheath, and a second, inner tube 23. Outer tube 21 is made from an elastic material which is elastically extensible in an axial or longitudinal direction, but which need not be elastically extensible in a radial or transverse direction. The purpose of the longitudinal extensibility is to permit axial extension of tubular members 15, 17 to enable their placement over the head of the user, and subsequently to permit it to contract into closely fitting engagement with the user's head to hold the device to which it is applied on its proper position. A preferred material from which outer tube 21 can be formed is a woven cloth composed of flame resistant meta-aramid yarn such as NOMEX (trademark of Dupont Inc.) fiber. The NOMEX has the advantage to have a good heat resistance compatible with aircraft regulation, a great mechanical resistance and particularly to defibrering, and a homogeneous sliding between fibers which guarantee a homogeneous elongation of the tubular members.

Inner tube 23 fits completely within outer tube 21 and is formed from a fluid impermeable and elastic material, preferably a silicone-type material. Typically, inner tube 23 is a silicone molded tube.

Therefore, the inner tube 23, being fluid impermeable and elastic, is used to transform the breathing gas pressure into a mechanical increase of the tubular members length and the outer tube 21 is used to protect the inner tube 23 from aggressive contact and to direct the force generated by the breathing gas pressure to the longitudinal extension of the tubular members.

The tubular members 15, 17 are connected to the valve housing 11 by means of nozzles 30, Fig. 3.

The nozzle comprises a cylindrical cover 34 which gets wider in the direction of the tubular members to spread constraints generated by inflating the harness.

The end of the inner tube 23 is fixed inside the cylindrical cover 34 and is thicker than the other part of the tube also to spread constraints.

The breathing gas generated by OBOGS has a pressure as low as 0.7 bars and a maximum flow rate of around 85 l/min.
The tube needs to elongate by a factor of around 1.5 to allow the user's head to position into the harness, whatever the head size is.

However, it may be acceptable that the tube elongates by a factor or only 1.4 if the pressure delivered by OBOGS is only 0.5 bars.

To offer a good comfort to the user while maintaining closely in place the breathing mask, the harness needs to squeeze the head, when deflated, with strength of more than 20 Newton.

With a pressure of 0.7 bars and considering the silicone elasticity, it appears that the inner diameter of the tube needs to be around 18 mm.

Knowing the silicone elasticity and the elongation ratio, the man skilled in the art determines the requested silicone section which, with the inner diameter, gives the thickness.

In order to have a silicone thickness with a good protection against puncture, the silicone is chosen advantageously among those having a hardness of less than 75 shore A, preferably less than 35 shore A, and a Young's modulus of less than 200MPa.

To obtain the correct longitudinal extensibility of 1.5, and to protect against a puncture due to an overpressure, for instance, of 9 bars, the number of spindles and the weaving angle are advantageously adjusted during the weaving of the outer tube to achieve a longitudinal stretch ratio of the outer tube alone of 3. To calculate the longitudinal stretch ratio, the outer tube is considered by itself, without the inner tube and the comparison is done between the outer tube stretched longitudinally and the outer tube in a rest position which means it has a diameter of approximately 20 mm, i.e. the outer diameter of the inner tube.

Other variation to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure and the appended claims. In the claims, the word "comprising does not exclude other elements, and the indefinite article "a" or "an" does not exclude a plurality.
1. An elastic tubular device comprising
 - an inner tube (23) made of an elastic and gas impermeable material; and,
 - an sheath (21) surrounding the inner tube and made of a woven cloth of flame resistant meta-aramid yarns, wherein the tubular device has a longitudinal extension of at least approximately 1.4 when inflated by a gas having a pressure of at least approximately 0.5 bar.

2. A device according to claim 1, wherein the tubular device has a longitudinal extension of at least approximately 1.5 when inflated by a gas having a pressure of at least approximately 0.7 bar.

3. A device according to claim 1 or 2, wherein the inner tube is molded in silicon material, said silicon having a hardness of less than 75 shore A, and Young's modulus of less than 200MPa.

4. A device according to claim 3, wherein said silicon has a hardness of less than 35 shore A.

5. A device according to any one of proceeding claims, wherein internal diameter of the inner tube is at least approximately 17 millimeters.

6. A device according to any one of claim 1 to 5, wherein said sheath is woven so that its longitudinal stretch ratio is approximately 3.

7. A breathing mask for aircraft comprising an inflatable harness composed of elastic tubular devices according to any one of claim 1 to 6.

8. The breathing mask according to claim 7, wherein said tubular devices are connected to a gas source through nozzles, said nozzles comprising a cylindrical cover which gets wider in the direction of the tubular devices.

9. The breathing mask according to claim 7, wherein the ends of the inner tube of said tubular devices are fixed inside the cylindrical cover are thicker than the other part of the inner tube.
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER

INV. A62B18/08

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A62B A61M F16L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2003/000530 A1 (MCDONALD THOMAS K [US] ET AL) 2 January 2003 (2003-01-02) paragraph [0016]; claims 2,3; figures 2,3</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DE 36 08 668 A1 (BIW ISOLIERSTOFFE GMBH [DE]); BRAINTIGAM HANS DR ING [DE]) 17 September 1987 (1987-09-17) page 2, lines 7-12</td>
<td>2,4-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'A' document member of the same patent family

Date of the actual completion of the international search

9 December 2008

Date of mailing of the international search report

16/12/2008

Name and mailing address of the ISA/
European Patent Office P B 5818 Patentlaan 2
NL - 2280 HW RIVIWI
Tel (+31-70) 340-2040
Fax (+31-70) 340-3016

Authorized officer

van Bi Iderbeek, Henk
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1401537 A2</td>
<td>31-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03004099 A2</td>
<td>16-01-2003</td>
</tr>
<tr>
<td>DE 3608668 A1</td>
<td>17-09-1987</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>