

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-39215

(P2004-39215A)

(43) 公開日 平成16年2月5日(2004.2.5)

(51) Int.C1.⁷

G 11 B 5/60

G 11 B 21/21

F 1

G 11 B 5/60

G 11 B 21/21

テーマコード(参考)

5 D 0 4 2

1 O 1 Q

審査請求 未請求 請求項の数 30 O L 外国語出願 (全 39 頁)

(21) 出願番号 特願2003-163673 (P2003-163673)
 (22) 出願日 平成15年6月9日 (2003.6.9)
 (31) 優先権主張番号 10/165786
 (32) 優先日 平成14年6月7日 (2002.6.7)
 (33) 優先権主張国 米国(US)

(71) 出願人 501416070
 エスエーイー マグネティクス(エイチ.
 ケー.)リミティド
 香港、ニュー テリトリーズ、クワイ チ
 ュン、クワイ フン クレセント 38-
 42, エスエーイー タワー
 (74) 代理人 100099759
 弁理士 青木 篤
 (74) 代理人 100092624
 弁理士 鶴田 準一
 (74) 代理人 100102819
 弁理士 島田 哲郎
 (74) 代理人 100082898
 弁理士 西山 雅也

最終頁に続く

(54) 【発明の名称】仕切られた低圧領域を有する低圧スライダー、ヘッドシンバルアセンブリ及びディスクドライブ

(57) 【要約】

【課題】方向が変化する空気流があるときに浮上高さを低くかつ一定にする空気ベアリング表面を備えた空気ベアリング式低圧スライダーを提供する。

【解決手段】スライダー10の低圧領域は、第1の領域19が予め定めた深さに、第2の領域20がそれより深い深さになるように仕切られる。一例として、第1の領域19は、スライダー10の前部分15から複数のレール12及び14の間を延び、一方第2の領域20はスライダー10の外側後部の四半部に配置される。

【選択図】 図3

図3

【特許請求の範囲】**【請求項 1】**

スライダー本体を有する空気ベアリング式の低圧スライダーであって、該スライダー本体は前エッジ、該スライダー本体に沿って長手方向に延びる内側エッジ及び外側エッジ、並びに後エッジにより画定され、該スライダー本体が、

少なくとも第1及び第2レールを有する空気ベアリング面と、

前記スライダー本体の前記前エッジから前記第1及び第2レールの前部まで延びる前部分と、

前記前部分の間かつ前記第1レールと前記第2レールとの間を延び、第1の深さを有する第1の領域及び該第1の深さよりも深い第2の深さを有する第2の領域に少なくとも分割される低圧領域とを有する、低圧スライダー。10

【請求項 2】

前記第1の領域は、前記スライダー本体の前記前部分から前記第1レールと前記第2レールとの間を延び、前記第2の領域は前記スライダー本体の外側後部の四半部に配置される、請求項1に記載の低圧スライダー。

【請求項 3】

前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2に記載の低圧スライダー。20

【請求項 4】

前記第1の領域は前記スライダー本体の前部分から前記低圧領域の内側半分に延び、前記第2の領域は前記スライダー本体の前部分から前記第1レールと前記第2レールとの間の前記低圧領域の外側半分に延びる、請求項1に記載の低圧スライダー。30

【請求項 5】

前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2に記載の低圧スライダー。

【請求項 6】

前記第2領域は前記低圧領域の外側半分に配置され、前記第1領域は前記スライダー本体の前部分から前記スライダー本体の内側半分に延び、さらに該第1領域は、前記スライダー本体の前部分に沿って前記第2領域と前記第1及び第2レールのいずれか一方との間を延びる溝を有する、請求項1に記載の低圧スライダー。30

【請求項 7】

前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項6に記載の低圧スライダー。

【請求項 8】

前記スライダー本体の前記後エッジに近接配置される後部パッドをさらに有し、前記第1領域は前部分から前記第1レールと前記第2レールとの間に延び、前記第2領域は該後部パッドの周りに配置される、請求項1に記載の低圧スライダー。40

【請求項 9】

前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項8に記載の低圧スライダー。

【請求項 10】

前記低圧領域が第1、第2、第3及び第4の領域に分割される、請求項1に記載の低圧スライダー。

【請求項 11】

スライダー本体を有するスライダーを具備するヘッドジンバルアセンブリであって、該スライダー本体は前エッジ、該スライダー本体に沿って長手方向に延びる内側エッジ及び外50

側エッジ、並びに後エッジにより画定され、該スライダー本体が、少なくとも第1及び第2レールを有する空気ペアリング面と、前記スライダー本体の前記前エッジから前記第1及び第2レールの前部まで延びる前部分と、前記前部分の間かつ前記第1レールと前記第2レールとの間を延び、第1の深さを有する第1の領域及び該第1の深さよりも深い第2の深さを有する第2の領域に少なくとも分割される低圧領域とを有する、ヘッドジンバルアセンブリ。

【請求項12】

前記スライダーについて、前記第1の領域が前記スライダー本体の前記前部分から前記第1レールと前記第2レールとの間を延び、前記第2の領域が前記スライダー本体の外側後部の四半部に配置される、請求項11に記載のヘッドジンバルアセンブリ。10

【請求項13】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項12に記載のヘッドジンバルアセンブリ。

【請求項14】

前記スライダーについて、前記第1の領域が前記スライダー本体の前部分から前記低圧領域の内側半分に延び、前記第2の領域が前記スライダー本体の前部分から前記第1レールと前記第2レールとの間の前記低圧領域の外側半分に延びる、請求項13に記載のヘッドジンバルアセンブリ。20

【請求項15】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項12に記載のヘッドジンバルアセンブリ。

【請求項16】

前記スライダーについて、前記第2領域は前記低圧領域の外側半分に配置され、前記第1領域は前記スライダー本体の前部分から前記スライダー本体の内側半分に延び、さらに該第1領域は、前記スライダー本体の前部分に沿って前記第2領域と前記第1及び第2レールのいずれか一方との間を延びる溝を有する、請求項11に記載のヘッドジンバルアセンブリ。30

【請求項17】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項16に記載のヘッドジンバルアセンブリ。

【請求項18】

前記スライダーは、前記スライダーの前記後エッジに近接配置される後部パッドをさらに有し、前記第1領域は前部分から前記第1レールと前記第2レールとの間に延び、前記第2領域は該後部パッドの周りに配置される、請求項11に記載のヘッドジンバルアセンブリ。40

【請求項19】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項18に記載のヘッドジンバルアセンブリ。

【請求項20】

前記スライダーについて、前記低圧領域が第1、第2、第3及び第4の領域に分割される、請求項11に記載のヘッドジンバルアセンブリ。50

【請求項 2 1】

回転可能なディスクと、アクチュエーターに接続されるとともに、スライダー本体を有するスライダーを具備するヘッドジンバルアセンブリとを有するディスクドライブであって、

該スライダー本体は前エッジ、該スライダー本体に沿って長手方向に延びる内側エッジ及び外側エッジ、並びに後エッジにより画定され、該スライダー本体が、

少なくとも第1及び第2レールを有する空気ペアリング面と、

前記スライダー本体の前記前エッジから前記第1及び第2レールの前部まで延びる前部分と、

前記前部分の間かつ前記第1レールと前記第2レールとの間を延び、第1の深さを有する第1の領域及び該第1の深さよりも深い第2の深さを有する第2の領域に少なくとも分割される低圧領域とを有する、ディスクドライブ。 10

【請求項 2 2】

前記スライダーについて、前記第1の領域が前記スライダー本体の前記前部分から前記第1レールと前記第2レールとの間を延び、前記第2の領域が前記スライダー本体の外側後部の四半部に配置される、請求項2 1に記載のディスクドライブ。

【請求項 2 3】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2 2に記載のディスクドライブ。 20

【請求項 2 4】

前記スライダーについて、前記第1の領域が前記スライダー本体の前部分から前記低圧領域の内側半分に延び、前記第2の領域が前記スライダー本体の前部分から前記第1レールと前記第2レールとの間の前記低圧領域の外側半分に延びる、請求項2 1に記載のディスクドライブ。

【請求項 2 5】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2 2に記載のディスクドライブ。 30

【請求項 2 6】

前記スライダーについて、前記第2領域は前記低圧領域の外側半分に配置され、前記第1領域は前記スライダー本体の前部分から前記スライダー本体の内側半分に延び、さらに該第1領域は、前記スライダー本体の前部分に沿って前記第2領域と前記第1及び第2レールのいずれか一方との間を延びる溝を有する、請求項2 1に記載のディスクドライブ。

【請求項 2 7】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2 6に記載のディスクドライブ。 40

【請求項 2 8】

前記スライダーは、前記スライダーの前記後エッジに近接配置される後部パッドをさらに有し、前記第1領域は前部分から前記第1レールと前記第2レールとの間に延び、前記第2領域は該後部パッドの周りに配置される、請求項2 1に記載のディスクドライブ。

【請求項 2 9】

前記スライダーについて、前記第1の領域は0.51～2.5マイクロメートル(20～100マイクロインチ)の深さを有し、前記第2の領域は0.51～5.1マイクロメートル(20～200マイクロインチ)の深さを有する、請求項2 8に記載のディスクドライブ。 50

【請求項 30】

前記スライダーについて、前記低圧領域が第1、第2、第3及び第4の領域に分割される、請求項21に記載のディスクドライブ。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、ディスクドライブの空気ベアリング式スライダー構造に関する。本発明は特に、空気ベアリング式低圧スライダーのための複数のレベル面構造に関する。

【0002】**【従来の技術】**

ハードディスクドライブは、磁気的読み取り及び書き込み要素によってアクセスされる一連の回転可能なディスクを実質的に有する、一般的な情報記憶装置である。これらのデータ転送要素（一般にはトランスデューサーとして知られる）は、典型的にはスライダー本体に支持されて固定される。スライダー本体は、読み取り及び書き込み操作が実行できるように、ディスク上に形成された離散データトラックの上に近接する相対位置に保持される。トランスデューサーをディスク表面に関して適切に配置するために、スライダー本体の上に形成された空気ベアリング表面（A B S）が、スライダー及びトランスデューサーをディスクデータトラックの上方に「浮上（f l y i n g）」させるために十分な持ち上げ力を提供する空気流を受ける。高速回転する磁気ディスクは、その表面に沿うとともにディスクの接線速度に実質的平行な方向に、空気流又は風を生じさせる。空気流は、スライダー本体のA B Sと協働して、回転するディスクの上方にスライダーを浮上させる。実質的に、浮遊するスライダーは、この自己作動的空気ベアリングによってディスク表面から物理的に分離される。スライダーのA B Sは、回転するディスクに面するスライダー表面上に構成され、種々の条件下においてディスク上方に浮上するための能力に大きく影響する。

【0003】

A B Sのいくつかの主目的は、スライダー及びそれに伴うトランスデューサーを、回転するディスクの表面にできるだけ接近して浮上させ、浮上条件の変化に関わらずその接近距離を一様かつ一定に維持することである。空気ベアリング式スライダーと回転する磁気ディスクとの間の高さ又は分離ギャップは、一般に浮上高さとして定義される。一般に、取り付けられたトランスデューサー又は読み取り／書き込み要素は、回転するディスクの表面の僅か約数十ナノメートル（数マイクロインチ）上方を浮上する。スライダーの浮上高さは、取り付けられた読み取り／書き込み要素が有する磁気ディスクの読み取り及び記録能力に影響を与える最も重要なパラメーターの1つとして監視される。例えば、浮上高さを低減すること又は比較的小さい浮上高さを有することは、多くの長所を有する。比較的小さい浮上高さによって、トランスデューサーは相異なるデータビットの位置間でより高い分解能を得ることができ、ディスク表面上に密に画定された領域から磁界が生じることができる。また、浮上高さが低いスライダーは、改善された高密度の記録又は記憶容量の磁気ディスクを提供することが知られている。この記録又は記憶容量は、通常はトランスデューサーと磁気媒体との間の距離によって制限される。狭い分離ギャップにより、より短い波長の信号が記録又は読み取り可能となる。同時に、比較的小さいが強力なディスクドライブを有する軽量かつコンパクトなノートブックタイプのコンピューターの人気の上昇に伴い、浮上高さの低い進歩的に小型化されたスライダー本体のニーズが継続的に高まっている。

【0004】

また一定の浮上高さは、特殊なA B Sの構成によってより確実に達成可能な望ましい長所を提供することが見出されている。浮上高さの変動は、付随するトランスデューサー又は読み取り／書き込み要素の分解能及びデータ転送能力に不都合に影響することが知られている。記録され又は読み取られる信号の振幅は、浮上高さが比較的一定であるときと同じようには変化しない。さらに、浮上高さの変化は、スライダー組体と回転する磁気ディス

10

20

30

40

50

クとの間の意図的でない接触に至る場合がある。一般的にスライダーは、直接的、擬似的に接触するスライダー及び浮上するスライダーのいずれとしても考えられており、このことは、それらのスライダーは回転するディスクに意図的に接触することを説明している。スライダーのタイプに関わらず、回転する磁気ディスクの表面に対する不必要的接触を防止して、スライダー本体及びディスク双方の摩耗を低減することが望まれる。記録媒体の劣化又は摩耗は記録データの損失につながる場合があり、一方スライダーの摩耗はトランステューサー又は磁気要素の究極的な破損に至る場合がある。

【 0 0 0 5 】

浮上高さを頻繁に惹き起こすものは、読み取り又は書き込み操作中に、回転するディスクにわたるスライダーの連続的高速移動である。例えば、スライダーの径方向位置によって、ディスク線速度はそれぞれ変化する。回転するディスクは外側エッジにおいて高速に見えるが、内側エッジにおいて低速に見える。結果として、空気ベアリング式スライダーは、ディスクに関する相異なる相対的径方向位置において相異なる相対速度で浮上する。典型的には、スライダーは高速であるほど高く浮上するので、スライダーがディスクの外側領域の上方に配置されたときに浮上高さが大きくなる傾向がある。同時に、内側領域においては低速のためにスライダーはより低く浮上する。従って、スライダーの構成は、径方向位置の変化及び相対速度が浮上高さに与える顕著な影響を排除するものでなければならない。

【 0 0 0 6 】

スライダーの浮上高さはまた、スキーの変化によっても悪影響を受ける。スキー角度は、スライダー本体の長手方向軸とディスク回転に対して接線方向の空気流との間に形成される角度として規定され測定される。取り付けられたスライダーが回転するディスクの内側又は外側エッジの近くに配置されたときは、その長手方向軸はしばしば空気流れ方向に関して斜めになる。スライダーの長手方向軸は、スライダー本体の長さに沿う基準中心線として規定されてもよい。典型的にはこれらの角度方向又はスキー角度は、回転作動アームとして変化し、ジンバル浮上組体がそのピボット点の回りを回転し、それによりスライダーは回転するディスクにわたって正確な通路を移動する。比較的小さい作動アームを有するコンパクトなディスクドライブの需要が増していることを考慮すれば、アーム長さが小さめであるために、大きめのスキー角度が常に存在する。スキー値がゼロより大きいときに、スライダーが加圧されてその値が下げられ、浮上高さが望ましくなく低減するということがしばしば見られる。比較的緩やかなスキー角度範囲であっても、スライダーの浮上能力は悪影響を受ける。結果として、スキーの変化に対するスライダーの感度を最小化するように A B S を構成することが試みられている。

【 0 0 0 7 】

もう1つの浮上高さ変動は、スライダー回転として識別可能である。回転角度は、スライダーの長手方向の両側の間の浮上高さの差によって測定され規定される。空気流れ方向に関するスキーにおいてスライダーが浮上するときは常に、A B S とディスクとの間に生じる圧力分布は不均一になる傾向がある。この不均衡により、スライダー本体の一方の側が他の側よりもディスク表面に接近するようなスライダー回転が生じる。しかしどうしてもスライダーは、浮上条件のいかなる変化にも関わらず、一定のスライダー回転にて配置されることが好ましい。その浮上条件には、回転するディスクの内側トラックと外側トラックとの間の接線速度差、及びディスク表面の上方の連続的横方向移動又はスキー角度の変化が含まれる。

【 0 0 0 8 】

図1に示されるように、一般的な筏型 (catamaran) スライダー5として知られるA B S の構造は、ディスクに面するスライダー表面の外側エッジに沿って延びる一対の平行なレール2及び4により形成される。様々な表面領域及び形状を備えた、3つ以上の付加的レールを有する他のA B S構造も開発されている。典型的には2つのレール2及び4は、前エッジ6から後エッジ8までの長さのスライダー本体の少なくとも一部に沿って延びる。前エッジ6は、回転するディスクが後エッジ8に向けてスライダーを走行する前

10

20

30

40

50

に通過するスライダーのエッジとして定められる。図示されるように前エッジ 6 は、定型的には機械加工プロセスに関連した望ましくない大きな許容誤差に関わらず、テーパーを有してもよい。トランスデューサー又は磁気要素 7 は、図 1 に示されるように典型的にはスライダーの後エッジ 8 に沿った場所に取り付けられる。レール 2 及び 4 は空気ベアリング表面を形成し、その表面上をスライダーが浮上する。レール 2 及び 4 が回転するディスクにより生じる空気流に接したときに、必要とされるスライダーの持ち上げがなされる。ディスクが回転すると、生じた風又は空気流が筏型スライダー-レール 2 及び 4 の下方に沿ってその間を流れる。空気流がレール 2 及び 4 の下方を通過すると、レールとディスクとの間の空気圧力が上昇し、それにより加圧及び持ち上げがなされる。一般に、筏型スライダーによれば十分な持ち上げ高さ又は正の支持力が得られ、それによりスライダーは回転するディスクの上方に適当な高さで浮上する。レール 2 及び 4 がない場合は、スライダー本体 5 の大きな表面領域が過度に大きな空気ベアリング表面を形成する。一般的に、空気ベアリング表面が増加すると、持ち上げ高さも大きくなる。従ってレールがない場合は、スライダーは回転するディスクから離れすぎて浮上するため、低い浮上高さを有することによる先に説明した長所の全ては得られない。

10

20

30

40

50

【0009】

図 2 に示されるように、ヘッドジンバルアセンブリ (HGA) 40 は、鉛直方向間隔、ピッチ角度及び回転角度のようなスライダーの浮上高さを説明する複数の自由度をスライダーに提供する。図 2 に示されるように、サスペンション 74 は、矢印 80 で示された方向に移動する (エッジ 70 を有する) ディスク 76 の上方に HGA 40 を保持する。図 2 に示されるディスクドライブの操作中に、アクチュエーター 72 が HGA を、ディスク 76 の様々な径 (例えば内径 ID、中間径 MD 及び外径 OD) に関して弧線 75 の上方を移動させる。

【0010】

筏型スライダーは、初期は適当な浮上高さの提供に有効であるが、スキュー角度範囲の変化及び他の不都合な浮上条件に対しては特に敏感である。浮上するスライダーが回転するディスクにわたって移動するときのように、スキュー角度が大きくなると、レール下方の空気圧力分布が歪められる。ディスクの内側部分及び外側部分の双方に比較的高速でアクセスすることにより、空気は各レールの下に不均一に導入され、典型的には図 1 に示されるスライダーの回転を惹起する。その結果スライダーは、不均一な圧力分布の影響を受け、一方向に回転させられて浮上高さが ABS のレール間で不均一になる場合がある。従って取り付けられたトランスデューサーは、データ転送操作を効率的又は正確に行うことができない場合がある。変化するスキュー範囲に対する ABS レールの感度及び他の不都合な浮上条件にも関わらず、このレール構造は、スライダーの浮上を可能にするために有効な加圧又は持ち上げを行う一般的構造として広く認識されている。

【0011】

浮上するスライダー本体への正の加圧に対抗して低くかつ一定の浮上高さを得るために、スライダー本体をディスクに向けて引っ張る又は引き寄せるために負圧又は常圧より低圧 (sub ambient pressure) を提供する ABS を形成することが知られている。例えば、負圧の空気ベアリング (N P A B) 又は自己支持式のスライダーが、対抗する負圧支持を提供するものとして知られている。この二重圧力構成においては、ABS は一般に前エッジ、後エッジ、複数のサイドレール、及び複数のサイドレールの間を基本的な H 形状方向になるように延びるクロスレールにより形成される。クロスレールは、多くの場合スライダーの後エッジよりも前エッジに接近して配置され、クロスレール及び複数のサイドレールの中間を通る常圧よりも低圧の領域 (以下単に低圧領域と称する) を形成する。低圧領域は、ABS のサイドレール部分に沿って生じた正圧に対抗する負圧又は負の支持力を生じさせる。この対抗する負圧及び正圧は、スライダーの安定性及び空気ベアリングの安定性を高め、スライダーを迅速に「離陸」させ、浮上高さ変動を惹起するディスクの速度変化及び径方向移動のような条件変化に対する感度を低減する。ディスクの内側トラックと外側トラックとの間で変化する速度に従って、正圧及び負圧の変化を補

正することは、実質的に一定かつ安定した浮上高さを維持するという包括的な目的に寄与する。しかし、低圧構造において生じた対抗力は、実際には浮上高さを変化させるという望ましくない効果をしばしば有する。N P A Bスライダーは多くの場合、レール下方の不均一な圧力又は空気分布のために、スキュー条件における浮上高さの低減だけでなく顕著な回転を呈する。

【 0 0 1 2 】

既に開発されている他の種類の A B S レールの変形形態は、横方向等圧線 (T P C) として知られている。 T P C は、 A B S レール上の、空気ペアリング表面領域のエッジに沿う様々な位置に形成可能である。このことは、ある装置において、スキー角度における浮上高さ変化をいくらか低減することが確認されている。空気流の横方向成分がレールの面を横断する方向に向いているときは、 T P C レールの横方向エッジにより提供される等圧線は、等圧線のバランスをとる負圧がレールの他の横方向エッジに沿って等圧線内に生じている間、正圧を受けることができる。その結果、 A B S にわたる全体の圧力分布は、空気流の横方向成分が不均一な圧力を形成しがちなスキー角度の変化範囲に関して、相対的に変化しない状態に維持される。

【 0 0 1 3 】

【発明が解決しようとする課題】

空気ベアリング式スライダーについての上述した全ての A B S 構造及び変形形態は、低くかつ一定の浮上高さを達成するためのものである。効果の程度差は、浮上高さ又はピッチ及び回転角度を全体としては良好に制御しないこれらの A B S 構造により生じる。例えば、現存する多くの A B S 構造は、ディスクの外側トラック領域についてスライダー回転角度が著しく大きくなることが確認されている。これらの構造はまた、内側トラック領域から外側トラック領域に移動するときに、スライダーのピッチ角度の増加を制御することが典型的にはできない。従って、空気ベアリング式スライダーのための A B S 構造については、ディスクの外側領域及び内側領域における相対速度差、回転するディスクに関するスライダーの相対位置、及び変化するスキュー角度範囲のような絶えず変化する浮上条件に関わらず、一定の浮上高さを効果的に維持して回転角度を制御する必要がある。

【 0 0 1 4 】

【課題を解決するための手段】

本発明は、方向が変化する空気流があるときに浮上高さを低くかつ一定にする空気ベアリング表面（A B S）を備えた空気ベアリング式低圧スライダーを提供する。また本発明のスライダー構造により提供される一定の浮上高さは、異なるディスク速度のときに異なる高さ位置に設定することができる。本発明のある実施形態においては、スライダー本体の低圧領域は、第1の領域が予め定めた深さに、第2の領域がそれより深い深さになるように仕切られる。一例として、第1の領域は、スライダーの前部分から複数のレールの間を延び、一方第2の領域はスライダー本体の外側後部の四半部に配置される。

〔 0 0 1 5 〕

【発明の実施の形態】

図3は、本発明に係る低圧スライダーのためのABS10の底側の平面図である。以下のABSの特別な特徴を記載するために、Al₂O₃TiCのような基板材料から形成可能なスライダー本体の全体は図示されないことが理解されよう。図3に図示されるABS10は、有効な空気ペアリング24及び26をそれぞれ備えた一対のレール12及び14を有する。内側レール12及び外側レール14は概ね、ABSの前エッジ16から後エッジ18に向けて伸びる。図3に示されるように、ABSレール12及び14は、本発明の一形態に従って、通常の方法により所望の形状に形成される。レール12及び14は、スライダーの前エッジ16において前部分15によって互いに接続される。本発明のこの実施形態においては、前部分15は、スライダーの前エッジから、レール12及び14の間及び外側に伸びる。図3において、前部分15は、スライダー部分のその領域を、要求される浮上特性に必要な深さ（例えば0.13～1.3マイクロメートル（5～50マイクロインチ））までエッチングすることにより形成される。選択的に、スライダー10の前工

ツジ 16 から前部分 15 に延びる傾斜構造（この技術分野では公知）が使用可能である。

【 0 0 1 6 】

図 3 において、本発明のある実施形態によれば、レール 12 と 14 との間の低圧領域が複数の区分に分割される。この実施形態において、低圧領域は、前部分 15 の後ろで第 1 領域 19 と第 2 領域 20 とに分割される。この実施形態において、第 2 領域は、スライダーの後方であってスライダー本体の外側エッジに位置する（移動するディスクに関する）ことから、低圧領域の外側後方四半部と称することができる。第 1 の低圧領域 19 は、例えば、その領域を 0.51 ~ 2.5 マイクロメートル（20 ~ 100 マイクロインチ）（例えば 1.3 マイクロメートル（50 マイクロインチ））の深さまでエッチングすることにより形成可能である。好ましくは、低圧領域 19 の深さは前部分 15 より深い。この実施形態において、第 2 低圧領域 20 は 0.51 ~ 5.1 マイクロメートル（20 ~ 200 マイクロインチ）の深さを有する。好ましくは、第 2 低圧領域 20 の深さは第 1 低圧領域 19 より深い。従って、例えば第 1 低圧領域 19 の深さが 1.3 マイクロメートル（50 マイクロインチ）であるときは、第 2 低圧領域は 3.3 マイクロメートル（130 マイクロインチ）の深さを有することができる。

10

【 0 0 1 7 】

本発明のこの実施形態において、スライダー 10 はさらなる特徴を有する。例えば、レール 12 及び 14 は、磁気的読み取り／書き込みヘッド 22 を備えた後部パッド 21 を有することができる。この実施形態において、後部パッドは 2 つのレベルを有する。その第 1 レベル 21a は、レール 24 及び 26 の深さに等しい深さを有し、第 2 レベル 22a は、0.05 ~ 1.3 マイクロメートル（2 ~ 50 マイクロインチ）の深さを有する。レール 24 及び 26 はまた、後部パッドの第 2 レベルの深さに等しい深さの第 2 の構造 24a 及び 26a を有することができる。さらに、レール 12 及び 14 より高い高さを有する静電防止パッド 25 及び 27 が提供可能である。これらのパッドは、スライダー 10 において改良された持ち上げを可能にし、スライダー 10 が移動するディスクに近接したときにレール 12 及び 14 が傷つくことを防止する。

20

【 0 0 1 8 】

操作中は、図 3 に示す仕切られた低圧領域を有するスライダーは、移動するディスクの直径の範囲にわたってより均一な浮上高さを有する。この技術分野では公知のように、回転するディスクの内径と外径との間をスライダーが移動しているときは、空気の流れ方向及び流量が変化する。図 3 のスライダーにおいて、空気は、内径においては左下方向からある角度にて流れ、外径においては左上方向からある角度にて流れる。低圧領域は内径において、移動するディスクにスライダーが向かうような力を与える。相対的に深い低圧領域 20 は、低圧領域が均一な深さである場合よりも、スライダーに対するこの力を上昇させる。一方、外径においては、空気流れの方向が異なることから、第 2 領域がスライダーに対して与えるこの力はより少ない。結果として、スライダーの浮上高さはより均一になる。図 4 は、図 3 のスライダーの相対浮上高さ（菱形）及び均一な低圧領域を有するスライダーの相対浮上高さ（四角形）を図示する。図 3 のスライダーは、内径から外径までの高さ変化が 5 % 未満である。均一な低圧領域を有する場合のスライダーの浮上高さは、移動するディスクの種々の直径に関して最大 20 % 变化し得る。

30

40

【 0 0 1 9 】

図 5 ~ 図 8 は、本発明の選択的実施形態を図示する。図 5 において、低圧領域は 2 つに等分される。低圧領域の内側半分 50 は、図 3 の第 1 領域の深さに相当する深さを有し、外側半分は図 3 における第 2 領域の深さに相当する深さを有する。図 6 の実施形態は、内側半分 60 が、外側半分 61 と外側レールとの間の溝 60a 内を延びる点が異なる。図 7 において、領域 78 は図 3 における第 1 領域の深さに相当する深さを有し、領域 71 は図 3 における第 2 領域の深さに相当する深さを有する。この実施形態において、領域 78 は、スライダーの前部分からレールとレールとの間を延び、一方領域 71 は、後部パッドの側部の前から側部まで延びる。

【 0 0 2 0 】

50

図8の実施形態においては、低圧領域は4つの四半部81～84に分割される。これら四半部の各々の深さは、内径及び外径の少なくとも一方における条件によって設定可能である。例えば、四半部81及び83の深さは、移動するディスクの内径及び外径のいずれか一方における浮上高さを定めるために設定することができる。浮上高さが定められると、四半部82及び84の深さは、内径及び外径の他方における浮上高さを定めるために設定することができる。内径及び外径の浮上高さは、できるだけ近くなるように設定されることが望ましい。実際の深さの設定は、特定の深さのスライダーを作製し、その特定の深さをインタラクティブなプロセスによって変更することにより可能である。好ましくは、そのプロセスはコンピューターシミュレーション（例えば、後述する式1を用いて）により実行される。

10

【0021】

全てのスライダーの浮上高さは、正圧（例えばスライダーの空気ベアリングレール上に生じる）と負圧又は低圧（例えばスライダーのレール間の低圧領域）とのバランスに依存する。スライダーの下に生じる圧力の大きさは、以下のように定義可能なペアリング数Aと呼ばれる無次元項によって定められる。

$$A = \frac{6 \mu U L}{\rho h^2} \quad \text{式1}$$

ここで μ は空気の粘度、Uは空気の線速、Lは代表長さ、 ρ は雰囲気圧力、hは代表高さである。

式1によれば、空気速度の変化は代表高さの変化によって釣り合いを保つことができる。このことは、スライダーの低圧領域の仕切られた領域の数、形状及び深さによって達成される。

20

【0022】

上述のように構成された、仕切られた低圧領域を有するスライダーの1つの長所は、スライダーが空気速度に鈍感なことである。スライダーが空気速度に鈍感であるときは、スライダーは比較的迅速にディスクから「離陸」してディスク及びスライダーの摩耗を防止することができる。この構成のスライダーの他の長所は、異なる回転速度（例えば5400及び7200 rpm）並びに異なる回転高さにおいて作動するドライブに対して同じスライダーが使用できることである。

【0023】

上述の実施形態に関して本発明が説明されたが、好適な実施形態に関するこの説明は限定的な意味に解釈されるものではない。本発明の全ての形態は、本番明細書に記載された特定の描写、構成又は大きさに限定されるものではないことが理解されるべきである。本発明の形態は、種々の空気力学の法則及び変数に依存し、例えば、カリフォルニア州バークレー大学のコンピューター力学研究室（Computer Mechanics Lab oratory）にて開発されたようなコンピューターシミュレーションプログラムを用いたコンピューターシミュレーション手法によって規定可能である。既に開示されている装置の形状及び詳細についての様々な変更は、本発明の他の変形例と同様に、本発明を参照すれば当業者には直ちに明らかであろう。従って特許請求の範囲は、記載された実施形態のいかなる修正又は変更も、本発明の真の精神及び範囲に含まれるように意図されたものである。

30

【図面の簡単な説明】

【図1】テーパーを有する通常の筏型空気ベアリング式スライダー構造を有し、読み取り及び書き込み要素組体を備えた浮上スライダーの斜視図である。

40

【図2】本発明に従って取り付けられた空気ベアリング式スライダーの平面図である（縮尺は示さず）。

【図3】本発明のある実施形態に従って構成された低圧スライダーの底面図である。

【図4】図3のスライダーの浮上高さを、低圧領域が仕切られていないときの浮上高さと比較したグラフである。

【図5】本発明の他の実施形態に従って構成された低圧スライダーの底面図である。

【図6】本発明の他の実施形態に従って構成された低圧スライダーの底面図である。

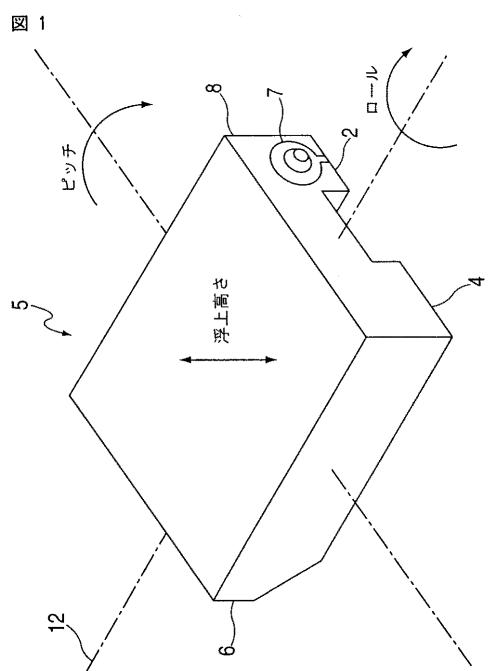
50

【図7】本発明の他の実施形態に従って構成された低圧スライダーの底面図である。

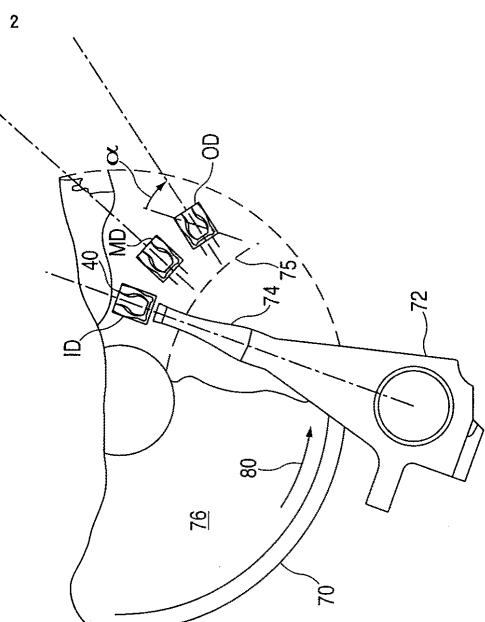
【図8】本発明の他の実施形態に従って構成された低圧スライダーの底面図である。

【符号の説明】

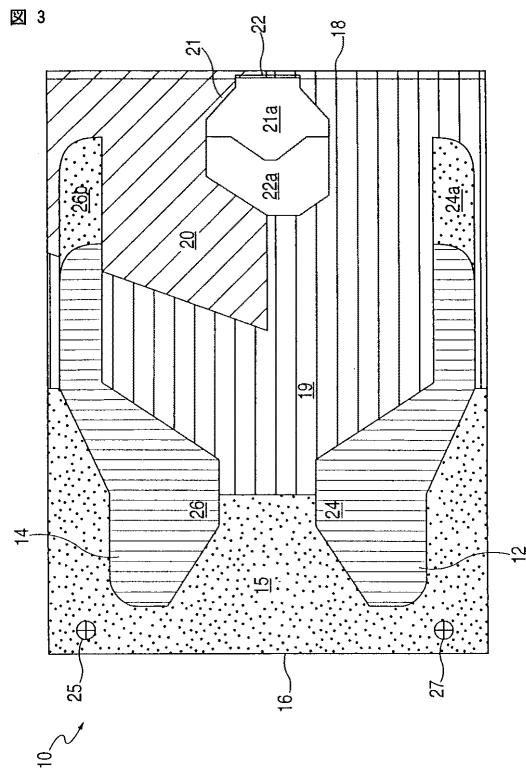
10 ... スライダー

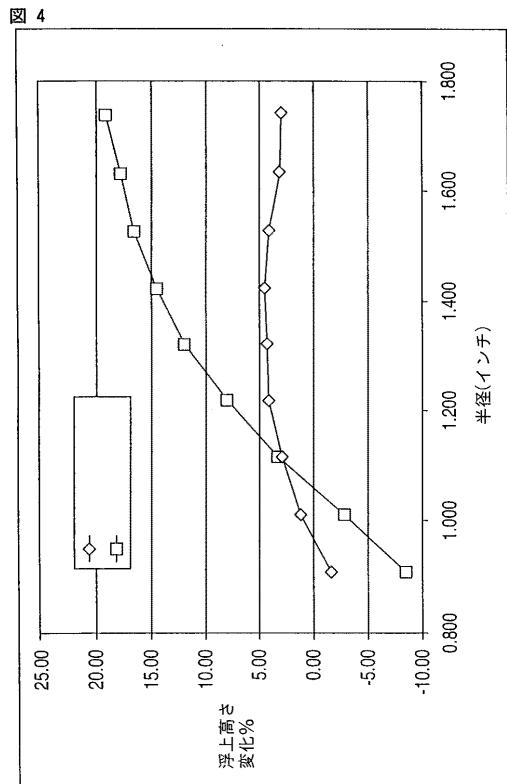

12、14 ... レール

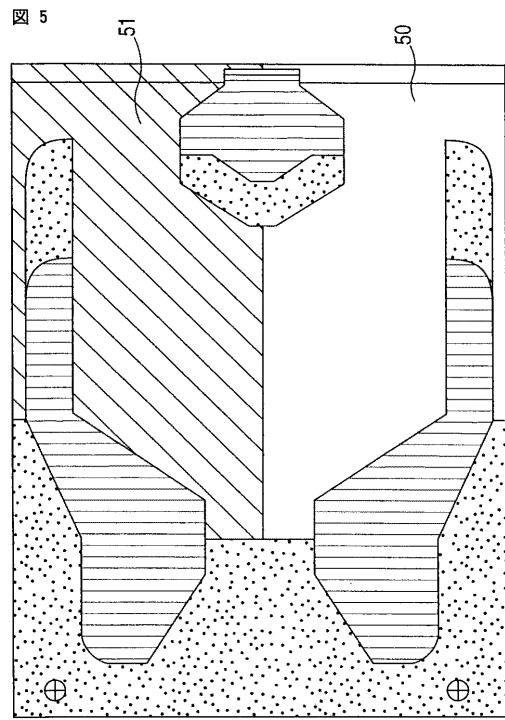
16 ... 前エッジ

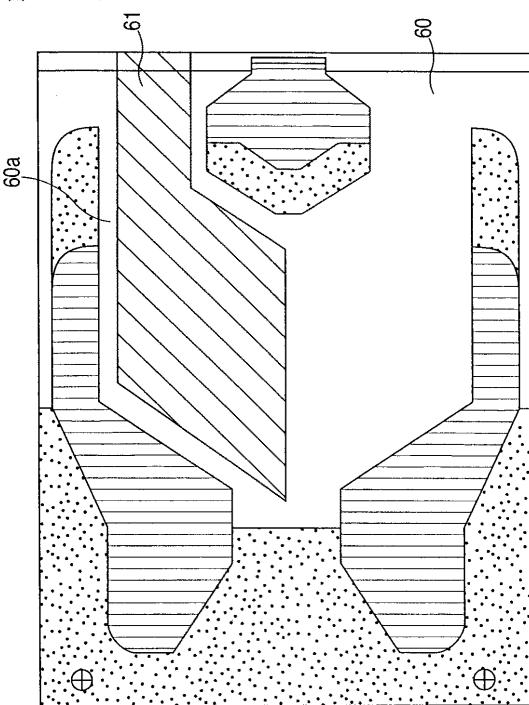

18 ... 後エッジ

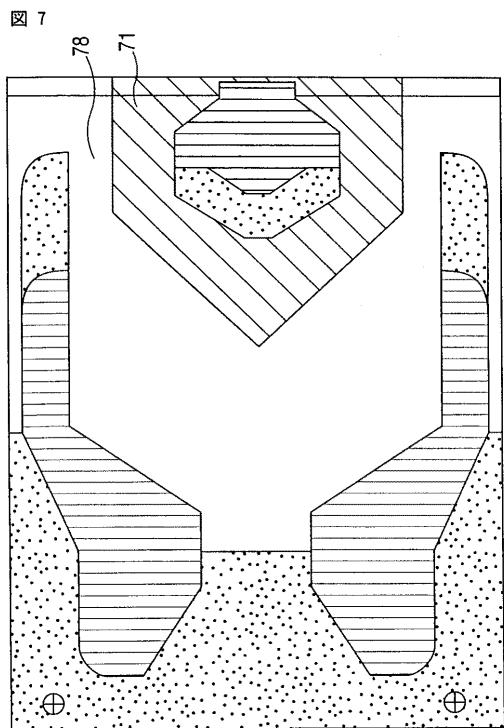
19、20 ... 低圧領域

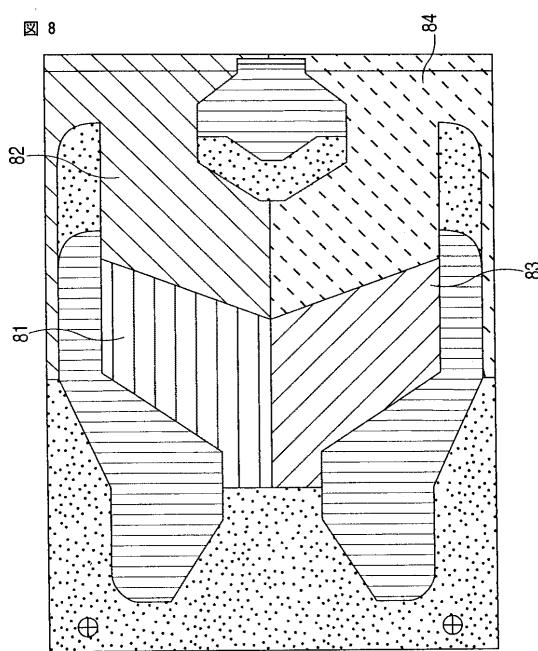

【図1】


【図2】


【図3】


【図4】


【図5】


【図6】

【図7】

【図8】

フロントページの続き

(72)発明者 エリス ティー・シャ

アメリカ合衆国, カリフォルニア 94583, サン ラモン, ベルベットリーフ サークル 9
688

(72)発明者 ハオ チン パン

アメリカ合衆国, カリフォルニア 95035, ミルピタス, ニーベス ストリート 831

F ターム(参考) 5D042 NA02 PA01 PA05 QA02 QA03

【外國語明細書】

1. Title of Invention

Subambient Pressure Slider with Partitioned Subambient Area,
Head Gimbal Assembly and Disk Drive

2. Detailed Description of Invention

[Technical Field of the Invention]

~~SUBAMBIENT PRESSURE SLIDER WITH PARTITIONED SUBAMBIENT AREA~~

Field of the Invention

[0001] The present invention is directed to air bearing slider designs in disk drives. More particularly, the present invention pertains to a multiple level surface configuration for a subambient pressure air bearing slider.

[Prior Art]

Background of the Invention

[0002] Hard disk drives are common information storage devices essentially consisting of a series of rotatable disks that are accessed by magnetic reading and writing elements. These data transferring elements, commonly known as transducers, are typically carried by and embedded in a slider body that is held in a close relative position over discrete data tracks formed on a disk to permit a read or write operation to be carried out. In order to properly position the transducer with respect to the disk surface, an air bearing surface (ABS) formed on the slider body experiences a fluid air flow that provides sufficient lift force to "fly" the slider and transducer above the disk data tracks. The high speed rotation of a magnetic disk generates a stream of air flow or wind along its surface in a direction substantially parallel to the tangential velocity of the disk. The air flow cooperates with the ABS of the slider body which enables the slider to fly above the spinning disk. In effect, the suspended slider is physically separated from the disk surface through this self-actuating air bearing. The ABS of a slider is generally configured on the slider surface facing the rotating disk, and greatly influences its ability to fly over the disk

under various conditions.

[0003] Some of the major objectives in ABS designs are to fly the slider and its accompanying transducer as close as possible to the surface of the rotating disk, and to uniformly maintain that constant close distance regardless of variable flying conditions. The height or separation gap between the air bearing slider and the spinning magnetic disk is commonly defined as the flying height. In general, the mounted transducer or read/write element flies only approximately a few micro-inches above the surface of the rotating disk. The flying height of the slider is viewed as one of the most critical parameters affecting the magnetic disk reading and recording capabilities of a mounted read/write element. For example, there are many advantages for reducing or having a relatively small flying height. A relatively small flying height allows the transducer to achieve greater resolution between different data bit locations and magnetic fields emanating from closely defined regions on the disk surface. Also, a low flying slider is known to provide improved high density recording or storage capacity of magnetic disks which is usually limited by the distance between the transducer and the magnetic media. Narrow separation gaps permit shorter wavelength signals to be recorded or read as a result. At the same time, with the increasing popularity of lightweight and compact notebook type computers that utilize relatively small yet powerful disk drives, the need for a progressively smaller slider body with a lower flying height has continually grown.

[0004] It has also been observed that a constant flying height provides desirable benefits which may be more readily achieved through particular ABS designs. Fluctuations in flying height are known to adversely affect the resolution and the data transfer capabilities of the accompanying transducer or read/write element. The amplitude of the signal being recorded or read does not

vary as much when the flying height is relatively constant. Additionally, changes in flying height may result in unintended contact between the slider assembly and the magnetic rotating disk. Sliders are generally considered to be either direct contacting, pseudo-contacting or flying sliders which is descriptive of their intended contact with a rotating disk. Regardless of the type of slider, it is often desirable to avoid unnecessary contact with the surface of the spinning magnetic disk so as to reduce the wear on both the slider body and the disk. The deterioration or wear of the recording media may lead to the loss of recorded data, while slider wear may also result in the ultimate failure of the transducer or magnetic element.

[0005] What often causes changes to the flying height is the continual high speed movement of the slider across the rotating disk while performing read or write operations. For example, depending on the radial position of the slider, the respective linear velocity of the disk varies. Higher velocities are observed at the outer edge of the rotating disk, while lower velocities are found at the inner edge. As a result, the air bearing slider flies at different relative speeds at different radial positions relative to the disk. Because sliders typically fly higher at higher velocities, there is a tendency for flying heights to increase when positioned above the outer regions of the disk. At the same time, lower velocities at the inner regions of the disk cause the slider to fly lower. Accordingly, slider designs must account for the noticeable effect that variations in radial position, and relative velocity, have on the flying height.

[0006] The flying height of a slider is also adversely affected by changes in skew. The skew angle is defined and measured as the angle formed between the longitudinal axis of the slider body and the direction of the air flow tangential to the disk rotation. When the mounted slider is positioned near the inner or outer edges of the spinning disk, its longitudinal axis is often skewed

in relation to the direction of the air flow. The longitudinal axis of the slider may be defined as a center line of reference running along the length of the slider body. These angular orientations or skew angles typically vary as a rotary actuator arm and gimbal suspension assembly turns about its pivot point thereby moving the slider in an arcuate path across the rotating disk. In view of the growing demand for compact disk drives having relatively smaller actuator arms, larger skew angles are ever more present because of the shortened arm length. It has often been observed that at skew values above zero, sliders are pressurized at reduced values which cause an undesirable decrease in flying height. Even a relatively moderate skew angle range adversely affects the flying capabilities of a slider. As a result, ABS designs continually attempt to minimize slider sensitivity to changes in skew.

[0007] Another fluctuation in flying height may be identified as slider roll. The roll angle is measured and defined by the difference in flying height between the longitudinal sides of the slider. Whenever a slider flies at skew with respect to the direction of the air flow, an unequal pressure distribution tends to occur between the ABS and the disk. This imbalance causes slider roll where one side of the slider body is closer to the disk surface than the other side. A slider, however, is preferably positioned at a constant slider roll regardless of any changes in the flying conditions including differences in tangential velocity between the inner and outer tracks of the rotating disk, and continuous lateral movement above the surface of the disk or varying skew angles.

[0008] As shown in FIG. 1 an ABS design known for a common catamaran slider 5 may be formed with a pair of parallel rails 2 and 4 that extend along the outer edges of the slider surface facing the disk. Other ABS configurations including three or more additional rails, with various

surface areas and geometries, have also been developed. The two rails 2 and 4 typically run along at least a portion of the slider body length from the leading edge 6 to the trailing edge 8. The leading edge 6 is defined as the edge of the slider that the rotating disk passes before running the length of the slider 5 towards a trailing edge 8. As shown, the leading edge 6 may be tapered despite the large undesirable tolerance typically associated with this machining process. The transducer or magnetic element 7 is typically mounted at some location along the trailing edge 8 of the slider as shown in FIG. 1. The rails 2 and 4 form an air bearing surface on which the slider flies, and provide the necessary lift upon contact with the air flow created by the spinning disk. As the disk rotates, the generated wind or air flow runs along underneath, and in between, the catamaran slider rails 2 and 4. As the air flow passes beneath the rails 2 and 4, the air pressure between the rails and the disk increases thereby providing positive pressurization and lift. Catamaran sliders generally create a sufficient amount of lift, or positive load force, to cause the slider to fly at appropriate heights above the rotating disk. In the absence of the rails 2 and 4, the large surface area of the slider body 5 would produce an excessively large air bearing surface area. In general, as the air bearing surface area increases, the amount of lift created is also increased. Without rails, the slider would therefore fly too far from the rotating disk thereby foregoing all of the described benefits of having a low flying height.

[0009] As illustrated in FIG. 2, a head gimbal assembly 40 often provides the slider with multiple degrees of freedom such as vertical spacing, or pitch angle and roll angle which describe the flying height of the slider. As shown in Fig. 2, a suspension 74 holds the HGA 40 over the moving disk 76 (having edge 70) and moving in the direction indicated by arrow 80. In operation of the disk drive shown in Fig. 2, an actuator 72 moves the HGA over various

diameters of the disk 76 (e.g., inner diameter (ID), middle diameter (MD) and outer diameter (OD)) over arc 75.

[0010] Although catamaran sliders are initially effective in providing an adequate flying height, they are especially sensitive to varying skew angle ranges and other adverse flying conditions. When the skew angle is increased, such as when the flying slider moves across the rotating disk, the air pressure distribution beneath the rails may become distorted. By accessing both inner and outer portions of a disk at relatively high speed, air is introduced in an uneven amount under each rail which typically causes slider roll as depicted in FIG. 1. As a result, the slider experiences an uneven distribution of pressure which may cause the slider to roll in one direction such that the flying height is not uniform between the ABS rails. The mounted transducer may therefore be unable to operate effectively or accurately perform its data transfer operations. Regardless of the sensitivity of the ABS rails to various skew ranges and other adverse flying conditions, this rail design is widely acknowledged as a general configuration that provides effective pressurization or lift to enable a slider to fly.

[0011] In order to counteract the positive pressurization of the flying slider body to provide a low and constant flying height, it is known to form an ABS that also provides negative or subambient pressurization to pull or draw the slider body towards the disk. For example, negative pressure air bearing (NPAB) or self loading sliders have been known to provide a counteracting negative pressure load. In this dual pressurization scheme, the ABS may be generally formed with a leading edge, a trailing edge, side rails, and a cross-rail that extends between the side rails in a basic H-shaped orientation. The cross-rail, which is often positioned closer to the leading edge than the trailing edge of the slider, creates a subambient pressure

region trailing the cross-rail and in between the side-rails. The subambient pressure region creates a negative pressure or load that counteracts the positive pressure generated along the side rail portion of the ABS. This counteraction of negative and positive forces has been known to increase the stability and air bearing stiffness of the slider, provide rapid slider take-off, and reduce its sensitivity to variations in conditions such as changing disk velocity and radial movement which cause fluctuations in flying height. The compensating changes in positive and negative pressure, in accordance with the varying velocity between the inner and outer tracks of the disk, contributes to the overall objective of maintaining a substantially constant and steady flying height. However, the offsetting forces created in a subambient pressurization scheme may often present undesirable effects that actually cause variations in flying height. A NPAB slider often exhibits noticeable roll as well, and a reduction in flying height at skewed conditions because of unequal pressurization or distribution of air beneath the rails.

[0012] Another type of ABS rail modification that has been developed is generally known as a transverse pressurization contour (TPC). A TPC may be formed on ABS rails at various locations along the edges of their air bearing surface areas. This has been observed to provide some reduction in flying height variations at skew angles in certain applications. When there is a transverse component of air flow directed across the face of the rail, the contour provided by a transverse edge of a TPC rail may experience positive pressurization while a counter balancing negative pressurization is produced in a contour along the other transverse edge of the rail. As a result, the overall pressure distribution across the ABS may remain relatively unchanged over some range of varying skew angles where the transverse component of air flow tends to cause unequal pressurization.

[Problems to be Solved by the Invention]

[0013] All of the aforementioned ABS configurations and modifications for air bearing sliders attempt to achieve a low and constant flying height. Different degrees of effectiveness are provided by these ABS designs which overall do not control flying height, or pitch and roll angles very well. For example, many existing ABS designs have been observed to exhibit an extremely increased slider roll angle over outer tracks regions of a disk. These configurations also typically fail to control the increase in slider pitch angle when moving from inner track to the outer track regions. Thus, there exists a need for an ABS configuration for an air bearing slider that effectively maintains constant flying height and controls roll angle regardless of constantly changing flying conditions such as the difference in relative velocity at the outer and inner regions of a disk, the relative positioning of a slider over a rotating disk, and varying skew angles ranges.

[Means for Solving the Problems]

SUMMARY OF THE INVENTION

[0014] The present invention provides a subambient pressure air bearing slider with an air bearing surface (ABS) that provides a low and constant flying height in the presence of varying directional air flow. Also, the slider design of the present invention may provide a constant flying height at different altitudes and with different disk speeds. In one embodiment of the present invention, the subambient pressure area of the slider body is partitioned such that a first area is at a predetermined depth and the second area is at a deeper depth. In one example, the first area extends between the rails and from the leading step portion of the slider while the second area resides at the outer-rear quadrant of the slider body.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a perspective view of a flying slider with a read and write element assembly having a tapered conventional catamaran air bearing slider configuration.

[0016] FIG. 2 is a plan view of a mounted air bearing slider in accordance with the present invention (not drawn to scale).

[0017] FIG. 3 is a bottom plan view of a subambient pressure slider constructed according to an embodiment of the present invention.

[0018] FIG. 4 is a graph of the flying height of the slider of FIG. 3 compared to one where the sub-ambient area is not partitioned.

[0019] FIG. 5 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0020] FIG. 6 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0021] FIG. 7 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0022] FIG. 8 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[Mode for Carrying out the Invention]

DETAILED DESCRIPTION OF THE INVENTION

[0023] FIG. 3 is a plan view of the bottom side of an ABS 10 for a subambient pressure slider in accordance with the present invention. It will be understood that for purposes of describing particular features of an ABS as follows, the entire slider body, which may be formed from a

substrate material such as Al₂O₃TiC, is not shown. The ABS 10 illustrated in FIG. 3 includes a pair of rails 12 and 14 each having effective air bearing areas 24 and 26. The inner rail 12 and the outer rail 14 generally extend from the leading edge 16 toward the trailing edge 18 of the ABS. As shown in FIG. 3, the ABS rails 12 and 14 are shaped in a desired configuration by conventional techniques in accordance with one aspect of the present invention. Rails 12 and 14 are connected together at the leading edge 16 of the slider by a leading portion 15. In this embodiment of the present invention, the leading portion 15 extends from the leading edge of the slider between and to the outside of the rails 12 and 14. In FIG. 3, this leading portion 15 is created by etching the slider body in this area to a depth appropriate for desired flying characteristics (e.g. between 5 and 50 microinches). Alternatively, a ramp structure (as known in the art) can be used that extends from the leading edge 16 of the slider 10 to the leading portion 15.

[0024] In Fig. 3, according to an embodiment of the present invention, the sub-ambient pressure area between rails 12 and 14 is divided into a plurality of sections. In this example, the sub-ambient pressure area is divided into a first area 19 and a second area 20 behind the leading portion 15. In this embodiment, the second area can be referred to as the outer-rear quadrant of the sub-ambient pressure area because the second area is substantially a quarter of the area located at the rear of the slider and at the outside edge of the slider body (relative to the moving disk). The first sub-ambient pressure area 19 can be formed, for example, by etching that area to a depth of between 20 and 100 microinches (e.g., 50 microinches). Preferably, the sub-ambient pressure area 19 has a depth that is deeper than the leading portion 15. In this embodiment, the second sub-ambient pressure area 20 has a depth between 20 and 200 microinches. Preferably,

the second sub-ambient pressure area 20 has a depth deeper than the first sub-ambient pressure area 19. Thus, for example, with a depth of 50 microinches for area 19, the second sub-ambient pressure area 20 can have a depth of 130 microinches.

[0025] In this embodiment of the present invention, the slider 10 includes additional features. For example, the rails 12 and 14 may include a rear pad 21 that includes a magnetic read/write head 22. In this example, the rear pad has two levels, a first level 21a, which has a depth equal to the depth of the rails 24 and 26, and a second level 22a, which has a depth of between 2 and 50 microinches. The rails 24 and 26 also may include secondary structures 24a and 26a that are at a depth equal to the depth of the second level of the rear pad. Further, antistiction pads 25, 27 may be provided having a height greater than rails 12, 14. These pads would provide improved lift-off for the slider 10 and prevent damage to the rails 12, 14 when the slider 10 is close to the moving disk.

[0026] In operation, the slider of Fig. 3 with its partitioned sub-ambient pressure area will have a flying height that is more uniform over the range of diameters of the moving disk. As known in the art, the direction of air flow and the amount of air flow changes as the slider moves between the inner diameter and outer diameter of the moving disk. In the slider of Fig. 3, air flow at the inner diameter is at an angle from the lower-left direction and air flow at the outer diameter is at an angle from the upper-left direction. At the inner diameter, the subambient pressure area provides a force urging the slider in a direction toward the moving disk. The relatively deeper sub-ambient pressure area 20 increases this attractive force for the slider than if the sub-ambient pressure area were of a uniform depth. At the outer diameter, on the other hand, the second sub-ambient area plays less of a role in providing this attractive force for the slider because of the

different direction of the air flow. The result is a more even flying height for the slider.

Referring to Fig. 4, a graph showing the relative flying height of the slider of Fig. 3 (with diamonds) and a slider with a uniform sub-ambient pressure area is presented (with squares).

From the inner diameter to the outer diameter, the slider of Fig. 3 has less than a 5% change in flying height. With a uniform sub-ambient pressure area, the flying height of the slider can vary as much as 20% over the various diameters of the moving disk.

[0027] Referring to Figs. 5 through 8, alternative embodiments of the present invention are shown. In Fig. 5, the sub-ambient pressure area is divided into two halves. The inner half 50 of the sub-ambient pressure area has a depth equivalent to the depth of the first area in Fig. 3 and the outer half has a depth equivalent to the depth of the second area in Fig. 3. In Fig. 6, the sub-ambient pressure area is divided in much the same manner as the slider of Fig. 5. In this case the inner half 60 of the sub-ambient pressure area has a depth equivalent to the depth of the first area in Fig. 3 and the outer half 61 has a depth equivalent to the depth of the second area in Fig. 3. A difference in the embodiment of Fig. 6 is that the inner half 60 extends in a channel 60a between the outer half 61 and the outer rail. In Fig. 7, area 78 has a depth equivalent to the first area in Fig. 3, and area 71 has a depth equivalent to the depth of the second area in Fig. 3. In this embodiment area 78 extends between the rails and from the leading section of the slider, while area 71 extends in front of and to the sides of the rear pad.

[0028] In the embodiment of Fig. 8, the subambient pressure area is divided into four quadrants 81-84. The depths of each of these quadrants can be set depending on the conditions that exist at the inner and/or outer diameter. As an example, the depths of quadrants 81 and 83 may be set so as to set the flying height at one of the inner or outer diameter of the moving disk. Once that

flying height is set, the depths of quadrants 82 and 84 may be set so as to set the flying height at the other extreme (i.e., one of the outer and inner diameter). It is desirable to set the flying height of the inner and outer diameters to be as close as possible. The actual setting of the depths may be done by manufacturing sliders with particular depths and changing them through an iterative process. Preferably, this process is performed through computer simulation (e.g., using Eq. 1 described below).

[0029] The flying height of any slider depends on a balancing of positive pressure (e.g., generating on the air-bearing rails of the slider) and negative or sub-ambient pressure (e.g., in the sub-ambient pressure area between the rails). The magnitude of the pressure generated under the slider is governed by the non-dimensional term called the bearing number, A, which can be defined as:

$$A = \frac{6\mu UL}{ph^2} \quad \text{Eq. 1}$$

Where: μ = viscosity of air,

U = linear velocity of air,

L = characteristic length,

p = ambient pressure,

h = characteristic height.

Accordingly, from Eq. 1, changes in the velocity of air can be balanced by changing the characteristic height. This is achieved through the control of the number, shape, and depth of the partitioned areas of the sub-ambient pressure area of the slider.

[0030] One possible advantage of sliders designed as set forth above with partitioned sub-ambient pressure areas is that the slider is insensitive to air velocity. When the slider is insensitive to air velocity, the slider can "take off" from the disk in a relatively quick manner avoiding wear on the disk and slider. Another possible advantage of sliders with this design is that the same slider may be used for drives operating at different rotational speeds (e.g., 5400 and 7200 RPM) and at different altitudes.

[0031] While the present invention has been described with reference to the aforementioned applications, this description of the preferred embodiments is not meant to be construed in a limiting sense. It shall be understood that all aspects of the present invention are not limited to the specific depictions, configurations or dimensions set forth herein which depend upon a variety of aerodynamic principles and variables, and may be determined, for example, through computer simulation procedures using computer simulation programs such as that developed at the Computer Mechanics Laboratory at the University of California, Berkeley, California. Various modifications in form and detail of the disclosed apparatus, as well as other variations of the present invention, will be apparent to a person skilled in the art upon reference to the present disclosure. It is therefore contemplated that the appended claims shall cover any such modifications or variations of the described embodiments as falling within the true spirit and scope of the present invention.

3. Claims

What is claimed is:

1. A subambient pressure air bearing slider comprising:
 - a slider body defined by a leading edge, an inner and outer edge extending longitudinally along the slider body, and a rear edge, said slider body including
 - an air bearing surface including at least first and second rails;
 - a leading portion extending from the leading edge of the slider to a leading portion of said first and second rails;
 - a subambient pressure region extending between the leading portion and between the first and second rails, wherein said subambient pressure region is divided into at least first and second areas, where said first area has a first depth and said second area has a second depth, and said second depth is deeper than said first depth.
2. The slider of claim 1 wherein said first area extends from the leading portion of the slider body and between said first and second rails, and said second area is disposed in an outer-rear quadrant of said slider body.
3. The slider of claim 2 wherein said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.
4. The slider of claim 1 wherein said first area extends from the leading portion of the slider body in an inside half of the subambient pressure area and the second area extends

from the leading portion of the slider body in an outside half of the subambient pressure area between said first and second rails.

5. The slider of claim 2 wherein said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

6. The slider of claim 1 wherein said second area is disposed in an outside half of the subambient pressure area and the first area extends from the leading portion of the slider in an inside half of the slider and includes a channel extending along the leading portion of the slider and between the second area and one of said first and second rails.

7. The slider of claim 6 wherein said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

8. The slider of claim 1 further comprising a rear pad disposed proximately to the rear edge of the slider, wherein said first area extends from said leading portion and between said first and second rails and said second area is disposed around said rear pad.

9. The slider of claim 8 wherein said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

10. The slider of claim 1 wherein said subambient pressure region is divided into first, second, third, and fourth regions.

11. A head gimbal assembly comprising:

a slider including

a slider body defined by a leading edge, an inner and outer edge extending longitudinally along the slider body, and a rear edge, said slider body including

an air bearing surface including at least first and second rails;

a leading portion extending from the leading edge of the slider to a leading portion of said first and second rails;

a subambient pressure region extending between the leading portion and between the first and second rails, wherein said subambient pressure region is divided into at least first and second areas, where said first area has a first depth and said second area has a second depth, and said second depth is deeper than said first depth.

12. The head gimbal assembly of claim 11 wherein for the slider said first area extends from the leading portion of the slider body and between said first and second rails, and said second area is disposed in an outer-rear quadrant of said slider body.

13. The head gimbal assembly of claim 12 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

14. The head gimbal assembly of claim 11 wherein for the slider said first area extends from the leading portion of the slider body in an inside half of the subambient pressure area and the second area extends from the leading portion of the slider body in an outside half of the subambient pressure area between said first and second rails.

15. The head gimbal assembly of claim 12 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

16. The head gimbal assembly of claim 11 wherein for the slider said second area is disposed in an outside half of the subambient pressure area and the first area extends from the leading portion of the slider in an inside half of the slider and includes a channel extending along the leading portion of the slider and between the second area and one of said first and second rails.

17. The head gimbal assembly of claim 16 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

18. The head gimbal assembly of claim 11 wherein said slider further comprises a rear pad disposed proximately to the rear edge of the slider, wherein said first area extends from

said leading portion and between said first and second rails and said second area is disposed around said rear pad.

19. The head gimbal assembly of claim 18 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

20. The head gimbal assembly of claim 11 wherein for the slider said subambient pressure region is divided into first, second, third, and fourth regions.

21. A disk drive comprising:
a disk capable of rotation;
a head gimbal assembly coupled to an actuator, said head gimbal assembly including a slider, said slider including
a slider body defined by a leading edge, an inner and outer edge extending longitudinally along the slider body, and a rear edge, said slider body including
an air bearing surface including at least first and second rails;
a leading portion extending from the leading edge of the slider to a leading portion of said first and second rails;
a subambient pressure region extending between the leading portion and between the first and second rails, wherein said subambient pressure region is

divided into at least first and second areas, where said first area has a first depth and said second area has a second depth, and said second depth is deeper than said first depth.

22. The disk drive of claim 21 wherein for the slider said first area extends from the leading portion of the slider body and between said first and second rails, and said second area is disposed in an outer-rear quadrant of said slider body.

23. The disk drive of claim 22 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

24. The disk drive of claim 21 wherein for the slider said first area extends from the leading portion of the slider body in an inside half of the subambient pressure area and the second area extends from the leading portion of the slider body in an outside half of the subambient pressure area between said first and second rails.

25. The disk drive of claim 22 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

26. The disk drive of claim 21 wherein for the slider said second area is disposed in an outside half of the subambient pressure area and the first area extends from the leading portion

of the slider in an inside half of the slider and includes a channel extending along the leading portion of the slider and between the second area and one of said first and second rails.

27. The disk drive of claim 26 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

28. The disk drive of claim 21 wherein said slider further comprises a rear pad disposed proximately to the rear edge of the slider, wherein said first area extends from said leading portion and between said first and second rails and said second area is disposed around said rear pad.

29. The disk drive of claim 28 wherein for the slider said first area has a depth between 20 and 100 microinches and said second area has a depth between 20 and 200 microinches.

30. The disk drive of claim 21 wherein for the slider said subambient pressure region is divided into first, second, third, and fourth regions.

4. Brief Description of Drawings

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a perspective view of a flying slider with a read and write element assembly having a tapered conventional catamaran air bearing slider configuration.

[0016] FIG. 2 is a plan view of a mounted air bearing slider in accordance with the present invention (not drawn to scale).

[0017] FIG. 3 is a bottom plan view of a subambient pressure slider constructed according to a embodiment of the present invention.

[0018] FIG. 4 is a graph of the flying height of the slider of FIG. 3 compared to one where the sub-ambient area is not partitioned.

[0019] FIG. 5 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0020] FIG. 6 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0021] FIG. 7 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

[0022] FIG. 8 is a bottom plan view of a subambient pressure slider constructed according to an alternative embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0023] FIG. 3 is a plan view of the bottom side of an ABS 10 for a subambient pressure slider in accordance with the present invention. It will be understood that for purposes of describing particular features of an ABS as follows, the entire slider body, which may be formed from a

1. Abstract

A subambient pressure air bearing slider for disk drives and the like is presented where the subambient pressure area is divided into two or more areas. For example, a first area extending between the rails can have a depth (e.g., between 20 and 100 microinches) relative to the height of the rails, while the second area has a deeper depth (e.g., between 20 and 200 microinches). In one embodiment, the second area is placed in the outside rear quadrant relative to the rear edge of the slider and the rail closer to the outside diameter of the moving disk. By partitioning the subambient pressure area and properly selecting the depths of the partitioned areas, the slider can achieve a more uniform flying height over the range of diameters of the moving disk, at different rotational speed velocities for the disk and at different operation altitudes.

2. Representative Drawing

Fig. 3

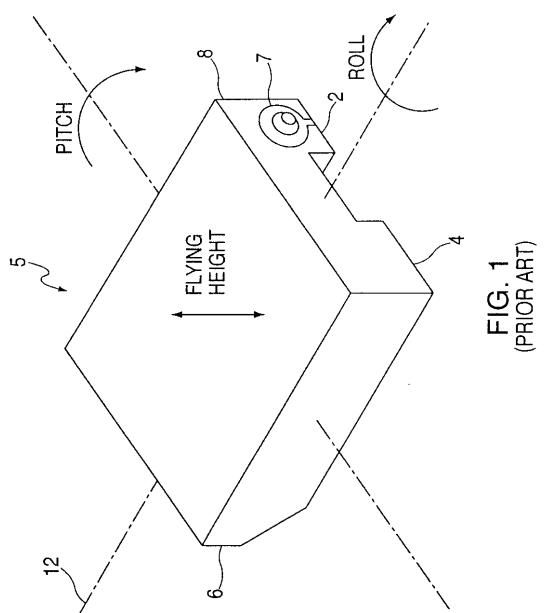
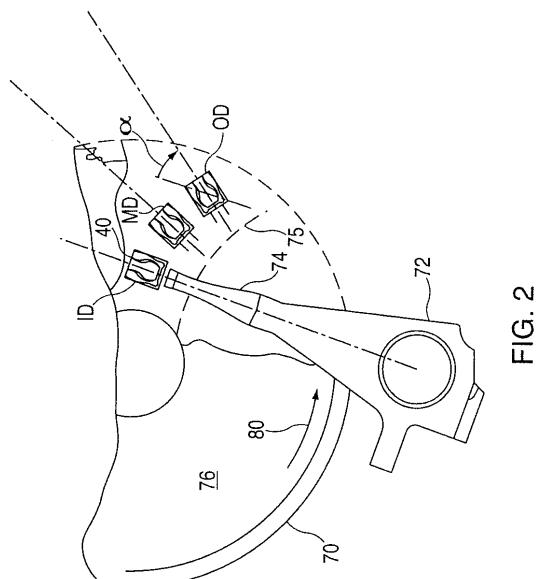


FIG. 1
(PRIOR ART)

FIG. 2

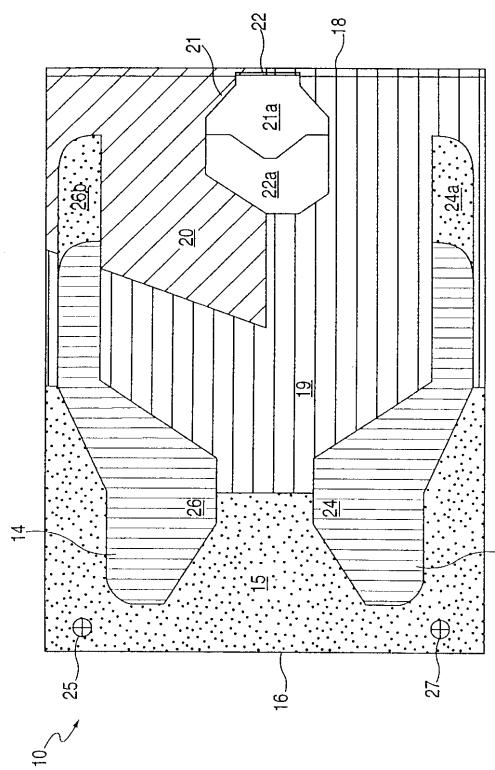


FIG. 3

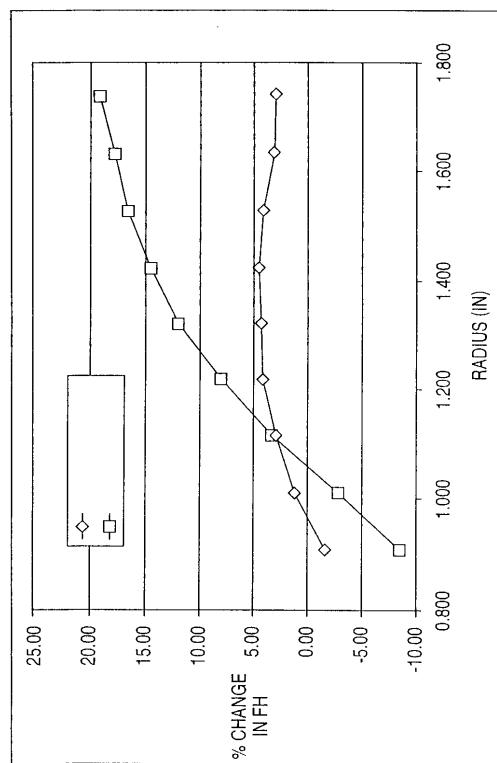


FIG. 4

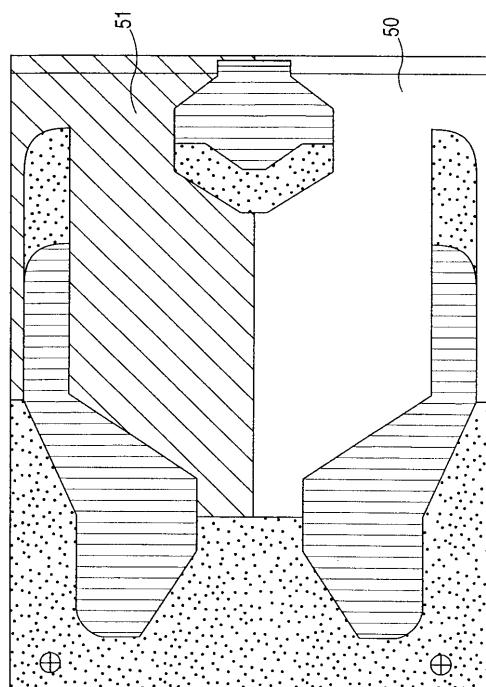


FIG. 5

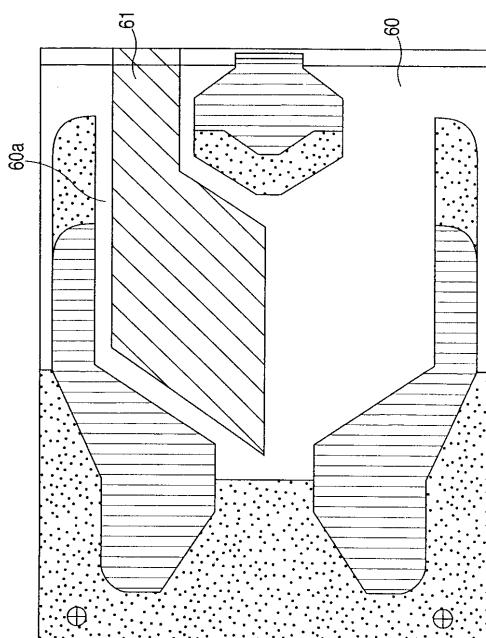


FIG. 6

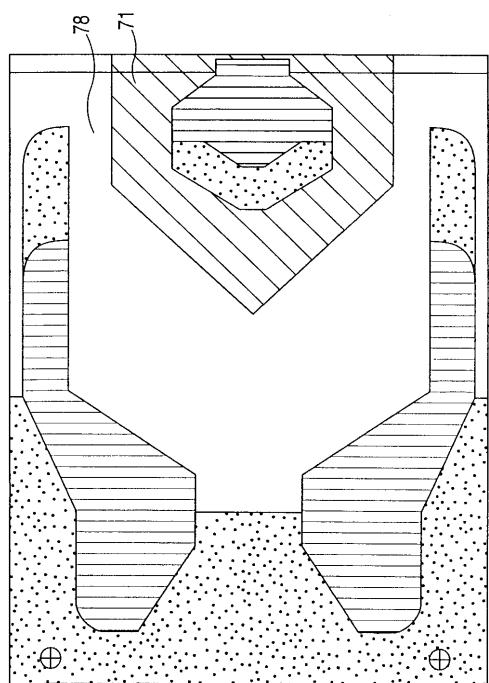


FIG. 7



FIG. 8